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ABSTRACT

The Internet is once again suffering from its own success. Since 1995, there has been a

massive increase in demand for Internet services, resulting in an exponential growth of

the Internet. We have entered now an era where the users of the Internet are unable to

obtain the bandwidth needed to support their applications, and they are experiencing high

packet loss.

Packet loss problem arises whenever the number of packets arriving at a given router is

much higher than its buffering space. The main goal of this thesis is to find adaptive

schemes capable of optimizing the communication network performance of systems with

buffering constraints such as TCP/IP networks. A new strategy, called hop-by-hop flow-

control with packet aggregation (HFCPA), is devised for optimizing the network

performance.

HFCPA is a variation of the current TCP/IP protocol. Flow control with aggregation of

packets is implemented in the main routers of the network, in contrary to the current

TCP/IP protocol where the flow control occurs at the edge of the network (i.e. at the end-

users). In fact, the Internet will be subdivided into tunnels where the edge routers of each

tunnel are responsible for the packet management inside the tunnel (aggregation,

fragmentation, bandwidth allocation, path selection...).

With this newly proposed technique, we have shown that TCP connections experience

lower packet loss and higher throughput compared with normal TCP/IP implementation,

especially during network congestion.
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CHAPTER 1

INTRODUCTION AND PROBLEM

DEFINITION

1.1 Introduction

The Internet is a global data network connecting millions of computers, and is rapidly

growing. Whenever Internet computers wish to communicate with one another, they

divide the data they wish to exchange into a sequence of packets (or datagrams) that they

inject into the network.

The Internet's infrastructure consists of a series of "routers" inter-connected by "links".

The routers examine each packet they receive in order to determine the next "hop" (either

another router or the destination computer) to which they should forward the packet so

that it will ultimately reach its destination. Sometimes routers receive more packets than

they can immediately forward. In this case they momentarily queue the data in "buffers",

increasing the delay of the packets through the network; or sometimes they must drop

incoming packets, not forwarding them at all.

The specifics of how to format individual packets for transmission through the network

form one of the Internet's underlying "protocols". This fundamental one is called the

Internet Protocol, or simply IP [RFC791]. Another important protocol, Transmission

Control Protocol (TCP), regulates other facets of Internet communication, such as how

to divide streams of data into individual packets such that the original data can be

delivered to the receiving computer intact, even if some of the individual packets are lost

due to drops or damage.
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Since its launch two decades ago, TCP [RFC793] remains the most dominant end-to-end

transport protocol in the Internet and is likely to be a widely used protocol in the next

century. Most popular Internet applications, such as world wide web, file transfer, e-mail

and so on, use the reliable services provided by TCP. The performance perceived by the

users of these applications depends largely on the performance of TCP. Some of the

questions that still arise in the analysis of TCP/IP network performances are: how TCP

congestion control algorithms interact with the underlying network protocols? Will TCP

protocol processing overhead become the bottleneck over high-speed networks? Can we

continue to rely on packet drop at the routers as congestion indication for the TCP for

high-speed access links? What role the next generation protocols can play to help TCP

making the best use of the network bandwidth?

The goal of this research is to devise some new techniques to be used in routers. These

techniques aim to improve TCP performance and to optimize end-to-end traffic

management in TCP/IP Network.

1.2. Problem Definition

Internet Protocols suite, or TCP/IP, was designed for use with many different kinds of

network. Unfortunately, network designers do not agree about how big packets can be.

Wide Area Networks tend to use small packet sizes, while Local Area Networks (which

are much faster networks) have much larger packet sizes. At first, one might think that IP

should simply settle on the smallest possible size. Unfortunately, this would cause serious

performance problems. When transferring large files, big packets are far more efficient

than small ones. So we want to be able to use the largest packet size possible. But we also

want to be able to handle networks with small packet size constraints.

One of the greatest difficulties involved in communication networks is the need to

interconnect different networks to form a unique inter-network. A major problem is the

differing maximum packet sizes allowed by each network. The Internet model requires a

router to be able to fragment packets as necessary to match the Maximum Packet Size
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(MPS) of the network to which they are being forwarded. Reassembly of fragmented

packets is generally left to the destination host [RFC8 15].

