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The main objective of this work is to find a more straightforward

method for estimating the parameters of an equally spaced dis-

crete autoregressive process by using maximum likelihood estima-

tion (MLE) considering it is challenging to obtain the parameters of

a nonlinear optimization procedure. The resulting estimated values

are tested through simulation and then compared with those ob-

tained using the previous MLE and Yule-Walker estimation. The

achieved result yields slightly increased accuracy.



Another problem we tackle is the Yule-Walker estimators for the

continuous autoregressive models based on equally spaced discrete-

time approximations. Again, these estimators are examined through

simulation to demonstrate that the obtained result yields an accu-

rate estimation.



To my family.
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Chapter 0

Introduction

Time is the infinite progress of events. It occurs naturally in many applica-

tion areas like finance, econometrics, and many more. Some of the numerous

components observed over time include stock returns, sales, and price indices.

Whether individuals are investing personal money in stocks or developing a

forecast to see what change in some variables will affect the future route of

others, understanding time is significant to ensure success in business.

Any series of observations measured along time is called time series. We

describe a time series as a set of data created by taking a series of measurements

in a time sequence. It is valuable in statistics, mathematical finance, and

mainly in any domain that requires temporal measurements. To understand

the mechanisms of time series a model is to be developed to explain the data

in such a way that prediction occurs. Hence understanding time series data is

crucial to making better data-informed decisions.

Statistically, we represent time series measurements with a set of random

variables X1, X2, . . . , Xt where t is the set of time that the process is mea-
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sured. In reality, we can only observe a time series at a finite number of times.

However, it is beneficial to allow the number of observations to be infinite.

In that case, the underlying sequence of random variables {Xt} is called a

stochastic process [1]. Yule, who launched the idea of stochasticity in time se-

ries, proposed that every time series is the realization of a stochastic process.

Therefore to analyze a time series, it is useful to set down a statistical model in

the form of a stochastic process. A stochastic process is an underlying process

that will be the focus of our theoretical development.

Time series consists of two necessary components - time units and the

corresponding value assigned for the given time unit. In a discrete-time series,

the values are collected at discrete points of time. On the other hand, a

continuous-time series records them continuously through time intervals [2].

For example, the exchange rate between two currencies represents a discrete-

time series. However, an earthquake that is recorded continuously through

time may depict as a continuous-time series. The observations can be equally

spaced, unequally spaced, or have missing data.

The primary purpose of time series modeling is to collect and study past

observations and to develop an appropriate model which describes the essential

structure of the series. In the 1920s and 1930s, Yule and Walker formulated the

concept of some of the standard models in time series; moving average (MA),

autoregressive (AR), and autoregressive moving average (ARMA). Moreover,

Box and Jenkins originated the building process. These models were then used

to generate future observations for the series. In practice, we would certainly

not know the values of the parameters of the models. However, we can use the

observed data to estimate these unknown quantities. In time series modeling,



the standard parameter estimation methodology includes the Yule-Walker and

the maximum likelihood method.

This work is divided into two parts. The central part of it is about the

implementation of maximum likelihood estimation through the discrete-time

autoregressive process. We first tackle the notion of LU-decomposition for

the inverse covariance matrix of the model and then construct a likelihood

function to derive the parameters. The latter concerns the parameter estima-

tion of the continuous-time autoregressive process by employing discrete-time

approximations to the Yule-Walker equations.

The scope of this work is as follows. In chapter one, we will discuss the

properties of stochastic processes, Brownian motion, and the autocorrelation

function. Chapter two contains a detailed overview of the linear discrete-time

autoregressive process, elaborates the Yule-Walker estimation of parameters

regarding the model, and introduces the most crucial part of this work, the

maximum likelihood estimation based on Haddad’s (1998) inverse covariance

matrix. Finally, chapter three describes an approach to the continuous-time

autoregressive process concerned with the problem of estimation when taking

discrete-time approximations to them.



Chapter 1

Time Series Concepts

In this chapter, we give an overall view of a stochastic process with a discussion

of some critical stochastic concepts like stationarity and Brownian motion. We

also introduce the notion of autocorrelation, which is crucial in analyzing our

time series data. Finally, the last section will include a brief approach to the

stochastic differential equations.

1.1 Stochastic Process

A time series could be either modeled using a stochastic process or a deter-

ministic process. A stochastic process can be thought of as evolving in time

randomly where a single input leads to different outputs. On the other hand,

a deterministic process leads to a single output. However, it is impossible to

predict what will occur in the future precisely [3]. Therefore, we model our

time series using a stochastic process.

A mathematical expression which describes the probability structure of
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the time series is referred to as a stochastic process. A stochastic process, say

{Xt}, is defined as a family of random variables indexed with time t [4]. This

process can be depicted as a statistical phenomenon that advances in time.

Unquestionably, a continuous-time stochastic process is a stochastic process

for which {Xt, 0 ≤ t < ∞} is an uncountable collection of random variables,

as contrasted with a discrete-time process for which {Xt, t = 0, 1, 2, . . . } is a

finite or countable collection of random variables.

1.2 Stationarity

A crucial class of stochastic processes are those which are stationary. A

stochastic process is said to be stationary if all of its statistical properties

such as mean, variance, and covariance do not change over time [5]. In other

words, the properties of one area of the data are much similar to those of

any other area. However, one can distinguish between two different notions of

stationarity that have been suggested in time series literature over the years;

strictly stationary and weakly stationary.

A stochastic process, {Xt}, is said to be strictly stationary if its joint

probability distribution does not change when shifted in time [2]; i.e., it is the

same at time t as at any other time t+ h.

Note that in practice, it is often useful to define stationarity in a less

restricted way than that described above, since strict stationarity is a firm re-

quirement. We, therefore, introduce a much less rigorous property, the notion

of weak stationarity, which generally describes the same type of behavior.

