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From ages to ages there had been expectation of individuals on a

specific predictions and future occurrences. So also in a game, dif-

ferent participant that involves in those specified game have their

various expectations of the results or the output of the game they

are involved in. That is why we need a mathematical theory that

helps in prediction of the future expectations in our day to day

activities. Therefore the Martingale Theory is a very good theory

that explains and dissects the expectation of a gamer in a given
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game of chance. So in this thesis, we shall talk about the Martin-

gale Theory expressing the expectations of a gamer in a game of

chance, and also discuss the gaming strategies so as to enlighten ev-

eryone involved in a specific game their required expectation after

proper understanding of the Martingale Theory. Also this thesis

examines testing Martingale Difference Hypothesis (MDH) and re-

lated statistical inference issues and it discusses the developments

of tests and applies them to exchange rate data.
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Chapter 1

Martingale(probability theory)

1.1 Introduction

Martingale is a betting strategy that was traced back as at 18 centuries in

France. This strategy was introduced for a game in which a specific gambler

wins his stake if a coin comes up heads and loses it if same coin comes up

tails. The gambler needs to double his bet after every loss since he/she is not

ready to loose nor give up and his/her aim is to recover all previous losses

plus win and gain a profit that is equivalent to the original stake. This same

Martingale strategy has been applied to some other games like the roulette,

as the probability of hitting either red or black is close to 0.5.

We can also describe a Martingale as a model of a fair game in which the

knowledge of the past events or the knowledge of the already known result of

the game can never help to predict the result or the mean of the expected win-

nings. Consequently, a Martingale is a sequence of random variables or rather

a stochastic process for which, at a given time in the realized sequence, the
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expectation of the next value in the sequence is equal to the present observed

value inconsequential of the knowledge of all previously observed values.

On the other hand, in a non-martingales process, we may still have a

situation where the expected value of the process at one time is equal to the

expected value of the process at the next time. However, knowledge of the

previous outcomes, for instance, “the previous cards drawn out from a set of

cards” may be able to reduce the uncertainty of upcoming outcomes. Thus,

the expected or resulting value of the next outcome given a definite knowledge

of the present and all previous outcomes may definitely be higher than the

current outcome provided we use the said winning strategy. Martingale does

not include the possibility of the winning strategies based on already known

game history, and thus making the system a model of fair games. Since a

gambler with inexhaustible measure of wealth will almost surely flip head,

with this said reason, the Martingale betting strategy was concluded to be as

a sure system of gaming by those who recommended it. Even though none of

the gamblers possesses an inexhaustible wealth, and the exponential movement

of the bets placed would eventually bankrupt the gambler and the gamblers

who chose to use the Martingale system often wins a minute net reward, thus

appearing to have a faultless and accurate strategy. However, the gambler’s

expected results and values mostly ends up being zero (or even less than zero)

because the small probability that he will suffer an unimaginable loss exactly

measures up and balance up with his gain. (In a casino, the expected result

of a gambler is negative, simply because to the house’s edge.) The possibility

of catastrophic loss may not really be small since the bet size always rises

in an exponential rate. The fact that strings of consecutive losses definitely
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occur more often than just an ordinary intuitional suggestions, can make the

gambler go bankrupt quickly.

1.2 Martingale Definition

1.2.1 Definition

A stochastic process {Xn;n = 0, 1, ...} for n=0,1,... is a martingale if

1. E[|Xn|] <∞

2. E[Xn+1|X0...Xn] = Xn

Also we say {Xn} is a martinagle with respect to {Yn} if for n=0,1,...

{Xn;n = 0, 1, ...} and {Yn;n = 0, 1, ...} are stochastic processes then

1. E[|Xn] <∞

2. E[Xn+1|Y0, ..., Yn] = Xn

Or we can define it for the continous case like the following:

1. E[|Xn|] <∞

2. E[Xt|{X0, ..Xs}] = Xs,∀0 ≤ s ≤ t

1.2.2 Examples

(a) A gambler’s fortune (capital) is a martingale if all the betting games

which the gambler plays are fair. To be more specific: suppose Xn

is a gambler’s fortune after n tosses of a fair coin, where the gambler
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wins $1 if the coin comes up heads and loses $1 if it’s tails. The

gambler’s conditional expected fortune after the next trial, given

the history, is equal to his present fortune. This sequence is thus a

martingale.

(b) Sums of Independent Random Variables:

Let Y0 = 0 and Y1, Y2, ... be independent random variables with

E[|Yn| = 0] for all n. If X0 = 0 and Xn = Y1 + ...Yn for n > 1, then

{Xn} is a martingale with respect to {Yn}.

• E[|Xn|] < E[|Y1|] + ...E[|Yn|] <∞

• E[Xn+1|Y0, ..., Yn] = E[Xn + Yn+1|Y0, ..., Yn]

= E[Xn|Y0, ..., Yn] + E[Yn+1|Y0, ..., Yn = Xn + E[Yn+1] = Xn

(because if the independence assumption on {Yi}

(c) The variance of sums as a martingale:

Let Y0 = 0 and Y1, ..., Yn be iid random variables withE[Yk] = 0 and

E[Y 2
K ] = σ2, k = 1, 2, ... and let X0 = 0 and Xn = (

∑n
k=1 Yk)

2−nσ2

then E[|Xn|] < 2nσ2 <∞, and

E[Xn+1|Y0, ..., Yn]

= E[(Yn+1 +
n∑
k=1

Yk)
2 − (n+ 1)σ2|Y0, ..., Yn]

= E[Y 2
n+1 + 2Yn+1

n∑
k=1

Yk + (
n∑
k=1

Yk)
2 − nσ2 − σ2|Y0, ..., Yn]

= E[Y 2
n+1|Y0, ..., Yn]+2(

n∑
k=1

Yk)E[Yn+1|Y0, ..., Yn]+Xn+nσ2−nσ2−σ2]
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= Xn

(d) Doob’s martingale process:

A Doob martingale (also known as a Levy martingale) is a math-

ematical construction of a stochastic process which approximates

a given random variable and has the martingale property with re-

spect to the given filtration. It may be thought of as the evolving

sequence of best approximations to the random variable based on

information accumulated up to a certain time. LetY0, Y1, ... be an

arbitrary sequence of random variables and suppose X is a random

variable satisfying E[|X|] <∞. Then

Xn = E[X|Y0, ..., Yn]

forms a martingale with respect to {Yn}, called Doob’s process.

First E[|Xn|] = E{|E[X|Y0, ..., Yn]|} ≤ E{E[|X|Y0, .., Yn]} = E[|X|] <

∞

Second and last, by the law of total probability for conditional ex-

pectations

E[Xn+1|Y0, ..., Yn]

= E{E[X|Y0, ..., Yn+1|Y0, ..., Yn}

= E[X|Y0, ..., Yn] = Xn

(e) De Moivre’s martingale:

Now suppose the coin is unfair, i.e., biased, with probability p of
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coming up heads and probability q = 1− p of tails. Let

Xn+1 = Xn + 1

in case of heads or

Xn+1 = Xn − 1

with + in case of tails. Let

Yn = (q/p)Xn

then {Yn : n = 1, 2, ...} is a martingale with respect to {Xn : n =

1, 2, ...}. To show this

E[Yn+1|X1, ..., Xn]

= p(q/p)Xn+1 + q(q/p)Xn−1

= p(q/p)(q/p)Xn + q(p/q)(q/p)Xn

= q(q/p)Xn + p(q/p)Xn

= (p+ q)(q/p)Xn

= (q/p)Xn = Yn

(f) Polya’s urn:

contains a number of different coloured marbles; at each iteration a

marble is randomly selected from the urn and replaced with several
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more of that same colour. For any given colour, the fraction of

marbles in the urn with that colour is a martingale. For example, if

currently 95 % of the marbles are red then, though the next iteration

is more likely to add red marbles than another color, this bias is

exactly balanced out by the fact that adding more red marbles alters

the fraction much less significantly than adding the same number

of non-red marbles would.

(g) Likelihood ratio testing:

A random variable Xn is thought to be distributed according either

to probability density f or to a different probability density g. A

random sample X1, ..., Xn is taken. Let Yn be the ”likelihood ratio”

Yn =
n∏
i=1

g(Xi)

f(Xi)

1.3 Supermartingales and submartingales

There are two popular generalizations of a martingale that also include

cases when the current observation Xn is not necessarily equal to the

future conditional expectationE[Xn+1|X1, ..., Xn] but instead an upper

or lower bound on the conditional expectation. These definitions reflect

a relationship between martingale theory and potential theory, which is

the study of harmonic functions. Just as a continuous-time martingale

satisfies E[Xt|{XT : T ≤ S}] −XS = 0, ∀ s ≤ t, a harmonic function f

satisfies the partial differential equation∆ f = 0 where ∆ is the Laplacian

operator. Given a Brownian motion process Wt and a harmonic function
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f, the resulting process f(Wt) is also a martingale.

