TASK ALLOCATION IN PARALLEL AND DISTRIBUTED COMPUTER SYSTEMS

By

JEAN G. MINA

A Thesis
Submitted in Partial Fulfillment of
The Requirements for the Degree of
Master of Science in Computer Science
Department of Computer Science
o Faculty of Natural and Applied Sciences
Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

July 1998



TASK ALLOCATION IN PARALLEL AND DISTRIBUTED COMPUTER SYSTEMS

By

Jean G. Mina

Approved:

(~oxoNY  Cload) W
Fouad Chedid: Associate professor of Computer Science and Chairperson.
Adyvisor.

A

Y ‘WY
Marie mssistalp Professor of Computer Science.

Member of Committep.

/s

Khaldoun Khaldi: Assistant professor of Computer Science.
Member of Committee.

”d;éorgyl\/l. Eid: DeanLFaculty of Natural and Applied Sciences.
Member of Committee.

Date of thesis defense: July 3, 1998



Copyright ©1998
by
Jean G. Mina



ACKNOWLEDGMENT

I would like to thank the committee members for reading the draft of the thesis and
contributing their helpful comments.

Sincere gratitude goes to my advisor, Dr. Fouad Chedid, whose constant
encouragement and motivation made this work possible. The fruitful discussions we had
greatly increaséd my understanding of the topic, h_‘elping me to reach these results.

From a very early age, my parents taught me ‘to appreciate the value and the
importance of education, and that learning is a continuous process. For that, and for their

love and support, [ am very grateful.



ABSTRACT

The allocation problem is known to be NP-Hard in the most general case where both
the number of modules and the number of processors is arbitrary, and it is also NP-Complete
in some of the restricted cases. Also, the gene_{al scheduling problem, where no restrictions
are imposed on the interconnection structure between modules, on the modules processing
times, and on the number of parallel processors, is NP-Hard in the strong sense. Even under
some restrictions, the scheduling problem is NP-Hard. In some other restricted cases, it is
known to be NP-Complete. In this thesis, we first review fifty algorithms on both the
allocation and the scheduling problem. Next, we suggest a reduced layered graph and a
variation of Bokhari’s [4,6,7] solution to the mapping chains of m tasks onto chains of #
heterogeneous processors to achieve better space complexity. We also suggest two heuristic
solutions for the same problem in both cases where processors are homogenous or
heterogeneous in  O(m) and O(nm) running time, respectively. We also adapt Lee and Shin
[24] approach, to optimal task assignment in homogenous systems having an n-dimensional
array or tree interconnection structure in the presence of attached tasks, on systems having a
star graph interconnection structure. We generate the neighborhood tree and solve the

problem with O(Nm3 ) running time where m is the number of tasks to be assigned, and N is

the total number of nodes (processors) in the star graph. We mention that the suggested
solution problem can be applied in the case of group graphs on any other type of graphs that

can be generated by a permutation of a set of symbols. Finally, we generalize our result for

systems having an arbitrary interconnection structure with a run time complexity of O(Nm3).



TABLE OF CONTENTS

LIST OF TABLES ......cvtitiiniienese ettt nenea e
LIST OF FIGURES........ccectimtieieiennnnnsie st s ens
CHAPTER
I. = DEFINING THE PROBLEM ....................... e
II.  DEFINITIONS AND NOTATIONS. .....ccoooiirrrteeercere e,
III. THE ASSIGNMENT PROBLEM.......cccocooimiireierirrreerereereiereeeeevenseenane
IV.  THE SCHEDULING PROBLEM .......ccecotviieiiiererereeeecteeeete e,
V. ANOTE ON THE ASSIGNMENT PROBLEM OF ARBITRARY
PROCESS SYSTEMS TO HETEROGENEOUS DISTRIBUTED
COMPUTER SYSTEMS .......ccriiiireieieeiririneeeresetee et ene e snens
VI. A VARIATION OF BOKHARI’'S LAYERED GRAPH
ALGORITHM FOR MAPPING CHAINS ONTO CHAINS IN O(m®n)
TIME USING A REDUCED LAYERED GRAPH OF O(mn) NODES
VII. A HEURISTIC ALGORITHM FOR MAPPING CHAINS ONTO
CHAINS OF A HOMOGENOUS AND A HETEROGENEOUS
PROCESSOR SYSTEM IN TIME O(m) AND O(mn)
RESPECTIVELY ....cooiiiiiiiniiiiiiiciciinr et esesse st snasaens
VIII. OPTIMAL TASK ASSIGNMENT IN HOMOGENOUS SYSTEMS
IN THE PRESENCE OF ATTACHED TASKS....ccccooniinenncrenennene
IX. A COMPARISON OF ASSIGNMENT AND SCHEDULING
ALGORITHMS ...ttt sves st sve e
X. CONCLUSION AND FUTURE RESEARCH ........cccocevveencnreennnen
REFERENCES ......cioiiiiiinienicineiiniciie ittt see e sne b

vi



Table 6.1

Table 6.2

LIST OF TABLES
Execution cost per module on each processor

Summary of results ............ccocveveiiveireennen.

vii

..........................................

..........................................

..........................



Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
F1g 5.6
Fig. 5.7
Fig.5.8
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 7.1
Fig. 7.2
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8

Fig. 8.9

LIST OF FIGURES

The clustering algOrithm ............c.ovuevieeieieeieieee e oo, 61
The graph of the worst case example..............co..veeeeereeeeeeeerereenser. 62
PSS 1 oottt e 63
PaSS 2 oot 63
PaSS 3 .ot r e, 63
PSS 4 ..ot ettt e 63
The cluster tree of the worst case example...............cccveeeeererveeereeennn., 64
The cluster tree of the worst case example as shown in Fig. 9 of [8]....... 64
A nine-module chain mapped onto a four-processor chain.................... 65
~ Bokhari’s layered graph for the problem of Fig 6.1........ocovveereveernnn.. 67
Improved layered graph of the problem of Fig 6.1 ..........cooveeuveeevevvnnnn.. 69
The reduced layered graph for the problem of Fig 6.1........cevvvevveeuenn... 70
The reduced layered graph of the problem in Table 6.1 ......ccvueeennn.... 71
A chain of 8 modules onto a chain of 3 homogenous processors............. 74
A chain of 8 modules onto a chain of 3 heterogeneous processors .......... 76
An example group graphs [1] c..cocuioviiiveiieieeieeereeeeeeeee et e e e 79
Star graphs S3aNA Sy .c.vevveeeeiieieeeieeeeee et e et e e st e e e eeaeeea 80
The neighborhood tree for Sy........ovivieeeiveeieeeecceeee e, 81
IMlustrative figures for Lemma 4 ...........ccocoevieiieeiereieeeceereeeeeenenae. 86
An example of TIG of 7 modules to be assigned t0 S3 .......ccovvvereveeennane. 87
Iteration 1 of the algorithm on the problem of Fig 8.5...........ccecoveverunnnen. 88
Iteration 2 of the algorithm on the problem of Fig 8.5.........cceoevereervvunnnn. 88
Iteration 3 of the algorithm on the problem of Fig 8.5........c.cccecevevrvennnen. 88
Iteration 4 of the algorithm on the problem of Fig 8.5..........cccccvereenennn. 89

viii



Fig.8.10  Iteration 5 of the algorithm on the problem of Fig 8.5..........ovvroveernea.... 89

Fig. 8.11  An optimal task assignment of the problem of Fig 8.5.........cocovvrrvervnn.... 89

ix



CHAPTERI
DEFINING THE PROBLEM

Early research in distributed computing focused on the idea of distributing a
computational load, having a well defined interconnection structure, over more than one
processor communicating through a well defined interconnection structure. The goal behind
this distribution seeks to achieve results such as: minimization of execution cost associated
with the computational load and interprocess cor;lmunication costs, good load balancing, and
high degree of parallelism. This latter contributes to the réduction of the overall processing
time of the load by efficient utilization of the available resources [25]. For this reason,
different algorithms are derived to provide for optimal or near-optimal distributions of the
load on the processors. In this thesis, we consider the case where distribution is static, i.e. it
remains unchanged until all the requirements of the computational load has been met. Such
algorithms require prior knowledge of precise data on the behavior of the computational load
and on its interconnection structure as well as the attributes and the interconnection structure
of the multiprocessor system. These information will be used by the algorithm at compile
time aiming to find a proper distribution. Depending on the nature of the problem and its |
computational load, a static distribution algorithm may lead to one of two solutions: (i)
mapping or matching modules to processors, and (ii) scheduling modules to processors.

Mapping or matching tasks to processors, also known as the assignment problem,
deals with the optimal assignment of a serial program or a parallel program to run on more
than one processor in order to optimize the running cost [4]. An example of a serial program
is a program that have a procedure which deals with floating point computation, and another
procedure which have symbol manipulation. In this case, the first procedure can be sent to a
powerful floating point processor, while the latter to a processor that handles symbol

manipulation. This solution is perfect if the overhead due to interprocessor communication,



caused by transfer of control and parameters between procedures not residing on the same
processor, is zero, which is never the case. )

In the case of a parallel program, two or more modules may execute concurrently for
different periods of time during the lifetime of the program. The purpose behind creating a
parallel program is to reduce the total execution time by distributing parts of the program that
~can run in parallel over different processors. In this case also, the overhead due to
interprocessor communication between modules assigned to different processors can be a
crucial factor.

Scheduling modules to processors, or simply task scheduling, is the process of
mapping each module of a parallel program to a processor and also to a starting time [14].
The scheduling goal is to minimize the total completion time of the parallel program by
providing for the shortest possible schedule on the specified interconnected set of processors
[14]. The resulting schedule specifies which module is assigned to which processor and the
order of execution of each module with respects to the other modules.

On the other hand, two types of distributed computing environments exist. The first is
a network of more or less autonomous machines. These machines may be either homogenous
or heterogeneous, and may have different computing cépabilities. Also, communication links
between these machines can be either homogenous or heterogeneous [4,6,7]. Such networks
are known as distributed processor systems [4]. The second is an interconnected collection of
special-purpose machines, known as parallel processor systems [4]. Moreover, processing is
considered parallel if interprocessor communications are very fast; otherwise, it is considered
distributed.  This distinction may vanish if we consider the use of optical media, and parallel
processors with slow communication speed.

In general, a module can be a collection of procedures or suBroutines, or one or more

data files. Links between different modules will insure transfer of control, and data access



between different modules. A module may also be a segment of a computational domain. In
this case, all processors execute the same program, but on different portions of the large
computational domain [3,4,6,7,27]. This is also a partitioning problem where each processor
is assigned a partition of the data to work on.

The aim of researchers in this area of distributed computing is to find efficient
algorithms that provides for optimal or near-optimal distribution of tasks onto processors in
the case of the assignment problem and that of the scheduling problem. However, efficient
algorithms are unlikely to be found in the general case and even in some of the relaxed or
simplified cases. The allocation problem is known to be NP-Hard in the most general case
where both the number of modules to be distributed and the number of processors is arbitrary,
and it is also NP-Complete in some of the restricted cases [4,6,7,10,25,27]. Also, the general
scheduling problem, where no restrictions are imposed on the interconnection structure
between modules, on the modules processing times, and on the number of parallel processors,
is NP-Hard in the strong sense. Even under some restrictions, the scheduling problem is NP-
Hard. In some other restricted cases, it is known to be NP-Complete [14,16,17,22].

Thus, it is important to identify the tractable cases in both problems and try to provide
efficient solutions for them. Also, for all intractable cases, it is reasonable to search for
efficient algorithms that finds near-optimal solutions and to study the behavior of such
algorithms under different inputs.

This research focuses on different aspects of both the assignment and the scheduling
problems where the allocation of a load is assumed to be static and duplication of the load on
other processors is not allowed.

This thesis is composed of ten chapters. Chapter II includes all the definitions and
notations. In chapter III, we review different aspects of the assignrﬁent problem. In chapter

IV, we review different aspects of the scheduling problem. Chapter V includes a note on the



assignment problem of arbitrary process systems to heterogeneous distributed computer
systems.  Chapter VI describes a variation of Bokhari’s layered graph algorithm for mapping
chains onto chains. Chapter VII suggests a heuristic algorithm for mapping chains onto
chains of a homogenous and a heterogeneous processor system. In chapter VIII, we solve the
problem of task assignment in homogenous systems in the presence of attached tasks.
Chapter IX includes a comparison of assignment and scheduling algorithms which we

reviewed in chapters II and III. The conclusfbn and topics for future research make up

chapter X.



CHAPTERII
DEFINITIONS AND NOTATIONS
Definition 1: A serial program is a program composed of sequential modules. One module is

active on one processor at one time, and modules can pass control to each other while the

programs executes.

Definition 2: In a parallel program, two or more modules may execute concurrently for

various periods during the life time of the prografh.
Definition 3: A chain-structured program is made up of m modules numbered from 1---m,

and has an intercommunication pattern such that module i is connected to modules i + 1 and
i-1.

Definition 4: A directed graph or digraph G = (V, E) consists of aset V' of vertices (nodes),
and a set E of ordered pairs of these nodes called directed edges, or simply edges. There is
a direction associated with each edge. The edge (x, y) extends from the tail node x to the
head node y.

Definition 5: The cardinality #n of ¥ is the number of vertices in V. The cardinality e of E

is the number of edges in E. The indegree of a node is the number of edges entering that

node. The outdegree of a node is the number of edges leaving that node. In a directed graph,
max(indegree) = max(outdegree) =n—1. The maximum number of edges is n{n—1).

Definition 5: A directed path from node s to node ¢ in a directed graph G = (V, E) isa
sequence of edges (s, p),( p,q),...(v, w), (w,t) , such that the tail of the first edge is s, the head

* of thelastis ¢, and for all except the last edge, the head of any edge coincides with the tail of

the edge immediately after it.



Definition 6: A node must be visited at most once in a directed path. If s coincides with ¢ ,
the path is called a cycle. A directed graph that does not have a cycle is called an acyclic
graph. The length of the path between two nodes is the number of edges in that path.

Definition 7: An undirected graph is a graph G = (V, E ) in which the edges have no
directions, and at most one edge connects two nodes. ¥ is the set of vertices, while E is the

set of unordered pairs of these vertices.

Definition 8: Two connected nodes of anundirécted graph are called adjacent. The edge

<x, y) is incident on the nodes x and y. The degree of a node is the number of incident

edges, and max(degree) — n—1. The maximum number of edges is n(n—1)/2.

Definition 9: A path from node s tonode ¢ in an undirected graph is a sequence of edges
<s, p),( p,q),...(v, w),(w,t) such that the first edge is incident on s , the last is incident on ¢,
and every pair of successive edges is incident on a common node. Also, repeated nodes are
not allowed. If s coincides with ¢, then the path forms a cycle. The length of a path is the
number of edges in the path.

Definition 10: A graph G, = (VS,ES) is called a subgraph of a graph G = (V, E) ifV isa
subset of V' and [, is asubsetof E. This notion applies to both directed and undirected
graphs.

Definition 11: An underlying graph results from ignoring directions and deleting duplicate
edges connecting two nodes of a directed graph.

Definition 12: A graph is called connected if a path exists between every pair of its nodes,
otherwise it is called disconnected.

Definition 13: A cutset or cut of a connected graph is a subset of the edges satisfying two
conditions: (i) removal of these edges disconnect the graph, and (ii) no proper subset of these

edges also satisfies (i). Property (ii) states that a cutset is a minimal subset of edges that must



be removed in order to disconnect the graph. If a graph G has two distinguished nodes s
and 1, and if a cutset breaks G into G, and G, such that s is in G, and ¢ in G,, then the
cutset is called an s-f cut. When the edges of an s-¢ cut are removed from the graph, nodes s
and ¢ are said to be disconnected from each other.

Definition 14: A weighted graph is one in which there is a real number associated (weight)
associated with each edge. The length or weight of a path in a weighted graph or a weighted
digraph is the sum of the weights of the edées in that path. The bottleneck weight is the
weight of the heaviest edge in that path. The weight of a cutin a weighted graph is the sum
of the weights on all edges in that cut.

Definition 15: The Ford-Fulkerson Maxflow-Mincut theorem states that the minimum cut,
denoted by minimum weight s-¢ cut or simply mincut, is equal to the maximum flow in the
network. The network can be a weighted directed or undirected graph. It can be viewed as
network transferring some commodity from s to 7. The flow through the network must obey
the following restrictions:

1. The flow through an edge cannot exceed its capacity. An edge carrying a flow that is
equal to its capacity is called saturated.

2. The flow entering a node must equal to the flow leaving a node, except for s and ¢ .

3. Node s has no flow entering it, node ¢ has no flow leaving it, and the flow leaving s
must be equal to the flow entering 7 .

4. In the case of weighted digraphs, the flow in an edge must be in the direction of the edge.
Definition 16: Gomory and Hu showed that in order to obtain maximal flows between all the

n(n—1)/2 pairs of nodes of a graph we should run the Maxflow-Mincut algorithm only n -1

times. The result of the »—1 running of the Maxflow-Mincut algorithm is used to build the



so-called Gomory-Hu tree, abbreviated as G-H tree. The G-H tree represents all maximal
flows between any pair of nodes in the graph, and all minimal cut separating two nodes.
Definition 17: An n-way cut is a set of edges which partitions the nodes of the network into 7
disjoint subsets with exactly one processor node in each subset and naturally represent an
assignment of tasks to processors. The cost of an n-way cut is the sum of the weights on the
- edges in the cut.

