
c000

CI c.

INTEGRATING NEURAL NETWORKS AND GIS FOR
SOLVING THE TRAVELING SALESMAN PROBLEM

LM

RITA JACK IBRAHIM

A Thesis

Submitted in Partial Fulfillment of the
Requirements for the degree of Master of

Science in Computer Science

Department of Computer Science
Faculty of Natural and Applied Sciences

Notre Dame University- Louaize
Zouk Mousbeh, Lebanon

June 2000

Integrating Neural Networks and GIS for Solving the
Traveling Salesman Problem

By
Rita J. Ibrahim

Approved:

Fouad Chedid: Associate Professor of Computer Science and Chairperson.
Advisor.

Marie Khai: Assistant Professor of Computer Science.
Member of Committee.

n'JI Khaldi: Assistant Professor of Computer Science.
Member of Committee.

Jean Fares: Associate Professor of Mathematics and Chairperson
Member of Committee.

Date of thesis defense: July 5, 2000

ACKNOWLEDGEMENT

I feel indebted to many persons who were helpful to me in performing this

work. So, rather then trying to thank everyone, I mention only four groups of people.

The first group is my family and specially my mother, Ama!, for her support and

encouragement and for my uncle, Tony Safi, for pushing me when it was important.

The second group consists of Khatib & Alami Company, headed by Mr. Jacques

Ekmekji who gave me full supports, time wise and technology wise to accomplish this

work successfully. Also, I thank my friend Michel Bridi for his help.

The third group consists of Dr. George Eid, Dean of the Faculty of Natural and

Applied Sciences at NDU, for directing my academic studies and to everyone involved

in the department of computer science.

Finally, I am deeply grateful to my advisor, Dr. Foaud Chedid, for supervising and

following up this work and for spending time with me to put this manuscript in its final

form. A word of thanks also goes to the committee members: Dr. Marie Khair, Dr.

Khaldoun El Khaldi, and Dr. Jean Fares.

Thanks again because without these peoples this work would not be accomplished.

Finally, I like to dedicate this work to my passing away father Dr. Jack Ibrahim

who were an exemplary human being for me.

Iii

ABSTRACT

In this thesis, we investigate the use of neural networks for solving the

Traveling Salesman Problem (TSP). First, we review the main elements of the theory

of NP-completeness. Then, we explain what makes some problems computationally

intractable. We review some heuristic approaches used to provide near-optimal

solutions to NP-complete problems. Then, we introduce the topic of neural networks

and describe some of the most popular neural network models. We pay a special

attention to a recent model, named the Hybrid Neural Network model (HNN), used for

solving optimization problems and the Hybrid Network Updating Algorithm (HNUA).

We propose a modification version of the HNUA that modify the HNUA to produce an

optimal to near-optimal solutions and demonstrate its efficiency using a specific NP-

complete problem known as the Traveling Salesman Problem (TSP) as an example.

Our simulation shows how the modification version derives an efficient result.

Also, a comparison is made between the results derived from the proposed

modification model and the Depth First Search (DFS) model both for TSP to analyze

and deduce the degree of optimization and validation for the proposed modification.

Besides, we build a TSP interface application using Geographic Information

System (GIS) MapObject (MO) on Microsoft Visual Basic environment to create

mapping application and adding mapping functionality for a better visualization of the

problem where the user can easily view the cities and observe the resultant tour

geographically.

TABLE OF CONTENTS

LIST OF TABLES	

LIST OF FIGURES_ ... vii

LIST OF FIGURES IN APPENDIX A. .. - ix

LIST OF FIGURES IN APPENDIX B ... -x

CHAPTERS

I. DEFINING THE PROBLEM .. -1

II. COMPUTATIONAL COMPLEXITY.................................3

2.1.	 COMBINATORIAL EXPLOSION ..3
2.2. DETERMINISTIC VS. NON-DETERMINISTIC COMPUTATIONS4
2.3.	 THE THEORY OF NP-COMPLETENESS .. . 4

III. ARTIFICIAL NEURAL NETWORKS.................................7

3.1.	 HISTORICAL BACKGROUND ..7

3.2.	 INTRODUCING NEURAL NETWORKS ..8

3.3.	 ARCHITECTURE OF ANN ..12
3.4. SOME EXAMPLES OF THE MOST POPULAR NEURAL NETWORKS15

3.5.	 PROPERTIES AND CAPABILITIES ..23

IV. HOPFIELD NETWORKS FOR SOLVING OPTIMZATION

PROBLEMS - 25

4.1.	 HOPFIELD NETWORK ... 25
4.2.	 ENERGY FUNCTION ..28

4.3.	 REVIEW OF THE MAIN ALGORITHM...29

4.4.	 RESULTS ...30

V. A HYBRID NEURAL NETWORK MODEL FOR I)LVING

OPTIMIZATION PROBLEMS ... - 32

iv

TABLE OF CONTENTS (Continued)

5.1. OPTIMIZATION PROBLEM REPRESENTATION AND TRANSFORMATION METHOD 32
5.2. THE HYBRID MODEL ...36
5.3. THE HYBRID NETWORK UPDATING ALGORITHM ...38
5.4. THE MODIFIED HYBRID NEURAL NETWORK UPDATING ALGORITHM................39

VI. THE HYBRID NEURAL NETWORK MODEL APPLIED TO

THE TRAVELING SALESMAN PROBLEM	 A2

6.1. THE TRAVELING SALESMAN PROBLEM........................ 	 42
6.2. NEURAL NETWORK REPRESENTATION FOR TSP 	 43
6.3. SIMULATION RESULTS AND ANALYSIS 	 44

VII. TSP INTERFACE APPLICATION USING GISMAPOBJIECT 51

7.1. GIS AND MAPOBJECT DEFINITION AND INTRODUCTION51
7.2. OBJECTIVES OF USING MAPOBJECT... 52
7.3.	 TSP INTERFACE APPLICATION ...53

VIII. CONCLUSION AND FUTURE RESEARCH ... 56

APPENDIX A

A. 1. TRAVELING SALESMAN PROBLEM WITH N = 4 ...58
A.2. TRAVELING SALESMAN PROBLEM WITH N = 10..63

APPENDIX B

B.I. TSP INTERFACE APPLICATION USING GIS-MAPOaiECT	 77

REFERENCES

vi

LIST OF TABLES

Table
	

Page

1. Characteristics of Artificial Intelligent and Artificial Neural Network.......................11

2. Differences between the Digital Computers and Neural Networks.............................12

3. Comparing both HNUA and MHNUA Models .. 45

4. Average Percentage of Optimization for MHNUA Model...47

5. The Different Characteristics of the DFSA Model versus MI-INUA Model............... 50

MCI

LIST OF FIGURES

Figure	 Page

1. Components of a Natural Neuron...8

2. The Synapse between Neurons...9

3. The Artificial Neuron Model..10

4. A Single-Layer ADALINE Network15

5. A Multi-Layer Adaline (Madaline) Network..16

6. A Backpropagation Network..17

7. A Sigmoid Function...18

8. Different Kinds of Activation Functions...18

9. A Recurrent Neural Network..19

10.A Hopfield Network..20

11.Architecture of a Hopfield Network...20

12.A Kohonen Network. ... 22

13.A 7x5 Kohonen Array Showing the Size of the Adaptation Zone 22

14.Another drawing for the Hopfield Network...26

15.Matrix Representation of the TSP Problem..27

16.The Structure of Hybrid Neural Network..36

17.The Architecture of the Hybrid Neural Network Model...37

18.Possible Combination for Undirected and Directed graph for N=4...........................43

19.A Matrix Array of 4 x 4 Neurons to Represent a Tour...43

20. Show the Two Sets T and T* derived from Mand aCostia c 144

21. The State Space Tree for DFS .. 46

22. DFSA Output Result for N = 10...47

23. Average Percentage of Optimization for MHNUA Model.......................................47

24. Showing the Distance Matrix for N = 5 and its DFS and MHNUA Tour Results.... 48

25. The Different Characteristics of the DFSA Model versus MHNUA Model.............50

VII

LIST OF FIGURES (Continued)

Figure	 Page

26. Showing the Distance Matrix for N = 10 and its DFS and MHNUA Tour Results.. 49

27. GIS Five Components .. 1

28. GIS Geographic Layer Representation... 51

29. TSP User Interface Application Form..51

Viii

LIST OF FIGURES IN APPENDIX A

Figure	 Page

1. DFSA Output Result for 	 = 10..76

84

LIST OF FIGURES IN APPENDIX B

Figure	 Page

1.Login Form .. -77

2. Map Contents Form78

3. TSP Toolbar ... 78

4. Spatial Selection Form ..-79

5. The Selection Cities Highlighted in Yellow Color .. 80

6. Path Menu Form ... -80

7. Multi Cities Form..81

8. Running Mathematica TSP Application .. 81

9. The Traveling Salesman Resultant Tour..82

x

CHAPTER I

Defining the Problem

Most optimization problems have been shown to be NP-complete [3], [8], [10],

[12]. This means that unless P = NP, most of these problems would continue to have a

running time that is exponential in the size of the input. Such optimization problems are

difficult to solve because of the large number of possibilities that any algorithm has to go

through in order to find an optimal solution. One of these problems is the traveling

salesman problem (TSP). In TSP, a salesman must visit n cities. He wishes to make a

tour starting at a particular city, visiting every other city exactly once and finishing at the

city of origin. The main issue here is that the salesman must do so following the shortest

possible tour. Clearly, for an undirected graph with n cities, there are (nl)!12 possible

tours and for directed graphs there are (n-I)! possible tours. This n! function grows very

rapidly as the value of n increases. For example, for n = 60, trying all 59! possible tours

would require more than 300 centuries even with the assistance of a super computer.

Faced with this kind of difficulty, most researchers have proposed heuristic algorithms to

deal with NP-complete problems. These heuristic algorithms do not necessarily lead to

optimal solutions, but usually they produce near-optimal solutions in a reasonable

amount of time. Among these are special purpose heuristics applicable only to the TSP

and general methods useful in a variety of optimization problems, such as Branchand-

Bound (BB) [19], Local Search Algorithms (LSA) [17], Tabu Search (TS) [6], Simulated

Annealing (SA) [20], Elastic Nets (EN) [5], Genetic Algorithms (GA) [17] and Neural

Networks (MN) [1], [2], [4], [12], [15]. For a better visualization of the TSP problem we

built a GIS-MapObject application that uses mapping and GIS components to view and

observe the resultant salesman tour. Such application is used to model our proposed

MHNUA model on a graphical user interface (GIS)so that this model can be used on a

real world streets for traveling salesman problem.

The rest of this thesis is organized as follows: In Chapter II, we introduce the

theory of NP-completeness. In chapter III, we describe the architecture of the neural

network, advantages and disadvantages, properties and capabilities and give some

examples of the most popular neural network models. In chapter IV, we describe the

Hopfield neural network model, energy function and algorithm. In chapter V, we

emphasize a particular recent model called the hybrid neural network model, used to

solve optimization problems and proposed a modifying version of this model. In chapter

VI, we demonstrate our work using the traveling salesman problem and include the

simulation results of our tests. In chapter VII, we integrate the proposed model MI-INUA

to Geographical user interface application using (GIS-MO) to view and observe the

resultant salesman tour. In chapter VIII, we give our conclusion about the proposed

model and the possible future researches.

CHAPTER II

Computational Complexity

This chapter introduces the theory of computational complexity emphasizing the

importance of the traveling salesman problem. Also, this chapter shows how

combinatorial optimization problems suffer from exponential time complexity in the

worst case. Besides, it defines the computational process in both deterministic and non-

deterministic systems. Finally, it introduces the theory of NP-completeness and focuses

on the classes: P, NP, NP-complete and NP-hard.

2.1. Combinatorial Explosion

The traveling salesman problem has some theoretical importance in complexity

theory since it is one of the problems in the NP-Complete class. NP-complete problems

are intractable in the sense that they seem to defy fast solutions. They are also known to

be equivalent to each other, if you knew how to solve one NP-complete problem, you

could solve every other problem in the class.

Recall that the number of possible solutions for the TSP with n cities is greater

than 2 [3]. Such a problem cannot be solved by searching all possible solutions for the

best one, so various approaches like heuristics, rules aid pruning have to be used to try to

reduce the number of options to be tried. In TSP, the complexity seems to explode as the

problem gets bigger that is as the number of possible tours increases [7]. Typically, in

TSP if the number of cities to be visited is of size n, then the possible solutions are of the

order n! or n, that is if you pick a particular city as the first city to be visited, then there

are (n-i) choices for the second city, (n-2) choices for the third, and so on. Because of the

combinatorial nature of these problems the time needed to solve them grows

exponentially and therefore for large size.

3

2.2. Deterministic vs. Non-deterministic Computations

In a deterministic system, the state the system is in exactly determines what state

it is going to be in next. In a deterministic system, if we are told what state the system is

in now, we can simply calculate what state the system will be in in a moment's time, and

at any time in the future. The reader should understand that, in a nondeterministic

system, the state the system will be in in a moment time is still predictable, but where it

will be in the more distant future is almost impossible to predict.

In a non-deterministic computation, the complexity is defined in terms of the

most efficient (with respect to time) accepting computation. Since the program is allowed

to guess an accepting computation it might as well be allowed to guess the most efficient

accepting computation (informal guessing).