(a) A discrete-time submartingale is a sequence X1, X2, ... of integrable

random variables satisfying

E[Xn+1|X1, ..., Xn] ≥ Xn

Likewise, a continuous-time submartingale satisfies

E[Xt|{XT : T ≤ s}] ≥ Xs∀s ≤ t

In potential theory, a subharmonic function f satisfies ∆f ≥ 0.

Any subharmonic function that is bounded above by a harmonic

function for all points on the boundary of a ball are bounded above

by the harmonic function for all points inside the ball. Similarly, if

a submartingale and a martingale have equivalent expectations for

a given time, the history of the submartingale tends to be bounded

above by the history of the martingale. Roughly speaking, the

prefix ”sub-” is consistent because the current observation Xn is

less than (or equal to) the conditional expectation E[Xn+1|X1..Xn].

Consequently, the current observation provides support from below

the future conditional expectation, and the process tends to increase

in future time.

(b) Analogously, a discrete-time supermartingale satisfies

E[Xn+1|X1, .., Xn] ≤ Xn
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Likewise, a continuous-time supermartingale satisfies

E[Xt|{XT : T ≤ s}] ≤ Xs,∀s ≤ t

In potential theory, a superharmonic function f satisfies ∆f ≤ 0.

Any superharmonic function that is bounded below by a harmonic

function for all points on the boundary of a ball are bounded below

by the harmonic function for all points inside the ball. Similarly,

if a supermartingale and a martingale have equivalent expectations

for a given time, the history of the supermartingale tends to be

bounded below by the history of the martingale. Roughly speak-

ing, the prefix ”super-” is consistent because the current obser-

vation Xn is greater than (or equal to) the conditional expectation

E[Xn+1|X1, ..., Xn]. Consequently, the current observation provides

support from above the future conditional expectation, and the pro-

cess tends to decrease in future time.

1.3.1 Examples

i. Every martingale is also a submartingale and a supermartin-

gale. Conversely, any stochastic process that is both a sub-

martingale and a supermartingale is a martingale.

ii. Consider again the gambler who wins $1 when a coin comes up

heads and loses $1 when the coin comes up tails. Suppose now

that the coin may be biased, so that it comes up heads with

probability p.
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• If p is equal to 1/2, the gambler on average neither wins

nor loses money, and the gambler’s fortune over time is a

martingale.

• If p is less than 1/2, the gambler loses money on average,

and the gambler’s fortune over time is a supermartingale.

• If p is greater than 1/2, the gambler wins money on average,

and the gambler’s fortune over time is a submartingale.

iii. A convex function of a martingale is a submartingale, by Jensen’s

inequality. For example, the square of the gambler’s fortune in

the fair coin game is a submartingale (which also follows from

the fact that X2
n − n is a martingale). Similarly, a concave

function of a martingale is a supermartingale.

1.4 Stopping time and the optional stoppig

theorem

A stopping time with respect to a sequence of random variables X1, X2, ... is

a random variable T with the property that for each t, the occurrence or non-

occurrence of the event T= t depends only on the values of X1, X2, ...Xt. The

intuition behind the definition is that at any particular time t, you can look at

the sequence so far and tell if it is time to stop. An example in real life might

be the time at which a gambler leaves the gambling table, which might be a

function of his previous winnings (for example, he might leave only when he

goes broke), but he can’t choose to go or stay based on the outcome of games
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that haven’t been played yet. One of the basic properties of martingales is

that, if (Xt)t>0 is a (sub-/super-) martingale and T is a stopping time, then

the corresponding stopped process (XT
t )t>0 defined by XT

t = Xmin{T,t} is also

a (sub-/super-) martingale.

The concept of a stopped martingale leads to a series of important theo-

rems, including, for example, the optional stopping theorem (or Doob’s op-

tional sampling theorem) which states that, under certain conditions, the ex-

pected value of a martingale at a stopping time is equal to its initial value;

since martingales can be used to model the wealth of a gambler participating

in a fair game, the optional stopping theorem says that, on average, nothing

can be gained by stopping play based on the information obtainable so far

(i.e., without looking into the future). Certain conditions are necessary for

this result to hold true. In particular, the theorem applies to doubling strate-

gies.In other words; Let (Mn)n≥0 be a martingale and let T be a stopping time.

Suppose that at least one the following conditions hold:

1. T ≤ n for some n

2. T <∞ and |Mn| ≤ C whenever n ≤ T

Then E[MT ] = E[M0]

The optional stopping theorem is an important tool of mathematical finance

in the context of the fundamental theorem of asset pricing.
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1.5 Martingale convergence theorem

Martingale convergence theorem is a special type of theorem, since the conver-

gence follows from structural properties of the sequence of random variables.

• Let {Xn} be a submartingale satisfying

supE[|Xn|] <∞

Then there exists a random variabe X∞ to which {Xn} converges with

probability one,

Pr{ lim
n→∞

Xn = X∞} = 1

• If {Xn} is a martingale and is uniformly integrable then, in addition to

what said before, {Xn} converges in the mean, that is,

lim
n→∞

E[|Xn −X∞|] = 0

and

E[X∞] = E[Xn]

for all n
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Chapter 2

Martingale Pricing Theory

Martingale pricing is a pricing approach based on the notions of martingale and

risk neutrality. The martingale pricing approach is a cornerstone of modern

quantitative finance and can be applied to a variety of derivatives contracts,

e.g. options, futures, interest rate derivatives, credit derivatives, etc.

2.1 Introduction to options ,securities ,state

prices,single and multi period model

• options:

In finance, an option is a contract which gives the buyer (the owner or

holder of the option) the right, but not the obligation, to buy or sell an

underlying asset or instrument at a specified strike price on a specified

date, depending on the form of the option. The strike price may be set

by reference to the spot price (market price) of the underlying security

or commodity on the day an option is taken out, or it may be fixed at a
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discount or at a premium. The seller has the corresponding obligation to

fulfill the transaction – to sell or buy – if the buyer (owner) ”exercises”

the option. An option that conveys to the owner the right to buy at a

specific price is referred to as a call; an option that conveys the right

of the owner to sell at a specific price is referred to as a put. Both are

commonly traded, but the call option is more frequently discussed.

The seller may grant an option to a buyer as part of another transaction,

such as a share issue or as part of an employee incentive scheme, other-

wise a buyer would pay a premium to the seller for the option. A call

option would normally be exercised only when the strike price is below

the market value of the underlying asset, while a put option would nor-

mally be exercised only when the strike price is above the market value.

When an option is exercised, the cost to the buyer of the asset acquired

is the strike price plus the premium, if any. When the option expiration

date passes without the option being exercised, then the option expires

and the buyer would forfeit the premium to the seller. In any case, the

premium is income to the seller, and normally a capital loss to the buyer.

The owner of an option may on-sell the option to a third party in a

secondary market, in either an over-the-counter transaction or on an

options exchange, depending on the option. The market price of an

American-style option normally closely follows that of the underlying

stock, being the difference between the market price of the stock and

the strike price of the option. The actual market price of the option

may vary depending on a number of factors, such as a significant option
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holder may need to sell the option as the expiry date is approaching and

does not have the financial resources to exercise the option, or a buyer in

the market is trying to amass a large option holding. The ownership of

an option does not generally entitle the holder to any rights associated

with the underlying asset, such as voting rights or any income from the

underlying asset, such as a dividend.

• security:

A security is a tradable financial asset. The term commonly refers to

any form of financial instrument, but its legal definition varies by ju-

risdiction. In some jurisdictions the term specifically excludes financial

instruments other than equities and fixed income instruments. In some

jurisdictions it includes some instruments that are close to equities and

fixed income, e.g., equity warrants. In some countries and languages

the term ”security” is commonly used in day-to-day parlance to mean

any form of financial instrument, even though the underlying legal and

regulatory regime may not have such a broad definition.

• state price security:

A state-price security, also called an Arrow-Debreu security (from its

origins in the Arrow-Debreu model), a pure security, or a primitive secu-

rity is a contract that agrees to pay one unit of a numeraire (a currency

or a commodity) if a particular state occurs at a particular time in the

future and pays zero numeraire in all the other states. The price of this

security is the state price of this particular state of the world. The state

price vector is the vector of state prices for all states.As such, any deriva-
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tives contract whose settlement value is a function of an underlying asset

whose value is uncertain at contract date can be decomposed as a linear

combination of its Arrow-Debreu securities, and thus as a weighted sum

of its state prices.

The Arrow-Debreu model (also referred to as the Arrow-Debreu-McKenzie

model or ADM model) is the central model in general equilibrium theory

and uses state prices in the process of proving the existence of a unique

general equilibrium.