Definition 18: An undirected tree is a connected undirected graph which contains no cycle.
For n nodes, we must always have n~1 edges. Nodes with degree 1 are called leaf nodes.
A directed tree is a directed acyclic graph whose underlying graph is a tree.

Definition 19: An out-tree is a directed tree with all edges directed consistently outwards from
a specially designated node called root node. The root has indegree zero and all other nodes
have indegree exactly one. Nodes with outdegree equals to zero are called leaf nodes.
Definition 20: An in-tree is a directed tree with all edges directed consistently inwards to a
specially designated node called root node. The root node has outdegree zero and all other
nodes have outdegree exactly one. Nodes with indegree equals to zero are called leaf nodes.
Definition 21: A binary tree is an undirected tree where a designated root node has degree no
more than two and all other nodes have degree no more than three. The height of the tree is
the maximum distance between the root node and any leaf node.

Definition 22: Graphs with no constraints on the number of edges connecting two nodes are

called multigraphs.

Definition 23: A series-parallel program is an undirected multigraph which has two

distinguished nodes called the source s and the sink #, and which can be transformed into a
graph with just these two nodes s and ¢ connected by a single edge, by repeated applications

of the following replacement rules.

1. If two nodes have two parallel edges between them, replace these edges by one edge.



2. If a node b with degree 2 is adjacent to two nodes a and c, replace b and the edges
(a,),(5, ¢) with the single edge (a,c).
Some graphs can be transformed into a series-parallel graphs by adding suitable dummy

nodes and/or dummy edges.
Definition 24: A task graph is an in-forest if each task has at most one immediate successor.

- Definition 25: A task graph is an out-forest if each task has at most one immediate

predecessor.

Definition 26: An interval order is a task graph in whiéh the nodes can be mapped into
intervals on the real line and two nodes are related if their corresponding intervals do not
overlap.

Definition 27: A node with no predecessors has a depth of zero. The depth of any other node
is defined as the maximum number of edges between that node and any node with depth zero.
Definition 28: The level or bottom level of anode i is the longest path length from an exit
node to node i (including #). In a tree, for each node there is only one such path.

Definition 29: The top level of a node i is the longest path length from an entry node to node i
(excluding 7). In atree, for each node there is only one such path.

Definition 30: A ready task is a task with no predecessors or with all its predecessors already

executed.

Definition 31: A free node is a node with no predecessors or with all its predecessors already

scheduled.

Definition 32: Given an in-forest G = (V, E), the set of siblings S, is the set of all nodes in ¥

having a common child, denoted by child(S, )



Definition 33: The elapsed time of a module i is defined as the sum of execution cost of that
module and the communication costs with all its adjacent modules.

Definition 34: The overall elapsed time is defined as the maximum of the Jjob completion time
and the medium access time.

Definition 35: An n-dimensional homogenous array is composed of N(= n; x nzx---xn,,)
functionally-identical processors { Piky ok 1<k, <n,, forall i} with a communication link

between each pair of processors Di kg iy > Pisy oy, 1f and only if lk/ —-lj'=1 for some jth

coordinate and k, =k, for the other coordinates 1< i(¢ j)s n. The distance between any

two processors p, , ., and p, , , becomes ZJki —lil.
Definition 36: A cutset C; of the two-terminal network graph G, = (V,.j ,E ,].) is a set of edges

which when deleted, separate SA',j from YA]j such that .§'y. N f“,j =J, 5,]. ) fj/ =V, S, e.S:,.j,

~

and T, € fjj .S is called the source set and T, the sink set of the cutset. The weight of a

U

cutset is the total weight of the edges in the cutset.

Definition 37: For each ith coordinate, let C, be a set of (n,. - I) cutsets C;; each of which is

on the corresponding two-terminal graph G, i.e., C, = {C,j’lﬁ Jj< n,.}. Then C, is said ‘to
-- be admissible if no two cutsets in C, cross each other. The weight of C,, W(C,.), is the
total Weight of the cutsets in C, , i.e., W(Ci)= Z, W(C,.j).

Definition 38: Let C, be the set of all cutsets C,, ie, C, =UiC,.

= {C,.jll <i<n, 1<j< n,.} . Then, C, is said to be admissible if each C; is admissible. The

10



weight of C, is the total weight of the cutsets in C,, ie,

W(CA)= Z,»W(Ci) = ZZ, W(C,.j).

Definition 39: Let C, be a set of (N —1) cutsets C;s each of which is on the corresponding
two-terminal network graph G,. Then C, is‘"said to be admissible if no two cutsets in C,
~ cross each othe_r.

Definition 40: A component C of a graph G is any subgraph of G for which the following is
true: there are no edges among nodes of C and nodes of G— C. That is, C is the union of one
or more disjoint connected components of G.

Definition 41: The median of an out-forest G, u(G), is the height of some nth highest tree of

G plus one, where 7 is the number of available processors.

Definition 42: The high subgraph H; of a given out-forest G is the subgraph of G that
contains all the trees, with the height strictly greater than the median of G, i.e., p(G).
Definition 43: The low subgraph L; of G that contains all the trees of G that are of height
less or equal to the median p(G).

Definition 44: Suppose that G is a graph whose dependencies are delay dependencies. Then
the corresponding delay free graph G°* is defined as the graph that results if we replace the
delay dependencies among every node m and its children m, ,m, ,..., with two stages of delay
free dependencies:

1) between m and some child m; of m (node m, will be referred to as the favored child), and
2) among m; and the rest of the children of m.

Definition 45: Shortest delay free graph G* of a given graph G is a delay free graph such that
every subgraph of G’ has height less than or equal to the height of the corresponding (i.e.,

containing the same nodes) subgraph in any other delay graph for G.

11



Notation 1: d;; is the total amount of data transmitted between module i and module J-
Notation 2: s, is the cost of transmitting one unit of data over the link connecting processor

p to processor g. Itis assumed that s, = Sgp-

Notation 3: s, (dy) is the function that gives the total amount of communication between
~module i mnning on processor pand module ;j running on processor g . In general, this
function can be simplified to $,*d;. We note that s,, is the cost of transmitting a unit of
data between two modules expected to execute on the same processor. If s,, =0, then
intraprocessor communication is neglected. In the case of a multiprocessor system with
homogenous links, $,, is the same for all ( p,q) pairs of links. In this case, we denote by ¢,
the total amount of data transmitted between module i and module ;.

Definition 46: In this thesis, “interprocessor communication” is used to indicate the

communication volume taking place between modules where only the communication
between modules assigned to different processors are accounted for. While “intermodule

communication” is used to indicate the communication volume taking place between modules

assigned to the same or to different processors.

Definition 47: P is the class of all problems that can be solved deterministically in polynomial

time.

Definition 48: NP is the class of all problems that can be solved non-deterministically in
polynomial time (can be verified deterministically in polynomial time).

Definition 49: A problem X is NP-Complete if

1. VY eNP, Y isreducible to X, denoted Yo X, if V instance / €Y, 3 a polynomial time
computation such that f(/) is an instance of X, and Iiff 7(J).

2. X e NP.

12



3. If 1 is satisfied but not 2, X is NP-hard.

13



CHAPTER 111
THE ASSIGNMENT PROBLEM

As described earlier, one aspect of distributing a computational load over more than
one processor is known as the assignment prob;em. Different algorithms based on different
techniques were used to solve this problem and to provide optimal solutions when possible.
Some of these algorithms can be clearly classified under one technique or another, and some
others share more than one technique in seérching for appropriate solutions. In our
classification of the solutions to the different aspects of the assignment problem, we will
group together those algorithms that share the same techniques to find an optimal or near-
optimal assignment. Sometimes, classifying an algorithm under a technique or another may
be a debatable issue for algorithms that rely on a well-known technique to reach a starting
solution that might be optimal and continue improving this solution heuristically if it is not.
Such cases will be signaled out in the flow of the text. In general, these techniques are
classified under five categories: network flow, integer programming, least cost, probe

functions, and heuristic algorithms.

3.1. Network flow algorithms

The Basic Dual-Processor Assignment problem is the one of distributing the
execution of a serial or a parallel program over a two-processor system in order to minimize
the sum of execution costs of all modules and the sum of interprocessor communication costs.
To solve the problem, Stone [4] uses a graph of m nodes to model the interconnection of the
m different modules of the program. Each node in the graph represents a module and each
edge connecting two nodes indicates that the corresponding modules communicates during
the execution of the program. Each of these internal edges is labeled with the total time of

communication between the two adjacent modules. From this graph, the assignment graph is

14



built by adding two additional nodes s and ¢ representing the two processors, and 2m
additional external edges which link s and ¢ to all module nodes. An external edge
connecting node / to node s is labeled with the cost of executing module i on the processor
represented by node ¢. This reverse labeling__gpplies also to the edges incident on ¢. Stone
shows that a cut that disconnects s and ¢ corresponds to an assignment of modules to
processors and vice versa, and that the weight of a cut in the assignment graph is equal to the
total cost of the corresponding module assignfnent. Therefor, the optimal solution of the
problem depends on finding the minimum weight cut or mincut in the assignment graph. A

Maxflow-Mincut [4] algorithm applied to the assignment graph with s as source and ¢ sink

will find the mincut in 0(m3) time and the cost of the found assignment is equal to the

weight of the cut.

A variation of the basic dual assignment problem is the problem of assignment with
dynamic relocation. In the basic dual assignment problem, modules assigned to processors
are expected toremain there while the characteristics of the computation inside each module
are constants. By characteristics of computation Bokhari [4] means the ratios of the time the
program spends in its different parts. Suppose that these characteristics change during the
lifetime of the program. This change creates a new dimension, into the optimal assignment
problem, which is relocation.

Relocation means that a module may be relocated between processors during program
execution. Relocation data is collected from the examination of the program activity. The
lifetime of the distributed program is divided into phases, and only one module executes
during a specific phase. A module is allowed to move from one processor to another only
between phases. The following information is associated with each phase :

1. The executing module during this phase.

15



2. Running cost of this module on each of the two processors.

3. Cost of residence of the remaining idle modules on each of the two processors.
4. Intermodule communication costs if modules are on different processors.

5. Relocation costs for each module.

This information is represented in a graph where the number of nodes is equal to the
number of modules multiplied by the number of phases. Each node in the graph represents
the residence of a module in a specific phase.'i" The module that executes during a phase is
marked with an asterisk. Vertical edges connect successive residence of the same module and
are labeled with relocation costs of the module between the respective phases. Horizontal
edges connect the executing modules to other modules of the same phase and represent
intermodule communication costs between the executing module and the other modules
during this phase.

To build the dynamic assignment graph, we add two nodes s and ¢, each representing a
processor, and connect them to all the nodes in the graph. Again, reversed labeling is used.
The edge from node 4, to node s is labeled with the cost of executing module A on ¢ during
phase 1. The residence cost of module C on s during phase 2 goes on the edge joining C, to
t. The mincut obtained by a Maxflow-Mincut algorithm between s and ¢ is the optimal
dynamic assignment of the program. The dynamic assignment graph could be reduced, in
terms of edges, to the zero residence graph if the goal is to minimize execution time while
ignoring the cost of residence of an idle module on a processor. The zero residence graph is
obtained by omitting edges labeled with the cost of residence without execution. Bokhari [4]
shows that in the case of zero residence graphs, the minimum weight assignment also

corresponds to the mincut. Thus, the dual processor assignment with dynamic relocation can

be solved in O(m*) time.
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Network flow techniques are also used to solve the problem of assigning modules of a
distributed program of size m to an n-dimensional linear array of N (= 1y X 1y %o oo n,,)

homogenous processors connected using homogenous links with the constraint that one or
more modules are each attached to a specific processor. The objective is to minimize the sum
of execution and interprocessor communication time knowing that if two communicating
medules are not mapped to direct‘ly communicating processors, then communication will take
place indirectly through one or more processors“;which will add to the overall execution cost
of the system. Since the processors of the n-dimensioﬁal system are homogenous, the

problem reduces to minimizing the communication costs.
To solve the problem, Lee and Shin [24] created an N (= Ry X My X eeX n,,)-terminal

network graph by adding to the problem graph N terminal nodes each representing one

processor. Then, for each ith coordinate or dimension », of the n-dimensional linear array
network, they generate all the (n,. - 1) sets B, of processors having their ith coordinate less

than j, and their corresponding sets ?y containing all the remaining processors. For example,

for a (2x3) two-dimensional array network, we can generate B, ={p, ,p,.p,} >

P, = {p“,pZ,} ,and P, = {p“,pI2 ,pn,pzz}. To each of the (n,. - I) pairs of sets P, and

P, corresponds a two-terminal network graph G, generated from the N-terminal graph as

follows: each set P; is combined with all modules assigned to one of its processors in a

and its corresponding set P, is combined in the same manner in a sink node

source node S, f

y"

T;. Let C; be a cutset in the two-terminal network graph G, , then C, is the set of all

(n,. - 1) cutsets C; of the same ith coordinate. The set C; is said to be admissible if no two

cutsets in C; cross each other. Let C, be the set of all sets C,, i.e. the sets of all cutsets C,,
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then C, is said to be admissible if each C, is admissible. The effect of building C, isto
isolate each processor of the n-dimensior;al array network and try to assign to it modules
while obeying the minimization objective.

Lee and Shin showed that the optimal solution to the problem corresponds to the

minimum-weight admissible set C,, of the n-terminal network, which means that all cutsets

| C,; must be minimum-weight cutsets. The optimal solution can be obtained by the following

procedure.

For every ith coordinate or dimension of the #-dimensional array network

1. Build a two-terminal network graph G, 15j< (n,. - 1) as described above, since there
are (n, - 1) graphs for each dimension.
i) Find its corresponding minimum-weight cutset G,

ii) Combine with §; an unattached module to the side of S, and not yet combined, and

set to j the ith coordinate of the processor where the unattached module is to be

assigned.

2. Set to n; the ith coordinate of the processors where the unattached and not yet assigned

modules are to be assigned.

The number of G; graphs generated by the algorithm for each dimension of the linear array is
Z’, (”i - 1) graph. Thus, the algorithm requires Zi (n,. - 1) applications of the Maxflow-
Mincut algorithm which is 0(m3) in the worst case, therefor the overall run time complexity

of the algorithm is O(Z, (ni - 1)m3) time. A special case of the n-dimensional array network
is the hypercube, i.e. where n, =2 forall i . In this case, the solution to the problem for an

n-dimensional hypercube with N = 2" processors is in O(Nm®).
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The same technique is used to solve the problem of assi gning a distributed program to
a tree of » homogenous processors connected with n — 1 homogenous links while minimizing
communication costs. To solve the problem, Lee and Shin [24] number the processors in
post-order. This way each processor D, is a§signed a higher number than its descendants.
Let P, be the set of processor node p, and all its descendants, and P, the set of the other
nodes. Then, they build the n-terminal netwqu graph G,by adding »n nodes, one node per
processor, to the problem graph. From the r;-terminal network graph G, , they construct
(n—1) two-terminal network graphs G, as follows: combine all the processors in the set P
and all the modules attached to any of its processors in a source node S,, and all the
processors in its corresponding set P, and all the modules attached to any of its processors in
a sink node 7;. To each two-terminal network graph G, corresponds a cutset C,. The set

C; of all the (n—1) cutsets C, is admissible since no cutsets in C; cross each other. The
optimal solution can be obtained by applying the following procedure.
1. Build a two-terminal network graph G,, 1<j<(n-1) as described above, there are
(n -—1) graphs.

1) Find its corresponding minimum-weight cutset C,

ii) Combine with S; an unassigned module to the side of S,, and assigns it to processor

D;.

2. Assign all remaining unassigned module to processor p, .
The algorithm requires (n - 1) applications of the Maxflow-Mincut algorithm on
each two-terminal network with O(m) node each. Thus the overall runtime complexity of the

algorithm is in O(nm*).
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In all problems discussed above and solved using the Maxflow-Mincut algorithm,
communication costs are restricted to be the communication occurring between modules
assigned to different processors, and they are referred to in the text as interprocessor
communication. The communication costs between modules assigned to the same processors
known as intraprocessor communication costs are considered negligible. In the case where
both interprocessor and intraprocessor communication costs are considered, we will refer to
the global communication costs as intermodule c;ommunication costs.

The next problem is one of assigning a distributed pfogram of m modules to a network
of homogenous workstations or to a fully connected multiprocessor system. The network or
the multiprocessor system is modeled by a virtual clique architecture having homogenous
communication links. The objective is to minimize the maximum of the jobs completion
time and intermodule communication costs.

