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ABSTRACT

The allocation problem is known to be NP-Hard in the most general case where both

the number of modules and the number of processors is arbitrary, and it is also NP-Complete

in some of the restricted cases. Also, the general scheduling problem, where no restrictions

are imposed on the interconnection structure between modules, on the modules processing

times, and on the number of parallel processors, is NP-Hard in the strong sense. Even under

some restrictions, the scheduling problem is NP-Hard. In some other restricted cases, it is

known to be NP-Complete. In this thesis, we first review fifty algorithms on both the

allocation and the scheduling problem. Next, we suggest a reduced layered graph and a

variation of Bokhari's [4,6,7] solution to the mapping chains of m tasks onto chains of n

heterogeneous processors to achieve better space complexity. We also suggest two heuristic

solutions for the same problem in both cases where processors are homogenous or

heterogeneous in 0(m) and 0(nm) running time, respectively. We also adapt Lee and Shin

[24] approach, to optimal task assignment in homogenous systems having an n-dimensional

array or tree interconnection structure in the presence of attached tasks, on systems having a

star graph interconnection structure. We generate the neighborhood tree and solve the

problem with 0(Nm) running time where m is the number of tasks to be assigned, and N is

the total number of nodes (processors) in the star graph. We mention that the suggested

solution problem can be applied in the case of group graphs on any other type of graphs that

can be generated by a permutation of a set of symbols. Finally, we generalize our result for

systems having an arbitrary interconnection structure with a run time complexity of 0(Nm).

V



TABLE OF CONTENTS

Page

LISTOF TABLES..........................................................................................................

LISTOF FIGURES..........................................................................................................

CHAPTER

I. DEFINING THE PROBLEM ..............................................................................1

II. DEFINITIONS AND NOTATIONS.................................................................... 5

III. THE ASSIGNMENT PROBLEM.......................................................................14

IV. THE SCHEDULING PROBLEM ....................................... ................................. 48

V. A NOTE ON THE ASSIGNMENT PROBLEM OF ARBITRARY
PROCESS SYSTEMS TO HETEROGENEOUS DISTRIBUTED
COMPUTER SYSTEMS ....................................................................................60

VI. A VARIATION OF BOKHARI'S LAYERED GRAPH
ALGORITHM FOR MAPPING CHAINS ONTO CHAINS IN O(m2n)
TIME USING A REDUCED LAYERED GRAPH OF O(mn) NODES ............ 65

VII. A HEURISTIC ALGORITHM FOR MAPPING CHAINS ONTO
CHAINS OF A HOMOGENOUS AND A HETEROGENEOUS
PROCESSOR SYSTEM IN TIME 0(m) AND O(mn)
RESPECTIVELY................................................................................................73

VIII. OPTIMAL TASK ASSIGNMENT IN HOMOGENOUS SYSTEMS
IN THE PRESENCE OF ATTACHED TASKS.................................................78

IX. A COMPARISON OF ASSIGNMENT AND SCHEDULING
ALGORITHMS...................................................................................................91

X. CONCLUSION AND FUTURE RESEARCH ...................................................96

REFERENCES............................................................................................................98

vi



LIST OF TABLES

Table 6.1	 Execution cost per module on each processor..........................................71

Table 6.2	 Summary of results ...................................................................................72

Table 9.1	 A comparison of assignment and scheduling algorithms..........................92

vii



Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Fig. 5.5

Fig. 5.6

Fig. 5.7

Fig. 5.8

Fig. 6.1

Fig. 6.2

Fig. 6.3

Fig. 6.4

Fig. 6.5

Fig. 7.1

Fig. 7.2

Fig. 8.1

Fig. 8.2

Fig. 8.3

Fig. 8.4

Fig. 8.5

Fig. 8.6

Fig. 8.7

Fig. 8.8

Fig. 8.9

LIST OF FIGURES

The clustering algorithm...........................................................................61

The graph of the worst case example........................................................62

Pass 	 ........................................................................................................63

Pass 	 ........................................................................................................63

Pass 	 ........................................................................................................63

Pass 	 ........................................................................................................63

The cluster tree of the worst case example...............................................64

The cluster tree of the worst case example as shown in Fig. 9 of [8].......64

A nine-module chain mapped onto a four-processor chain ......................65

Bokhari's layered graph for the problem of Fig 6.1..................................67

Improved layered graph of the problem of Fig 6.1 ...................................69

The reduced layered graph for the problem of Fig 6.1..............................70

The reduced layered graph of the problem in Table 6.1 ...........................71

• chain of 8 modules onto a chain of 3 homogenous processors.............74

• chain of 8 modules onto a chain of 3 heterogeneous processors ..........76

Anexample group graphs [1] ...................................................................79

Stargraphs S3 and S4 ................................................................................80

The neighborhood tree for S4 ....................................................................81

Illustrative figures for Lemma 4 ...............................................................86

An example of TIG of 7 modules to be assigned to S 3 ............................87

Iteration 1 of the algorithm on the problem of Fig 8.5.............................. 88

Iteration 2 of the algorithm on the problem of Fig 8.5.............................. 88

Iteration 3 of the algorithm on the problem of Fig 8.5.............................. 88

Iteration 4 of the algorithm on the problem of Fig 8.5.............................. 89

Viii



Fig. 8. 10	 Iteration 5 of the algorithm on the problem of Fig 8.5.............................. 89

Fig. 8.11	 An optimal task assignment of the problem of Fig 8.5............................. 89

ix



CHAPTER I

DEFINING THE PROBLEM

Early research in distributed computing focused on the idea of distributing a

computational load, having a well defined interconnection structure, over more than one

processor communicating through a well defined interconnection structure. The goal behind

this distribution seeks to achieve results such as: minimization of execution cost associated

with the computational load and interprocess communication costs, good load balancing, and

high degree of parallelism. This latter contributes to the reduction of the overall processing

time of the load by efficient utilization of the available resources [25]. For this reason,

different algorithms are derived to provide for optimal or near-optimal distributions of the

load on the processors. In this thesis, we consider the case where distribution is static, i.e. it

remains unchanged until all the requirements of the computational load has been met. Such

algorithms require prior knowledge of precise data on the behavior of the computational load

and on its interconnection structure as well as the attributes and the interconnection structure

of the multiprocessor system. These information will be used by the algorithm at compile

time aiming to find a proper distribution. Depending on the nature of the problem and its

computational load, a static distribution algorithm may lead to one of two solutions: (i)

mapping or matching modules to processors, and (ii) scheduling modules to processors.

Mapping or matching tasks to processors, also known as the assignment problem,

deals with the optimal assignment of a serial program or a parallel program to run on more

than one processor in order to optimize the running cost [4]. An example of a serial program

is a program that have a procedure which deals with floating point computation, and another

procedure which have symbol manipulation. In this case, the first procedure can be sent to a

powerful floating point processor, while the latter to a processor that handles symbol

manipulation. This solution is perfect if the overhead due to interprocessor communication,



caused by transfer of control and parameters between procedures not residing on the same

processor, is zero, which is never the case.

In the case of a parallel program, two or more modules may execute concurrently for

different periods of time during the lifetime of the program. The purpose behind creating a

parallel program is to reduce the total execution time by distributing parts of the program that

can run in parallel over different processors. In this case also, the overhead due to

interprocessor communication between modules assigned to different processors can be a

crucial factor.

Scheduling modules to processors, or simply task scheduling, is the process of

mapping each module of a parallel program to a processor and also to a starting time [14].

The scheduling goal is to minimize the total completion time of the parallel program by

providing for the shortest possible schedule on the specified interconnected set of processors

[14]. The resulting schedule specifies which module is assigned to which processor and the

order of execution of each module with respects to the other modules.

On the other hand, two types of distributed computing environments exist. The first is

a network of more or less autonomous machines. These machines may be either homogenous

or heterogeneous, and may have different computing capabilities. Also, communication links

between these machines can be either homogenous or heterogeneous [4,6,7]. Such networks

are known as distributed processor systems [4]. The second is an interconnected collection of

special-purpose machines, known as parallel processor systems [4]. Moreover, processing is

considered parallel if interprocessor communications are very fast; otherwise, it is considered

distributed. This distinction may vanish if we consider the use of optical media, and parallel

processors with slow communication speed.

In general, a module can be a collection of procedures or subroutines, or one or more

data files. Links between different modules will insure transfer of control, and data access
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between different modules. A module may also be a segment of a computational domain. In

this case, all processors execute the same program, but on different portions of the large

computational domain [3,4,6,7,27]. This is also a partitioning problem where each processor

is assigned a partition of the data to work on.

The aim of researchers in this area of distributed computing is to find efficient

algorithms that provides for optimal or near-optimal distribution of tasks onto processors in

the case of the assignment problem and that of the scheduling problem. However, efficient

algorithms are unlikely to be found in the general case and even in some of the relaxed or

simplified cases. The allocation problem is known to be NP-Hard in the most general case

where both the number of modules to be distributed and the number of processors is arbitrary,

and it is also NP-Complete in some of the restricted cases [4,6,7,10,25,27]. Also, the general

scheduling problem, where no restrictions are imposed on the interconnection structure

between modules, on the modules processing times, and on the number of parallel processors,

is NP-Hard in the strong sense. Even under some restrictions, the scheduling problem is NP-

Hard. In some other restricted cases, it is known to be NP-Complete [14,16,17,22].

Thus, it is important to identify the tractable cases in both problems and try to provide

efficient solutions for them. Also, for all intractable cases, it is reasonable to search for

efficient algorithms that finds near-optimal solutions and to study the behavior of such

algorithms under different inputs.

This research focuses on different aspects of both the assignment and the scheduling

problems where the allocation of a load is assumed to be static and duplication of the load on

other processors is not allowed.

This thesis is composed of ten chapters. Chapter II includes all the definitions and

notations. In chapter III, we review different aspects of the assignment problem. In chapter

IV, we review different aspects of the scheduling problem. Chapter V includes a note on the
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assignment problem of arbitrary process systems to heterogeneous distributed computer

systems. Chapter VI describes a variation of Bokhari's layered graph algorithm for mapping

chains onto chains. Chapter VII suggests a heuristic algorithm for mapping chains onto

chains of a homogenous and a heterogeneous processor system. In chapter VIII, we solve the

problem of task assignment in homogenous systems in the presence of attached tasks.

Chapter IX includes a comparison of assignment and scheduling algorithms which we

reviewed in chapters II and III. The conclusion and topics for future research make up

chapter X.
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CHAPTER II

DEFINITIONS AND NOTATIONS

Definition I: A serial program is a program composed of sequential modules. One module is

active on one processor at one time, and modules can pass control to each other while the

programs executes.

Definition 2: In a parallel program, two or more modules may execute concurrently for

various periods during the life time of the program.

Definition 3: A chain-structured program is made up of m modules numbered from 1• . m,

and has an intercommunication pattern such that module i is connected to modules i + 1 and

i—i.

Definition 4: A directed graph or digraph G = (v, E) consists of a set V of vertices (nodes),

and a set E of ordered pairs of these nodes called directed edges, or simply edges. There is

a direction associated with each edge. The edge (, y) extends from the tail node x to the

head node y.

Definition 5: The cardinality n of V is the number of vertices in V. The cardinality e of E

is the number of edges in E. The indegree of a node is the number of edges entering that

node. The outdegree of a node is the number of edges leaving that node. In a directed graph,

max(indegree) = max(outdegree) = n - 1. The maximum number of edges is n(n - 1).

Definition 5: A directed path from node s to node t in a directed graph G = (v, E) is a

sequence of edges (s,p),(p,q),...(v,w),(w,t), such that the tail of the first edge is s, the head

of the last is t , and for all except the last edge, the head of any edge coincides with the tail of

the edge immediately after it.
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Definition 6: A node must be visited at most once in a directed path. If s coincides with t,

the path is called a cycle. A directed graph that does not have a cycle is called an acyclic

graph. The length of the path between two nodes is the number of edges in that path.

Definition 7: An undirected graph is a graph G = (v, E) in which the edges have no

directions, and at most one edge connects two nodes. V is the set of vertices, while E is the

set of unordered pairs of these vertices.

Definition 8: Two connected nodes of an undirected graph are called adjacent. The edge

is incident on the nodes x and y. The degree of a node is the number of incident

edges, and max(degree) = n - 1. The maximum number of edges is n(n - 1)/2.

Definition 9: A path from node s to node t in an undirected graph is a sequence of edges

(s, p), (p, q), . .. (v, w), (w, t) such that the first edge is incident on s, the last is incident on t,

and every pair of successive edges is incident on a common node. Also, repeated nodes are

not allowed. If s coincides with t , then the path forms a cycle. The length of a path is the

number of edges in the path.

Definition 10: A graph G = ( j'ç , E) is called a subgraph of a graph G = (v, E) if V is a

subset of V and Es is a subset of E. This notion applies to both directed and undirected

graphs.

Definition 11: An underlying graph results from ignoring directions and deleting duplicate

edges connecting two nodes of a directed graph.

Definition 12: A graph is called connected if a path exists between every pair of its nodes,

otherwise it is called disconnected.

Definition 13: A cutset or cut of a connected graph is a subset of the edges satisfying two

conditions: (i) removal of these edges disconnect the graph, and (ii) no proper subset of these

edges also satisfies (i). Property (ii) states that a cutset is a minimal subset of edges that must
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be removed in order to disconnect the graph. If a graph G has two distinguished nodes s

and t, and if a cutset breaks G into G 1 and G2 such that s is in G1 and t in G2 , then the

cutset is called an s-t cut. When the edges of an s-t cut are removed from the graph, nodes s

and t are said to be disconnected from each other.

Definition 14: A weighted graph is one in which there is a real number associated (weight)

associated with each edge. The length or weight of a path in a weighted graph or a weighted

digraph is the sum of the weights of the edges in that path. The bottleneck weight is the

weight of the heaviest edge in that path. The weight of a cut in a weighted graph is the sum

of the weights on all edges in that cut.

Definition 15: The Ford-Fulkerson Maxflow-Mincut theorem states that the minimum cut,

denoted by minimum weight s-i' cut or simply mincut, is equal to the maximum flow in the

network. The network can be a weighted directed or undirected graph. It can be viewed as

network transferring some commodity from s to t. The flow through the network must obey

the following restrictions:

1. The flow through an edge cannot exceed its capacity. An edge carrying a flow that is

equal to its capacity is called saturated.

2. The flow entering a node must equal to the flow leaving a node, except for s and t.

3. Node s has no flow entering it, node t has no flow leaving it, and the flow leaving s

must be equal to the flow entering t.

4. In the case of weighted digraphs, the flow in an edge must be in the direction of the edge.

Definition 16: Gomory and Hu showed that in order to obtain maximal flows between all the

n(n - 1)/2 pairs of nodes of a graph we should run the Maxflow-Mincut algorithm only n - I

times. The result of the n - 1 running of the Maxflow-Mincut algorithm is used to build the
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so-called Gomory-Hu tree, abbreviated as G-FI tree. The G-H tree represents all maximal

flows between any pair of nodes in the graph, and all minimal cut separating two nodes.

Definition 17: An n-way cut is a set of edges which partitions the nodes of the network into n

disjoint subsets with exactly one processor node in each subset and naturally represent an

assignment of tasks to processors. The cost of an n-way cut is the sum of the weights on the

edges in the cut.

Definition 18: An undirected tree is a connected undirected graph which contains no cycle.

For n nodes, we must always have n - 1 edges. Nodes with degree 1 are called leaf nodes.

A directed tree is a directed acyclic graph whose underlying graph is a tree.

Definition 19: An out-tree is a directed tree with all edges directed consistently outwards from

a specially designated node called root node. The root has indegree zero and all other nodes

have indegree exactly one. Nodes with outdegree equals to zero are called leaf nodes.

Definition 20: An in-tree is a directed tree with all edges directed consistently inwards to a

specially designated node called root node. The root node has outdegree zero and all other

nodes have outdegree exactly one. Nodes with indegree equals to zero are called leaf nodes.

Definition 21: A binary tree is an undirected tree where a designated root node has degree no

more than two and all other nodes have degree no more than three. The height of the tree is

the maximum distance between the root node and any leaf node.

Definition 22: Graphs with no constraints on the number of edges connecting two nodes are

called multigraphs.

Definition 23: A series-parallel program is an undirected multigraph which has two

distinguished nodes called the source s and the sink t, and which can be transformed into a

graph with just these two nodes s and t connected by a single edge, by repeated applications

of the following replacement rules.

1. If two nodes have two parallel edges between them, replace these edges by one edge.
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2. If a node b with degree 2 is adjacent to two nodes a and c, replace b and the edges

(a,b),(b, c) with the single edge (a, c).

Some graphs can be transformed into a series-parallel graphs by adding suitable dummy

nodes and/or dummy edges.

Definition 24: A task graph is an in-forest if each task has at most one immediate successor.

Definition 25: A task graph is an out-forest if each task has at most one immediate

predecessor.