• single and multi period model:

Single Period Model, one of the discounted cash flow models, is an in-

come valuation approach that aims to find the fair value of a stock/firm

using single projected cash flow value and then discounting it with an

appropriate discount rate. Taking all future streams of cash flow into

one single period and discounting is also referred as “Earnings Capital-

isation”.This method is a substitute for the traditional discounting of

all future cash flows. However since it is a “single period” model, we

need a single sum of an amount as the cash flow for all future years or

a single sum for 1 year holding period.Formula for calculating value of

firm/company using single period model:

Value of a firm or company= Net Income / Discounting Rate

Let us take an example:

To estimate the value of the firm, company or project, stabilized net

operating income is divided by an appropriate discount rate. Assuming

a stable earning (net of expenses) of USD 300,000 per annum and a dis-
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count rate of 12%, the value of the firm can be calculated as follows:

Value = Net Income / Discounting Rate

= $ 300,000 / 0.12

=$ 2,500,000

If a growth number needs to be adjusted to the model, assuming a con-

stant growth of 5%, the value of the firm can now be calculated as follows:

Value = Net Income / Discounting Rate

= $ 300,000 / (0.12 -0.05)

= $ 300,000 / 0.07

=$ 4,285,714

When the discount rate and growth rate are assumed to remain constant

from day of valuation till perpetuity, the single period model will yield

same results as multi period model.

The single period method of valuation is best suited in case of stable net

income flows or cases where it is extremely difficult to forecast future se-

ries of cash flows or in cases where the holding period of the investment

is 1 year. Selecting the appropriate discount rate may, however, remain

a challenging task and would entail estimation error.

For limitations faced with single period error; the improved model, which

involves using multiple cash flow forecasting and discounting them, is

used with the intent of reducing the estimation error. The said model is

also known as Multi-Period Discounted Cash Flow Model.

A discounted cash flow (DCF) analysis is a method of valuing a project,

company, or asset using the concepts of the time value of money. All

future cash flows are estimated and discounted by using cost of capital
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to give their present values (PVs). The sum of all future cash flows, both

incoming and outgoing, is the net present value (NPV), which is taken

as the value of the cash flows in question. Using DCF analysis to com-

pute the NPV takes as input cash flows and a discount rate and gives

as output a present value; the opposite process—takes cash flows and

a price (present value) as inputs, and provides as output the discount

rate—this is used in bond markets to obtain the yield.

The discounted cash flow formula is derived from the future value for-

mula for calculating the time value of money and compounding returns.

DCF =
CF1

(1 + r)1
+ ...+

CFn
(1 + r)n

FV = DCF × (1 + r)n

where:

– DPV is the discounted present value of the future cash flow (FV),

or FV adjusted for the delay in receipt;

– FV is the nominal value of a cash flow amount in a future period;

– r is the interest rate or discount rate, which reflects the cost of tying

up capital and may also allow for the risk that the payment may

not be received in full;

– n is the time in years before the future cash flow occurs.

Where multiple cash flows in multiple time periods are discounted, it is
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necessary to sum them as follows:

DV P =
N∑
t=0

FVt
(1 + r)t

for each future cash flow (FV) at any time period (t) in years from the

present time, summed over all time periods. The sum can then be used

as a net present value figure. If the amount to be paid at time 0 (now)

for all the future cash flows is known, then that amount can be substi-

tuted for DPV and the equation can be solved for r, that is the internal

rate of return. All the above assumes that the interest rate remains con-

stant throughout the whole period. If the cash flow stream is assumed

to continue indefinitely, the finite forecast is usually combined with the

assumption of constant cash flow growth beyond the discrete projection

period. The total value of such cash flow stream is the sum of the finite

discounted cash flow forecast and the Terminal value (finance).

For continuous cash flows, the summation in the above formula is re-

placed by an integration:

DV P =

∫ T

0

FV (t) exp −λtdt

=

∫ T

0

FV (t)

(1 + r)t
dt

where FV(t) is now the rate of cash flow, and λ = log(1 + r).
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2.2 Arbitrage pricing theory

Arbitrage pricing theory is an asset pricing model based on the idea that an

asset’s returns can be predicted using the relationship between that asset and

many common risk factors. Created in 1976 by Stephen Ross, this theory

predicts a relationship between the returns of a portfolio and the returns of a

single asset through a linear combination of many independent macroeconomic

variables.

The arbitrage pricing theory (APT) describes the price where a mispriced

asset is expected to be. It is often viewed as an alternative to the capital

asset pricing model (CAPM), since the APT has more flexible assumption

requirements. Whereas the CAPM formula requires the market’s expected

return, APT uses the risky asset’s expected return and the risk premium of

a number of macroeconomic factors. Arbitrageurs use the APT model to

profit by taking advantage of mispriced securities, which have prices that differ

from the theoretical price predicted by the model. By shorting an overpriced

security, while concurrently going long in the portfolio the APT calculations

were based on, the arbitrageur is in a position to make a theoretically risk-free

profit.

• Arbitrage pricing theory equation and example:

APT states that the expected return on a stock or other security must

adhere to the following relationship: Expected return = r(f) + b(1) ×

rp(1) + b(2)× rp(2) + ...+ b(n)× rp(n) Where,

r(f) = the risk-free interest rate

b = the sensitivity of the asset to the particular factor
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rp = the risk premium associated with the particular factor

The number of factors will range depending on the analysis. There can

be a few or dozens; it depends on which factors an analyst chooses for

the analysis. In addition, the exact factors do not have to be the same

across analyses. As an example calculation, assume a stock is being

analyzed. The following four factors have been identified, along with the

stocks sensitivity to each factor and the risk premium associated with

each factor:

Gross domestic product growth: b = 0.6, rp = 4%

Inflation rate: b = 0.8, rp = 2%

Gold prices: b = -0.7, rp = 5%

Standard and Poor’s 500 index return: b = 1.3, rp = 9%

The risk-free rate is 3%

Using the above APT formula, the expected return is calculated as:

Expected return = 3% + (0.6× 4%) + (0.8× 2%) + (−0.7× 5%) + (1.3×

9%) = 15.2%

2.3 The Black Scholes option pricing the-

ory

The Black-Scholes formula (also called Black-Scholes-Merton) was the

first widely used model for option pricing. It’s used to calculate the

theoretical value of European-style options using current stock prices,

expected dividends, the option’s strike price, expected interest rates,
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time to expiration and expected volatility.

The Black-Scholes model makes certain assumptions:

– The option is European and can only be exercised at expiration.

– No dividends are paid out during the life of the option.

– Markets are efficient (i.e., market movements cannot be predicted).

– There are no transaction costs in buying the option.

– The risk-free rate and volatility of the underlying are known and

constant.

– The returns on the underlying are normally distributed.

C = SN(d1)−N(d2)K exp−rt

d1 =
ln( S

K
) + (r + s2

2
)t

s
√
t

d2 = d1 − s
√
t

C=Call premium

S=Current stock price

t=Time until option exercise

K=Option striking price

r=Risk free interest rate

N=Cumulative standard normal distribution

s=Standard derivation

ln=Natural log

The model is essentially divided into two parts: the first part,SN(d1), multi-

plies the price by the change in the call premium in relation to a change in

22



the underlying price. This part of the formula shows the expected benefit of

purchasing the underlying outright. The second part,N(d2)K exp −rt, provides

the current value of paying the exercise price upon expiration (remember, the

Black-Scholes model applies to European options that can be exercised only on

expiration day). The value of the option is calculated by taking the difference

between the two parts, as shown in the equation.
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Chapter 3

Testing the Martringale

Hypothesis

This chapter examines testing the Martingale Difference Hypothesis (MDH)

and related statistical inference issues. The earlier literature on testing the

MDH was based on linear measures of dependence, such as sample autocorre-

lations, for instance the classical Box-Pierce Portmanteau test and the Vari-

ance Ratio test. In order to account for the existing nonlinearity in economic

and financial data, two directions have been entertained. First, to modify

these classical approaches by taking into account the possible nonlinear de-

pendence. Second, to use more sophisticated statistical tools such as those

based on empirical processes theory or the use of generalized spectral analysis.

This chapter discusses these developments and applies them to exchange rate

data.
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3.1 Introduction

Martingale testing has historically received an enormous attention in econo-

metrics. One of the main reasons is the efficient market hypothesis (MDH)

and the many ideas related to it. In addition, many economic theories in dy-

namic contexts in which expectations are assumed to be rational lead to such

dependence restrictions on the underlying economic variables; see e.g. Hall

(1978), Fama (1991), LeRoy (1989), Lo (1997) and Cochrane (2005). These

have prompted a vast research in macro and financial economics which have

stimulated a huge interest in developing suitable econometric techniques. This

econometric research has grown around the theme of lack of predictability of

macro or financial series, but this topic has flourished in different branches,

emphasized different methodological aspects, and appeared under different

subject names.

