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Abstract
Detecting Phase Curves in the K2 Data

by Jana Hajj Sleiman, February 2019

Exoplanets are planets orbiting stars other than our Sun. During their motion

around their star, due to gravitational effects, and due to the planet’s thermal and

reflective radiation, small variations in the lightcuvre could be detected (Esteves

et al. 2015). Phasecurves are small-scale variations in planetary flux that arise from

an exoplanet’s motion around its host star. If detected, the phasecurve can lead

to determining the planet’s mass, its albedo, and it can give us an idea about its

atmosphere. In this work we aim to detect these these variations in the data from the

K2 mission. To do this we first test two different models on two already published

phasecurves detected in the K2 data (Malavolta 2018),(Močnik et al. 2018). We

reveal the failure of one of the models (Serrano 2018) to recover a phasecurve for

a planet with a relatively low mass having a lightcurve that posses a signal with a

significant noise, while the other one (Faigler and Mazeh 2011) succeeds in recovering

the phasecurve of the same planet. We also uncover significant modulations in the

data of K2 31-b, which resulted in finding the planet’s mass and its geometric albedo.

Key words: exoplanets: lightcurves-phasecurves techniques: model fitting - tech-

niques: photometric



Résumé
Détection des courbes de phase dans les données K2

par Jana Hajj Sleiman, Février 2019

Avec plus de 3916 découvertes, les planètes extrasolaires représentent un champ

d’étude majeur de lastronomie actuelle. Les exoplanètes sont des planètes en orbite

autour d’autres étoiles que notre Soleil.

Au cours de l’orbite d’une planète autour de son étoile, et en raison des effets

gravitationnels, du rayonnement thermique et réfléchi de la planète, des petites varia-

tions de lumière peuvent dès lors être détectées. Les courbes de phase, donc, sont des

variations à petite échelle du flux planétaire résultant du mouvement dune exoplanète

autour de son étoile hôte. Caractériser les parametres physique d’une planète extra

solaire (I.e la masse, l’albedo et son atmosphere) est directement relié à la détection

de sa courbe de phase.

Durant ce stage, nous nous sommes particulièrement interessés à détecter ces

petites variations de flux dans les données de la mission K2. Pour ce faire, nous

testons deux modèles différents, d’abord sur deux phases détectes et publiées dans la

base de données K2 data. Nous révélerons l’échec de l’un des modèles à récupérer la

phase pour une planète de masse relativement faible, tandis que l’autre reussit. Nous

avons également découvert des variations de flux significatives dans les données de

K2 31-b, qui ont permis d’estimer la masse de la planète et son albdo géométrique.

Mots clés: exoplanétes: techniques courbes de lumière - courbes de phase -

techniques: ajustement de modèles - techniques: photométrique
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3.3 Published stellar parameters for K2 141-b. . . . . . . . . . . . . . . . 45

3.4 Published planetary parameters for K2 141-b. . . . . . . . . . . . . . 46

4.1 Fixed Parameters introduced to the MCMC fitting process of wasp 104. 52

4.2 Prior distributions used for parameters of wasp 104 in model 1. . . . 53

4.3 Comparison between published values, and values obtained by fitting

Serrano’s model to wasp 104. . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Prior distributions used for parameters of wasp 104 in the Mazeh &

Faigler’s model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Comparison of obtained parameters for Wasp 104-b using model 2. . 60

5.1 Fixed Parameters introduced to the MCMC fitting process of K2-141. 62

5.2 Prior distributions used for parameters of K2 141 b in Serrano’s model. 63

5.3 Comparison between published values, and values obtained by fitting

model 1 to K2-141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Parameters obtained from the MCMC fitting of model 2 to the data

of K2 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Fixed Parameters introduced to the MCMC fitting process of K2-141. 71

6.2 Initial distributions used for MCMC fitting of model 2 to the data of

K2 31 b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Comparison between published values, and obtained values from the

MCMC fitting of Mazeh & Faigler’s model to the data of K2-31 b. . . 72



12

Chapter 1

Introduction
Our observable universe consists of billions of galaxies, which in turn is a collection

of billions of stars. The stars are orbited by planets. Unlike stars, planets are relatively

small and do not generate or radiate energy. They absorb energy and re-emit it at

different wavelengths. Those two factors make them difficult to study and hard to

directly image them even with the largest telescopes. The study of planets is rather

worthy, as it can help us understand the planetary diversity as well as the formation

of planetary systems.

1.1 History on the Search of Exoplanets

An exoplanet is a planet outside our solar system. It was only till 1992 that

the first exoplanet was detected. The detection was made when studying pulsar

PSR1257. A pulsar is a highly magnetized rotating neutron star that emits a beam

of electromagnetic radiation. This radiation can be observed only when the beam of

emission is pointing toward Earth, and is responsible for the pulsed appearance of

emission. Neutron stars are very dense, and have short, regular rotational periods.

Pulsar PSR1257 is a millisecond pulsar, with a rotation period of 6.22 milliseconds ,

and was found to have anomalies in the pulsation period. These anomalies led to the

first confirmed discovery of planets outside our solar system. (Wolszczan and Frail

1992)

After that, from 1995 till 1998, several planets were detected using a spectrograph

which can detect slight and periodic velocity changes in the spectral lines of a star.

These changes are caused by a planet’s gravitational effect on a star. This technique

is known as the radial velocity method (see section 1.2.1). Later on in 1999 planet
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HD 209458 b which was previously discovered with the radial velocity technique, was

oberved eclipsing its parent star. (Charbonneau et al. 2000)

This method for detecting exoplanets is known as the transit method. It has ev-

ersince discovered thousands of exoplanets. With the big discoveries of exoplanets,

several space missions projects were done with an objective to find exoplanets and

characterize them.

COROT

COROT was launched in December 2006 1 . It was the first spacecraft dedicated

to the detection of transiting exoplanets. COROT was able to to announce 600 can-

didates and confirm 29. On November 2nd 2012 COROT suffered a computer failure

and was announced retired by June 2013 as repair missions failed.

Kepler

After COROT came Kepler. Kepler was a space observatory launched by NASA

in March 2009. The spacecraft’s goal was to observe a large sample of stars and

determine the fraction of Earth sized or larger planets lay in the habitable zone. The

habitable zone is the orbital region around a star in which an Earth-like planet can

possess liquid water on its surface and possibly support life. Kepler used the transit

method to detect planets that are 30 to 600 times less massive than gas giants. This

was a challenge as most of the previously detected planets by other projects were

Jupiter sized planets or bigger. As of 2012, there were a total of 2,321 candidates.

Out of which 207 are similar in size to Earth, 680 are super-Earth-size, 1,181 are

Neptune-size, 203 are Jupiter-size and 55 are larger than Jupiter.2

1http://sci.esa.int/corot/
2http://archive.stsci.edu/
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On May 15, 2013, NASA announced the spacecraft had been crippled by failure

of a reaction wheel that keeps it pointed in the right direction. A second wheel had

previously failed, and the spacecraft requires three wheels (out of four total) to be

operational for the instrument to function properly. Developed over the months fol-

lowing this failure, the K2 mission represents a new concept for spacecraft operations

that enables continued scientific observations with the Kepler space telescope. Smart

engineers had devised a remarkable solution which is using the pressure of sunlight

to stabilize the spacecraft so it could continue to do science, with only 2 functioning

reaction wheels, and the spacecrafts thrusters. The fix worked, and Kepler was given

a new mission as K2. 3 (Refer to figure 1.1)

3https://www.nasa.gov/
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Figure 1.1: The proposed fixture of Kepler
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Using the transit method to detect brightness changes, the K2 mission entailed

a series of sequential observing ”Campaigns” of fields distributed around the ecliptic

plane and offered a photometric precision approaching that of the original Kepler mis-

sion. Operating in the ecliptic plane minimizes the torque exerted on the spacecraft

by solar wind pressure, reducing pointing drift to the point where spacecraft attitude

can effectively be controlled through a combination of thrusters and the two remain-

ing reaction wheels. Each campaign is therefore limited by sun angle constraints to a

duration of approximately 80 days.the number of confirmed exoplanets discovered by

K2 extension mission is around 360(to date). Although kepler is no longer active(out

of fuel), a lot of data still awaits to be studied.

1.2 Detection Methods

Many detection methods evolved with the development in the discoveries of exo-

planets. While there are several methods, in this chapter we will briefly discuss two

methods, which are the most common detection techniques. The transit method, and

the radial velocity method.

1.2.1 Radial Velocity Method

The radial velocity method, also known as Doppler spectroscopy, is the most ef-

fective method for locating extrasolar planets with existing technology. The radial

velocity method relies on the fact that a star does not remain completely stationary

when it is orbited by a planet. It moves, ever so slightly, in a small circle or ellipse,

responding to the gravitational tug of its smaller companion. When viewed from

a distance, these slight movements affect the star’s normal light spectrum, or color

signature. If the star is moving towards the observer, then its spectrum would appear

slightly shifted towards the blue; if it is moving away, it will be shifted towards the

red. Using highly sensitive spectrographs, we can search for periodic shifts towards
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Figure 1.2: Schematic representation of the radial velocity technique.

the red, blue, and back again. If the shifts are regular, repeating themselves at a

certain period it means that the star is moving back and forth, towards the Earth

and then away from it in a regular cycle. This, in turn, is almost certainly caused by

a body orbiting the star, and if it is of a low enough mass it is called a planet.