Definition 26: An interval order is a task graph in which the nodes can be mapped into

intervals on the real line and two nodes are related if their corresponding intervals do not

overlap.

Definition 27: Anode with no predecessors has a depth of zero. The depth of any other node

is defined as the maximum number of edges between that node and any node with depth zero.

Definition 28: The level or bottom level of a node i is the longest path length from an exit

node to node i (including i). In a tree, for each node there is only one such path.

Definition 29: The top level of a node i is the longest path length from an entry node to node I

(excluding I). In a tree, for each node there is only one such path.

Definition 30: A ready task is a task with no predecessors or with all its predecessors already

executed.

Definition 31: A free node is a node with no predecessors or with all its predecessors already

scheduled.

Definition 32: Given an in-forest G = (V, E), the set of siblings S, is the set of all nodes in V

having a common child, denoted by child(S1).

9



Definition 33: The elapsed time of a module i is defined as the sum of execution cost of that

module and the communication costs with all its adjacent modules.

Definition 34: The overall elapsed time is defined as the maximum of the job completion time

and the medium access time.

Definition 35: An n-dimensional homogenous array is composed of N(= n 1 x n2 x . .xn)

functionally-identical processors
f
Pk. ,k, ,---,k, II < k. :5 n., for all	 with a communication link

between each pair of processors Pk,k2,...,k ' P,,2 ...4 if and only if Jk - = 1 for some jth

coordinate and k. = k for the other coordinates 1 :!^ (# I) :!^ n. The distance between any

two processors Pk, ,k, ,. •,k and p,12 ..., becomes ZJk, - ii.

Definition 36: A cutset C. of the two-terminal network graph G = (VU ,E) is a set of edges

which when deleted, separate S from 7,. such that	 1. = 0, S, u i. = Vi,, S E

and T. E U.	 is called the source set and 7, the sink set of the cutset. The weight of a

cutset is the total weight of the edges in the cutset.

Definition 37: For each ith coordinate, let C, be a set of	 - I) cutsets C each of which is

on the corresponding two-terminal graph Gij i.e., C, = ICU I 1 :!^ j :!^ n. I. Then C, is said to

be admissible if no two cutsets in C, cross each other. The weight of c., W(C), is the

total weight of the cutsets in C,, i.e., w(c,) =	 . w(c,).

Definition 38:	 Let CA be the set of all cutsets
	

Cij 	 i.e., CA =U,C,

= I ç Ii :!-< i :!^ n, 1:5 i :5 n. I - Then, CA is said to be admissible if each C, is admissible. The
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weight	 of	 CA	 is	 the	 total
	

weight	 of the	 cutsets	 in CA , i.e.,

w(CA )= w(c1)=w(c).

Definition 39: Let C be a set of (N - 1) cutsets Cs each of which is on the corresponding

two-terminal network graph G. Then CT is said to be admissible if no two cutsets in CT

cross each other.

Definition 40: A component C of a graph G is any subgraph of G for which the following is

true: there are no edges among nodes of C and nodes of G - C. That is, C is the union of one

or more disjoint connected components of G.

Definition 41: The median of an out-forest G, .t(G), is the height of some nth highest tree of

G plus one, where n is the number of available processors.

Definition 42: The high subgraph HG of a given out-forest G is the subgraph of G that

contains all the trees, with the height strictly greater than the median of G, i.e., t(G).

Definition 43: The low subgraph LG of G that contains all the trees of G that are of height

lessor equal to the median j.i(G).

Definition 44: Suppose that G is a graph whose dependencies are delay dependencies. Then

the corresponding delay free graph G is defined as the graph that results if we replace the

delay dependencies among every node m and its children m 1 , , ... ' with two stages of delay

free dependencies:

1) between m and some child m1 of in (node mj will be referred to as the favored child), and

2) among mj and the rest of the children of m.

Definition 45: Shortest delay free graph GS of a given graph G is a delay free graph such that

every subgraph of GS has height less than or equal to the height of the corresponding (i.e.,

containing the same nodes) subgraph in any other delay graph for G.

11



Notation I: d is the total amount of data transmitted between module i and module j.

Notation 2: spq is the cost of transmitting one unit of data over the link connecting processor

p to processor q. It is assumed that 5pq Sqp•

Notation 3: Spq (d.) is the function that gives the total amount of communication between

module i running on processor p and module j running on processor q. In general, this

function can be simplified to Spq *d. We note that s, is the cost of transmitting a unit of

data between two modules expected to execute on the same processor. If s = 0, then

intraprocessor communication is neglected. In the case of a multiprocessor system with

homogenous links, Spq is the same for all (p,q) pairs of links. In this case, we denote by cy

the total amount of data transmitted between module i and module j.

Definition 46: In this thesis, "interprocessor communication" is used to indicate the

communication volume taking place between modules where only the communication

between modules assigned to different processors are accounted for. While "intermodule

communication" is used to indicate the communication volume taking place between modules

assigned to the same or to different processors.

Definition 47: P is the class of all problems that can be solved deterministically in polynomial

time.

Definition 48: NP is the class of all problems that can be solved non-deterministically in

polynomial time (can be verified deterministically in polynomial time).

Definition 49: A problem Xis NP-Complete if

1. V Y E NP, Y is reducible to X, denoted Y a X, if V instance I E Y, 3 a polynomial time

computation such that f(I) is an instance of X, and I iff f(I).

2. XE NP.

12



3. If 1 is satisfied but not 2, Xis NP-hard.
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CHAPTER III

THE ASSIGNMENT PROBLEM

As described earlier, one aspect of distributing a computational load over more than

one processor is known as the assignment problem. Different algorithms based on different

techniques were used to solve this problem and to provide optimal solutions when possible.

Some of these algorithms can be clearly classified under one technique or another, and some

others share more than one technique in searching for appropriate solutions. In our

classification of the solutions to the different aspects of the assignment problem, we will

group together those algorithms that share the same techniques to find an optimal or near-

optimal assignment. Sometimes, classifying an algorithm under a technique or another may

be a debatable issue for algorithms that rely on a well-known technique to reach a starting

solution that might be optimal and continue improving this solution heuristically if it is not.

Such cases will be signaled out in the flow of the text. In general, these techniques are

classified under five categories: network flow, integer programming, least cost, probe

functions, and heuristic algorithms.

3.1. Network flow algorithms

The Basic Dual-Processor Assignment problem is the one of distributing the

execution of a serial or a parallel program over a two-processor system in order to minimize

the sum of execution costs of all modules and the sum of interprocessor communication costs.

To solve the problem, Stone [4] uses a graph of m nodes to model the interconnection of the

m different modules of the program. Each node in the graph represents a module and each

edge connecting two nodes indicates that the corresponding modules communicates during

the execution of the program. Each of these internal edges is labeled with the total time of

communication between the two adjacent modules. From this graph, the assignment graph is

14



built by adding two additional nodes s and t representing the two processors, and 2m

additional external edges which link s and t to all module nodes. An external edge

connecting node i to node s is labeled with the cost of executing module i on the processor

represented by node t. This reverse labeling applies also to the edges incident on t. Stone

shows that a cut that disconnects s and t corresponds to an assignment of modules to

processors and vice versa, and that the weight of a cut in the assignment graph is equal to the

total cost of the corresponding module assignment. Therefor, the optimal solution of the

problem depends on finding the minimum weight cut or mincut in the assignment graph. A

Maxflow-Mincut [4] algorithm applied to the assignment graph with s as source and t sink

will find the mincut in O(m) time and the cost of the found assignment is equal to the

weight of the cut.

A variation of the basic dual assignment problem is the problem of assignment with

dynamic relocation. In the basic dual assignment problem, modules assigned to processors

are expected to remain there while the characteristics of the computation inside each module

are constants. By characteristics of computation Bokhari [4] means the ratios of the time the

program spends in its different parts. Suppose that these characteristics change during the

lifetime of the program. This change creates a new dimension, into the optimal assignment

problem, which is relocation.

Relocation means that a module may be relocated between processors during program

execution. Relocation data is collected from the examination of the program activity. The

lifetime of the distributed program is divided into phases, and only one module executes

during a specific phase. A module is allowed to move from one processor to another only

between phases. The following information is associated with each phase:

1. The executing module during this phase.
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2. Running cost of this module on each of the two processors.

3. Cost of residence of the remaining idle modules on each of the two processors.

4. Intermodule communication costs if modules are on different processors.

5. Relocation costs for each module.

This information is represented in a graph where the number of nodes is equal to the

number of modules multiplied by the number of phases. Each node in the graph represents

the residence of a module in a specific phase. 1 The module that executes during a phase is

marked with an asterisk. Vertical edges connect successive residence of the same module and

are labeled with relocation costs of the module between the respective phases. Horizontal

edges connect the executing modules to other modules of the same phase and represent

intermodule communication costs between the executing module and the other modules

during this phase.

To build the dynamic assignment graph, we add two nodes s and t, each representing a

processor, and connect them to all the nodes in the graph. Again, reversed labeling is used.

The edge from node A 1 to node s is labeled with the cost of executing module A on t during

phase 1. The residence cost of module Cons during phase 2 goes on the edge joining C2 to

t. The mincut obtained by a Maxflow-Mincut algorithm between s and t is the optimal

dynamic assignment of the program. The dynamic assignment graph could be reduced, in

terms of edges, to the zero residence graph if the goal is to minimize execution time while

ignoring the cost of residence of an idle module on a processor. The zero residence graph is

obtained by omitting edges labeled with the cost of residence without execution. Bokhari [4]

shows that in the case of zero residence graphs, the minimum weight assignment also

corresponds to the mincut. Thus, the dual processor assignment with dynamic relocation can

be solved in O(m) time.
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Network flow techniques are also used to solve the problem of assigning modules of a

distributed program of size m to an n-dimensional linear array of N(= n 1 x n2 x . .

homogenous processors connected using homogenous links with the constraint that one or

more modules are each attached to a specific processor. The objective is to minimize the sum

of execution and interprocessor communication time knowing that if two communicating

modules are not mapped to directly communicating processors, then communication will take

place indirectly through one or more processors which will add to the overall execution cost

of the system. Since the processors of the n-dimensional system are homogenous, the

problem reduces to minimizing the communication costs.

To solve the problem, Lee and Shin [24] created an N(= n1 x n2 x . . x n,? ) -terminal

network graph by adding to the problem graph N terminal nodes each representing one

processor. Then, for each ith coordinate or dimension n, of the n-dimensional linear array

network, they generate all the (n 1 - i) sets P. of processors having their ith coordinate less

than j, and their corresponding sets P. containing all the remaining processors. For example,

for a (2 x 3) two-dimensional array network, we can generate Pj1 = { p11 'p12

= {p11 ,p21 }, and P22 = {p11 ' p12 ,p21 ,p,,}. To each of the (n, - i) pairs of sets P, and

P2 corresponds a two-terminal network graph G generated from the N-terminal graph as

follows: each set P2 is combined with all modules assigned to one of its processors in a

source node S, and its corresponding set P2• is combined in the same manner in a sink node

7.. Let C. be a cutset in the two-terminal network graph G. then C1 is the set of all

( 1 - i) cutsets C of the same ith coordinate. The set C1 is said to be admissible if no two

cutsets in C. cross each other. Let CA be the set of all sets C,, i.e. the sets of all cutsets
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then CA is said to be admissible if each C, is admissible. The effect of building CA is to

isolate each processor of the n-dimensional array network and try to assign to it modules

while obeying the minimization objective.

Lee and Shin showed that the optimal. solution to the problem corresponds to the

minimum-weight admissible set CAO of the n-terminal network, which means that all cutsets

C. must be minimum-weight cutsets. The optimal solution can be obtained by the following

procedure.

For every ith coordinate or dimension of the n-dimensional array network

1. Build a two-terminal network graph G, 1:5 j :!^	 - i) as described above, since there

are	 - i) graphs for each dimension.

i) Find its corresponding minimum-weight cutset

ii) Combine with S. an unattached module to the side of S, and not yet combined, and

set to j the ith coordinate of the processor where the unattached module is to be

assigned.

2. Set to n, the ith coordinate of the processors where the unattached and not yet assigned

modules are to be assigned.

The number of G graphs generated by the algorithm for each dimension of the linear array is

E, (n, - i) graph. Thus, the algorithm requires	 (n, - i) applications of the Maxflow-

Mincut algorithm which is O(m) in the worst case, therefor the overall run time complexity

of the algorithm is o(. (n1 - l)m3 ) time. A special case of the n-dimensional array network

is the hypercube, i.e. where n. = 2 for all i. In this case, the solution to the problem for an

n-dimensional hypercube with N = 2" processors is in O(Nm).
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The same technique is used to solve the problem of assigning a distributed program to

a tree of n homogenous processors connected with n - I homogenous links while minimizing

communication costs. To solve the problem, Lee and Shin [24] number the processors in

post-order. This way each processor Pk is assigned a higher number than its descendants.

Let Pk be the set of processor node Pk and all its descendants, and Pk the set of the other

nodes. Then, they build the n-terminal network graph G by adding n nodes, one node per

processor, to the problem graph. From the n-terminal network graph G, they construct

(n - 1) two-terminal network graphs G as follows: combine all the processors in the set P1

and all the modules attached to any of its processors in a source node S,, and all the

processors in its corresponding set P1 and all the modules attached to any of its processors in

a sink node 7. To each two-terminal network graph G. corresponds a cutset C1 . The set

CT of all the	 - 1) cutsets C, is admissible since no cutsets in CT cross each other. The

optimal solution can be obtained by applying the following procedure.

1. Build a two-terminal network graph G., 1 :!^ j :!^ (n - i) as described above, there are

(n - 1) graphs.

i) Find its corresponding minimum-weight cutset C1

ii) Combine with S1 an unassigned module to the side of Si , and assigns it to processor

2. Assign all remaining unassigned module to processor p,,.

The algorithm requires (n - 1) applications of the Maxflow-Mincut algorithm on

each two-terminal network with 0(m) node each. Thus the overall runtime complexity of the

algorithm is in 0(nm).
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In all problems discussed above and solved using the Maxflow-Mincut algorithm,

communication costs are restricted to be the communication occurring between modules

assigned to different processors, and they are referred to in the text as interprocessor

communication. The communication costs between modules assigned to the same processors

known as intraprocessor communication costs are considered negligible. In the case where

both interprocessor and intraprocessor communication costs are considered, we will refer to

the global communication costs as intermodule communication costs.

The next problem is one of assigning a distributed program of m modules to a network

of homogenous workstations or to a fully connected multiprocessor system. The network or

the multiprocessor system is modeled by a virtual clique architecture having homogenous

communication links. The objective is to minimize the maximum of the jobs completion

time and intermodule communication costs.

The problem is modeled with a doubly weighted graph where each node represents a

module and each edge represents communication between two modules. A node in the graph

is labeled with the execution cost of its corresponding node, while an edge has two labels.

The first label indicates the interprocessor communication costs between the modules

represented by the head and tail nodes of the edge and the second label represents the

intraprocessor communication costs between the same modules. To reduce the complexity of

finding the optimal solution, Hui and Chanson [19] reformulated the labeling on the edges of

the problem graph in order to create the preprocessed interaction graph (PTIG) where each

edge has only one label. In the PTIG, each node is labeled by the sum of the execution cost of

the corresponding module and the sum of the weights indicating interprocessor

communication on all edges incident on that node. An edge of PuG is labeled with twice the

difference of the weight of interprocessor communication and the weight of intraprocessor

communication. The main idea of the solution is to merge nodes optimally, such that the
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resultant elapsed time cannot be reduced further. When merging two or more nodes into a

new node, the weight of the new node is the sum of the execution cost of the modules

represented by the merged nodes, added to it twice the sum of all intraprocessor

communication costs between merged modules, and the sum of all interprocessor

communication costs between any of the merged modules and any node connected to it. This

node merging operation leads to merging all the edges connecting a node to any node merged

into the same group in a single edge. Thus, the weight of the merged edge is the sum of all

merged edges taken from PTIG. The proposed algorithm tries to minimize the elapsed time

of each node i by computing its rn-set, by merging node i with one or more nodes such that i's

elapsed time is minimum. By finding all rn-sets, the minimum overall elapsed time which

corresponds to the optimal solution can be computed. Hui and Chanson's [19] solution begin

by modifying PTIG into the transformed PTIG (TPTIG). TPTIG have the same set of nodes

of PTIG with addition of a terminal node t. To each undirected edge in PTIG corresponds

two directed edges in TPTIG, and each is labeled with half the weight of the edge on PTIG.

An edge connect each node to the terminal node t, and it is labeled with the difference

between the weight of the node in PTIG and half the sum of the weights of all edges incident

on this node. In other terms the weight of the edge is equal to the sum of the execution cost

of the corresponding node and the intraprocessor communication with all its node directly

connected to it in the problem graph.