When looking at assets prices, the idea of lack of predictability has been com-

monly referred to as the random walk hypothesis. Unfortunately, the term

random walk has been used in different contexts to mean different statisti-

cal objects. For instance, in Campbell, Lo and MacKinlay (1997) textbook,

they distinguish three types of random walks according to the dependence

structure of the increment series. Random walk 1 corresponds to independent

increments, random walk 2 to conditional mean independent increments, and

random walk 3 to uncorrelated increments. Of these three notions, the two

relevant for financial econometrics are the second and the third. The notion

of random walk 1 is clearly rejected in financial data for many reasons, the

most important is the volatility, that is, the lack of constancy of the variance
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of current asset returns conditional on lagged asset returns. Within this ter-

minology, this chapter will focus basically on the idea of random walk 2, but

we will also discuss some aspects associated to random walk 3. A martin-

gale would correspond to random walk 2, and it plainly means that the best

forecast of tomorrows asset price is todays. Then, the asset returns, which

are unpredictable, are said to form a martingale difference sequence. Since

asset prices are not stationary, from a technical point of view, it is simpler to

consider asset returns. Testing prices follow a martingale, it is more common

to test that returns follow a martingale difference sequence.

3.2 The Martingale difference hypothesis or

MDH

The Martingale Difference Hypothesis (MDH) plays a central role in economic

models where expectations are assumed to be rational. The underlying sta-

tistical object of interest is the concept of a martingale or, alternatively, the

concept of martingale difference sequence (MDS).

The MDH slightly generalizes the notion of MDS by allowing the uncondi-

tional mean of Yt to be nonzero and unknown. The MDH states that the

best predictor, in the sense of least mean square error, of the future values of

a time series given the past and current information set is just the uncondi-

tional expectation. The MDH is called conditional mean independence in the

statistical literature, and it means that past and current information are of no

use to forecasting future values of a MDS.
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Let It = {Yt, Yt−1, ...} be the information set at time t and let Ft be the σ

field generated by It. Then, the following equivalence is fundamental because

it formalizes the characteristic property of a MDS, that is, the fact that Yt is

linearly unpredictable given any linear or nonlinear transformation of the past

ω(It−1). That is

E[Yt|It−1] = µ ⇐⇒ E[(Yt − µ)ω(It−1)] = 0 (3.2.1)

µ ∈ R for all Ft−1 measurable weighting function ω(.) (such that the moment

exists). Equation (3.2.1) is fundamental to understand the motivation and

main features behind many tests for the MDH. There are two challenging fea-

tures present in the definition of a mds: first, the information set at time t,

It, will typically include the infinite past of the series, and second, the num-

ber of functions ω(.) is also infinite. We will classify the extant theoretical

literature on testing the MDH, according to what types of functions ω(.) are

employed. We shall illustrate some of the available methods for testing the

MDH by applying them to exchange rate returns. The martingale properties

of exchange rate returns have been studied previously by many authors leading

to mixed conclusions. For instance, Bekaert and Hodrick (1992), Escanciano

and Velasco (2006a, 2006b), Fong and Ouliaris (1995), Hong and Lee (2003),

Kuan and Lee (2004), LeBaron (1999), Levich and Thomas (1993), Liu and He

(1991), McCurdy and Morgan (1988) and Sweeney (1986) find evidence against

the MDH for nominal or real exchange rates at different frequencies, whereas

Diebold and Nason (1990), Fong, Koh and Ouliaris (1997), Hsieh (1988, 1989,

1993), McCurdy and Morgan (1987) and Meese and Rogo(1983a,b) find little
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evidence against the MDH. Here, we consider data that consists of four daily

and weekly exchange rate returns on the Euro (Euro), Canadian Dollar (Can),

the sterling Pound (pound) and the Japanese Yen (yen) against the US dol-

lar. The daily data is taken from January 2, 2004 to August 17, 2007, with

a total of 908 observations. As for the weekly data, we consider the returns

on Wednesdays from January 2, 2000 to August 17, 2007, with a total of 382

observations. The daily noon buying rates in New York City certified by the

Federal Reserve Bank of New York for customs and cable transfers purposes

are obtained from http://www.federalreserve. gov/Releases/h10/hist. In fig-

ure 3.1 and figure 3.2 we have plotted the evolution of these four daily series

for the whole period from January 2, 2000 to August 17, and again similarly to

previous analysis, the main two features of these plots are their unpredictibal-

ity and their volatility.

Table 3.1 provides summary statistics for the most relevant aspects of the

marginal distribution of the data. Similarly to most financial series the main

feature from Table 3.1 is the kurtosis( measure of the ”peaklness” of the proba-

bility distribution of a real-valued random variable) that, in the line of previous

studies, is larger for daily than for weekly data. Note that skewness (measure

of the asymmetry of the probability distribution of a real-valued random vari-

able about its mean) is moderate and slightly negative for daily data. As it

has been observed repeatedly before, the marginal distribution of weekly data

is closer to the normal distribution than that of daily data.
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Figure 3.1: Daily returns of the sterling pound (Pound) and the
Japanese Yen (Yen) against the US dollar.
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Figure 3.2: Daily returns of the Euro (Euro), Canadian Dollar (Can)
against the US dollar.
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Table 3.1: Summary statistics of exchange rates returns
Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen
n 908 908 908 908 382 382 382 382
Mean 0.0076 0.0113 -0.0213 0.0068 0.0738 0.0552 -0.0832 0.0352
Median 0.0000 0.0221 -0.0080 0.0279 0.0781 0.0763 -0.0864 0.0141
SD 0.5423 0.5332 0.5036 0.5670 1.3539 1.1407 0.9410 1.2525
Skewness -0.1263 -0.0976 -0.0196 -0.3763 0.0540 0.0545 0.0846 -0.2945
Kurtosis 3.7602 3.4927 3.1345 5.0746 3.0555 2.9649 2.8875 3.0895
Maximum 1.9358 2.0930 1.5129 2.4519 4.4680 3.4830 2.8128 3.1835
Minimum -2.0355 -2.1707 -1.7491 -2.7859 -3.1636 -3.2307 -2.7067 -4.3058

3.3 Tests based on linear measures of depen-

dence

Recall the MDS denition in equation (3.1) that should hold for any func-

tion ω(.). The simplest approach is to consider linear functions ω(.), such as

ω(It−1) = Yt−j, for some j ≥ 1. Hence, a necessary (but not sufficient, in gen-

eral) condition for the the MDH to hold is that the time series is uncorrelated,

i.e.

γj = cov(Yt, Yt−j) = E[(Yt − µ)Yt−j] = 0 (3.3.1)

for all j ≥ 1 where γj denotes the autocovariance of order j. In principle, one

should test that all autocovariances or autocorrelations are zero. However, the

most employed tests just consider that a finite number of autocorrelations are

zero.

Notice that the early literature, which includes some distinguished references

such as Yule (1926), Bartlett (1955), Grenander and Rosenblatt (1957) or

Durbin and Watson (1950), essentially assumed Gaussianity and, hence, iden-
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tified three concepts: lack of serial correlation, MDS and independence. In

the time series literature the term white noise is commonly used to denote an

uncorrelated series that can present some form of dependence. Obviously, a

white noise series is not necessarily independent nor MDS since dependence

can be reflected in other aspects of the joint distribution such as higher or-

der moments. The distinction between these three concepts has been stressed

recently in econometrics. In fact, during the past years a variety of models

designed to reflect nonlinear dependence has been studied in the econometrics

literature. For instance, in empirical finance, ARCH (Auto Regressive Con-

ditional Hetrosketastic Mode)l and bilinear models have been widely studied,

see Bera and Higgins (1993, 1997) and Weiss (1986) for a comparison. These

models are suitable to reflect the nonlinear dependence structure found in

many financial series.

Tests for white noise have been proposed both in the time domain and in the

frequency domain. The time domain has mainly, but not exclusively, focused

on a finite number of lags, while the frequency domain has been more suitable

to address the infinite dimensional case.

3.3.1 Tests based on a finite dimensional conditioning

set

In the time domain the most popular test has been the Box-Pierce (Box and

Pierce, 1970) Portmanteau Qp test. The Qp test is designed for testing that

the first p autocorrelations of a series (possibly residuals) are zero. The num-

ber p can be considered to be fixed or to grow with the sample size n. In this
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section we will assume that p is fixed.

Suppose that we observe raw data {Yt}nt=1. Then, γj can be consistently esti-

mated by the sample autocovariance

γ̂j =

∑n
t=1+j(Yt − Ȳ )(Yt−j − Ȳ )

(n− j)

where Ȳ is the sample mean, and we also introduce ρ̂ = γ̂j/γ̂0 to denote the

j-th order autocorrelation. the Qp statistic is just

Qp = n

p∑
j=1

ρ̂2j

but it is commonly implemented via the Ljung and Box (1978) modification

LBp =
n(n+ 2)

∑p
j=1 ρ̂

2
j

(n− j)

Note that Qp (orLBp) only takes into account the linear dependence up

to the lag p: When p is considered fixed, the Qp test statistic applied to

independent data follows assymptotically χ2
p distribution since the asymptotic

covariance matrix of the first p autocorrelations of an independent series is the

identity matrix. Hence, it is useful to write Qp = (
√
nρ̂)′I−1(

√
nρ̂) where ρ̂ =

(ρ̂
1
, ..., ρ̂

p
)′. Note, however, that when the series present some kind of nonlinear

dependence this asymptotic null covariance matrix is no longer the identity.

