
Lyapunov Functionals for Volterra

Integro-Differential Equations

A Thesis Presented

by

Rebecca Mattar

to

The Faculty of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Mathematics

Notre Dame University-Louaize

Zouk Mosbeh, Lebanon

December 2019



Copyright by

Rebecca Mattar

2019



Notre Dame University-Louaize,
Zouk Mosbeh, Lebanon

Department of Mathematics and Statistics

Rebecca Mattar

We, the thesis committee for the above candidate for the Master of Science degree,
hereby recommend acceptance of this thesis.

Georges Eid – Thesis Advisor
Faculty of Natural and Applied Sciences

Roger Nakad – First Reader
Department of Mathematics and Statistics

Holem Saliba – Second Reader
Department of Mathematics and Statistics

This thesis is accepted by the Faculty of Natural and Applied Sciences.

George Eid
Dean of the Faculty of Natural and

Applied Sciences



Abstract of the Thesis

Lyapunov Functionals for Volterra
Integro-Differential Equations

by

Rebecca Mattar

Master of Science

in

Mathematics

Notre Dame University-Louaize,

Zouk Mosbeh,
Lebanon

2019

The aim of this thesis is to study the qualitative behavior of a spe-

cific non-linear Volterra integro-differential equation with finite delays

by using Lyapunov’s second method. The non-linear Volterra integro-

differential equation is:

x′(t) = b(t)x(t− r1)−
∫ t

t−r2
a(t, s)g(x(s))ds,

where r1, r2 are positive constants representing 2 finite delays, t ≥ 0

and

a : [0,∞)× [−τ,∞)→ R, and b : [0,∞)→ R

iii



are two continuous functions.

In the first part, we study the qualitative behavior of the constant delay

equation which is a specific case of the given integro-differential equation

where r1 6= 0 and r2 = 0. In the second part, we study the qualitative

behavior of the integro-differential equation with one finite delay which

is another specific case of the given integro-differential equation where

r1 = 0 and r2 6= 0. Three main steps are to be applied to each case

separately. The first step is to construct a suitable, positive definite and

non-decreasing, Lyapunov functional that yields the exponential stabil-

ity of the zero solution of the given integro-differential equation. The

second step is to derive inequalities and assumptions that guarantee the

exponential stability of the zero solution of the given integro-differential

equation. Finally, the third step is to derive inequalities and assump-

tions that guarantee the instability of the zero solution of the given

integro-differential equation. Our theoretical results are extensions of

many results found in the study of qualitative behavior of the zero so-

lution of integro-differential equations with finite delay.
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Chapter 1

Introduction

The theory of linear and non-linear Volterra integro-differential equations has been

developing rapidly in the last three decades.

In this chapter, we will start by introducing Professor Vito Volterra (3 May

1860 - 11 October 1940) and stating some examples about his research on linear

and non-linear integro-differential equations. By an “integro-differential equation”,

we simply mean an equation that involves both integrals and derivatives of an

unknown function.

Volterra was an Italian mathematician and physicist, known for his contribu-

tions to mathematical biology and integral equations. He is one of the founders of

Functional Analysis. Volterra’s work on elasticity was the origin of his theory of

integro-differential equations: he found that for certain substances, the electric or

magnetic polarization depends not only on the electromagnetic field at that moment,

but also on the history of the electromagnetic state of the matter at all previous

instants.

These physical facts are modeled by “integro-differential equations”. Also,

Volterra assumed “linear heredity”, i. e., that is the strain is a linear functional

of the stress. In this case, the fundamental equations are systems of linear integro-
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differential equations, and he proved that the strain in a definite interval of time can

be determined, given the forces in the body and the stress and strain on its surface

for this time-interval. For more information on Professor Volterra’s biography, we

refer the reader to the Biography section in the book written by Volterra in 1930,

a new edition was published in 2005 where his biography written by Sir Edmund

Whittaker was added [1].

The theory of linear and non-linear Volterra integro-differential equations and

systems and their solutions play an important role in many real-world phenomena in

sciences and engineering such as atomic energy, control theory, economy, engineer-

ing techniques, fluid mechanics, biology, physics, medicine and many others [2–4].

For example, in biological applications, the population dynamics, and genetics are

modeled by a system of integro-differential equations [5], the Initial-Value Problem

(IVP) for a nonlinear system of integro-differential equations was used to model the

competition between tumor cells and the immune system [6]. While in engineering,

two systems of specific inhomogeneous integro-differential equations were studied

in order to examine the noise term phenomenon [7].

In Physics, integro-differential equations model many situations such as in circuit

analysis. For example, by Kirchhoff’s second law, the net voltage drop across a

closed loop equals the voltage impressed E(t). An RLC circuit therefore is governed

by the following equation

L
d

dt
I(t) +RI(t) +

1

C

∫ t

0

I(τ)dτ = E(t)

where I(t) is the electric current as a function of the time t, R is the resistance, L

the inductance, and C the capacitance [3].

Few kinds of Volterra integro-differential equations and systems can be solved

explicitly. Hence, we need to find analytic methods to study the qualitative behav-
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ior (stability, boundedness, asymptotic stability, etc.) of solutions without finding

them. The study of qualitative behaviors of solutions of Volterra integro-differential

equations plays an important role in engineering and sciences, and during the last

fifty years, many results and methods have been obtained. These methods and

techniques include the second method of Lyapunov, fixed point theory, perturba-

tion theory, continuation methods and many others. For more details, we refer the

reader to [8–12].

Further, non-linear Volterra integro-differential equations can be with or with-

out delay. Many research works studied the qualitative behavior of solutions to

Volterra integro-differential equation without delay. For example, in [13], Becker

investigated the asymptotic behavior of solutions of the scalar linear homogeneous

Volterra integro-differential equation

x′(t) = −a(t)x(t) +

∫ t

0

b(t, s)x(s)ds, (1.0.1)

for t ≥ 0, where a and b are real-valued functions that are continuous on the

respective domains [0,∞) and Ω := {(t, s) : 0 ≤ s ≤ t <∞}. Becker employed the

Lyapunov functional technique in order to study the qualitative behavior of the zero

solution of the Volterra integro-differential equation (1.0.1) and found that this zero

solution is:

- stable if for every t > 0 and every t0 ≥ 0, there exists a δ = δ(t, t0) > 0 such

that φ ∈ C[0, t0] with |φ(t0)| < δ implies that |x(t, t0, φ)| < ε for all t ≥ t0,

where C[0, t0] denotes the set of all continuous real-valued functions on [0, t0],

- globally asymptotically stable (asymptotically stable in the large) if it is stable

and if every solution of (1.0.1) approaches zero as t→∞.