In the Internet, fragmentation is usually done at IP-level protocol at the sending host

node. Although IP-level fragmentation often makes it possible to interconnect two

dissimilar networks, but it is usually avoided. One reason is that when a single IP

fragment is lost, all other fragments belonging to the same datagram (IP packet) are

effectively also lost and the entire datagram must be retransmitted by the source. Even

without loss, fragments require the allocation of temporary buffer memory at the

destination, and it is never easy to decide how long to wait for missing fragments before

giving up and discarding those that have already arrived.

A common method used by some implementations of TCP/IP is to fragment an IP

datagram into IP fragments that are no larger than 576 bytes when the IP datagram is to

travel through a router. This is intended to allow the resulting IP fragments to pass the

rest of the path without further fragmentation. This would, though, create more of a load

on the destination host, since it would have a larger number of IP fragments to

reassemble into one IP datagram. It would also not be efficient on networks where the

maximum transmission unit (MTU) only changes once and stays much larger than 576

bytes. Examples include networks such as an IEEE 802.5 network with an MTU of 2048

or an Ethernet network with an MTU of 1500.

Also, the growth of the global Internet has brought with it an increase in "undesirable

elements" manifested in antisocial behavior. Recent months have seen the use of novel

attacks on Internet hosts, which have in some cases led to the compromise of sensitive

data. Increasingly sophisticated attackers have begun to exploit the more subtle aspects of

the Internet Protocol; fragmentation of IP packets, an important feature in heterogeneous

internetworks, poses several potential problems, which we will explore in this thesis.
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In this thesis the problem of fragmentation and reassembly of packets in the Internet is

analyzed in details. In fact, our main concern is to modify the reassembly process so that

the Internet available capacity is used optimally.

1.3. Research Objectives

This research concentrates on the analysis of Internet fragmentation /reassembly process

and its optimization. In particular, we will do the following:

Optimize packet size and maximize the throughput. A host sending datagrams

much smaller than the Path MTU allows is wasting Internet resources and

throughput.

. Avoid network congestion and minimize end-to-end delay.

. Minimize random packet loss. In fact, packets often arrive at routers in bursts,

where they are queued. Periodically a burst of packets fills up a queue and the

router drops packets that arrive while this queue is full.

. Improve network security.

1.4. Approach

The current Internet does not provide any form of guarantee on packet delay or loss.

Packets may be dropped or delayed at routers along a source to destination path as a

result of network congestion. The approach considered in this thesis for handling such

impairments is to adapt queues behavior in response to changing network conditions

(path and bandwidth). In fact, our main task is to establish and maintain high throughput

over a path or a distribution tree, independent of how the path or tree was created.

In fact, we are tackling problems in the existing Internet by using intelligent routers

spread at key access and interchange points to "tunnel" traffic through the Internet. These

intelligent routers can improve performance and availability by aggregating traffic

information, shaping bursty traffic flows, and using more efficient routes.
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First, we suggest (whenever possible) the usage of large packets instead of many small

packets to carry a given amount of data, because much of the cost of communication is

per packet rather than per byte. Throughput can increase almost linearly with packet size

over a wide range of sizes.

Second, we suggest the aggregation of packets at the intelligent routers. Hop-by-hop

aggregation will be used since the packet scheduling state will be significantly reduced

with this method. In fact, only a few aggregates exist for each next hop. The solution

proposed involves the aggregation of several end-to-end packets that cross an

"aggregation region" and share common routers into one larger datagram. We define an

"aggregation region" as a contiguous set of systems capable of performing aggregation

along any possible route through this contiguous set. Routers that have at least one

interface in the region can aggregate, deaggregate, or they are between an aggregator and

a deaggregator.

Thisinethod would be of particular benefit for high-bandwidth large-propagation-delay

TCP connections, such as those over satellite links. In fact, when a normal packet arrives

at its destination, a receiver employing delayed acknowledgements (ACK) [Bra89] is

forced to wait for a timeout before generating an ACK. With an aggregated packet of at

least two packets, the receiver will generate an ACK after the data segment arrives. This

eliminates the wait on the timeout (often up to 200 ms). Another benefit of the

aggregation technique is the reduction in the level of packet loss rate at routers since it

reduces the overall number of packets in the network in general and in the queues in

particular.

Third, we will assume that Intranet fragmentation is used in the Internet. Intranet

fragmentation provides a mechanism for deciding the actual packet size as late as

possible. It especially allows protocols to avoid choosing to send small datagrams until

absolutely necessary. Protocols can choose large segment sizes to take advantage of the

large MTU in a local network, and rely on fragmentation at routers to send the segments
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through networks with small MTUs when needed. If datagrams must traverse a route

consisting of several high MTU links followed by a low MTU link, by delaying the use

of small packets in the queues for aggregation, intranet fragmentation allows the use of

large packets on the initial high MTU links, and thus uses those links more efficiently.