2.3. The Theory of NP-Completeness

2.3.1. The Class P

The class P refers to the set of all decision problems whose solutions can be

solved deterministically in polynomial time. Class P admits 0(k) polynomial solutions

on a deterministic computer [7]. For example, finding the largest value in a list of items

takes 0(n) time, a polynomial of order 1. Another example is selection sort which sorts a

list into descending order which runs in 0(n2) time, a polynomial of order 2. These

problems belong to the class P.

What about problems which are not in P? The most dramatic type is the kind of problems

which solution requires exponential amount of time: this is a problem for which the

solution requires time determined by an exponential function of the size of the problem.

One class of exponential problems comprises those search problems that suffer from the

4

combinatorial explosion.

More formally, P is the class of decision problems (Languages) L such that there

is a polynomial time function F(x) where x is a string and F(x) = True if and only if x is

in L.

2.3.2. The Class NP

The class NP consists of all problems which seem to defy polynomial time

solutions on a deterministic computer. However, once you have a guessed solution, you

can check that it is correct in polynomial time. The class NP admits O(x) polynomial

time solutions on non-deterministic computers and O(k) exponential time solutions on

deterministic computers [4]. An example is the TSP problem. The time needed to find the

shortest tour increases exponentially as the number of the city increases. However, you

can test whether a tour is shortest by looking at that tour once, and confirming that it is

the shortest. In conclusion, whether a problem is P or NP depends on the algorithm

chosen to solve it. Thus some NP problems can actually be P problems if we can solve

them in polynomial time.

More formally, NP is the class of decision problems (languages) L such that there

is a polynomial time function F(x, c) where x is a string, c is another string whose size is

polynomial in the size of x, and F(x, c) = true if and only if x is in L.

2.3.3. NP-complete and NP-hard Classes

A problem is NP-hard if it is harder than any other problem in NP. Now, if a NP-

hard problem happens to be in NP then it is called NP-complete. The traveling salesman

problem is also NP-hard [8]. NP problems are not necessarily unsolvable. They only take

extreme amount of time for very large problems on a deterministic computer: for a small

version of the problem, the solution can be very fast. Note that, if you can solve a NIP

complete problem in polynomial time, then P = NP. Also, if you prove that any NP-

complete problem is not solvable in polynomial time then, PANP.

More formally, A decision problem L is said to be NP-hard if, for every problem

L' in NP, L' is polyncmially reducible to L.

A problem A is said to be reducible to another problem B, if and only if, for every

instance x of A, we can construct in polynomial time, another instance F(x) of B such

that a solution to F(x) gives a solution to x and visa versa.

More formally, A decision problem L is said to be NP€omplete if it is both NP-

hard and in NP.

CHAPTER III

Artificial Neural Networks

This chapter provides a general introduction to neural networks. Concepts and

architectures of various neural network models are introduced. Some of the most popular

neural networks are described. These networks are: ADALINE and MADALIINE

networks, Backpropagation networks, Recurrent networks, Hopfield networks and

Kohonen networks. Finally, the properties and capabilities of neural networks are listed

and briefly described.

3.1. Historical Background

A biological neural network is a collection of neurons which are living nerve

cells. For example, the cortex of the brain is a neural network. Somehow, such a network

of neurons can think, feel, learn and remember. In the past, many investigators attempted

to build models to study neural networks. These models fall into two categories:

biological modeling and technological modeling. In biological modeling the goal is to

study the structure and function of the brain in order to explain biological data the brain

on aspects such as behavior and learning. In technological modeling the goal is to study

in order to extract concepts to be used in new computational methodologies [7].

Many tasks which seem simple for us, such as reading a handwritten note or

recognizing a face, are difficult for even the most advanced computer. In an effort to

increase the computer's ability to perform such tasks, programmers began designing

software to act more like the human brain, with its neurons and synaptic connections.

Thus, the field of artificial neural network was born.

7

The objectives of research in Artificial Neural Networks may be paraphrased as

follows. The first objective is to understand how the brain imparts abilities such as

perceptual interpretation, associative recall, and common sense reasoning and learning.

Towards this goal it is necessary to understand how computations are organized and

carried out in the brain. These computations are of different kinds then the formal

manipulation of symbolic expressions (traditional Al). The second objective is to

understand the subclass of neural network models that emphasize computational power

rather than their biological fidelity. To achieve this objective, it is admissible to

incorporate features in a model even if those features are not neurobiologically possible.

3.2. Introducing Neural Networks

3.2.1. Biological or Natural Neural Networks

Much is still unknown about how the brain trains itself to process information.

The human brain is the most complex organ in the human body. It consists of many

(about 1013) single cells, each of which is connected to a number, between 10 and 103, of

other cells in the brain. In the human brain, a typical neuron collects signals from others

through dendrites. The neuron sends out spikes of electrical activity through a long tube-

like fiber known as an axon, which splits into thousands of branches. So a biological

neuron (brain cell) may look something like the figure below.

Figure 3.1: Components of a Natural Neuron

8

At the end of each branch, a structure called a synapse converts the activity from

the axon into electrical effects that inhibit activity in the connected neurons. When a

neuron receives excitatory input that is sufficiently large compared with its inhibitory

input, it sends a spike of electrical activity down its axon [4]. Learning occurs by

changing the effectiveness of the synapses so that the influence of one neuron on another

changes. So synapse connection between biological neuron may look something like the

figure below.

Figure 31: The Synapse between Neurons

3.2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are presented as the computation equivalent

of how we believe the neurons of the human brain work. Similar to a biological neural

network, ANNs consist of many single units, each of which is connected to many other

units using weighted links. The output of these units is passed onto units further on in the

network. Input is similar to the dendrites and output is similar to axon. In ANNs, a unit

takes its input, then performs some mathematical equations on the resultant figure, and

passes the result along the output. Other (one or more) units as part of their input pattern

may then pick up this output. So a typical artificial neuron model may be depicted as

shown in figure below.

9

C body

Figure 3.3: The Artificial Neuron Model

Neural networks are used as a theoretical model for parallel processing in

particular an array of neuron where every element is a single processing unit. Neural

networks are:

I.	 Biological models: Models of what goes on in nerve cells, both as individual cells

and as small groups.

2. Cognitive models: cognitive-science models of how we think.

3. Connectionist models: models systems for computation, based on nerves and

their behavior.

Neural networks have had most success in solving two types of problems: highly

connected problems and classification problems. Connected problems are ones in which

the solution to one part of the problem is intimately connected to the solution to the other

parts. Traveling salesman problem is of this sort, that is the city you visited next depends

on which cities you have visited so far.

Neural networks are of interest to artificial intelligence (Al) for two reasons. First,

they are massively parallel computers, and hence offer advantages of speed in

computation intensive tasks; second, they offer a different approach to computing than

the serial-processing, rule-based algorithmic approach of traditional AT [13]. This has

substantial potential for solving some intractable problems.

10

Artificial neural systems are unlike artificial Intelligence. Artificial intelligence

programs use deductive reasoning to apply known rules to produce outputs. Each new

situation may require another rule to be implemented. The program becomes large and

complicated to address all possible situations. Artificial neural systems however

automatically construct associations based upon the result of known situations. The

characteristics of both the artificial intelligent and artificial neural network are

summarized in the table below.

Artificial Intelligent systems 	 Artificial neural network systems

1. Imitation of the human reasoning 	 1. Imitation of the structure and
process	 function of the brain

2. Sequential information processhg	 2. Parallel information processing

3. Explicit knowledge representation 	 3. Implicit knowledge representation

4. Use of deductive reasoning	 4. Application of inductive reasoning to
the processing of knowledge

5. Learning outside of the systffn	 5. Learning occurs in the system

Table 3.1: Characteristics of Artificial Intelligent and Artificial Neural Network.

Artificial neural networks are unlike digital computers. Neural network offers a

different way to analyze data, and to recognize patterns within that data, then digital

computing methods. Digital computing method work well for problem that can be

characterized. Digital computers are ideal for many applications. They can process data

and track inventories. These applications do not need the special characteristic of neural

network. While artificial neural networks offer a completely different approach to

problem solving. They try to provide a tool that both programs itself and learns on its

own [7]. The difference between digital computers and neural networks are shown in the

figure below.

11

	

Digital Computers	 Neural Networks

1. Deductive Reasoning. We apply	 1. Inductive Reasoning. Given input
known rules to input data to produce	 and output data, we construct the
output.	 rules.

2. Computation is centralized,	 2. Computation is collective,
synchronous, and serial, 	 asynchronous, and parallel.

3. Memory is packed and location 	 3. Memory is distributed, internalized,
addressable,	 and content addressable.

4. Not fault tolerance One transistor 	 4.Fault tolerance, redundancy, and
goes and it no longer works.	 sharing of

responsibilities.

5. Fast. Measured in millions of a	 5. Slow. Measured in thousands of a
second.	 second

6. Exact.	 6.Inexact.

7. Static connectivity. 	 7.Dynamic connectivity.

Table 3.2: Differences between the Digital Computers and Neural Networks

3.3. Architecture of ANN

3.3.1. Advantages

3.3.1.1.	 Parallel Processing

The topology of ANN offers a good model for parallel processing system in

which the nodes or neurons in a neural network operate in parallel. Parallel processing is

of interest to neural network specially for solving computational complexity problems,

which requires great amounts of computer time. If that time can be telescoped into a

parallel-processing solution, a lot of run time can be saved. Also, some problems are

12

better solved by parallel methods. For example, the traveling salesman problem is of

particular interest because of its parallel implementation.

3.3.1.2.	 Distributed Processing

Neural networks are also distributed processors in their own. The key distinction,

which makes some parallel processing applications into distributed processing, is that the

computation is distributed among a number of processors. Therefore, neural networks are

called parallel-distributed processing systems. Clearly, it is not possible to say which

neuron in a network is doing any part of a computation, since an algorithm does not

describe the computation process. Rather, the whole network has an activity, which

represent the progress of the computation, without being able to point to a particular

neuron as performing any basic operation. Thus as well as distributing our program

across a lot of processors, we distribute the basis of the computation itself.

3.3.1.3.	 Connectionism

The connections of neurons in a neural network are based on a biological idea.

That is, neurons are linked by any number of connections to other elements that behave

in a manner similar to nerve cells. In these kinds of networks, the connection carried no

code information. Instead, information is coded according to which connections exist

between elements of the network, not by the messages passing along them or by the

memory states of the elements themselves. This means that it can be hard to decode the

network's output, so networks can be arranged so that a particular connection signals a

specific result or concept. Many neural network simulations could be viewed as programs

for manipulating matrices, the network is being represented as an array of boxes

representing all possible connections between the neurons that are filled with numbers

representing the connections actual strength. This emphasizes the importance of the

connection network, rather than the detail of how you drawa picture of it. Connectionist

networks can come up with solutions to some problems very quickly where conventional

13

computers are very slow. Such problems have huge numbers of solutions, and are highly

interconnected, so a decision about the solution to one part of the problem can affect

many other parts. One good example is the traveling salesman problem.

3.3.2.	 Disadvantages

3.3.2.1.	 Heuristic Algorithms

An algorithm is considered efficient and good if it takes a reasonable amount of

real-time to execute. The running time function is expressed as a function in the size of

the input. In conventional programming languages like C, the programmer first designs

an algorithm to solve the problem. This is then translated into a computer program, thus

enable the computer to solve the problem too. On the other hand, problems developed

for Artificial Intelligence (AT) do not put emphasis on algorithms. One class of problems

solved by neural networks is combinatorial optimization problems, where most

algorithms require exponential amount of time for large instances of the problem. This

means that, for small problems the algorithm will function very fast. But for larger

problems the algorithm would function very slowly as to be wholly impractical. Heuristic

algorithms are therefore the only practical substitutes even if they occasionally give the

wrong result.

Although this technique does not rely on algorithmic methods in quite the same as

conventional programming, this is not to say that algorithms are not used at all. In

search-based problems, the program has to look at a large number of different ways of

solving the problem, algorithms are used to make sure that all possible ways of solving

the problem are analyzed systematically and efficiently until the answer is found. One

type of ANINs, which have been used to solve optimization problems, is called Hopfield

Networks. As a result, neural networks showed that it can be used in a range of

optimization problems, and able to find a good near-optimal solution in a few steps [2],

[15].

14

3.4. Some Examples of the Most Popular Neural Networks

3.4.1. Supervised Learning

Supervised learning is a process of training a neural network by giving it

examples of the task we want it to learn. Such as, learning with a teacher. In supervised

training the network is given both input data and desired output data (correct answers as

examples). After each trial, the network compares its own output with the right answers

(desired one), correct any differences that is the errors are then propgated back through

the system, causing the system to adjust the weight, and tries again, until the output error

reaches an acceptable level.

3.4.1.1.	 ADALINE Network

The Adaptive Linear Neuron (ADALINE) is considered one of the earliest and

simplest neural networks. It was the first neural network to be applied to a real world

problem. Basically, it is a single-layer backpropagation network (Backpropagation is an

abbreviation for the backward propagation of error). It can be modeled as shown in the

figure below:

Figure 3.4: A Single-Layer ADALINE Network

ADALINE network consists of three layers, the first layer is the input layer which

received inputs from outside. The second layer is a single hidden layer called the Adaline

15

layer which received multiple input from the input layer and transmit them to the output

layer. The output layer a single processing element that receives multiple input, that is a

single artificial neuron that takes its inputs from many other similar units. ADALINE

assumes a linear relationship between input and output. The inputs to the unit take

bipolar values (0 &1) and include a bias. A bias is simply a dummy input unit whose

output value is always 1. The output of an Adaline unit is usually a bipolar value too.