The problem is modeled with a doubly weighted graph where each node represents a
module and each edge represents communication between two modules. A node in the graph
is labeled with the execution cost of its corresponding node, while an edge has two labels.
The first label indicates the interprocessor communication costs between the modules
represented by the head and tail nodes of the edge and the second label represents the
intraprocessor communication costs between the same modules. To reduce the complexity of
finding the optimal solution, Hui and Chanson [19] reformulated the labeling on the edges of
the problem graph in order to create the preprocessed interaction graph (PTIG) where each
edge has only one label. In the PTIG, each node is labeled by the sum of the execution cost of
the corresponding module and the sum of the weights indicating interprocessor
communication on all edges incident on that node. An edge of PTIG is labeled with twice the
difference of the weight of interprocessor communication and the Weight of intraprocessor

communication. The main idea of the solution is to merge nodes optimally, such that the
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resultant elapsed time cannot be reduced further. When merging two or more nodes into a
new node, the weight of the new node is the sum of the execution cost of the modules
represented by the merged nodes, added to it twice the sum of all intraprocessor
communication costs between merged modples, and the sum of all interprocessor
communication costs between any of the merged modules and any node connected to it. This
node merging operation leads to merging all the edges connecting a node to any node merged
into the same group in asingle edge. Thus, the weight of the merged edge is the sum of all
merged edges taken from PTIG. The proposed algorithm tries to minimize the elapsed time
of each node i by computing its m-set, by merging node i with one or more nodes such that i’s
elapsed time is minimum. By finding all m-sets, the minimum overall elapsed time which
corresponds to the optimal solution can be computed. Hui and Chanson’s [19] solution begin
by modifying PTIG into the transformed PTIG (TPTIG). TPTIG have the same set of nodes
of PTIG with addition of a terminal node t. To each undirected edge in PTIG corresponds
two directed edges in TPTIG, and each is labeled with half the weight of the edge on PTIG.
An edge connect each node to the terminal node ¢, and it is labeled with the difference
between the weight of the node in PTIG and half the sum of the weights of all edges incident
on this node. In other terms the weight of the edge is equal to the sum of the execution co§t
of the corresponding node and the intraprocessor communication with all its node directly
connected to it in the problem graph.

The algorithm starts by sorting all nodes in PTIG in decreasing order of elapsed times
into aheap. Then, it selects the node with the largest elapsed time, removes it from the heap,
and create its corresponding TPTIG where the selected node is the source node. Next, the m-
set of the selected node is computed by applying a Maxflow-Mincut algorithm on TPTIG
between the selected node and the sink node . Nodes of the m-set 4are merged into a single

node, and TPTIG and the heap are update by removing the merged nodes and adding the new
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one. These steps are repeated until the elapsed time cannot be reduced further. The algorithm

requires at most m applications of a Maxflow-Mincut algorithm. Hui and Chanson suggests a
m2
Maxflow-Mincut algorithm of O(me log 7) [18,19] runtime complexity for a graph with m

nodes and e edges. Since TPTIG is of O(m) nodes and O(m + ¢) edges, then the overall run

2
time complexity of the algorithm is in O(m2 (m+e)log m+ e) )

3.2.  Least cost algorithms

The problem of optimally assigning the modules of a distributed program over a
multiprocessor system is also attacked using tecﬁniques derived from Dijkstra’s shortest path
algorithm [11]. The application of these techniques depend on two steps: (i) building for each
type of problems a specific assignment graph that represents all possible assignments of
modules to processors and (ii) formulating the corresponding cost to be minimized. Then a
variation of Dijkstra’s algorithm, adapted to each specific assignment graph to insure better
run time complexity, traverses the graph in order to find a least cost soluti(_)n among all
possible ones.

One of the problems solved using least cost algorithms is the problem of mapping a
chain of m modules to a chain of # heterogeneous processors connected with heterogeneous
links. The chain of modules may represent a pipelined or a parallel program where modules
are connected in a chain-like fashion The objective is to minimize the load on the heavily

loaded processor, known as the bottleneck load. Bokhari’s [4,6,7] solution uses a layered
graph of n layers each representing a processor. A node (i, j), 1<i<j<m in alayer

represents the assignment of the subchain of modules i through j to the processor represented
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by that layer. A node <i, j) is connected to all nodes ( j +,1,k> in the layer directly below it

for allj except for 1 and n. A source node s connects to all nodes in the first layer, and a sink

node ¢ connects to all nodes in the last layer. The number of nodes in Bokhari’s layered graph
is O(mzn) nodes, and the number of edges is O(m3 n) edges. Bokhari applies a simple
labeling procedure to the layered graph in order to find the minimum bottleneck path from s
to t. Each néde iin the layered graph is given a label L(i) . Initially, all nodes are given
infinite labels except nodes of the first layer which are given zero label. The algorithm works

as follows:

1. Examine each edge e emanating downwards from a layer connecting a node a (above) to
anode b (below). Let the weight on this edge be w(e).

2. Replace L(b) by min(L(b),max(w(e), L(a))) .

Once tis labeled, the path representing the optimal path can be found by tracing backwards

from ¢ to s. Both the labeling procedure and finding the optimal path visit each edge of the

layered graph exactly once, therefore the overall complexity of Bokhari’s algorithm is
0(m3n) time which is the number of edges of the layered graph.

Using an improved layered graph, Nicol and O’Hallaron [27] were able to solve the
same problem in O(m’n) time using O(m’n) edges and O(m’n) nodes. To Bokhari’s
layered graph n—2 new layers were added, one between each layer, except between layers 1
and 2. Each new layer consists of m nodes labeled from 1 to m. A node ( j,k> in layer
i (with respect to Bokhari’s layered graph) directs a single edge to node & in the new layer
between layefs i and i+1. This edge is labeled exactly as the edge leaving node < j,k) in
Bokhari’s solution. A node k in the new layer directs to all nodes (k + l,l) in the layer i +1.

Each edge of this type has azero weight. A path form s to ¢ corresponds to a solution of
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this assignment problem. Bokhari’s original algorithm works on the improved layered graph
and finds the optimal solution in O(m?n).

In [4], Bokhari solves the problem of assigning an out-tree structured parallel program
to a fully connected system with » heterogeneous processors and heterogeneous links. The
goal is to minimize the sum of execution costs of all modules and the sum of intermodule
communication costs. The out-tree or invocation tree represents the way modules invoke
each other through the lifetime of the program.ﬁ The assignment graph for this problem is a
weighted directed graph derived from the invocation tree by adding a source node s, and

several terminal nodes ¢,,¢,,... one for each leaf node of the invocation tree. In addition to
the source and terminal nodes, there are m x n nodes each labeled with a pair of numbers
(i, p) representing the assignment of module i to processor p. Each layer of the assignment
graph corresponds to a node in the invocation tree. Nodes in the layers corresponding to
nodes in the invocation tree having outdegree greater than one are called forknodes. Each
layer of forknodes is called a forkset. Let e, be the cost of executing module i on processor
p- Then the edges connecting the source node s to the nodes (1,1), (1,2),...,(1,n),

representing the assignment of the root node of the invocation tree to each of the n processors,
are labeled with e, e, ,...,e,,. The edges incident on the terminal nodes ¢,,¢,,... have zero
labels. The edge joining node (i, p) to node ( j,q) has weight e, + 5, (d,.j.) or simply the

sum of the execution .cost of the tail node and the cost of communication between the head
node and the tail node of the corresponding edge in the assignment graph. Dijkstra’s [11]

shortest path algorithm applied on the assignment graph finds an optimal solution to the
problem in O(mznz) time. A feasible solution to the problem is an assignment tree that can

be generated from the assignment graph by removing from each layer all nodes except one
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representing the corresponding assignment. The assignment tree having the shortest path
form s to frepresents the optimal solution. Bokhari [4] provided a faster solution due to the -
layered structure of the assignment graph.
1. For each terminal node
i) Find the shortest path to the nearest forkset, and leave a pointer on the node of the
 forkset and the next node in the shortest path to the terminal node.
if) When a forkset f is exposed, i.e. the shortest path to all reachable terminal node has
been calculated, temporarily remove all its outgoing edges, create a pseudoterminal node

t,, and connect all nodes in fto it.

iii) Label each edge with the sum of all shortest paths to the temporarily removed terminal
nodes. The above three steps remove all forksets from the assignment tree until we reach
a graph with one terminal node.
2. Find the shortest path from this terminal node to the source node s. Since we reached
node s, we can reconnect all disconnected edges and traverse the graph form s to all terminal
nodes using pointers set in a). Nodes with pointers are those of the shortest assignment tree.
The runtime complexity of the shortest assignment tree algorithm is O(mnz) time.

Towsley [34] generalized Bokhari’s [4] results on out-tree structured distributed
programs to distributed programs having a series-parallel structure and containing branches
and loops. In [4], Bokhari showed how an out-tree can be transformed into a series-parallel
graph through the addition of dummy edges. Towsley’s [34] solution to the problem suggests
a set of series, parallel, or tree transformation to the allocation graph thus reducing it to a two
node / one edge graph where the edge weight represents the minimum cost assignment. A
parallel replacement consists of replacing two parallel edges, i.e. having the same head and

tail node, by one edge, while a series replacement consists of replacing a three nodes
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connected by two series edges, where the tail node of the first edge is the head node of the
second edge, by two nodes connected with a single edge. The tree replacements is used to
remove tree structures by merging leaf nodes of the same forknode. The assignment graph is
derived from the problem graph. It is an undifected weighted graph of m x n nodes having

one source node s with zero weight, and a terminal node for each terminal node of the
problem graph. Each node (i, j) is labeled with the cost of assigning module i to processor j.
To each node i in the problem graph correspor'l.ds a layer ‘of nodes <i,1),<i,2),...,<i,n) in the
assignment graph representing all possible assignments of module i to the n processors. An
edge connect node <i,n,> to node < j,n2> if modules represented by nodes i and j

communicate in the program. This edge is labeled with cost of communication between

module 7 on processor », and module; on processor n,. All edges connecting to terminal

nodes have zero labels. Source node s serves as one entry node for the assignment graph. For
each feasible assignment of the m modules to the n processors corresponds a subgraph of the
assignment, and one of these subgraphs corresponds to the optimal assignment. Towsley’s
[34] algorithm performs each type of replacement until no more replacement of that type is
possible. These replacement operations are accompanied with necessary computation that

finds the weight of the shortest path in the subgraph to be removed and assign its value the

replacing edges. Both series or parallel replacement operations are in 0(v3) for a graph of v
nodes, while tree replacement operations are in O(vz). Since the number of nodes in the
assignment graph is O(mn3 ) nodes, finding the optimal assignment for a problem is in

0(mn3).

3.3. Probe functions algorithms
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Another technique used in searching for optimal solutions for assignment problems
relies on a probe function that searches for an optimal solution subject to a constraint. - Instead
of searching for the least cost among all possible solutions, a limited number of repeated
probes with varying value of the constraint is used to find the solution. Each of the problems
considered in this section seeks to minimize either the maximum bottleneck weight or the

‘maximum of a sum weight and a bottleneck weight, referred to by Bokhari [6,7] as SB-
weight. The problems that seeks minimizing the bottleneck weight have the property that
given any trial weight w, a probe function determines if there is a feasible, optimal or near-
optimal, solution to the problem whose bottleneck is less or equal to w. For the problems that
seeks minimizing the SB-weight, the probe function accepts the trial weight w, and finds a
mapping that minimizes the maximum sum weight among all mappings whose bottleneck is
no greater than w. An appropriate probe function must be designed to solve each specific
problem. Different probing functions may be designed for the same problem to provide more

accurate or faster solutions.

The problem of mapping a chain of m modules onto a chain of » homogenous
processors connected with homogenous links was solved by Igbal [20,27] using probing
functions. The use of a probe function in this context implies calling the function with a
possible bottleneck weight w chosen using a binary search from an ordered set of possible
values. The job of the probe function is to test if an assignment of modules to processors can
be achieved taking into consideration that the load on the heavily loaded processor does not
exceed the bottleneck value w. The test must be repeated with different bottleneck values
until an optimal or near-optimal solution is reached. In Igbal’s solution, the possible

bottleneck values used as parameters for the probe functions are discrete points in the range

[WA ,WT] separated by & where W, isthe average execution cost of all modules, W, their
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total weight, and ¢ is the distance of the solution for the optimal one. The probe function
iteratively chooses a feasible subchain of modules to be assigned to the first available
processor by examining all modules, therefor each invocation of this function is O(mn) time.

Due to the binary search over the ordered set of possible bottleneck weights, the probe

function is repeated O(log(W%D times. Thus the algorithm provides an approximate

solution with & distance from the optimal solutioﬂ in O(mn log(W%)) time.

Nicol and O’Hallaron [27] imposed more restrictions on the same problem. They

required that the execution cost w; of a module i be lower-bounded by a constant W, and the
communication cost ¢, between two modules i and j be upper-bounded by a constant C.
They used an improved probe function which uses the property that when searching for a
subchain with total load less than w, we do not need to search for the last module of the

subchain among all modules. Instead, this module can be found using a binary search, in

0(log m) time, over a monotonic interval of possible candidate modules. Thus, the runtime

complexity of the probe function is reduced to O(n log m) time.

The set of all possible bottleneck values submitted to the probing function is chosen

from a sorted dominance matrix. An element Q ; of the dominance matrix is equal to the

sum of the execution costs of modules i though j, as if they are assigned to the same

processor, added to it the communication costs with modules i—1 and j+1. A two-
dimensional binary search over the sorted dominance matrix selects possible bottleneck

values which are at most 4m values, i.e. in O(m). Thus, the optimal assignment can be found
by O(m) calls to the probe function. The overall complexity of the algorithm is O(mn log m)

time.
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Igbal and Bokhari [21] provided optimal solution to the same problem with no
assumptions about the magnitude of the costs. They transformed the chain of modules into a
monotonic chain by merging two adjacent nodes if the communication cost between them is
greater than the weight of any of the two nodgs added to it the communication cost with its
other adjacent node. Next, the resulting monotonic chain is used to build the lattice that

~stores the set of possible bottleneck values. An element Q,, of the lattice is the sum of the

weights of all modules j through & when assigned to processor i. Using two-dimensional

binary search over the lattice leaves us with O(m) possible bottleneck values. The probe
function used in [21] is O(n log m) time. Thus, the overall runtime complexity of the

algorithm is similar to the previous one, but the difference is that it provides an exact solution
with no constraints on the magnitudes of the weights.

The second problem is of partitioning multiple chains each of m modules over a host-
satellite system having » heterogeneous satellites. This problem occurs when several satellite
computers, connected to a large host with higher computational power, receive from a real
time environment data streams that must be processed in a pipelined fashion. The program
running on a satellite can be partitioned between the satellite and a more powerful host. For

each module i of satellite j, e, is the execution time on the host. For each pair of modules i

and 7+1 of satellite j, ¢, isthe communication cost if is assigned to the host and j to the
satellite. Since all processing is done in a pipelined fashion, the times for execution and
communication are the time to process one frame of data. The problem is to minimize the
time determined by the greater of : 1) the individual load on the most heavily loaded satellite,
i.e. the bottleneck satellite, and 2) the sum of the loads assigned to the host. To solve this

problem, Bokhari [4,6,7] uses a doubly weighted layered graph with » layers, one for each

satellite, and m nodes per layer, one for each module. An edge connects each node in layer &
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to each node in layer k+1. The start (terminating) node s (¢) connects to all nodes of the
first (last) layer. Each edge leaving node in layer k is given a ¢ weight equal to the cost of
executing on the host modules 1 through j of chain £, and a B weight equal to the cost of
executing on the satellite £ modules j +1 through m of chain k. To both weights is added the
communication cost between j and j+1 over the link that connects satellite k to the host.
Edges leaving node s have zero weights. The_ optimal SB path corresponds to the optimal
assignment. To find the optimal SB-path, B;khari applies the optimal sum-bottleneck
algorithm [4,6,7] between s and ¢. In this algorithm, all ‘;he bottleneck values are sorted in
ascending order. Then a modified binary search is used to select the bottleneck value w to
submitted to the probe function. The role of the probing function in this case is to find the
shortest path form s to ¢ with sum weight less or equal to w. The search over the list of
bottleneck values continues until this path is found. The shortest path found is the optimal
SB-path, and it corresponds to the optimal solution to the problem. In general, i.e. when the
problem graph is arbitrary, the number of distinct values of w is no more than e the number of

edges in the graph, and the optimal SB-path algorithm uses Dijkstra’s algorithm to find the

shortest path in O(mz) time for a graph of m nodes. Thus the complexity of the optimal SB
Path algorithm is O(m2 log e) time. In this specific assignment problem, the number of
nodes is O(mn) , the number of edges is O(m?n) edges, and due to the layered structure of the

graph we can find the shortest path using a simple labeling procedure in O(mzn) time which

is the number of edges. Thus, the overall runtime complexity for finding the optimal solution

when m>n is O(m*nlogm) time.
Nicol and O’Hallaron [27] use their improved layered graph on this problem which

reduces the number of edges to O(mn) edges. This leads to an overall reduction in the
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runtime complexity when finding the optimal solution using Bokhari’s [4,6,7] SB-path
algorithm to O(mn log m) time.

Igbal [20,27] provided an approximate solution for this problem in the case of a host-
satellite system with n homogenous satellites. He uses the probe function derived for the
chain onto chain problem and applies it to each satellite chain. For each satellite, the probe
function selects a total load on the satellites less then the bottleneck value w, such that the
work assigned to the satellite is minimum. Then: if the total work assigned to the host is less
than w, then the solution is optimal. Otherwise, the probe fﬁnction must be called with a new

bottleneck value w. As in Igbal’s chain to chain solution, the bottleneck value w is the result
of a binary search over [ w,, WT] with the difference that W, is the smaller of the total

processing time if all modules are assigned to the host and the total processing time if no
module is assigned to the host. For each value w, the probe function examines each module
at least once for each satellite before a possible assignment is formulated, therefor the probe

function is O(mn). Igbal’s approximate sol‘ution is by ¢ far from the optimal solution with an

overall runtime complexity of O(mn Iog( W% D time.