Radial velocity observations covering all orbital phases are able to measure the

orbital period P, the eccentricity e, and the Radial Velocity (RV) semi-amplitude

K. From these observables, the so-called ’minimum mass’ Mp sin i can be computed,

provided the total mass of the system is known.

K =
28.4329ms−1√

1− e2
mp sin i

MJ

(
M∗ +MP

M�

)−2/3(
P

1yr

)−1/3

Where: mp is the mass of the planet, MJ is the mass of Jupiter, M∗ is the mass of

the star, P is the planet’s orbital period, and e is the ecccentricity.

In practice, planetary masses are usually negligible compared to the mass of the

parent star. The stellar mass can be obtained indirectly via spectroscopic analysis,

photometry, parallax measurements and comparison with stellar evolutionary models.

(Fischer et al. 2014)
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Figure 1.3: Effects of system’s inclination on the detection of radial velocity.

One disadvantage of this method is that it can only detect the movement of a

star towards or away from the Earth. If the orbital plane of the system is ”edge-on”

when observed from the Earth, then the entire movement of the star will be towards

or away from the Earth, and can be detected with a sensitive spectrograph. In this

case the mass of the planet can be accurately derived. If, however, the orbital plane

of the planet is ”face on” when observed from the Earth, the entire movement of the

star will be perpendicular to an observer’s line of sight. No part of its movement

will be towards or away from the Earth. No spectrum shift will be detected, and the

observer will not know about the presence of a planet orbiting the star (See figure

1.3 for representation). In most cases a planet’s orbital plane is tilted with respect to

the line of sight at some angle, which is usually unknown. The mass of the suspected

planet is directly proportional to the star’s actual wobble. But since only a portion

of this wobble is detected, then the measured mass will be lower than the true one

and provide only a minimum value for the planet’s mass.

Another drawback of this method is that it is most likely to find the types of

planets that are the least likely to be habitable. Early on, most of the planets detected
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by spectroscopy were of a type known among scientists as ”hot Jupiters.” These are

giant planets composed mostly of gas, similar to our neighbor, Jupiter, but orbiting

at dizzying speeds at a very short distance from their star. Their size, short periods,

and close proximity to their star ensures that they produce the quick and relatively

large stellar wobbles that are most easily detected by spectroscopy. Cooler planets

orbiting further away produce more moderate wobbles in their home star, and take

years to complete each orbit, factors which make them much harder to detect with

spectroscopy. But while hot Jupiters are relatively easy to find, they are unlikely

homes to any form of life as we know it. Even worse, their presence at the center

of a planetary system makes it less likely that more Earth-like planets had survived

in their neighborhood. In other words, while the discoveries made with spectroscopy

established the presence and prevalence of planets outside our Solar System, most of

the systems detected with this method are very unlikely abodes for life.

1.2.2 The Transit Method

Transit occurs when an exoplanet crosses infront of its host star relative to the

observer’s line of sight. When this happens, the planet blocks some of the received

star’s flux. This event will periodically occur at a period equal to the planet’s orbital

period around its host star. If the stellar radius is known, the depth of the eclipse

can give us some information about the planet’s radius by referring to the following

formula (Seager and Mallén-Ornelas 2003)

∆F =
Fnontransit − Ftransit

Fnontransit
= (

Rp

R∗
)2

Where Fnontransit is the flux received by the star when the planet is not eclipsing it,

Ftransit is the flux received by the system during transit, Rp is the planet’s radius,

and R∗ is the star’s radius.

When the planet passes behind the host star relative to the observer’s line of
sight, if the geometry is convenient, a secondary eclipse can be detected (Check figure
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1.4 for more details). Although the majority of the flux received from the system
is contributed by the star, the planet has a small contribution due to its thermal
emission.

Figure 1.4: Schematic representation of the light curve of a transiting planet.

The planet’s equilibrium temperature is calculated in López-Morales and Seager

(2007). They showed that the equilibrium temperature of the planet depends on

stellar radius, the distance between the star and the planet, and the planet’s bond

and geometric albedo.

Teq = T∗

(
R∗
a

)1/2

[f(1− 3

2
Ag)]

1/2 (1.1)

where T∗ is the stellar temperature, R∗ is the stellar radius, a is the semi-major axis,

Ag is the geometric albedo and f is the normalized flux.

The bond albedo is the fraction of power in the total electromagnetic radiation

incident on an astronomical body that is scattered back out into space. It accounts
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for all of the light scattered from a body at all wavelengths and all phase angles, so it

can determine how much energy an object absorbs, which is crucial for determining

the equilibrium temperature of a body. The geometric albedo however, is the ratio

of its actual brightness as seen from the light source to that of an idealized flat,

fully reflecting, diffusively scattering (also known as Lambertian) disk with the same

cross-section. Later on, a study related the eclipse depth with the geometric albedo.

(Esteves et al. 2013) So detecting eclipses can constrain the thermal emission and the

reflection by the planet.

1.3 Phasecurves

Exoplanet detection and characterization is important on so many levels. Fore-

most among these is its impact on our understanding of the nature and formation of

planetary systems. The greater the sample of known planets, the better the conclu-

sions we can draw about their common properties and formation mechanisms. Until

the discovery of exoplanets, we had only eight major planets and several minor bodies

endemic to one solar system to study and theorize. With thousands of new worlds to

study, we are able to statistically analyze the overall planet population, which refines

our understanding of planetary science. Naturally, a priority in the field of exoplanets

is the discovery of another Earth-like planet and the existence of extraterrestrial life.

Phase curve studies have the potential to significantly broaden the pool of known

planets, thereby advancing the field generally.

Phase curves are small-scale, variable photometric effects that arise from an ex-

oplanets motion about its host star. For a homogeneously emitting star, the phase

curve would show the primary transit (when the planet passes in front of the stel-

lar disk), the secondary transit (when the planet is hidden by the star), as well as

three additional modulations. The first modulation is the Doppler boosting effect; it
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consists of a modification of the stellar brightness proportional to the radial velocity

variation induced by the planet (Barclay 2012) . The second effect is the ellipsoidal

modulation, that is the gravitational attraction of the planet on the stellar surface,

the star is deformed, with a surface tide that moves following the planet (Esteves et al.

2013). The last component is the planetary flux which mainly contains atmospheric

reflection at optical wavelengths. The reflected light depends on the planetary albedo,

which is the ability of a planet to reflect the star’s light. (see Chapter 2 for further

discussion). During the first stages of Kepler, most light curves analysis focused only

on the transiting parts of the lightcurve. However, when studying the full phasecurve

of the star-planet system, those small variations can be detected.

One rare advantage of analyzing phasecurves is that the study allows the full

characterization of the physical and orbital parameters of an exoplanet. When all

effects are taken into consideration, the planetary mass can be calculated (see later

for more details). Morever parameters that indicate the reflectivity and temperature

of the planet can be derived. With such parameters known, we can have a hint about

the composition and dynamics of the atmosphere. These information usually require

transit spectrospy, which is a complicated technique that studies the resolved spectra

of planets as they transit their host star. If one is able to characterize the underlying

stellar spectrum, the planetary atmospheric spectrum is derived by subtracting the

stellar baseline from a spectrum taken during transit.

Another advantage of studying phasecurves is that they have the potential to

study non-transiting exoplanets. Like the radial velocity technique, the magnitude

of the phasecurve effects diminishes with decreasing inclination, and thus analysis

is constrained solely by the sensitivity of the photometric detector. Thus studying

phasecurves can fully characterize exoplanets over a greater range of inclinations, al-
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lowing studies of the majority of exoplanets that are not fully characterized yet.

Esteves et al. (2013) previously studied planets observed by kepler. They were
able to detect phasecurves in 8 planets. They detected ellipsoidal variations in 5 of
these planets: planets Kepler-5, Kepler-6, Kepler-8, TrES-2, and HAT-P-7. From
those variations, they were able to recover planetary masses that are within 2.5 σ of
their published radial velocity measurements. Later on Esteves et al. (2015) did a sim-
ilar study and they were able to detect phasecurves in 14 planets observed by Kepler
(Kepler-5b, Kepler-6b, Kepler-7b, Kepler-8b, Kepler-10b, Kepler-12b, Kepler-41b,
Kepler-43b, Kepler-76b, Kepler-91b, Kepler-412b, TrES-2b, HAT-P-7b, and KOI-
13b). They were able to derive geometric albedos and estimate the planets’ equilib-
rium temperatures.

Figure 1.5: Phase-folded transit and phasecurves for Kepler-91b, Kepler-412b, and
TrES-2b. (Esteves et al. 2015)

In this work, we aim to detect phasecurves in the K2 data. Similar work was

previously done on Kepler’s data (Esteves et al. 2013). But with the K2 data, there

are only two detected phasecurves up to date. (Malavolta 2018), (Močnik et al. 2018)
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The first part of the project consists of testing a phasecurve model on planets with

published phasecurves. A model developed in (Serrano 2018) was created as a mean

to simulate planetary signal, but it was never tested on actual data. In this project,

we try to validate this model and test its limitations. We compare its results with a

model that has been tested before (Faigler and Mazeh 2011). The second part of the

project consists of searching through the confirmed planets in the K2 mission, in an

attempt to detect a phasecurve, and characterize the planet.