The algorithm starts by sorting all nodes in PTIG in decreasing order of elapsed times

into a heap. Then, it selects the node with the largest elapsed time, removes it from the heap,

and create its corresponding TPTIG where the selected node is the source node. Next, the m-

set of the selected node is computed by applying a Maxflow-Mincut algorithm on TPTIG

between the selected node and the sink node t. Nodes of the rn-set are merged into a single

node, and TPTIG and the heap are update by removing the merged nodes and adding the new
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one. These steps are repeated until the elapsed time cannot be reduced further. The algorithm

requires at most m applications of a Maxflow-Mincut algorithm. Hui and Chanson suggests a

m _)
Maxflow-Mincut algorithm of 0(me log[18,19] runtime complexity for a graph with m

nodes and e edges. Since TPTJG is of 0(m) nodes and 0(m + e) edges, then the overall run

time complexity of the algorithm is in 0(m2 (m + e) log 
m

m + e)

3.2.	 Least cost algorithms

The problem of optimally assigning the modules of a distributed program over a

multiprocessor system is also attacked using techniques derived from Dijkstra's shortest path

algorithm [11]. The application of these techniques depend on two steps: (i) building for each

type of problems a specific assignment graph that represents all possible assignments of

modules to processors and (ii) formulating the corresponding cost to be minimized. Then a

variation of Dijkstra's algorithm, adapted to each specific assignment graph to insure better

run time complexity, traverses the graph in order to find a least cost solution among all

possible ones.

One of the problems solved using least cost algorithms is the problem of mapping a

chain of m modules to a chain of n heterogeneous processors connected with heterogeneous

links. The chain of modules may represent a pipelined or a parallel program where modules

are connected in a chain-like fashion The objective is to minimize the load on the heavily

loaded processor, known as the bottleneck load. Bokhari's [4,6,7] solution uses a layered

graph of n layers each representing a processor. A node (i, f), 1:5 i:5 j:5 m in a layer

represents the assignment of the subchain of modules i through] to the processor represented
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by that layer. A node (i,j) is connected to all nodes (j +J, k) in the layer directly below it

for allj except for I and n. A source node s connects to all nodes in the first layer, and a sink

node t connects to all nodes in the last layer. The number of nodes in Bokhari's layered graph

is O(m2n) nodes, and the number of edges is O(mn) edges. Bokhari applies a simple

labeling procedure to the layered graph in order to find the minimum bottleneck path from s

to t. Each node i in the layered graph is given a label L(i). Initially, all nodes are given

infinite labels except nodes of the first layer which are given zero label. The algorithm works

as follows:

1. Examine each edge e emanating downwards from a layer connecting a node a (above) to

a node b (below). Let the weight on this edge be w(e).

2. Replace L(b) by min(L(b),max(w(e), L(a))).

Once t is labeled, the path representing the optimal path can be found by tracing backwards

from t to s. Both the labeling procedure and finding the optimal path visit each edge of the

layered graph exactly once, therefore the overall complexity of Bokhari's algorithm is

O(mn) time which is the number of edges of the layered graph.

Using an improved layered graph, Nicol and O'J4allaron [27] were able to solve the

same problem in O(m2n) time using O(m2n) edges and O(m2n) nodes. To Bokhari's

layered graph n - 2 new layers were added, one between each layer, except between layers 1

and 2. Each new layer consists of m nodes labeled from 1 to m. A node (j, k) in layer

i (with respect to Bokhari's layered graph) directs a single edge to node k in the new layer

between layers i and I + I. This edge is labeled exactly as the edge leaving node (j, k) in

Bokhari's solution. A node k in the new layer directs to all nodes (k + 1,1) in the layer i + I.

Each edge of this type has a zero weight. A path form s to t corresponds to a solution of
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this assignment problem. Bokhari' s original algorithm works on the improved layered graph

and finds the optimal solution in O(m2n).

In [4], Bokhari solves the problem of assigning an out-tree structured parallel program

to a fully connected system with n heterogeneous processors and heterogeneous links. The

goal is to minimize the sum of execution costs of all modules and the sum of intermodule

communication costs. The out-tree or invocation tree represents the way modules invoke

each other through the lifetime of the program. The assignment graph for this problem is a

weighted directed graph derived from the invocation tree by adding a source node s, and

several terminal nodes t 1 , ,... one for each leaf node of the invocation tree. In addition to

the source and terminal nodes, there are m x n nodes each labeled with a pair of numbers

representing the assignment of module ito processorp. Each layer of the assignment

graph corresponds to a node in the invocation tree. Nodes in the layers corresponding to

nodes in the invocation tree having outdegree greater than one are called forknodes. Each

layer of forknodes is called a forkset. Let e,p be the cost of executing module i on processor

p. Then the edges connecting the source node s to the nodes (i,i), (1,2),...,(l,n),

representing the assignment of the root node of the invocation tree to each of the n processors,

are labeled with e11 , e12 ,..., e 1 . The edges incident on the terminal nodes t 1 , ,... have zero

labels. The edge joining node (i,p) to node (j, q) has weight ejq + Spq (do ) or simply the

sum of the execution cost of the tail node and the cost of communication between the head

node and the tail node of the corresponding edge in the assignment graph. Dijkstra' s [11]

shortest path algorithm applied on the assignment graph finds an optimal solution to the

problem in O(m2n2) time. A feasible solution to the problem is an assignment tree that can

be generated from the assignment graph by removing from each layer all nodes except one
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representing the corresponding assignment. The assignment tree having the shortest path

form s to t represents the optimal solution. Bokhari [4] provided a faster solution due to the

layered structure of the assignment graph.

1. For each terminal node

i) Find the shortest path to the nearest forkset, and leave a pointer on the node of the

forkset and the next node in the shortest path to the terminal node.

ii) When a forkset f is exposed, i.e. the shortest path to all reachable terminal node has

been calculated, temporarily remove all its outgoing edges, create a pseudoterminal node

t1 , and connect all nodes infto it.

iii)Label each edge with the sum of all shortest paths to the temporarily removed terminal

nodes. The above three steps remove all forksets from the assignment tree until we reach

a graph with one terminal node.

2. Find the shortest path from this terminal node to the source node s. Since we reached

node s, we can reconnect all disconnected edges and traverse the graph form s to all terminal

nodes using pointers set in a). Nodes with pointers are those of the shortest assignment tree.

The runtime complexity of the shortest assignment tree algorithm is O(mn2) time.

Towsley [34] generalized Bokhari's [4] results on out-tree structured distributed

programs to distributed programs having a series-parallel structure and containing branches

and loops. In [4], Bokhari showed how an out-tree can be transformed into a series-parallel

graph through the addition of dummy edges. Towsley's [34] solution to the problem suggests

a set of series, parallel, or tree transformation to the allocation graph thus reducing it to a two

node / one edge graph where the edge weight represents the minimum cost assignment. A

parallel replacement consists of replacing two parallel edges, i.e. having the same head and

tail node, by one edge, while a series replacement consists of replacing a three nodes
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connected by two series edges, where the tail node of the first edge is the head node of the

second edge, by two nodes connected with a single edge. The tree replacements is used to

remove tree structures by merging leaf nodes of the same forknode. The assignment graph is

derived from the problem graph. It is an undirected weighted graph of m x n nodes having

one source node s with zero weight, and a terminal node for each terminal node of the

problem graph. Each node 	 is labeled with the cost of assigning module ito processorj.

To each node i in the problem graph corresponds a layer of nodes (i,l).(i,2),.. . , (i, n) in the

assignment graph representing all possible assignments of module ito the n processors. An

edge connect node (i, n,) to node (j, n) if modules represented by nodes i and j

communicate in the program. This edge is labeled with cost of communication between

module i on processor n1 and modulej on processor n2 . All edges connecting to terminal

nodes have zero labels. Source node s serves as one entry node for the assignment graph. For

each feasible assignment of the m modules to the n processors corresponds a subgraph of the

assignment, and one of these subgraphs corresponds to the optimal assignment. Towsley's

[34] algorithm performs each type of replacement until no more replacement of that type is

possible. These replacement operations are accompanied with necessary computation that

finds the weight of the shortest path in the subgraph to be removed and assign its value the

replacing edges. Both series or parallel replacement operations are in o(v) for a graph of v

nodes, while tree replacement operations are in O(v2). Since the number of nodes in the

assignment graph is O(mn) nodes, finding the optimal assignment for a problem is in

O(mn).

3.3. Probe functions algorithms
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Another technique used in searching for optimal solutions for assignment problems

relies on a probe function that searches for an optimal solution subject to a constraint. Instead

of searching for the least cost among all possible solutions, a limited number of repeated

probes with varying value of the constraint is used to find the solution. Each of the problems

considered in this section seeks to minimize either the maximum bottleneck weight or the

maximum of a sum weight and a bottleneck weight, referred to by Bokhari [6,7] as SB-

weight. The problems that seeks minimizing the bottleneck weight have the property that

given any trial weight w, a probe function determines if there is a feasible, optimal or near-

optimal, solution to the problem whose bottleneck is less or equal to w. For the problems that

seeks minimizing the SB-weight, the probe function accepts the trial weight w, and finds a

mapping that minimizes the maximum sum weight among all mappings whose bottleneck is

no greater than w. An appropriate probe function must be designed to solve each specific

problem. Different probing functions may be designed for the same problem to provide more

accurate or faster solutions.

The problem of mapping a chain of m modules onto a chain of n homogenous

processors connected with homogenous links was solved by Iqbal [20,27] using probing

functions. The use of a probe function in this context implies calling the function with a

possible bottleneck weight w chosen using a binary search from an ordered set of possible

values. The job of the probe function is to test if an assignment of modules to processors can

be achieved taking into consideration that the load on the heavily loaded processor does not

exceed the bottleneck value w. The test must be repeated with different bottleneck values

until an optimal or near-optimal solution is reached. In Iqbal's solution, the possible

bottleneck values used as parameters for the probe functions are discrete points in the range

[WA , w} separated by e, where WA is the average execution cost of all modules, W their
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total weight, and e is the distance of the solution for the optimal one. The probe function

iteratively chooses a feasible subchain of modules to be assigned to the first available

processor by examining all modules, therefor each invocation of this function is O(mn) time.

Due to the binary search over the ordered set of possible bottleneck weights, the probe

function is repeated o( log (WT,/')) times. Thus the algorithm provides an approximate

•
	 with
	 .	 .	 .solution with e distance from the optimal solution in 0(mn log 7'€)) time.

Nicol and O'Hallaron [27] imposed more restrictions on the same problem. They

required that the execution cost w, of a module i be lower-bounded by a constant W, and the

communication cost c between two modules i and j be upper-bounded by a constant C.

They used an improved probe function which uses the property that when searching for a

subchain with total load less than w, we do not need to search for the last module of the

subchain among all modules. Instead, this module can be found using a binary search, in

o(log m) time, over a monotonic interval of possible candidate modules. Thus, the runtime

complexity of the probe function is reduced to o(n log m) time.

The set of all possible bottleneck values submitted to the probing function is chosen

from a sorted dominance matrix. An element Q.of the dominance matrix is equal to the

sum of the execution costs of modules i though j, as if they are assigned to the same

processor, added to it the communication costs with modules i - 1 and j + 1. A two-

dimensional binary search over the sorted dominance matrix selects possible bottleneck

values which are at most 4m values, i.e. in 0(m). Thus, the optimal assignment can be found

by 0(m) calls to the probe function. The overall complexity of the algorithm is 0(mn log m)

time.
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Iqbal and Bokhari [21] provided optimal solution to the same problem with no

assumptions about the magnitude of the costs. They transformed the chain of modules into a

monotonic chain by merging two adjacent nodes if the communication cost between them is

greater than the weight of any of the two nodes added to it the communication cost with its

other adjacent node. Next, the resulting monotonic chain is used to build the lattice that

stores the set of possible bottleneck values. An element QYk of the lattice is the sum of the

weights of all modules j through k when assigned to processor i. Using two-dimensional

binary search over the lattice leaves us with 0(m) possible bottleneck values. The probe

function used in [21] is o(nlog m) time. Thus, the overall runtime complexity of the

algorithm is similar to the previous one, but the difference is that it provides an exact solution

with no constraints on the magnitudes of the weights.

The second problem is of partitioning multiple chains each of m modules over a host-

satellite system having n heterogeneous satellites. This problem occurs when several satellite

computers, connected to a large host with higher computational power, receive from a real

time environment data streams that must be processed in a pipelined fashion. The program

running on a satellite can be partitioned between the satellite and a more powerful host. For

each module i of satellitej, e is the execution time on the host. For each pair of modules i

and i + 1 of satellite j, c, is the communication cost if i is assigned to the host andj to the

satellite. Since all processing is done in a pipelined fashion, the times for execution and

communication are the time to process one frame of data. The problem is to minimize the

time determined by the greater of: 1) the individual load on the most heavily loaded satellite,

i.e. the bottleneck satellite, and 2) the sum of the loads assigned to the host. To solve this

problem, Bokhari [4,6,7] uses a doubly weighted layered graph with n layers, one for each

satellite, and m nodes per layer, one for each module. An edge connects each node in layer k
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to each node in layer k + 1. The start (terminating) node s (t) connects to all nodes of the

first (last) layer. Each edge leaving nodej in layer k is given a cy weight equal to the cost of

executing on the host modules I through j of chain k, and a 3 weight equal to the cost of

executing on the satellite k modules J + 1 through m of chain k. To both weights is added the

communication cost between j and j + 1 over the link that connects satellite k to the host.

Edges leaving node s have zero weights. The optimal SB path corresponds to the optimal

assignment. To find the optimal SB-path, Bokhari applies the optimal sum-bottleneck

algorithm [4,6,7] between s and t. In this algorithm, all the bottleneck values are sorted in

ascending order. Then a modified binary search is used to select the bottleneck value w to

submitted to the probe function. The role of the probing function in this case is to find the

shortest path form s to t with sum weight less or equal to w. The search over the list of

bottleneck values continues until this path is found. The shortest path found is the optimal

SB-path, and it corresponds to the optimal solution to the problem. In general, i.e. when the

problem graph is arbitrary, the number of distinct values of w is no more than e the number of

edges in the graph, and the optimal SB-path algorithm uses Dijkstra's algorithm to find the

shortest path in O(m2) time for a graph of m nodes. Thus the complexity of the optimal SB

Path algorithm is O(m2 loge) time. In this specific assignment problem, the number of

nodes is O(mn), the number of edges is O(m2n) edges, and due to the layered structure of the

graph we can find the shortest path using a simple labeling procedure in O(m2n) time which

is the number of edges. Thus, the overall runtime complexity for finding the optimal solution

when m> n is O(m2n log m) time.

Nicol and O'Hallaron [27] use their improved layered graph on this problem which

reduces the number of edges to O(mn) edges. This leads to an overall reduction in the
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runtime complexity when finding the optimal solution using Bokhari's [4,6,7] SB-path

algorithm to 0(mn log m) time.

Iqbal [20,27] provided an approximate solution for this problem in the case of a host-

satellite system with n homogenous satellites, ­ He uses the probe function derived for the

chain onto chain problem and applies it to each satellite chain. For each satellite, the probe

function selects a total load on the satellites less then the bottleneck value w, such that the

work assigned to the satellite is minimum. Then, if the total work assigned to the host is less

than w, then the solution is optimal. Otherwise, the probe function must be called with a new

bottleneck value w. As in Iqbal's chain to chain solution, the bottleneck value w is the result

of a binary search over	 , W} with the difference that Wi,. is the smaller of the total

processing time if all modules are assigned to the host and the total processing time if no

module is assigned to the host. For each value w, the probe function examines each module

at least once for each satellite before a possible assignment is formulated, therefor the probe

function is 0(mn). Iqbal's approximate solution is by s far from the optimal solution with an

(
	(WToverall runtime complexity of 0 m log  /g

/
jI) time.

Nicol and O'Hallaron [27], by introducing weight restrictions to the host-satellite

problem of homogeneous satellite similar to those with chain onto chain problem provided a

faster optimal solution than all previously discussed solutions. They modified the improved

probe function to deal with the difference in speed between the host and the satellites without

affecting its complexity which is 0(n log m) time. The values of all possible bottlenecks are

sorted for each satellite and merged in 0(mn log m) time. These values are selected by a

binary search in 0(10g m) time leading to a total probing time in 0(n log' m). For m> n,
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the overall complexity to find the solution is bounded by the time of sorting and merging

possible bottleneck value which is O(mn log m) time.

The third problem is that of partitioning a chain of m modules over a shared memory

or bus interconnected system of n heterogeneous processors. The objective is to minimize the

maximum of (i) the largest execution time on any processor, and (ii) the total interprocessor

communication cost of the system. Bokhari's [7] solution uses the same layered graph used

in the second problem. The communication costs are represented by a weights, and the

execution costs by 3 weights. Application of the optimal SB-path algorithm to the layered

graph results in the optimal assignment in O(m2 n log m).

In this problem also Nicol and O'Hallaron [27] used their improved layered graph in

order to reduce the number of edges of the graph representing the problem. Due to this

reduction, the application of Bokhari's [6,7] optimal SB-path algorithm on this graph solves

the problem in O(mn log m) time.