A stochastic process, {Xt}, is said to be weakly stationary if the following



conditions are satisfied:

1. The mean E[Xt] = µ is independent of time t.

2. E[X2
t ] <∞, which implies the variance V ar[Xt] = σ2 is finite.

3. Cov[Xt, Xt+h] = E[(Xt − µ)(Xt+h − µ)] = γh, called the autocovariance

ACVF at lag h, is independent of time t.

In what follows, the term stationary implies weakly stationary.

Example. [IID noise] The random variables {Xt} are IID, i.e., independent

and identically distributed, with finite second moment E[X2
t ] = σ2 < ∞.

Then the first requirement is satisfied, since E[Xt] = 0. By the assumed

independence,

γh =


σ2 if h = 0,

0 if h 6= 0,

which does not depend on t. Hence the above IID noise is stationary.

Note that mathematical definitions of stationarity will be given in chapters

two and three.

1.3 Autocorrelation and Partial Autocorrela-

tion Functions

Unlike regular sampling data, time series takes into consideration the order

of occurrence of the observations. Therefore, there is extra information about

our sample that we could take advantage of. To accomplish that, we need the



autocorrelation function (ACF) of a stationary process {Xt} that measures

the correlation between observations separated by various time lags [6].

Suppose we have a stationary stochastic process {Xt} with mean µ, vari-

ance σ2, and ACVF γh. The ACF is denoted by ρh and is given as [7]:

ρh =
E[(Xt − µ)(Xt+h − µ)]√
E[(Xt − µ)2]E[(Xt+h − µ)2]

=
Cov[Xt, Xt+h]

V ar[Xt]
=
γh
γ0

. (1.3.1)

The ACF satisfies:

1. ρ0 = 1

2. ρh = ρ−h

3. | ρh |≤ 1

Investigation in ACF enables us to detect vital conditions in time series

data. However, in practice, we do not start with a model but with observed

data. This means that the stochastic process governing a time series is un-

known and so it is impossible to determine the actual ACF. One of the essential

tools we use is the sample ACF of the data which is an estimate of the ACF

of {Xt} [2]. Sample ACF for both discrete and continuous time series will be

introduced in chapters two and three, respectively.

Partial autocorrelation function (PACF) is the correlation between obser-

vations at different time lags after removing any linear dependence at shorter

lags; i.e., a correlation between Xt and Xt−h after removing any linear de-

pendence on X1, X2, . . . , Xt−h+1. The PACF is denoted by φhh and is defined



as:

φhh =



1 ρ1 ρ2 . . . ρh−2 ρ1

ρ1 1 ρ1 . . . ρh−3 ρ2

...
...

...
. . .

...
...

ρh−1 ρh−2 ρh−3 . . . ρ1 ρh




1 ρ1 ρ2 . . . ρh−2 ρh−1

ρ1 1 ρ1 . . . ρh−3 ρh−2

...
...

...
. . .

...
...

ρh−1 ρh−2 ρh−3 . . . ρ1 1


The most crucial role of PACF is identifying the appropriate lags of our

autoregressive (AR) model by utilizing the PACF plot [8].

1.4 Brownian Motion

A Brownian motion (or Wiener) is an essential concept in stochastic calculus.

It is a fundamental stochastic process which can be exercised in modeling noise,

specifically white noise. White noise is a sequence of uncorrelated random

variables {Xt} each with zero mean and variance σ2. We will define discrete

and continuous white noise in chapters two and three, respectively.

A continuous-time stochastic process {Wt, 0 ≤ t < ∞} is called a (one-

dimensional) Brownian motion if it satisfies the following [9]:

1. W0 = 0.

2. Wt follows a normal distribution with mean 0 and variance σ2
W t; i.e.,

Wt ∼ N(0, σ2
W t).



3. The process {Wt, 0 ≤ t <∞} has stationary increments; i.e., the distri-

bution of Wt+s −Wt is independent of t for all s, t > 0.

4. The process {Wt, 0 ≤ t <∞} has independent increments; i.e., for each

0 ≤ t1 < t2 < · · · < tn, the variables Wt1 , Wt2 −Wt1 , . . . ,Wtn −Wtn−1

are independent.

Brownian motion is thus a continuous stochastic process which is normally

distributed, and whose variance increases the farther it gets from the origin.

It is independent of its remote history, and a change in its location at any

increment in time is independent of a change anywhere else over the same

time increment.

Note that a continuous-time stochastic process {Wt, 0 ≤ t <∞} is said to

be a standard Brownian motion if σ2
W = 1, i.e. Wt ∼ N(0, t).

1.5 Stochastic Differential Equation

A general form of a stochastic differential equation is defined by

dXt = a(t,Xt)dt+ b(t,Xt)dWt for t ∈ [0, T ], (1.5.1)

where dXt represents the derivative of process {Xt}, a and b are usually time-

varying functions, and Wt is a Brownian process [10]. Then if a solution to

(1.5.1) exists, we write

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs. (1.5.2)



Example. An Ornstein-Uhlenbeck process {Xt} is a stochastic differential

equation of the form [11]

dXt = −aXtdt+ σdWt. (1.5.3)

Note that the theoretical ACF of this process {Xt} is given by ρh = e−ah for

h ≥ 0.



Chapter 2

Discrete Autoregressive Process

The determination of a suitable model in time series is critical as it captures

the underlying data for the series. Models for time series data can represent

different stochastic processes. For instance, one of the most popular used

linear stochastic time series models is the autoregressive (AR) model. The AR

model depicts how an observation directly relies on p past observations with

addition to a white noise term. This form of a time series model is appealing

and has been broadly applied to data sets in a wide range of fields.