In the next chapter, we present the physics behind the models that were used to

fit the data. Then in chapter 3 we go through the data processing and the fitting

methods. We proceed our work by comparing Serrano’s model to Mazeh’s model

on previously published phasecurves and discover limatations for Serrano’s model.

Finally we present a new discovered phasecurve of planet K2 31-b.
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Chapter 2

Light Curves of Transiting

Exoplanets

2.1 Primary and Secondary Transit Model

The light curve of the star-planet system consists of the primary and secondary

transits, as well as small variations that are due to three physical phenomena. The

beaming effect, the ellipsoidal variations, and the planetary reflected light. These

three effects combined build up the phasecurve. Throughout the work the transits

are modelled using the Batman Transit Model. However for the modelling of the

phasecurve we test two different models. In the following section we will describe

each model used.

2.1.1 Batman Transit Model

For the transit fitting we use the python package batman. (Kreidberg 2015) This

package models high precision light curves. The depth of the transit is determined by

the ratio of the planets radius to its host star. However, the transit shape and depth

can be highly modified due to the limb darkening effect. Limb darkening is an optical

effect seen in stars, where the center part of the disk appears brighter than the edge or

limb of the image. The limb darkening causes the apparent brightness of the stellar

disk to decrease from center to edge. The stellar intensity profile can be fit with

several functional forms, some of which are linear limb darkening law (Schwarzschild

and Villiger 1906), quadratic (Kopal 1950), square-root(Diaz-Cordoves et al. 1995)

and four-parameter nonlinear (Claret 2000).
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Figure 2.1: Effects of different limb darkening coefficients on the shape of the transit
curve.

In order to calculate the transit light curve, we need to choose a a limb darken-

ing model. whether linear, quadratic, square-root or nonlinear, we need to provide

the model with the appropriate limb-darkening coefficients. These coefficients can be

found in a study byClaret and Bloemen (2011), who computed the limb-darkening

coefficients of different laws, for a wide range of stars with different effective temper-

ature, gravity and metallicity.

After choosing the limb-darkening model and the appropriate coefficients, the

batman transit model needs 7 more parameters to input.

Time of inferior conjunction ”t0”

Orbital period of the planet

Planetary radius ( in units of stellar radii)

Semi-major axis ”a” (in units of stellar radii)
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Inclination of orbital plane ”i”

Eccentricity of planetary orbit ”e”

Longitude of periastron ”w”(in degrees)

Figure 2.2: The stars spin axis is perpendicular to the orbital plane (yellow), which
is tilted a certain number of degrees relative to the observer, called the inclination i.
Inclination is 90 for an edge on orbit and 0 for a face on orbit. The celestial body, in
this case an exoplanet, orbits elliptically on this orbital plane, following the stars spin.
True anomaly (ν here) indicates the location of an object in its orbital ellipse relative
the the foci of the systems center of mass. Argument of periapsis ω documents the
position of the planet relative to its pericentre, which is the point in its orbit when
its distance from the star is at minimum.
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With those parameters provided the model can now calculate the light curve for

a given time interval.

This package also allows us to model the secondary eclipse using the following formula:

f = 1 + fp(1− α)

where f is normalized flux, fp is the planet-to-star flux ratio, and α is the fraction of

the planet disk that is occulted by the star.

2.2 Phasecurve Models

In our study we tested two models on previously published phasecurves ( to be

shown later). The first model we tested was a model developed by Serrano (2018), and

the other model is a model developed by Faigler and Mazeh (2011). Both models take

into account the three physical phenomena that produce the small variations known

as phasecurves. The beaming effect, the ellipsoidal variations, and the planetary light.

2.2.1 Serrano Model

The first model, developed by Serrano (2018), is a model that computes the three

modulations based on calculations done by Lillo-Box (2014). The phasecurve nor-

malized flux is given by the following formula:

Fpc
F∗

=
Fellip
F∗

+
Fbeam
F∗

+
Frefl
F∗

(2.1)

Planetary Light

The first factor to take into account is the light coming from the planet. The light

could be either reflected from the star or emitted by the planet. In their work, they

described the planet as a Lambertian sphere as it was done in Esteves et al. (2013).
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This means that the planet is assumed to be a perfect sphere with an atmosphere

reflecting the stellar flux isotropically. The modulation of flux from the planetary

light effects if modelled as follows:

Fp
F∗

= Ag

(
Rp

r

)2

sin i cos θ (2.2)

where Ag is the geometric albedo, r is the distance between the planet and the star,

and θ is the angle between line of sight and star-planet direction. As mentioned

earlier, these modulation are small scaled and require high precision to detect. The

most detected phasecurves are the ones that correspond to planets that are close to

their host stars. Such planets are tidally locked to their star, and the orbit remains

circular. For this reason, from now on the distance r, between the planet and the

star, will be considered as a, which the semi major axis. (Lillo-Box 2014)

In order to calculate the planetary light, the model needs 8 parameters as input:

- Planetary Radius ”Rp”

- Orbital Period ”P”

- Inclination ”i”

- Semi-major axis ”a”

- Eccentricity ”e”

- Time of conjunction ”t0”

- Longitude of periastron ”w”

- Geometric Albedo ”Ag”
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The Beaming Effect

The second factor to take into account is the beaming effect, also known as the

doppler boosting. This phenomenom is a result of two effects. The first is the non-

relativistic doppler boosting of the stellar light in the direction of the star’s radial

velocity, which is a function of the planet’s mass and distance from its star (Esteves

et al. 2015). The second one is a band-pass dependant effect. It is a periodic red/blue

shift of the star’s spectrum, which results in a periodic change of the measured bright-

ness as part of the star’s spectrum move in and out of the observed bandpass.(Barclay

2012) This effect is modeled by:

∆Fbeam
F∗

= (3− Γ)
K

c
(sin θ + e cosw) (2.3)

Where Γ is the beaming factor that depends on the observed bandpass, K is the radial

velocity semi-amplitude that depends on the planetary mass, and c is the speed of

light.

In order to calculate the beaming effect, the model requires 8 parameters as input:

- Planetary Mass ”Mp”

- Stellar Mass ”M∗”

- Inclination ”i”

- Effective temperature of the star ”Teff”

- Eccentricity ”e”

- Time of conjunction ”t0”

- Longitude of periastron ”w”

- Orbital Period ”P”
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The Ellipsoidal Effect

The third effect is due to ellipsoidal variations. These variations are periodic

changes in the observed stellar light caused by tidal distortion. The star’s visible

surface area fluctuates in and out of the observer’s view due to the gravitational tides

between the planet and the star itself (Mislis and Hodgkin 2012).

This effect is modeled by:

∆Fellip
F∗

= −αe
Mp

M∗

(
R∗
a

)3(
1 + e cos Ψ

1− e

)3

sin2(i) cos 2θ (2.4)

Where αe is a limb darkening coefficient, and Ψ is the true anomaly shown in figure

2.2 In order to calculate the ellipsoidal effect, the model requires 11 parameters as

input:

- Planetary mass ”MP”

- Stellar mass ”M∗”

- Stellar radius ”R∗”

- Inclination ”i”

- Semi-major axis ”a”

- Eccentricity ”e”

- Time of conjunction, ”t0”

- Longitude of periastron, ”w”

- Orbital period ”P”

- Limb darkening coefficient, ”u”

- Gravitational darkening coefficient, ”g”
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Gravitational darkening is a phenomenom where a star rotates so rapidly that it has

a detectably oblate spheroid shape. When a star is oblate, it has a larger radius at its

equator than it does at its poles. As a result, the poles have a higher surface gravity,

and thus higher temperature and brightness. Hence, the poles are gravity brightened,

and the equator is gravity darkened.

Figure 2.3: Representions of the three physical effects using Serrano’s model over one
ortbital period for a 4 MJ planet orbiting close to a sunlike star at a period of 1 day.
Phase 0.5 represents the part where the planet is behind the star with respect to the
observer. We note that ppm is a unit used for small variations. It stands for parts
per million. (The actual value should be divdied by a million)

This model was previously created as a mean to simulate planetary signal. It was

never applied on actual data, and never tested. In our work we aim to test this model,

and try to set its limitations.



33

2.2.2 Faigler & Mazeh’s Model

The other model we tested is a model developed by Faigler and Mazeh (2011).

They approximated the ellipsoidal, beaming, and reflection effects by pure sine/cosine

functions relative to the midtime of the first detected transit (time of conjuction

Faigler and Mazeh 2011).

The Elliposidal Effect

∆Fellip(t)

F∗
= −Aellip cos

(
2π

Porb/2
t

)
(2.5)

The ellipsoidal amplitude, Aellip, is theoretically approximated to be:

Aellip = αellip
mp sin i

M∗

(
R∗
a

)3

sin i = 128αellip sin i

(
R∗
R�

)3(
M∗
M�

)−2(
Porb
1day

)−2(
m2 sin i

10MJ

)
ppm

(2.6)

The ellipsoidal coefficient, αellipsoidal, is theoretically approximated to be:

αellip =
0.15(15 + u)(1 + g)

3− u (2.7)

Where u is the limb darkening coefficient and g is the gravitational darkening coeffi-

cient.