Iqbal [20] provided approximate solution to the same problem where the processors

are homogenous. The job of the probe function is to find if a partition of the chain-like

program exists in which the load on any processor is less or equal to possible bottleneck value

w. Then, the function must check if the sum of the communication costs resulting from the

corresponding partition is also less or equal to w. In this case, the partition corresponds to a

feasible assignment, and it can be obtained in O(m2) time. Bottleneck values w are of e

distance from each other, and they are chosen using a binary search over	 , Wi]. The

overall run time complexity is O(m2 log (WT 	 time [27].
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In another solution to this problem, Nicol and O'Hallaron [27] imposed the usual

restrictions on the magnitudes of the execution and communication costs. To solve the

problem they solve the dynamic programming equations:

v(o, w) 0

V(j,w) = cj 
+ L(j,w)^j{	

( - l,w)}, forj= 1,2,...1m

where V(j, w) is the minimal cost of partitioning module I through j, including the

communication cost of separating modulej from j + 1, under the constraint that no subchain

has execution weight greater than w. Therefor, V(m, w) = S(w) is the minimal sum weight

among all mappings which assign no more than w load on a processor. In this equation,

L(j, w) is the least index i :5 j such that Sij :5 w. For fixed w, L(j, ) is a monotone non-

decreasing function off, and can be computed in 0(m) steps for all j = l,...,m. By

exploiting these facts, this equation can be computed in 0(m log m) time. The set of possible

bottleneck value w is chosen from all S, values with i:5 j using the same technique used in

Nicol and O'Hallaron's solution for the chain problem mentioned earlier. Also, they made

the search procedure remembers the bottleneck and the cost of the least cost partition it ever

computes where the smallest is the optimal bottleneck. All in all 0(m) probe calls are made

each with 0(m log m) time. Thus, the overall time complexity of finding the optimal solution

is 0(m2 log M) time.

The fourth problem is that of partitioning n arbitrary distributed program of m

modules on a host-satellite system with n heterogeneous satellites. Bokhari's [4,6,7] solution

benefits from Stone's nesting theorem which states that as the load increases on the host,

modules move away from the host to the satellites and never in the reverse order. This means

that successive optimal assignments are nested inside each other. The load values that causes
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the load transfer are called critical load values and can be found in no more than in

applications of the network flow algorithms developed by Eisner and Severence [13]. Using

the nesting property, each of the arbitrary programs can be viewed as having a chain like

structure by grouping all modules lying between two adjacent cuts, representing two critical

load factors, in one single node. By transferring all then , arbitrary programs into n chains, the

assignment graph is a layered graph similar to the one used by Bokhari in his solution to the

chains assignment on a host-satellite system. Anode i at layerj of the assignment graph may

represent one or more modules of the distributed program. The graph is doubly weighted and

an edge from a node i at layer k to a nodej at layer k + 1 has a weight equal to the cost of

assigning modules represented by the chain 1 through i to the host added to it the

communication cost with the modules of the chain not assigned to the host, and a 0 weight

equal to thea weight added to it the cost of assigning nodes i + 1 through the last node of the

chain to the satellite. The optimal assignment can be found by applying the optimal SB path

algorithm on the layered graph in 0(m2n log m) time. But the overall run time complexity of

the algorithm is dominated by transforming the n arbitrary programs into chains which is

O(mn).

Iqbal [20] was able to search, the layered graph representing the n transformed chains,

for a near optimal solution with E distance from the optimal solution in the case where the

satellites are homogenous in O(mnlog(/')) time using the same technique used in his

solution to the chain onto host-satellite problem. However, the overall complexity is still

O(mn).

The fifth problem is that of partitioning a tree structured program of m modules,

representing parallel or pipelined computation, over a single-host, multiple-satellite system of
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n homogenous satellites under three constraints: (i) the root is always on the host, (ii) once a

node is assigned to a satellite all its children are assigned to the same satellite, and (iii) if two

nodes are assigned to a satellite, their lowest common ancestor is also assigned to the

satellite. It is also assumed that there are as many satellites as the number of leaf nodes of the

program tree although the optimal solution may choose not to use all of them. In [4,6,7],

Bokhari creates the assignment graph by adding a dummy A node below the program tree and

connecting all the leaf nodes to it which divides the resulting graph into regions. Assignment

graph nodes are inserted in each region with left to right ordering (A,B .... ). Connecting with a

directed edge all pairs of assignment nodes belonging to regions having a common edge

creates a directed dual graph where the directions of the edges are from lower ordered nodes

to the higher ordered ones. Each edge of the dual graph separates a subtree from the program

tree, and it has two labels. A P label is the cost of running the subtree on the satellite added

to it the cost of communication between modules on the host and modules on the satellite.

The a label weight is formulated such that the sum of these weights on a directed path form A

to the last label represents the running cost of all modules assigned to the host and the

communication cost with the modules assigned to the satellites. Each path from A to the last

used label corresponds to an assignment where the SB weight of the path is the time required

for the corresponding assignment. The optimal solution can be obtained using the Optimal

SB Path Algorithm. For a program tree of m nodes andf leaf nodes, the assignment graph is a

multigraph with f +1 nodes and m edges. By adding dummy nodes and edges, the

multigarph can be transformed into a conventional graph with no more than 2m nodes and m

edges. Thus, the solution can be obtained in O(m2 log m) time.

For the same problem, Iqbal [20] provided an approximate solution with E distance

from the optimal solution using a probe function. The function checks if it is possible to
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partition the tree structured program over the host-satellite system such that the load on any

satellite and the load on the host is less or equal to a bottleneck value w. Initially, all m nodes

are assigned to the host with total load equal W7.. Then, the probe function, from bottom to

top, assigns a subtree to a satellite if the, computational load of the subtree and the

communication costs between its root node and its corresponding parent node is less than or

equal to w; otherwise it merges the root of the subtree with its parent node by removing the

edge in between. Possible bottleneck values w are selected using a binary search over

WT , Wj. The probe function is 0(m) time since it examines each node only once to

decide whether to assign the node and its children to a satellite or to merge it with its parent.

The overall complexity for finding the approximate assignment is 0(m log(" ")) time.

The same problem was solved also by Iqbal and Bokhari [21]. The algorithm first

creates the condensed tree from the problem tree by merging a child node with its parent node

such that the tree is monotonic. A monotonic condensed tree ensures that the load caused by

the subtree cannot exceed the load caused by a containing subtree. A probing function

traverses the condensed tree upwards from the leave nodes and stops each time it identifies a

maximal subtree that has weight less than a possible bottleneck value w. When all subtrees

are calculated, the load on the host can be calculated; if it is less than w then the assignment is

feasible. The probe function looks at each node only once, thus it is 0(m) time. The

possible bottleneck values w are selected using a binary search from m weights of the subtrees

that can be evaluated in 0(m) time and sorted in o(m log m) time. The choice of w takes

log m). Thus the overall run time complexity of the algorithm is 0(m log m).

3.4. Integer programming algorithms
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The integer programming method is based on implicit enumeration of all the possible

cases subject to additional constraints. For example, for a program of m tasks to be assigned

to a system of n processors, each task can be assigned to any of the n available processors.

This method implies the use of branch-and-bound algorithms [23] which searches for an

optimal solution in a set of feasible solutions which is a subset of all possible solutions.

Branch-and-bound algorithms are expected to be more efficient than complete enumeration

algorithms, which are exponential in the number of inputs, due to the search restrictions. The

search occurs in a carefully chosen subset of feasible solutions such that it contains the

optimal solution. Kohler and Steiglitz [23] characterized Branch-and-bound algorithms in

terms of sextuple (B,, ,S,E,D, L, u), where B,, is the branching rule, S is the selection rule,

E is set of elimination rules, D is the node dominance function, L is the node lower-bound

cost function, and U is an upper-bound solution cost. They also designed a general algorithm

based on their characterization and investigated the computational requirements with respect

to the choice of the parameters 5, E, D, L, and U.

In [26], a task allocation model for distributed computing systems is defined using a

variation of Kohler and Steiglitz model [23]. Solutions enumeration is represented by a tree

where each node represents a task and each edge or branch represents a processor. A path in

the tree from the root node to a leaf node consists of one possible assignment, and the number

of all possible unconstrained solutions is n' solutions, which means that the runtime

complexity of an algorithm that searches for an optimal solution among all enumerated ones

is OW) time. Various constraints can be added to reduce the enumeration process to

generating only those solutions that satisfy the application requirements. For example, in [26]

a task preference matrix indicates that certain tasks can only be executed on a specified

processor, and the task exclusive matrix defines tasks that cannot be assigned to the same
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processor. Also, elimination rules are included to insure that a path which may not lead to an

improvement in the solution in hand will not be generated. All these rules impose a reduction

on the number of enumerated cases which leads to an optimal solution in less time.

3.5.	 Heuristic algorithms

Rao et al. [29] provided feasible solutions for another variation of the dual assignment

problem where one of the processors has limited memory. A minimum weight feasible

solution is the one that minimizes the sum of execution of all modules and the sum of

interprocessor communication and do not exceed the memory requirements of the processor

with limited memory. Their work provided two approaches to solve the problem. In both

approaches, they started by using the same graph representation used by Stone in order to

build the assignment graph with a small addition. Every node of the assignment graph is

labeled with the memory requirements of the corresponding module. Let t be the processor

with limited memory and s the other processor. Rao et al. show that, in finding the minimum

weight feasible solution of the problem, it is sufficient to produce the minimal cut between s

and t, and then reassign some subset of modules, if need be, from the processor with limited

memory t to s. To reduce the runtime complexity, they considered reducing the size of the

assignment graph. In the first approach, they constructed the Gomory-Hu tree [29] or G-H

tree which reduces the number of edges of the assignment graph to 0(m). The G-H tree

represents all maximal flows between any pair of nodes of the assignment graph, and all

minimal cuts separating them. Rao et al. show that the G-H tree indicates some subset of

nodes that cannot be separated by a minimum weight cut. This property is used to build the

reduced G-H tree by condensing those nodes of the G-H tree that cannot be separated. This

node condensation may be sufficient to reduce the assignment graphs into trivial graphs

where the weight of the condensed node is the sum of the weights of its constituent nodes.
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The solution to the problem can be found by enumeration using the labels on the nodes. The

runtime complexity of this algorithm is bounded by the computation of the G-FI tree which is

O(M).

The second approach describes a more efficient reduction technique to solve the cases

where little or no condensation occurs. This reduction technique can be applied directly to

the assignment graph as well as to the G-H tree. It implies the creation of the inclusive cut

graph whose cuts are possible minimumfeasible cuts and which leads to a reduction at least

as powerful as the reduced G-H tree.

1. For each node N in min(t), find the minimal cut N(s) assigning Nto s. This step can

be done by running Maxflow-Mincut on the graph to be reduced after setting to oo the

capacity of the edge connecting N to s. Let N[s] be the set of nodes on the same side as N

and s

2. Condense in a single node all nodes that have equal minimal cuts resulting in step 1.

Repeat this until no further reduction is possible. Condense all nodes in mm(s) with s into

S+.

3. Label nodes in the condensed graph by M1 ,.. . .5 + and T. Each node M. of the

condensed graph represents a subset of the assignment graph which cannot be separated by a

minimal weight feasible assignment. The condensed graph is a directed graph where a

directed edge from M, to M implies that M, [s] is included into M [s]. The last node in

the condensed graph is s. Each node in the condensed graph is labeled with a weight equal

to the cut Ni (s).

4. A node T is added to the graph with an arc from T to each node with no arc directed to it.

In this case also the weight of the condensed node is the sum of the weights of its

constituent nodes. Rao et al. show that the minimum weight feasible cut of the assignment
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graph corresponds to some cut in the inclusive cut graph which can be found by enumeration.

This problem can be solved in O(m) time which is the time required to build the inclusive

cut graph.

To solve the problem of assigning a distributed program of m modules to a filly

connected heterogeneous system of n processors, Lo [25] generalized Stone's model [4], that

solves the basic dual assignment problem using network flow techniques, to reach a partial

(possibly complete) assignment of modules to processors. In the case of complete assignment

the solution is optimal. Lo uses two heuristic algorithms in order to improve the partial

assignment and sometimes reach the optimal solution. This problem is known as the general

task assignment problem where the objective is to minimize the sum of execution and

interprocessor communication costs. The solution uses an undirected weighted graph to

represent the interconnection structure of the program. The weights on the edges connecting

two nodes represent the communication cost between them. The assignment graph is derived

from the program graph by adding n nodes representing the n processors. An edge connecting

each module i to each processor q is labeled with W,q = 1 
I X ir - 

n-2
 - 1 X

jq (1). In the
1r*q

case where n = 2, (1) leads to the reverse labeling described earlier in the dual assignment

problem and its variation. A n-way cut in such graph is defined to be a set of edges which

partition the graph into n disjoint subsets with exactly one processor node in each subset and

thus corresponds to an assignment of modules to processors. The cost of an n-way cut is

defined to be the sum of the weights on the edges in the cut. Thus, the use of (1) makes the

cost of the n-way cut equal the total sum of execution and communication cost of the

corresponding assignment. Finding the optimal n-way cut is NP-hard for n> 2 [25], therefor

Lo uses a Maxflow-Mincut algorithm to find a partial assignment that is to be improved using

two heuristic algorithms to reach better solutions.
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Lo's solution is divided into three algorithms: (i) Grab, (ii) Lump, and (iii) Simple

Greedy. If the first algorithm does not allocate all the modules, the second is used and so on.

In Grab, the assignment graph is converted such as we can run a Maxflow-Mincut algorithm

between each node P, representing a processor and a supernode F representing all other

n - 1 processors. The weights on the edges connecting each module node to the supernode

is equal to the sum of all weights on the edges connecting that module node to the n - 1

processor nodes. After applying the Maxflow-Mincut algorithm, the n-processors assignment

graph is modified by eliminating the module nodes already assigned and by recalculating edge

weights to reflect the partial assignment. Thus, the nodes representing assigned modules are

removed from the graph with all their incident edges. Then, the execution cost of each of the

unassigned modules is redefined as follows. The execution cost xiq of module i assigned to

processor q is augmented by the sum of communication costs between module i and all

modules assigned to processors other than q.	 In mathematical terms,

Xjq = Xjq +Cy (2).	 Finally, the weight of the edge connecting each unassigned
r*q j€S,

module node to a processor is calculated using equation (1) by replacing Xjq using equation

(2). Grab continues iteratively until no further assignment of modules to processors occurs.

If all the modules are assigned after k iterations Grab the solution is optimal.

The algorithm Lump deals with the remaining unassigned nodes. It tests the

possibilities of assigning all the remaining modules to one processor. It works on a reduced

graph which is derived from the last graph of Grab by eliminating processor nodes and the

corresponding edges. Lump computes a lower bound L on the cost of the optimal n-cut from

the reduced graph under the constraint that more than one processor be utilized in the

corresponding assignment. The lower bound is calculated as L = min(x,p ) + mm c(r, i)
i*r
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where the first term is the execution costs incurred if each of the remaining modules is

assigned to its cheapest processor , and the second term is the minimum of all mincuts

between module node i and any other module node. These mincuts represent the

communication costs between modules executing on different processors. Based on this

lowerbound, the algorithm Lump checks if it is cheaper to assign all remaining modules to

one processor yielding a minimum total execution cost for these modules. In this case, the

resulting assignment in combination with that of Grab is optimal.

The third algorithm Simple Greedy is used if Lump fails to allocate all the remaining

modules. Simple Greedy begins by calculating C which is the average communication costs

between all pairs of modules in the reduced graph. Initially, each module is a cluster by itself.

Then all edges with c,:5 C are marked visited. For all unvisited edges, Simple Greedy

merges clusters on both sides of each edge into a single cluster until all edges are visited.

Then each cluster is assigned to the processor which minimizes its total execution cost.

The runtime complexity of Grab is 0(nm2 e log m) using a Maxflow-Mincut

algorithm of complexity 0(me logm) [15,25] applied at most for m iterations to find n

mincuts at each. Lump is 0(m2e log m) since the computation of the lower bound L involves

finding n - 1 mincuts in the reduced graph. Simple Greedy examines each edge of the

reduced graph exactly once which is 0(e). Thus, the overall runtime complexity of the

algorithm is upper bounded by that of Grab which is 0(nm2e log m) time.

When trying to minimize the total execution and communication costs, one may face

the problem that even when the optimal solution is found, one or more processors may be

assigned more jobs than others, which causes less concurrency in the system.. Lo [25]

showed that by including interference costs between two modules assigned to the same

processor, we can still reach the same optimal solution with more concurrency in the system.
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Interference costs serves as repulsive forces between modules assigned to the same processor,

in the same way communication costs serves as attraction costs. The interference Cost

between two modules i and j on processor k can be stored in O(nm2). To account for

interference costs, Lo modifies equation (1)., by considering that interference costs

between two modules i and j, are independent of the processors to which they might be

assigned. The weight of an edge connecting module node ito processor node q is calculated

= 
1	 n-2	 1

as Wjq xi, -	 x +	 . Also,. the cost connecting two module
- 1 r*q	 n - 1 'q	 2(n - 0 1,I,m

	nodes i and j, is weighted by c	 c1 - I,. If I, ^ c, for all c, then all weights c are

positive, and then we can apply the same sequence of algorithms to the assignment graph. If

there exist an edge with negative c,, then we can directly apply Simple Greedy to find

suboptimal solutions.