Furthermore, in [14], Burton transformed a large problem into several smaller
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ones and concluded that the solution of the large problem is some combination of

the solutions of the small problems. He considered, under suitable continuity and

smoothness assumptions, the following scalar equation:

x′(t) = A(t)f(x(t))+

∫ t

0

[
B(t, s)g(x(s))−C(t, s)h(x(s))−D(t, s)r(x(s))

]
ds (1.0.2)

where A(t), B(t), C(t) and D(t) are continuous functions for 0 ≤ s ≤ t < ∞ and

f(x(t)), g(x(s)), h(x(s)) and r(x(s)) are continuous on (−∞,∞). Then he looked

at simplified equations

x′(t) = A(t)f(x(t)) +

∫ t

0

B(t, s)g(x(s))ds (1.0.3)

x′(t) = −
∫ t

0

C(t, s)h(x(s))ds (1.0.4)

x′(t) = −
∫ t

0

D(t, s)r(x(s))ds (1.0.5)

Burton investigation is to construct Lyapunov functionals for (1.0.3), (1.0.4)

and (1.0.5) and combine them to make a Lyapunov functional for (1.0.2) in order

to study its qualitative behavior. In addition, in Burton et al. [15], a Lyapunov

theory was developed that primarily seems to apply to Volterra integro-differential

equations without delay. In what follows, we will use Lyapunov functionals which

are (most of the time) non-increasing or strictly decreasing along solutions.

For more information on the construction of Lyapunov functionals and the qual-

itative behavior of the Volterra integro-differential equations without delay we refer

the reader to [9, 11, 16–21].

Theoretically, the Lyapunov’s second method is very attractive. However, the

situation becomes more difficult when the integro-differential equation is with delay.

In the literature, there are few papers on the qualitative behavior of Volterra integro-

differential equations with delay. We refer the reader to the recent papers of Adivar
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and Raffoul [22], Graef and Tunc [23], Raffoul [24], Raffoul and Unal [25], Tunc

[20, 26].

In this thesis, we consider the scalar non-linear Volterra integro- differential

equation with finite delays

x′(t) = b(t)x(t− r1)−
∫ t

t−r2
a(t, s)g(x(s))ds (1.0.6)

where r1, r2 are positive constants representing 2 finite delays, t ≥ 0 and

a : [0,∞)× [−τ,∞)→ R, and b : [0,∞)→ R

are again two continuous functions.

We note that the aim of this thesis is to use Lyapunov’s second method to study

the qualitative behavior of (1.0.6) where the key requirement is to find a positive

definite functional that is non-decreasing along solutions. In fact, Driver [27] proved

the following:

Theorem 1.0.1. If there exists a functional V (t, φ(.)), defined whenever t ≥ t0 ≥ 0

and φ belongs to the Banach space of continuous functions C ([0, t],Rn), such that

i. V (t, 0) ≡ 0, V is continuous in t and locally Lipschitz in φ,

ii. V (t, φ(.)) ≥ W (|φ(t)|), W : [0,∞) → [0,∞) is a continuous function with

W (0) = 0, W (r) > 0 if r > 0, and W is strictly increasing (positive definite-

ness), and

iii. V ′(t, φ(.)) ≤ 0,

then the zero solution of (1.0.6) will be stable, and

V (t, φ(.)) = V (t, φ(s) : 0 ≤ s ≤ t)
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is called a Lyapunov functional for (1.0.6).

Therefore, in this thesis, Lyapunov functionals are employed to obtain sufficient

conditions that guarantee the exponential stability of the zero solution of (1.0.6).

We will consider the qualitative behavior of two different cases of specific integro-

differential equations that may yield to the qualitative behavior of (1.0.6):

In Chapter 2, we consider a first particular case of the scalar nonlinear Volterra

integro-differential equation (1.0.6) where r1 6= 0 and r2 = 0. While in Chapter 3, we

consider a second particular case of the scalar nonlinear Volterra integro-differential

equation (1.0.6) where r1 = 0 and r2 6= 0.

Note that this research work has 3 main steps to be applied to each case respec-

tively:

• To construct a suitable Lyapunov functional that yields results concerning

the exponential stability of the zero solution of the given integro-differential

equation.

• To define the inequalities and assumptions needed to guarantee the exponen-

tial stability of the zero solution of the given integro-differential equation.

• To define the inequalities and assumptions needed to guarantee the exponen-

tial instability of the zero solution of the given integro-differential equation.

As we have mentioned above, few papers on the qualitative behavior of Volterra

integro-differential equations with delay are found in the literature. For example,

in [28], Wang considered the constant delay equation

x′(t) = a(t)x(t) + b(t)x(t− h), (1.0.7)

where a(t), b(t) are positive continuous functions on R, and h > 0 represents a
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positive finite delay. Wang used Lyapunov functionals and obtained inequalities

from which exponential stability of the zero solution of (1.0.7) was deduced provided

that

− 1

2h
≤ a(t) + b(t+ h) ≤ hb2(t+ h).

In Chapter 2, instead of using Equation (1.0.7), we will consider Equation (1.0.6)

with r1 6= 0 and r2 = 0 and use Lyapunov functionals to study the qualitative

behavior of the constant delay equation

x′(t) = b(t)x(t− r1), (1.0.8)

where b : R→ R is a continuous function and r1 is a positive constant.

Also, in [29], Levin and Nohel investigated the behavior, as t goes to zero, of the

solutions of

x′(t) = − 1

L

∫ t

t−L
(L− (t− τ)) g(x(τ))dτ,

where L > 0 is a given constant and g(x) is the restoring force of a given spring,

which is not necessarily linear. Specifically, they assumed g(x) to be locally Lipschitz

(so that for each 0 ≤ A <∞, there exists K = K(A) <∞ such that |g(x)−g(y)| ≤

K|x− y| if |x|, |y| ≤ A) and

xg(x) > 0 (x 6= 0), G(x) =

∫ x

0

g(ξ)dξ →∞ (|x| → ∞).