This chapter deals with the introduction of linear regression, which led

to the critical discrete autoregressive (DAR) model. The properties of these

models are then explored, including the sample autocorrelation function. Ad-

ditionally, the Yule-Walker equations are formulated. These will be fundamen-

tal in developing estimates of the model parameters. The final section deals

with a new approach to the maximum likelihood estimation. Conclusively,

the parameter estimates are illustrated through a simulated example. This

example is analyzed in detail using R and Maple programs.
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2.1 Discrete Autoregressive Process of Order

1

Let {Xt, t = 1, 2, . . . } be a discrete-time stochastic process. We say that Xt

has a linear regression on Xt−1 if it satisfies the following equation

Xt = φXt−1 + υt,

with υt being the error term. The fact that Xt has a regression on its past

gives rise to the first order discrete autoregressive model, denoted DAR(1),

which is written as

Xt − φXt−1 = υt, (2.1.1)

where φ is a constant parameter and {υt} is a discrete white noise process

defined as a sequence of independent and identically distributed normal ran-

dom variable with mean 0 and variance σ2
υ. Without loss of generality, σ2

υ is

assumed to equal one.

To analyze the condition of stationarity for equation (2.1.1), we introduce

the backshift/lag operator L that is LXt = Xt−1 [12]. Hence, we can rewrite

the difference equation (2.1.1) as

(1− φL)Xt = υt. (2.1.2)

For the process {Xt} to be stationary, all the roots of the homogeneous equa-

tion should lie outside the unit circle; i.e., are larger than one in absolute value.



Therefore the solution of the homogeneous equation Xt − φXt−1 = 0, which

can be written as (2.1.2), is L =
1

φ
. Thus {Xt} to be stationary, |φ| < 1.

Let us assume {Xt, t = 1, 2, . . . } to be a stationary DAR(1) process. The

covariance matrix, Σ1 = γ(|k−j|) for j, k = 1, . . . , n, can be computed by mul-

tiplying both sides of equation (2.1.1) by Xt−h and taking expectations

γh − φγh−1 =


1 if h = 0,

0 if h > 0,

where γh = E[XtXt−h] is the ACVF at lag h. Thus by solving the above

system of equations, it follows the covariance matrix of a DAR(1) process to

be

Σ1 =
1

1− φ2



1 φ . . . φn−1

φ 1 . . . φn−2

...
...

...

φn−1 φn−2 . . . 1


.

Consequently, we can obtain the ACF of a DAR(1) process by utilizing equa-

tion (1.3.1).



2.2 Discrete Autoregressive Process of Order

P

The discrete-time stochastic process, {Xt}, that satisfies the difference equa-

tion [5]

Xt − φ1Xt−1 − · · · − φpXt−p = υt for t = p, p+1, p+2, . . . (2.2.1)

is called a zero mean discrete-time autoregressive process of order p , a DAR(p)

process, where {υt} is a Gaussian discrete white noise process; i.e., the process

is normally distributed and φ1, φ2, . . . , φp are model parameters.

Note that the above equation can also be written as

(1− φ1L− · · · − φpLp)Xt = υt, (2.2.2)

where L is the backshift operator. In fact setting z = 1/L, provides us the

characteristic equation

zp − φ1z
p−1 − · · · − φp = 0. (2.2.3)

Denote by R = (r1, . . . , rp)
′

the roots (may be real or complex) of the charac-

teristic equation. Thus, as given in Box and Jenkins [8], the process in (2.2.1)

can be written as

(1− r1L) . . . (1− rpL)Xt = υt. (2.2.4)



Following the same argument as DAR(1) process, a discrete-time stochastic

process {Xt}, that satisfies (2.2.1), is stationary under the condition that the

roots of its homogeneous equation lie outside the unit circle, or each root of

the characteristic equation (2.2.3) is less than one in absolute value.

Haddad [13] showed that the inverse covariance matrix of a DAR(p) model

is determined in terms of the roots of its characteristic equation

Σ−1
p = Ω−1(r1)∆−1

1 . . .∆−1
p−1Ω−1(rp), (2.2.5)

where Ω−1(rj) is the inverse covariance matrix of a DAR(1) model with pa-

rameter rj, and ∆−1
p−1 is a near identity matrix.

The subsequent step is to find the LDL′ decomposition of each inverse

covariance matrix Ω−1(rj) and rewrite equation (2.2.5) as a function of unit

lower triangular matrices

Σ−1
p = L(r1)D(r1)L′(r1)∆−1

1 . . .∆−1
p−1L(rp)D(rp)L

′(rp).

Following some simple matrix manipulations, we can easily obtain

Σ−1
p = [L(r1)L(r2) . . . L(rp)][L

′(r1)L′(r2) . . . L′(rp)] + Ψp,

where Ψp is a near null matrix.

In what follows,

Σ−1
p = [L(r1)L(r2) . . . L(rp)][L

′(r1)L′(r2) . . . L′(rp)]. (2.2.6)



2.3 Sample Autocorrelation Function

While working on practical problems, we do not start with a model, but with

observed data X1, X2, . . . , Xn. Hence we would certainly not know the values

of the model parameters, and consequently, we would not be able to determine

the theoretical ACF. Nevertheless, from the observed values, we will estimate

the ACVF and the ACF of the underlying process {Xt}. This is a crucial step

to construct an adequate model for the data.

The estimate of the theoretical ACVF γh is the sample ACVF γ̂h, which is

given by [5]

γ̂h =
1

n

n−h∑
t=1

(Xt − X̄)(Xt+h − X̄),

where X̄ is the estimate of the mean µ and is defined by X̄ =
1

n

∑n
t=1Xt.

Having estimated the ACVF, we then can easily calculate the ACF at lag h

by using (1.3.1), ρ̂h =
γ̂h
γ̂0

.

2.4 Yule-Walker Equations for Discrete Au-

toregressive Processes

Throughout this section, we assume we have n observations, X1, X2, . . . , Xn,

from a stationary DAR(p) process, in which the order of the model, p, is

known. We will not discuss the problem of determining p. Our goal in this

section is to estimate the parameters φ1, φ2, . . . , φp of a stationary DAR(p)

process by using the Yule-Walker equations.



Let {Xt} be a zero mean stationary DAR(p) process defined by (2.2.1)

Xt − φ1Xt−1 − · · · − φpXt−p = υt for t= p, p+1, p+2, . . . .