As shown in the figure above that, several Adaline units arrange in a single layer,

each connected to a layer of input units. This is called a single-layer Adaline. But when

Adaline units takes their input from other Adaline units, they are called multi-layer

Adaline networks, Madaline as shown in figure below.

Figure 3.5: A Multi-Layer Adaline (Madaline) Network

3.4.1.2.	 Backpropagation Network

As mentioned in the previous section, an ADALINE is a single-layer

backpropagation network. However, backpropagaion networks are multi-layer networks;

i.e. they are typically organized in layers. Layers are made up of a number of

interconnected nodes that contain an activation function. The network consists of an

input layer, a number of hidden layers and an output layer. The outputs of each node in a

layer are connected to the inputs of all of the nodes in the subsequent layer. A

Backpropagation Network is shown in figure below

16

ligure i.b: A Iiackpropagatlon INetworK

Most artificial neural networks contain some form of learning rule that modifies

the weights of the connections according to the input patterns that it is presented with. In

a sense, artificial neural networks learn by example, as do their biological counterparts; a

child learns to recognize dogs from examples of dogs. Although there are many different

kinds of learning rules used by neural networks, this section is concerned only with one

named the delta rule [14]. With the delta rule, as with other types of backpropagation

rules, learning is a supervised process that occurs with each cycle (i.e. each time the

network is presented with a new input pattern) through a forward activation flow of

outputs, and the backwards error propagation of weight adjustments. Clearly, with

backpropagation algorithm a set of input and corresponding output data is collected that

the network is needed to learn. An input pattern is applied to the network and an output is

generated. This output is compared to the corresponding target output and an error is

produced. The error is then propagated back through the network, from output to input,

and the network weights are adjusted in such a way as to minimize a cost function,

typically the sum of the errors squared. The procedure is repeated through all the data in

the training set and numerous passes of the complete training data set are usually

necessary before the cost function is reduced to a sufficient value.

17

Therefore, the process of training a neural network involves adjusting the input

weights on each neuron such that the output of the network is consistent with the desired

output. Within each hidden layer node, there is an activation function that polarizes

network activity and helps stabilize it. In backpropagation network, the activation

function chosen is the sigmoid function [14], which compresses the output value into the

range between 0 and 1. A typical example is shown in the figure below.

r
•1

0	 X

V

Figure 3.7: A Sigmoid Function

We note that various types of activation functions are found, which are shown h the

figure below.

:;

	 +1

HARD LIMITER THRESHOLD	 TANH	 SIGMOID

Figure 3.8: Different Kinds of Activation Functions

Once a neural network is trained to a satisfactory level it may be used as an

analytical tool on other data. To do this, the user no longer specifies any training runs and

instead allows the network to work in forward propagation mode only. New inputs are

presented to the input pattern where they filter into and are processed by the middle

layers as though training were taking place, however, at this point the output is retained

and no backpropagation occurs. The output of a forward propagation run is the predicted

18

model for the data that can then be used for further analysis and interpretation.

Therefore, backpropagation networks learn to predict future activities from the historical

data collection.

3.4.1.3.	 Recurrent Network

Recurrent neural networks are called such because every neuron in the hidden

layer has feedback paths from its outputs to every other unit in the hidden layer except

itself, therefore, they have feedback paths from their outputs back sent to every unit in

the network except the original. This means that after applying input, the output is

calculated and then turned back to modify the input. The output is then recalculated. This

process repeats itself successively until the network reaches a stable state. such networks

actually receive two types of input: One is from the current incoming data and the other

from the state information at the preceding time that is fed back to the network. This

gives recurrent network the capability of integrating temporal information dating back to

the starting point using a limited number of neurons. A recurrent network is shown in the

figure below.

Figure 3.9: A Recurrent Neural Network

3.4.1.4.	 Hopfield Networks

Hopfield networks are commonly used for solving optimization problems. They

19

consist of two layers: an input layer and a Hopfield layer. Each node in the input layer is

directly connected to only one node in the Hopfield layer. The nodes in the latter layer

are neuron models with either hard limiting [4] or sigmoid activation functions [14]. The

output of these nodes are weighted and fed back to the inputs of all of the other nodes. A

Hopfield network is shown in the figure below.

Figure 3.10: A Hopileld Network

The topology of the Hopfield network differs from other networks mentioned

previously, whereby every unit is connected to every other unit except itself. In addition,

the connections are bi-directional (information flows in both directions along them), and

symmetric, there is a weight assigned to each connection which is applied to data moving

in either direction. Some other drawings show a Hopfield network as a complete

connected graph, as shown in the figure below.

Figure 3.11: Architecture of a Hopfield Network

20

Hopfield Networks are useful both for auto-association and for optimization tasks

(such as the combinatorial best route for a traveling salesman problem [9]). By encoding

each hypothesis as a unit and encoding constraint between hypotheses by weights.

Hopfield network is a recurrent network where stability is the major issue.

3.4.2.	 Unsupervised Learning

In Unsupervised learning, the network is given input data but no desired output

data; instead, after each trial or series of trials it is given a grade or performance score

that tells it how well it is doing. Kohonen neural networks use this type of learning.

Supervised learning process is done to the network by changing the state of connectivity.

Some involve adding and retrieving connection as well as changing their weight values.

3.4.2.1.	 Kohonen Network

The Kohonen network has self-organizing properties and is capable of

recognition. Application examples of the Kohonen network include recognition of

images and speech signals. The main distinguishing feature of this network, from

previous discussed networks is that no output data is required for training. The Kohonen

Network consists of a single Kohonen layer of nodes plus an input layer. Each input is

connected to each and every neuron on the Kohonen layer which are organized in a two

dimensional grid. A typical example of a Kohonen network with 2 input and 25 neurons

on the Kohonen layer is shown in the figure below.

21

/O/Q/O/O/O/
O/O/©/O/O ohor

Layer

Input
IMEME
	

Layer

Figure 3.12: A Kohonen Network

Kohonen network is constructed of a fully interconnected array of neurons i.e. the

output of each neuron is an input to all neurons, including itself and each neuron receives

the input pattern.

Applying an input pattern to the network, consisting of a set of continuous-data

and the output of each neuron is computed. The neurons are then allowed to interact with

each other and the neuron that has the largest output is found. This neuron and its

neighbor neurons (adaptive zone see figure below), within a certain distance, are allowed

to adjust their weights to become more responsive to the particular input. A Kohonen

network is shown in the figure below.

Figure 3.13: A 7x5 Kohonen Array Showing the Size of the Adaptation Zone

22

The size of the Adaptable set starts with a big enough size and decreases as the

number of times the network has gone through all the data patterns increases. Within the

Adaptable set, the amount by which the weights of each node changedepends on how far

it is from the winning node. The closer the neurons are to the winning node, the bigger

the amount by which their weights change.

3.5.	 Properties and Capabilities

We conclude this chapter by listing the properties and capabilities of a neural

network in general.

3.5.1. Nonlinearity

A neural network is made up of an interconnection of neurons, that is it is itself

nonlinear. Moreover, this nonlinearity property is special kind in the sense that it is

distributed through the network. Nonlinearity is a highly important property.

3.5.2. Supervised Learning (Input-Output Mapping)

A popular kind of learning is called supervised learning which involves the

modification of the weights of a neural network by applying a set of training samples or

task examples. Each example consists of a unique input and its desired output. The

network is given the examples picked at random from the set, and the weights of the

network are modified so as to minimize the difference between the desired output and the

actual output of the network produced by the input. The training of the network is

repeated for many examples in the set until the network reaches a steady state. Thus, the

network learns from the examples by constructing an input-output mapping for the

problem in hand.

23

3.5.3. Adaptivity

Neural networks have a built-in capability to adapt their weights to changes in the

environment. In particular, a neural network trained to operate in a specific environment

can be easily retrained to deal with minor changes in the operating environmental

conditions. As a general rule, it may be said that the more adaptive we make a system in

a properly designed fashion, assuming the adaptive system is stable, the more robust its

performance will be. But adaptivity does not always lead to robustness; indeed, it may do

the very opposite. For example, an adaptive system with short time constants may change

rapidly and therefore tend to respond to spurious disturbances, causing degradation in

system performance. The benefit of adaptive system is that the time constants of the

system should be long enough for the system to ignore disturbances and yet short enough

to respond to meaningful changes in the environment.

3.5.4. Fault Tolerance

A neural network has the potential to be inherently fault tolerant in the sense that

its performance is degraded gracefully under adverse operation conditions. For example,

if a neuron or its connecting links are damaged, the damage has to be extensive before

the overall response of the network is degraded seriously. Thus a neural network exhibits

a graceful degradation in performance rather than failure.

3.5.5. VLSI Implementability

The parallel nature of a neural network makes it potentially fast for the

computation of certain tasks. This feature also makes a neural network suited for

implementation using very-large-scale-integrated technology. In other words, it captures

truly complex behavior that makes it possible to use a neural network as a tool for real-

time applications involving pattern recognition, signal processing and control.

24

CHAPTER IV

Hopfield Networks for Solving Optimization

Problems

The research in neural networks as a naturally parallel approach to artificial

intelligence, showed that they could be used to find near-optimal solutions to

optimization problems. An optimization problem can be defined as a computational

problem in which the object is to find the best of all possible solutions. More formally the

problem asks to find a solution in the feasible region which has the minimum or

maximum value of the objective function.

Combinatorial optimization problems are divided into classes according to the

computational time needed to solve them. The most important and difficult class of

combinatorial problems is NP-complete problems. For NP-complete problems, no

algorithm is known which provides an exact solution to the problem in a computational

time which is a polynomial in the size of the problem. Recently, a new approach has

arisen to solve such problems efficiently and almost in real-time by applying neural

networks. Although the application of neural networks to some NP-complete problems is

still controversial, we think that an algorithm solves a specified combinatorial

optimization problem successfully if it is able to find a good near-optimal solution - not

necessarily optimal - in a reasonable amount of time.

4.1. Hopfield Network

Hopfield network is a simple artificial network and considered one of the first

types of neural networks. The Hopfield neural network has no special input or output

neurons, but all are both input and output, and all are connected to all others in both

25

directions (with equal weights in the two directions). Input is applied simultaneously to

all neurons which then output to each other and the process continues until a stable state

is reached, which represents the network output. Hopfield neural networks are recurrent

because of the dynamical feedback mechanism of changing the input as a function of the

output of the network. A network is stable if after successive iterations the output change

and become smaller and smaller until it reaches equilibrium state where all the outputs

will become constant in the successive iterations.

The Hopfield network works with input patterns which are vectors of real

numbers or binary vectors. In all cases, the units of the Hopfield network have states,

which described by number belonging to the set pattern values. In binary case the state

are either 1 or —1. In the continuous case, the states are numbers of [a,b]. Patterns are

entered to the network by setting the states of each unit with the its appropriate values.

The Hopfield network is not trained in the same way as backpropagation. Instead,

a set of exemplar patterns is given to the network to initialize the weights of the network.

Once this is done, any pattern can be presented to the network, which will respond by

displaying the exemplar pattern that is similar to the input pattern. The output pattern can

be read from the network by reading the states of the units in the order determined by the

mapping of the components of the input vector to the units. A Hopfield network is shown

in the figure below.

Figure 4.1: Another drawing for the Hopfield Network

26

00100
10000

[X}= 00010
01000
00001

Hopfield neural networks have been applied to various optimization problems,

many of which are NP-complete. The realization of the traveling salesman problem in

Hopfield neural networks consists of associating a neuron with the distance between each

pair of cities. Consider a matrix array of N x N neurons to represent a tour taken to visit

N cities. The N2 neurons are grouped into N groups of N neurons and there are N!

possible solutions. Each group of N neurons is used to represent the position in the tour

of a particular city. Each row corresponds to a city and each column corresponds to a

position in the tour. The state of neuron means the Xth city visited in the yth order. If

it is set to one, the city is really visited in that order, if it is set to zero, then it is not

visited in that order. A network can be proven to be stable if the synaptic matrix is

symmetric with zeros on its main diagonal, that means, d =	 and d 1 0.

^)"c

Figure 4.2: Matrix Representation of the TSP Problem

The figure above is an example where the city B is visited first, followed by D, A,

C and E. The first group of the five neurons corresponds to the city B [10 0 0 0] means B

is the first city to be visited. The second group corresponds to the city D [0 1 0 0 0]

means D is the second city to be visited and so on. The matrix shown in figure 14 should

represent the neuron outputs at the end of the optimization process. If distance between

cities B and D is dB,D, then the total path length of the tour would be dB,D + dD,A + dA,c +

dc,E + dE,B . If this tour is optimal, this means that the total path length of the tour is

minimal.

27

4.2. Energy Function

To enable the Hopfield network to compute a solution to a problem, an energy

function must be defined. The idea is to encode each hypothesis as a neuron and to

encode constraints between hypothesis as weights. Positive weights represent supporting

relationships, whereas negative weights represent incompatible relationships. As the

Hopfield network reach a stable state, this state reflects which hypothesis is true or false

under the constraints. Many combinatorial optimization problems can be mapped onto

neural networks by constructing an energy function and then transforming the problem of

their minimization into associated systems of differential equations. In general such

energy function can be written in the form of two terms:

Energy Function = Global Constraints + Cost.