Then, they constructed a suitable Lyapunov functional and showed that the zero

solution of

x′(t) = −
∫ t

t−L
a(t− τ)g(x(τ))dτ (0 ≤ t <∞),

is globally asymptotically stable provided that a(r) is a continuous function with

a(r) = 0, a(t) ≥ 0, a′(t) ≤ 0 for 0 ≤ t ≤ r.
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In addition, in [24], Raffoul considered the non-linear Volterra integro-differential

equation with a uniformly distributed finite delay (which has been also used by Levin

and Nohel [29]):

x′(t) = −
∫ t

t−r
a(t, s)g(x(s))ds, (1.0.9)

where r > 0 is a constant and a : [0,∞) × [0,∞) → (−∞,∞); g(x) is continuous

in x.

Raffoul used Lyapunov functionals to get enough conditions that guarantee the

exponential stability of the zero solution of (1.0.9) and studied the stability and

instability of the zero solution of (1.0.9).

Then, in [22], Adivar and Raffoul used Lyapunov functionals to obtain suffi-

cient conditions that ensure exponential stability of the nonlinear Volterra integro-

differential equation

x′(t) = p(t)x(t)−
∫ t

t−τ
q(t, s)x(s)ds, (1.0.10)

where the constant τ is positive, and q(t, s) is a continuous function such that

q : [0,∞) × [−τ,∞) → R and p : [0,∞) → R. The authors used Lyapunov

functionals and deduced the exponential stability of the zero solution of (1.0.10).

In Chapter 3, instead of Equation (1.0.10), we study the qualitative behavior of

the scalar nonlinear Volterra integro-differential equation

x′(t) = b(t)x(t− r1)−
∫ t

t−r2
a(t, s)g(x(s))ds, (1.0.11)

with r1 = 0 and r2 6= 0; i. e., the scalar equation

x′(t) = b(t)x(t)−
∫ t

t−r2
a(t, s)g(x(s))ds, (1.0.12)
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where r2 is a positive constant representing a finite delay, t ≥ 0, and a : [0,∞) ×

[τ,∞)→ R, and b : [0,∞)→ R and the function g(x) is continuous in x.

Finally, we mention that our results will be different from those obtained in the

literature (see [22, 26, 28]). In fact, Volterra integro-differential equations discussed

and the assumptions and inequalities to be established in our investigations are

different from those in the above-mentioned papers. This thesis contributes to the

topic for the literature, and may be useful for further researches studying the stabil-

ity and instability of the non-zero solution of nonlinear Volterra integro-differential

equation with different positive delays.

In this thesis, the notation xt means that xt(s) = x(t + s), s ∈ [τ, 0] as long as

x(t+ s) is defined. Thus, xt is a function which maps an interval [τ, 0] into R. One

can say that x(t) ≡ x(·, t0, ψ) is a solution of (1.0.6) if x(t) satisfies (1.0.6) for t ≥ t0

and xt = x(t+ s) = ψ(s), s ∈ [τ, 0].
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Chapter 2

Qualitative Behavior of the

Constant Delay Equation

In this chapter, we consider the scalar non-linear Volterra integro-differential equa-

tion with finite delays:

x′(t) = b(t)x(t− r1)−
∫ t

t−r2
a(t, s)g(x(s))ds

where r1, r2 are positive constants representing 2 finite delays, t ≥ 0 and

a : [0,∞)× [−τ,∞)→ R, and b : [0,∞)→ R

with r1 6= 0 and r2 = 0. This yields to the following equation

x′(t) = b(t)x(t− r1)−
∫ t

t

a1(t, s)g(x(s))ds (2.0.1)

Hence, we get the constant delay equation

x′(t) = b(t)x(t− r1). (2.0.2)
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The goal is to study the qualitative behavior of its solutions.

2.1 Construction of Lyapunov Functionals

Lemma 2.1.1. Assume that r1 is a positive constant and

− 1

2r1
≤ b(t+ r1) ≤ −r1b2(t+ r1). (2.1.1)

Let x(t) = x(t, t0, φ) be a solution of Equation (2.0.1) defined on [t0,∞). Then for

t ≥ t0, if

V (t) =

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds (2.1.2)

then

V ′(t) ≤ b(t+ r1)V (t) (2.1.3)

where b(t+ r1) ≤ 0. Therefore V ′(t) ≤ 0.

Proof: Let us calculate V ′(t):

V ′(t) =2

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]
b(t+ r1)x(t) + r1b

2(t+ r1)x
2(t)

−
∫ t

t−r1
b2(s+ r1)x

2(s)ds

=
[
b(t+ r1)

] [
x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

∫ t

t−r1
b(s+ r1)x(s)ds

]
+
[
b(t+ r1) + r1b

2(t+ r1)
]
x2(t)− b(t+ r1)

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

−
∫ t

t−r1
b2(s+ r1)x

2(s)ds

=b(t+ r1)

{[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

}

11



+
[
b(t+ r1) + r1b

2(t+ r1)
]
x2(t)

− b(t+ r1)

[(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

]

−
∫ t

t−r1
b2(s+ r1)x

2(s)ds (2.1.4)

In what follows, we perform some calculations in order to simplify Equation (2.1.4).

Using Hölder’s inequality, we get:

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

≤ r1

∫ t

t−r1
b2(s+ r1)x

2(s)ds (2.1.5)

and we easily observe that

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds ≤ r1

∫ t

t−r1
b2(s+ r1)x

2(s)ds (2.1.6)

So

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds ≤ 2r1

∫ t

t−r1
b2(s+ r1)x

2(s)ds

(2.1.7)

Finally, we easily find

−
∫ t

t−r1
b2(s+r1)x

2(s)ds ≤ − 1

2r1

[(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

]
(2.1.8)

Then, from (2.1.4), we get

V ′(t) ≤ b(t+ r1)V (t) +
[
b(t+ r1) + r1b

2(t+ r1)
]
x2(t)

− b(t+ r1)

[(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

]

12



−
∫ t

t−r1
b2(s+ r1)x

2(s)ds

≤ b(t+ r1)V (t) +
[
b(t+ r1) + r1b

2(t+ r1)
]
x2(t)

−
(
b(t+ r1) +

1

2r1

)[(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

]

By invoking equations (2.1.5)-(2.1.8) into Equation (2.1.4), and using (2.1.1), we

get

V ′(t) ≤ b(t+ r1)V (t), (2.1.9)

this completes the proof. �

Theorem 2.1.2. Assume the hypothesis of Lemma 2.1.1 holds then any solution

x(t) = x(t, t0, φ) of Equation (2.0.2) satisfies the exponential inequality

|x(t)| ≤
√

6V (t0)e
( 1
2

∫ t−r1/2
t0

b(s+r1)ds) for t ≥ t0 +
r1
2
. (2.1.10)