Multiplying both sides by Xt−h and taking expectations, we obtain the Yule-

Walker equations [14]

γh − φ1γh−1 − · · · − φpγh−p =


1 if h = 0,

0 if h > 0,

(2.4.1)

where γh = E[XtXt−h].

The Yule-Walker estimators are then obtained by substituting γh in equa-

tions (2.4.1) by γ̂h, due to the fact the sample ACVF is the estimate of the

theoretical ACVF. Thus, the parameter estimates φ̂1, φ̂2, . . . , φ̂p are acquired

by solving the below Yule-Walker estimators

γ̂h − φ̂1γ̂h−1 − · · · − φ̂pγ̂h−p =


1 if h = 0,

0 if h > 0.

(2.4.2)

Example. Consider a zero mean stationary DAR(2) process defined by

Xt − φ1Xt−1 − φ2Xt−2 = υt for t= 2, 3, . . . .

Let us generate 50 observations in R from a simulated DAR(2) model with

parameters φ1 = −0.2 and φ2 = 0.35. We utilize R to obtain the Yule-Walker

estimators.



Here is the output summarizing the fit. Appendix A.1 contains detailed

information regarding the codes in R.

Coefficients:

1 2

-0.1721 0.3164

sigma^2 estimated as 1.285

The estimators are φ̂1 = −0.1721 and φ̂2 = 0.3164 which provides the fitted

DAR(2) model

Xt + 0.1721Xt−1 − 0.3164Xt−2 = υt.

The noise variance estimate is σ̂2
ν = 1.285.

2.5 Maximum Likelihood Estimation

Another method utilized to estimate the parameters of a zero mean DAR(p)

model is the maximum likelihood estimator (MLE). This procedure finds the

values of the parameters which maximize the probability of obtaining the data

that we have observed.

Suppose we have a zero mean stationary DAR(p) process given by (2.2.1).

For independent and identically distributed random variables X1, X2, . . . , Xn,

the likelihood function is defined as the probability density function of X =

(X1, X2, . . . , Xn)
′

under the multivariate Gaussian model [15]

L(φ1, φ2, . . . , φp;X) =
n∏
i=1

P (Xi;φ1, φ2, . . . , φp) (2.5.1)

=
1

(2π)n/2|Σp|1/2
exp{−1

2
X
′
Σ−1
p X}, (2.5.2)



where Σp is the covariance matrix of X with the given parameter values, and

|Σp| denotes the determinant of Σp.

The goal is then to find the values of the model parameter that maximize

the likelihood function. However, rather than maximizing this product (2.5.2),

which can be tedious, it is often convenient to work with the natural logarithm

of the likelihood function, called the log-likelihood

`(φ1, φ2, . . . , φp;X) = logL(φ1, φ2, . . . , φp;X)

= −n
2

log(2π)− 1

2
log |Σp| −

1

2
{X ′Σ−1

p X}.

We know from linear algebra that |Σp| =
1

|Σ−1
p |

, then the log-likelihood func-

tion becomes

`(φ1, φ2, . . . , φp;X) = −n
2

log(2π) +
1

2
log |Σ−1

p | −
1

2
{X ′Σ−1

p X}. (2.5.3)

Now, maximizing `(φ1, φ2, . . . , φp;X) with respect to φj; i.e., taking the partial

derivative of the log-likelihood function with respect to φj, and setting to 0,

will give us the MLE.

Let us examine a new approach to MLE. Consider again a zero mean

stationary DAR(p) process, {Xt}, with n observations to be defined as (2.2.4)

(1− r1L) . . . (1− rpL)Xt = υt.

To find the maximum likelihood estimates, we maximize the log-likelihood



function (2.5.3)

`(r1, r2, . . . , rp;X) = −n
2

log(2π) +
1

2
log |Σ−1

p | −
1

2
{X ′Σ−1

p X}, (2.5.4)

with respect to rj where each rj is the root of the characteristic equation

(2.2.3), and Σ−1
p = [L(r1)L(r2) . . . L(rp)][L

′(r1)L′(r2) . . . L′(rp)] is considered

as the inverse covariance matrix of X = (X1, X2, . . . , Xn)
′
presented in (2.2.6).

Thus, the estimated roots can be computed by solving the system of equations

∂{X ′Σ−1
p X}

∂rj
= 0, (2.5.5)

considering |Σ−1
p | = 1.

Example. We again revisit the simulated DAR(2) process with φ1 = −0.2

and φ2 = 0.35 in section (2.4), and use R to refit the model

Xt − φ1Xt−1 − φ2Xt−2 = υt,

except now using the maximum likelihood estimator (MLE) method. Here is

the output from R summarizing the MLE fit. Appendix A.1 includes informa-

tion regarding the estimation in R.

Coefficients:

1 2

-0.1707 0.3117

sigma^2 estimated as 1.204

The estimators are φ̂1 = −0.1707 and φ̂2 = 0.3117 which yields the fitted



DAR(2) model

Xt + 0.1707Xt−1 − 0.3117Xt−2 = υt.

The noise variance estimate is σ̂2
ν = 1.204.

However, by using our new strategy, we know that a DAR(2) model can

also be represented as

(1− r1L)(1− r2L)Xt = υt.

Expanding the left-hand side of the above equation and comparing it to a

DAR(2) model defined by (2.2.1), we can easily obtain φ1 = r1 + r2 and

φ2 = −r1r2.

In order to estimate the coefficients r1 and r2, a mathematically based

software known as Maple is used to solve the system of equations presented in

(2.5.5)

∂{X ′Σ−1
p X}

∂rj
= 0,

where Σ−1
p = [L(r1)L(r2)][L′(r1)L′(r2)] is the inverse covariance matrix of X =

(X1, X2, . . . , Xn)
′
. Appendix A.2 includes the complete code regarding the

solution of the system of equations in Maple.