The Beaming Effect

∆Fbeam(t)

F∗
= Abeam sin

(
2π

Porb
t

)
(2.8)

The beaming amplitude, Abeam, is theoretically approximated to be:

Abeam = αbeam
KRV

c
= 27αbeam

(
M∗
M�

)−2/3(
Porb
1day

)−1/3(
m2 sin i

10MJ

)
ppm (2.9)

4KRV

c
is the factor that takes into account the beaming effect for bolometric photo-

metric obersvations, and αbeam takes into account the doppler shift which appears
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when made in a specific bandpass. For F,G, and K soectral type stars observed by

Kepler, αbeam ranges between 0.8 and 1.2.

Planetary Light

∆Frefl(t)

F∗
= −Aref cos

(
2π

Porb
t

)
(2.10)

Arefl is theoretically approximated to be:

Arefl = αrefl0.1
(rp
a

)2

sin i (2.11)

The reflection coefficient, αrefl, is theoretically approximated to be

Arefl = ρgeo

(
Rp

a

)2

sin i (2.12)

Where ρgeo is the geometric albedo.

Final Phasecurve

The resulting phasecurve flux from this model is given by the following formula:

Fpc = a1c cos

(
2πt

Porb

)
+ a1s sin

(
2πt

Porb

)
+ a2c cos

(
2πt

Porb/2

)
(2.13)

Where:

a1c = −Aref

a1s = Abeam

a2c = −Aellip
So in this model, the input parameters are 5: Orbital period, time of conjuction, and
the three coefficients.
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Figure 2.4: Representions of the three physical effects using the second model.

On the contrary to the first model, this model has been used before on actual data

and it was able to detect signals comming from planetary phasecurves. ((Močnik et al.

2018), (Faigler and Mazeh 2011),(Shporer 2011)
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Chapter 3

Data Reduction and Removing

Stellar Activity
With the physics and models explained, in this chapter we will go through the

steps of our work. As mentioned earlier, we aim to detect phasecurves modulation in

the K2 data. The first step in this work is to test the models we have. To do this,

we need try to fit the models to the light curves of 2 planets, that have a published

phasecurve. Planet K2-141 (Malavolta 2018) and wasp 104 (Močnik et al. 2018). We

then decide to stick to the model that gives result consistent with the published ones.

3.1 Data Reduction

In this work we use the data provided by the polar pipeline (Barros et al. 2016). In

their network they download the calibrated pixel data (pixel files) from the Mikulski

Archive for Space Telescopes (MAST). The first step of the polar pipeline is to produce

the raw light curve. This is done by optimizing an aperture on the selected target,

calculating the flux inside the aperture, and removing the background flux. The

next step is to correct for the spacecraft’s pointing stability. Owing to the particular

pointing stabilisation mechanism of K2, the satellite slowly rolls around its line of

sight and to correct for this, every six hours, the thrusters are fired returning the

spacecraft close to its initial orientation. For each roll of the spacecraft, the target

crosses a similar path on the CCD. But since pixels’ sensitivity differ, they use the

self-flat-fielding method, which calibrates the sensitivity variations with respect to

the centroid position of the target by calculating the mean flux at each of a series of

centroid position bins. Then the flux can be corrected from those sensitivity changes.
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Figure 3.1: Left panel: the large systematic noise is clearly visible on the raw light
curve of EPIC 201465501, a 14.95 magnitude star in Campaign 1. Right panel: same
light curve after being position-decorrelated.(Barros et al. 2016)

3.2 Removing Stellar Activity

A variable star is a star whose brightness as seen from Earth fluctuates. When

studying light curves of expoplanets, we have to take into account the variability that

affects the photometric measures. The most frequent phenomenas that modify the

transitting light curves are stellar rotation and star spots. These two effeccts are

mostly present simultaneously.

The surface of the star is not uniformly bright, but has darker and brighter ar-

eas (like the sun’s solar spots). Spots are regions of reduced surface temperature

caused by concentrations of magnetic field flux that inhibit convection. Stars with

sizeable sunspots may show significant variations in brightness as they rotate, and

brighter areas of the surface are brought into view. The star’s chromosphere may
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also vary in brightness. As the star rotates we observe brightness variations of a few

tenths of magnitudes. Stellar activity can prevent us from identifying the phasecurve

variations and therefore prevent a possible characterization of the planet. The local

brightness on the surface can either be decreased by dark spots or increased by bright

faculae compared to the undisturbed photosphere. Spots (or faculae) located within

the eclipsed section of the stellar surface lead to a decrease (increase) in the transit

depth, and the true profile depends on the distribution of those structures across the

planetary path. The overlap of a transiting planet and a stellar spot, for instance, can

produce anomalies in the transit light curve that may lead to inaccurate estimation

of the transit duration, depth, and timing.

Several methods are available to correct for stellar activities. In our work we use

an easy and fast way by using the ”spline function” provided by Python. This func-

tion fits a spline y = spl(x), that is a polynomial of degree k to the provided x, y

data, and t which is internal knots of the spline. The knots are points in our time

array. This fuction takes the provided knots, and slices the time array into intervals.

The interval size is determined by the knots we provided. It then fits a polynomial

of degree k to the data that lies in this interval.

Removing outliers from the baseline

In order to have a function that best describes the stellar variability, we need to

remove any data points that don’t correspond to the system, i.e., outliers. We have to

be careful though, not to mark the transit points as outliers. To do so, we first mask

the transit points. This is easy since we know the initial transit time, the period,

and the transit duration. Python provides a simple masking function once these 3

parameters are known. Once the transit points are masked, we fit a spline function

to the flux, and we normalize the flux to 1 by dividing it by the spline function. The
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result will be a normalized baseline only, since the transit points are masked. We

then perform ”sigma clipping” on that baseline to identify the indices of the outliers.

This function works by truncating the time array into intervals, calculating the mean

flux in this interval, and then according to the threshold we choose, it will identify

points that are lower or higher than this threshold. We choose a threshold of 3σ. The

function then returns the indices of the outliers. These indices are then used to re-

move completely the outliers from the original light curve. This step is demonstrated

in figures 3.3 and 3.4

Removing outliers from the transit

The previous step only removes outliers that are in the baseline. However, some

outliers may be present even in the transit. To identify these outliers, we first phase-

fold the light curve. When we phasefold a lightcurve, we time shift all the data to

a reference time (usually the initial detected time of transit), in order to mimic the

scenario in which the observations were made in one period (meaning we fold the

lightcurve onto itself for every orbital period). After that, we perform a ”savitzky

golay” filter on the phasefolded lightcurve. This filter is similar to the spline function,

where it fits a polynomial to the data. However this filter acts on small time intervals

and filters out small fluctuations while keeping the overall trend of curve. We only

apply this to detect outliers in the transiting part of the lightcurve, as we do not want

to remove the fluctuations that arise from the phasecurve. Hence, the filter is applied

on the phasefolded lightcurve. The phasefolded lightcurve is then normalized by the

filter, and another baseline is formed. Again sigma clipping is done to remove points

that are above or below the mean by a certain threshold. We increase the threshold

here up to 7σ as we do not want to remove points critical to the transit. Most of

the outliers will be at the time of the transit, as we have already removed the non

transitting outliers in the first step. The outliers’ indices are obtained, and then the



40

data corresponding to those indices are also removed from the original light curve.

This step is demonstrated in figures 3.5 and 3.6.

Final lightcurve

After removing all outliers, a spline function is applied to the data with outliers

removed. This will result in a function that contains the trend of the flux with respect

to time. To remove stellar activity, we normalize the flux by the obtained spline func-

tion. This is a typical smoothing technique. Few problems rise with this procedure

however.

One of the problems we have to avoid is not to remove the transit points. So the

spline fitting should be done on all points except the the transitting ones. To do this,

we first remove all the points that are present in the transit. So we now have the

data without any transitting points. The spline function is then applied to that data

(data with no transits). As seen in figure 3.3 the spline fit ignores the transit points.

The obtained fit is then used on the original data (with transit) to normalize. So the

obtained normalized flux’s formula is something like this:

Fnormalized =
Fdata−without−outliers
Splinewithout−transit

The other problem we have to avoid is over smoothing. In the spline function, if

we choose the knots with a very short time interval, we will also be smoothing any

variations comming from the phasecurve itself. To avoid this, we take the knots to

be seperated by a few times the planet’s orbital period. This will allow the function

to smooth out patterns with a longer period (comming from the star) and keep vari-

ations that are on a shorter period (comming from the planet).



41

Removing stellar activity is the first step we do to test which model we will be

choosing. We download the data of the 2 planets, K2-141 and wasp 104 (planets with

published phasecurves from the K2 data) from the polar pipline, and we start the

data reduction process discussed in this section on the data of each system.