Proof: By changing the order of integration, we have

∫ 0

−r1

∫ s

t+s

b2(z + r1)x
2(z)dzds =

∫ t

t−r1

∫ z−t

−r1
b2(z + r1)x

2(z)dsdz

=

∫ t

t−r1
b2(z − r1)x2(z)(z − t+ r1)dz (2.1.11)

Now, if t− r1/2 ≤ z ≤ t, then

r1
2
≤ (z − t+ r1) ≤ r1 (2.1.12)

Equation (2.1.11) yields

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

13



=

∫ t

t−r1

∫ z−t

−r1
b2(z + r1)x

2(z)(z − t+ r1)dz

=

∫ t−r1/2

t−r1
b2(z + r1)x

2(z)(z − t+ r1)dz +

∫ t

t−r1/2
b2(z + r1)x

2(z)(z − t+ r1)dz

≥
∫ t

t−r1/2
b2(z + r1)x

2(z)(z − t+ r1)dz.

Then using Equation (2.1.12), we get

∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds ≥ r1

2

∫ t

t−r1/2
b2(z + r1)x

2(z)dz (2.1.13)

Let V (t) be given by Equation (2.1.2), then

V (t) ≥
∫ 0

−r1

∫ t

t+s

b2(z + r1)x
2(z)dzds

≥ r1
2

∫ t

t−r1/2
b2(s+ r1)x

2(s)ds (2.1.14)

Consequently,

V (t− r1
2

) ≥ r1
2

∫ t−r1/2

t−r1/2−r1/2
b2(s+ r1)x

2(s)ds

≥ r1
2

∫ t−r1/2

t−r1
b2(s+ r1)x

2(s)ds (2.1.15)

Therefore,

V (t) + V (t− r1
2

)

=

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+

∫ 0

−r1

∫ t

t+r1

b2(z + r1)x
2(z)dzds+ V (t− r1

2
)

≥
[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+
r1
2

∫ t

t−r1/2
b2(s+ r1)x

2(s)ds

+
r1
2

∫ t−r1/2

t−r1
b2(s+ r1)x

2(s)ds
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≥
[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+
r1
2

∫ t

t−r1
b2(s+ r1)x

2(s)ds (2.1.16)

Using Hölder’s inequality, we get

(
1

2

∫ t

t−r1
b(s+ r1)x(s)ds

)2

≤ r1
2

∫ t

t−r−1
b2(s+ r1)x

2(s)ds

Then, Inequality (2.1.16) becomes

V (t) + V (t− r1
2

) ≥
[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
+

1

2

[∫ t

t−r1
b(s+ r1)x(s)ds

]2
=x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

+
1

2

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

=x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

3

2

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

=x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

(√
3

2

∫ t

t−r1
b(s+ r1)x(s)ds

)2

=
1

3
x2(t) +

2

3
x2(t) +

(
2

√
2

3

√
3

2

)
x(t)

∫ t

t−r1
b(s+ r1)x(s)ds

+
2

3

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

=
1

3
x2(t) +

[√
2

3
x(t) +

√
3

2

∫ t

t−r1
b(s+ r1)x(s)ds

]2
≥1

3
x2(t) for t ≥ t0 +

r1
2

(2.1.17)

Thus, Inequality (2.1.17) shows that:

1

3
x2(t) ≤ V (t) + V (t− r1

2
) ≤ 2V (t− r1

2
) (2.1.18)
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Integrating Equation (2.1.9) from t0 to t, we get the following inequality:

V (t) ≤ V (t0)e
∫ t
t0
b(s+r1)ds for t ≥ t0. (2.1.19)

As a consequence, we get

V
(
t− r1

2

)
≤ V (t0)e

∫ t−r1/2
t0

b(s+r1)ds (2.1.20)

and using Inequality (2.1.18) we get x2(t) ≤ 6V
(
t− r1

2

)
, and hence

|x(t)| ≤
√

6V
(
t− r1

2

)
≤
√

6V (t0)e
(1/2)

∫ t−r1/2
t0

b(s+r1)ds for t ≥ t0 +
r1
2
,

which completes the proof. �

2.2 Stability of the Solution

If −1/2r1 ≤ b(t + r1) ≤ −r1b2(t + r1), then Inequality (2.1.10) clearly implies that

the zero solution of the integro-differential equation given by (2.0.2) is uniformly

stable. In addition, if
∫∞

b2(s+r1)ds −→∞, the zero solution of Equation (2.0.2) is

uniformly asymptotically stable. This solution is exponentially stable if
∫ t−r1/2
t0

b(s+

r1)ds ≥ γ(t− t0) for all t ≥ t0 + r1/2 and γ > 0 constant.

Example 1 : Let

x′(t) = −1

2
x(t− 1

3
) (2.2.1)

In this equation, r1 = 1/3, b(t) = −1/2. Therefore,

− 1

2r1
≤ b(t+ r1) ≤ −r1b2(t+ r1)

By Theorem 2.1.2, the solution of Equation (2.2.1) for t ≥ t0 + 2
3
, satisfies the

16



following:

|x(t)| ≤
√

6V (t0)e
1/2

∫ t−2/3
t0

b(s)ds

|x(t)| ≤
√

6V (t0)e
−1/4(t−2/3−t0)

2.3 A Criterion for Instability

Next, we will discuss the instability of the zero solution of the integro-differential

equation (2.0.2). We will start with the following lemma.

Lemma 2.3.1. Suppose b(t+ r1) ≥ Kb2(t+ r1) for some constant K > r1. If

V (t) =

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
−K

∫ t

t−r1
b2(s+ r1)x

2(s)ds, (2.3.1)

then along the solution of (2.0.2) we have

V ′(t) ≥ b(t+ r1)V (t). (2.3.2)

Proof: Let x(t) = x(t, t0, φ) be a solution of Equation (2.0.2) and define

V (t) =

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
−K

∫ t

t−r1
b2(s+ r1)x

2(s)ds,

then we have

V ′(t) = 2

[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]
b(t+ r1)x(t)

−Kb2(t+ r1)x
2(t) +Kb2(t)x2(t− r1)

= b(t+ r1)

[
x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

(∫ t

t−r1
b(s+ r1)x(s)ds

)2
]

17



+ b(t+ r1)x
2(t)− b(t+ r1)

(∫ t

t−r1
b(s+ r1)x(s)ds

)2

−Kb2(t+ r1)x
2(t) +Kb2(t)x2(t− r1)