Coefficients:

r1 r2

-0.6603 0.4868

The calculated estimates are found to be φ̂1 = r1 + r2 = −0.1735 and φ̂2 =



−r1r2 = 0.3214, which produces the fitted DAR(2) model

Xt + 0.1735Xt−1 − 0.3214Xt−2 = υt.

2.6 Conclusion

For the simulated zero mean DAR(2) process with parameters φ1 = −0.2 and

φ2 = 0.35, we represent the estimates from all three methods in the following

table.

Table 2.1: Estimated parameters φ̂1 and φ̂2 of a DAR(2) process based on
three methods.

Method φ̂1 φ̂2

Yule-Walker estimation -0.1721 0.3164

MLE -0.1707 0.3117

MLE with Σ−1
p = [L(r1)L(r2)][L′(r1)L′(r2)] -0.1735 0.3214

We analyze Table 2.1 and observe that the three methods are somewhat

close. Nevertheless, comparing it to the actual parameter values φ1 = −0.2

and φ2 = 0.35 provides us the outcome that using MLE with inverse covariance

matrix Σ−1
p = [L(r1)L(r2)][L′(r1)L′(r2)] slightly increases the accuracy of the

estimation.



Chapter 3

Continuous Autoregressive

Process

Although we defined the discrete autoregressive process in chapter two, many

economic and financial problems have continuously observed data. As a result,

continuous time series is introduced. Peculiarly, the continuous autoregressive

CAR process.

In this chapter, we first discuss the concept of a continuous-time white

noise process. We also develop the notion of a CAR process in parallel to

the well known discrete-time autoregressive process addressed in chapter two.

Further, we introduce the derivative covariance function, which will assist us

in establishing the Yule-Walker equations. Finally, estimation of model pa-

rameters using the discrete-time approximations of the Yule-Walker equations

is considered. In conclusion, the parameter estimates, similar to the previous

chapter, are illustrated through a simulated CAR process.
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3.1 Continuous-Time White Noise

A continuous-time stochastic process {υt, 0 ≤ t < ∞} is called a continuous-

time white noise if it satisfies the following properties:

1. E[υt] = 0.

2. There exists a constant variance σ2
υ ∈ [0,∞) satisfying

Cov[υs, υt] = σ2
υδ(t− s),

where δ represents a Dirac delta function [16].

This particular form does not prove too worrisome since we are going to work

with continuous parameter models, ergo we will usually be dealing with inte-

grals of {υt} rather than {υt} itself. Note that throughout this chapter, we

assume a continuous-time white noise process to be integrable with respect to

time.

Suppose that {υt, 0 ≤ t < ∞} is a Gaussian continuous-time white noise

process; i.e.,
∫ t

0
υudu is normally distributed. If the continuous-time stochastic

process {Wt, 0 ≤ t <∞} is defined by

Wt =

∫ t

0

υudu, (3.1.1)

then {Wt} is a Brownian motion. Proof of which can be found in Appendix

B.



3.2 Continuous Autoregressive Process of Or-

der 1

A continuous-time autoregressive process of order 1, denoted CAR(1), is de-

fined along similar lines as a DAR(1) process, with the most noticeable change

being the replacement of the difference equation by a differential equation.

Let {Xt, 0 ≤ t <∞} be a continuous-time stochastic process. We say that

{Xt} is a CAR(1) process if it satisfies the stochastic differential equation

X
(1)
t + α0Xt = συt, (3.2.1)

where X
(1)
t = (d/dt)Xt is the first derivative of the process {Xt}, α0 is the

model parameter, and {υt} is a continuous white noise process.

Following the same argument as used for the discrete model, a continuous-

time stochastic process {Xt} that satisfies (3.2.1) is said to be stationary if the

solution of the homogeneous equation decays to zero as t→∞. Therefore the

solution of the homogeneous equation X
(1)
t + α0Xt = 0, which is of the form

Xt = ce−α0t where c is an arbitrary constant, decays to zero when α0 > 0.

The solution of (3.2.1) is the Itô integral

Xt = X0e
−α0t + σ

∫ t

0

e−α0(t−u)dWu, (3.2.2)

where X0 is an arbitrary constant, and through (3.1.1), dWt = υtdt is the

derivative of Brownian motion. Priestley [6] demonstrated that γh =
σ2

2α0

e−α0h

presents the ACVF of the process {Xt}. Consequently, we can obtain the ACF



by applying equation (1.3.1).

We can see that a CAR(1) model is a representation of the Ornstein-

Uhlenbeck (OU) process illustrated in (1.5.3) with ACF ρh = e−α0h, which

is congruous with Priestley’s result. Furthermore, to estimate the parameter

of this OU-process, we discretize it to a DAR(1) process as following.

Let {xt} denote a sample function of a zero mean stationary CAR(1)

process that satisfies (3.2.1), and suppose the data consists of observations

taken at times 0 = t0 < t1 < · · · < tn = T and are equally spaced; i.e.,

∆i = ti+1 − ti = ∆ for all i. Formulating Xt = x(t∆) into the Itô integral

xt = x0e
−α0t + σ

∫ t

0

e−α0(t−u)dwu,

the sampled process can be described by the DAR(1) process Xt = φXt−1 +υt

where X0 = x0, and φ = e−α0∆. Considering φ = e−α0∆, the parameter

estimate of the above CAR(1) model is defined by

α̂0 = − 1

∆
log(φ̂), (3.2.3)

where φ̂ =
γ̂1

γ̂0

represents the Yule-Walker estimate (2.4.2) of the DAR(1)

process.

Example. Consider a zero mean stationary CAR(1) process defined by

dXt = −α0Xtdt+ σdWt.

Let us simulate n=1000 observations throughout [0, T = 10] of an OU-process,

having parameter α0 = 0.3 and volatility σ = 0.1. The generated observations



are discretized with ∆ =
T − t0
n

signifying the time step of the simulation.

Appendix A.3 carries detailed information regarding the simulation in R.