Nicol and O’Hallaron [27], by introducing weight restrictions to the host-satellite
problem of homogeneous satellite similar to those with chain onto chain problem provided a
faster optimal solution than all previously discussed solutions. They modified the improved

probe function to deal with the difference in speed between the host and the satellites without

affecting its complexity which is O(nlog m) time. The values of all possible bottlenecks are
sorted for each satellite and merged in O(mn logm) time. These values are selected by a

binary search in 0(log m) time leading to a total probing time in O(n log? m) For m>n,
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the overall complexity to find the solution is bounded by the time of sorting and merging
possible bottleneck value which is O(mn log m) time.

The third problem is that of partitioning a chain of m modules over a shared memory
or bus interconnected system of » heterogeneous processors. The objective is to minimize the
maximum of (i) the largest execution time on any processor, and (ii) the total interprocessor
~ communication cost of the system. Bokhari’s [7] solution uses the same layered graph used
in the second problem. The communication c;)sts are represented by o weights, and the

execution costs by B weights. Application of the optimal SB-path algorithm to the layered

graph results in the optimal assignment in O(mzn log m) .

In this problem also Nicol and O’Hallaron [27] used their improved layered graph in
order to reduce the number of edges of the graph representing the problem. Due to this
reduction, the application of Bokhari’s [6,7] optimal SB-path algorithm on this graph solves
the problem in O(mn log m) time.

Igbal [20] provided approximate solution to the same problem where the processors
are homogenous. The job of the probe function is to find if a partition of the chain-like
program exists in which the load on any processor is less or equal to possible bottleneck value
w. Then, the function must check if the sum of the communication costs resulting from tlhe

corresponding partition is also less or equal to w. In this case, the partition corresponds to a

feasible assignment, and it can be obtained in O(m?) time. Bottleneck values w are of &

distance from each other, and they are chosen using a binary search over [WA ,WT]. The

overall run time complexity is O(m2 log(W%)) time [27].
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In another solution to this problem, Nicol and O’Hallaron [27] imposed the usual
restrictions on the magnitudes of the execution and communication costs. To solve the
problem they solve the dynamic programming equations :

7(0,w)=0 '

V(j, w) =c; + L(jrg}gsj{V(i - l,w)}, forjw= 1,2,....m

where V( j,w) is the minimal cost of partitioning module 1 through j, including the
communication cost of separating module j fror;1 J +1, under the constraint that no subchain
has execution weight greater than w. Therefor, ¥(m,w) = S(w) is the minimal sum weight
among all mappings which assign no more than w load on a processor. In this equation,
L( Js w) is the leastindex i < j such that S, <w. For fixed w, L( j,w) is a monotone non-
decreasing function of j, and can be computed in O(m) steps for all j=1,..,m. By
exploiting these facts, this equation can be computed in O(m log m) time. The set of possible
bottleneck value w is chosen from all S, values with i < j using the same technique used in

Nicol and O’Hallaron’s solution for the chain problem mentioned earlier. Also, they made
the search procedure remembers the bottleneck and the cost of the least cost partition it ever

computes where the smallest is the optimal bottleneck. Allin all O(m) probe calls are made

each with O(mlog m) time. Thus, the overall time complexity of finding the optimal solution

is O(m2 logm) time.

The fourth problem is that of partitioning » arbitrary distributed program of m
modules on a host-satellite system with » heterogeneous satellites. Bokhari’s [4,6,7] solution
benefits from Stone’s nesting theorem which states that as the load increases on the host,
modules move away from the host to the satellites and never in the reverse order. This means

that successive optimal assignments are nested inside each other. The load values that causes
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the load transfer are called critical load values and can be found in no more than m
applications of the network flow algorithms developed by Eisner and Severence [13]. Using
the nesting property, each of the arbitrary programs can be viewed as having a chain like
structure by grouping all modules lying between two adjacent cuts, representing two critical
load factors, in one single node. By transferring all the » arbitrary programs into » chains, the
assignment graph is alayered graph similar to the one used by Bokhari in his solution to the
chains assignment on a host-satellite system. A node / at layer j of the assignment graph may
represent one or more modules of the distributed program.l The graph is doubly weighted and
an edge from a node 7 at layer k to a node at layer k +1 has & weight equal to the cost of
assigning modules represented by the chain 1 through 7 to the host added to it the
communication cost with the modules of the chain not assigned to the host, and a  weight
equal to the o weight added to it the cost of assigning nodes i + 1 through the last node of the

chain to the satellite. The optimal assignment can be found by applying the optimal SB path
algorithm on the layered graph in O(mzn log m) time. But the overall run time complexity of
the algorithm is dominated by transforming the n arbitrary programs into chains which is
O(m“n) .

Igbal [20] was able to search, the layered graph representing the » transformed chaihs,

for a near optimal solution with & distance from the optimal solution in the case where the

satellites are homogenous in O(mnlog(W% D time using the same technique used in his

solution to the chain onto host-satellite problem. However, the overall complexity is still

O(m“n).
The fifth problem is that of partitioning a tree structured program of m modules,

representing parallel or pipelined computation, over a single-host, multiple-satellite system of
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n homogenous satellites under three constraints: (i) the root is always on the host, (ii) once a
node is assigned to a satellite all its children are assigned to the same satellite, and (iii) if two
nodes are assigned to a satellite, their lowest common ancestor is also assigned to the
satellite. It is also assumed that there are as many satellites as the number of leaf nodes of the
program tree although the optimal solution may choose not to use all of them. In [4,6,7],
‘Bokhari creates the assignment graph by adding a dummy A node below the program tree and
connecting all the leaf nodes to it which divides tﬁe resulting graph into regions. Assignment
graph nodes are inserted in each region with left to right ordéring (A,B,...). Connecting with a
directed edge all pairs of assignment nodes belonging to regions having a common edge
creates a directed dual graph where the directions of the edges are from lower ordered nodes
to the higher ordered ones. Each edge of the dual graph separates a subtree from the program
tree, and it has two labels. A B label is the cost of running the subtree on the satellite added
to it the cost of communication between modules on the host and modules on the satellite.
The o label weight is formulated such that the sum of these weights on a directed path form A
to the last labvel represents the running cost of all modules assigned to the host and the
communication cost with the modules assigned to the satellites. Each path from A to the last
used label corresponds to an assignment where the SB weight of the path is the time required
for the corresponding assignment. The optimal solution can be obtained using the Optimal
SB Path Algorithm. For a program tree of m nodes and f'leaf nodes, the assignment graph is a

multigraph with f+1 nodes and m edges. By adding dummy nodes and edges, the

multigarph can be transformed into a conventional graph with no more than 2m nodes and m

edges. Thus, the solution can be obtained in O(m2 log m) time.

For the same problem, Igbal [20] provided an approximate solution with € distance

from the optimal solution using a probe function. The function checks if it is possible to
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partition the tree structured program over the host-satellite system such that the load on any
satellite and the load on the host is less or equal to a bottleneck value w. Initially, all m nodes
are assigned to the host with total load equal #,.. Then, the probe function, from bottom to
top, assigns a subtree to a satellite if the. computational load of the subtree and the
communication costs between its root node and its corresponding parent node is less than or
- equal to w; otherwise it merges the root of the subtree with its parent node by removing the

edge in between. Possible bottleneck values w are selected using a binary search over
W, . . . .
m>Wr |- The probe function is O(m) time since it examines each node only once to

decide whether to assign the node and its children to a satellite or to merge it with its parent.

The overall complexity for finding the approximate assignment is O(m log(W%)) time.

The same problem was solved also by Igbal and Bokhari [21]. The algorithm first
creates the condensed tree from the problem tree by merging a child node with its parent node
such that the tree is monotonic. A monotonic condensed tree ensures that the load caused by
the subtree cannot exceed the load caused by a containing subtree. A probing function
traverses the condensed tree upwards from the leave nodes and stops each time it identifies a
maximal subtree that has weight less than a possible bottleneck value w. When all subtrees
are calculated, the load on the host can be calculated; if it is less than w then the assignment is
feasible. The probe function looks at each node only once, thus it is O(m) time. The

possible bottleneck values w are selected using a binary search from m weights of the subtrees

that can be evaluated in O(m) time and sorted in O(m log m) time. The choice of w takes

0(log m) . Thus the overall run time complexity of the algorithm is O{mlogm).

3.4. Integer programming algorithms
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The integer programming method is based on implicit enumeration of all the possible
cases subject to additional constraints. For example, for a program of m tasks to be assigned
to a system of n processors, each task can be assigned to any of the n available processors.
This method implies the use of branch-and-bf)und algorithms [23] which searches for an
optimal solution in a set of feasible solutions which is a subset of all possible solutions.
Branch-and-bound algorithms are expected to be more efficient than complete enumeration
algorithms, vwhich are exponential in the number':'of inputs, due to the search restrictions. The
search occurs in a carefully chosen subset of feasible solutions such that it contains the

optimal solution. Kohler and Steiglitz [23] characterized Branch-and-bound algorithms in
terms of sextuple (Bp S, E,D, LU ) , Where B, is the branching rule, S is the selection rule,

E is set of elimination rules, D is the node dominance function, L is the node lower-bound
cost function, and U is an upper-bound solution cost. They also designed a general algorithm
based on their characterization and investigated the computational requirements with respect
to the choice of the parameters S, £, D, L, and U.

In [26], a task allocation model for distributed computing systems is defined using a
variation of Kohler and Steiglitz model [23]. Solutions enumeration is represented by a tree
where each node represents a task and each edge or branch represents a processor. A path in
the tree from the root node to a leaf node consists of one possible assignment, and the number
of all possible unconstrained solutions is »” solutions, which means that the runtime

complexity of an algorithm that searches for an optimal solution among all enumerated ones

is O(n"') time. Various constraints can be added to reduce the enumeration process to

generating only those solutions that satisfy the application requirements. For example, in [26]
a task preference matrix indicates that certain tasks can only be- executed on a specified

processor, and the task exclusive matrix defines tasks that cannot be assigned to the same
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processor. Also, elimination rules are included to insure that a path which may not lead to an
improvement in the solution in hand will not be generated. All these rules impose a reduction

on the number of enumerated cases which leads to an optimal solution in less time.

3.5. Heuristic algorithms

Rao et al. [29] provided feasible solutions for another variation of the dual assignment
problem where one of the processors has limi{ed memory. A minimum weight feasible
solution is the one that minimizes the sum of execution of all modules and the sum of
interprocessor communication and do not exceed the memory requirements of the processor
with limited memory. Their work provided two approaches to solve the problem. In both
approaches, they started by using tile same graph representation used by Stone in order to
build the assignment graph with a small addition. Every node of the assignment graph is
labeled with the memory 'requirements of the corresponding module. Let t. be the processor
with limited memory and s the other processor. Rao et al. show that, in finding the minimum
weight feasible solution of the problem, it is sufficient to produce the minimal cut between s
and ¢, and then reassign some subset of modules, if need be, from the processor with limited
memory ¢ to s. To reduce the runtime complexity, they considered reducing the size of the
assignment graph. In the first approach, they constructed the Gomory-Hu tree [29] or G-H
tree which reduces the number of edges of the assignment graphto O(m). The G-H tree
represents all maximal flows between any pair of nodes of the assignment graph, and all
minimal cuts separating them. Rao et al. show that the G-H tree indicates some subset of
nodes that cannot be separated by a minimum weight cut. This property is used to build the
reduced G-H tree by condensing those nodes of the G-H tree that cannot be separated. This
node condensation may be sufficient to reduce the assignment gfaphs into trivial graphs

where the weight of the condensed node is the sum of the weights of its constituent nodes.
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The solution to the problem can be found by enumeration using the labels on the nodes. The
runtime complexity of this algorithm is bounded by the computation of the G-H tree which is
O(m4) .

The second approach describes a more efficient reduction technique to solve the cases
where little or no condensation occurs. This reduction technique can be applied directly to
the assignment graph as well as to the G-H tree. It implies the creation of the inclusive cut
graph whose cuts are possible minimumrfeasibie cuts and which leads to a reduction at least
as powerful as the reduced G-H tree.

1. For each node N in min(s), find the minimal cut N(s) assigning N'to s. This step can

be done by running Maxflow-Mincut on the graph to be reduced after setting to o the
capacity of the edge connecting Ntos. Let N[s] be the set of nodes on the same side as N
and s.

2. Condense in a single node all nodes that have equal minimal cuts resulting in step 1.

Repeat this until no further reduction is possible. Condense all nodes in min(s) with s into

+

s*.
3. Label nodes in the condensed graph by M,,...,s* and 7. Each node M, of the
condensed graph represents a subset of the assignment graph which cannot be separated by a
minimal weight feasible assignment. The condensed graph is a directed graph where a

directed edge from M, to M, implies that M,[s]is included into M [s]. The last node in

the condensed graph is s*. Each node in the condensed graph is labeled with a weight equal

to the cut N,(s).
4. A node T'is added to the graph with an arc from 7 to each node with no arc directed to it.
In this case also the weight of the condensed node is the sum of the weights of its

constituent nodes. Rao et al. show that the minimum weight feasible cut of the assignment
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graph corresponds to some cut in the inclusive cut graph which can be found by enumeration.

This problem can be solved in O(m“) time which is the time required to build the inclusive

cut graph.

To solve the problem of assigning a distributed program of m modulesto a fully
connected heterogeneous system of » processors, Lo [25] generalized Stone’s model [4], that
solves the basic dual assignment problem using network flow techniques, to reach a partial
(possibly complete) assignment of modules to processors. In the case of complete assignment
the solution is optimal. Lo uses two heuristic algorithms in order to improve the partial
assignment and sometimes reach the optimal solution. This problem is known as the general
task assignment problem where the objective is to minimize the sum of execution and
interprocessor communication costs. The solution uses an undirected weighted graph to
represent the interconnection structure of the program. The weights on the edges connecting
two nodes represent the communication cost between them. The assignment graph is derived

from the program graph by adding 7 nodes representing the # processors. An edge connecting

n_

1 2
each module i to each processor g is labeled with w,, = e = % (). Inthe
—14 _

casé where n=2, (1) leads to the reverse labeling described earlier in the dual assignment
problem and its variation. A n-way cut in such graph is defined to be a set of edges which
partition the graph into » disjoint subsets with exactly one processor node in each subset and
thus corresponds to an assignment of modules to processors. The cost of an #n-way cut is
defined to be the sum of the weights on the edges in the cut. Thus, the use of (1) makes the
cost of the n-way cut equal the total sum of execution and communication cost of the
corresponding assignment. Finding the optimal n-way cut is NP-hard for »> 2 [25], therefor
Lo uses a Maxflow-Mincut algorithm to find a partial assignment that is to be improved using

two heuristic algorithms to reach better solutions.
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Lo’s solution is divided into three algorithms: (i) Grab, (ii) Lump, and (iii) Simple
Greedy. If the first algorithm does not allocate all the modules, the second is used and so on.
In Grab, the assignment graph is converted such as we can run a Maxflow-Mincut algorithm
between each node P, representing a processor and asupernode P, representing all other
n—1 processors. The weights on the edges connecting each module node to the supernode
P, is equal to the sum of all weights on the edges connecting that module node to the n -1
processor nodes. After applying the Maxﬂow-l\/;incut algorithm, the n-processors assignment
graph is modified by eliminating the module nodes already assigned and by recalculating edge
weights to reflect the partial assignment. Thus, the nodes representing assigned modules are
removed from the graph with all their incident edges. Then, the execution cost of each of the

unassigned modules is redefined as follows. The execution cost x,, of module i assigned to

processor g is augmented by the sum of communication costs between module i and all

modules  assigned to processors other than gq. In mathematical terms,

X, =X, +Z Zc,.j (2).  Finally, the weight of the edge connecting each unassigned

r#q jes,
module node to a processor is calculated using equation (1) by replacing x;, using equation
(2). Grab continues iteratively until no further assignment of modules to processors occurs.
If all the modules are assigned after £ iterations Grab the solution is optimal.

The algorithm Lump deals with the remaining unassigned nodes. It tests the
possibilities of assigning all the remaining modules to one processor. It works on a reduced
graph which is derived from the last graph of Grab by eliminating processor nodes and the
corresponding edges. Lump computes a lower bound L on the cost of the optimal n-cut from

the reduced graph under the constraint that more than one processor be utilized in the

corresponding assignment. The lower bound is calculatedas L= ) min(x,.p) + min (i)
. i#r
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where the first term is the execution costs incurred if each of the remaining modules is
assigned to its cheapest processor , and the second term is the minimum of all mincuts
between module node i and any other module node. These mincuts represent the
communication costs between modules execu_‘t’ing on different processors. Based on this
lowerbound, the algorithm Lump checks if it is cheaper to assign all remaining modules to
- one processor yielding a minimum total execution cost for these modules. In this case, the
resulting assignment in combination with that on ‘Grab is optimal.

The third algorithm Simple Greedy is used if Lump fails to allocate all the remaining
modules. Simple Greedy begins by calculating C which is the average communication costs
between all pairs of modules in the reduced graph. Initially, each module is a cluster by itself.

Then all edges with ¢; <C are marked visited. For all unvisited edges, Simple Greedy

merges clusters on both sides of each edge into a single cluster until all edges are visited.

Then each cluster is assigned to the processor which minimizes its total execution cost.