= b(t+ r1)

{[
x(t) +

∫ t

t−r1
b(s+ r1)x(s)ds

]2
−K

∫ t

t−r1
b2(s+ r1)x

2(s)ds

}

+ b(t+ r1)

[
K

∫ t

t−r1
b2(s+ r1)x

2(s)ds−
(∫ t

t−r1
b(s+ r1)x(s)ds

)2
]

+
[
b(t+ r1)−Kb2(t+ r1)

]
x2(t) +Kb2(t)x2(t− r1)

≥ b(t+ r1)V (t),

which completes the proof. �

Theorem 2.3.2. Suppose the hypothesis of Lemma 2.3.1 holds and x(t) = x(t, t0, φ)

is a solution of Equation (2.0.2), then the zero solution of (2.0.2) is unstable pro-

vided that ∫ ∞
b2(s+ r1)ds −→∞,

where

x(t) ≥
√
K − r1
K

V (t0)e
1
2

∫ t
t0
b(s+r1)ds

Proof: Since, by Hölder’s inequality

(∫ t

t+r1

b(s+ r1)x
2(s)ds

)2

≤ r1

∫ t

t−r1
b2(s+ r1)x

2(s)ds

then

r1

∫ t

t−r1
b2(s+ r1)x

2(s)ds−
(∫ t

t+r1

b(s+ r1)x
2(s)ds

)2

≥ 0 (2.3.3)
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So by integrating Equation (2.3.3), we get

V (t) ≥ V (t0)e
∫ t
t0
b(s+r1)ds (2.3.4)

It is clear that for any γ > 0,
(√

r1√
γ
a−

√
γ√
r1
b
)2
≥ 0.

Then, we have

2ab ≤ r1

γ
a2 +

γ

r1
b2 (2.3.5)

Let γ = K − r1, then we have

V (t) =x2(t) + 2x(t)

∫ t

t−r1
b(s+ r1)x(s)ds+

[∫ t

t−r1
b(s+ r1)x(s)ds

]2
−K

∫ t

t−r1
b2(s+ r1)x

2(s)ds

≤x2(t) +
r1
γ
x2(t) +

γ

r1

[∫ t

t−r1
b(s+ r1)x(s)ds

]2
+

[∫ t

t−r1
b(s+ r1)x(s)ds

]2
− (r1 + γ)

∫ t

t−r1
b2(s+ r1)x

2(s)ds

≤x2(t) +
r1
γ
x2(t) + (γ + r1 −K)

∫ t

t−r1
b2(s+ r1)x

2(s)ds

≤γ + r1
γ

x2(t)

≤ K

K − r1
x2(t)

Using Inequality (2.3.4), we get

x2(t) ≥ K − r1
K

V (t) =
K − r1
K

V (t0) e
∫ t
t0
b(s+r1)ds

|x(t)| ≥
√
K − r1
K

V (t0) e
1
2

∫ t
t0
b(s+r1)ds;

this completes the proof �
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Chapter 3

Qualitative Behavior of

Integro-Differential Equation with

One Finite Delay

In this chapter, we consider the scalar non-linear Volterra integro-differential equa-

tion with finite delays

x′(t) = b(t)x(t− r1)−
∫ t

t−r2
a(t, s)g(x(s))ds

where r1, r2 are positive constants representing 2 finite delays, t ≥ 0 and

a : [0,∞)× [−τ,∞)→ R, and b : [0,∞)→ R

are continuous functions with r1 = 0 and r2 6= 0.

This yields to the following Integro-differential equation with one finite delay

x′(t) = b(t)x(t)−
∫ t

t−r2
a(t, s)g(x(s))ds, (3.0.1)
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where t ≥ 0 and r2 > 0, a : [0,∞)× [−r2,∞) −→ (−∞,∞), b : [0,∞) −→ R, and

the function g(x) is continuous in x.

In the next section, we will study the qualitative behavior of the solutions of the

previous equation.

3.1 Construction of Lyapunov Functional

We will start by constructing a Lyapunov functional V (t, x) := V (t) and show that

for some non-positive function P (t) we have

V ′(t) ≤ −P (t, x)V (t),

under suitable conditions, along the solution of (3.0.1).

In order to put Equation (3.0.1) in a form to get a suitable Lyapunov functional,

we define

A(t, s) =

∫ r2

t−s
a(u+ s, s)du, (3.1.1)

for t ∈ [0,∞) and s ∈ [−r2,∞).

It is clear that

A(t, t− r2) ≡ 0 for t > 0,

and

A(t, t) =

∫ r2

t−t
a(u+ t, t)du

=

∫ r2

0

a(u+ t, t)du. (3.1.2)

To get our main results, we assume there exists a positive constant ∆ such that

|g(x)| ≤ ∆|x|, (3.1.3)
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and xg(x) ≤ x2g(x). (3.1.4)

Obviously Conditions (3.1.3) and (3.1.4) imply that

g(0) = 0.

In addition, we assume that

A(t, s)q(t, s) ≥ 0, (3.1.5)

where q(t, s) = ∂A
∂s

for all t ∈ [0,∞) and all s ∈ [t− r2, t]. And finally, we let

A2(t)

(
t− (α− 1)r2

α
, z

)
≥ A2(t, z), (3.1.6)

for 1 ≤ α ≤ 2 and t ∈ [0,∞) and all z ∈
[
t−r2
α
, t−(α−1)r2

α

]
.

As a consequence of Equations (3.1.1) and (3.1.5) and for all t ∈ [0,∞) and all

s ∈ [t− r2, t], we have

∫ 0

−r2

∫ t

t+s

A(t, z)
∂A(t, z)

∂t
g2(x(z))dzds = −

∫ t

t−r2

∫ z−t

−r2
A(t, z)q(t, z)g2(x(z))dsdz

= −
∫ t

t−r2
(z − t− r2)A(t, z)q(t, z)g2(x(z))dz

≤ 0. (3.1.7)

Inequality (3.1.7) plays a very crucial role in the proof of the next lemma.