Our goal is to minimize the Cost function and simultaneously maximize the

number of Global Constraints that are satisfied. The energy function amstructed from the

traveling salesman problem constraints is:

Es (TSP) = E1 +E2 +E3 + Cost

The first three terms of the energy function represent the constraints. The first

term E 1 means that each row contains no more than a single I. The second term E2 means

that each column contains no more than a single 1. The third term E 3 means that there

should be exactly n is in the array. The last term is the cost function which measures the

total distance of the tour which is to be minimized. Mathematically the computation

energy function can often be expressed as [9]:

B	 +-c(
21L-'

J#1	 xy#x	 I)

(v +1 +v,1_1)

X y#x I

28

Where d,, is the distance between cities x and y, and A, B, C, and D are constant values.

It is clear that E is zero if there is no more than one entry per row or column of v, This

is to say that no city can be visited more than once, no two cities can be visited at the

same time, and the tour is a valid tour. v1 is the activation level of the unit denoting that

city x is the ith city in the tour. In solving an optimization problem, this energy function is

compared with another function built from problem constraints in order to determine the

network weights.

The difficulty in using a neural network to optimize an energy function is that the

iteration procedure may often be trapped into local minimum, which usually corresponds

to an invalid solution. Moreover, the values assigned to the parameters of an energy

function affect the convergence rate of iterations.

4.3. Review of the Main Algorithm

Step 1: Write an energy function based on the problem constraints

Step2: Compare the above energy function with the following energy Function of the
Hopfield net to determine the weights

Step3: Calculate the Activation

a. At time = 0

O (0) = a randomized small value

Where O (t) is the activation level of unit j at time t.

b. At time = t (t> 0),

O (t-i-l)=f (>wo (t)+11)

Where the function F is a hard-limiting function:

f(x) 1	 (x>j)

29

	

f(x)-1(0)	 (x<j)

	

f(x)0j(t)	 (x=j)

c. Repeat step 3.2 until equilibrium. The activation levels of nodes remain
unchanged with further iteration. Then, the pattern of activation upon
equilibrium represents the optimized solution.

4.4.	 Results

There are three major difficulties of doing optimization problems by Hopfield

neural network. These difficulties are 1) The tendency of the energy function to stuck

into local minima which is an advantage for association but disadvantageous for

optimization.

Deeper minima correspond to shorter tours and global minimum to the shortest tour 2)

No systematic approach to formulate energy function to solve optimization problems. 3)

Not certain about whether a global minimum (optimal solution) can really be achieved

because it has a limited network capacity. For a network of Nbinary nodes, the capacity

limit is of the order N rather that 4) Difficulties in finding suitable values of the

parameters A, B, C and D. Setting A, B, C and D to too small values has its effects on the

cost function and usually gives invalid tours. On the other hand, makingA, B, C and D to

too large values causes the parameters to become so great that the network will converge

to any feasible solution regardless of its total length.

As a consequence, it will not be easy for the network to find a valid solution since

it frequently faces such problems. The convergence of the network to an acceptable tour

is difficult to reach and that this possibility decreases rapidly with the increase of number

of cities (for a 10 cities problem, after 1000 iterations of the network an acceptable tour

was obtained). As has been demonstrated by several researches the performance of the

Hopfield neural network for TSP is rather slow and very controversial [10], [15]. They

tried to improve the algorithm in three ways: by changing the values of the energy

parameters, and changing the initial conditions. Even with all this changes the final result

30

was not better than the original one. A new hybrid neural network model discussed in

the next chapter shed a new light on the TSP problem.

31

CHAPTER V

A Hybrid Neural Network Model for Solving

Optimization Problems

Neural networks have been used to solve a wide variety of optimization problems.

Hopfield and Tank's work on solving optimization problems by neural network appeared

in [9]. Moreover, their algorithm produced a long list of NP-complete problem that takes

deterministic time to be solved. Therefore, our aim is to find out ways to solve these

complex problems to produce a feasible solution in a lesser time. Sun and Fu introduced

a recent model of neural networks, named the Hybrid Neural Network Model (I-INN) for

solving optimization problem [15]. The HNN model contains two sub-networks: the

constraints-network to satisfy the constraints, and the goal-network to optimize the goal

function. These two sub-networks are put to work together to guarantee fast convergence

of the constraints sub-network; where the main algorithm called the Hybrid Network

Updating Algorithm (HNUA) is used to drive the FINN model. The best thing about the

HNUA is that it reaches a feasible solution very rapidly, but it guarantees very little in

terms of the quality of the generated solution. So ye propose a modifying version of the

NHUA (MI-INUA) that is able to produce a more feasible solution (optimal or near-

optimal) in a reasonable amount of time.

5.1. Optimization Problem Representation and Transformation Method

In [15], Sun and Fu produce a systematic transformation method to construct an

energy function to represent the traveling salesman problem. The systematic

transformation method contains three steps: define the problem as logical expressions;

mapping these logical expressions into a set of algebraic equations; and formulating an

energy function from these algebraic equations.

32

5.1.1. From Problem Definition to Logical Expressions

Since most optimization problems contain two parts: constraint and cost criteria.

To achieve an optimal solution, constraints must be satisfied and the cost criteria must be

minimized. For example, in the traveling salesman problem, the logical symbol C - or

its complement - is used to represent whether or not a city x is being visited at time j
during a tour. The algebraic symbol d,,y is used to represent the distance between cities x

and y. The constraints and the cost criteria of a TSP are represented as follows:

Constraint 1: Each city must be visited only once.

This constraint can be expressed by the following set of logical equations:

A. At least one Ck is true,

C. v C 2 v C3 v ... v C,N = True,

B. No more than one C1k is true,

C,1 A C,2 = False, C, A C,3 = False,..., C,1 A C,N = False,

C,2 A C,3 = False,... C,2 A CIN = False— ., C,,_, A C,N = False.

Constraint 2: A salesman arrives in at least one and no more than one city at any time j

during the tour. Similarly this constraint can be expressed by the following set of logical

equations:

A. At least one Ckj is true,

CII V C2 J V C3J V ... VCNJ= True,

B. No more than one C kj is true,

C1 3 A C2 = False, C j A C3 = False..... 13 A CN. = False,

C2J A C3 = False,..., C2 A Ci = False, CNIJ A CN, = False.

33

Cost criteria: To find the shortest tour length. The minimization of cost criteria can be

represented by the following logical expression:

Mini	 (C1 A(C ,1+1 vC 3, , _1))]

x,y i

5.1.2. From Logical Expressions to Algebraic Equations

Mapping logical expressions into algebraic equations without changing their

semantic meaning is the second step of the transformation method. The mapping method

works as follows: Replace each instance of

a. True by 1

b. False by 0

c. Logical variable C ij by qj

d. A NOT operator by subtraction

e. An AND operator by multiplication.

When OR operator is needed, it can be derived by combining the NOT and AND

operators:

[(XA y)=l—((l--x)A(l—y))]

Based on this mapping method, the logical expressions of a TSP can be transformed into

the following algebraic equation:

Constraint 1: Each city must be visited only once.

(1—c11)(1—c12)(1—c13) ... (l—c1)O,

iIi2 = 0C11 C13 = O, ... , C,IC!N = 01

Ci2 C6 = O, ... , C12 C,J,, = O, ... CINICIN - 0.

34

Constraint 2: A salesman arrives in at least one and no more than one city at any time j

during the tour.

(l—clJ)(l—c2J)(l—c3J) ... (l—cNJ)=O,

c1 c2 = 0,c11c, = 0,...,c11c	 0,Ni

C2 C3 = O, ... , C2JC J O ,.. .CN_IJ CNJ =

Cost criteria: To find the shortest tour length.

N N
Cost = I I dc (c +1 + c_ 1 - c1c yil)

x,y	 I

Under constraints 1 and 2, the space of feasible solutions can be represented by a

binary value matrix [C]NXN. In matrix [C], there can be only one 1 (true) in each row and

each column; all other variables must be 0 (false), so that constraints 1 and 2 are satisfied

and 3B13c 1 =0; otherwise it is different than zero [15].

5.1.3. Formulating an Energy Function from Algebraic Equation

A squared error function E can be formulated from the constraints of the TSP:

E5 =	 (t 1 —a1)2

where t 1 represents the target value, ai represents the iteration value of each algebraic

expression of the constraints, and N' is the total number of algebraic equations of

constraints. An energy function B can be obtained by combining the cost criteria and the

error function as follows:

E=E +Cost

=	 cxicxj	 + fi(C - n)2

Cost =Z dxycxi
(c ,1+1 +c,1_1)

X y*x I

35

where A, B and C are the parameters. When the constraints are satisfied (i.e., E = 0)

and cost criteria is minimized, the shortest tour length of the TSP is obtained. Choosing

improper values for the parameters in the energy function slows down the convergence

speed and results in invalid solutions.

5.2. The Hybrid Model

Many algorithms have been proposed for solving optimization problems. Most

algorithms often give invalid solutions or need a large amount of computation time to

reach a feasible solution. Sun and Fu designed a hybrid neural network (HNN) model

that finds an optimal (or near optimal) solution within a short computation time [15]. The

architecture of the HNN model has two sub-networks: the constraint-network and the

goal-network as shown in the figure below.

Figure 5.1: The Structure of Hybrid Neural Network

The constraint network models the constraints of the problem. For each neuron it

computes the gradient value (i.e., Ax 1 , Ax2,.. .,Ax). Therefore, we can say that the

constraint network contains the updating values. By using these gradient value Ax 1 's, the

goal network computes the direction of convergence during each iteration for minimizing

36

minimizing the cost criteria. The x 1's are the problem variables and assume values 0 or

1 only; that is to say false or true, respectively. Each neuron x 1 in the constraint network

computes the updating value Ax. To minimize the squared error function E Newton

method is used to update the state of the neural at each iteration. The updating value Ax1

is defined as follows:

aE

Ax.= ax,
a2E

ax,

All updating values (i.e., Ax1, Ax2 ,.. .,Axn) are passed to the goal sub-network

where the MAX-MIN portion determines which neuron (e.g.,) is to be updated -

corresponds to maximum Ax1 The Goal sub-network computes acostlax 1 . Both the Ax1

and acostlax i are sent to the MAX-MIN network to determine which one among the x1

(with maximum Ax 1) is to be updated - corresponds to optimum acostJax. The output of

the MAX-MIN network enables the selector module to output the corresponding

updating value Ax1 which will be passed back to the input neurons to update their states.

A more detailed figure is shown below.

Selector
	 Constraint Network

MAX-MIN	
Goal Network

: Ocost

Ox
initial input

and final output

Figure 5.2: The Architecture of the Hybrid Neural Netwwk Model

37

That is, one of the x , say x1, is chosen at random and passed to the selector. The selector

passes the corresponding iXx 1 to the network input to update the value of N. During

iteration, x 1 assumes the value x 1 + Axj . This process is repeatedly executed until the

gradient of E is equal to zero; that is the constraints are satisfied (i.e., A= 0).

5.3. The Hybrid Network Updating Algorithm

Sun and Fu formulate an energy function similar to Hopfield and Tank for the TSP

except that they forced the entries on each row and each column of matrix c,.1to be at

most equals to 1. Sun and Fu defined the energy functionas follows:

E = E 5 + Cost

E, =

X I j*i	 i	 x y*x

Cost = I Z Z dxy cxi (c 11 + c,1 _ 1 -
X y#x I

Notice the absence of any constraints (i.e., A, B, C, ...) in the expression E it is shown in

[15] that the function E monotonically converges to a stable state; because E has non-

zero second partial derivative over a set of order two vaiab1es, that is 3E/3c :^ 0. When

= 0 then function E reaches a stable state and all the constraints are satisfied.

Procedure for Hybrid Network Updating Algorithm (HNUA)

[1] Use the Newton method to minimize the square error function Eby computing
the updating value Ax 1 as follows:

ôE

Ax.
	 ox.

Ox1

38

[2] For each variable x1 compute the partial derivation of the cost function as follows:

PartialDerivative(x 1) =
aCost

[3] Determine the maximum values Ac * of ILiJ's:

L\c*=max({I AcXi I,1:!^x,i::^n}),

where n is the number of cities, then form a set fof variable cyj that corresponds to the
maximum updating value c*, i.e.,

]T={c such that I A cyj =Ac*,Vy,j}.

[4] Among the cyj 's in the setf, select a variable cv k 	corresponds to the
minimum value of the partial derivation of the Cost function.

	

[
Vc €

acost
,	 F

	

C,k =m in

[]

Update C%yk by adding the updating value obtained in step [1].

Cl k = C,Vk + tC,Vk

[5] Test the gradient of function E.If the gradient of F is equal to zero, then the E
function converges to a stable state and the algorithm terminate.

I
= 0(1 ^ x, I ^ n)]

ôc,

Otherwise, return to step [1] for next iteration.

54. Modification of Hybrid Neural Network Updating Algorithm

We observe from the results of HNUA algorithm that the constraints are satisfied

very rapidly (the number of iterations is equal to n-i) while the generated solutions

guarantee very little in terms of their quality. In step [15], of the HNUA algorithm, we

39

T* {c 11k	 'Cos'
	 *

}

=	 ACost

Step 4b: For each c wk in 1* do the followings:

Updated c wk by adding the updated value obtained in step [1]:

C Vk = CWk + L\CWk

Compute Costc wk

(acost (1^xi^n)JCostc = maxi

Step 4c: Choose and update the c wk which corresponds to minimum Costc vk.