The runtime complexity of Grab is O(nmzelog m) using a Maxflow-Mincut

algorithm of complexity O(me logm) [15,25] applied at most for m iterations to find n
mincuts at each. Lump is O(mzelog m) since the computation of the lower bound L involves

finding n»—1 mincuts in the reduced graph. Simple Greedy examines each edge of the

reduced graph exactly once which is O(e). Thus, the overall runtime complexity of the

algorithm is upper bounded by that of Grab which is O(nmze log m) time.

When trying to minimize the total execution and communication costs, one may face
the problem. that even when the optimal solution is found, one or more processors may be
assigned more jobs than others, which causes less concurrency in the system.. Lo [25]
showed that by including interference costs between two moduleé assigned to the same

processor, we can still reach the same optimal solution with more concurrency in the system.
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Interference costs serves as repulsive forces between modules assigned to the same processor,

in the same way communication costs serves as attraction costs. The interference cost
between two modules i and j on processor k can be stored in O(nmz). To account for
interference costs, Lo modifies equation (1).by considering that interference costs I,

between two modules i and j, are independent of the processors to which they might be

assigned.  The weight of an edge connecting module node / to processor node g is calculated

1 n-2 1
as w, = — Ex,.r — 1% + m}g%ﬁl i+ Also, the costconnecting two module

nodes i and j, is weighted by c; =c, —1,. If I, <c,, forall c,, then all weights c; are

positive, and then we can apply the same sequence of algorithms to the assignment graph. If

there exist an edge with negative ¢/, then we can directly apply Simple Greedy to find

suboptimal solutions.

Hui and Chanson [19] also use the preprocessed interaction graph (PTIG) to find a
heuristic solution for the problem they solved optimally (above) in both cases where the
processors are homogenous or heterogeneous. In [19], they reformulated the labeling on the
edges of the problem graph in order to create the preprocessed interaction graph (PTIG)
where each edge has only one label. The heuristic algorithm uses bin-packing to compute the
allocation, where the lower bound for the bin size is equal to zero, the upper bound is the
elapsed time if all the tasks are allocated to the fastest processor, and the bin size is selected
using a binary search over that range. Initially, a profit function is computed for each edge.
This function represents the reduction in elapsed time if the head and the tail nodes of the
edge are merged. In each iteration, an expected bin size that represents the overall elapsed
time is chosen for all processors. First, the edges are sorted in descending order by profit, and

nodes are tested for merging in descending order by profit and merged if they satisfy the bin
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size until no more profit could be achieved. Second, the algorithm considers merging nodes
with small elapsed time if the overall elapsed time does not increase in order to reduce
communication costs and the number of processors needed while obeying the bin size. Thus,
it sorts edges in descending order by merge gain in communication and merges pair of nodes
until no merge gain could be achieved. Third, the nodes with little or no communication are
tested for merging in order to further reduce the number of needed processors while obeying
the bin size.‘ Thus, nodes are sorted in order of elapsed time and the nodes with largest and
smallest elapsed time are merged when a reduction in overall elapsed time is possible, and the
merged node is moved to the front of the list. If no merging occurs, the largest node is
discarded.  In both cases, the process is repeated until all nodes are tested. If after the three
merging steps the allocation is successful, the bin size is reduced to check the possibility of
achieving a better overall elapsed time; otherwise, the bin size is increased to get a valid
allocation. When all the possible bin size values are tested, the second al;d the third steps are
repeated with taking the total elapsed time achieved till now as a bin size aiming for a better
allocation.

For a system with homogenous processors, the runtime complexity of the algorithm is

0((m+ e)log? m) time, while for a system with heterogeneous processors the runtime

complexity is O((m + e)mlogm) time. The difference results from the cost of updating and

retrieving the elapsed time of each node which is used in computing the overall elapsed time
after each iteration, since a heap is used for the first case, while an array is used in the second.

The problem of assigning an arbitrary parallel program of m modules having unit
execution time onto a fully connected heterogeneous system with n processors
communicating via homogenous communication links was solved heuristically by Bowen et

al. [8]. The objective is to find an assignment that minimizes the interprocessor
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communication while observing lower and upper bounds utilization for each processor. Their
solution is divided into two parts: (i) heavily communicating tasks are hierarchically clustered
to form a cluster tree, then (ii) clustering information is used to allocate tasks to processors.
The program is modeled with an undirectedi_ graph where each module is represented by a
node and each edge connecting two nodes represents the communication between them and is
weighted with the cost of this communication. The clustering algorithm selects first as a
pivot node the one having the largest adjacent édge. Ties are broken first by greatest number
of edges and second by selecting the lowest numbered node. Next, the neighbors of the pivot
node which are not yet clustered are sorted in descending order by the weight of the edge
which connect them to the pivot node. The nodes whose adjacent edge weights pass a
threshold test are clustered with the pivot node and the edges are updated accordingly. This
second step, is called recursively to cluster neighbors of the neighbors up to a depth £. These
two steps are repeated with a new non clustered node as pivot until all nodes are clustered
which consists one pass of the algorithm. The algorithm is repeated until all nodes are
clustered into one node which represents the root of the cluster tree. Once a cluster tree is
generated, the allocation algorithm attempts to allocate the task tree on the multiprocessor
system represented by a cluster tree. At each node, starting from the root node, the modgle
tree is altered so that to have the same number of children as the processor tree while obeying
to the lower and upper bound constraints of each processor cluster. The algorithm first runs
on the root nodes of the module and processor trees as parameters. It considers the processor
which is farthest from meeting its minimum workload constraint until all the children of the
root of the module tree are allocated or all processors have met their minimum workload
constraint. If all processors have met their minimum workload requirements and there are
still module which are not yet assigned to processors, the processof closest to the minimum

workload is allocated first. When all modules are assigned, the module tree is modified such
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that it has the same number of children at the root node as that of the processor tree. The
allocation algorithm is recursively repeated at the children of the root nodes of both trees until
both trees become similar. The module to be assigned is selected as the child node having the
highest weight. If the assignment of that node deprives the other processors from meeting
their minimum workload requirements, the node, which represents a cluster, is popped from
the tree, replaced by its children, and the selection process is repeated which enables an

allocation at finer grain. The runtime cbmplexity of the clustering algorithm is

0((3e +(d + )m)log m) time with d being the node degree. For a small fixed d and a sparse

problem graph, the complexity reduces to O(m log m) time. The allocation algorithm is a

linear algorithm which visits each node of the module tree exactly once and tries to map its
children to the children of a similar node of the processor tree, thus its runtime complexity is
O(m) time.

Another aspect of the assignment problem is assigning a set of similar programs or
modules that communicate together to an array of similar processors. Both the module and
the processor interconnection structures are represented using graphs. The goal is to place, as
much as possible, two directly connected modules on two directly connected processors in
order to minimize interprocessor communication. This problem is known as the mapping

problem.

The problem graph is denoted by G,= <VP,E p> and the array processor graph by

G,

<Va ,E, ) The quality of the mapping is measured by the number of edges in G, that

are mapped onto G,, and is called the cardinality of the mapping. Bokhari [4,5] shows that

the mapping problem is computationally equivalent to the graph isomorphism problem. In

[4,5] the graph of the array processor is that of the Finite Element Machine, FEM, with
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N(=nxn) processors. Each processor is interconnected to its ‘eight-nearest neighbors’. A
time shared global bus connect all processors that are not directly connected. A heuristic
algorithm, which in most case derives a near optimal solution, is implemented to solve the

mapping problem.

Initially, the problem graph G »» represented by an adjacency matrix, is mapped onto
the array processor graph G, which is also | represented by an adjacency matrix. The
algorithm attempts to improve this initial mapping by applying a series of pairwise
interchange. For each node of the problem graph, a pairwise interchange with all other nodes
is considered, and the one that leads to the higher gain in cardinality is kept. When no more
improvement could be done, an interchange of » randomly selected pairs of nodes is done and
the pairwise interchange is applied again to the resulting mapping. Tests show that the
random interchange will not directly lead to better mapping, but the repeated application of
pairwise interchange improves the mapping in most cases. Bokhari proves the validity of the
algorithm by trying to map random permutations of the array processor graph on the array

processor graph. The mapping algorithm takes O(N ’ ) where N is the total number of

processors in the FEM and is equal to n* processors.
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CHAPTER1V
THE SCHEDULING PROBLEM

The second aspect of distributed computing is the scheduling problem where modules
of a distributed or a parallel program are to b; partitioned over a multiprocessor system and
the order of execution of each module must be unambiguously specified. The general
scheduling problem, where precedence relations are of the general type (i.e. transitive edges
are allowed, the task processing times are différent, and the number of parallel processors is
arbitrary) is NP-Hard in the strong sense [22], and is also NP-complete in many restricted
cases [14,16,17,22]. Unless P=NP, it is impossible not only to find a polynomial time
optimization scheduling algorithm, but also a fully polynomial time approximation algorithm
[22]. We mention, however, that few optimal solutions exist for some restricted cases, for
this reasons, many researchers focus on heuristic solutions for finding near optimal solutions
for this problem in short time. In this chapter, we divide these heuristic solutions into two
major categories: algorithms providing optimal solutions and algorithms providing near
optimal solutions. Under each of these categories we discuss the problem for the cases where

(1) the communication costs are ignored and (ii) the communication costs are considered.

4.1. Optimal scheduling algorithms

In this section, we review scheduling problems to which an optimal solution is
derived. Most of these algorithms assign a certain priority factor to each module based on its

position with respect to its successor and predecessor modules. Some other algorithms use

dynamic programming or least cost algorithms to find an optimal solution.

4.1.1. Without communication costs
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In [14], Hu solves the problem of scheduling a tree structured program of m modules
on ahomogeneous fully connected machine with » processors. Modules are assumed to have
equal execution times, and the goal is to minimize the sum of execution time of all modules.
The algorithm first computes the level of eaqh node in the task graph which is used as each
node priority. Then, whenever a processor beco;nes available, the unexecuted ready task with
- the highest priority is assigned to it. Hu’s algorithm, known as the level algorithm, provides
an optimal solution for an in-forest or an out-forest task graph of m tasksin O(m) time,
where each task has the same weight.

The second algorithm [14] solves the problem of scheduling m interval-ordered tasks
having identical weights on a homogenous fully connected machine of n processors. The
objective is to minimize the sum of execution time of all modules. In this case, the number of
successors of each node is used as its priority. Then, whenever a processor becomes
available, it is assigned the unexecuted ready task with the highest priority. This algorithm
solves the problem in Ole + m) time.

Also, in [14] Coffman and Graham consider the problem of scheduling an arbitrary
task graph on two homogenous processors, where the m tasks have identical weights. The
goal is to minimize the sum of execution time of all modules. The algorithm starts by
assigning labels 1,2,....,7 to the i terminal nodes. Next, from the set of unlabeled nodes with
no unlabeled successors, we assign label i+ 1 to the node having the smallest decreasing
sequence of integers, in lexicographical order, formed by ordering the set of the labels
(priorities) of its immediate successors. After labeling all tasks, whenever a processor

becomes available, assign it the unexecuted ready task with the highest priority. The runtime

complexity of finding the optimal solution is O(mz) which is the time required to assign

node priorities.
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4.1.2. With communication costs

The first three algorithms described next attempt to assign two communicating tasks
to the same processor in order to minimize communication costs, since intraprocessor
communication is considered to be negligible. The fourth algorithm schedule tasks to
processors in well d'eﬁned time phases where the execution and communication expenses of
the assignment are minimized.

The first problem is that of scheduling a tree structured program of m modules on two
homogenous processors, where module execution costs and intermodule communication costs
are equal. The main idea of the algorithm [14] is to augment the task graph with precedence
relations that compensate for communication costs. Scheduling the augmented task graph
with no communication cost is the same as scheduling the original task graph with
communication.  The algorithm presented works on an in-forest, however, with minor
modifications, the algorithm performs equally on out-forests. The algorithm first identifies

the sets of siblings §,,S,,....,S, in the in-forest. Then, for every set S, , let # be the node with

maximum depth. Disconnect all edges connecting all nodes in S, to child(Si) except for

node u, and connect these nodes to node u. Next, obtain a schedule by applying Hu’s level

algorithm [2] on the augmented in-forest. Finally, for every set S, of the original in-forest, if
node u with the maximum depth is scheduled in the time slot immediately before child(S,.),
but on a different processor, then exchange child(S,.) with the task scheduled in the time slot
immediately after # on the same processor. Using this algorithm, the optimal solution can be
found in time O(m?).

Next, Ali and El-Rewini [14] solves the problem of scheduling m interval-ordered

tasks on a homogenous fully connected machine having n processors. Their algorithm

assumes that all tasks have equal execution costs which is also identical to the
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communication delay. The algorithm works as follows. First, the priority of each node is
computed as the number of its successors, where ties are broken arbitrarily. Then, the node
with the highest priority is scheduled first, and it is assigned to the processor which ensures
its earliest starting time. If for a node i, more than one processor ensure the same earliest
starting time #, then node i is scheduled to run on the processor which in time slot # — 1 was

‘assigned the task with lowest priority. We note that a processor which is not assigned at time
slot #—1 has priority zero. The runtime complexity for finding the optimal solution for a
graph of m tasks and e edges is O(me) .

Third, Varvarigou et al. [36] solved the problem of scheduling an out-forest structured
program of m modules over a fully connected processor system having homogenous
communication links. The execution cost of a module of the program and the cost of
communication between two modules scheduled to run on different processors are assumed to
take each one unit time. The number of processors is bounded by a constant C, and the
objective is to minimize the sum of execution and communication time. The main idea of the
solution is to transfer the problem graph into an equivalent free delay graph that can be
scheduled without considering communication costs. First, the algorithm recursively builds
the shortest delay free graph of the problem graph which is an out-forest. For a node i, select
the child node j with the highest weight. Ties are broken arbitrarily. Disconnect all edges
connecting i to all its children except for j, and connect all disconnected nodes to node ;.
Thus, in O(m) time the shortest free delay trees for all subtrees can be calculated. Then, the
algorithm uses the theorem, 'by Dolev and Warmuth [35] : given an out-forest precedence
graph G, and an optimum schedule for the high subgraph of G, there is an O(m) time
algorithm that computes an optimal schedule for the whole graph G. So, the algorithm finds

the median, of the shortest delay free graph corresponding to the out-forest, which divides
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that graph into a high subgrapil and a low subgraph. In order to be able to apply Dolev and
Warmuth theorem, the algorithm uses dynamic programming to compute the length of the
optimal schedule for all the high subgraphs corresponding to the high shortest delay
subgraphs which is equal to computing the gptimal schedule of the graph that contains at»
most n—1 initial components. Then, the complete optimal schedule is computed using
Dolev and Warmuth theorem. The resulting schedule divides the ﬁodes into sets that
correspond to different time slots, for example the set S(k) is assigned to time slot k. These
sets are allocated to processors such that the communication delay constraint is not violated.
All nodes of S(1) are assigned to processors at random, then for every node x in S(k) if the
parent of x is scheduled in time slot £ — 1, then x is assigned to the same processor, otherwise

it is assigned atrandom. The runtime complexity of the algorithm is bounded by the time to
find the optimal schedule for all high subgraphs which is O(m*"2). Although this algorithm

is designed for out-forests structured programs, it can be used to solve the same problem for
in-forests, since an in-forest reduces to an out forest by reversing the edge directions and then
inverting the resulting optimal schedule.

Fourth, Bokhari [4] provides an optimal solution for the problem of scheduling an
out-tree structured parallel program to a fully connected system with » heterogeneous
processors and heterogeneous links where the costs (expenses) over the distributed system are
assumed to vary with time, that is the cost of processing a task on the system is processor and
time dependent. Moreover, the interprocessor communication costs (expenses) between two
processors depend on their common link and on the time during which the communication
took place. Thus, processing and communication costs are considered with respect to well
predefined phases of time. The goal is to minimize the cost (expense) of executing the

program, and the penalty for not meeting deadlines by trying to assign tasks to phases where
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all costs could be minimized. The optimal solution is obtained using the shortest tree

algorithm on an assignment tree of m tasks, n processors, and ¢ phases in O(mn2¢2) time.

4.2.  Near optimal scheduling algorithms

In this section, we review heuristic algorithms which provide a suboptimal solutions
for the scheduling problem. Some of these algorithms assign a certain priority factor to each
module based on its position, or its weight vxj:ith respect to its successor and predecessor
modules, or even based on more complex priority factdrs. Some other algorithms use

clustering based on the edge zeroing technique to find a suboptimal solution.

4.2.1. Without communication costs

The problem is to find the schedule that minimize the total execution time of an
parallel or distributed program of m modules on an homogenous fully connected machine of »
processors. Communication costs among tasks are negligible, and thus they are not
accounted for in the problem which is modeled by a directed acyclic graph (DAG) of O(m)
nodes.

The first algorithm, by Shirazi et al. [31], is the Heavy Node First algorithm (HNF).
The DAG modeling the problem must have no redundant edges. In HNF, all entry nodes
have depth equal to zero. From all the ready nodes with the same depth, HNF assigns first
the heaviest node to the processor that insures its earliest execution time. Whenever all nodes
of the same depth are assigned, the algorithm works on the ready nodes of the next depth until
no more nodes are to be assigned. By using a heap io store the ready nodes at each depth,

HNF can provide a schedule which is no worse than twice the optimal schedule in

O(m log m) time.
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The second algorithm is the Critical Path Method algorithm CPM [31], which uses the

critical path method on a DAG, a generalization of Hu’s optimal level algorithm for trees
[14]. CPM finds a schedule which is no worse than twice the optimal schedule in O(mz)

time, which is the time to compute node levels. .