3.3 Wasp 104-b

WASP-104 was observed by K2 during the observing Campaign 14, which covered

a time-span of 80 days between 2017 June 1 and 2017 August 19. In the discovery

paper Smith (2014), were able to constrain the stellar parameters of wasp 104 using

photometric and spectroscopic analysis. The parameters are shown in Table 3.1

M∗ (M�) 1.011± 0.05
R∗ (R�) 0.940 ± 0.016
ρ∗ (ρ�) 1.2178 ± 0.007
Teff (K) 5450 ± 130

Isochronal age estimate (Gyr) 3.5 ± 2.4

Table 3.1: Published stellar parameters for Wasp 104 (Smith 2014)

Later on the discovery of the phasecurve of Wasp 104-b (Močnik et al. 2018)
yielded its planetary parameters which are presented in Table 3.2.
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Figure 3.2: Published phasecurve of wasp 104-b.

t0 (JD) 57935.0702321 ± 0.0000086
per (days) 1.75540636 ± 0.00000014
i (degrees) 83.612 ± 0.026

e (RJ) 0 (fixed)
a (au) 0.0286 ± 0.00047
Mp (MJ) 1.311 ± 0.053
Rp (RJ) 1.106 ± 0.019
Tp (K) 1.2178 ± 0.007

Table 3.2: Published planetary parameters for Wasp 104-b (Močnik et al. 2018)

In order to perform data reduction, remove outliers, and correct for stellar activity,

we use the published orbital period and the time of the first detected transit (t0). The

procedure done is presented in the following figures.
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Figure 3.3: Spline Function fitted to the data of WASP 104 with transit points
ignored.

Figure 3.4: 3σ outliers in the normalized flux of wasp 104-b.
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Figure 3.5: Outliers detected inside the transit in the phasefolded light curve of wasp
104-b

Figure 3.6: Final phasefolded lightcurve of wasp 104-b
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3.4 K2 141-b

K2-141 was observed by K2 for about 80 days between December 15 2016 and

March 4 2017, with a loss of 5.3 days of data due to a safe mode state. In the

discovery paper (Malavolta 2018), they were able to identify strong planetary signal

at a period of only 6.7 hours (planet b), and a second planetary candidate signal with

a period of 7.75 days (planet c). Their spectroscopic analysis reulted in obtaining the

stellar parameters.

M∗ (M�) 0.708 ± 0.028
R∗ (R�) 0.681 ± 0.018
ρ∗ (ρ�) 2.244 ± 0.161
Teff (K) 4599 ± 79
Age(Gyr) 6.3 ± 5

Table 3.3: Published stellar parameters for K2 141-b.

After removing the stellar activity signal from the K2 light curve and phase-

folding the data to the orbital period of K2-141b, they also detected the signal of the

secondary eclipse of this planet, and its phasecurve. This allowed them to obtain the

planetary parameters of K2 141-b.
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Figure 3.7: Published phasecurve of K2 141-b

t0 (JD) 5774.0716 ± 0.0000022
per (days) 0.2803244 ± 0.000015
i (degrees) 86.3 ± 3

e (RJ) 0 (fixed)
a (R∗) 2.292 ± 0.05
Mp (M⊕) 5.08 ± 0.41
Rp (R⊕) 0.02037 ± 0.0046

Table 3.4: Published planetary parameters for K2 141-b.

The phasecurve shows modulation that results from planetary light. That is ei-

ther reflection of the stellar light from the planet’s surface, or the planet’s thermal

emission. The result of their model fit showed that this effect can be produced either

by taking a geometric albedo (reflection effect) of 0.3 ± 0.06, or by thermal emission

if the planet has a bond albedo of 0.37. This bond albedo corresponds to a tempera-

ture of 2100 K. This temperature doesnt belong to Kepler’s observing band, but it is

detected in the Infrared. So, in order to know for sure which effect is responsible for
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this modulation, further observation should be done in the infrared to constrain one

of the degenerate effects.

The same data reduction and stellar removal activity procedure was done on K2
141-b as it was done on wasp 104-b. The only thing we did in addition to the steps
mentioned earlier, is that we masked points that correspond to the transit of planet
c. Unlike wasp 104, K2 141 shows significant stallar activity. This made us face many
problems in recovering the phasecurve later on. (to be shown later)

Figure 3.8: Spline functions fitted to K2 141 data.
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As we can see in Figure 3.8, the gap corresponds to 5.3 days, where the spacecraft
was in a safe mode state. The spline function we defined here was split into two parts,
the first being to the data before the gap, and the second to the data after the gap.
Each part of the data was then normalized with its corresponding spline function.

Figure 3.9: Obtained phasefolded lightcurve of K2 141-b after all the data reduction.
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3.5 Fitting Technique

In choosing a method to fit our phase curve model to photometry, we need to

consider several factors. Chief among these is how to cope with parameter degeneracy,

which occurs when multiple parameters have a similar effect on the resulting model.

For instance increasing the radius of the planet R p or increasing the day-side planet

temperature T day both serve to increase the amplitude of the thermal contribution

to the systems light curve. Temperature and albedo are degenerate parameters, as

they can be used interchangeably to produce the same effect. The difference between

a bright cool planet, and a dark warm planet, is difficult to determine.

In such a case, a fitting routine may have difficulty deducing the correct pair of pa-

rameter values. Instead, the routine may return one parameter value inflated and the

other depressed, a combination that may give an overall thermal amplitude similar

to that of the correct values. The addition of transit analysis to our assessment gives

us another probe for the radius value, thereby eliminating the mentioned degeneracy,

Without this additional transit constraint,planetary albedo, temperature, and radius

would be triple degenerate parameters. Perhaps a convenient way of constraining

this degeneracy would be to calculate a minimum expected temperature based on

flux received from the star at the planets orbital distance. The temperature could

potentially be warmer than this, assuming the atmosphere traps heat, but would not

go beyond this lower bound. We will implement this constraint in future models.

An equally important issue is ensuring the fitting routine actually finds the best

fitting set of parameters. Such algorithms aim to minimize the residuals, the absolute

difference between a model and data. As with most optimization algorithms, fitting

routines often times suffer from the tendency to return a best-fit model that actually

corresponds to a local minimum in the residuals, rather than the global minimum.

Once in a local minimum, many algorithms have a difficult time extracting them-
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selves, since the surrounding residual gradient serves to keep them in the minimum.

If the fitting routine cannot escape, it will output incorrect parameter values that

correspond to a local minimum in residuals rather than a global minimum.

Monte Carlo Markov Chain Method

In an attempt to avoid these issues, we opt to implement a Markov chain Monte

Carlo (MCMC) fitting routine (Crossfield (2015),Esteves et al. (2013)). MCMC pop-

ulates a model parameter space with one or more walkers, which execute a random

walk, evaluating the goodness of fit at each step. Theoretically, the walkers will con-

verge to the best-fitting parameters. There are many implementations of the MCMC,

varying in computational intensity and implementation of the random walk. In this

work we use the Affine Invariant MCMC, which is an accessible tool in python that

we used to fit the model into our data. This fitting procedure is further explained in

Appendix A.

In the next chapters, we proceed our work by fitting the data of wasp 104-b and

K2 131-b by the models of (Serrano 2018) and (Faigler and Mazeh 2011). We compare

both models’ results to the literature and proceed by finding more phasecurves by

the appropriate model.
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Chapter 4

Testing Models on Wasp 104b
In this chapter we present the results obtained from fitting the models of Serrano

(2018) and the model of Faigler and Mazeh (2011) to the data of wasp 104. We

compare our results to the values presented in the literature.

4.1 Serrano’s Model

For the first model, the total number of parameters used for the lightcurve is 15,

out of which we fix the stellar parameters that are previously published (R∗, M∗,

Teff ). For planets with detected phasecurves, they are close in planets that are grav-

itationally locked to their host star, and thus remain in a circular orbit. So we fix the

eccentricity to zero. We also fix the values of the limb and gravitational darkening

coefficients using values from the tables provided by (Claret and Bloemen 2011). The

fixed parameters and their corresponding values are presented in Table 4.1.

We set the prior distributions for the remaining parameters to be a normal dis-

trution for the first detected time of transit (t0) and the published orbital period.

The median and the standard deviation of the distributions were chosen to be equal

to the published values and their corresponding uncertainties. The prior distrbutions

for the rest of the parameters are set to be uniform random distributions while taking

into account the physical limitiations. The prior distributions for each parameter is

presented in Table 4.2

The remaining free parameters, are 7: planetary radius, semi major axis, incli-

nation, planetary mass, albedo, secondary eclipse depth, and time of first secondary

eclipse detection. We choose the number of walkers to be 30 walkers , then the MCMC
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is ran twice. The first run is done over 10,000 iterations. We disregard the first few

iterations (15 % of the chain) as a burn in phase. In this phase, the walkers are

randomly wandering through the parameter space and the ”walks” they perform are

quiet chaotic. After the first 10,000 iterations are done, we take the median value of

each parameter, create a new initial normal distrubution around that median, with

a standard deviation corresponding to the 68th percentile. The second run is then

done over the new distrubiution for another 10,000 iterations. After the runs are

done, the fitted values are taken to be the median value of every parameter’s chain.

The uncertainty of this value is the value of the 68th percentile,(1σ). The results of

the fit are presented in Table 4.3

Fixed Parameters Used Value Source
eccentricity 0 adopted

R∗ 0.94 R� (Smith 2014)
M∗ 1.011 M� (Smith 2014)
Teff 5450 K (Smith 2014)

u1 (linear limb dark. coef.) 0.6421 (Claret and Bloemen 2011)
y (gravitational dark. coef.) 0.4247 (Claret and Bloemen 2011)

Table 4.1: Fixed Parameters introduced to the MCMC fitting process of wasp 104.
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Parameter Prior Distribution

Ti N (57935.0702321, 8.6× 10−6 ) Julian Days

Period N (1.75540636, 1.4× 10−7 ) days

Planetary Radius Random Uniform [0.1,0.3] R∗

Semi major axis Random Uniform [5,7] R∗

inclination Random uniform[80,90] degrees

Planetary Mass Random Uniform [1,1.5] MJ

Geometric Albedo Random Uniform[0,0.2]

Secondary Transit Depth Random Uniform [0,100] ppm

Time of first secondary transit N (ti+per/2, σti+σper)

Table 4.2: Prior distributions used for parameters of wasp 104 in model 1.
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Figure 4.1: A triangle plot, showing the one-dimensional and two-dimensional poste-
rior distributions for the MCMC run of model 1 to the data of wasp 104.
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The fitted parameter are taken to be the median value of every parameter chain.