41

CHAPTER VI

The Hybrid Neural Network Model Applied to

the Traveling Salesman Problem

This chapter defines the traveling salesman problem (TSP). TSP is used as a good

example to test and compare the solutions generated by HNUA, MHNUA and DFSA

applications. A M}{NUA application is developed to implement the MHNUA algorithm

and another application called DSFA application is designed and developed to implement

the depth first search algorithm. After we developed these applications, we observed that

MHNUA produced efficient (optimal or near-optimal) solutions in a reasonable amount

of time. All developed applications are integrated with geographic information system

(GIS) to provide a single interface for calculating the length between cities and

visualizing the resultant tour graphically.

6.1. The Traveling Salesman Problem

The traveling salesman problem (TSP) occupies a central place among the NP-

complete combinatorial optimization problems and of its parallel implementation.

Therefore, TSP is constitutes a good example to simulate the MRNTJA model. TSP

describes the case of a salesman who wishes to visit N cities, visiting each city exactly

once and finishing at the city he starts from. There is a cost to travel from city I to city J.

Besides, the salesman wishes to make the tour whose total cost is minimum,, where the

total cost is the sum of the individual costs along the edges of the tour. For an undirected

graph with N cities, there are (N-1)!/2 possible tours and for directed graphs there are (N-

1)! possible tours. This N! function grows very rapidly as the value of N increases. An

example which shows all possible combination tours for N = 4 are shown in the figure

below.

42

3X08
Six possible combinations for undirected graph with N=4

cxx

Three possible combinations for directed graph with N = 4

Figure 6.1: Possible Combination for Undirected and Directed graph for N=4

6.2. Neural Network Representation for TSP

Consider a matrix array of N x N neurons to represent a tour taken to visit N

cities. The N2 neurons are grouped into N groups of N neurons. Each group of N neurons

is used to represent the position in the tour of a particular city. Each row corresponds to a

city and each column corresponds to a position in the tour. For example, in a four city

problem if the cities are labels A, B, C, and D, then a possible tour starting at C would be

C -> D - B - A - C. If the distance between cities x any y is cj then the total path

length of the tour would be d 1 = dcD + dDB + dBA + dAc. For this tour to be optimal, the

total path length d 1 of the tour should be minimal. The neuron output at the end of the

optimization process would give a matrix as shown in figure below.

1234
A0001

d= B 0 0 1 0

c1000

D0100
Tour derived from matrix dis: C -D -B -IA 9'C

Figure 6.2: A Matrix Array of 4 x 4 Neurons to Represent a Tour

43

The first group of the tour neurons corresponds to A [O 0 0 1]. This means A is

the fourth city to be visited. The second group corresponds to city B [0 0 1 0] which

means B is the third city to be visited and so on.

6.3.	 Simulation Results and Analysis

6.3.1. HNUA Model Compared to MHNUA Model

A HNUA application is created to implement the hybrid network updating

algorithm. In addition, a MHNUA application is also developed to implement the

proposed modification on HNTJA discussed previously in chapter V. After we developed

both applications and run then for different number of cities ranging between 4 and 25,

we observed that MHNTJA produced better solutions (optimal or near-optimal) than

HNUA. While HNTJA results where not as feasible in terms of quality, they always

required lesser time. As describe in the previous chapter, HNUA uses a basic greedy-like

technique in its drive to maximize the goal function. MHNUA takes that greedy

technique a step further so that the goal function is better served.

We recall that MHNLJA computes the cost of all candidates F found at each

iteration and select the one with smallest cost instead of a mere random selection used by

HNTJA. The steps used in computing both Ac, 1 and aCost/oc1 and the set of maximum

Ac, 1 and minimum aCost/ac 1 are shown in the figure below.

44

	

103427	 10.5.5.5.51	 1000001

	

304631	 .511111 3Cost 	030031

	

d=144058I	 & xl.=l.511111	 =1040041

	

I	 I

	

265061	 1.511111	 1020021

	

t73860J	 L51	 iii)	 I.,,07007)

F=maxfr1}={c22,c23,c24,c2s,c32,c33,c34,c3s,c42,c43,c,c4s,cs2,cs3,cs4,css}

*	 II''ostl
F min	 ={c23,c24,c33,c34,c43,c,c53,c54}

(A.'xj J

Figure 6.3: Show the Two Sets T and T* derived from Ac 1 and Cost/ô c1

A full example for N = 4 is included in appendix A. 1 and another for N 10 is

included in appendix A.2. Obviously, MHNIJA which takes longer time to run produces

a better or near optimal solution compared to HNIJA. The length of the tours produced

by both MHNUA and I{NUA models for different number of cities are shown in the table

below.

	

Number of	 HNUA	 MHNUA

	

Cities	 Tour Length	 Tour Length

	

5	 17	 19

	

10	 39	 32

	

15	 55	 46

	

20	 81	 72

	

25	 96	 85

'table 6.1: (ompar1ng DOfl HINUA anu murin uA iviuuei.

6.3.2. DFS Algorithm Compared to MHNUA Model

In addition to the applications developed for HNUA and MHNUA, a DFSA

application coded in C++ to solve the TSP problem using the depth first search algorithm

(DFS) is designed. DFS is a search technique where by the search begins at a particular

45

city and then proceeds as deep as possible in the state space tree for the problem until it

reaches a dead end. At that time the algorithm backs up and explore another path. The

DFS traversal of the state space tree for a TSP with four cities (A, B, C, and D) is shown

in the figure below.

(1) A

(2) B	 (9) C	 (16)D

A A(3)A (10) B(17)B

(4)	 (7)	 (11)D'	 (14) B (18)C	 (21)B

(5)A	 (8)A (12) A	 (15)A (19)A	 (22)A

Figure 6.4: The State Space Tree for DFS

DFS is an important technique to solve TSP because it continues searching in the

forward (deeper) direction as long as possible. Edges are explored out of the most

recently discovered vertex v that still has unexplored edges leaving it. When all of v's

edges have been explored, the search backtracks to explore edges leaving the vertex from

which v was discovered. This process continues until we have discovered all the vertices

that are reachable from the original source vertex. If any vertices remain, one of them is

selected as a new source and the search is repeated from that source. This entire process

is repeated until all vertices are discovered. Applying such technique on TSP by

generating a tree-like structure of all the different permutations we can cover. We will go

deep in the tree calculating the distance we have covered at each step. If the distance is

still less than the minimum distance already found, we will go deeper into the tree, else

we will drop that tour.

46

We conclude that the DFSA application is an optimal method that works well

with instances of the problem of small size. However, for large number of cities, it

becomes non-practical (for e.g., it requires about 300 centuries with the assistance of a

super computer to solve an instance of N = 60). An example for the output results

produced by a DFSA application for N = 10 is shown in the figure below.

Figure 6.5: DFSA Output Result for N = 10

For the TSP, we tested 5, 10, 15, 20, 25 city problems with randomly chosen city

coordinates. For each case (case 1: N 5, case2: N 10 and so on) about 10 different city

coordinate are tested on both DFSA and MHNUA applications. Comparing both output

results, we were able to calculate the averaW percentage optimization and validation for

the proposed model. The table below shows the average quality of the MHNUA

generated solutions in comparison with the optimal solutions generated by the DFSA.

47

N	 Average of
(Number of	 Percentage Optimization

cities)

5	 100%
10	 89-80%
15	 88-79%
20	 79-70%
25	 70-67%

Table 6.2: Average Percentage of Optimization for MIINUA Model

Also, we observed that the DFSA running time for small number of cities

between 5 and 15 is much faster than MHNUA. While for N between 15 and 20 the

running times get closer to each other and finally for N between 20 and 25 MHNUA, it

was able to produce a faster solution than DFSA. We conclude that the break even

number of cities is around 15. Two examples forthe TSP problem showing the path and

length using both technique DFS and MHNUA are shown in the successive figures

below.

A
A	 0
B	 3
C	 4

D	 2

E	 7

B C

3	 4

0	 4

4	 0

6	 5

3	 8

D	 E

2	 7

6	 3
5	 8
0	 6
6	 0

DFS	 -	 4+4+3+6+2 = 19

) Optimal Path

MHNUA 4	 44+4+3+6+2=19

4 Optimal Path

Figure 6.6: Showing the Distance Matrix for .N = 5 and its DFS and
MHNUA Tour Results

48

A B C D E F G H	 I J
A	 0	 4	 9	 2	 6	 5	 9	 9	 5	 2
B	 4	 0	 6	 6	 4	 10	 8	 2	 7	 1
C	 9	 6	 0	 5	 7	 7	 10	 10	 10	 1
D	 2	 6	 5	 0	 8	 10	 4	 4	 10	 2
E	 6	 4	 7	 8	 0	 2	 6	 1	 8	 8
F	 5	 10	 7	 10	 2	 0	 4	 2	 9	 3
G	 9	 8	 10	 4	 6	 4	 0	 2	 1	 3
H	 9	 2	 10	 4	 1	 2	 2	 0	 8	 8
1	 5	 7	 10	 10	 8	 9	 1	 8	 0	 1
J	 2	 1	 1	 2	 8	 3	 3	 8	 1	 0

DFS +

4 4+2+1+2+4+1+1+1+5+2=23

4 Optimal path

MHNUA 4

44+2+1+7+1+1+3+4+4+2=29

4 Near-optimal path

Figure 6.7: Showing the Distance Matrix for N = 10 and its DFS
and MHNUA Tour Results

The different characteristics of the DFSA model versus MHNUA model are

summarized in the table shown below.

49

DFSA Model	 MIINUA Model

1. Works for small instances	 1. Works for large instances
i.e. for large N it no longer works

2. Sequential computation 	 2. Parallel or collective computatior
(synchronous)	 (asynchronous)

3. Produce optimal solutions	 3. Produce optimal or near-optimal
solutions

4. Static connectivity 	 4. Dynamic connectivity

5. Fast. Measured in millions of 	 5. Slow. Measured in thousands o
seconds, when applicable	 seconds

Table 6.3: The Different Characteristics of the DFSA Model versus MHNUA
Model

50

CHAPTER VII

TSP INTERFACE Application Using
GIS MapObject

7.1. GIS and MapObject Definition and Introduction

A geographic information system (GIS) is a computer-based tool for mapping and

analyzing things that exist and events that happen on earth. GIS technology integrates

common database operations such as query and statistical analysis with the unique

visualization and geographic analysis benefits offered by maps. These abilities

distinguish GIS from other information systems and make it valuable to a wide range of

public and private enterprises for explaining events, predicting outcomes, and planning

strategies

A GIS stores information as a collection of thematic layers that can be linked together

by geography. This simple but extremely powerful and versatile concept has proven

invaluable for solving many real-world problems from tracking delivery vehicles, to

recording details of planning applications, to modeling global atmospheric circulation. A

working GIS integrates five key components: hardware, software, data, people, and

methods.

Software

HarIwipe	 Da!a

People	 Mthod

Figure 7.1: GIS Five Components

51

0o 01

di11

Figure 7.2: GIS Geographic Layer Representation

MapObjects is a set of mapping and GIS components for application developers.

MapObjects consists of an ActiveX Control and a collection of programmable ActiveX

Automation objects that let application developers add mapping and GIS capabilities to

applications.

MapObjects is built upon Microsoft's ActiveX 2.0 standard. ActiveX is the most

widely supported object-based software integration architecture available today. ActiveX

components are used like building blocks to create and integrate Windows applications.

An ActiveX Control is a software component that encapsulates a specific set of

functionality. ActiveX automation objects have properties and methods that are used

programmatically to control their appearance, behavior, and interactions. MapObjects is

an ActiveX Control for mapping and GIS. The MapObjects map control plugs directly

into the tool sets of many standard development environments. You can manipulate the

map through property sheets found in development environments like Visual Basic

environment.

7.2. Objectives of Using MapObject

The purpose of GIS-MapObject in this thesis is to perform visualization processes

or tasks. For many types of geographic operation the end result is best visualized as a

52

map or graph. Maps are very efficient at storing and communicating geographic

information. GIS gives the power to create maps, integrate information, visualize

scenarios, solve complicated problems, present powerful ideas, and develop effective

solutions.

Also, MapObjects allows you to create customized applications that use mapping

and GIS components such as:

- Display of data as multiple layers in a map with the ability to pan and zoom

throughout.

- Spatial selection through a wide variety of search and spatial operators.

- Feature attribute selection and query.

In this thesis we built a TSP interface application using MapObject in order to

create mapping applications and adding mapping functionality to spatially select the

cities, to calculate the length between cities and to visually observe the resultant tour path

geographically.

7.3. TSP Interface Application

The purpose of building the TSP Interface application is to model our proposed

MHNUA model on a graphical user interface, so that this model can be used on a real

world streets for traveling salesman problem. TSP Interface application is built using

Geographic Information System MapObject (GIS-MO). MapObject is a GIS map object

used with Visual Basic object oriented environment. MapObject has a set of mapping

components and functions that allows the user to add maps to his application and to

simulate any graphical applications.

7.3.1. TSP User Interface Application

To get a better understanding of how the TSP Interface application looks like the

discussion their follows refers to the figure below.

53

Figure 7.1: TSP User Interface Application Form

7.3.1.1.	 Spatial Selection Function

This function is used to select the cities we want to visit graphically using the

mouse. After displaying the city layer inside the map zone the selection process begins.