Hui and Chanson [19] also use the preprocessed interaction graph (PTIG) to find a

heuristic solution for the problem they solved optimally (above) in both cases where the

processors are homogenous or heterogeneous. In [19], they reformulated the labeling on the

edges of the problem graph in order to create the preprocessed interaction graph (PTIG)

where each edge has only one label. The heuristic algorithm uses bin-packing to compute the

allocation, where the lower bound for the bin size is equal to zero, the upper bound is the

elapsed time if all the tasks are allocated to the fastest processor, and the bin size is selected

using a binary search over that range. Initially, a profit function is computed for each edge.

This function represents the reduction in elapsed time if the head and the tail nodes of the

edge are merged. In each iteration, an expected bin size that represents the overall elapsed

time is chosen for all processors. First, the edges are sorted in descending order by profit, and

nodes are tested for merging in descending order by profit and merged if they satisfy the bin
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size until no more profit could be achieved. Second, the algorithm considers merging nodes

with small elapsed time if the overall elapsed time does not increase in order to reduce

communication costs and the number of processors needed while obeying the bin size. Thus,

it sorts edges in descending order by merge gain in communication and merges pair of nodes

until no merge gain could be achieved. Third, the nodes with little or no communication are

tested for merging in order to further reduce the number of needed processors while obeying

the bin size. Thus, nodes are sorted in order of elapsed time and the nodes with largest and

smallest elapsed time are merged when a reduction in overall elapsed time is possible, and the

merged node is moved to the front of the list. If no merging occurs, the largest node is

discarded. In both cases, the process is repeated until all nodes are tested. If after the three

merging steps the allocation is successful, the bin size is reduced to check the possibility of

achieving a better overall elapsed time; otherwise, the bin size is increased to get a valid

allocation. When all the possible bin size values are tested, the second and the third steps are

repeated with taking the total elapsed time achieved till now as a bin size aiming for a better

allocation.

For a system with homogenous processors, the runtime complexity of the algorithm is

O((m + e) log' m) time, while for a system with heterogeneous processors the runtime

complexity is O((m + e)m log m) time. The difference results from the cost of updating and

retrieving the elapsed time of each node which is used in computing the overall elapsed time

after each iteration, since a heap is used for the first case, while an array is used in the second.

The problem of assigning an arbitrary parallel program of m modules having unit

execution time onto a fully connected heterogeneous system with n processors

communicating via homogenous communication links was solved heuristically by Bowen et

al. [8].	 The objective is to find an assignment that minimizes the interprocessor
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communication while observing lower and upper bounds utilization for each processor. Their

solution is divided into two parts: (i) heavily communicating tasks are hierarchically clustered

to form a cluster tree, then (ii) clustering information is used to allocate tasks to processors.

The program is modeled with an undirected graph where each module is represented by a

node and each edge connecting two nodes represents the communication between them and is

weighted with the cost of this communication. The clustering algorithm selects first as a

pivot node the one having the largest adjacent edge. Ties are broken first by greatest number

of edges and second by selecting the lowest numbered node. Next, the neighbors of the pivot

node which are not yet clustered are sorted in descending order by the weight of the edge

which connect them to the pivot node. The nodes whose adjacent edge weights pass a

threshold test are clustered with the pivot node and the edges are updated accordingly. This

second step, is called recursively to cluster neighbors of the neighbors up to a depth k. These

two steps are repeated with a new non clustered node as pivot until all nodes are clustered

which consists one pass of the algorithm. The algorithm is repeated until all nodes are

clustered into one node which represents the root of the cluster tree. Once a cluster tree is

generated, the allocation algorithm attempts to allocate the task tree on the multiprocessor

system represented by a cluster tree. At each node, starting from the root node, the module

tree is altered so that to have the same number of children as the processor tree while obeying

to the lower and upper bound constraints of each processor cluster. The algorithm first runs

on the root nodes of the module and processor trees as parameters. It considers the processor

which is farthest from meeting its minimum workload constraint until all the children of the

root of the module tree are allocated or all processors have met their minimum workload

constraint. If all processors have met their minimum workload requirements and there are

still module which are not yet assigned to processors, the processor closest to the minimum

workload is allocated first. When all modules are assigned, the module tree is modified such
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that it has the same number of children at the root node as that of the processor tree. The

allocation algorithm is recursively repeated at the children of the root nodes of both trees until

both trees become similar. The module to be assigned is selected as the child node having the

highest weight. If the assignment of that node deprives the other processors from meeting

their minimum workload requirements, the node, which represents a cluster, is popped from

the tree, replaced by its children, and the selection process is repeated which enables an

allocation at finer grain.	 The runtime complexity of the clustering algorithm is

o( (3e + (d + 1)m) log m) time with d being the node degree. For a small fixed d and a sparse

problem graph, the complexity reduces to 0(m log m) time. The allocation algorithm is a

linear algorithm which visits each node of the module tree exactly once and tries to map its

children to the children of a similar node of the processor tree, thus its runtime complexity is

0(m) time.

Another aspect of the assignment problem is assigning a set of similar programs or

modules that communicate together to an array of similar processors. Both the module and

the processor interconnection structures are represented using graphs. The goal is to place, as

much as possible, two directly connected modules on two directly connected processors in

order to minimize interprocessor communication. This problem is known as the mapping

problem.

The problem graph is denoted by G (V,, E) and the array processor graph by

Ga = (V,, Es ). The quality of the mapping is measured by the number of edges in G that

are mapped onto G, and is called the cardinality of the mapping. Bokhari [4,5] shows that

the mapping problem is computationally equivalent to the graph isomorphism problem. In

[4,5] the graph of the array processor is that of the Finite Element Machine, FEM, with
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N(= n x n) processors. Each processor is interconnected to its 'eight-nearest neighbors'. A

time shared global bus connect all processors that are not directly connected. A heuristic

algorithm, which in most case derives a near optimal solution, is implemented to solve the

mapping problem.

Initially, the problem graph G, represented by an adjacency matrix, is mapped onto

the array processor graph Ga which is also represented by an adjacency matrix. The

algorithm attempts to improve this initial mapping by applying a series of pairwise

interchange. For each node of the problem graph, a pairwise interchange with all other nodes

is considered, and the one that leads to the higher gain in cardinality is kept. When no more

improvement could be done, an interchange of n randomly selected pairs of nodes is done and

the pairwise interchange is applied again to the resulting mapping. Tests show that the

random interchange will not directly lead to better mapping, but the repeated application of

pairwise interchange improves the mapping in most cases. Bokhari proves the validity of the

algorithm by trying to map random permutations of the array processor graph on the array

processor graph. The mapping algorithm takes o(N) where N is the total number of

processors in the FEM and is equal to n 2 processors.
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CHAPTER IV

THE SCHEDULING PROBLEM

The second aspect of distributed computing is the scheduling problem where modules

of a distributed or a parallel program are to be partitioned over a multiprocessor system and

the order of execution of each module must be unambiguously specified. The general

scheduling problem, where precedence relations are of the general type (i.e. transitive edges

are allowed, the task processing times are different, and the number of parallel processors is

arbitrary) is NP-Hard in the strong sense [22], and is also NP-complete in many restricted

cases [14,16,17,22]. Unless P=NP, it is impossible not only to find a polynomial time

optimization scheduling algorithm, but also a fully polynomial time approximation algorithm

[22]. We mention, however, that few optimal solutions exist for some restricted cases, for

this reasons, many researchers focus on heuristic solutions for finding near optimal solutions

for this problem in short time. In this chapter, we divide these heuristic solutions into two

major categories: algorithms providing optimal solutions and algorithms providing near

optimal solutions. Under each of these categories we discuss the problem for the cases where

(i) the communication costs are ignored and (ii) the communication costs are considered.

4.1. Optimal scheduling algorithms

In this section, we review scheduling problems to which an optimal solution is

derived. Most of these algorithms assign a certain priority factor to each module based on its

position with respect to its successor and predecessor modules. Some other algorithms use

dynamic programming or least cost algorithms to find an optimal solution.

4.1.1. Without communication costs
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In [14], Hu solves the problem of scheduling a tree structured program of m modules

on a homogeneous fully connected machine with n processors. Modules are assumed to have

equal execution times, and the goal is to minimize the sum of execution time of all modules.

The algorithm first computes the level of each node in the task graph which is used as each

node priority. Then, whenever a processor becomes available, the unexecuted ready task with

the highest priority is assigned to it. Hu's algorithm, known as the level algorithm, provides

an optimal solution for an in-forest or an out-forest task graph of m tasks in 0(m) time,

where each task has the same weight.

The second algorithm [14] solves the problem of scheduling m interval-ordered tasks

having identical weights on a homogenous fully connected machine of n processors. The

objective is to minimize the sum of execution time of all modules. In this case, the number of

successors of each node is used as its priority. Then, whenever a processor becomes

available, it is assigned the unexecuted ready task with the highest priority. This algorithm

solves the problem in 0(e + m) time.

Also, in [14] Coffman and Graham consider the problem of scheduling an arbitrary

task graph on two homogenous processors, where the m tasks have identical weights. The

goal is to minimize the sum of execution time of all modules. The algorithm starts by

assigning labels 1,2 ...... ito the i terminal nodes. Next, from the set of unlabeled nodes with

no unlabeled successors, we assign label I + 1 to the node having the smallest decreasing

sequence of integers, in lexicographical order, formed by ordering the set of the labels

(priorities) of its immediate successors. After labeling all tasks, whenever a processor

becomes available, assign it the unexecuted ready task with the highest priority. The runtime

complexity of finding the optimal solution is 0(m2) which is the time required to assign

node priorities.
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4.1.2. With communication costs

The first three algorithms described next attempt to assign two communicating tasks

to the same processor in order to minimize communication costs, since intraprocessor

communication is considered to be negligible. The fourth algorithm schedule tasks to

processors in well defined time phases where the execution and communication expenses of

the assignment are minimized.

The first problem is that of scheduling a tree structured program of m modules on two

homogenous processors, where module execution costs and intermodule communication costs

are equal. The main idea of the algorithm [14] is to augment the task graph with precedence

relations that compensate for communication costs. Scheduling the augmented task graph

with no communication cost is the same as scheduling the original task graph with

communication. The algorithm presented works on an in-forest, however, with minor

modifications, the algorithm performs equally on out-forests. The algorithm first identifies

the sets of siblings S1 , S2 ....., Sk in the in-forest. Then, for every set Si , let u be the node with

maximum depth. Disconnect all edges connecting all nodes in Si to child(S1 ) except for

node u, and connect these nodes to node u. Next, obtain a schedule by applying Hu's level

algorithm [2] on the augmented in-forest. Finally, for every set Si of the original in-forest, if

node u with the maximum depth is scheduled in the time slot immediately before child(S1),

but on a different processor, then exchange child(S1 ) with the task scheduled in the time slot

immediately after u on the same processor. Using this algorithm, the optimal solution can be

found in time
I 

o(m2).

Next, Ali and El-Rewini [14] solves the problem of scheduling m interval-ordered

tasks on a homogenous fully connected machine having n processors. Their algorithm

assumes that all tasks have equal execution costs which is also identical to the
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communication delay. The algorithm works as follows. First, the priority of each node is

computed as the number of its successors, where ties are broken arbitrarily. Then, the node

with the highest priority is scheduled first, and it is assigned to the processor which ensures

its earliest starting time. If for a node i, more than one processor ensure the same earliest

starting time t, then node i is scheduled to run on the processor which in time slot t - 1 was

assigned the task with lowest priority. We note that a processor which is not assigned at time

slot t - 1 has priority zero. The runtime complexity for finding the optimal solution for a

graph of m tasks and e edges is O(me).

Third, Varvarigou et al. [36] solved the problem of scheduling an out-forest structured

program of m modules over a fully connected processor system having homogenous

communication links. The execution cost of a module of the program and the cost of

communication between two modules scheduled to run on different processors are assumed to

take each one unit time. The number of processors is bounded by a constant C, and the

objective is to minimize the sum of execution and communication time. The main idea of the

solution is to transfer the problem graph into an equivalent free delay graph that can be

scheduled without considering communication costs. First, the algorithm recursively builds

the shortest delay free graph of the problem graph which is an out-forest. For a node 1, select

the child node j with the highest weight. Ties are broken arbitrarily. Disconnect all edges

connecting i to all its children except for j, and connect all disconnected nodes to nodej.

Thus, in 0(m) time the shortest free delay trees for all subtrees can be calculated. Then, the

algorithm uses the theorem, by Dolev and Warmuth [35] given an out-forest precedence

graph G, and an optimum schedule for the high subgraph of G, there is an 0(m) time

algorithm that computes an optimal schedule for the whole graph G. So, the algorithm finds

the median, of the shortest delay free graph corresponding to the out-forest, which divides
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that graph into a high subgraph and a low subgraph. In order to be able to apply Dolev and

Warmuth theorem, the algorithm uses dynamic programming to compute the length of the

optimal schedule for all the high subgraphs corresponding to the high shortest delay

subgraphs which is equal to computing the optimal schedule of the graph that contains at

most n - 1 initial components. Then, the complete optimal schedule is computed using

Dolev and Warmuth theorem. The resulting schedule divides the nodes into sets that

correspond to different time slots, for example the set S(k) is assigned to time slot k. These

sets are allocated to processors such that the communication delay constraint is not violated.

All nodes of s(i) are assigned to processors at random, then for every node x in S(k) if the

parent of x is scheduled in time slot k - 1, then x is assigned to the same processor, otherwise

it is assigned at random. The runtime complexity of the algorithm is bounded by the time to

find the optimal schedule for all high subgraphs which is O(m2_2). Although this algorithm

is designed for out-forests structured programs, it can be used to solve the same problem for

in-forests, since an in-forest reduces to an out forest by reversing the edge directions and then

inverting the resulting optimal schedule.

Fourth, Bokhari [4] provides an optimal solution for the problem of scheduling an

out-tree structured parallel program to a fully connected system with n heterogeneous

processors and heterogeneous links where the costs (expenses) over the distributed system are

assumed to vary with time, that is the cost of processing a task on the system is processor and

time dependent. Moreover, the interprocessor communication costs (expenses) between two

processors depend on their common link and on the time during which the communication

took place. Thus, processing and communication costs are considered with respect to well

predefined phases of time. The goal is to minimize the cost (expense) of executing the

program, and the penalty for not meeting deadlines by trying to assign tasks to phases where
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all costs could be minimized. The optimal solution is obtained using the shortest tree

algorithm on an assignment tree of m tasks, n processors, and 4) phases in 0(mn242) time.

4.2. Near optimal scheduling algorithms

In this section, we review heuristic algorithms which provide a suboptimal solutions

for the scheduling problem. Some of these algorithms assign a certain priority factor to each

module based on its position, or its weight with respect to its successor and predecessor

modules, or even based on more complex priority factors. Some other algorithms use

clustering based on the edge zeroing technique to find a suboptimal solution.

4.2.1. Without communication costs

The problem is to find the schedule that minimize the total execution time of an

parallel or distributed program of m modules on an homogenous fully connected machine of n

processors. Communication costs among tasks are negligible, and thus they are not

accounted for in the problem which is modeled by a directed acyclic graph (DAG) of 0(m)

nodes.

The first algorithm, by Shirazi et al. [31], is the Heavy Node First algorithm (FINF).

The DAG modeling the problem must have no redundant edges. In HNF, all entry nodes

have depth equal to zero. From all the ready nodes with the same depth, HNF assigns first

the heaviest node to the processor that insures its earliest execution time. Whenever all nodes

of the same depth are assigned, the algorithm works on the ready nodes of the next depth until

no more nodes are to be assigned. By using a heap to store the ready nodes at each depth,

HNF can provide a schedule which is no worse than twice the optimal schedule in

0(m log m) time.
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The second algorithm is the Critical Path Method algorithm CPM [31], which uses the

critical path method on a DAG, a generalization of flu's optimal level algorithm for trees

[14]. CPM finds a schedule which is no worse than twice the optimal schedule in O(m2)

time, which is the time to compute node levels.

Next, the Weighted Length (WL) algorithm, also by Shirazi et al. [31], uses an

approach similar to the one used in CPM on DAG with no redundant transitive edges. Instead

of using the level of each node as its priority, WL computes the weighted length for each

node. The weighted length of a node i is the sum of: the weight 1, the maximum weighted

length of the children of i, and the summation of the weighted length of the children of i

normalized over the number of children of i. The weighted length is computed bottom up in

0(in2) time. The algorithm has the same performance as CPM.

Also, Kasahara and Narita [22] presented two algorithms to solve the same problem.