Writing Equation (3.0.1) in the form

x′(t) = b(t)x(t)− A(t, t)g(x(t)) +
d

dt

∫ t

t−r2
A(t, s)g(x(s))ds,

x′(t) = b(t)x(t) +Q(t, x) +
d

dt

∫ t

t−r2
A(t, s)g(x(s))ds, (3.1.8)

22



where

Q(t, x) = −A(t, t)g(x(t)). (3.1.9)

Lemma 3.1.1. Let x′(t) be defined as in Equation (3.1.8) where Q(t, x) is defined

as in Equation (3.1.9). Let

P (t, x) = b(t) +Q(t, x). (3.1.10)

Suppose that Equations (3.1.3) - (3.1.8) hold and 0 < r2 ≤ 1/2 with

2r2 − 1

2r2
≤ P (t, x) ≤ −

[
(r2 + 1)∆2 + 1

]
A2(t, t). (3.1.11)

If

V (t) =

[
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

]2
+

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds, (3.1.12)

then along the solution of (3.0.1) we have

V ′(t) ≤ P (t, x)V (t). (3.1.13)

Proof: Let x(t) = x(t, t0, φ) be a solution of (3.0.1) and define V (t) by Equation

(3.1.12). Let us calculate the time derivative of the functional V (t) along the solu-

tion x(t) of (3.0.1).

Due to Condition (3.1.11), it is clear that P (t, x) < 0 for all t ≥ 0.

V ′(t) =2

[
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

] [
b(t)x(t)− A(t, t)g(x(t))

]
+ r2A

2(t, t)g2(x(t))

−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds+

∫ 0

−r2

∫ t

t+s

2A(t, z)
∂A(t, z)

∂t
g2(x(z))dzds

=2

[
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

] [
b(t)x(t)

]
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+ 2

[
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

] [
− A(t, t)g(x(t))

]
+ r2A

2(t, t)g2(x(t))

−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds+

∫ 0

−r2

∫ t

t+s

2A(t, z)
∂A(t, z)

∂t
g2(x(z))dzds by (3.1.8)

≤2x(t) [b(t)x(t)]− 2 [b(t)x(t)]

∫ t

t−r2
A(t, s)g(x(s))ds− 2x(t)A(t, t)g(x(t))

+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds+ r2A

2(t, t)g2(x(t))

−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds+

∫ 0

−r2

∫ t

t+s

2A(t, z)
∂A(t, z)

∂t
g2(x(z))dzds.

By using Equation (3.1.3), we get

V ′(t) ≤2x(t) [b(t)x(t)]− 2 [b(t)x(t)]

∫ t

t−r2
A(t, s)g(x(s))ds− x(t)A(t, t)g(x(t))

− x(t)A(t, t)g(x(t)) + 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds+ r2∆

2A2(t, t)x2(t)

−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds

≤x2(t)b(t) + b(t)

{[
x2(t)− 2x(t)

∫ t

t−r2
A(t, s)g(x(s))ds

+

(∫ t

t−r2
A(t, s)g(x(s))ds

)2
]

+

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

}

− b(t)
(∫ t

t−r2
A(t, s)g(x(s))ds

)2

− b(t)
∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

− A(t, t)g(x)x2(t)− A(t, t)g(x)x2(t) + 2A(t, t)g(x)x(t)

∫ t

t−r2
A(t, s)g(x(s))ds

− 2A(t, t)g(x)x(t)

∫ t

t−r2
A(t, s)g(x(s))ds+ r∆2A2(t, t)x2(t)

+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds−

∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds

≤x2b(t) + b(t)V (t)− b(t)
[∫ t

t−r2
A(t, s)g(x(s))ds

]2
− b(t)

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds+ ∆2A2(t, t)x2(t)
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−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds− A(t, t)g(x)x2(t)

− 2A(t, t)g(x)x(t)

∫ t

t−r2
A(t, s)g(x(s))ds+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds

=b(t)V (t)− A(t, t)g(x)V (t) + x2(t)b(t)− b(t)
[∫ t

t−r2
A(t, s)g(x(s))ds

]2
− b(t)

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds+ A(t, t)g(x)

[∫ t

t−r2
A(t, s)g(x(s))ds

]2
+ A(t, t)g(x)

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

− 2A(t, t)g(x)x(t)

∫ t

t−r2
A(t, s)g(x(s))ds

+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds+ r∆2A2(t, t)x2(t)

− A(t, t)g(x(t))x2(t)−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds. (3.1.14)

We can write some expressions in what to follow in order to simplify (3.1.14).

First, let u = t+ s, then

−
∫ 0

−r2
A2(t, t+ s)g2(x(t+ s))ds = −

∫ t

t−r2
A2(t, s)g2(x(s))ds, (3.1.15)

and, from Hölder’s inequality and 2|ab| ≤ a2 + b2, we get

[
− b(t) + A(t, t)g(x)

](∫ t

t−r2
A(t, s)g(x(s))ds

)2

≤ [−b(t) + A(t, t)g(x)] r2

∫ t

t−r2
A2(t, s)g2(x(s))ds. (3.1.16)

Finally, by changing the order of integration, we write

[−b(t) + A(t, t)g(x)]

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds
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≤ [−b(t) + A(t, t)g(x)] r2

∫ t

t−r2
A2(t, s)g2(x(s))ds, (3.1.17)

and

− 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds ≤ A2(t, t)x2(t) + r2

∫ t

t−r2
A2(t, s)g2(x(s))ds.

(3.1.18)

Similarly,

2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds ≤ ∆2A2(t, t)x2(t) + r2

∫ t

t−r2
A2(t, s)g2(x(s))ds.

(3.1.19)

By invoking Equation (3.1.15) and substituting (3.1.15)-(3.1.19) into (3.1.14),

we get

V ′(t) ≤b(t)V (t)− A(t, t)g(x)V (t)

+
[
A2(t, t) + ∆2A2(t, t) + r2∆

2A2(t, t)− A(t, t)g(x) + b(t)
]
x2(t)

+

[
2r2 − b(t)r2 + A(t, t)g(x)r2 − 1− b(t)r2 + A(t, t)g(x)r2

] ∫ t

t−r2
A2(t, s)g2(x(s))ds

≤b(t)V (t) +Q(t, x)V (t) +

[ (
(r2 + 1)∆2 + 1

)
A2(t, t) + b(t) +Q(t, x)

]
x2(t)[

− 2r2(b(t) +Q(t, x))− 1 + 2r2)

] ∫ t

t−r2
A2(t, s)g2(x(s))ds

≤ [b(t) +Q(t, x)]V (t) by (3.1.11)

≤P (t, x)V (t), (3.1.20)

this completes the proof. �

Theorem 3.1.2. Assume that the hypothesis of Lemma 3.1.1 and Condition (3.1.6)

both hold, and let 1 < α ≤ 2, then any solution x(t) = x(t, t0, φ) of (3.0.1) satisfies
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the following exponential inequality

|x(t)| ≤

√
2

1 + α−1
α

α−1
α

V (t0) e
1
2

∫ t−(α−1
α )r2

t0
[b(s)−A(s,s)g(x(s))ds], (3.1.21)

for t ≥ t0 + α−1
α
r2.