Spatial selection function is done by either selecting each city at a time by pointing to it

using the mouse pointer or selecting group of cities at once by using the rectangle or

polygon objects that selects all cities that intersect or totally within the specified object.

The selected cities are highlighted with yellow color to be able to view them clearly on

the map.

7.3.1.2	 Two Cities Function

54

This function allows the user to find the streets length between two selected

cities and to view it with a highlighted color on the map. The Two Cities Form is shown

in appendix B.

7.3.1.3. Multi Cities Function

This function allows the user to find the street length between multi selected cites

and display their length in a matrix-like objot (Shown in appendix B). This matrix object

is copied to an output file to be used as input parameter file for Mathematica application.

After running the TSP Mathematica application that code the MHNUA algorithm, the

resultant path is displayed in a different output file. Finally, the Visual Basic TSP

interface application reads the results form the file and the MapObject displayed the

result tour graphically on the map, that is it allows visualizing of the resultant tour

between selected cities. The Multi Cities Form is shown in appendix B.

7.3.2. File structure of the TSP Application

The Visual Basic output results which represent the length between the cites are

displayed in an output file called TSPFJLE, the Mathematica engine application uses the

TSPFILE as an input file to be used in order to find the tour path. The result of the

Mathematica engine is displayed in an output file called TSPENG1NE, the visual basic

reads the result from the TSPENGINE file and display the output results with

corresponds to the tour length is displayed in the map canvas to view it geographically.

7.3.3. Operating the Application

Launching and running the TSP Interface application and the steps needed to

follow sequentially to execute the application and to show the final resultant tour in a

clear-displayed figure is shown in the appendix B.

CHAPTER VIII

Conclusion and Future Research

In this thesis, the theory of NP-completeness and what makes some problems

computationally intractable has been presented. Also, how combinatorial optimization

problems suffer from exponential time complexity in the worst case has been showed.

Combinatorial optimization problems are divided into classes, the most important class is

the NP-complete problems. For NP-complete problems, no algorithm is known provides

an exact solution to the problem in a computation time which is a polynomial in the size

of the problem. Recently, a new approach has been arisen to solve such problems

efficiently and almost in a real-time by applying neural networks. Our aim in this thesis is

to solve these complex problems to produce a feasible solution in a lesser time. A hybrid

neural network (I-iNN) and modification of the I-INUA have been proposed. The HNN

model contains two sub-networks: the constraints-network to satisfy the constraints, and

the goal-network to optimize the goal function. These two sub-networks are put to work

together to guarantee fast convergence of the constraints sub-network; where the main

algorithm is called Hybrid Neural Updating Algorithm (HNUA) is used to drive the HNN

model. The best thing about the HNUA is that it reaches a feasible solution very rapidly,

but it guarantees very little in terms of the quality of the generated solution. So we work

with the modification of the NHUA called Modified FINUA (MHNUA) that is able to

produce a more feasible solution (optimal or near-optimal) in a reasonable amount of

time. In summary, the proposed neural network technique for solving the TSP has the

following advantages: it provides a mapping technique of the TSP problem into an

energy function, it does not require selection of proper values for parameters in the

energy function and it prevent the energy function from being trapped into an invalid

solution. A MJ-INUA, HNUA and DFSA applications are developed to calculate the

degree of optimization and validation of the proposed model. We observed that

56

MHNUA produced efficient solutions in a reasonable amount of time. Besides a TSP

interface using Geographic Information System Map Object (GIS-MO) is developed to

calculate the length between cities and to view the resultant tour.

Our future research will be to use the concept of coordinate descent method

totally [17] to update the neural state. This will minimize the squared error function I

and faster the convergence speed. The coordinate descent method works through

minimizing the function with respect to one of the coordinate variables until the function

reaches zero. Also, be updating with the MapObject Software functionality's for better

use.

We believe that neural networks will become an important tool in the future for

solving optimization problem. So it is important to follow up the new techniques and

models for solving optimization problems and specially the traveling salesman problem

using neural networks.

57

APPENDIX A

A.I. The Traveling Salesman Problem with N 4

Consider the cities A, B, C, D and the following distance matrix:

A BCD

A 0 2 10 9

d= B 2 0 5 8

C 10 5 0 1

D9 810

The variables for this instance are:

V11	 V12	 V13	 V14

V21 V22 V23 V24
Vxi =

V31 V32 V33 V34

V41 V42 V43 V44

Iteration #1

1000
0000

Vxi =
0000

0000

0 .5 .5 .5

	

.5	 1	 1	 1
AVXi =

	

.5	 1	 1	 1

	

.5	 1	 1	 1

0000

aCost 0 2 0 2

Vxi - 0 10 0 10

0909

F * = {V22. V23, V24, V32, V33, V34, V42, V43, V44}

= {V,V33.V43}

Stepi: Let Vwk V23 (try city B). We update v23; V23 = v23 + A v23 = 0 + 1

Next we see how does this choice influence the other cities (only those order

has not been decided). We compute (aCostJ8v 1) for x = 3, 4.

58

aCost

8vxi - 0 15 0 15

0 17 0 17

This says that now city C has an associate cost of length 15 if visited at step 2 or4.

City D has an associate cost of length 17 if visited at step 2 or 4. To verify the above

data, examine the corresponding tours:

A->C->B->D->A (total length 32)

A->D->B->C->A (total length 32)

Finally, we compute Costv,, the project cost that this choice may contribute to the

length of the entire tour:

(5Cost
Costv= maxI

x=3,4	

1 ^ i ^ 4	 32.] =

Step2: Let Vwk= V33 (try city Q. We update v33; v33 = V33 + A v33 = 0 + 1 = 1, and

compute (ôCostIv1) for x = 2, 4.

aCost 0 7 0 7

avxi	 .	 .	 .

0 10 0 10

To verify the above data, examine the corresponding tours:

A->B->C->D->A (total length= 17)

A->D->C->B->A (total length 17)

Costv33 = 17.

59

Step3: Let Vwk= v43 (try city D). We update v43; v43 = V43 + A v43 — 0 + 1 1, and

compute (5Cost!0v) for x = 2, 3.

ôCost	 0 10 0 10
ôwi - . fJ .11 .	 .1•1

To verify the above data, examine the corresponding tours:

A->B->D->C->A (total length = 21)

A->C->D->B->A (total length=

Costv43 =21.

Since it is V33 which provide the minimum cost, we choose to visit city C at step 3

during the tour. The gradient of E

0 -2 0 -2

-2 -4 -2 -4
VE =

0 -2 0 -2

-2 -4 -2 -4

Iteration #2

1000
0000

Vxi =
0010
0000

0 .5 0 .5

	

.5	 1	 .5	 1
Avi =

0 .5 0 .5

	

.5	 1	 .5	 1

0 10 0 10

aCost 0 7 0 7

Vxi - 0 10 0 10
0 10 0 10

IT = {V22V24}

= {V22.V24,V32.V34}

This decides whether to visit city B during the second step or the fourth step.

Stepi: Let vk v22 (try step 2). We update v22 ; V22 v22 + A v22 0+ 1 1, and

compute (8Cost/av1) for x = 3.

60

acost

- 5 10 5 10

Costv22 = 5

Step2: Let Vwk= v24 (try step 4). We update v24; v24 v24 + A v24 = 0+ 1 = 1, and

compute (aCostJa1) for x 3.

ôCost - I	 I	 I-	
10

Costv24 = 5

Since both choices project similar cost, we choose either one (at random); say V22.

The gradient of E

o o 0 -2

o o 0 -2
VE =

0 0 0 -2
-2 -2 -2 -4

Iteration #3

1000
0100

vii =
0010
0000

0 0 0 .5
0 0 0 .5

Avi =
0 0 0 .5
.5 .5 .5	 1

2 10 2 10

5Cost 0 7 0 7
Vxi - 5 10 5 10

8 10 8 10

F = {v}
*	 (IF * = V44

61

This decides that city D is to be visited during the 2 step of the tour. We set v44;

V44 = v44 + Av =0+ 1 = 1, and compute the gradient of E5.

0000

VE = 0 0 0 0
S	 0000

0000

Since the gradient of E = 0 then the constraints are now satisfied. The algorithm ends,

and the solution is stored in

1000

0100
v.='	 0 0 1 0

0001

Which correspond to the tour A->13->C->D- >A of length 17 which is optimal in this

case.

Comparing the difference between both HNUA and MHNUA: The HNUA algorithm

would have made 2 iterations and generate any of the following tours (following

random values of Vwk at step [4]):

A->C->B->D->A oflength22

A- >D->B->C->A of length 22

A- >B- >D- >C- >A of length 21

A->C->D->B->A of length 2l

A->B->C->D->A of length 17

A->D->C->B->A of length 17

On the other hand, MHNUA makes 6 iterations exploring all possible values of vk

and generating an optimal solution: A- >B- >C- >D- >A.

62

A.2. The Traveling Salesman Problem with N = 10

Consider the cities A, B, C, D, E, F, G, H, I, J and the following distance matrix:

0 4 10 13 7 9 3 17 8 13

4 0 9 1 2 6 15 8 13 5

10 9 08996493

13 1
	

8 0 6 7 8 12 16 12

7 2 9 6 0 13 15 16 12 3

9 6 9 7 13 0 12 8 16 6

3 15 6	 8 15 12 0 16 11 11

17 8 4 12 16 8 16 0 2 4

8 13 9 16 12 16 11 2 0 9

13 5 3 12 3 6 11 4 9 0

The Variables for this instance are:

	

VII	 V12	 V13	 V14	 V15	 V16	 V17	 v18	 v19	 ViiO

V21 V22 V23 V24 V25 V26 V27 V28 V29 V210

V31 V32 V33 V34 V35 V36 V37 v38 V39 V310

V41 v42 V43 v44 v45 V46 V47 v48 V49 V410

Vxi =
V51 V52 V53 V54 V55 V56 V57 V58 V59 V5I0

V61 V62 v63 v64 V65 v66 V67 V68 V69 V610

V71 v72 v73 v74 V75 v76 v77 V78 v79 V710

V81 V82 v83 V84 V85 V86 V87 v88 V89 v810

V91 v92 V93 v94 V95 V96 V97 V98 v99 V910

ViOl V 10 V103 V104 v105 v106 v107 VI08 V109 V101O

Iteration #1:

	1000000000	 0050505050505050505 	 0000000000

	

0000000000	 05111111111	 0400000004

	

0000000000	 051 1 1 1 1 1 1 1 1	 010000000010

	

0000000000	 05111111111	 013000000013

	

0000000000	 051 1 1 1 1 1 1 1 1 Cost 0700000007

VXi	 0 0 0 0 0 00 00 0	 O5 1 1 1 1 1 1 1 1 1 &	 0 9 0 0 0 0 0 0 0 9

	

0000000000	 05111111111	 0300000003

	

0 0 0 0 0 0 0 0 0 0	 05 1 1 1 1 1 1 1 1 1	 0 170 0 0 0 0 0 0 17

	

0000000000	 05111111111	 0800000008

	

0000000000	 05111111111	 013000000013

f'={v22,v23,v24,v25,v26,v27,v28,v29,v2lo,v32 V102,V103,V104,V105,V106,V107,V108,V109,V1010}

F*={v23v24,v25,v26,v27,v28,v29,v33 ,V39,V43 ... V49,...,V1 03,V1 04,V1 05,V1 06,V1 07,V1 08,V1 09}

63

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below not all:

Let vwk = v 107 (try city J). We update y17; y17 = v107 + A v107 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (aCost/8v1) for x 2, 3, 4, 5, 6, 7, 8, 9.

0400050504

0 10 0 0 0 3 0 3 0 10

o 13 0 0 0 12 0 12 0 13

aCost	 0 7 0 0 0 3 0 3 0 7

0V1	 0 9 0 0 0 6 0 6 0 9

0 3 0 0 0 11 0 11 0 3

0 17 0 0 0 4 0 4 0 17

0800090908

This says that city B has an associate cost of length 4 if visited at step 2 or 10 and of length
5 if visited at step 6 or 8. City C has an associate cost of length 10 if visited at step 2 or 10
and of length 3 if visited at length 6 or 8 and so on. The above data corresponds to tour
lengths which are: 71 and 53.

(aCost
Costv107 = V max' 1:!^i:!^10)=71

Since it is V 107 which provides the minimum cost from the entire element in ['i , we choose
to visit city J at step 7 during the tour. The gradient E:

0 —2 —2 —2 —2 —2 0 —2 —2 —2

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4
VEs =

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

—2 —4 —4 —4 —4 —4 0 —4 —4 —4

0 —2 —2 —2 —2 —2 0 —2 —2 —2

64

Iteration #2:

1 0 0 0 0 0 0 0 0 0	 0 0,505050505 0050505
0000000000	 051 1 1 1 1Q51 1 1
0000000000	 051 1 1 1 1 051 1 1
0000000000	 051 1 1 1 1 05 1 1 1
0000000000	 051 1 1 1 1 05 1 1 1	 Ost

V 0000000000 LVX1	 11105111
0000000000	 051 1 1 1 1 05 1 1 1
0000000000	 051 1 1 1 1Q51 1 1
0000000000	 051 1 1 1 1Q51 1 1
0000001000	 005050505050050505

0 0 0 0 0 13 0 0 13 0
04000505 0 4
0 10 0 0 0 3 0 3 0 10
0 13 0 0 0 12 0 12 0 13
0700030307
0900060609
0 3 0 0 0 11 0 11 0 3
0 17 0 0 0 4 0 4 0 17
0800090908
0 13 0 0 0 0 0 0 0 13

F = IV22, V23, V24, V25, V26, V28, V29, V210, V32,..., V36, V38,..., V310 V92,..., V96, V98,..., V9101

= {v22, V23, V24, V25, V29, V32, V33, V34, V35, V39, V42, V43, V44, V45, V49 V92, V93, V94, V95, V991

We are about to select the next city to visit during the tour. All the possible cases shown in
F* are tested. Only the city with minimum length is listed below:

Let Vwk = V44 (try city D). We update V44, V44 = V44 + A V44 = 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (aCost/av 1) for x = 2, 3, 5, 6, 7, 8, 9.