To acquire the parameter estimate of the above CAR(1) model, we solve

(3.2.3) on Maple software to obtain α̂0 = 0.3216. We can see that this estima-

tion method is accurate as it is close to the actual parameter value of α0 = 0.3.

Check Appendix A.4 regarding the solution of the above technique in Maple.

Note that to obtain the ACVF at lag 0, we use the ACF of the OU-process

and Priestley’s computed ACVF, and employ them into equation (1.3.1) to

get γ0 =
σ2

2α0

. Hence to get the estimated sigma, solve σ̂ =
√

2α̂0γ̂0.

3.3 Continuous Autoregressive Process of Or-

der P

The continuous-time stochastic process, {Xt, 0 ≤ t < ∞}, that satisfies the

differential equation

α0Xt + · · ·+ αp−1X
(p−1)
t +X

(p)
t = συt (3.3.1)

is called a zero mean continuous-time autoregressive process of order p, a

CAR(p) process, where α0, α1, . . . , αp−1 represent model parameters, X
(j)
t de-

notes the jth derivative of Xt, and {υt} is a Gaussian continuous-time white

noise process. However, in the light of (3.1.1), we refer a Gaussian continuous-

time white noise process {υt, 0 ≤ t < ∞} as {dWt, 0 ≤ t < ∞} where {Wt}

denotes the Brownian motion. Thus, we introduce a more precise definition of

a CAR(p) process.



Suppose that A is a pxp matrix and b is a px1 vector, where p ∈ N =

{1, 2, . . . }, both defined by

A =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

. . . . . . 0

0 0 . . . 0 1

−α0 −α1 . . . . . . −αp−1


b =



0

0

...

0

1



A CAR(p) process represented by Ct = [Xt, X
(1)
t , . . . , X

(p−1)
t ]

′
, should satisfy

the stochastic differential equation

dCt = ACtdt+ σbdWt, (3.3.2)

where {Wt} denotes standard Brownian motion.

A vital approach to study stationarity of a continuous-time stochastic pro-

cess {Ct, 0 ≤ t < ∞} that satisfies (3.3.2) includes the eigenvalues of A to

have negative real parts, which indicates lim
t→∞

eAt = 0. The proof of which is

found in [17].

Note that Brownian motion is not differentiable [18], indicating dWt does

not exist. In fact, (3.3.2) can be written as an Itô integral equation given as

(1.5.2)

Ct = C0 +

∫ t

0

ACudu+ σ

∫ t

0

bdWu. (3.3.3)

By utilizing equation (3.3.3) and employing some mathematical techniques,



we represent the solution of (3.3.2) to be

Ct = eAtC0 + σ

∫ t

0

eA(t−u)bdWu, (3.3.4)

where eA is the matrix exponential for any square matrix A, and the process

C0 ∼ N

(
0, σ2

∫∞
0
eAsbb

′
eA
′
sds

)
.

3.4 Derivative Covariance Function

For a continuous-time autoregressive process CAR(p), the Yule-Walker equa-

tions are written in terms of the derivative covariance function (DCVF) defined

below.

Let {Xt} be a CAR(p) process. Hyndman, within [19], showed that for

h ≥ 0 and 0 ≤ j, k ≤ p− 1, there exist a relation between DCVF and ACVF.

Dj,k(h) = Cov[X
(j)
t+h, X

(k)
t ] (3.4.1)

= (−1)kγ(j+k)(h), (3.4.2)

where γ(j+k)(h) denotes the (j + k)th derivative of the ACVF. The proof of

which can be found in [10]. Additionally, we note that Dj,k(0) = 0 if j + k is

odd. This postulate follows using Dj,k(h) = Dk,j(−h) when h=0.

Similar to the discrete case, it is impossible to determine the actual DCVF

considering we do not start with a model, but with observed data. Accordingly,

we need to consider the problem of estimating the DCVF Dj,k(0) based on the

continuously observed data.



Let {xt} denote the observed data from a stationary CAR(p) process {Xt}.

The estimate of the theoretical DCVF Dj,k(0), for 0 ≤ j ≤ p−1 and 0 ≤ k ≤ p,

is the sample DCVF D̂j,k which is given by

D̂j,k =


1

T

∫ T

0

x
(j)
t x

(k)
t dt if k < p,

1

T

∫ T

0

x
(j)
t dx

(p−1)
t if k = p.

(3.4.3)

3.5 Yule-Walker Equations for Continuous Au-

toregressive Processes

Our goal in this section is to estimate the parameters α0, α1, . . . , αp−1 of a

stationary CAR(p) process by using the Yule-Walker equations. To keep the

close analogue between the continuous and discrete case, we will not discuss

the problem of determining p. For related work in the case of equal and closely

spaced data, see Philips [20] and Brockwell [21].

Let {Xt} be a zero mean stationary CAR(p) process given by (3.3.1)

α0Xt + · · ·+ αp−1X
(p−1)
t +X

(p)
t = συt.

The Yule-Walker equations for CAR(p) processes are similar to the discrete-

time Yule-Walker equations. We simply multiply both sides of the above

equation by X
(j)
t+h and take expectations to obtain

α0Dj,0(h) + · · ·+ αp−1Dj,p−1(h) +Dj,p(h) = 0 0 ≤ j ≤ p− 1, (3.5.1)



where Dj,k(h) = E[X
(j)
t+hX

(k)
t ] due to (3.4.1).

Consider equation (3.5.1) and let h = 0. The Yule-Walker estimators are

then obtained by substituting Dj,k and Dj,p by D̂j,k and D̂j,p, respectively,

in view of the fact that the sample DCVF is the estimate of the theoretical

DCVF

α̂0D̂j,0 + · · ·+ α̂p−1D̂j,p−1 + D̂j,p = 0 0 ≤ j ≤ p− 1, (3.5.2)

where α̂j is the Yule-Walker estimator of αj. Note that to obtain the estimated

volatility σ̂, we substitute (−1)kγ(j+k)(h) for Dj,k(h), as a result of (3.4.2), into

(3.5.2) and solve the following equation

α̂0γ̂
(j)(0) + · · ·+ (−1)p−1α̂p−1γ̂

(j+p−1)(0) + (−1)pγ̂(j+p)(0) = 0, (3.5.3)

where D̂p−1,p(0) = − σ̂
2

2
according to Hyndman.