Proof: Let us change the order of integration of

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

=

∫ t

t−r2

∫ z−t

−r2
A2(t, z)g2(x(z))dsdz

=

∫ t

t−r2
A2(t, z)g2(x(z))(z − t+ r2)dz. (3.1.22)

For 1 < α ≤ 2, and if t− r2
α
≤ z ≤ t, then

(
α− 1

α

)
r2 ≤ z − t+ r2 ≤ r2. (3.1.23)

Then, Equation (3.1.22) gives

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

=

∫ t

t−r2
A2(t, z)g2(x(z))(z − t+ r2)dz

=

∫ t

t−r2/α
A2(t, z)g2(x(z))(z − t+ r2)dz by Chasles’ rule

+

∫ t−r2/α

t−r2
A2(t, z)g2(x(z))(z − t+ r2)dz

≥
∫ t

t−r2/α
A2(t, z)g2(x(z))(z − t+ r2)dz

≥
(
α− 1

α

)
r2

∫ t

t−r2/α
A2(t, z)g2(x(z))dz by (3.1.23). (3.1.24)
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Then, the function V (t) in (3.1.12) can be written as

V (t) ≥
∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

≥
(
α− 1

α

)
r2

∫ t

t−r2/α
A2(t, z)g2(x(z))dz. (3.1.25)

This implies that for 1 < α ≤ 2, we have −r2 + r2
α
≥ − r2

α
and hence using (3.1.6)

V

(
t− α− 1

α
r2

)
≥ (α− 1)

r2
α

∫ t−r2+r2/α

t−r2
A2(t, z)g2(x(z))dz

≥ α− 1

α
r2

∫ t−r2/α

t−r2
A2(t, z)g2(x(z))dz. (3.1.26)

Since V ′(t) ≤ 0 and for t ≥ t0 +
(
α−1
α

)
r2 we have

0 ≤ V (t) + V

(
t− α− 1

α
r2

)
≤ 2V

(
t− α− 1

α
r2

)
. (3.1.27)

From Inequalities (3.1.20), (3.1.25) and (3.1.26) we get

V (t) + V

(
t− α− 1

α
r2

)
≥
(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)2

+

∫ 0

−r2

∫ t

t+s

A2(t, z)g2(x(z))dzds

+
α− 1

α
r2

∫ t−r2/α

t−r2
A2(t, z)g2(x(z))dz

≥
(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)2

+
α− 1

α
r2

∫ t

t−r2/α
A2(t, z)g2(x(z))dz

+
α− 1

α
r2

∫ t−r2/α

t−r2
A2(t, z)g2(x(z))dz by (3.1.24)

=

(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)2

+
α− 1

α
r2

∫ t

t−r2
A2(t, z)g2(x(z))dz.
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Using Hölder’s inequality, we get

V (t) + V

(
t− α− 1

α
r2

)
≥
(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)2

+
α− 1

α

(∫ t

t−r2
A(t, s)g(x(s))ds

)2

=x2(t)− 1

1 + α−1
α

x2(t) +
1

1 + α−1
α

x2(t)− 2x(t)

∫ t

t−r2
A(t, s)g(x(s))ds

+

(
α− 1

α
+ 1

)[∫ t

t−r2
A(t, s)g(x(s))ds

]2
=

α−1
α

1 + α−1
α

x2(t)

+

 1

1 + α−1
α

x2(t)− 2
1√

1 + α−1
α

x(t)

√
1 +

α− 1

α

∫ t

t−r2
A(t, s)g(x(s))ds

+

(
α− 1

α
+ 1

)[∫ t

t−r2
A(t, s)g(x(s))ds

]2)

=
α−1
α

1 + α−1
α

x2(t) +

 1√
1 + α−1

α

x(t)−
√

1 +
α− 1

α

∫ t

t−r2
A(t, s)g(x(s))ds

2

,

which yields to

V (t) + V

(
t− α− 1

α
r2

)
≥

α−1
α

1 + α−1
α

x2(t). (3.1.28)

In this way, Inequality (3.1.28) shows that

α−1
α

1 + α−1
α

x2(t) ≤ V (t) + V

(
t− α− 1

α
r2

)
≤ 2V (t− α− 1

α
r2). (3.1.29)

Integrating (3.1.13) from t0 to t, we get

V (t) ≤ V (t0) e
∫ t
t0
P (s,x(s))ds

.
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Thus,

V (t− α− 1

α
r2) ≤ V (t0) e

∫ t−α−1
α r2

t0
P (s,x(s))ds,

and from Inequality (3.1.28), we get

α−1
α

1 + α−1
α

x2(t) ≤ 2V (t− α− 1

α
r2),

and hence

α−1
α

1 + α−1
α

x2(t) ≤ 2V (t0) e
∫ t−α−1

α r2
t0

P (s,x(s))ds;

x2(t) ≤ 2
1 + α−1

α
α−1
α

V (t0) e
∫ t−α−1

α r2
t0

P (s,x(s))ds;

|x(t)| ≤

√
2

1 + α−1
α

α−1
α

V (t0) e
(1/2)

∫ t−α−1
α r2

t0
P (s,x(s))ds;

|x(t)| ≤

√
2

1 + α−1
α

α−1
α

V (t0) e
(1/2)

∫ t−α−1
α r2

t0
[b(s)−A(s,s)g(x(s))]ds; (3.1.30)

this completes the proof. �

3.2 Stability of the Solution

Inequality (3.1.21) shows that the zero solution of (3.0.1) is asymptotically stable

provided that ∫ ∞
P (s, x(s)) −→∞

Assuming that

b(t)− A(t, t)g(x(t)) ≤ −βP (t, x) ≤ −β,
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and ∫ t−α−1
α
r2

t0

P (t, x) ≤ −β(t− t0),

for some positive constant β and all t ≥ t0 + α−1
α
r2, then Theorem 3.1.2 implies that

the zero solution of (3.0.1) is exponentially stable as a consequence of Inequality

(3.1.21).