041015

0 10 8 0 8 3

öCost -. 076063

avxi
	 097076

0 3 8 0 8 11
0 17 12 0 12 4

0 8 16 0 16 9

0504

0 3 0 10

0307

0609
0 11 0 3
0 4 0 17

0908

This says that city B has an associate cost of length 4 if visited at step 2 or 10, of length 5 if

visited at step 6 or 8 and 1 if visited at step 3 or 5.

City C has an associate cost of length 10 if visited at step 2 or 10, of length 3 if visited at
length 6 or 8 and of length 3 if visited at length 6 or 8 and so on. The above data
corresponds to the tour lengths which are: 58 and 41.

65

(aCost
Costv = max!L	 1^ i^ 10 58

A-d
)=

Since it is V44 which provides the minimum cost from the entire element in [', we choose
to visit city D at step 4 during the tour. The gradient E:

o -2 -2 0 -2 -2 0 -2 -2 -2
-2 -4 -4 -2 -4 -4 0 -4 -4 -4
-2 -4 -4 -2 -4 -4 0 -4 -4 -4
o -2 -2 0 -2 -2 0 -2 -2 -2
-2 -4 -4 -2 -4 -4 0 -4 -4 -4

VEs =
-2 -4 -4 -2 -4 -4 0 -4 -4 -4
-2 -4 -4 -2 -4 -4 0 -4 -4 -4
-2 -4 -4 -2 -4 -4 0 -4 -4 -4
-2 -4 -4 -2 -4 -4 0 -4 -4 -4

o -2 -2 0 -2 -2 0 -2 -2 -2

Iteration #3:

1000000000
0000000000
0000000000
0001000000

0000000000
V =
Xi	 0000000000

0000000000
0000000000
0000000000
0000001000

0050500.50.500.50505 	 00130131301300
Q51 1Q51 1Q51 11	 0410150504

0511051105111	 01080830301

0Q5050050,500,50505	 01300012012013

05I1051105II1	 ä1ostO76O63O3O7
05 1 105110511 I	 0970760609

05 1 1Q51 1Q51 1 1 	 038081101103
Q51 1 05 1 1Q51 11	 0171201240401
051 1Q51 1Q51 11	 081601690908
00505005050050505)	 01312012000013

F = {v22, V23, V24, V25, V26, V28, V29, V210, V32,..., V36, V38,..., V3 10........,V92,..., V96, V98,..., V9101

IF = fV2Z V23, V24, V25, V29, V32, V33, V34, V35, V39, V42 V43, V44, V45, V49. V92, V93, V94, V95, V991

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v39 (try city Q. We update V39, V39 = V39 + A V39 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (aCostI0v1) for x = 2, 5, 6, 7, 8, 9.

66

o 4 1 0 1 5 0 14 0 13

8Cost - o 7 6 0 6 3 0 12 016

o 9 7 0 7 6 0 15 018

o 3 8 0 8 11 0 17 0 9

o 17 12 0 12 4 0 8 0 21

o 8 16 0 16 9 0 18 0 17

(

L	
^ i^ 10 J= 94CosIv39 = max

aCost
1i

This says that city B has an associate cost of length 4 if visited at step 2, of length 1 if
visited at step 3 or 5, of length 5 if visited at step 6, of length 14 if visited at step 8 and of
length 13 if visited at step 10 and so on.

Since it is V39 which provides the minimum cost from the entire element in F*, we choose
to visit city C at step 9 during the tour. The gradient E:

0 —2 —2 0 —2 —2 0 —2 0 —2
—2 —4 —4 —2 —4 —4 —2 —4 —2 —4

0 —2 —2 0 —2 —2 0 —2 0 —2
0 —2 —2 0 —2 —2 0 —2 0 —2

—2 —4 —4 —2 —4 —4 —2 —4 —2 —4
vi	

—2 —4 —4 —2 —4 —4 —2 —4 —2 —4

—2 —4 —4 —2 —4 —4 —2 —4 —2 —4

—2 —4 —4 —2 —4 —4 —2 —4 —2 —4

—2 —4 —4 —2 —4 —4 —2 —4 —2 —4

0 —2 —2 0 —2 —2 0 —2 0 —2

67

Iteration #4:

1 0 0 0 0 0 0 0 0 0	 0 05 05 0050500.5005	 001301313023010
0000000000	 05 1 1 05 1 1Q51 051	 04 1 0 1 5014013
0000000010	 00505005050Q5005	 010808303010

000 1 000000	 0 05 05 0 0505 005 005	 013 0 0 0 12020021
0000000000	 051 1Q51 1051051 &CostO7 6063012016

V =
Xi	 0 0 0 0 0 0 0 0 0 0	 05 1 1 05 1 1 0.5 1 05 1	 0 9 7 0 7 6 0 15 0 18

0 0 0 0 0 0 0 0 0 0	 05 1 1 05 1 1 05 1 05 1	 0 3 8 0 8 11 0 17 0 9
0000000000	 05 1 1 05 1 1 051051	 017120124 0 8 021
0000000000	 05 1 1 05 1 1 05 1 05 1	 0 8 160169 018017
000000 1 000	 0 05 05 0 0505 005 0 05	 01312012 0 0 3 016

F={v22,v23,v25,v26,v28,v2lo,v52,v53,v55,v56,v58,v510,...,v92,v93,v95,v96,v98,v910}

IF* ={v23,v25}

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v25 (try city B). We update v25; V25 = V25 + A v25 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (3Cost1av) for x = 5, 6, 7, 8, 9.

8Cost 0 7 6 2 6

ay.- 0 9 7 6 7

0 3 8 15 8

0 17 12 8 12

0 8 16 13 16

5 0 12 0 16

12 0 15 0 18
26 0 17 0 9

12 0 8 0 21

22 0 18 0 17

(aCost ,
^ i ^ 1 o J = 81Costv25 = maxl

68

Since it is V25 which provides the minimum cost from the entire element in F, we choose
to visit city B at step 5 during the tour. The gradient E:

0 -2 -2 0 0 -2 0 -2 0 -2
o -2 -2 0 0 -2 0 -2 0 -2
o -2 -2 0 0 -2 0 -2 0 -2
o -2 -2 0 0 -2 0 -2 0 -2
-2 -4 -4 -2 -2 -4 -2 -4 -2 -4

VEs =
-2 -4 -4 -2 -2 -4 -2 -4 -2 -4
-2 -4 -4 -2 -2 -4 -2 -4 -2 -4
-2 -4 -4 -2 -2 -4 -2 -4 -2 -4
-2 -4 -4 -2 -2 -4 -2 -4 -2 -4
o -2 -2 0 0 -2 0 -2 0 -2

Iteration #5:

1000000000	 005050005005005
0000100000	 005050005005005
0000000010	 005050005005005
0001000000	 005050005005005
0000000000	 051105051051051 ECost

V	 =	 Lvxi=
Xi	 0000000000	 051 105051051051

0000000000	 051 105051051051

0000000000	 051 105051051051

0000000000	 051 105051051051

0000001000	 005050005005005

001341317023010
0 4 .1 0 1 5 0 14 0 13
0 10 8 9 8 12 0 3 0 10
0 13 0 1 0 13 0 20 0 21
0 7 6 2 6 5 0 12 016
0 9 7 6 7 12 0 15 0 18
0 3 8 15 8 26 0 17 0 9
0 17 12 8 12 12 0 8 0 21
0816131622018017
0 13 12 5 12 5 0 3 0 16

IF= {v52,V53,V56,V58,Vslo,V62,V63,V66,V68,V610,...Y92,V93,V96,V98,V910}

F*={v72}

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v72 (try city G). We update v72; V72 = V72 + A V72 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (aCostJav 1) for x = 5, 6, 8, 9.

69

	

8Cost
	

15 7 21 2 6 5 0 12 0 16

	

IVW
	

12 9 19 6 7 12 0 15 0 18

16 17 28 8 12 12 0 8 0 21

11 8 27 13 16 22 0 18 0 17

(acost i < i ^ 10 J 95Costv72 =1 max'
3vxi

Since it is V72 which provides the minimum cost from the entire element in F, we choose
to visit city G at step 2 during the tour. The gradient E:

Th 0 — 2 0 0 — 2 0 — 2 0 — 2

o o —2 0 0 —2 0 —2 0 —2

o o —2 0 0 —2 0 —2 0 —2

o o —2 0 0 —2 0 —2 0 —2

—2 —2 —4 —2 —2 —4 —2 —4 —2 —4

VEs= —2 —2 —4 —2 —2 —4 —2 —4 —2 —4

o 0 —2 0 0 —2 0 —2 0 —2

—2 —2 —4 —2 —2 —4 —2 —4 —2 —4

—2 —2 —4 —2 —2 —4 —2 —4 —2 —4

o 0 —2 0 0 —2 0 —2 0 —2

Iteration #6:

1000000000	 0 00.50 005005005	 3 0 16420177 23010

0000100000	 0 0050 005005005	 154 160 3 5 2 14013

0000000010	 0 0 05 0 0 Os 005005	 6 10 14 9 17 12 9 3 010

0001000000	 0 0 05 0 0 05 0 05 0 0,5	 8 13 8 1 6 13 6 20021

0000000000	 050.5105051051051	 &ost1572126 5012016
V	 =	 E3vxi=
Xj	 0000000000	 050.5105051051051	 12919620121315018

0100000000	 050510505 10510.51	 0 3 8 15 23 26 15 17 0 9

0000000000	 0505 1 0505 1 05 1 05 1	 16 17 28 8 28 12 16 8 021

0000000000	 0505 1 0505 1 05 1 0.5 1 	 11 8 27 13 28 22 12 18 0 17

0000001000	 0 0 05 0 005005005	 1113235 15 5 3 3 016

F={53,v56,v58,v510,v63,v66,v68,v610,...,v93,v96,v98V910}

F*={v56 }

70

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v56 (try city B). We update v56; v56 = v56 + A v72 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (aCost/av 1) for x = 6, 8, 9.

ôCost -

ôv11
	

12 9 19 6 20 12 13 15 0 18

16 17 28 8 28 12 16 8 0 21

11 8 27 13 28 22 12 18 0 17

Costv56 = max'
aCost

1^i^1O)=76

Since it is V56 which provides the minimum cost from the entire element in F*, we choose
to visit city E at step 6 during the tour. The gradient E:

0 0 —2 0 0 0 0 —2 0 —2

	

0 0 —2 0 0	 0 0 —2 0 —2

0 0 —2 0 0 0 0 —2 0 —2

0 0 —2 0 0 0 0 —2 0 —2

0	 0 —2 0 0	 0 0 —2 0 —2
VEs =

—2 —2 —4 —2 —2 —2 —2 —4 —2 —4

	

0 0 —2 0 0	 0 0 —2 0 —2

—2 —2 —4 —2 —2 —2 —2 —4 —2 —4

—2 —2 —4 —2 —2 —2 —2 —4 —2 —4

0	 0 —2 0	 0	 0 0 —2 0 —2

71

Iteration #7:

1 0 0 0 0 0 0 0 0 0	 0 0 05 0 00 005005	 3 0 16420177 23010

0000100000	 0005000005005	 154160 3 5 214013

0000000010	 00050 0 0 0 0 0 0	 6 10 14 9 17 12 9 3 010

0001000000	 0 0 05 0 0 0 005005	 8 13 8 1 6 13 6 20021

0000010000	 0 0Q50 00005005 X6st 157212 6 5 012016
V	 =	 L))Xi-Xj	 0000000000	 05051050505051051	 a,	 12919620121315018

0100000000	 0005000005005	 038152326151709

0000000000	 05051050505051051	 16172882812168021
0 0 0 0 0 0 0 0 0 0	 0505 1 05 0505 05 1 05 1	 11 8 27 13 28 22 12 18 0 17
0 0 0 0 0 0 1 0 0 0	 0 0 05 0 0 0 0 05 0 05J	 11 13 23 5 15 5 3 3 0 16

F = {v 63 ,V 68 ,V 610, v83 ,v 88 ,V 810 ,v 93 ,V 98 ,V 910 }

Ft={v88}

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v88 (try city H). We update v88; v88 = v88 + A v72 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (5CostIav 1) for x = 6, 9.

aCost -
- 12 9 19 6 20 12 13 15 8 18

11 8 27 13 28 22 12 18 2 17

ôCost ,
^ i ^ ioj =48Costv38 = max'L av

72

Since it is V88 which provides the minimum cost from the entire element in [*, we choose
to visit city E at step 6 during the tour. The gradient E:

0	 0 —2 0 0 0 0 0 0 —2

o	 0 —2 0	 0	 0	 0	 0	 0 —2

o	 o —2 0	 0	 0	 0	 0 0 —2

o	 o —2 0	 0	 0	 0	 0 0 —2

o	 0 —2 0	 0	 0	 0 0 0 —2
VEs =

—2 —2 —4 —2 —2 —2 —2 —2 —2 —4

o 0 —2 0 0 0 0 0 0 —2

o o —2 0 0 0 0 0 0 —2

—2 —2 —4 —2 —2 —2 —2 —2 —2 —4

o 0 —2 0 0 0 0 0 0 —2

Iteration #8:

1000000000
0000100000
0000000010
0001000000
0000010000

V =	 Lvxi-
Xj	 0000000000

0100000000
0000000100
0000000000
0000001000

000500000005	 30164201772301

0005000000Q5	 15416035214013

000500000005	 61014917129 301

000500000005	 81381613620021

000500000005 &'ost15721265012016
0505 1 05050505050.5 1 	 12 9 19 6 20121315018
000500000005	 038152326151709
000500000005	 16172882812168021
050510505050505051	 118 271328221218017
0 0 05 0 0 0 0 0 0 05	 11 13 23 5 15 5 3 3 0 16

1= {v 63 ,V 610 ,V93 ,v 910 }

F*={v9i0 }

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v910 (try city H). We update v910; v910 = V9I0 + i\ V72= 0 + 1 = 1.