Next, the Weighted Length (WL) algorithm, also by Shirazi et al.[31], uses an
approach similar to the one used in CPM on DAG with no redundant transitive edges. Instead
of using the level of each node asits priority; WL computes the weighted length for each
node. The weighted length of anode i is the sum of : thé weight 7, the maximum weighted
length of the children of i, and the summation of the weighted length of the children of i
normalized over the number of children of i. The weighted length is computed bottom up in
O(mz) time. The algorithm has the same performance as CPM.

Also, Kasahara and Narita [22] presented two algorithms to solve the same problem.
Their problem graph must have one entry and one exit node. The first one is the critical
path/most immediate successors first algorithm (CP/MISF) [22] which a modification of the
critical path method. In CP/MISF, the level of each node is computed first, and the priority
list is ordered in descending order of level and the number of immediately successive tasks.
Next, list scheduling is executed on the basis of this priority list. The ready task having the
highest level and the highest number of immediately successive tasks will execute first. The

worst case performance of CP/MISF results in a schedule length twice as much as the optimal
schedule. The runtime complexity of CP/MISF is O(m? + mn).

The second algorithm, by Kasahara and Narita [22], is the depth-first/implicit heuristic
search algorifhm (DF/IHS). DF/IHS method is divided into two parts: (i) the preprocessing
part which consists of assigning priorities heuristically to the nodes during search, and (ii) the

depth-first enumeration of all possible assignments. In the ‘preprocessing stage, the level of
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each node is computed in O(mz) time. Then the tasks are renumbered using two stage
sorting, like in CP/MISF, which takes O(mlog m) time. Thus, the complexity of the

preprocessing part is O(mz) . In the depth first search part, a tree that enumerates all possible

assignments is created in depth first manner. A path in the tree from the root node to a leaf
node consists of a solution of the assignment problem. Because of the priorities assigned in
the preprocessing part, the left most path form the root node to a leaf node in the enumeration
tree represents the same solution that can be achieved by CP/MISF. Any other path from a
root node to leaf node may or may not contain an improved solution. The use of elimination
rules within DF/IHS reduces the number of paths to be generated in the case a better solution

is not likely to be obtained along that path or a satisfactory approximation is reached. The
runtime complexity of the algorithm is O(n"’) which is the time required to enumerate all
possible solutions in the case where the elimination rule are set such that all the possible

solutions are to be explored.

4.2.2. With communication costs

Varvarigou et al. [35] show that for every out-forest with communication delay, there
exists a delay-free out-forest such that their schedule is optimal. They also derived tﬁe
shortest delay-free out-forest which optimal schedule may or may not correspond to the
optimal schedule of the original out-forest and proved that its optimal schedule at most
exceeds that of the original out-forest by (n—2) time units. To solve the problem, the
algorithm applies level scheduling on the shortest delay-free graph which provides an optimal
schedule for Aany delay free out-forest. This optimal schedule is a near optimal schedule for

the original out-forest with no more then n— 2 time units from the optimal schedule. Thus,

the level algorithm finds the near optimal solution in O(m) time.
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The following four algorithms address the problem of assigning an arbitrary parallel
or distributed program of m modules on a completely connected graph with an unbounded
number of homogenous processors. A program is modeled by a directed acyclic graph
(DAG) where each node represents a module and is labeled with corresponding execution
cost, and an edge connecting two nodes is labeled with communication cost between the
modules they. represent. All four algorithms try to reach the shortest possible schedule by
defining a specific goal to minimize. These:'algorithms use clustering which consists of
mapping the tasks of the DAG onto clusters. A clustering is called non linear, if two
independent tasks are mapped to the same cluster; otherwise it is called linear.

The first algorithm is Kim and Browne’s linear clustering algorithm known as KB/L
[16]. The goal is to reduce the length of the longest path determined by a cost function.
Initially, all edges are marked unexamined. The first step, determines the longest path
composed only of unexamined edges by using a weighted cost function. The nodes in this
path constitute a cluster and their edges are set to zero. In the second step, all edges incident
to nodes in the longest path are marked examined. Both steps are applied recursively until all
edges are examined. Instead of computing the longest path as the sum of node computation

costs and of edge communication costs to find the longest path, a weighted cost function’ is
used : Cost_ function=w, * Zt,. + (1 -w, )(w2 * Zc,’j + (1 - wz)* Zci‘ffj) . In this cost
function, w; and w, are normalization factors, while Zc,"j’ represents the sum of the
communication costs of all edges adjacent to a node in the path. If w, = % and w, =1, then

the cost function will represent the sum of node computation costs and of edge

communication costs. Finding the longest path at each node takes O(m + ¢) time. Therefore,
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the complexity of KB/L is O(m(m + e)) time. For a dense graph e = m?, the complexity

becomes O(m’).

The second algorithm is Sarkar’s [16] algorithm which zeros the highest edge if the
parallel time does not increase. Initially, egph node is considered to form a single cluster.
First, all edges of the DAG are sorted in descending order of edge costs. Then, the highest
edge is zeroed if the parallel time does not increase, and this step is repeated until all edges
are scanned. In this algorithm, when two clustérs are merged, the task within the new cluster
having the highest bottom level is scheduled to execute first. Thus, at each clustering step,
bottom levels of all tasks must be computed in order to decide which task to schedule first.

This computation is done at most e times and it costs O(m + €) . Therefore, the complexity

of the algorithm is O(e(m + ¢)) time.

The third algorithm is the dominant sequence clustering algorithm, by Yang and
Gerasoulis [16], known as the DSC algorithm, and its goal is to minimize the dominant
sequence (DS) in the problem graph. At the beginning, all edges are marked unexamined.
An edge considered for zeroing is marked visited, and its head node is scheduled. At the
completion of a clustering step, two sets of nodes are updated, the scheduled set, and the
unscheduled set which initially contains all nodes to be scheduled. The algorithm works as
follows :

1. Suspend zeroing an unexamined edge (m, y) in DS until the head node y becomes free,

i.e. all its predecessor nodes are scheduled, which insure a breadth first traversal of the graph.
2. Choose a free node x which belongs to the longest path going through any of the free
nodes and zero its incoming edge(s) provided the following two conditions are satisfied :

i) (CT1) If the starting time of node x decreases.
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i) (CT2) Zeroing incoming edges of node x to minimize the top level of x should not

affect the strict reduction of the top level of y at some future step j, i < j, which means

that incoming edges of x can be zeroed only if a strict reduction in the parallel time can be
obtained.

3. If all edges in a DS have been examined and this DS continues to dominate in the next

“step, then recursively apply the above steps on the next longest path (SubDS) to reduce the

number of unnecessary processors.

The free node chosen in step 2 is the free node having the highest priority where the
node priority is the sum of the top level and the bottom level of that node. Ties are broken
using the most immediate successor first (MISF) strategy. The free node with the highest
priority will be scheduled on the processor that allows its earliest execution. If no such
processor exists, then it is scheduled on a new processor.

Re-computing top levels takes O(v + ) time per step. More reduction in complexity

can be obtained by computing the start bound of a node instead of its top level which can be

achieved in O(e log v). Updating priority lists takes 0(10g v) time, and since there are v
steps the cost is O(vlogv). Traversing the graph takes O(v+e). Thus, the total time
complexity of DSC is 0((v+e) log v), and the space complexity is O(v+ e).For linear

clustering the cost reduces to 0(v logv + e) .

The fourth algorithm is the modified critical path algorithm, by Wu and Gajski [16],
known as the MCP algorithm. The goal is to schedule at the earliest possible time the tasks
with the highest priorities in the critical path. First, the algorithm determines a priority list
based on the highest bottom level first ordering. Ties are broken by using the highest level of
its successor task, the successor of its successors and so on. Then, while there exists an

unscheduled task, it finds an unscheduled free node with the highest priority in the priority
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list, then schedule this task to a processor (cluster) that allows its earliest execution. The
worst time complexity of the MCP algorithm is O(m2 log m) because of the cost in the tie

breaking. If there are no ties the complexity is similar to DSC.

4.3. . Some other problems and techniques

Many other variations of the allocation and scheduling problem, and many other
solutions techniques are derived to find optim‘.:al or near optimal solutions for both problem:s.
We briefly mention some of these algorithms since they do not fall into our classification. For
example, the problem of scheduling parallel programs on distributed memory parallel
architecture where duplication of tasks on more than one processor is allowed [28] and the
problem of scheduling compute-intensive tasks in the idle time of a network of workstations
[12] are solved. The A* algorithm in artificial intelligence is used to solve the task
assignment problem based on the minimax criterion [30], and a new mapping heuristic is

derived based on mean field annealing to solve the task allocation problem [9].

59



CHAPTER V

A NOTE ON THE ASSIGNMENT PROBLEM OF ARBITRARY PROCESS
SYSTEMS TO HETEROGENEQUS DISTRIBUTED COMPUTER SYSTEMS

In [8] the authors proposed a clustering algorithm which creates clusters of frequently
communicating nodes in a distributed compliter system. The system is modeled as a graph
where each node represents a module of a parallel program and each edge represents the cost
of communicafion between the corresponding nodes. The purpose of the algorithm is to
hierarchically create the kind of clusters which minimize the communication cost.

In the clustering algorithm, two nested while loops insure that the graph is cdmpletely
hierarchically clustered. The outer loop insures that the graph is reduced to a tree of clusters
where the root node represents the entire graph as single cluster. Each iteration of the inner
loop deals with the creation of a single cluster which will be represented by a single node in
the above mentioned tree. This single cluster is denoted by C in the algorithm and is cleared
only before entering the inner loop (Fig. 5.1).

Since each iteration of the inner loop deals with the creation of one single cluster C,
the value of C must be initialized at the beginning of each. If not, as writteﬁ in [8], the nodes
of the graph will be grouped into a single cluster and the algorithm will fail. Therefore, we
make our first correction which initializes C immediately after entering the inner loop:

DO while ¢(v’) =0 for some v’ € ¥’ /* Nodes not clustered */
Clear C /* C will hold all nodes of a single cluster */.

Our second correction is related to Fig. 8 of [8]. That figure represents a worst case
example of the clustering algorithm. The example describes a graph of 10 nodes as shown in
Fig. 5.2. We recall that to create a cluster the algorithm starts by selecting a pivot node as

follows :

- A pivot is a node of the graph that is not yet clustered.
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Given a graph
G = (V,F) where V is a set of nodes and F is a set of edges:

V={v,-,...v,~ },Fg VXV and:

If(vi,yj) € F then ey € E is the weight.

G =G
DO while [V’ | > 1 /* more than 1 node in ¥’ ¥/

cv)=0Vv ey

Clear C /* C will hold all nodes of a single cluster */
DO while ¢(v) = 0 for some v’ € ¥’ /* Nodes not clustered */

Selecta PIVOT (Vp € V' A o(Vp)=0):
Select node with greatest ey 31, € V'Ac(vy =0

Break ties by greatest number of edges
Break further ties by lowest numbered node

Rank_Neighbors(k)

Update G’ :

Mark pivot as clustered (c(1p ) = 1)

Yvi € C,vi # Vp remove viform V’

If (Vi,Vj) € F'Avi,v; € C then remove (Vi,Vj) from F’

Vi, i3 vi eCAv g CA(viy) € F'Avi £ vp
Remove (Vi, v,-) from F’
If (Vp,Vj) ¢ F"' then add (Vp,\{'j) to F’; ep = e
If (Vp,Vj) € F' then ey = ey + €ji

Record vp and members of C as belonging to the same cluster

END /* nodes in ¥’ not clustered */
END /* more than one node in V'’ */

Rank_Neighbors(k)
0= {eijVp,Vj € F'ac(v)) = 0}

Sort Q into descending order

Drop on threshold:
- 0@)-0@+1]) F_ 00 -00+D  »
0'={QM0.- (0} > SZ IS <Ti= 1.t A EOTEEED >
C=CuV,

where Vg =[pleny € Q']
If k> 1 then Rank_Neighbors (k-1) for each v; € C

Fig. 5.1 The clustering algorithm.
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(2) It must be adjacent to a non clustered node having the greatest connecting edge weight.
(b) If more that one node satisfy (a), the node having the greatest number of incident edges
is chosen.

(iii) If more that one node satisfy (b), the node which has the lowest number is chosen.

1 1000 100 1000 1000
OmOmmO; U ©, 1’)—.—"—.—‘ OO O

Fig. 5.2 The graph of the worst case example.

Next, the algorithm consider for clustering neighbors of neighbors of the pivot node uptoa
depth k. If k=1, then only the immediate neighbors of the pivot node are candidates for
clustering. Then, all candidate nodes are subject to a threshold test, and only nodes passing
the test are clustered.

In the worst case, at most two nodes merge together at each pass, therefore the
algorithm must run with k =1, that is, the algorithm will not consider for clustering the
neighbors of the neighbors of a pivot node, it will only cluster the direct neighbors which pass
the threshold test.

By applying the clustering algorithm, with & = 1 and with a threshold ¢ = 025 as set
in [8], on the example of Fig. 5.2, we first find that nodes 2, 4, and 5 are pivot candidates.
Node 2 is selected to be the pivot of the first cluster. Although node 2 has neighbors nodes 1
and 3, node 1 is discarded for failing the threshold test. This is how nodes 2 and 3 form a
single cluster represented by node 2. Similarly, nodes 5 and 6, and nodes 8 and 9 are
clustered and represented by nodes 5 and 8 respectively (Fig. 5.3). This completes one pass
of the outer loop.

On the second pass, nodes 2 and 4, nodes 5 and 7, and nodes 8 and 10 are clustered

and represented by nodes 2, 5, and 8 respectively (Fig. 5.4). On the third pass, 2 and 5 are
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candidates to be selected as pivots. They have the same number of incident edges, but node 2

is selected because it has the lowest number. Nodes 1 and 5 are direct neighbors of node 2

Fig. 5.4 Pass 2.

Fig. 5.5 Pass 3. Fig. 5.6 Pass 4.

and théy both pass the threshold test. Therefore nodes 2, 1, and 5 are clustered into the same
cluster and represented by node 2 (Fig. 5.5). Nodes 2 and 8 are clustered on the last pass (Fig.
5.6). The passes of the hierarchical clustering are represented by a tree (Fig. 5.7).

We note that our final graph is different from the one presented in [8] (Fig. 5.8). We
believe that this graph cannot be reached as a result of running the allocation algorithm

proposed in [8]. We think our correction is in order.
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Pass 4

Pass 3

Pass 2

Pass 1

Fig. 5.7 The cluster tree of the worst case example.

Pass 4

Pass 3

Pass 2

Pass 1

OO ONOMONONONMONMONO

Fig. 5.8 The cluster tree of the worst case example as shown in Fig. 9 of [23].
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CHAPTER VI
A VARIATION OF BOKHARI’S LAYERED GRAPH ALGORITHM FOR MAPPING
CHAINS ONTO CHAINS IN O(m’n) TIME USING A REDUCED LAYERED
GRAPH OF O(mn) NODES

The problem of mapping chains of modules onto chains of processors, referred to
thereafter as MCC, occurs when a packet of data must be subject to a set of operations. For
example, the packet of data may have to be Fourier transformed, multiplied by a fixed
frequency, filtered ...etc. This kind of operatioﬁs has a serial chain-like structure. Instead of
executing such serial operations on all packets of data using a single processor, it would make
a better sense to think of a multiprocessor system having a chain-like structure and try to map
the chain of modules to the chain of processors. An example of such assignment is shown in
Fig. 6.1 below [4,6,7]. In that figure, each packet of data moves from processor 1 to
processor 4 in a unidirectional pipelined fashion. While processor 3 executes operations 4, 5,
and 6 on a packet i , processor 2 executes operations 2 and 3 on packet i +1.

Also, this problem occurs when a set of chain-like packets of different sizes must be

subject to parallel operations. The problem is to find an optimal assignment of these data

packets on the chain-like multiprocessor system where processors can communicate in both

directions.

Fig. 6.1 A nine-module chain mapped onto a four-processor chain.

Both problems can be modeled in the same manner as follows. Given a set of m
modules connected in a chain-like fashion, and a multiprocessor chain of size n < m, we need

to find the assignment of subchains of modules to processors that minimize the load on the
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heavily loaded processor. The contiguity constraint ensures that two modules that
communicate together are assigned to the same or to adjacent processors. The above
description of the MCC problem is also used in the next chapter.

The problem of assigning chains of modules onto a chains of processors, where
processors are restricted to be homogenous: was studied by Igbal [20], by Nicol and
- O’Hallaron [27], and by Igbal and Bokhari [21], under many assumptions and in the general
case. In this chapter, we focus on the general case where the processors are heterogeneous
and the communication links between processors are also heterogeneous. This case is solved

by Bokhari [4,6,7] and by Nicol and O’Hallaron [27]. We present a new variation of

Bokhari’s algorithm which runs in O(mzn) time. More specifically, our algorithm uses a

reduced layered graph of O(mn) nodes and O(m’n) edges. We note that all solutions

presented in this chapter assume that all processors are to be utilized. In the remaining

figures of this paper, many nodes and edges are omitted to avoid congested diagrams.