As for the uncertainty,

Parameter Fitted Value Published Value

Intial time of transit (Julian Days) 57935.0702 ± 0.000017 57935.0702321 ± 0.0000086

Orbital Period (days) 1.75540635 ±0.0000003 1.75540636 ± 0.00000014

a (au) 0.022 ± 0.00037 0.0286 ± 0.00047

inc (deg) 80.44 ± 0.023 83.612 ± 0.026

Rp (RJ) 1.21 ± 0.00125 1.106 ± 0.019

Mp (MJ) 1.21 ± 0.067 1.311 ± 0.053

Geometric Albedo 0.0036 ± 0.0041 Upper limit of 0.03

Table 4.3: Comparison between published values, and values obtained by fitting Ser-

rano’s model to wasp 104.
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Figure 4.2: Phase-folded light curve of WASP-104. The red line is the fitting MCMC
transit model. Shown in the lower panel are the residuals after fitting the transit
model.

Figure 4.3: Phasefolded phasecurve of WASP-104, binned by a factor of 50. The red
line is the fitting MCMC for the first phasecurve model.
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4.1.1 Results

The fitting of the first model to the data of wasp 104 was successful as all the

chains converged to one value (See FigureB.1). The convergence is reassured in the

triangle plot(Figure 4.1, since all parameters have a peak in the posterior distribution

around one value only, this indicates convergence and the absence of degeneracy for

any parameter. Using the model in Serrano (2018) resulted in recovering the mass

for wasp 104 b to be:

Mp = 1.21± 0.067MJ

. The obtained value is consistent with the published value within uncertainties.

As for the geometric albedo, the fact that the uncertainty is greater than the value

itself, this indicates that there was no significant detection of the reflection light

comming from the planet, and thus the chain never converged. However, if we take

the 98th percentile of the values taken by the walkers, we obtain an upper limit of

0.008. Močnik et al. (2018) obtained an upper limit of 0.03 for the geometric albedo.

They argued that the emission phasecurve signal (from the thermal emission of the

planet) would superimpose with reflection and increase its amplitude. Therefore, the

true geometric albedo is likely to be significantly lower than the upper limit they

recovered.

4.2 Faigler & Mazeh’s Model

For the second model, the total number of parameters used for the lightcurve is 13,

out of which we fix the eccentricity to 0. We also fix the values of the limb darkening

coefficients using values from the tables provided by (Claret and Bloemen 2011). We

set the initial distributions to be:

-Normal distribution for the orbital period and the time of the first transit.

-Uniform distribution for the remaining parameters:planetary radius, semi major axis,

inclination, secondary eclipse depth, reflection coefficient(a1c), beaming coefficient(a1s),
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and ellipsoidal coefficient (a2c).

Also in this model the mcmc is ran twice. Each run is done over 10,000 iterations.

Again, we choose the number of walkers to be 30 walkers. After the runs are done,

the fitted values are taken to be the median value of every parameter’s chain. The

uncertainty of this value is the value of the 68th percentile.

Parameter Prior Distribution

Ti N (57935.0702321, 8.6× 10−6 ) Julian Days

Period N (1.75540636, 1.4× 10−7 ) days

Planetary Radius Random Uniform [0.1,0.3] R∗

Semi major axis Random Uniform [5,7]R∗

inclination Random Uniform [80,90] degrees

Fsecondary Random Uniform [0,100] ppm

reflection coefficient(a1c) Random Uniform [0,100] ppm

beaming coefficient(a1s) Random Uniform [0,100] ppm

ellipsoidal coefficient (a2c) Random Uniform [0,100] ppm

Table 4.4: Prior distributions used for parameters of wasp 104 in the Mazeh &

Faigler’s model.
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Figure 4.4: A triangle plot, showing the one-dimensional and two-dimensional poste-
rior distributions for the MCMC run of model 2 to the data of wasp 104.



60

Parameter Fittted Value Published Value
Aellip (ppm) 6.9 ±2.2 7.48 ±2.49
Abeam (ppm) 4.2±1.9 1.2 ±1.76
Arefl (ppm) 4.8 ±2.1 3.72 ±2.43

Table 4.5: Comparison of obtained parameters for Wasp 104-b using model 2.

Figure 4.5: Binned phasefolded phasecurve of WASP-104. The red line is the fitting
MCMC for the second phasecurve model.

4.2.1 Results

The fitting of the second model to the data of wasp 104 was also successful as all

the chains converged to one value (figure(B.2). The convergence is reassured in the
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triangle plot (figure 4.4), where no parameters showed degeneracy.

Using the second model we obtain an ellipsoidal amplitude of 7.48 ± 2.49 ppm,

consistent with the published value within uncertainties. Using the limb and gravita-

tional darkening coefficients from (Claret and Bloemen 2011), and substituting them

in 2.7 we get αellip = 1.42. Substituting this value along with the obtained elliptical

ampitude in 2.6, and using the obtained orbital parameters from the MCMC fitting,

we get a mass of:

Mp = 1.6± 0.4MJ

The obtained mass agrees with the published value (1.311 ± 0.053 MJ) within uncer-

tainties. It also agrees, within uncertainties, with the mass obtained using the first

model (Mp= 1.21 ± 0.067 MJ).

In this model the error on the beaming coefficient is greater than the value itself,

indaicating that the effect is small and could not be constrained, and therefore an

insignificant detection of this phenomenom.

As for the reflection coefficient, sunstituting it in Equation 2.11, and using the

orbital parameters obtained from the MCMC fitting, we get a geometric albedo of:

Ag = 0.0062± 0.004

As a conclusion, testing models 1 and 2 on wasp 104 gave consistent results. Both

models were unabale to detect a clear reflection signal, but they were able to detect

significant ellipsoidal modulations. They were also able to recover a planetary mass

that is consistent with the published value. We proceed by further testing these

models on another published phasecurve in the K2 data, it corresponds to the system

of K2 141.
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Chapter 5

Testing Models on K2-141 b
As seen in chapter 3, K2 141 is a very active star, the attempt of removing stellar

activity by using a spline function without removing the planetary signal is tricky.

In this chapter we present our attempts in fitting both models to the data of K2 141

after reducing the data, and removing the stellar activity.

5.1 Serrano’s Model

Planet b rotates at a very short period, and at a very close distance to the star

(Malavolta 2018), this close in planet is gravitationally locked to its host star, and

thus remain in a circular orbit. Therefore we fix the eccentricity to 0. We also fix the

stellar parameters that are previously published (R∗, M∗, Teff ). The values of the

limb and gravitational darkening coefficients are fixed to the values obtained from the

tables provided by (Claret and Bloemen 2011).

Fixed Parameters Used Value Source
eccentricity 0 adopted

R∗ 0.681 R� (Malavolta 2018)
M∗ 0.708 M� (Malavolta 2018)
Teff 4599 K (Malavolta 2018)

u1 (linear limb dark. coef.) 0.693 (Claret and Bloemen 2011)
y (gravitational dark. coef.) 0.15 (Claret and Bloemen 2011)

Table 5.1: Fixed Parameters introduced to the MCMC fitting process of K2-141.
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As for the rest of the parameters in this model, the prior distributions of each

parameter is shown in Table5.2.

Parameter Prior Distribution

Ti N (5744.07160, 2.2× 10−4 ) Julian Days

Period N (0.28, 1.5× 10−4 ) days

Planetary Radius Random Uniform [0.1,0.2] RJ

Semi major axis Random Uniform [1,5] R∗

Inclination Random uniform[80,100] degrees

Planetary Mass Random Uniform [0.001,0.1] MJ

Geometric Albedo Random Uniform[0,0.5]

Secondary Transit Depth Random Uniform [0,100] ppm

Time of first secondary transit N (ti+per/2, σti+σper)

Table 5.2: Prior distributions used for parameters of K2 141 b in Serrano’s model.
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The obtained parameters of fitting Serrano’s model to the reduced data of K2 141

are presented in Table 5.3.

Parameter Fitted Value Published Value

Intial time of transit (Julian Days) 57744.0716 ± 0.0004 57744.07160 ± 0.00022

Orbital Period (days) 0.28033 ±0.0000006 0.2803244 ± 0.0000015

a (R∗) 2.34420198 ± 0.009 2.292 ± 0.05

inc (deg) 90.027 ± 2.89 86.3 ± 3

Rp (R∗) 0.019 ± 0.00009 0.02 ± 0.00046

Mp (MJ) 0.075 ± 0.017 0.016 ± 0.0013

Geometric Albedo 0.006 ± 0.01 0.30 ± 0.06

Table 5.3: Comparison between published values, and values obtained by fitting model

1 to K2-141.