Next we see how does this choice influence the other cities (only those order has not been

decided). We compute (öCostI3v1) for x = 6.

73

aCost -

avxi
	 28 9 19 6 20 12 21 15 24 18

1

aVX1
Costv910 = ' maxl aCost

<1<10 28

Since it is V910 which provides the minimum cost from the entire element in F, we choose
to visit city I at step 10 during the tour. The gradient E:

0 0 -2 0 0 0 0 0 0 0
0 0 -2 0 0 0 0 0 0 0
0 0 -2 0 0 0 0 0 0 0
0 0 -2 0 0 0 0 0 0 0
0 0 -2 0 0 0 0 0 0 0

VEs =
-2 -2 -4 -2 -2 -2 -2 -2 -2 -2
0	 0 -2 0	 0	 0	 0	 0. 0	 0

	

0 0 -2 0 0	 0 0 0 0	 0
0 0 -2 0 0 0 0 0 0 0

	

0 0 -2 0 0	 0 0 0 0 0

Iteration #9:

1000000000	 0 0 05 0 0 0 0 0 0 0	 11 0 164201724232510

0000100000	 00050000000	 284160 3 5 10 14 21 13

0000000010	 0 0 05 0 0 0 0 0 0 0	 15 10 14 9 17 12 13 3 1310

0001000000	 0 0 05 0 0 0 0 0 0 0	 2413 8 1 6 13 18 20 28 21

0000010000	 00050000000 aCost2772126 5 16 12 28 16
V =	 Ewxi=

X i	 0000000000	 0505105050505050505	 ,	 289196201221152418

0 1 0 0 0 0 0 0 0 0	 0 0 05 0 0 0 0 0 0 0	 11 3 8 15 23 26 31 17 27 9

0000000100	 0 0 05 0 0 0 0 0 0 0	 18 17 28 8 28 12 16 8 2 21

0 0 0 0 0 0 0 0 0 1	 0 0 05 0 0 0 0 0 0 0	 11 8 27 13 28 22 14 18 2 17

0000001000	 0 0 05 0 0 0 0 0 0 0	 20 13 23 5 15 5 7 3 1316

74

F={v63}

F* ={v63}

We are about to select the next city to visit during the tour. All the possible cases shown in
are tested. Only the city with minimum length is listed below:

Let Vwk = v63 (try city F). We update v63; v63 = v63 + A v63 = 0 + 1 = 1, and compute

Since it is V63 which provides the minimum cost, we choose to visit city F at step 3 during
the tour. The gradient E:

o 0 0 0 0 0 0 0 0 0
0000000000
0000000000
0000000000
0000000000

VEs= 0000000000
0000000000
0000000000
0000000000
0000000000

Since gradient of E =0 then the constraints are now satisfied. The algorithm ends, and the
solution is stored in

1000000000
0000100000
0000000010
0001000000
0000010000

V =
Xi	 0010000000

0100000000
0000000100
0000000001
0000001000

Which corresponds to	 of length 53 which is near

optimal solution.

75

If we run DFSA application on the same input file holding the same number of cities we

observe that the hybrid neural network produce 85% optimal result. The DFSA application

output result is shown in the figure below:

Figure A.1: DSFA Output Result for N = 10

76

APPENDIX B

B.!. TSP Interface Application Using GIS-MO

B.1.1. Launching the Application

The user has only to click the icon dedicated for the application. Next he will

click on the OK button in the form listed below.

fSP .- Intetlace Application	 1919U xl

Welcome to

Traveling Salesman Problem
Interface

Using Visual Basic and 615 MapUbect1.1

OK

Figure B.!: Login Form

B.1.2. Running the Application

Step!: The shapefile layers used in this application are: city layer (capital), street layer

(ushigh) and states layer. After launching the application, the three layers are

automatically displayed in the map canvas. If we want to add, remove or change the

color of any layer, click on the Map Content button in the toolbar, the Map Content form

will appear as below.

77

-	 DIxIMap Contents

[General]

	

(I Ea ushigh	 Ad file...
I	 J capitals	 -

	

no states	 Add SDE layer...

Reriae

Clear laer

Figure B.2: Map Contents Form

What follows is a description of some buttons in the toolbar:

Map Content
	 Spatial Selection

	

g111,1 -	
LL7OW

4

Figure B.3: TSP Toolbar

1. Full Extent: change the map extent to the full view spanned by all the extents in the

layer.

2. Zoom Out: used to zoom in by clicking on a user-specified area.

3. Zoom In: used to zoom in by box to a user-specified area.

4. Pan: used to drag left and right.

5. Identify used to get information about a selected feature.

78

Step2: The next step is to spatially select the cities we want to visit. When we click on

the Spatial Selection button in the toolbar, the Spatial Selection form gets displayed:

:9 Spatial. selection	 - I Dlxi
1 Choosea yer for selecting features:

capitals

Click on the symbol to change
how selecIed features are 	 _______

a Choose a shape type for cursor selection or
another layer to select against:

3. Choose a method for spatial selection:

IS 	 & feature boundaries overlap

Close	 Clear selection

Figure B.4: Spatial Selection Form

The Spatial Selection form allows us to specify a layer for selecting features (e.g. city

layer), what type of search feature (e.g. a rectangular shape), and one of the spatial search

methods (e.g. shapes and feature boundaries overlap). Move around the map with the

tools available to locate the city area you want then select the cities with the mouse. The

selected cities will be highlighted yellow as shown in the figure below:

79

TSP_Inte

T	 J

	

fi:61X:.114.21Y:37.68 	 H	 4:15PM

Figure B.5: The Selection Cities Highlighted in Yellow Color

Step3:

	

EIIe	 eIect	 View Help.

EM Iwo Cites.

Figure B.6: Path Menu Form

Click on the Many Cities sub-menu as shown in figure above and the form will appear.

To get a better understanding of how this form looks like, refer to the figure below

80

City Names	 ..	 Copy Matrix to File-------

List of State Names:	 1
Copy to Fil TSPFILE

Number of selected cites are- ----... - ------____________________Salt Lake City

	

1	 -	 Denver
Carson City	 Path Graphically
Sacramento

-	 . Santa Fe
Phoenix	 Show Path Graphically

City Distance
Matrix reUresentinQ the distances between cities:

	_____	 I	 I	 I...	 I
Cheyenne Salt Lake Ci Denver	 Carson City Sacramento Santa Fe	 Phoenix

Cheyenne	 0	 8	 1'	 19	 198

Salt Lake Ci	 8	 0	 9	 11	 11.	 16

Denver	 -	 - 0 . 	23	 23

Carson City	 19	 11	 23	 0	 99	 29

Sacramento	 19	 11	 23	 99.	 0	 29

Santa Fe	 8	 16	 7	 29	 29	 0

Phoenix	 16	 99	 -	 14	 12	 12	 8

	

Close	 OK

-	 Figure B.7: Multi Cities Form

Step 4: Click on the button Copy to TSPFILE shown in figure B.6 to copy the TSP

matrix with corresponds to the distance between the cites to an output file called

TSPFILE. Move to the Mathematica software and run the TSP Engine application by

clicking on the Evaluate Notebook (refer to figure below). After running the

Mathematica TSP Engine application the output results that hold the salesman tour is

displayed in an output file called TSPENGINE to be displayed in the TSP Interface

application.

Eak&e Ce	 Shi!+Eier
E;;: -	 -

Ir .Jl-Er
IE 	 -	 -

Ea1eN1rcti
stat Kerlel	 .	 E

2uil 	 .
eIuR Kernel	 .	 -

Notebook I s Kernel

	

Kernel Cerig.n&ion OpKcts... 	 .
E:

, StrcwIn1OuiN I'Me
Deete

All
Oulput	 .	 Fi. •eLcnE

Figure B.8: Running Mathematica TSP Application

81

I.]T1g1i i

Step5: Return to the TSP Interface application and click on 'Show Path Geographically'

as shown in figure B.6. The result is depicted from the TSPENGINE and visually

displayed on the map canvas highlighted in a red color. As a result, an attractive tour is

shown and allowing the salesman to visual the efficient path and be able to benefit from

it in a real world bases. An example showing the salesman path is shown in the figure

below.

Fca!e14	 15 44 Y 32 79	 411 PM

Figure B.9: The Traveling Salesman Resultant Tour

82

REFERENCES

[1] E. Aarts and H. Stehouwer, "Neural Networks and the Travelling Salesman
Problem," in Proc. mt. Conf. On Artificial Neural Networks, 1993.

[2] F. Chedid, " On the Hybrid Neural Network Model for Solving Optimization
Problems," Lecture Notes in Computer Science, M.Deza, R. Euler and I. Manoussakis
(EDS.), vol. 1120, Springer_Verlay (1996) 182-193.

[3] N. Christofides, "The Travelling Salesman Problem," Report 88-11, Department
of Management Science, Imperial College, London.

[4] A. Cichocki and R. Unbehauen, "Neural Networks for optimization and Signal
Processing," John Wiley & Sons, Ch. 9: Neural Network for Combinatorial
Optimization Problem, pp. 480-505.

[5] R. Durbin, R. Szeliski and A. Yuille, "An Analysis of the Elastic Net Approach to
the Travelling Salesman Problem," Neural Computation, Vol. 1, 1994.

[6] L Fiecher, "A Parallel Tabu Search Algorithm for Large Travelling Salesman
Problem," Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, 1994.

[7] L. Fu, "Neural Networks in Computer Intelligence, "McGraw-Hill, Ch: 2, pp. 33-
55 and Ch: 4, 80-100.

[8] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to Theory of
NP-completeness. San Francisco, CA: Freeman, 1979.

[9] J. Hopfield and D.W. Tank, "Neural Computation of Decisions in Optimization
Problems," Biological Cybernetics, vol. 52, pp. 1-25, 1985.

[10] E. Lawler "Combinatorial Optimization: Networks and Matroids". Holt, Rinehart
and Winston, New York, 1976.

[11] A. Le Gall and V. Zissimopoulos, "Extended Hopfield Models for Combinatorial
Optimization ", IEEE Transactions on Neural Network Vol. 10, No. 1, January 1999.

[12] C. Peterson and B. Soderberg, "A New Method for Mapping Optimization
Problems onto Neural Network," mt. J. Neural Syst., vol. 1 'pp.1 0-25, 1989.

[13] J. Raggett and W. Bains, "Artificial Intelligence from A to Z, "Chapman & Hall.

[14] W. Stornetta, B. Huberman, "An Improved Three-Layer Back-Propagation
Algorithm," IEEE International Conference on Neural Networks, San Diego, 1987.

[15] K. Sun and H. Fu, "A Hybrid Neural Network Model for Solving optimization
Problems," IEEE Trans. On Computers, Vol.42, No.2, pp.2 18-227, Feb. 1993.

83

[16] "K. Sun and H. Fu, "Solving Satisfiability Problems with Neural Networks," in
Proc. IEEE Region 10 Conf. Comput. and Commun. Syst., vol. 1, Hong Kong, Sept.
24 -27, 1990, PP. 17-22.

[17] N. Ulder, E. Aarts, H. Bandelt, P. van Laarhoven and E. Pesch, "Genetic Local
Search Algorithm for Travelling Salesman Problem, " in Parallel Problem Solving
from Nature I, pp. 109-116, Springer-Verlag, 1990.

[18] A. Van Ooyen and B. Nienhuis, "Increasing the learning rate of the
Backpropagation Method," Netherlands Institute for Brain Research.

[19] T. Volgrnant, R. Jonker, "A Branch and Bound Algorithm for the Symmetric
Travelling Salesman Problem Based on the 1-tree Relaxation," European Journal of
Operational Research (1982).

[20] P. Yip and Y. Pao, "Combinatorial Optimization with Use of Guided
Evolutionary Simulated Annealing", IEEE Transactions on Neural Network, Vol. 6,
No.2, March 1995.

84

P1
(1)

FMmmq

t\

0 0 S

	Integrating Neural Networks and GIS For Solving The Traveling Salesman Problem - Rita Jack Ibrahim
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96