Their problem graph must have one entry and one exit node. The first one is the critical

path/most immediate successors first algorithm (CP/MISF) [22] which a modification of the

critical path method. In CP/MISF, the level of each node is computed first, and the priority

list is ordered in descending order of level and the number of immediately successive tasks.

Next, list scheduling is executed on the basis of this priority list. The ready task having the

highest level and the highest number of immediately successive tasks will execute first. The

worst case performance of CP/MISF results in a schedule length twice as much as the optimal

schedule. The runtime complexity of CP/MISF is O(m 2 + mn).

The second algorithm, by Kasahara and Narita [22], is the depth-first/implicit heuristic

search algorithm (DF/IHS). DF/IHS method is divided into two parts: (i) the preprocessing

part which consists of assigning priorities heuristically to the nodes during search, and (ii) the

depth-first enumeration of all possible assignments. In the preprocessing stage, the level of
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each node is computed in O(m2) time. Then the tasks are renumbered using two stage

sorting, like in CPIMISF, which takes O(m log m) time. Thus, the complexity of the

preprocessing part is O(m2). In the depth first search part, a tree that enumerates all possible

assignments is created in depth first manner. A path in the tree from the root node to a leaf

node consists of a solution of the assignment problem. Because of the priorities assigned in

the preprocessing part, the left most path form the root node to a leaf node in the enumeration

tree represents the same solution that can be achieved by CP/MISF. Any other path from a

root node to leaf node may or may not contain an improved solution. The use of elimination

rules within DF/fl-IS reduces the number of paths to be generated in the case a better solution

is not likely to be obtained along that path or a satisfactory approximation is reached. The

runtime complexity of the algorithm is O(nm) which is the time required to enumerate all

possible solutions in the case where the elimination rule are set such that all the possible

solutions are to be explored.

4.2.2. With communication costs

Varvarigou et al. [35] show that for every out-forest with communication delay, there

exists a delay-free out-forest such that their schedule is optimal. They also derived the

shortest delay-free out-forest which optimal schedule may or may not correspond to the

optimal schedule of the original out-forest and proved that its optimal schedule at most

exceeds that of the original out-forest by - 2) time units. To solve the problem, the

algorithm applies level scheduling on the shortest delay-free graph which provides an optimal

schedule for any delay free out-forest. This optimal schedule is a near optimal schedule for

the original out-forest with no more then n - 2 time units from the optimal schedule. Thus,

the level algorithm finds the near optimal solution in 0(m) time.
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The following four algorithms address the problem of assigning an arbitrary parallel

or distributed program of m modules on a completely connected graph with an unbounded

number of homogenous processors. A program is modeled by a directed acyclic graph

(DAG) where each node represents a module and is labeled with corresponding execution

cost, and an edge connecting two nodes is labeled with communication cost between the

modules they represent. All four algorithms try to reach the shortest possible schedule by

defining a specific goal to minimize. These algorithms use clustering which consists of

mapping the tasks of the DAG onto clusters. A clustering is called non linear, if two

independent tasks are mapped to the same cluster; otherwise it is called linear.

The first algorithm is Kim and Browne's linear clustering algorithm known as KB/L

[16]. The goal is to reduce the length of the longest path determined by a cost function.

Initially, all edges are marked unexamined. The first step, determines the longest path

composed only of unexamined edges by using a weighted cost function. The nodes in this

path constitute a cluster and their edges are set to zero. In the second step, all edges incident

to nodes in the longest path are marked examined. Both steps are applied recursively until all

edges are examined. Instead of computing the longest path as the sum of node computation

costs and of edge communication costs to find the longest path, a weighted cost function is

used : Cost_function = w1 * t. + (i -	 * E c,, + (i - w2) * cd). In this cost

function, WI and W2 are normalization factors, while 	 c represents the sum of the

communication costs of all edges adjacent to a node in the path. If w1 = and w2 = 1, then

the cost function will represent the sum of node computation costs and of edge

communication costs. Finding the longest path at each node takes O(m + e) time. Therefore,
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the complexity of KB/L is O(m(m + e)) time. For a dense graph e = m2 , the complexity

becomes O(M).

The second algorithm is Sarkar's [16] algorithm which zeros the highest edge if the

parallel time does not increase. Initially, each node is considered to form a single cluster.

First, all edges of the DAG are sorted in descending order of edge costs. Then, the highest

edge is zeroed if the parallel time does not increase, and this step is repeated until all edges

are scanned. In this algorithm, when two clusters are merged, the task within the new cluster

having the highest bottom level is scheduled to execute first. Thus, at each clustering step,

bottom levels of all tasks must be computed in order to decide which task to schedule first.

This computation is done at most e times and it costs O(m + e). Therefore, the complexity

of the algorithm is O(e(m + e)) time.

The third algorithm is the dominant sequence clustering algorithm, by Yang and

Gerasoulis [16], known as the DSC algorithm, and its goal is to minimize the dominant

sequence (DS) in the problem graph. At the beginning, all edges are marked unexamined.

An edge considered for zeroing is marked visited, and its head node is scheduled. At the

completion of a clustering step, two sets of nodes are updated, the scheduled set, and the

unscheduled set which initially contains all nodes to be scheduled. The algorithm works as

follows:

1. Suspend zeroing an unexamined edge (m, y) in DS until the head node y becomes free,

i.e. all its predecessor nodes are scheduled, which insure a breadth first traversal of the graph.

2. Choose a free node x which belongs to the longest path going through any of the free

nodes and zero its incoming edge(s) provided the following two conditions are satisfied:

i) (CT 1) If the starting time of node x decreases.
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ii) (CT2) Zeroing incoming edges of node x to minimize the top level of x should not

affect the strict reduction of the top level ofy at some future step j, i:5 j, which means

that incoming edges of x can be zeroed only if a strict reduction in the parallel time can be

obtained.

3. If all edges in a DS have been examined and this DS continues to dominate in the next

step, then recursively apply the above steps on the next longest path (SubDS) to reduce the

number of unnecessary processors.

The free node chosen in step 2 is the free node having the highest priority where the

node priority is the sum of the top level and the bottom level of that node. Ties are broken

using the most immediate successor first (MISF) strategy. The free node with the highest

priority will be scheduled on the processor that allows its earliest execution. If no such

processor exists, then it is scheduled on a new processor.

Re-computing top levels takes O(v + e) time per step. More reduction in complexity

can be obtained by computing the start bound of a node instead of its top level which can be

achieved in O(e log v). Updating priority lists takes O(log v) time, and since there are v

steps the cost is O(v log ). Traversing the graph takes O(v + e). Thus, the total time

complexity of DSC is O((v + e) log v), and the space complexity is O(v + e). For linear

clustering the cost reduces to O(v log v + e).

The fourth algorithm is the modified critical path algorithm, by Wu and Gaj ski [16],

known as the MCP algorithm. The goal is to schedule at the earliest possible time the tasks

with the highest priorities in the critical path. First, the algorithm determines a priority list

based on the highest bottom level first ordering. Ties are broken by using the highest level of

its successor task, the successor of its successors and so on. Then, while there exists an

unscheduled task, it finds an unscheduled free node with the highest priority in the priority
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list, then schedule this task to a processor (cluster) that allows its earliest execution. The

worst time complexity of the MCP algorithm is O(m2 log m) because of the cost in the tie

breaking. If there are no ties the complexity is similar to DSC.

4.3. Some other problems and techniques

Many other variations of the allocation and scheduling problem, and many other

solutions techniques are derived to find optimal or near optimal solutions for both problems.

We briefly mention some of these algorithms since they do not fall into our classification. For

example, the problem of scheduling parallel programs on distributed memory parallel

architecture where duplication of tasks on more than one processor is allowed [28] and the

problem of scheduling compute-intensive tasks in the idle time of a network of workstations

[12] are solved. The A* algorithm in artificial intelligence is used to solve the task

assignment problem based on the minimax criterion [30], and anew mapping heuristic is

derived based on mean field annealing to solve the task allocation problem [9].
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CHAPTER V

A NOTE ON THE ASSIGNMENT PROBLEM OF ARBITRARY PROCESS
SYSTEMS TO HETEROGENEOUS DISTRIBUTED COMPUTER SYSTEMS

In [8] the authors proposed a clustering algorithm which creates clusters of frequently

communicating nodes in a distributed computer system. The system is modeled as a graph

where each node represents a module of a parallel program and each edge represents the cost

of communication between the corresponding nodes. The purpose of the algorithm is to

hierarchically create the kind of clusters which minimize the communication cost.

In the clustering algorithm, two nested while loops insure that the graph is completely

hierarchically clustered. The outer loop insures that the graph is reduced to a tree of clusters

where the root node represents the entire graph as single cluster. Each iteration of the inner

loop deals with the creation of a single cluster which will be represented by a single node in

the above mentioned tree. This single cluster is denoted by C in the algorithm and is cleared

only before entering the inner loop (Fig. 5.1).

Since each iteration of the inner loop deals with the creation of one single cluster C,

the value of C must be initialized at the beginning of each. If not, as written in [8], the nodes

of the graph will be grouped into a single cluster and the algorithm will fail. Therefore, we

make our first correction which initializes C immediately after entering the inner loop:

DO while c(v) = 0 for some v' e V' / Nodes not clustered */
Clear C /* C will hold all nodes of a single cluster *1.

Our second correction is related to Fig. 8 of [8]. That figure represents a worst case

example of the clustering algorithm. The example describes a graph of 10 nodes as shown in

Fig. 5.2. We recall that to create a cluster the algorithm starts by selecting a pivot node as

follows:

- A pivot is a node of the graph that is not yet clustered.
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Given a graph
G = (VF) where V is a set of nodes and F is a set of edges:

v={vi, ... vj },FVxVand:

If(vi, Vj) E F then ey E E is the weight.

G'=G
DO while V' J > 1	 / more than I node in V' *1

c(v')O Vv' E V'
Clear C /* C will hold all nodes of a single cluster *1
DO while c(v) 0 for some v' E V' /* Nodes not clustered */

Select a PIVOT (Vp E V' A c( Vp) 0):
Select node with greatest epj 3 1j E V'Ac(vJ) = 0
Break ties by greatest number of edges
Break further ties by lowest numbered node

Rank—Neighbors(k)

Update G':
Mark pivot as clustered (c( Vp) 1)
VV, E C, Vi # Vp remove v: form V'

If (i'i,i'j) E F'AVI,VJ E C then remove (Vi,Vj) from F'

VVI,VJ 3 Vi E CA Vj 0 CA(V,VJ) E PAVE Vp

Remove (Vi,vj)from F'

If (i'p,i'j) 0 F then add (Vp,vj )tO F'; epj = ey

If (Vp,Vj) E F then epj = epj + ey

Record Vp and members of C as belonging to the same cluster
END /* nodes in V' not clustered */

END I more than one node in V' *1

Rank—Neighbors(k)
Q = {epjvp,vj E F'Ac(vj) = o}

Sort Q into descending order
Drop on threshold:

Q'= {Q(i),...Q(t)} 3 
Q(i)—Q(i+1) <T,i 

= 1 ... t A  
Q(i)—Q(t+1) > T

Q(i)	 Q(t)

CCUVq
where Vq = [pl epj € Q']

If k> I then Rank Neighbors (k-I) for each Vi E C

Fig. 5.1 The clustering algorithm.
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(a) It must be adjacent to a non clustered node having the greatest connecting edge weight.

(b) If more that one node satisfy (a), the node having the greatest number of incident edges

is chosen.

(iii) If more that one node satisfy (b), the node which has the lowest number is chosen.

I	 1000	 100 y 1	 1000 p 100 p 1 p 1000 	100

Fig. 5.2 The graph of the worst case example.

Next, the algorithm consider for clustering neighbors of neighbors of the pivot node up to a

depth k. If k = 1, then only the immediate neighbors of the pivot node are candidates for

clustering. Then, all candidate nodes are subject to a threshold test, and only nodes passing

the test are clustered.

In the worst case, at most two nodes merge together at each pass, therefore the

algorithm must run with k = 1, that is, the algorithm will not consider for clustering the

neighbors of the neighbors of a pivot node, it will only cluster the direct neighbors which pass

the threshold test.

By applying the clustering algorithm, with k = 1 and with a threshold t = 0.25 as set

in [8], on the example of Fig. 5.2, we first find that nodes 2, 4, and 5 are pivot candidates.

Node 2 is selected to be the pivot of the first cluster. Although node 2 has neighbors nodes I

and 3, node 1 is discarded for failing the threshold test. This is how nodes 2 and 3 form a

single cluster represented by node 2. Similarly, nodes 5 and 6, and nodes 8 and 9 are

clustered and represented by nodes 5 and 8 respectively (Fig. 5.3). This completes one pass

of the outer loop.

On the second pass, nodes 2 and 4, nodes 5 and 7, and nodes 8 and 10 are clustered

and represented by nodes 2, 5, and 8 respectively (Fig. 5.4). On the third pass, 2 and 5 are
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candidates to be selected as pivots. They have the same number of incident edges, but node 2

is selected because it has the lowest number. Nodes I and 5 are direct neighbors of node 2

Fig. 5.3 Pass 1.

0 
JO11OO1

Fig. 5.4 Pass 2.

Q
Fig. 5.5 Pass 3.	 Fig. 5.6 Pass 4.

and they both pass the threshold test. Therefore nodes 2, 1, and 5 are clustered into the same

cluster and represented by node 2 (Fig. 5.5). Nodes 2 and 8 are clustered on the last pass (Fig.

5.6). The passes of the hierarchical clustering are represented by a tree (Fig. 5.7).

We note that our final graph is different from the one presented in [8] (Fig. 5.8). We

believe that this graph cannot be reached as a result of running the allocation algorithm

proposed in [8]. We think our correction is in order.
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Fig. 5.7 The cluster tree of the worst case example.

Pa

Pas

Pas

Pas

Pas

Pas

Pass 4

Pass 4

Fig. 5.8 The cluster tree of the worst case example as shown in Fig. 9 of 1231.
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CHAPTER VI

A VARIATION OF BOKHARI'S LAYERED GRAPH ALGORITHM FOR MAPPING
CHAINS ONTO CHAINS IN O(m2n) TIME USING A REDUCED LAYERED

GRAPH OF O(mn) NODES

The problem of mapping chains of modules onto chains of processors, referred to

thereafter as MCC, occurs when a packet of data must be subject to a set of operations. For

example, the packet of data may have to be Fourier transformed, multiplied by a fixed

frequency, filtered ...etc. This kind of operations has a serial chain-like structure. Instead of

executing such serial operations on all packets of data using a single processor, it would make

a better sense to think of a multiprocessor system having a chain-like structure and try to map

the chain of modules to the chain of processors. An example of such assignment is shown in

Fig. 6.1 below [4,6,7]. In that figure, each packet of data moves from processor Ito

processor 4 in aunidirectional pipelined fashion. While processor 3 executes operations 4, 5,

and 6 on a packet i , processor 2 executes operations 2 and 3 on packet I + I.

Also, this problem occurs when a set of chain-like packets of different sizes must be

subject to parallel operations. The problem is to find an optimal assignment of these data

packets on the chain-like multiprocessor system where processors can communicate in both

directions.

Fig. 6.1 A nine-module chain mapped onto a four-processor chain.

Both problems can be modeled in the same manner as follows. Given a set of m

modules connected in a chain-like fashion, and a multiprocessor chain of size n <m, we need

to find the assignment of subchains of modules to processors that minimize the load on the
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heavily loaded processor. 	 The contiguity constraint ensures that two modules that

communicate together are assigned to the same or to adjacent processors. The above

description of the MCC problem is also used in the next chapter.

The problem of assigning chains of modules onto a chains of processors, where

processors are restricted to be homogenous, was studied by Iqbal [20], by Nicol and

O'Hallaron [27], and by Iqbal and Bokhari [21], under many assumptions and in the general

case. In this chapter, we focus on the general case where the processors are heterogeneous

and the communication links between processors are also heterogeneous. This case is solved

by Bokhari [4,6,7] and by Nicol and O'Hallaron [27]. We present a new variation of

Bokhari's algorithm which runs in O(m2n) time. More specifically, our algorithm uses a

reduced layered graph of O(mn) nodes and O(m2n) edges. We note that all solutions

presented in this chapter assume that all processors are to be utilized. In the remaining

figures of this paper, many nodes and edges are omitted to avoid congested diagrams.

6.1. Bokhari's layered graph algorithm

To solve the MCC problem of Fig. 6. 1, Bokhari's algorithm [4,6,7] constructs the

layered graph of Fig. 6.2 where each layer in the graph corresponds to a processor. A node

1 :!!^ I :!^ j :!^ m, corresponds to an assignment of the subchain of modules i through j to

the processor in that layer. A node (,j) is connected to all nodes (I + 1,k) in the layer

directly below it for all j except 1 and n. All nodes (1,j) ((i,m)) in the first (last) layer are

connected to node s (t). A path from s to t corresponds to an assignment of subchains to

processors under the contiguity constraint.