In fact, denoting ρ = (ρ
1
, ..., ρ

p
)′ for a general time series the asymptotic

distribution of
√
n(ρ̂− ρ) is N(0,T) where the (i,j)-th element of T is given by

γ−20 (cij − ρi × c0j − ρj × c0i + ρi × ρj × c00)
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where, for i, j = 0, 1, ..., p, cij =
∑∞

d=−∞{E[(Yt−µ)(Yt−i−µ)(Yt+d−µ)(Yt+d−j−

µ)]− E[(Yt − µ)(Yt−i − µ)]E[(Yt+d − µ)(Yt+d−j − µ)]

Under alternative assumptions the matrix T can be simplified and this will

lead to several modified versions of the Box-Pierce statistic. When this ma-

trix is still diagonal, as it happens under MDS and additional moment re-

strictions, which, for instance, are satifised by Gaussian GARCH models and

many stochastic volatility models, the natural approach is to robustify the Qp

by standardizing it by a consistent estimation of its asymptotic variance, i.e.,

Q∗p = n

p∑
j=1

ρ̂2j
τj

where

τj = γ̂0
−2

n∑
t=1+j

(Yt − Ȳ )2(Yt−j − Ȳ )2

We have followed Lobato, Nankervis and Savin (2001)notation and denoted

Qp by Q∗p. This statistic has appeared in different versions, see for instance,

Diebold (1986), Lo and MacKinlay (1989), Robinson (1991), Cumby and

Huizinga (1992), Bollerslev and Wooldridge (1992) and Bera and Higgins

(1993). The Q∗p statistic (or its Ljung-Box analog) should be routinely com-

puted for financial data instead of the standard Qp (or the LBp). However,

this is not typically the case. For the general case, the asymptotic covariance

matrix of the first p autocorrelations is not a diagonal matrix. Hence, for

this general case both the Qp and the Q∗p tests are invalid. However, under

MDS the matrix T can be greatly simplified so that its ij-th element takes the

form E[(Yt − µ)2(Yt−i − µ)(Yt−j − µ)] that can be easily estimated using its
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sample analog. This is the approach followed by Guo and Phillips (2001). For

the general case, that includes MDS and non MDS processes, the asymptotic

covariance matrix of the first p autocorrelations is a complicated nondiagonal

matrix. Hence, for this general case, the literature has proposed the following

two modifications of the Qp test. The first one is to modify the Qp statistic

by introducing a consistent estimator of the asymptotic null covariance matrix

of the sample autocorrelations τ̂ so that the modified Qp statistic retains the

asymptotically χ2
p null distribution. Lobato, Nankervis and Savin (2002) name

this statistic

Q̃p = (
√
nρ̂)′τ̂−1(

√
nρ̂)

The main drawback of this approach is that in order to construct τ̂ a band-

width number has to be introduced. This approach works for general depen-

dence structures that allow for the asymptotic covariance matrix of the first p

autocorrelations to take any form. The second modification has been studied

by Horowitz, Lobato, Nankervis and Savin (2006) who employ a bootstrap

procedure to estimate consistently the asymptotic null distribution of the Qp

test for the general case. They compare two bootstrap approaches, a single

and a double blocks-of-blocks bootstrap, and the final recommendation is to

employ a double blocks-of-blocks bootstrap after prewhitening the time series.

This solution presents a similar problem, though, namely the researcher has

to choose arbitrarily a block length number. The previous papers considered

raw data, but Francq, Roy and Zakoan (2005) have addressed the use of the

Qp statistic with residuals. They propose to estimate the asymptotic null

distribution of the Qp test statistic for the general weak dependent case. How-
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ever, their approach still requires the selection of p, and of several additional

arbitrary numbers necessary to estimate consistently the needed asymptotic

critical values.

These previous references represent an effort to address the problem of testing

for mds using the standard linear measures (autocorrelations) but allowing for

nonlinear dependence. Lobato (2001) represents an alternative approach with

a similar idea. The target is to avoid the problem of introducing a user-chosen

number and the idea is to construct an asymptotically distribution free statis-

tic. Although this approach delivers tests that handle nonlinear dependence

and control properly the type I error in finite samples, its main theoretical

drawback is its inefficiency in terms of local power.

A related statistic, which has been commonly employed in the empirical fi-

nance literature is the variance ratio that takes the form

V Rp = 1 + 2

p−1∑
j=1

(1− (j/p))ρ̂j

under independence,
√
np(V Rp − 1) is asymptotically distributed as N(0,2(p-

1)). Although this test can also be robustified and it can be powerful in

some occasions, it presents the serious theoretical limitation of being incon-

sistent. For instance, Gonzalez and Lobato (2003) considered an MA(2):

yt = et − 0.4597et−1 + 0.10124et−2.For this process V R3 = 0 in spite that

the first two autocorrelations are nonzero. The problem with variance ratio

statistics resides in the possible existence of compensations between autocorre-

lations with different signs, and this may affect power severely. Related to VR

tests, Nankervis and Savin (2007) have proposed a robustified version of the
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Andrews and Plobergers (1996) test that appear to have very good finite sam-

ple power with the common empirical finance models. Also related, Delgado

and Velasco (2007) have recently considered a large class of directional tests

based on linear combinations of autocorrelations. Their tests are shown to be

optimal in certain known local alternative directions and are asymptotically

equivalent to Lagrange Multiplier tests. Finally, we mention Kuan and Lee

(2004) who propose a correlation-based test for the MDH that instead of us-

ing lagged values of Yt as the function ω(.), they employ some other arbitrary

ω(.). This test shares with all the tests analyzed in this section the problem

of inconsistency derived from not using a whole family of functions ω(.).

3.3.2 tests based on a infinite dimensional conditioning

set

The approach presented in the previous subsection laid naturally in the time

domain since a finite number of autocorrelations were tested. However, when

the infinite past is considered, the natural framework for performing inference

is the frequency domain. The advantage of the frequency domain is the exis-

tence of one object, namely, the spectral density, that contains the information

about all the autocovariances. Hence, in the frequency domain, the role pre-

viously taken by autocorrelations is now carried out by the spectral density

function. The spectral density f(λ) is defined implicitly by

γk = 1/2π

∫ π

−π
f(λ)exp(ikλ)dλ

37



for k=0,1,2...

Define also the periodogramas I(λ) = |ω(λ)|2 where ω(λ) = n−1/2
∑n

t=1 xtexp(itλ)

Although the periodogram is an inconsistent estimator of the spectral density,

it can be employed as a building block to construct a consistent estimator.

The integral of the spectral density is called the spectral distribution, which,

under the MDH, is linear in λ .

For this infinite lag case, the MDH implies as null hypothesis of interest that

γk = 0 for all k 6= 0, and equivalently, in terms of the spectral density, the null

hypothesis states that f(λ) = γ0/2π for all λ ∈ [−π; π].

The advantage of the frequency domain is that the problem of selecting p,

which was present in the previous subsection, does not appear because the

null hypothesis is stated in terms of all autocorrelations, as summarized by

the spectral density or distribution. The classical approach in the frequency

domain involves the standardized cumulative periodogram, that is,

Zn =
√
T (

∑[λT/π]
j=1 I(λj)∑T
j=1 I(λj)

− λ

π
)

where j = 1, 2...n/2 are called the Fourier frequencies. Based on Zn(λ), the

two classical tests statistics are the Kolmogorov-Smirnov maxj=1,...,T |Zn(λj)|

and the Cramer von Mises T−1
∑T

j=1 Zn(λj)
2.

These tests statistics have been commonly employed (see Bartlett (1955) and

Grenander and Rosenblatt(1957)) because when the series yt is not only white

noise but also independent (or MDS with additional moment restrictions), it

can be shown that the process Zn(λ) converges weakly in D[0; π] (the space

of right continuous functions in D[0; π]) to the Brownian bridge process, see
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Dahlhaus (1985). Hence, asymptotic critical values are readily available for

the independent case. In fact, Durlauf (1991) has shown that the indepen-

dence assumption can be relaxed to conditional homoskedastic mds. For the

mds case with conditional heteroskedasticity (and some moment conditions),

Deo (2000) slightly modified this statistic so that the standardized cumulative

periodogram retained the convergence to the Brownian bridge. Deo’s(2000)

test can be interpreted as a continuous version of the robustified Box-Pierce

statistic, Q∗p Notice that in Deo’s setup there is no need of introducing any

user-chosen number since under the stated assumptions the autocorrelations

are asymptotically independent. As Deo comments, his assumption is the main

responsible for the diagonality of the asymptotic null covariance matrix of the

sample autocorrelations. However, for many common models, such as GARCH

models with asymmetric innovations, EGARCH models and bilinear models,

Deo’s condition does not hold and the autocorrelations are not asymptotically

independent under the null hypothesis. Hence, for the general case, Deo’s test

is not asymptotically valid. Deo’s Cramer-von Mises test statistic can also be

written in the time domain as

DEOn =
n−1∑
j=1

n
ρ̂2j
τj

(
1

jπ
)2

More general weighting schemes for the sample autocovariances ρ̂j than the

ones considered here are possible. Under the null hypothesis of the MDS and

some additional assumptions

DEOn →d

∫ 1

0

B2(t)dt
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as n→∞

where B(t) is the standard Brownian bridge on [0,1]. The 10%, 5% and 1%

asymptotic critical values can be obtained from Shorack and Wellner and are

0.347, 0.461 and 0.743, respectively.