Numerous real-life problems have continuously observed data. However,

in practice, measurements are listed at discrete times. Hence to utilize the

above Yule-Walker estimators (3.5.2), it is necessary to derive discrete-time

approximations to them.

Let {xt} denote a sample function of a zero mean stationary CAR(p) pro-

cess that satisfies (3.3.1), and suppose we are able to observe it discretely

taken at times 0 = t0 < t1 < · · · < tn = T and let ∆i = ti+1 − ti for all i.

Consider the recorded data to be equally spaced; i.e., ∆i = ∆ = (T − t0)/n.

For closely-spaced discrete observations, Hyndman introduced the notion of

discrete-time approximations to the continuous-time estimators (3.4.3) where



the integrals are replaced by approximating sums

Ďj,k =


∆

T

∑n
i=1 x̂

(j)
ti x̂

(k)
ti if k < p,

1

T

∑n
i=1 x̂

(j)
ti {x̂

(p−1)
ti+1

− x̂(p−1)
ti } if k = p,

(3.5.4)

where x̂
(j)
ti is the estimate of x

(j)
ti for instance, x̂

(1)
ti = {xti+1

− xti}/∆.

Thus we define a discrete form of the Yule-Walker estimators (3.5.2) by

replacing D̂j,k and D̂j,p by Ďj,k and Ďj,p, respectively.

α̌0Ďj,0 + · · ·+ α̌p−1Ďj,p−1 + Ďj,p = 0 0 ≤ j ≤ p− 1, (3.5.5)

where α̌j denotes the estimator which is obtained by solving the above Yule-

Walker equation.

Consider, as an illustration, p=1. The estimate for the coefficient α0 in the

CAR(1) model defined by (3.3.1) is (replace p = 1 and take j = 0 in (3.5.2))

α̂0 = −D̂0,1

D̂0,0

= −
∫ T

0
xtdxt∫ T

0
{xt}2dt

,

which is congruous with Priestley’s result [6]. Nevertheless, observations are

recorded at discrete times. Consequently, we use the Yule-Walker equations

of the discrete form (3.5.5) and represent the estimate to be

α̌0 = −
∑n

i=1 x̂ti{x̂ti+1
− x̂ti}

∆
∑n

i=1{x̂ti}2
.



Furthermore, Hyndman pointed out that by implementing some simple math-

ematical manipulations, the above estimate yields to

α̌0 = − 1

∆

( γ̂∆

γ̂0

− 1
)
, (3.5.6)

where γ̂∆ = (1/n)
∑n−1

i=1 xtixti+1
and γ̂0 is the sample ACVF defined in section

(2.3).

Example. We revisit the simulated CAR(1) process, which was an OU-

process, with α0 = 0.3 and σ = 0.1 in section (3.2), to refit the model

dxt = −α0xtdt+ σdwt,

through estimating the coefficient α0, except now using Hyndman’s Yule-

Walker method (3.5.6), including the volatility σ.

Employing equation (3.5.6) in Maple software, the coefficient estimate α̌0

is found to be 0.3211. Appendix A.4 covers the code regarding the solution of

the CAR(1) parameter estimate. Moreover, solving equation (3.5.3) with p=1

and j=0 provides the volatility estimate σ̂, which is congruent with Priestley’s

result. Thus the produced fitted CAR(1) model is defined by

dxt = −0.3211xtdt+ 0.1301dwt.



3.6 Conclusion

For the simulated zero mean Ornstein-Uhlenbeck process with parameter α0 =

0.3 and volatility σ = 0.1, we represent the estimates from both methods in

the following table.

Table 3.1: Estimated parameter and volatility of a CAR(1) process based on
two methods.

Method Estimated α0 Estimated σ
Discretizing to a DAR(1) process 0.3216 0.1302

Hyndman’s discrete Yule-Walker estimation 0.3211 0.1301

We analyze Table 3.1 and observe that the two estimates are remarkably

close. Nonetheless, comparing it to the actual parameter value α0 = 0.3 and

volatility σ = 0.1 yields us with the outcome that using Hyndman’s discrete

form of the Yule-Walker estimators slightly improves the accuracy of the esti-

mation.



Conclusion and Future Work

The determination of an adequate autoregressive model to represent an ob-

served stationary time series involves estimation of the unknown parameters;

i.e., the coefficients and the white noise variance. In this work, we discussed

the problem of different varieties of estimation through discrete and continuous

autoregressive models.

A new approach based on the maximum likelihood estimation of the model

was introduced. One of the main objectives of our work was to express the in-

verse covariance matrix with unit lower triangular matrices and to estimate the

parameters of our discrete autoregressive model by employing the maximum

likelihood estimation technique. A simulation of the process was performed to

examine different types of estimation. Results show that our approach obtains

a better outcome. It casts a new light on estimation methodology.

Another problem we tackled relies on the parameter estimation of a contin-

uous autoregressive process through Yule-Walker equations. We drive discrete-

time approximations to the Yule-Walker estimators as observations are recorded

at discrete times. Once more, a simulation of our model was conducted to test

different types of estimation, including the method described. Results showed

reliable outcomes.
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The work presented in this thesis produces a foundation for future research

in several fields. For example, further research could investigate the CAR

process implemented to the MLE technique, with its inverse covariance matrix

formulated as unit lower triangular matrices, similar to chapter two.
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Appendix A

Simulation and Estimation

A.1 Simulating and Estimating Discrete Au-

toregressive Process of Order Two in R

Let us generate 50 observations for a simulated stationary DAR(2) process
{Xt} with φ1 = −0.2 and φ2 = 0.35. To ensure that we all get the same
results, we set the seed to a predetermined value before we generate values for
the respective variable, which has been appointed as X.