6.1. Bokhari’s layered graph algorithm

To solve the MCC problem of Fig. 6.1, Bokhari’s algorithm [4,6,7] constructs the

layered graph of Fig. 6.2 where each layer in the graph corresponds to a processor. A node

<i, j> , 1<i < j<m, corresponds to an assignment of the subchain of modules i through ; to
the processor in that layer. A node <i, j) is connected to all nodes ( j+1,k> in the layer

directly below it for all j except 1 and n. All nodes (1, j) ((z,m)) in the first (last) layer are
connected to node s(z). A pathfrom s to ¢ corresponds to an assignment of subchains to

processors under the contiguity constraint.
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l<1.3>] [<1.45] [<1,55] [<165] [<1.75] =

‘«‘
..........

<4,9>] [<5,9>] |<6,9

Fig. 6.2 Bokhari’s layered graph for the problem of Fig. 6.1.

Edges of the layered graph are 1abeled as follows. The weight of the edge cohnecting
node (i, j) in layer k to any node in the layer below is equal to the cost of executing model

ithrough j on processor k. To account for communication cost between subchains

connecting node (a,b) in layer k to node (b+1,d) in layer k+1, we add the
communication cost between nodes » and b+1 over the link connecting processors &, to

k+1.

Using this technique, it is clear that the number of nodes in each layer is in O(mz) .
Since the graph is of nlayers, the total number of nodes is in O(mzn) , and the total number
of edges is in O(m’n) . We note that a variation of Dijkstra’s shortest path algorithm [11]

solves the problem in 0(m4n2) time. Due to the layered structure of the graph, Bokhari’s

solution provides an improved running time; the idea is to find the minimum bottleneck path

from node s tonode . 'Each node i in the layered graph is given a label L(i). Initially, all
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nodes are given infinite labels except nodes of the first layer which are given zero label. The

algorithm works as follows:

1. Examine each edge e emanating downwards from a layer connecting a node a (abové) to
anode b (below). Let the weight on this edge be wle).

2. Replace L(b) by min(L(b),max(w(e), L(a))) )

Once tis labeled, the path representing the optjmal path can be found by tracing backwards

from ¢ to s. Both the labeling procedure and finding the optimal path visit each edge of the

layered graph exactly once, therefore the overall complexity of Bokhari’s algorithm is

O(m3 n) .

6.2.  Nicol and O’Hallaron’s variation using an improved layered graph

Using a variation of the layered graph, Nic_ol and O’Hallaron [27] were able to solve
the same problem in O(m?n) time using O(m?n) edges. For example, in Fig. 6.2, n—2 new
layers were added, one between each layer, except between layers 1 and 2. Each new layer
consists of m nodes labeled frqm 1to m. Anode ( j,k) in layer i (with respect to Bokhari’s
layered graph) directs a single edge tonode & in the new layer between layers i and i+1.
This edge is labeled exactly as the edge leaving node < j ,k) in Bokhari’s solution. A node &
in the new layer directs to all nodes {k +1,/) in the layer i + 1 (see Fig. 6.3). Each edge of
this type ha$ a zero weight. A path form s to ¢ corresponds to a solution of this assignment

problem.

By adding m(n—2) nodes to Bokhari’s layered graph of Fig. 6.2, Nicol and

O’Hallaron were able to reduce the number of edges of the layered graph as follows. In the
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Processor 1

"""" Processor 2

New Layer

"""" Processor 3

New Layer

Processor 4

Fig. 6.3 Improved layered graph of the problem of Fig. 6.1.

old layers, each of the m” nodes directs one single edge to the layer below, therefore the total
number of edges leaving the » old layers is in O(mz»n) .

In the new layers, each of the m nodes directs m edges to the layer below., therefore
the total number of edgesv leaving the 7—2 new layers isin O(m*(n-2)). Thus the total
number of edges of the improved graphisin O(m?n+ m?*(n— 2)) whichis O(m*n). Thus,
by using Bokhari’s original algorithm on £he improved layered graph of Nicol and

O’Hallaron, the minimum bottleneck path from s to ¢ can be found in O(mzn) .

6.3.  Our variation

Our variation has two parts: (i) a variation of Bokhari’s layered graph, and (ii) a
variation of Bokhari’s algorithm. We begin by defining our reduced layered graph first.
Definition 53: A reduced layered graph, is a graph with » layers and m nodes. Each layer

has m nodes labeled from 1 to m. Eachnode i atlayer k is connected to all nodes j of layer
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k+1, i+1<j<m (Fig. 6.4). A node s connects to all nodes of layer 1, while node m at

layer n serves also as a terminal node.
A path from node s tonode m at layer n in the reduced layered graph consists of a
feasible assignment. The optimal assignment corresponds to the path having the minimum

bottleneck weight, and it is computed using a variation of Bokhari’s algorithm:

Fig. 6.4 The reduced layered graph for the
problem of Fig. 6.1.

Instead of labeling edges, as in the algorithms described earlier, we label nodes as

follows:
1. Let L(a) be the label of node a, then L(s) = 0.

2. Forlayer 1 (k =1), eachnode i is labeled by the cost of executing module 1 through i

on processor 1.

3. Forlayer k, 2< k < n,eachnode i is labeled by

. ( L(adjacent node j in the layer k — 1), B
min| max . _ ) .
cost of executing modules j + 1 through i on processor £,
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In the reduced layered graph, the number of nodes is reduced to O(mn) nodes. The
number of edges isin O(mzn). Labeling nodes from s to m at layer n takes O(mzn) time.
The path representing the optimal assignment can be traced backwards from node m at layer
n tonode s. The overall complexity of this algorithm is O(mzn).

We have traced below a sample run of our algorithm. We assume a chain of four
modules to be assigned to a chain of three processors. Table 6.1 shows the execution cost per

module on each of the three processors.

M1 |M2|M3 M4
P1[2 [1 [3 |2 Layer 1
P24 3 3 4
Layer 2
P33 2 2 4
Layer 3

Table 6.1 Execution cost per module

on each processor.
Fig. 6.5 The reduced layered graph of

the problem in Table 6.1.

As an example of the labeling procedure of the problem in Table 6.1, we choose to
label node 4 of layer 2. In the following, C(i, ) is the cost of executing node i through j
on processor k, and L(a)is the label of node a in the layer above. The label of node 4 on

layer 2 can be calculated as follows:

max{ L(1),C(2,4)} max{2,10}
min{ max{ L(2), C(3,4)} { = min{max{3,7} t=min{10,7,6}=6.
max{L(3), C(4,4)} max{6,4}

A path from node s to node 4 in layer 3 consists of a feasible assignment. The

optimal assignment is shown in Fig. 6.5 in bold lines. It represents the assignment of
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modules 1 and 2 to processor 1, module 3 to processor 2, and module 4 to processor 3. The
label of node 4 in layer 3 is the bottleneck weight of the optimal path, i.e. the weight on the

heavily loaded processors corresponding to the optimal assignment.

6.4. Results
In this chapter, we have reviewed the problem of assigning chains of modules onto

chains of processors. In particular, we reviewed Bokhari’s and Nicol and O’Hallaron’s
algorithms. Our contribution consists of a variation of Bokhari’s work which runs in O(m*n)
time using a reduced layered graph of O(m?n) edges and O(mn) nodes. A summary of all

results is included in Table 6.2.

Problem Nodes Edges Run time

Bokhari O(m2 n) O(m3n) O(m 3”)

Nicol & O’Hallaron 0(m2 n) 0(m2 n) 0(m2 n)

A new variation O(mn) O(m*n) O(m*n)

Table 6.2 Summary of results.
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CHAPTER VII
A HEURISTIC ALGORITHM FOR MAPPING CHAINS ONTO CHAINS OF A
HOMOGENOUS AND A HETEROGENEOQOUS PROCESSOR SYSTEM IN TIME
O(m) AND O(mn) RESPECTIVELY
In this chapter, we suggest a simple heuristic solution for the MCC problem in the
cases where the processors are homogenous and heterogeneous. In the case where the
processors are homogenous, a module execution cost is the same on all processors. In the

case of heterogeneous processors, each module has a different execution cost on each of the

processors. Links connecting the processors are considered to be homogeneous in both cases.

7.1. Homogenous chain of processors

The first algorithm works on a chain system where the processors are homogenous
and the communication links between two adjacent processors are also homogenous. Also,
the communication load between any two modules must not exceed the sum of the weights of
all modules divided by the number of processors, i.e., the average load per processor. The
weights of the m modules is represented with a one-dimensional array of size m. Each
element i of the array stores the execution cost of the corresponding module and the
communication cost with module i+ 1. The algorithm works as follows:

1. Let i=1.

2. Let AVG be the sum of all module weights divided by the number of processors, i.e. the

average load per processor.

3. Traverse a list representing the chain of m modules in the first-to-last node direction. At

each node j compute S, as the sum of module weights from node i to node j until S; exceeds

AVG.
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Jj-p

4. If S, is nearer to AVG then S,_,i.e, (Sj —-AVGSAVG—SH), then assign modules

from 7 to j to the first available processor in the chain and set i = j + 1; otherwise, assign
modules i to j—1 to the first available processor and set i= ;.
5. Steps 3 and 4 are repeated until all modules afe assigned.

We note that when the number of processors is much smaller than that of the modules,
steps 3 and 4 ére repeated until m — 1 processors are assigned and the remaining modules are
assigned to the last processor m. But in the case where this number is greater than the number
needed in the assignment, the last subchain of modules, which weights sum does not exceed
AVG, will be assigned to the first available processor leaving a number of unused processor at

the end of the processor chain.

This algorithm traverses the chain of m modules twice. In the first time, it computes
the average load per processor, and in the second time, it provides for a heuristic assignment

based on the average calculated. Since both steps are O(m) time, the total run time

complexity of the algorithm is O(m) time.

Communication
cost

Execution th /

(3i1f7i3]2i1]1ia]s5i2]3ia]7i2]2i3]

ava=10 03 0N ON O O 0RO
:2 3 8 7 9

3 10

Pl P2 P3

o= Huks]

Fig. 7.1 A chain of 8 modules onto a chain of 3 homogenous processors.
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In Fig. 7.1, a chain of eight modules is assigned to a chain of three homogenous
processors. The sum of module weights starting from module 1 exceeds A¥G, which is equal

to 10, at node 3. Since S, is nearer to AVG than S,, modules 1 and 2 are assigned to

processor P1 and i = 3. This time the sum of module weights starting from module 3 exceeds

AVG at node 6, and S, is nearer to AVG then S;, thus modules 3 to 6 are assigned to P2 and
i=7. Since only one processor is not assigned, the remaining subchain of modules 7 and 8
are assigned to P3. This is one of the cases whel;é the heuristic solution is an optimal solution
with bottleneck weight equal to 11.

7.2.  Heterogeneous chain of processors

For the case where the processors are heterogeneous, each module may have a
different execution cost on any of the processors. The weights of the m modules are
represented with a two-dimensional array of size m x n. Each element i,j of the array stores
the execution cost of module i on processor j. The communication costs between two
modules are stored in a one-dimensional array of size m where the content of element i
represents the‘ communication of module i with module i +1.

To deal with this issue, we modify step 2 of the previous algorithm by computing

AVG as follows:

2. Let AVG be the sum of all module costs on all processors divided by the square of the

number of processors.

We also modify step 3 since calculating the weight of the subchain i to j depends on the

processor to which it will be assigned. So step 3 becomes:

3. Traverse a list representing the chain of m modules in the first-to-last node direction. At

each node j compute S; as the sum of module weights from nodes i to j on the first available

processor until S; exceeds AVG.
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Calculating AVG in this case is O(mn) time which is the time to read all m x » module
execution costs per processor. Thus, the run time complexity of the algorithm is O(mn) .

Communication

NG Lo

Execution cost on

Pl 5 7 2 10 6 3 9 11
P2 12 11 2 6 5
P3 8 2 5: 6 5 7 10 3

ar=1666 () 00 9@ OmO,

512 14

H
w
~2

7 18 |
P 17 20

Pl P2 P3

(1a——{sH—0]

Fig. 7.2 A chain of 8 modules onto a chain of 3 heterogeneous processors.

In Fig. 7.2, a chain of eight modules is assigned to a chain of three heterogeneous
processors. The sum of module execution costs on P1 starting module 1 exceeds AVG, which
is equal to 16.66, at node 4. Since S, is nearerto AVG than S,, modules 1,2 and 3 are
assigned to processor P1 and i=4. Since the second assignment corresponds to processor
P2, the sum of execution cost will be computed with respect to P2. 4VG is exceeded at node

5, and modules 4 and 5 are assigned to P2 because S,is nearer to AVG then S,. The

remaining subchain of modules 6, 7 and 8 are assigned to P3. In this case the heuristic
algorithm provides an optimal solution with bottleneck weight equal to 20. Another optimal
solution to the same problem assigns modules 1, 2 and 3 to P1, modules 4, 5 and 6 to P2, and
modules 7 and 8 to P3.

7.3. Unbounded communication costs
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As mentioned above, both algorithms suggest that the communication between any
two modules is less than AVG, because if it happens that two modules have the
communication éost between them greater than AVG and the first is assigned to the processor
i and the second to the processor i+1, thenw the communication cost between them may
dominate the size of the load on the heavily loaded processor. To avoid such situation, all the
- communication costs between two modules are inspected before step 3, and two nodes are
merged if this cost exceeds AVG. Merging two r;odes iand i +1 involves adding the weights
of module i+1 to those of node #, and removing the merged node from the list representing
the chain. Step 3 will work on the newly generated chain which is smaller than the original

one. Inspection of the communication links takes O(m) time which does not increase the run

time complexity of any of the previous algorithms.
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CHAPTER VIII

OPTIMAL TASK ASSIGNMENT IN HOMOGENOUS NETWQ XS i 17
PRESENCE OF ATTACHED TASKS

The main idea behind Lee and Shin algorithm [24] which provides an o;:tiinal sotition
to the problem of assigning an arbitrary problem to an n-dimensional array or- ¢ of
homogenous processors in the presence of attached tasks, is first to find a cuisct ifat s, wiles
a designated pfocessor from all other processors on an appropriately defined nctwar - Jovw
graph.  Such cutset represents the communication costs occurring on the finks conneeti oyt
isolated processor and the task assigned to it to the tasks assigned 1o ihe roris ™+l
processors. Then, it continues by finding another cutset that separates a grow.p of 7 coeis” s,
formed by the designated processor and one of its nearest neighbors from ail ot 00000 8,
This process is repeated for all neighbors of the designated processor by adding m-e ;o sase
at a time to thé group. Next, for each processor in the group, its nearest neig 005 (3
one by one and the corresponding cutset is derived separating the group fion <Ll
remaining processors. All generated cutsets represent the sum of commviiciting o iy
incurred by a specific assignment of tasks to processors. An assigmment is co il
feasible if all attached tasks are properly assigned.

Lee and Shin proved that for n-dimensional array and tree interconnection st o,
the choice of the cutsets must be done in a way that they do not cross each oihcr anl ! 1l
feasible solutions to the problem one-to-one correspond to the set of these cuinvts, Tahe
remaining part of thié chapter, we will show how to adapt Lee and £iin idca o a
homogenous system having a star graph interconnection structure as a represeniniive of ¢«
graphs, and then we generalize our results to homogenous systems wi.l a i,y
interconnection structure.

8.1. Group graphs
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Akers and Krishnamurthy [1] describe group graphs as follows:

“a group graph results when we select a set of symbols (say A,B,C)

and a set of rules (transformations) by which one permutation of the

symbols may be changed into another.... The corresponding graph

results when we assign one node to each of the resulting permutations

and then connect two nodes by a branch if a transformation takes one

corresponding node into the other.” ~
Definition 54: If we choose a set of n symbols and one specific permutation which we call /
(the identity element) and a set of transformations which may be applied to I, then the

resulting set of permutations is called a group. A group graph results when we assign one

node to each permutation in the group and then draw a branch form node P, to node P, if
there exist a transformation which takes permutation P, into permutation P, [1].

The set of transformations is further restricted such that (i) it does not generate the identity,
(i) all are different and (iii) all are closed under inverse. These restrictions imply that group
graphs are loop-free, do not have multiple edges, and can be represented by undirected

graphs. An example [1] of such permutations rules on 4 symbols ABCD that generate the

group graph of Fig. 8.1 are: ABCD b
1. Swap the inner symbols (acbd), ACBD BADC 32:;
2. Swap the outer pairs of symbols (badc), and CADB BDAC
3. reverse the permutation (dcba). CDAB DBCA

DCBA

We note that group graphs are node symmetric, i.e.
Fig. 8.1 An example group graphs [1].

from any node in the graph “the rest of the graph

looks exactly the same” [1]. The proof of group graphs node symmetry property can be
found in [2].

Another example of group graphs is the star graph.
Definition 55: A star graph S,, of order n, is defined to be a symmetric graph G = (V, E)

where V'is the set of n! vertices, each representing a distinct permutation of » elements and E
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is the set of symmetric edges such that two permutations (nodes) are connected by an edge iff
one can be reached from the other by interchanging its first symbol with any other symbol
[33].

For example, in S, we take the identity to be ABC and suppose that it is the starting node in
the graph. According to the definition, ABC connects to BAC and CBA (F ig. 8.2(a)). We
can also use a different set of symbols, for example in S,, the identity 1234 can be
transformed into 2134, 3214, and 4231. By;. applying the definition on the generated

permutations, we can build the 24 node graph shown in Fig. 8.2(b).