Using Serrano’s phasecurve model on the data of K2 141 b, the planetary mass is

obtained to be

Mp = 0.075± 0.017MJ

. This value does not agree with the published mass. The model also failed to detect a
significant reflection modulation as was proposed by Malavolta (2018). This discrep-
ancy raises two hypotheses. Either the model is unable to detect the phasecurve when
the noise level is significant, or that the data processing did remove the phasecurve
modulation. We try to resolve this issue by fitting the data of K2 141 by the model
of Faigler and Mazeh (2011). In their work, they tested the model and were able to
recover phasecurves of planets orbiting stars as active as K2 141 (K6222 and K8064).
If we were able to recover a phasecurve using this model, we then know that the first
model has limitations and that the data processing did not remove modulations that
correspond to the phasecurve.
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Figure 5.1: Binned phasefolded phasecurve of K2-141 b. The red line is the fitting
MCMC for Serrano’s phasecurve model.

One thing we didnt take into account in this specific case, is the low number of

data points in the transiting phase. The exposure time of kepler spacecraft is 30

minutes per picture. This planet has a very short orbital period, the duration of the

transit is around 1.5 hours (Malavolta 2018), this would mean we would have as few

as 2 data points per transit. Over sampling should have been done on the data in

order to achieve a better fit.
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5.2 Faigler & Mazeh’s Model

Our second attempt in detecting the phasecurve of K2 141 was done by fitting

model 2 to the reduced data. (Faigler and Mazeh 2011) We also fix the same param-

eters as we did in model 1 (table 6.1). The obtained parameters are shown in the

table below.

Parameter Fitted Value
Aellip (ppm) 5.8 ± 2.079
Abeam (ppm) 0.09 ± 0.1
Arefl (ppm) 26.44 ± 2.28

Table 5.4: Parameters obtained from the MCMC fitting of model 2 to the data of K2

141.

Similar analysis as in section 4.2.1 yields to a planetary mass of:

Mp = 0.047± 0.016MJ

The obtained mass agrees with the published value (0.016 ± 0.0013 MJ) within less

than 2σ.

The reflection phenomenom is detected significantly with respect to the other two

phenomenas (26.44 ppm). The analysis of the reflection amplitude yields to a geo-

metric albedo of:

Ag = 0.4± 0.03
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Figure 5.2: Binned Phasefolded phasecurve of K2-141 b. The red line is the best
fitting MCMC for the second phasecurve model.

5.3 Analysis

Serrano’s model failed to recover a mass that agrees with the published one, while

Mazeh & Faigler’s model found a mass that agrees with the published one within

2σ. This allows us to raise questions on the limitations of Serrano’s model. Further

testings should be done in order to test the model’s effectiveness and limitations with

different planetary masses. One could progress this work and find a lower limit for

the detectable mass using this model.

The reflection phenomenom was succcessfully detected using Mazeh’s model ,

when Serrano’s model failed. This could indicate that model 1 fails to detect phase-

curves when the data is as scattered as it is in the data of K2 141. One could also
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proceed with testing Serrano’s model and test its limitations in recovering phase-

curves at different noise levels. Further studies should be done on this system. A

different approach in removing stellar activity could be done, to get a better normal-

ized lightcurve.

In the following chapter we proceed our work by searching through the data of

K2, in the aim to find phasecurves that are not previously detected, and determine

the planetary mass and geometric albedo.
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Chapter 6

New Discoveries and Conclusions
In order to search for phasecurves in the K2 data, we head to The Extraso-

lar Planets Encyclopaedia (http://exoplanet.eu/). We filter the entries in order to

choose confirmed planets from the K2 mission, detected via the transit method. We

then scan through the entries and choose planets that have a short orbital periods

and are in close orbits around their host star (a/R∗) < 10 . Such planets are the ones

that allow us to detect phasecurve modulations.(Esteves et al. 2013) We then head

to the MAST archive (archive.stsci.edu/k2/search retrieve.html) in order to check in

which campaign was this planet observed. Once we have the planets name (known as

EPIC ID) and the campaign in which it was observed in, we download the data that

corresponds to that planet from the POLAR database at the center of astrophysics

in university of Porto (CAUP). We download the file that has not been detrended

(without the removal of stellar activity).

After retrieving the files, we start the data processing described in section 3.2 as

an attempt to remove stellar activity. Once we have the normalized light curve, we

phasefold the lightcurve onto itself using the published orbital period. We mask the

transit, and bin the data and then visually inspect the phasefolded lightcurve to see

if any modulation is present in the out of transit phases.

6.1 K2 31-b

One planet we came across to have a visually distinguishable phasecurve modu-
lation is K2 31b. K2-31b is a short-period giant planet transiting a V=10.8 mag star
at a period of 1.26 days. K2 31 was obseverd by K2 for about 80 consecutive days as
part of Campaign 2 between August 23 and November 13 2014. (Grziwa 2016)
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Figure 6.1: Raw Lightcurve of K2-31

Figure 6.2: Normalized lightcurve of K2-31 after removing stellar activity and outliers.
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Figure 6.3: Phase folded lightcurve of K2 31-b.

The out of transit lightcurve seems to have some modulations. We preceed by

fitting model 2 to the data of K2 31-b.

Fixed Parameters Used Value Source
eccentricity 0 adopted

R∗ 0.78 R� (Grziwa 2016)
M∗ 0.91 M� (Grziwa 2016)
Teff 5280 K (Grziwa 2016)

u1 (linear limb dark. coef.) 0.514 (Claret and Bloemen 2011)

Table 6.1: Fixed Parameters introduced to the MCMC fitting process of K2-141.
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Parameter Prior Distribution

Period N (1.257850 , 0.000002 ) days

Planetary Radius Random Uniform [0.01,0.5] R∗

Semi major axis Random Uniform [4,8]R∗

inclination Random Uniform [60,90] degrees

reflection coefficient(a1c) Random Uniform [0,100] ppm

beaming coefficient(a1s) Random Uniform [0,100] ppm

ellipsoidal coefficient (a2c) Random Uniform [0,100] ppm

Table 6.2: Initial distributions used for MCMC fitting of model 2 to the data of K2

31 b.

Parameter Fitted Value Published Value

Orbital Period (days) 1.2578 ± 0.0000015 1.257850 ± 0.000002

a (R∗) 4.5402 ± 0.02 6.05 ± 0.5

inc (deg) 73.6 ± 0.9 79.9 ± 0.8

Rp (R∗) 0.3 ± 0.07 0.106 ± 0.035

Reflection Coefficient (ppm) 5.1 ± 1.49 -

Beaming Coefficient (ppm) 5.08 ± 1.4 -

Ellipsoidal Coefficient (ppm) 24.3 ± 1.5 -

Table 6.3: Comparison between published values, and obtained values from the

MCMC fitting of Mazeh & Faigler’s model to the data of K2-31 b.
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Figure 6.4: Phase-folded light curve of K2 31. The red line is the best-fitting MCMC
transit model.

Figure 6.5: Binned out-of-transit lighcurve of K2-31b with the best fitting MCMC
phasecurve model of Mazeh & Faigler.
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The detection of the three physical contributions to the phasecurve is clearly suc-

cessful. From them we try to recover the mass of K2-31b as well as its geometric

albedo. Since the detections of both the beaming and the elliptical effects are suc-

cessful, we can find the mass of the planet using both amplitudes independantly.

From the ellipsoidal detection, we first calculate αellip. To do this we substitute the

values of u and y presented in table (6.1) in equation (2.7).

αellip = 1.37

Now that we have αellip, we substitute it in equation (2.6) to get a planetary mass of:

Mp = 2.02± 0.18MJ

To find the planetary mass from the beaming effect we use equation (2.9), where we

substitute αbeam by 1, which corresponds to observations made by Kepler as proposed

by (Faigler and Mazeh 2011).

Mp = 2.065± 0.5MJ

The published planetary mass obtained from the radial velocity study (Grziwa

2016) is 1.774 ± 0.079 MJ . The planetary mass obtained using both methods is

consistent with the published values within uncertainties.

Next we use the detected reflection ampliude in an attempt to find the geometric

albedo. This is done by substituting the reflection amplitude in equation (2.12) .

Ag = 0.001± 0.0003

Our analysis yield that K2-31b has a mass of approximately 2MJ and a radius of

2.34RJ , orbiting at a short distance from its host star (0.01 au). These properties

are the properties of a hot Jupiter. Hot jupiters are tidally locked to their hosts stars

and tend to have permanent day side and permanent night side. This means that
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the day side is so hot clouds can’t form, and clouds are typically very reflective, as

Venus demonstrates. It’s also too hot for ice the kind of surface that makes the moon

Enceladus so bright. The fact that K2 31-b has a very low albedo means that it

almost doesn’t reflect much light in the visible band. It may indicate that it has a

thick atmosphere which absorbs light in the visible spectrum, making the planet very

dark on the day side. On the night side, away from the starlight, clouds may form,

but that side never sees daylight, so there’s no light nearby for it to reflect.(Demory

and Seager 2011)

Another interesting property of this planet, is its low mean density. From its mass

and radius, we can approximate its density to be 0.156 ρJ . This could be explained

by the location of the planet. Being so close to its star, it is receiving very intense

levels of flux. The flux will heat up the planet and cause its atmosphere to inflate,

resulting in a larger radius and lower density.

6.2 Conclusions

The goal behind this work is to detect phasecurve modulations in the data of K2.