Fig. 6.2 Bokhari's layered graph for the problem of Fig. 6.1.

Edges of the layered graph are labeled as follows. The weight of the edge connecting

node (,j) in layer k to any node in the layer below is equal to the cost of executing model

i through j on processor k. To account for communication cost between subchains

assigned to adjacent nodes, weights may be added as follows. To the weights of each edge

connecting node (a,b) in layer k to node (b + 1,d) in layer k +1, we add the

communication cost between nodes b and b + 1 over the link connecting processors k, to

k+l.

Using this technique, it is clear that the number of nodes in each layer is in O(m2).

Since the graph is of n layers, the total number of nodes is in O(m2n), and the total number

of edges is in O(mn). We note that a variation of Dijkstra's shortest path algorithm [11]

solves the problem in O(m4n2) time. Due to the layered structure of the graph, Bokhari's

solution provides an improved running time; the idea is to find the minimum bottleneck path

from node s to node t . Each node i in the layered graph is given a label L(i). Initially, all
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nodes are given infinite labels except nodes of the first layer which are given zero label. The

algorithm works as follows:

1. Examine each edge e emanating downwards from a layer connecting a node a (above) to

a node b (below). Let the weight on this edge be w(e).

2. Replace L(b) by min(L(b),max(w(e), L(a))).

Once t is labeled, the path representing the optimal path can be found by tracing backwards

from t to s. Both the labeling procedure and finding the optimal path visit each edge of the

layered graph exactly once, therefore the overall complexity of Bokhari's algorithm is

O(mn).

6.2. Nicol and O'Hallaron's variation using an improved layered graph

Using a variation of the layered graph, Nicol and O'Hallaron [27] were able to solve

the same problem in O(m2n) time using 0(m2n) edges. For example, in Fig. 6.2, n —2 new

layers were added, one between each layer, except between layers 1 and 2. Each new layer

consists of m nodes labeled from 1 to m. A node (j,k) in layer i (with respect to Bokhari's

layered graph) directs a single edge to node k in the new layer between layers i and f + I.

This edge is labeled exactly as the edge leaving node (j,k) in Bokhari's solution. A node k

in the new layer directs to all nodes (k + 1,1) in the layer i + 1 (see Fig. 6.3). Each edge of

this type has a zero weight. A path form s to t corresponds to a solution of this assignment

problem.

By adding m(n —2) nodes to Bokhari's layered graph of Fig. 6.2, Nicol and

O'Hallaron were able to reduce the number of edges of the layered graph as follows. In the



Processor 1

Processor 2

New Layer

Processor 3

New Layer

Processor 4

Fig. 6.3 Improved layered graph of the problem of Fig. 6.1.

old layers, each of the m 2 nodes directs one single edge to the layer below, therefore the total

number of edges leaving the n old layers is in O(m2n).

In the new layers, each of the m nodes directs m edges to the layer below, therefore

the total number of edges leaving the n - 2 new layers is in O(m2(n —2)). Thus the total

number of edges of the improved graph is in 0(m2n + m 2 (n - 2)) which is O(m2n). Thus,

by using Bokhari's original algorithm on the improved layered graph of Nicol and

O'Hallaron, the minimum bottleneck path from s to t can be found in O(m2n).

6.3. Our variation

Our variation has two parts: (i) a variation of Bokhari's layered graph, and (ii) a

variation of Bokhari's algorithm. We begin by defining our reduced layered graph first.

Definition 53: A reduced layered graph, is a graph with n layers and m nodes. Each layer

has m nodes labeled from 1 to m. Each node i at layer k is connected to all nodes j of layer
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k +1, i + 1 :!^ j :!^ m (Fig. 6.4). A node s connects to all nodes of layer 1, while node m at

layer n serves also as a terminal node.

A path from node s to node m at layer n in the reduced layered graph consists of a

feasible assignment. The optimal assignment corresponds to the path having the minimum

bottleneck weight, and it is computed using a variation of Bokhari's algorithm:

Fig. 6.4 The reduced layered graph for the
problem of Fig. 6.1.

Instead of labeling edges, as in the algorithms described earlier, we label nodes as

follows:

1. Let L(a) be the label of node a, then L(s) = 0.

2. For layer 1 (k = 1), each node i is labeled by the cost of executing module 1 through i

on processor 1.

3. For layer k, 2:!^k:!^n, each node i is labeled by

(

(cost

min max L(adjacent nodej in the layer k 

-it of executing modules j + 1 through i on processor k
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In the reduced layered graph, the number of nodes is reduced to O(mn) nodes. The

number of edges is in O(m2n). Labeling nodes from s to m at layer n takes O(m2n) time.

The path representing the optimal assignment can be traced backwards from node m at layer

n to node s. The overall complexity of this algorithm is O(m2n).

We have traced below a sample run of our algorithm. We assume a chain of four

modules to be assigned to a chain of three processors. Table 6.1 shows the execution cost per

module on each of the three processors.

Ml 1M2 1M3 IM4

P1 12	 Ii	 13	 12	 Layer 

P214	 13	 13	 14
Layer 2

P313	 12	 12	 14

Layer 3
Table 6.1 Execution cost per module
on each processor.

Fig. 6.5 The reduced layered graph of
the problem in Table 6.1.

As an example of the labeling procedure of the problem in Table 6. 1, we choose to

label node 4 of layer 2. In the following, CO' j) is the cost of executing node i through j

on processor k, and L(a) is the label of node a in the layer above. The label of node 4 on

layer 2 can be calculated as follows:

max{ L(1), c(2,4)}	 max {2,l o}

mm max{ L(2), C(3,4)} = min max{3,7} = min{1 0,7,6) = 6.

max{ L(3), C(4,4)} 	 max{6,4}

A path from node s to node 4 in layer 3 consists of a feasible assignment. The

optimal assignment is shown in Fig. 6.5 in bold lines. It represents the assignment of
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modules 1 and 2 to processor I, module 3 to processor 2, and module 4 to processor 3. The

label of node 4 in layer 3 is the bottleneck weight of the optimal path, i.e. the weight on the

heavily loaded processors corresponding to the optimal assignment.

6.4.	 Results

In this chapter, we have reviewed the problem of assigning chains of modules onto

chains of processors. In particular, we reviewed Bokhari's and Nicol and O'Hallaron's

algorithms. Our contribution consists of a variation of Bokhari's work which runs in O(m2n)

time using a reduced layered graph of O(m2n) edges and O(mn) nodes. A summary of all

results is included in Table 6.2.

Problem	 Nodes	 Edges	 Run time

Bokhari	 O(m2n) O(mn)	 O(mn)

Nicol & O'Hallaron	 O(m2n) O(m 2 n)	 O(m2n)

A new variation	 O(mn)	 O(m2 n)	 O(m2 n)

Table 6.2 Summary of results.
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CHAPTER VII

A HEURISTIC ALGORITHM FOR MAPPING CHAINS ONTO CHAINS OF A
HOMOGENOUS AND A HETEROGENEOUS PROCESSOR SYSTEM IN TIME

0(m) AND O(mn) RESPECTIVELY

In this chapter, we suggest a simple heuristic solution for the MCC problem in the

cases where the processors are homogenous and heterogeneous. In the case where the

processors are homogenous, a module execution cost is the same on all processors. In the

case of heterogeneous processors, each module has a different execution cost on each of the

processors. Links connecting the processors are considered to be homogeneous in both cases.

7.1. Homogenous chain of processors

The-first algorithm works on a chain system where the processors are homogenous

and the communication links between two adjacent processors are also homogenous. Also,

the communication load between any two modules must not exceed the sum of the weights of

all modules divided by the number of processors, i.e., the average load per processor. The

weights of the m modules is represented with a one-dimensional array of size m. Each

element i of the array stores the execution cost of the corresponding module and the

communication cost with module I + 1. The algorithm works as follows:

1. Let 1=1.

2. Let AVG be the sum of all module weights divided by the number of processors, i.e. the

average load per processor.

3. Traverse a list representing the chain of m modules in the first-to-last node direction. At

each nodej compute Si as the sum of module weights from node ito node j until S.- exceeds

AVG.
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4. If S is nearer to AVG then S 1 , i.e., (S, - AVG :!^ AVG - s11 ), then assign modules

from i to j to the first available processor in the chain and set I j + 1; otherwise, assign

modules ito j - 1 to the first available processor and set I = j.
5. Steps 3 and 4 are repeated until all modules are assigned.

We note that when the number of processors is much smaller than that of the modules,

steps 3 and 4 are repeated until m - 1 processors are assigned and the remaining modules are

assigned to the last processor m. But in the case where this number is greater than the number

needed in the assignment, the last subchain of modules, which weights sum does not exceed

A VG, will be assigned to the first available processor leaving a number of unused processor at

the end of the processor chain.

This algorithm traverses the chain of m modules twice. In the first time, it computes

the average load per processor, and in the second time, it provides for a heuristic assignment

based on the average calculated. Since both steps are 0(m) time, the total run time

complexity of the algorithm is 0(m) time.

Communication
cost

Execution cost

AVG = 10

3	 10	 2	 3	 8	 11	 7	 9

P1	 P2	 P3

Fig. 7.1 A chain of 8 modules onto a chain of 3 homogenous processors.
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In Fig. 7. 1, a chain of eight modules is assigned to a chain of three homogenous

processors. The sum of module weights starting from module 1 exceeds A VG, which is equal

to 10, at node 3. Since S2 is nearer to A VG than S3 , modules 1 and 2 are assigned to

processor P1 and i 3. This time the sum of module weights starting from module 3 exceeds

A VG at node 6, and S6 is nearer to A VG then S5 , thus modules 3 to 6 are assigned to P2 and

i = 7. Since only one processor is not assigned, the remaining subchain of modules 7 and 8

are assigned to P3. This is one of the cases where the heuristic solution is an optimal solution

with bottleneck weight equal to 11.

7.2. Heterogeneous chain of processors

For the case where the processors are heterogeneous, each module may have a

different execution cost on any of the processors. The weights of the m modules are

represented with a two-dimensional array of size m x n. Each element i,j of the array stores

the execution cost of module i on processor j. The communication costs between two

modules are stored in a one-dimensional array of size m where the content of element i

represents the communication of module i with module i + 1.

To deal with this issue, we modify step 2 of the previous algorithm by computing

A VG as follows:

2. Let AVG be the sum of all module costs on all processors divided by the square of the

number of processors.

We also modify step 3 since calculating the weight of the subchain i toj depends on the

processor to which it will be assigned. So step 3 becomes:

3. Traverse a list representing the chain of m modules in the first-to-last node direction. At

each node j compute Si as the sum of module weights from nodes ito] on the first available

processor until S exceeds A VG.
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Calculating AVG in this case is O(mn) time which is the time to read all m x n module

execution costs per processor. Thus, the run time complexity of the algorithm is O(mn).

Communication
cost

	

' I 2 15	 1 6, 1 3	 1712	 15141

Execution cost on

5	 7	 2	 10	 6	 3	 9 F11

	

\P2
	

12	 4	 3	 7	 11	 2	 6	 5

	

P3
	

8	 2	 5	 6	 5	 7	 10	 3

AVG= 16.66
	 ww

5	 12	 14

	

7	 18

	

7	 17	 20

P1	 P2	 P3

HiF7—o

Fig. 7.2 A chain of 8 modules onto a chain of 3 heterogeneous processors.

In Fig. 7.2, a chain of eight modules is assigned to a chain of three heterogeneous

processors. The sum of module execution costs on P1 starting module 1 exceeds A VG, which

is equal to 16.66, at node 4. Since S3 is nearer toAVG than S4 ,modules 1,2 and 3 are

assigned to processor P1 and i = 4. Since the second assignment corresponds to processor

P2, the sum of execution cost will be computed with respect to P2. AVG is exceeded at node

5, and modules 4 and 5 are assigned to P2 because S5 is nearer to AVG then S4 . The

remaining subchain of modules 6, 7 and 8 are assigned to P3. In this case the heuristic

algorithm provides an optimal solution with bottleneck weight equal to 20. Another optimal

solution to the same problem assigns modules 1, 2 and 3 to P1, modules 4, 5 and 6 to P2, and

modules 7 and 8 to P3.

7.3. Unbounded communication costs
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As mentioned above, both algorithms suggest that the communication between any

two modules is less than A VG, because if it happens that two modules have the

communication cost between them greater than A VG and the first is assigned to the processor

I and the second to the processor I + 1, then the communication cost between them may

dominate the size of the load on the heavily loaded processor. To avoid such situation, all the

communication costs between two modules are inspected before step 3, and two nodes are

merged if this cost exceeds A VG. Merging two nodes I and i + 1 involves adding the weights

of module i + 1 to those of node i, and removing the merged node from the list representing

the chain. Step 3 will work on the newly generated chain which is smaller than the original

one. Inspection of the communication links takes 0(m) time which does not increase the run

time complexity of any of the previous algorithms.
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CHAPTER VIII

OPTIMAL TASK ASSIGNMENT IN HOMOGENOUS NETW4DK3
PRESENCE OF ATTACHED TASKS

The main idea behind Lee and Shin algorithm [24] which provides an op.:ni oc;ftn

to the problem of assigning an arbitrary problem to an n-dimensional avray cr i

homogenous processors in the presence of attached tasks, is first to find a cutct LW	 t;ttcs

a designated processor from all other processors on an appropriately defined iietwc,:' . low

graph. Such cutset represents the communication costs occurring on the links cmnc c

isolated processor and the task assigned to it to the tasks assigned to the ru:

processors. Then, it continues by finding another cutset that separates a groip of-,

formed by the designated processor and one of its nearest neighbors from all oJa;i

This process is repeated for all neighbors of the designated processor by addig

at a time to the group. Next, for each processor in the group, its nearest nei'-	 I

one by one and the corresponding cutset is derived separating the groutp	 -i I

remaining processors. All generated cutsets represent the sum of comnI

incurred by a specific assignment of tasks to processors. An assignment s c:o:

feasible if all attached tasks are properly assigned.

Lee and Shin proved that for n-dimensional array and tree interconnee :'

the choice of the cutsets must be done in a way that they do not cross each oWcc an t I

feasible solutions to the problem one-to-one correspond to the set of these 	 I

remaining part of this chapter, we will show how to adapt Lee and 	 a	 Li a

homogenous system having a star graph interconnection structure as a represeit	 C ,

graphs, and then we generalize our results to homogenous systems wi Ii

interconnection structure.

8.1. Group graphs
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Akers and Krishnamurthy [1] describe group graphs as follows:

"a group graph results when we select a set of symbols (say A,B,C)
and a set of rules (transformations) by which one permutation of the
symbols may be changed into another.... The corresponding graph
results when we assign one node to each of the resulting permutations
and then connect two nodes by a branch if a transformation takes one
corresponding node into the other."

Definition 54: If we choose a set of n symbols and one specific permutation which we call I

(the identity element) and a set of transformations which may be applied to I, then the

resulting set of permutations is called a group. A group graph results when we assign one

node to each permutation in the group and then draw a branch form node P1 to node P, if

there exist a transformation which takes permutation P1 into permutation P2 [1].

The set of transformations is further restricted such that (i) it does not generate the identity,

(ii) all are different and (iii) all are closed under inverse. These restrictions imply that group

graphs are loop-free, do not have multiple edges, and can be represented by undirected

graphs. An example [1] of such permutations rules on 4 symbols ABCD that generate the

group graph of Fig. 8.1 are:

1. Swap the inner symbols (acbd),

2. Swap the outer pairs of symbols (badc), and

3. reverse the permutation (dcba).

ABCD	 acbd

BADC
bade

ACB\ BDAC 

dcba

DR

CDAB'-	 I -• DBCA
DCBA

We note that group graphs are node symmetric, i.e.
Fig. 8.1 An example group graphs 111.

from any node in the graph "the rest of the graph

looks exactly the same" [1]. The proof of group graphs node symmetry property can be

found in [2].

Another example of group graphs is the star graph.

Definition 55: A star graph S, of order n, is defined to be a symmetric graph G = (v, E)

where V is the set of n! vertices, each representing a distinct permutation of n elements and E
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a

C

b

CBA

BCA

ACB

(a)

3

2

is the set of symmetric edges such that two permutations (nodes) are connected by an edge iff

one can be reached from the other by interchanging its first symbol with any other symbol

[33].

For example, in S3 we take the identity to be ABC and suppose that it is the starting node in

the graph. According to the definition, ABC connects to BAC and CBA (Fig. 8.2(a)). We

can also use a different set of symbols, for example in S 4 , the identity 1234 can be

transformed into 2134, 3214, and 4231. By applying the definition on the generated

permutations, we can build the 24 node graph shown in Fig. 8.2(b).

a

Fig. 8.2 Star graphs S3 and S4.

8.2. Optimal task assignment in star graph networks in the presence of attached
tasks
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To apply Lee and Shin idea on a homogenous system having a star graph

interconnection structure, we need to construct a network-flow graph that represents this

assignment problem and find all the set of cutsets, that represent all feasible solutions, such

that the total weight of each set of cutsets is equal to the communication cost incurred by its

corresponding assignment.