1 set.seed (12345)

2 nu <- rnorm (50)

3 X <- rnorm (50)

4 a <- -0.2

5 b <- 0.35

6 X[2] = a * X[1] + nu[2]

7 for (t in 3:50) X[t] = a * X[t-1] + b * X[t-2] + nu[t]

To obtain the Yule-Walker estimates:

1 ar.yw <- ar(X, order=2, method="yw", demean=FALSE)

2 ar.yw$ar

To obtain the Maximum Likelihood estimates:

1 ar.mle <- ar(X, order=2, method="mle", demean=FALSE)

2 ar.mle$ar

A.2 Computing MLE of a DAR(2) process by

Using Maple

Let us consider the simulated stationary DAR(2) process that we generated
in Appendix A.1. In order to compute the MLE of the coefficients r1 and r2,
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we have to solve the following system of equations

∂{X ′Σ−1
p X}

∂rj
= 0,

where Σ−1
p = [L(r1)L(r2)][L′(r1)L′(r2)]. The following are the maple codes

required to solve the system of equations.

1 with(LinearAlgebra);

2 n := 50

3 Lr1 := Matrix(n, shape = triangular[lower], storage = band[1,

0], scan = band[1, 0], [[‘$‘(-r1 , n-1)], [‘$ ‘(1, n)]])

4 Lr2 := Matrix(n, shape = triangular[lower], storage = band[1,

0], scan = band[1, 0], [[‘$‘(-r2 , n-1)], [‘$ ‘(1, n)]])

5 tLr1 := Transpose(Lr1)

6 tLr2 := Transpose(Lr2)

7 interface(rtablesize = infinity);

Insert the DAR(2) data, that we simulated by using R, into a 50x1 column
matrix denoted by X.

1 f := factor(map(diff ,Transpose(X).Lr1.Lr2.tLr1.tLr2.X, r1))

2 g := factor(map(diff ,Transpose(X).Lr1.Lr2.tLr1.tLr2.X, r2))

3 solve({f = 0, g = 0}, {r1, r2})

A.3 Simulating an Ornstein-Uhlenbeck Pro-

cess in R

In R, a package named ”Sim.DiffProc” provides functions to deal with a wide
range of stochastic differential equations including the discrete version of the
Ornstein-Uhlenbeck process.

Let us generate 1000 observations for a stationary OU-process {Xt} with
parameter α0 = 0.3. The following are the R codes required to simulate an
OU-process.

1 install.packages("Sim.DiffProc")

2 library("Sim.DiffProc")

3 set.seed (1234)

4 X <- OU(N=1000 , T=10, t0=0, mu=0.3, sigma =0.1, x0=0)



A.4 Computing Estimates of an OU-Process

by Using Maple

Let us consider the simulated stationary Ornstein-Uhlenbeck process that we
generated in Appendix A.3. In order to compute the estimates on maple, first
write down the following codes:

1 with(LinearAlgebra);

2 interface(rtablesize = infinity);

3 T := 10

4 n := 1000

5 Delta := T/n

Insert the OU data, that we simulated by using R, into a 1000x1 column
matrix denoted by X.

To acquire the estimate α̂0 = − 1

∆
log(

γ̂1

γ̂0

):

1 g := (1/n)*(sum(’X[t]’*’X[t+1]’, t = 1 .. n-1))

2 y := (1/n)*(sum(’X[t]’*’X[t]’, t = 1 .. n))

3 (-1/Delta) * log(g/y)

To obtain the Yule-Walker estimate given by Hyndman:

1 z := (1/n)*(sum(’X[t]’*’X[t+1]’, t = 1 .. n-1))

2 y := (1/n)*(sum(’X[t]’*’X[t]’, t = 1 .. n))

3 -(1/Delta)*(z/y-1)



Appendix B

Brownian Motion

Suppose that {υt, 0 ≤ t < ∞} is a Gaussian continuous-time white noise
process. If the continuous-time stochastic process {Wt, 0 ≤ t <∞} is defined
by

Wt =

∫ t

0

υudu, (B.0.1)

then {Wt} is a Brownian motion.

Proof. We will show that {Wt, 0 ≤ t < ∞} satisfies all the properties of
Brownian motion that is set out in section (1.4).

1. W0 =
∫ 0

0
υudu = 0.

2. For t > 0 and s > 0, we have

E[Wt] = E

[ ∫ t

0

υudu

]
=

∫ t

0

E[υu]du = 0,

and

Cov[Ws,Wt] = Cov

[ ∫ min{s,t}

0

υudu,

∫ max{s,t}

0

υvdv

]
=

∫ min{s,t}

0

∫ max{s,t}

0

σ2
υδ(v − u)dudv

=

∫ min{s,t}

0

σ2
υdu

= σ2
υmin{s,t}.

In particular, V ar[Wt] = Cov[Wt,Wt] = σ2
υt.
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3. For t > 0 and s > 0,

E[Wt+s −Wt] = E[Wt+s]− E[Wt] = 0,

and

V ar[Wt+s −Wt] = V ar[Wt+s] + V ar[Wt]

− 2Cov[Wt+s,Wt]

= σ2
υ(t+ s) + σ2

υt− 2σ2
υt

= σ2
υs.

The distribution of Wt+s −Wt is independent of t. Hence {Wt, 0 ≤ t <
∞} has stationary increments.

4. Let t1, t2 and t3 such that 0 ≤ t1 < t2 < t3. We have

Cov[Wt2 −Wt1 ,Wt3 −Wt2 ] = σ2
υt2 − σ2

υt2 − σ2
υt1 + σ2

υt1

= 0.

Thus Wt2 −Wt1 and Wt3 −Wt2 are independent. Therefore the process
{Wt, 0 ≤ t <∞} has independent increments.

Hence {Wt, 0 ≤ t <∞} satisfies all the properties of Brownian motion.
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