To do this we searched in the confirmed planets of K2, and chose the planets that

are good candidates to produce a phasecurve (massive planets orbiting close to their

stars). Once we selected those planets we had to go through several data processes,

in order to remove stellar activity and normalize the light curves. Finally, we fit the

light curves with models that best describe the physics behind the phasecurve, and

see if we can detect any modulations. Detection of these modulations will allow us

to determine the planetary mass, and estimate the geometric albedo of the planet.

These parameters are important in finding the density of the planet, and having an

idea of what its made up. Hence this method can achieve a good characterization of

the planet, all done photometrically.
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In this project we were able to test two different models that represents the three

physical contributions to the phasecurve. The planetary reflection, the ellipsoidal

modulations, as well as the beaming effect. The first model we tested, Serrano’s

model, was previously implemented only to simulate planetary signals. It was never

tested or fitted on real data. Throughout our testing we showed that the model is

able to represent the phasecurve modulations fairly well if the data is not affected by

much noise (Wasp 104). The model fails to recover a phasecurve when the mass is

relatively small, or when the data contains significant noise (K2-141). Further tests

should be done in order to test the limitations of the model. For example one could

assemble a data comming from different planetary masses, and set a lower limit on

the mass that results in recovering the phasecurve. One could also sample different

noise levels on a data set, and set a threshold on which the model can still recover

the phasecurve

The second model we used, is a previously implemented model, and it has been

used on actual data before. The fact that the second model was able to detect the

phasecurves even when the data has some noise, assures us that the data processing

was done correctly, and it didnt wash away any small scaled fluctuations. This model

was able to recover both phasecurves that it was tested on. We procedeed our phase-

curve hunting using this model.

Our search in the K2 data allowed us to discover a new phasecurve that hasn’t

been discovered before. The model recovered an amplitude for all three effets which

allowed us to estimate the planet’s mass to be twice that of Jupiters. The photometri-

cally obtained mass matches with the previously published one, which was measured

using the radial velocity method. This allows us to conclude that determining masses

for some planets, to a relatively accurate value can be done photometrically with the

already available data, without wasting time on the follow up spectorscopic observa-
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tions.

We were also able to recover a small geometric albedo for K2-31 b which indicates

its low reflectivity in the visible band. We note that previous spectroscopic studies

showed that a big number of Hot Jupiters have an atmosphere that contains Sodium,

Potassium, Titanium(II) oxide (TiO), and Vinadium(II) oxide (VO). The presence of

these elements in the atmosphere of a planet will cause significant absorption in the

optical wavelengths which will lead to a low geometric albedo. In order to test this

hypothesis, we need a high resolution spectroscopic study to check for the presence

of these absorption features in the atmosphere of K2 31-b. (Demory and Seager 2011)

As a final conclusion, this study offers a photometric way to detect planets around

host stars even when they dont transit. The phasecurve modulations could be de-

tected even if the planet does not transit between the star and the observer. It

provides a mean to determine planetary masses and have an idea of what the planet’s

atmoshphere is made up of.

The next step in this project is to improve what we already have in order to con-

tinue. For example, different analysis on lightcurves of active stars should be done in

order to remove the stellar activity. Several studies have used the Guassian Regres-

sion process in order to simulate a signal that corresponds to stellar activity.(Angus

2018) Gaussian process measures the similarity between points (the kernel function)

to predict the value for an unseen point from the data. The prediction is not just

an estimate for that point, but also has uncertainty information, which is a one-

dimensional Gaussian distribution. In future work, we will try to simulate the stellar

activity using guassian regression process, in an attempt to reduce the noise obtained

when normalizing the data of active stars.



78

The work presented here is only a first step towards a bigger project. Our upcom-

ming work consists of going through every possible candidate in the confirmed K2

planets and detect more phasecurves in an attempt to characterize more planetary

system photometrically.
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appendix A

Affine Invariant MCMC
In this section we further explain the implementation of the Affine Invariant

MCMC. The affine-invariant (AI) MCMC (Goodman and Weare (2010); Foreman-

Mackey et al. (2013)) attempts to resolve parameter degeneracy by using an ensemble

of walkers, and proposing steps in multiple dimensions. To this end, the proposal posi-

tion Y for each walker is selected from a proposal distribution connecting that walkers

current position to that of another randomly selected walker. After the MCMC is

well into its run, this proposal selection method will better enable any roaming walk-

ers to join walker clumps surrounding a region of high probability. That the walkers

make non-orthogonal steps also enables more efficient convergence, as the ensemble

can more directly move through non-orthogonal, degenerate subspaces.

To demonstrate the effectiveness of the AI MCMC, we consider the process of fitting

Figure A.1: Solid blue line: Linear function from which data was derived. Black
dots: Data used in MCMC fitting routine, created by adding Gaussian random noise
to evenly-sampled points from the linear function. Solid red line: Best-fitting linear
function as given by the AI MCMC fitting routine.
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a linear trend. The data set in figure A.1 was created by adding random Gaussian

noise to points uniformly sampled from a line. An AI MCMC routine using 100 walk-

ers was run for 500 steps. The results of a run are commonly visualized using step

figures and triangle plots. Figure A.2 is a set of step figures, that is, visualizations of

the walkers movements through each dimension of the parameter space. Each black

line corresponds to the path of a single walker. Tracing a lines path through the steps

Figure A.2: Step figures for linear parameters m (top panel) and b (bottom panel),
tracing the paths of the AI MCMC walkers through parameter space at each step in
the fitting routine. The red overplotted lines indicate the true values m = 2 and b =
1.

of the run (x-axis) shows the various parameter values occupied by the walker; in this

case, the slope m and y-intercept b. The walkers were initially uniformly distributed

on the interval [5, 5] for both m and b. The step figure clearly demonstrates the

convergence of the walkers to best fit values from this uniform initial distribution.

While step figures assist in evaluating the convergence of an MCMC, a triangle plot

provides a means to evaluate a fits accuracy. Figure A.3 is a triangle plot of the linear

fit, with the first 39 steps from each walker discarded as a burn-in, so as to remove

any influence of the caotic starting distribution. The histograms display the proba-
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bility distribution (PD) for each parameter, all the positions occupied by the walkers

following the burn-in phase. For constrained parameters, these one-dimensional PDs

should take on a semi-Gaussian shape. Overlaid on the histograms are dashed lines

that correspond to the 16th, 50th, and 84th percentiles, effectively showing the me-

dian value with 1σ errors. The solid blue line corresponds to the set of best-fitting

parameters found by the routine. This ideally corresponds to the median value.

The scatter plot is a two-dimensional PD that demonstrates the level of corre-

lation, or covariance, between pairs of parameters. Uncorrelated parameters will

show circular scatter, or if the scaling of one parameter is dramatically different than

the other, elongation in either the horizontal or vertical directions. Degenerate pa-

rameters manifest angled trends, reflecting that a change in one parameter can be

well-compensated by altering the value of the other. Such is the case for the parame-

ters m and b in our linear fitting example. The best-fit line given by the MCMC run

is plotted in red in Figure 4.2, and agrees well with the original linear function.

The affine invariant sampling MCMC (Goodman and Weare (2010); Foreman-

Mackey et al. (2013)) links together the position of two random walkers across the

parameter space. Each step taken by one walker is selected from a proposed distri-

bution connecting its position in parameter space to its partners. This is particularly

useful for probing anisotropic probability distributions with high numbers of dimen-

sions. The classic problem faced by many probability density sampling routines is

commonly visualized as a highly anisotropic probability density, defined as (Foreman-

Mackey et al. 2013)

π(x) ∝ exp

(
−(x1 − x2)

2ε
− (x1 + x2)

2

2

)
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Figure A.3: A triangle plot, showing the one-dimensional and two-dimensional poste-
rior distributions for the MCMC run. The best-fitting parameters are indicated by
the solid blue lines, while the median values and 1 errors are given by the dashed
black lines.

where ε is a proportionality constant. This definition of probability density is sensitive

to parameter constraints ofN2 parameters,which makes this problem much worse with

higher dimensions (Foreman-Mackey et al. 2013). The problem can be simplified by

the affine transformation of y1 = x1−x2√
ε

, y2 = x1 + x2. Hence invariant sampling is

capable of performing well under all linear transformations, and therefore reducing

degeneracy between parameters.
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appendix B

MCMC Plots

B.1 Step Figures

Figure B.1: Step figures that show the walkers through the parameter space at each
step of the fitting routine of Serrano’s model to the data of wasp 104.
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Figure B.2: Step figures that show the walkers through the parameter space at each
step of the fitting routine of Mazeh & Faigle’s model to the data of wasp 104.
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Figure B.3: Step figures that show the walkers through the parameter space at each
step of the fitting routine of Serrano’s model to the data of K2 141-b.
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Figure B.4: Step figures that show the walkers through the parameter space at each
step of the fitting routine of Mazeh & Faigle’s model to the data of K2 141-b.
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B.2 Triangle Plots

Figure B.5: A triangle plot, showing the one-dimensional and two-dimensional pos-
terior distributions for the MCMC run of Serrano’s model to the data of K2 141-b.
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Figure B.6: A triangle plot, showing the one-dimensional and two-dimensional pos-
terior distributions for the MCMC run of Mazeh & Faigler’s model to the data of K2
141-b.