3.3 A Criterion for Instability

Now, we will use a non-negative definite Lyapunov functional and obtain a criterion

that can be easily used to check the instability of the zero solution of Equation

(3.0.1). We begin with the following lemma:

Lemma 3.3.1. Suppose Inequalities (3.1.3), (3.1.4) and (3.1.5) hold and that there

exists a positive constant β > r2 such that

A2(t, t)
[(

1 + ∆2
)

+ ∆2β
]
≤ P (t, x) ≤ 2r2

β − r2
. (3.3.1)

If

V (t) =

(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)2

− β
∫ t

t−r2
A2(t, z)g2(x(z))dz. (3.3.2)

Then along the solution of (3.0.1) we have

V ′(t) ≥ P (t, x)V (t). (3.3.3)

Proof: We first note a consequence of (3.1.5),

β

∫ t

t−r2
A(t, z)

∂A(t, z)

∂t
g2(x(z))dz = β

∫ t

t−r2
A(t, z)q(t, s)g2(x(z))dz ≥ 0. (3.3.4)
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Then, because of (3.3.1), it is clear that P (x, t) > 0 for all t ≥ 0. Let x(t) =

x(t, t0, φ) be a solution of (3.0.1). Using Inequality (3.1.16) and calculating the time

derivative of the functional V (t) defined by (3.3.2) along the solution x(t) of (3.0.1),

and using (3.3.4)we get:

V ′(t) =2

(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)
[b(t)x(t)− A(t, t)g(x(t))]

− βA2(t, t)g2(x(t))− β
∫ t

t−r2
2A(t, s)

∂A(t, z)

∂t
g2(x(z))dz

≥2

(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)
[b(t)x(t)]

+ 2

(
x(t)−

∫ t

t−r2
A(t, s)g(x(s))ds

)
[A(t, t)g(x(t))]− βA2(t, t)g2(x(t))

=b(t)V (t)− A(t, t)g(x)V (t) + b(t)x2(t)− x2(t)A(t, t)g(x(t))

− 2A(t, t)g(x(t))x(t)

∫ t

t−r2
A(t, s)g(x(s))ds

+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds− βA2(t, t)g2(x(t))

≥ [b(t)− A(t, t)g(x)]V (t) + [−b(t) + A(t, t)g(x)]

[∫ t

t−r2
A(t, s)g(x(s))ds

]2
+ [b(t)− A(t, t)g(x)] β

∫ t

t−r2
A2(t, z)g2(x(z))dz

+ 2A(t, t)g(x(t))

∫ t

t−r2
A(t, s)g(x(s))ds− βA2(t, t)|∆x(t)|2

− x2(t)A(t, t)g(x(t)) + b(t)x2(t). (3.3.5)

Using Inequalities (3.1.18), (3.1.19) and Hölder’s inequality, we get

A(t, t)g(x(t))

[∫ t

t−r2
A(t, s)g(x(s))ds

]2
≥ r2A(t, t)g(x(t))

∫ t

t−r2
A2(t, s)g2(x(s))ds.

(3.3.6)
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Then (3.3.5) simply becomes

V ′(t) ≥P (t, x)V (t)

+
[
A2(t, t) + ∆2A2(t, t)− βA2(t, t)∆− A(t, t)g(x(t)) + b(t)

]
x2(t)

+ [−r2b(t) + A(t, t)g(x(t))r2 + b(t)β

−A(t, t)g(x)β + 2r2]

∫ t

t−r2
A2(t, s)g2(x(s))ds

≥P (t, x)V (t) + A2(t, t)
[(

1 + ∆2
)
− β∆2

]
x2(t)

+ [−r2P (t, x) + βP (t, x) + 2r2]

∫ t

t−r2
A2(t, s)g2(x(s))ds. (3.3.7)

Using (3.3.1), we get

V ′(t) ≥ P (t, x)V (t), (3.3.8)

this completes the proof. �

Theorem 3.3.2. Assume that the conditions of Lemma 3.3.1 hold. Then the zero

solution of (3.0.1) is unstable provided that

∫ ∞
t0

P (s, x(s))ds =∞, (3.3.9)

and

|x(t)| ≥

√
β − r2
β

V (t0) e
1/2

∫ t
t0
P (s,x(s))ds

. (3.3.10)

Proof: Integrating Equation (3.3.8) from t0 to t gives

V (t) ≥ V (t0)e
∫ t
t0
P (s,x(s))ds

(3.3.11)

The function V (t) in Inequality (3.3.2) can be written as

V (t) =x2(t)− 2x(t)

∫ t

t−r2
A(t, s)g(x(s))ds
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+

[∫ t

t−r2
A(t, s)g(x(s))ds

]2
− β

∫ t

t−r2
A2(t, z)g2(x(z))dz. (3.3.12)

Let

k = β − r2, (3.3.13)

then from (√
r2√
k
a−
√
k
√
r2
b

)2

≥ 0, (3.3.14)

we have

2ab ≤ r2
k
a2 +

k

r2
b2. (3.3.15)

Keeping (3.3.14) and (3.3.15) in mind, we get

−2x(t)

∫ t

t−r2
A(t, s)g(x(s))ds ≤ 2|x(t)||

∫ t

t−r2
A(t, s)g(x(s))ds|

≤ r2
k
x2(t) +

k

r2

[∫ t

t−r2
A(t, s)g(x(s))ds

]2
.

Using Hölder’s inequality, we get

−2x(t)

∫ t

t−r2
A(t, s)g(x(s))ds ≤ r2

k
x2(t) +

k

r2
r2

∫ t

t−r2
A2(t, s)g2(x(s))ds

≤ r2
k
x2(t) + k

∫ t

t−r2
A2(t, s)g2(x(s))ds. (3.3.16)

Substituting (3.3.16) into (3.3.12) and using Hölder’s inequality, we get

V (t) ≤x2(t) +
r2
k
x2(t) + β

∫ t

t−r2
A2(t, s)g2(x(s))ds

+ r2

∫ t

t−r2
A2(t, s)g2(x(s))ds− β

∫ t

t−r2
A2(t, z)g2(x(z))dz.
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Using Equation (3.3.13)

V (t) ≤x2(t) +
r2
k
x2(t) + (k + r2 − β)

∫ t

t−r2
A2(t, s)g2(x(s))ds

=
k + r2
k

x2(t)

=
β

β − r2
x2(t).

Using Equations (3.3.1) and (3.3.11), we get:

V (t) ≤ β

β − r2
x2(t),

then

|x(t)| ≥

√
β − r2
β

V (t);

|x(t)| ≥

√
β − r2
β

V (t0) e
1/2

∫ t
t0
P (s,x(s))ds

,

this completes the proof. �
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