Definition 56: Given a star graph S,, and an identity permutation I, the neighborhood tree is

the tree that generates all the neighbors of the identity I and the neighbors of the neighbors

such that each of the n! nodes of S, is represented only once in the tree. Furthermore, nodes

of the neighborhood tree are numbered from 1 to n! in breadth first search order.

The neighborhood tree for S4 is shown in Fig. 8.3. In the remaining part of this chapter, we

will denote by N the total number of processors in the network which is equal to n! in the

case of star graph.

2134

(:6--
3124	 4132

1324	 4123	 1432	 3142

1423	 2143	 1342

1234

3214

(:^r
2314	 4213

4312	 2413	 1243

3412

4231

( j9___"
2431	 3241

d d
2341	 1234

4321

Fig. 8.3 The neighborhood tree for S4

By traversing the neighborhood tree in a breadth first order, at each node k, representing

processor Pk' we can find the sets F and Pk such that F = {p1 , ... , Pk } and j5k all the
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remaining processors. We then proceed using Lee and Shin approach, so we apply their

modeling technique to describe the solution of the problem and we follow their steps to prove

its correctness.

Given a TIG = (v, E) of a distributed application of m modules submitted to an N

processors star graph, we first make a corresponding N-terminal network G N = (VN EN ) by

adding the N processors nodes to the TIG. Then, we construct (N - 1) two-terminal

networks graph G.s, 1 :!^ I :!^ N, from the N-terminal network G. as follows:

1. Generate a source node S, by combining all the processors nodes in ] and all the task

nodes which are attached to one of these processors.

2. Generate a sink node 7' by combining all the processor node in Tj and all the tasks nodes

which are attached to one of these processors.

Definition 57: Let C be a set of (N - i) cutsets C1 each of which is on the corresponding

two-terminal network graph G,. Then C is said to be admissible if no two cutsets in C

cross each other. The weight of C is the total weight of the cutsets in C, i.e.

W(CS) = .w(C3.

Lemma 1: Each admissible set Cs one-to-one corresponds to a feasible task assignment.

Proof. Each admissible set C5 of a graph GN partitions the graph into N subsets Ak s each

of which has exactly one processor node Pk• Then we can associate Cs with the assignment

that every task in Ak is assigned to Pk' and vice versa.

Lemma 2: Let an admissible set C corresponds to a feasible assignment X Then, the weight

of Cs is equal to the total communication cost of X, COMM(X).

Proof. The communication costs incurred between two parts of the star graph, nodes 1 to I

from one side and nodes I + 1 to N from the other side with respect to the breadth first order
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enumeration, under the assignment Xis equal to the weight of the corresponding cutset C1.

Thus, the total communication cost is the sum of all the cutsets C1 , 1:5 i:5 N, i.e.

coMM(x) = w(c1 ) = W(CS ) .

Form lemmas 1 and 2, we can deduce that;_ also in the case of a parallel system of

homogenous processors having a star graph interconnection structure, the task assignment

problem in the presence of attached tasks can be solved by finding the minimum weight

admissible set CAQ on the corresponding N-terminal network graph. We propose the

following procedure as a solution to this assignment problem.

1. Generate the neighborhood tree of the star graph starting from an identity node I, and

label this tree in a breadth first search order.

2. Traverse the tree in breadth first search order until node N - 1 is reached.

i) At each node labeled i in the neighborhood tree, group all nodes from 1 to i in a

source node S along with all attached task to any of the processors 1 to i, and all the

remaining nodes i + 1 to N in a sink node T along with their attached tasks.

ii) Find a minimum weight cutset C, of the two-terminal network graph G, = (Vi , E.)

between source S and sink T, which divide the network into two parts.

iii)For every unassigned task to the side of S, assigns it to the processor labeled i.

3. All remaining unassigned tasks are assigned to the processor labeled N.

The neighborhood tree can be represented by an adjacency list of 0(N) nodes, and

can be created, enumerated and traversed in a breadth first search order in 0(N) time. The

algorithm requires N - 1 applications of a network flow algorithm of O(m) time each.

Thus, the overall complexity of finding the optimal solution is 0(NM) time.

83



Lemma 3: Let a set C	 {c, I I :!^, I <N} found in the algorithm described above correspond

to a task assignment X. Then the assignment Xis feasible; that is, Cs is admissible.

Proof. At each node labeled i, every unassigned task to the side of the source node Sis

assigned to the processor labeled i at step 2.c. Any cutset C, I <j, cannot partition nodes

to the side of S any more, since these nodes form the source node S when finding the cutset

C. Therefore, any two cutsets found by this algorithm do not cross each other.

Lemma 4: Let a set C5 = {C, I 1 ::^ I <N} found in the algorithm described above correspond

to a feasible assignment X Then, for any feasible assignment X', the following inequality

holds for each node labeled i: W(C, )-< w(C,'), for all 1.

Proof. Each cutset C, in Cs is a minimum-weight cutset of G. and separates the graph into

two parts. Every task to the side of source S is assigned to one of the processors Pk 'S,

1 :!^ k < I, and every task to the side of sink node Tis assigned to one of the processors p, 's,

I + l:!^ l:!^ N by the above procedure. Then the weight of the cutset C, is W(C,) and it is

equal to the sum of all communication costs between tasks assigned to processors on the side

of S and tasks assigned to the remaining processors on the side of T. We prove the inequality

by induction on I.

1. The result is true for i = 1, since C1 is a minimum-weight cutsets.

2. Suppose the inequality is true for i = k - 1. Without loss of generalities, assume that the

task nodes are partitioned into two subsets A and B by the minimum cutset Ck1 (Fig. 8.4(a)).

Let c(A, B) denote the sum of the weights of all edges between two sets A and B. Then

w(Ck _ I ) = c(A, B). By the procedure described above, the next cutset Ck cannot partition

the tasks in A any more, since every task in A is already included into the source node S. Let

C,, partition the task graph into two subsets A u B2 and B (Fig. 8.4(b)), then
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where

A l u A 1' A and B2 U B = B. (Each of the subsets may be empty, but this will not alter

the proof.) We prove this by contradiction. Suppose the inequality does not hold for 1= k.

Then there exists another feasible assignment. X' which partitions task nodes into two

subsets A 1 u B1 , and A 1' u B11 , where B1 u B,' = B (Fig. 8.4(c)) such that

c(A1,A,')+c(A1,B1')+c(B1,A;)+c(B1,B1') <c(A1,B)+c(A1',B)+c(B2,B). (1)

Every task in A,' is executable on at least one of the processors p 1 , k + 1:5 1 :!^ N, since

X' is feasible. Thus, the cutset C_ 1 (Fig. 8.4(d)) is a cutset of a feasible assignment which

assigns every task in A1 to one of the processors p1 , L!5 1:5 k - 1, and every task in

A 1' u B1 u B to one of the processors p,, k ^ 1 ^ N. Then W(ck1 ) :5 w(c 1 ) by the

assumption for j = k - 1, i.e.,

c(A1,B1)+c(A1',B1)+c(A1,B1')+c(A1',B1'):!^c(A1,A1')+c(A1,B1)+c(A1,B,'). (2)

Every task in B1 is executable on at least one of the processors p,, k :^l:!^ N, since Xis

feasible. Also, every task in B1 is executable on at least one of the processors p,, 1 :!^ 1 :!^ k,

since X' is feasible. Thus, every task in B1 is executable on processor p 1 , 1 = k. The cutset

C in (figure 5d.) is a possible cutset in GIk which assigns every task in B1 to processor Pk

(we assumed that every task in A u A,' has already been assigned to one of the processors

PI, 1:!^1:!^k-1, by the cutsets Cl ,C2 ,,Ck _ l ). Then W(Ck )<W(C) since Ck is a

minimum-weight cutset in Gk, i.e.,

c(A1,B)+c(A1',B)+c(B2,B)^c(A1,B1')+c(A1',B1')+c(B1,B1'). (3)
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By combining the above three inequalities (1), (2), and (3), we obtain the following

inequality: c(A,', B1 ) < 0. This contradicts the fact that the weight between any two subsets

cannot be negative. Thus, the inequality holds for i = k.

CA :B)
Ckl

(a) A minimum cutset Ck+l in Gk-1

B

(c) A hypothetical cutset C'

Ck

(b) A minimum cutset Ck in Gk

(d) A hypothetical cutset C'

Fig. 8.4 Illustrative figures for Lemma 4.

Theorem 1: Let c, = {c, I 1 :5 i <N} found in the algorithm described above correspond to a

feasible assignment X Then, the assignment X is an optimal assignment with the total

communication cost of .W(C1).

Proof. By contradiction, assume that Xis not an optimal assignment. Let another feasible

assignment X' be a optimal assignment, i.e., COMM(X') < COMM(X). Then there exists

at least one i, 1 :5 i :!^ N - 1, such that w(C,') < w(C1 ). This is contradictory to the result of

Lemma 4, and thus, X is an optimal assignment. The total communication cost of X is

E,W(Ci ) by Lemma 2.

Fig. 8.5 shows an example that we have traced below as a sample run of our

algorithm. A parallel program of seven modules is to be assigned onto S 3 which

neighborhood tree is also shown in Fig. 8.5. In the first iteration (Fig. 8.6), node 1
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TI attached to 123
T2 attached to 132
T7 attached to 321

ju

0
123

213	 321

312	 231

132

representing processor 123 is selected to form the source node S along with the task Ti which

is attached to 123. All the remaining processors and their attached tasks are grouped into the

sink node T. The cutset C1 = 25 is a result of applying step 2.b. This cut does not assign

new tasks to 5, and its value is equal to the communication costs of Ti on 123 and its

adjacent tasks on the remaining processors, i.e. the cost of assigning attached task Ti to 123.

Fig. 8.5 An example of TIG of 7 modules to be assigned to S3.

In the second iteration (Fig. 8.7), where processors 123 and 213 are group into S with their

attached tasks, cutset C2 does not assign to S any new tasks, i.e. processor 213 will not

execute any task. Cutset C2 = 25 and its value will not be considered in the computing the

total communication cost since it does not represent an assignment of tasks to 213. In the

third iteration (Fig. 8.8), processors 123, 213 and 321 are grouped with tasks Ti and T7 to

into source S, and all the remaining processors with their attached tasks into sink T. The

cutset C3 = 70, and it assigns tasks T3, T5 and T6 to processor 321. The fourth (Fig. 8.9)

and the fifth (Fig. 8.10) iterations does not assign any tasks to 312 and 231 respectively. The

remaining task T4 will be assigned to 132 in sink node T with a cost C5 = 70 since C5 is the

last cutset. C4 value will not be used in computing the total communication costs because it

does not represent any assignment.	 Thus, the cost of the assignment is
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C = C1 + C3 + C5 165. Fig. 8.11 shows an optimal assignment of the problem in Fig. 8.5

with details on the communication costs between any two tasks. We note that this problem

admits another optimal solution by assigning task T4 to processor 321, which can be verified

in Fig. 8.8 by computing the cutset assigning all tasks to S which is also equal to 70.

Moreover, in Fig. 8.11 the communication between task TI on 123 and task T4 on 132 may

take place through processors 213 and 312 with the same cost.

	

: 25	 15	 50	 F2131 F3211

F3121 [231]
F1 23]	 15

	

10 :	F132
5	 10

Fig. 8.6 Iteration 1 of the algorithm on the problem of Fig. 8.5.

:25	 .

Fig. 8.7 Iteration 2 of the algorithm on the problem of Fig. 8.5.

1°	 T

...

40(.4Q..J$.10
F312] F2311

F1 231 F2131 
10 25
	

15

321	 5	 10

Fig. 8.8 Iteration 3 of the algorithm on the problem of Fig. 8.5.
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213

312

70
T

Fig. 8.9 Iteration 4 of the algorithm on the problem of Fig. 8.5.

70
T

S

Fig. 8.10 Iteration 5 of the algorithm on the problem of Fig. 8.5.

TI,T2=3(15)=45
Tl,T3 = l(10) = 10
T2,T3 = 2(5) =10
T2,T4 = 0(40) = 0
T2,T5 = 2(10)= 20
T3,T4 = 2(25) = 50
T3,T6 = 0(30) = 0
T4,T5 = 2(15) = 30
T5,T6 = 0(10) = 0
T5,T7 = 0(40) = 0
T6,T7 = 0(20) = 0

Total cost = 165

Fig. 8.11. An optimal task assignment of the problem of Fig. 8.5.

8.3. Optimal task assignment in homogenous arbitrary networks in the presence of
attached tasks

89



From the definition of the neighborhood tree, we realize that for any group graph this

tree can be generated. Also, this tree can be generated for any interconnection structure that

can be described by symbol permutations. Since, the neighborhood tree is nothing but a

breadth first order traversal of the interconnection structure of the homogenous network

starting form a specific node, which can be verified in Fig. 8.3 for the star graph S 4 , we can

generalize our results on star graphs as follows. For a network of homogenous processors

connected in an arbitrary form, it is sufficient to create the breadth first search tree for the

network and use this tree for creating all the P and Tk sets of nodes at each kth node of the

arbitrary graph representing a processor. Then, we can apply the steps 2 and 3 of our

algorithm to find the optimal solution. Creating the breadth first search tree for an arbitrary

graph of n nodes is O(n2) time. Thus, the overall complexity of assigning an arbitrary

structured program of m tasks to an arbitrary network of N homogenous processors is

O(Nm).

90



CHAPTER IX

A COMPARISON OF ASSIGNMENT AND SCHEDULING ALGORITHMS

In this chapter, we include a table of comparison for the fifty algorithms reviewed

from the literature (Table 9.1). In the first column of the table, the problem is briefly defined,

and in the second column its type is indicated be it an allocation or a scheduling problem.

The third column shows whether communication costs are considered or not in the solution of

the problem and indicates whether these costs 'are homogenous or heterogeneous among all

tasks. The fourth column shows the type of costs the algorithm is aiming to minimize. The

fifth column indicates the machine structure to which tasks will be allocated or scheduled by

the algorithm and the seventh column indicates the number of processors of that machine.

The eighth column briefly describes the techniques used in solving the problem and the ninth

column indicates whether the solution is optimal or not. The tenth and eleventh columns

show the space complexity of the problem in terms of nodes and edges respectively, and the

twelfth column indicates the runtime complexity of the algorithm. Column thirteen is

reserved for explanatory remarks.
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CHAPTER X

CONCLUSION AND FUTURE RESEARCH

In this research, we have reviewed fifty algorithms dealing with static assignment and

scheduling of tasks with no duplication onto parallel or distributed systems. These algorithms

provide solutions for different aspects of this problem, where the nature of the program to be

assigned and the interconnection structure of the parallel system vary from one problem to

another. We have also presented a comparison of these algorithms based on the nature of the

problem, the specific case they solve and the techniques used in deriving the solution.

We have commented on an example related to the paper "On The Assignment

Problem of Arbitrary Process Systems to Heterogeneous Distributed Computer Systems" [8].

We have investigated the problem of mapping chain of m tasks onto chains of n processors,

and derived a variation of Bokhari's algorithm [4,6,7] with a reduced space complexity in the

case where the processors are heterogeneous. We have also suggested a heuristic solution for

the same problem in the case of homogenous and heterogeneous system of 0(m) and 0(mn)

time respectively.

We have also investigated Lee and Shin [24] optimal assignment of an arbitrary

problem to homogenous processor networks having an n-dimensional array structure or a tree

structure in the presence of a attached tasks. Based on their approach to the solution, we

derived a solution for the optimal assignment of a parallel program of m arbitrary tasks onto a

network of homogenous processors having a star graph interconnection structure S,,, with a

runtime complexity of	 Nm) time, where N = n! is the total number of processors in the

star graph. We also generalized our results to homogenous arbitrary network with a runtime

complexity of 0(Nn) time, where N is the total number of processors in the arbitrary

network.
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For future research, we suggest that both heuristic algorithms described in chapter VII

for mapping chains onto chains in the cases of homogenous and heterogeneous processors be

compared against optimal solutions in order to define how often these algorithms provide for

an optimal solution and how far their solution is from the optimal one in the worst case.

In the case of the optimal task assignment in homogenous networks in the presence of

attached tasks, we provided a general algorithm that applies to arbitrary homogenous

networks. Our general algorithm when applied to the n-dimensional array problem of

N(= n 1 x n2 x .	 homogenous processors finds the optimal solution for a parallel

program of in tasks in O(Nnz) time. On the other hand, Lee and Shin algorithm [24] is

0(j,(n, - 0777 3 ) time for the same specific case. Their algorithm benefits from the

possibility of isolating each dimension of the n-dimensional program to achieve this relatively

better result. More research should be done to investigate the possibility of enumerating the

star graph or any group graph in a similar ndimensional fashion which might lead to the use

of Lee and Shin algorithm for the n-dimensional array as is in order to achieve faster results.
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