Chen and Romano (1999, p.628) estimated the asymptotic distribution by

means of either the block bootstrap or the subsampling technique. Unfor-

tunately, these bootstrap procedures require the selection of some arbitrary

number and in a general framework no theory is available about their optimal

selection. Alternative bootstrap procedures which do not require the selection

of a user chosen number such as resampling the periodogram as in Franke and

Hardle (1992) or in Dahlhaus and Janas (1996) will not estimate consistently

the asymptotic distribution because of the fourth order cumulant terms.

Lobato and Velasco (2004) considered the use of the statistic

Mn =
T−1

∑T
j=1 I(λj)

2

[T−1
∑T

j=1 I(λj)]2
− 1

under general weak dependence conditions. This statistic was previously con-

sidered by Milhoj (1981) who employed Mn as a general goodness of fit test

statistic for time series. Milhoj informally justified the use of this statistic

for testing the adequacy of linear time series models, but since he identified

white noise with i.i.d. , his analysis does not automatically apply in general

contexts.

Beran (1992) and Deo and Chen (2000) have also employed the Mn test statis-

tic as a goodness-of-fit tests for Gaussian processes. Statistical inference is

especially simplified with Mn since its asymptotic null distribution is normal
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even after parametric estimation. We note that the continuous version of Mn

can be expressed in the time domain as an statistic proportional to
∑n−1

j=0 ρ̂
2
j

which shows the difficulty of deriving the asymptotic properties in the time

domain since the ρ̂j may not be asymptotically independent.

In the time domain, Hong (1996) has considered p as growing with n and

hence, has been able to derive a consistent test in the time domain for the

case of regression residuals. In this framework p can be interpreted as a band-

width number that needs to grow with n so that his test can handle the

fact that the null hypothesis implies an infinite number of autocovariances.

Hong restricted to the independent case while Hong and Lee (2003) have ex-

tended Hongs procedure to allow for conditional heteroskedasticity. However,

notice that their framework still restricts the sample autocorrelations to be

asymptotically independent. An alternative solution recently explored by Es-

canciano and Lobato (2007) consists on modifying the Box-Pierce statistic

using an adaptive Neyman test that would take the form Nn = Q∗p̃ where

p̃ = min{m; 1 ≤ m ≤ pn;Lm ≥ Lh, h = 1, ...pn} where Lp = Q∗p − π(p, n, q)

and pn is an upper bound that grows slowly to infinite with n, and

π(p, n, c) = plogn, if max
1≤j≤pn

|
ρ̂2j
τj
| ≤

√
qlogn

π(p, n, c) = 2p, if max
1≤j≤pn

|
ρ̂2j
τj
| >

√
qlogn

where q is some fixed positive number. Our choice of q is 2.4 and it is moti-

vated from an extensive simulation study in Inglot and Ledwina (2006) and

from simulations in Escanciano and Lobato (2007). Small values of q result
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in the Akaikes criterion choice ( The Akaike information criterion (AIC) is an

estimator of the relative quality of statistical models for a given set of data.

Given a collection of models for the data, AIC estimates the quality of each

model, relative to each of the other models. Thus, AIC provides a means

for model selection), while large q’s lead to the choice of the Schwarzs crite-

rion(SIC is a criterion for model selection among a finite set of models; the

model with the lowest SIC is preferred. It is based, in part, on the likelihood

function). Moderate values, such as 2.4; provide a switching effect in which

one combines the advantages of the two selection rules, that is, when the alter-

native is of high frequency (i.e. when only the signicant autocorrelations are at

large lags j) Akaike is used whereas if the alternative is of low-frequency (i.e.

if the first autocorrelations are different from zero) Schwarz is chosen. The

previous adaptive test is an improvement with respect to the traditional Box-

Pierce and Hongs approaches because the Nn test is more powerful and less

sensitive to the selection of the bandwidth number pn than these approaches,

and more importantly, because it avoids the estimation of the complicated

variance-covariance matrix T since its asymptotic distribution is χ2
1 for gen-

eral MDS processes.

Summarizing, testing the MDH using linear measures of dependence presents

two challenging features. The first aspect is that the null hypothesis implies

that an infinite number of autocorrelations are zero. This feature has been

addressed successfully in the frequency domain under severe restrictions on

the dependence structure of the process. The second feature is that the null

hypothesis allows the time series to present some form of dependence beyond

the second moments. This dependence entails that the asymptotic null co-
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variance matrix of the sample autocorrelations is not diagonal, so that it has

n2 non-zero terms (contrary to Durlauf (1991) and Deo (2000) who consider

a diagonal matrix, and hence, it has only n non-zero elements). This aspect

has been handled by introducing some arbitrary user-chosen numbers whose

selection complicates statistical inference. However, all these tests are suitable

for testing for lack of serial correlation but not necessarily for the MDH, and

in fact, they are not consistent against non-martingale difference sequences

with zero autocorrelations. This happens when only nonlinear dependence

is present, as is commonly the case with financial data, e.g. exchange rates

dynamics. These tests are inconsistent because they only employ information

contained in the second moments of the process.

To circumvent this problem we could take into account higher order moments,

as in Hinich and Patterson (1992). They proposed to use the bispectrum, i.e.,

the Fourier transform of the third order cumulants of the process, but again,

this test is not consistent against non-martingale difference sequences with

zero third order cumulants.

In Table 3.2 we report the robust version (to conditional heteroskedasticity)

of the first five autocorrelations, the Ljung and Boxs (1978) test, that is a cor-

rected Q∗p statistic, which we call LB∗p , Deo’s (2000) modification of Durlaufs

test statistic and the Escanciano and Lobatos (2007) test based on Nn to check

whether or not our exchange rates changes are uncorrelated. This Table is in

agreement with previous findings that have shown that exchange rates have no

linear dependence, see for instance, Table 2 in Hsieh (1989), Bera and Higgins

(1997), Hong and Lee (2003) and references therein.
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Table 3.2: Linear predictability of exchange rates returns
Daily Weekly
Euro Pound Can Yen Euro Pound Can Yen

ρ̂1 -0.047 0.001 -0.016 -0.020 0.018 0.046 -0.023 0.054
ρ̂2 0.003 0.007 -0.028 -0.015 -0.002 -0.008 0.031 -0.024
ρ̂3 -0.046 -0.055 -0.001 -0.016 0.049 -0.031 0.011 0.010
ρ̂4 -0.002 0.028 -0.060 0.013 0.024 -0.043 0.015 -0.041
ρ̂5 -0.002 0.003 -0.063 0.039 0.036 -0.024 0.052 -0.095
LB∗5 4.071 3.586 8.045 2.452 1.795 2.191 1.781 4.900
LB∗15 15.516 13.256 15.181 6.670 9.139 7.451 10.266 18.861
LB∗25 28.552 26.568 19.756 13.155 18.746 32.584 21.786 24.519
LB∗50 61.922 64.803∗∗ 49.887 37.428 42.559 59.107 41.140 58.756
Nn 1.889 0.021 0.253 0.380 0.151 0.827 0.208 1.105
Note:* and**signicantly different from zero at the 5% and 10%

level, respectively.

3.4 Tests based on nonlinear measures of de-

pendence

Arguably, testing for the MDH is a challenging problem, since in order to ver-

ify it, we must check that a very large class of transformations of the past does

not help to predict the current value of the series, see (3.1). An important

step through the development of consistent tests was made when the econo-

metricians realized that is not necessary to take a very large class of functions

in (3.1) but just a convenient parametric class of functions, satisfying certain

properties.This called the integrated approach.

Note, however, that there exists an alternative methodology that is based on

the direct estimation of the conditional expectation E[Yt|Ỹt,P ] where Ỹt,P =

(Yt−1, ..., Yt−P )′ for some P finite. This approach can be called the smooth-

ing approach or a local approach.Tests within the local approach have been
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proposed by Wooldridge (1992), Yatchew (1992), Horowitz and Hrdle (1994),

Zheng (1996), Fan and Huang (2001), Horowitz and Spokoiny (2001) and

Guerre and Lavergne (2005), to mention just a few for a comprehensive review

of the local approach when P = 1. Among these tests based on local methods,

the test recently proposed by Guay and Guerre (2006) seems to be especially

convenient for testing the MDH for two reasons. First, it has been justified for

time series under conditional heteroskedasticity of unknown form. Second, it

is an adaptive data-driven test (DDT is a software testing methodology that

is used in the testing of computer software to describe testing done using a

table of conditions directly as test inputs and verifiable outputs as well as

the process where test environment settings and control are not hard-coded

). Their test combines a chi-square statistic based on nonparametric Fourier

series estimators for E[Yt|Ỹt,P ] coupled with a data-driven choice for the num-

ber of components in the estimator. To construct their test a based rank of

the unknown conditional variance is needed. Notice that a practically relevant

problem of the local approach arises when P is large or even moderate. The

problem is motivated by the sparseness of the data in high-dimensional spaces,

which leads to most test statistics to suffer a considerable bias, even for large

sample sizes. In the next subsection, we will consider an approach that helps

to alleviate this problem.