ABC
BAC CBA
CAB BCA
ACB
€

Fig. 8.2 Star graphs S; and S,.

8.2.  Optimal task assignment in star graph networks in the presence of attached
tasks
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To apply Lee and Shin idea on a homogenous system having a star graph‘
interconnection structure, we need to construct a network-flow graph that represents this
assighment problem and find all the set of cutsets, that represent all feasible solutions, such
that the total weight of each set of cutsets is equal to the communication cost incurred by its
corresponding assignment.

Definition 56: Given a star graph S, and an identity permutation , the neighborhood tree is
the tree that generates all the neighbors of the identity / and the neighbors of the neighbors
such that each of the n! nodes of S, is represented only once in the tree. Furthermore, nodes
of the neighborhood tree are numbered from 1 to »! in breadth first search order.

The neighborhood tree for S, is shown in Fig. 8.3. In the remaining part of this chapter, we

will denote by N the total number of processors in the network which is equal to »! in the

case of star graph.

1234
2134 3214 4231
G 0
3124 4132 2314 4213 2431 3241,
O © }3 0/\0
1324 4123 1432 3142 4312 2413 1243 2341 1234
1423 2143 1342 3412 4321

Fig. 8.3 The neighborhood tree for S,

By traversing the neighborhood tree in a breadth first order, at each node £, representing

processor p,, we can find the sets B, and P, suchthat P, = {pl,..., pk} and P, all the
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remaining processors. We then proceed using Lee and Shin approach, so we apply their
modeling technique to describe the solution of the problem and we follow their steps to prove
its correctness.

Given a TIG =(V,E) of a distributed application of m modules submitted to an N

processors star graph, we first make a corresponding N-terminal network G v = (VN E N) by
adding the N processors nodes to the 7. IG.: Then, we construct (N —1) two-terminal
networks graph G;s, 1<i < N, from the N-terminal network G,, as follows:

1. Generate a source node S, by combining all the processors nodes in P, and all the task
nodes which are attached to one of these processors.

2. Generate a sink node 7; by combining all the processor node in P and all the tasks nodes

which are attached to one of these processors.

Definition 57: Let C; beasetof (N —1) cutsets C, each of which is on the corresponding
two-terminal network graph G,. Then Cj is said to be admissible if no two cutsets in C
cross each other. The weight of C; is the total weight of the cutsets in Cs, ie.
#c)=Spic).

Lemma 1: Each admissible set Cg one-to-one corresponds to a feasible task assignment.
Proof. Each admissible set Cg ofagraph G, partitions the graph into N subsets 4, s each
of which has exactly one processor node p,. Then we can associate C with the assignment
that every task in 4, is assigned to p, , and vice versa.

Lemma 2: Let an admissible set C corresponds to a feasible assignment X. Then, the weight

of C; is equal to the total communication cost of X, COMM(X) .

Proof. The communication costs incurred between two parts of the star graph, nodes 1 to i

from one side and nodes i +1 to N from the other side with respect to the breadth first order
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enumeration, under the assignment X is equal to the weight of the corresponding cutset C,.

Thus, the total communication cost is the sum of all the cutsets C,, 1<i<N, ie.

comm(x) =Y w(c,)=w(Cy).
Form lemmas 1 and 2, we can deduce that;.also in the case of a parallel system of
homogenous processors having a star graph interconnection structure, the task assignment
problem in the presence of attached tasks can .be solved by finding the minimum weight
admissible set C,, on the corresponding N-te!fminal network graph. We propose the
following procedure as a solution to this assignment problem.
1. Generate the neighborhood tree of the star graph starting from an identity node 7, and
label this tree in a breadth first search order.
2. Traverse the tree in breadth first search order until node N —1 is reached.
i) At each node labeled i in the neighborhood tree, group all nodesfrom 1toiina
source node S along with all attached task to any of the processors 1 to i, and all the
remaining nodes i + 1 to N in a sink node T along with their attached tasks.
ii) Find a minimum weight cutset C; of the two-terminal network graph G, =(V,.,E ,.)
between source S and sink 7, which divide the network into two parts.
ii1)For every unassigned task to the side of S, assigns it to the processor labeled i.
3. All remaining unassigned tasks are assigned to the processor labeled M.
The neighborhood tree can be represented by an adjacency list of O(N) nodes, and

can be created, enumerated and traversed in a breadth first search order in O(N) time. The

algorithm requires N —1 applications of a network flow algorithm of O(m3) time each.

Thus, the overall complexity of finding the optimal solution is O(Nm3 ) time.
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Lemma 3: Letaset C; = {C,.I I<i<N } found in the algorithm described above correspond
to a task assignment X. Then the assignment X is feasible; that is, Cs is admissible.
Proof. At each node labeled i, every unassigned task to the side of the source node S is

assigned to the processor labeled i at step 2.c. Any cutset C,, i < j, cannot partition nodes

to the side of §any more, since these nodes form the source node S when finding the cutset

C,. Therefore, any two cutsets found by this algorithm do not cross each other.

Lemma 4: Let asetCg = {C,.l I<i<N } found in the algorithm described above correspond
to a feasible assignment X. Then, for any feasible assignment X", the following inequality
holds for each node labeled i W(C,)<W(C}), forall .

Proof. Each cutset C, in C is a minimum-weight cutset of G, and separates the graph into
two parts. Every task to the side of source S is assigned to one of the processors p, s,
1<k<i, and every task to the side of sink node 7 is assigned to one of the processors p,’s,
i+1<I<N by the above procedure. Then the weight of the cutset C, is ‘W(Ci) and it is

equal to the sum of all communication costs between tasks assigned to processors on the side

of S and tasks assigned to the remaining processors on the side of 7. We prove the inequality

by induction on i.

1. The result is true for i =1, since C, is a minimum-weight cutsets.
2. Suppose the inequality is true for i = k — 1. Without loss of generalities, assume that the

task nodes are partitioned into two subsets 4 and B by the minimum cutset C,_, (Fig. 8.4(a)).
Let ¢(A4,B) denote the sum of the weights of all edges between two sets A and B. Then
W(C,_,)=c(4,B). By the procedure described above, the next cutset C, cannot partition

the tasks in.4 any more, since every task in 4 is already included into the source node S. Let

C, partition the task graph into two subsets AU B, and B; (Fig. 8.4(b)), then
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w(C,)=c(4U B,,B;) = (4,B;) +(B,,B;) =c(4,,B;)+(4],B;)+ (B, B;),  where
A/ VA=A and B, UB;=B. (Each ofthe subsets may be empty, but this will not alter

the proof.) We prove this by contradiction. Suppose the inequality does not hold for i =k .
Then there exists another feasible assignment. X’ which partitions task nodes into two

subsets 4, U B,,and 4] U B/, where B, U B/ = B (Fig. 8.4(c)) such that
| o4, 4)+c(4,,B))+ (B, 47) + (B, B) < (4, i{Bz’)+c(Al',B2') +¢(B,,B). (1)
Every task in A4/ is executable on at least one of the processors p,, k +1</< N, since

X' is feasible. Thus, the cutset C,_, (Fig. 8.4(d)) is a cutset of a feasible assignment which
assigns every task in A, to one of the processors p,, 1</<k -1, and every task in
A{ U B, UB; to one of the processors p,, k<I/<N. Then W(Ck_l)s W(C,;_,) by the
assumption for j=k -1, 1i.e.,

o(4,8)+(4,B)+c(4,B)+ (4], B))< (4, 4)) +(4,,B,) + (4,,B). (@)

Every task in B, is executable on at least one of the processors p,, k <I< N, since Xis
feasible.  Also, every task in B, is executable on at least one of the processors p,, 1</<k,
since X' is feasible. Thus, every task in B, is executable on processor p,, / = k. The cutset
C, in (figure 5d.) is a possible cutset in G, which assigns every task in B, to processor p,
(we assumed that every taskin 4, U 4| has already been assigned to one of the processors
p, 1I<k—1, by the cutsets C,,C,,,C,,). Then W(C,)<W(C}) since C, is a

minimum-weight cutset in G, , i.e.,

o(4,,B)+ 4], B;) + (B,, B;) < c(4,,B) + (4], B]) + (B, B]). (3)
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By combining the above three inequalities (1), (2), and (3), we obtain the following
inequality: c(Al’, B, ) <0. This contradicts the fact that the weight between any two subsets

cannot be negative. Thus, the inequality holds for i =% .

Gemon Di Qo)

A B
Cra Ck
(a) A minimum cutset Cy., in Gy, (b) A minimum cutset Cy in Gy
‘ C : C’
Cle -
(c) A hypothetical cutset C’ (d) A hypothetical cutset C’

Fig. 8.4 Illustrative figures for Lemma 4.

Theorem 1: Let C = {C;| I<i<N } found in the algorithm described above correspond to a
feasible assignment X. Then, the assignment X is an optimal assignment with the total

communication cost of Z,-W( C )

Proof. By contradiction, assume that X is not an optimal assignment. Let another feasible

assignment X’ be a optimal assignment, i.e., COMM(X') < COMM(X) . Then there exists
at least one i, 1<i<N -1, such that W(C,.’) < W(C,.). This is contradictory to the result of
Lemma 4, and thus, X is an optimal assignment. The total communication cost of X'is
Z‘_W(C,.) by Lemma 2.

Fig. 8.5 shows an example that we have traced below as a sample run of our

algorithm. A parallel program of seven modules is to be assigned onto S, which

neighborhood tree is also shown in Fig. 8.5. In the first iteration (Fig. 8.6), node 1
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representing processor 123 is selected to form the source node S along with the task T1 which
is attached to 123. All the remaining processors and their attached tasks are grouped into the
sink node 7. The cutset C, =25 is aresult of applying step 2.b. This cut does not assign
new tasks to S, and its value is equal to the» communication costs of T1 on 123 and its

adjacent tasks on the remaining processors, i.e. the cost of assigning attached task T1 to 123.

©

123
213 321
312 231
T1 attached to 123
T2 attached to 132
T7 attached to 321
132

Fig. 8.5 An example of TIG of 7 modules to be assigned to S;.
In the second iteration (Fig. 8.7), where processors 123 and 213 are group into S with their
attached tasks, cutset C, does not assign to S any new tasks, i.e. processor 213 will not
execute any task. Cutset C, =25 and its value will not be considered in the computing the

total communication cost since it does not represent an assignment of tasks to 213. In the
third iteration (Fig. 8.8), processors 123,213 and 321 are grouped with tasks T1 and T7 to
into source S, and all the remaining processors with their attached tasks into sink 7. The

cutset C, =70, and it assigns tasks T3, T5 and T6 to processor 321. The fourth (Fig. 8.9)

and the fifth (Fig. 8.10) iterations does not assign any tasks to 312 and 231 respectively. The

remaining task T4 will be assigned to 132 in sink node 7 with a cost C; = 70 since C; is the
last cutset. C, value will not be used in computing the total communication costs because it

does not represent any assignment. Thus, the cost of the assignment is
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Cs=C +C; +C,=165. Fig. 8.11 shows an optimal assignment of the problem in Fig. 8.5
with details on the communication costs between any two tasks. We note that this problem
admits another optimal solution by assigning task T4 to processor 321, which can be verified
in Fig. 8.8 by computing the cutset assigning all tasks to S which is also equal to 70.
Moreover, in Fig. 8.11 the communication betwc;en task T1 on 123 and task T4 on 132 may

‘take place through processors 213 and 312 with the same cost.

s O—2—/00
® 25 15 \)__50 5] [521]

VAN
" 10}

5 J10
20

J3 J6
30

Fig. 8.6 Iteration 1 of the algorithm on the problem of Fig. 8.5.

25 T
s F @ = ®@ ©@
525 15 50

©

123 :’ 15

10}

213 : 5 10

33 J6
30

Fig. 8.7 Iteration 2 of the algorithm on the problem of Fig. 8.5.

20

@)

Fig. 8.8 Iteration 3 of the algorithm on the problem of Fig. 8.5.

88



70

S /@
@@\ 40 10

I123I |2]3| 132
10
321 (312
20

.10
S : T
© @ o @
[123] [213] [132]

231
= T3 T6

20
Fig. 8.10 Iteration 5 of the algorithm on the problem of Fig. 8.5.

@) T1,T2 = 3(15) = 45
T1,T3 = 1(10)= 10
T2,T3=2(5) =10

213 ©@ @ @ T2,T4 = 0(40) = 0
T2T5 = 2(10) = 20
‘ T3,T4 = 2(25) = 50

- 3,16 = 0(30) = 0
T4,T5 = 2(15) = 30

T5,T6 = 0(10) = 0

@ @ TS, T7=0(40)=0
T6,T7=0(20)=0

Total cost = 165
Fig. 8.11. An optimal task assignment of the problem of Fig. 8.5.

8.3. Optimal task assignment in homogenous arbitrary networks in the presence of
attached tasks
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From the definition of the neighborhood tree, we realize that for any group graph this
tree can be generated. Also, this tree can be generated for any interconnection structure that
can be described by symbol permutations. Since, the neighborhood tree is nothing but a
breadth first order traversal of the interconnection structure of the homogenous network
starting form a specific node, which can be ve;iﬁed in Fig. 8.3 for the star graph S, , we can
generalize our.results on star graphs as follows. For a network of homogenous processors
connected in an arbitrary form, it is sufficient to create the breadth first search tree for the
network and use this tree for creating all the P, and P, seté of nodes at each kth node of the
arbitrary graph representing a processor. Then, we can apply the steps 2 and 3 of our

algorithm to find the optimal solution. Creating the breadth first search tree for an arbitrary
graph of n nodes is O(nz) time. Thus, the overall complexity of assigning an arbitrary

structured program of m tasks to an arbitrary network of N homogenous processors is

0(Nm3).
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CHAPTER IX
A COMPARISON OF ASSIGNMENT AND SCHEDULING ALGORITHMS

In this chapter, we include a table of comparison for the fifty algorithms reviewed
from the literature (Table 9.1). In the first colupm of the table, the problem is briefly defined,
and in the second column its type is indicated be it an allocation or a scheduling problem.
The third column shows whether communication costs are considered or not in the solution of
the problem and indicates whether these costs are homogenous or heterogeneous among all
tasks. The fourth column shows the type of costs the algorithm is aiming to minimize. The
fifth column indicates the machine structure to which tasks will be allocated or scheduled by
the algorithm and the seventh column indicates the number of processors of that machine.
The eighth column briefly describes the techniques used in solving the problem and the ninth
column indicates whether the solution is optimal ornot. The tenth and eleventh columns
show the space complexity of the problem in terms of nodes and edges respectively, and the

twelfth column indicates the runtime complexity of the algorithm. Column thirteen is

reserved for explanatory remarks.
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CHAPTER X
CONCLUSION AND FUTURE RESEARCH

In this research, we hgve revfewed fifty algorithms dealing with static assignment and
scheduling of tasks with no duplication onto parallel or distributed systems. These algorithms
provide solutions for different aspects of this problem, where the nature of the program to be
assigned and the interconnection structure of the parallel system vary from one problem to
another. We have also presented a comparison of these algorithms based on the nature of the
problem, the specific case they solve and the techniques used in deriving the solution.

We have commented on an example related to the paper “On The Assignment
Problem of Arbitrary Process S'ystems to Heterégeneous Distributed Computer Systems” [8].
We have investigated the problem of mapping chain of m tasks onto chains of » processors,
and derived a variation of Bokhari’s algorithm [4,6,7] with a reduced space complexity in the
case where the processors are heterogeneous. We have also suggested a heuristic solution for
the same problem in the case of homogenous and heterogeneous system of (m) and O(mn)
time respectively.

We have also investigated Lee and Shin [24] optimal assignment of an arbitrary
problem to homogenous processor networks having an n-dimensional array structure or a tree
structure in the presence of a attached tasks. Based on their approach to the solution, we
derived a solution for the optimal assignment of a parallel program of m arbitrary tasks onto a

network of homogenous processors having a star graph interconnection structure S, , with a
runtime complexity of O(Nm3 ) time, where N = n! is the total number of processors in the
star graph. We also generalized our results to homogenous arbitrary network with a runtime

complexity of O(Nm3) time, where N is the total number of processors in the arbitrary

network.
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For future research, we suggest that both heuristic algorithms described in chapter VII
for mapping chains onto chains in the cases of homogenous and heterogeneous processors be
compared against optimal sol.utions in order to define how often these algorithms provide for
an optimal solution and how far their solution is from the optimal one in the worst case.

In the case of the optimal task assignment in homogénous networks in the presence of
attached tasks, we provided a general algorithm that applies to arbitrary homogenous

networks. Our general algorithm when applied to the n-dimensional array problem of

N(: n, X n2><~-xnn) homogenous processors finds the optimal solution for a parallel

program of m tasks in O(Nm3 ) time. On the other hand, Lee and Shin algorithm [24] is

O(Zi(n, —1)}123) time for the same specific case. Their algorithm benefits from the

possibility of isolating each dimension of the n-dimensional program to achieve this relatively
better result. More research should be dorne to investigate the possibility of enumerating the
star graph or any group graph in a similar i1-dimensional fashion which might lead to the use

of Lee and Shin algorithm for the n-dimensional array as is in order to achieve faster results.
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