This section focuses on integrated tests. We divide the extensive literature

within this integrated approach according to whether the tests consider func-

tions of a finite number of lags or not, that is, whether ω(It−1) = ω(Ỹt,P ) for

some P ≥ 1 . We stress at the outset that the main advantage of the tests con-

sidered in this section is that they are consistent for testing the MDH (at least
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when the information set has a finite number of variables), contrary to the

tests considered in Section 3. The main disadvantage is that their asymptotic

null distributions are, in general, not standard, what means that no critical

values are ready available. In this situation, the typical solution is to employ

the bootstrap to estimate this distribution.

3.4.1 Tests based on a finite dimensional conditioning

set

The problem of testing over all possible weighting functions can be reduced

to testing the orthogonality condition over a parametric family of functions.

Although still the parametric class has to include an infinite number of ele-

ments, the complexity of the class to be considered is substantially simplified

and makes it possible to test for the MDH.

The methods that we review in this subsection use ω(It−1) = ω0(Ỹt,P , x) in

(3.1), where Ỹt,P = (Yt−1, ..., Yt−P )′ and ω0 is a known function indexed by a

parameter x. That is, these methods check for any form of predictability from

the lagged P values of the series. The test statistics are based on a distance

from the sample analogue of E[(Yt − µ)ω0(Ỹt,P , x)] to zero.

The exponential function ω0(Ỹt,P , x) = exp(ix′Ỹt,P ) ,x ∈ R was first considered

in Bierens (1982, 1984, 1990). One version of the Cramer-von Mises (CvM)

test of Bierens (1984) leads to the test statistic

CvMn,exp,P =
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∑n
t=1

∑n
s=1(Yt − Ȳ )(Ys − Ȳ )exp(−1/2|Ỹt,P − Ỹs,P |2)

nσ̂2

where σ̂2 = (1/n)
∑n

t=1(Yt − Ȳ )2

Indicator functions ω0(Ỹt,P , x) = 1(Ỹt,P ≤ x), x ∈ R were used in Stute (1997)

and Koul and Stute (1999) for model checks of regressions and autoregressions,

respectively, and in Dominguez and Lobato (2003) for the MDH problem.

Dominguez and Lobato (2003), extending to the multivariate case the results

of Koul and Stute (1999), considered the CvM and Kolmogorov-Smirnov (KS)

statistics, respectively,

CvMn,P =

∑n
j=1[

∑n
t=1(Yt − Ȳ )1(Ỹt,P ≤ Ỹj,P )]2

σ̂2n2

KSn,P = max
1≤i≤n

|
∑n

t=1(Yt − Ȳ )1(Ỹt,P ≤ Ỹj,P )|
|σ̂
√
n|

An important problem of the local approach arises in the case where P is

large or even moderate. The sparseness of the data in high-dimensional spaces

implies severe biases to most test statistics. This is an important practical

limitation for most tests considered in the literature because these biases still

persist in fairly large samples. Motivated by this problem, Escanciano (2007a)

proposed the use of ω0(Ỹt,P , x) = 1(β′Ỹt,P ≤ u) where x = (β, u) ∈ Sd×R,with

Sd = {β ∈ Rd : |β| = 1} and defined CvM tests based on this choice. We

denote by PCVMn,P the resulting CvM test in Escanciano (2007a). Also

recently, Lavergne and Patilea (2007) has proposed dimension-reduction boot-

strap consistent test for regression models based on nonparametric kernel es-

timators of one-dimensional projections. Their proposal falls in the category

of local-based methods, though.
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The asymptotic null distribution of integrated tests based on ω0(Ỹt,P , x) de-

pends on the data generating process (DGP) in a complicated way. Therefore,

critical values for the tests statistics can not be tabulated for general cases.

One possibility, only explored in the literature for the case P = 1 by Koul and

Stute (1997), consists of applying the so-called Khmaladzes transformation

(Khmaladze, 1981) to get asymptotically distribution free tests. Extensions to

P > 1 are not available yet. Alternatively, we can approximate the asymptotic

null distributions by bootstrap methods. The most relevant bootstrap proce-

dure for testing the MDH has been the wild bootstrap (WB) introduced in

Wu (1986) and Liu (1988). For instance, this approach has been employed in

Dominguez and Lobato (2003) and Escanciano and Velasco (2006a, 2006b) to

approximate the asymptotic distribution of integrated MDH tests. The asymp-

totic distribution is approximated by replacing (Yt − Ȳ ) by (Yt − Ȳ )(Vt − V̄ )

where {Vt}nt=1 is a sequence of independent random variables (rv) with zero

mean, unit variance, bounded support and also independent of the sequence

{Y }nt=1 . Here, V̄ is the sample mean of {Vt}nt=1. The bootstrap samples are

obtained resampling from the distribution of Vt. A popular choice for{Vt} is

a sequence of i.i.d. Bernoulli variates with

P (Vt = 0, 5(1−
√

5)) = (1 +
√

5)/2
√

5

and

P (Vt = 0, 5(1 +
√

5)) = 1− (1 +
√

5)/2
√

5

We have applied several tests within the integrated methodology to our ex-

change rates data. In Table 3.3 we report the wild bootstrap empirical values.
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Table 3.3: Testing the MDH of exchange rates returns
Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen
CVMn,exp,1 0.028 0.322 0.744 0.842 0.453 0.086 0.876 0.488
CVMn,exp,3 0.164 0.320 0.898 0.666 0.743 0.250 0.076 0.258
CVMn,1 0.020 0.354 0.628 0.822 0.610 0.146 0.863 0.388
CVMn,3 0.192 0.424 0.798 0.588 0.916 0.893 0.720 0.500
KSn,1 0.016 0.220 0.502 0.740 0.726 0.176 0.836 0.542
KSn,3 0.036 0.280 0.734 0.526 0.986 0.810 0.224 0.654
PCVMn,1 0.020 0.354 0.626 0.822 0.610 0.146 0.863 0.388
PCVMn,3 0.248 0.438 0.790 0.664 0.746 0.443 0.566 0.414

In our application we have considered the values P = 1 and P = 3 for the

number of lags used in CVMn,exp,P , CVMn,P , KSn,P and PCVMn,P .

Our results favor the MDH with all exchange rates at both frequencies,

weekly and daily, with the exception of the daily Euro for P = 1. Surprisingly

enough, we obtain contradictory results for this exchange rate when P = 3:

These contradictory results have been previously documented in e.g. Escan-

ciano and Velasco (2006a) and rather than to a true lack of evidence against

the MDH, they may be due to a lack of power of the tests. Although the con-

sideration of an omnibus test, as those discussed in this section, is naturally

the first idea when there is no a priori information about directions in the

alternative hypothesis, it is worth noting that there is an important limitation

of omnibus tests: despite their capability to detect deviations from the null

in any direction, it is well-known that they only have reasonable nontrivial

local power against very few orthogonal directions, see Janssen (2000) and

Escanciano (2008) for theoretical explanations and bounds for the number of

orthogonal directions.
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Table 3.4: Testing the MDH of exchange rates returns. Bootstrap P
values.Data driven tests

Daily Weekly

Euro Pound Can Yen Euro Pound Can Yen
Tn,p̃ 0.049 0.847 0.514 0.876 0.622 0.133 0.747 0.299

A possible solution to overcome the lackof power of omnibus tests is provided

by the so-called Neymans smooth tests. They were first proposed by Ney-

man (1937) in the context of goodness-of-t of distributions, and since then,

there has been a lot of research documenting their theoretical and empirical

properties. In the context of MDH testing, a recent data-driven smooth test

has been proposed by Escanciano and Mayoral (2007). Their test is based

on the principal components of the marked empirical processes resulting from

the choice w0(Ỹt,1, x) = 1(Yt−1 ≤ x) with x ∈ R: This test is an extension to

nonlinear dependence of order one, i.e. for P = 1; of the test based on Nn.As

shown by these authors, this test possesses excellent local power properties

and compares favorably to omnibus tests and other competing tests. The test

statistic is

Tn,p̃ =

p̃∑
j=1

ε̂2j,n

with Tn,p replacing Q∗p there, and where ε̂j,n are the sample principal compo-

nents of a certain CvM test. The asymptotic null distribution of Tn,p̃ is a X2
1 .

We have applied the adaptive data-driven test based on Tn,p̃ to our exchange

rates data. The results are reported in Table 3.4 and support our previous

conclusions. Only the MDH for the daily Euro exchange rate is rejected at 1%

with Tn,p̃
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3.4.2 Tests based on an infinite dimensional information

set

The afore mentioned references test the MDH conditioning on a finite-dimensional

information set, and therefore, they may miss some dependence structure in

the conditional mean at omitted lags. In principle, the maximum power could

be achieved by using the correct lag order P of the alternative. However, prior

information on the conditional mean structure is usually not available.

There have been some proposals considering infinite-dimensional information

sets. First, de Jong (1996) generalized Bierens test to time series, and although

his test had the appealing property of considering an increasing number of lags

as the sample size increases, it required numerical integration with dimension

equal to the sample size, which makes this test unfeasible in applications where

the sample size is usually large, e.g. financial applications. Second, Dominguez

and Lobato (2003) suggest constructing a test statistic as a weighted average

of all the tests statistics established for a fixed number of lags. However,

Dominguez and Lobato(2003) did not further analyze the test neither the se-

lection of the measure to weight the different statistics.

Using a different methodology based on the generalized spectral density ap-

proach of Hong (1999), Hong and Lee (2003) proposed a MDH bootstrap test.

Tests based on the generalized spectral density involve three choices: a kernel,

a bandwidth parameter and an integrating measure, and, in general, statistical

inferences are sensitive to these choices. This fact motivated Escanciano and

Velasco (2006a, 2006b) to propose MDH by means of a generalized spectral

distribution function.
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The generalized spectral approach is based on the fact that the MDH im-

plies that H0 : γj,w(x) = 0 ,for all x, for all j ≥ 1. where γj,w(x) =

E[(Yt−µ)w0(Yt−j, x)] and where w0(Yt−j, x) is any of the parametric functions

of the previous section. The generalized spectral approach of Hong is based on

the choice w0(Yt−j, x) = exp(ixYt−j). Escanciano and Velasco (2006a) consid-

ered the latter choice, and Escanciano and Velasco (2006b) used w0(Yt−j, x) =

1(Yt−j, x), and called the measures γj,ind(x) = E[(Yt−µ)1(Yt−j ≤ x)] the Inte-

grated Pairwise Autoregression Functions (IPAF). The name follows from the

fact that

γj,ind(x) = E[(Yt − µ)1(Yt−j ≤ x)]

=

∫ x

−∞
E[Y − µ|Yt−j = z]F (dz)

where F is the cdf of Yt. The measures γj,w(x) can be viewed as a generalization

of the usual autocovariances to measure the conditional mean dependence in a

nonlinear time series framework. They can be easily estimated from a sample.

For instance, the IPAF’s can be estimated by

γ̂j,ind(x) =

∑n
t=1+j(Yt − Ȳ )1(Yt−j ≤ x)

n− j

Moreover, as proposed by Escanciano and Velasco (2006b), nonlinear correlo-

grams can be used to formally asses the nonlinear dependence structure in the

conditional mean of the series. These authors dene the KS test statistic as

KS(j) = sup
x∈[−∞,∞]d

|(n− j)1/2γ̂j,ind(x)|
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= max
1+j≤t≤n

|(n− j)1/2γ̂j,ind(Yt−j)|

The asymptotic quantile of KS(j) under the MDH can be approximated via a

wild bootstrap approach. With the bootstrap critical values we can calculate

uniform condence bands for γ̂j(x) and the signicance of γj(x) can be tested.

The plot of a standardization of KS(j) against the lag parameter j > 1 can be

viewed as generalization of the usual autocovariance plot in linear dependence

to nonlinear conditional mean dependence. Escanciano and Velasco (2006b)

called this plot the Integrated Pairwise Regression Functions (IPRF) plot.

3.5 Related hypotheses

In this chapter we have considered testing the MDH that, in statistical terms,

just implies that the mean of an economic time series is independent of its

past. The procedures studied in this chapter can be straightforwardly applied

for testing the following generalization of the MDH

H0 : E[Yt|Xt−1, Xt−2, ...] = µ

µ ∈ R where Yt is a measurable real-valued transformation ofXt and µ = E[Yt].

This null hypothesis, which is referred to as the generalized MDH, contains

many interesting testing problems as special cases. For instance, when Yt is a

power transformation of Xt, this null hypothesis implies constancy of condi-

tional moments. The leading case in financial applications is the case where

Yt = X2
t , because when Xt follows an MDS, this null hypothesis means that

there is no volatility in the series Xt, that is, Xt is conditionally homoskedastic.
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The cases Yt = X3
t or Yt = X4

t would respectively test for no dynamic struc-

ture in the third (conditionally constant skewness) and fourth (conditionally

constant kurtosis), see for instance, Bollerslev (1987) and Engle and GonzÆlez-

Rivera (1991). Another relevant case is when Yt = 1(Xt > c), c ∈ Rd. In this

case, the null hypothesis tested represents no directional predictability, see e.g.

Linton and Whang (2007). Other situation of interest occurs when the null

hypothesis of interest is the equality of the regression curves of two random

variables, X1t and X2t, say; in this case, Yt = X1t−X2t,µ = 0.

Note also that most of the procedures considered in this chapter are also appli-

cable for testing the null hypothesis that a general dynamic nonlinear model is

correctly specified. In this situation, the null hypothesis of interest establishes

that

∃θ0 : E[ψ(Yt, Xt, θ0)|Xt] = 0

where ψ is a given function, Yt is a vector of endogenous variables and Xt

is a vector of exogenous variables. Test statistics can be constructed along

the lines described in this chapter. The main theoretical challenge in this

framework is the way of handling the estimation of the parameters. There

are basically three alternative approaches. First, to estimate the asymptotic

null distribution of the relevant test statistics by estimating its spectral de-

composition (e.g. Horowitz (2006) or Carrasco, Florens and Renault (2007)).

Second, to use the bootstrap to estimate this distribution, see Wu (1986) and

Stute, W., Gonzalez-Manteiga, W.G. and M. Presedo-Quindmil (1998). Third,

to transform the test statistic via martingalization to yield an asymptotically

distribution free test statistic.

54



Finally, in this chapter we have considered testing for MDS instead of test-

ing for martingale. Recall that Xt is a martingale with respect to its natural

filtration, when

E[Xt|Xt−1, Xt−2, ...] = Xt−1

Testing for martingale presents the additional challenge of handling nonsta-

tionary variables. Park and Whang (2005) considered testing that a first-order

Markovian process follows a martingale by testing that the first difference of

the process conditionally on the last value has zero mean, that is,

E(Xt −Xt−1|Xt−1) = 0

Hence, they allow for a singular nonstationary conditioning variable. This

restrictive Markovian framework has the advantage of leading to tests statistics

which are asymptotically distribution free, and hence, they do not need to

transform their statistics or to use bootstrap procedures to obtain critical

values.
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Chapter 4

Conclusion

The previous chapters has presented a general panoramic on the literature of

testing for the MDH. This area started at the beginning of the last century

by developing tests for serial correlation and experimented a renewed inter-

est recently because of the nonlinear dependence present in economic and,

specially, financial series. The initial statistical tools were based on linear de-

pendence measures such as autocorrelations or the spectral density function.

These tools were initially considered motivated by the observation that eco-

nomic time series follow normal distributions. Since in the last twenty five

years it has been stressed the non normal behavior of financial series, the sta-

tistical and econometrics literature followed two alternative approaches. The

first one targeted to robustify the well-established linear measures to allow

for non-linear dependence. This approach has the advantage of its simplicity

since it leads typically to standard asymptotic null distributions. However,

its main limitation is that it cannot detect nonlinear dependence. The sec-

ond approach considered nonlinear measures of dependence. Its advantage is
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that it is more powerful, its disadvantage is that asymptotic null distributions

are nonstandard. Nowadays, this feature is hardly a drawback because the

increasing availability of computing resources has allowed the implementation

of bootstrap procedures that can estimate the asymptotic null distributions

with relative ease.

The definition of martingale involves the information set of the agent that

typically contains the infinite past of the economic series. This feature implies

that, in practice, it is practically impossible to construct a test which, although

it may be consistent theoretically, has power for any possible violation of the

null hypothesis. The pairwise approach, which admittedly does not deliver

consistent tests, leads to tests with reasonable power for common alternatives.

Another sensible possibility to reduce this dimensionality problem is to con-

sider alternatives of a single-index structure, i.e. where the conditioning set is

given by a univariate, possibly unknown, projection of the infinite-dimensional

information set. More research is clearly needed in this direction.

we have illustrate the different methodologies with exchange rate data that

typically satisfy the MDH, as we have seen. Stock market data is not such a

clear cut case. Rejecting the MDH leads to the challenge of selecting a proper

model. In this respect, data-driven adaptive tests are informative, since they

provide an alternative model in case of rejection. Notably, the principal com-

ponent analysis provided in Escanciano and Mayoral (2007) represents a clear,

theoretically well motivated approach, that coupled with an effective choice

for the number of components can help in this selection process.
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