1.5 Main Results

Due to the network's complexity, simulation models are e used to analyze the

performance of our suggested techniques. These models characterize how different facets

of the network behave, and how proposed changes might affect the network's different

properties. Our simulation shows that Hop-by-Hop Flow Control with Packet

Aggregation HFCPA ouperforms the current TCP/IP in throughput, packet loss and deals

better with the Internet traffic in case of congestion. (See chapter 5 for more details).

1.6 Thesis Organization

The thesis is made of six chapters. In chapter II, we examine the behavior of the TCP

and IP protocols concerning fragmentation, reassembly, routing, security, and congestion.

In chapter III, we introduce our new HFCPA protocol by examining the encapsulation

process, optimal path, security, the aggregation and disaggregation concept. Chapter IV

highlights the queuing management and describes the HFCPA queue. Chapter V

discusses the results of the simulation implementing the new protocol. The thesis is

finally concluded with a discussion of our results and provides some open questions for

further research.
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CHAPTER 2

Background and Motivation

2.1 INTRODUCTION

The problems dealt with in this thesis arise in TCP/IP networks. In particular, we are

focusing on the problems of fragmentation, reassembly and flow control in the Internet.

In section 2.2 of this introductory chapter, we provide some necessary definitions. We

then provide (in sections 2.3, 2.4), the necessary background on TCP/IP protocols, where

an example that describes the fragmentation procces in the Internet is also given.

In section 2.5 the main performance evaluation results of TCP protocol are described

briefly. Finally, in section 2.6, a brief discussion on what motivated our research is given.

2.2 DEFINITIONS

2.2.1 Maximum Transmission Unit (MTU)

The MTU is a parameter that limits the size of the largest IP datagram that may be

handled. IP datagrams arriving at a router that are larger than its MTU are each split into

two or more fragments. The minimum acceptable interface MTU is 28 bytes: 20 bytes for

the IP (fragment) header, plus 8 bytes of data.

2.2.2 Tunnel

We define a tunnel as an alternate route of the original routing behavior. Tunnels are

needed to bypass routing failures or to avoid congested routes. The tunnel "entry" router

put an outer IP header in front of the original IP header of each packet, giving all

intermediate routers an illusion that packets are delivered between the router source and

destination addresses. When the encapsulated packet reaches the tunnel exit point, the

outer header is thrown away and the packet is further routed towards its final destination.
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2.3 TCP / IP

The Internet protocols are very popular open-system (nonproprietary) protocol suite

because they can be used to communicate across any set of interconnected networks and

are equally well suited for LAN and WAN communications. The Internet protocols

consist of a suite of communication protocols, of which the two best known are

Transmission Control Protocol (TCP) and the Internet Protocol (IP). The Internet

protocol suite not includes lower-layer protocols (such as TCP and IP), but it also

specifies common applications such as electronic mail, terminal emulation and file

transfer.

The following diagram illustrates the place of the Internet Protocol (IP) in the protocol

hierarchy:

I Telnet I I FTP I I SNMP I

Internet Protocol & ICMP

Local Network Protocol

Protocol Relationships

The function or purpose of Internet Protocol is to move datagrams through an

interconnected set of networks. This process is done by passing the datagrams from one

network to another until the destination is reached. The TCP/IP layer architecture does

not mean that higher layers must be kept ignorant of the IP issues. In fact, optimal

performance depends on the cooperation between layers: for example, layers above IP

16



should be involved in routing and fragmentation scheme, in addition that the TCP layer

should not send datagrams in an aggressive way if the there is a congested route along the

path.

Conceptual Layer
	

Objects Passed
Between Layers

Application
Messages or Streams

Transport

Transport Protocol Packets

Internet

IP Datagrams

Network Interface

4	 Network-Specific Frames

Hardware

Figure]: The 4 conceptual layers of TCP/IP software above
the hardware layer, and the form of objects passed between layers.

Next, we will give an overview of the IP and TCP protocols, in addition to their main

functions in the current Internet architecture.

2.4 INTERNET PROTOCOL (IP)

The Internet protocol (IP) implements two basic functions: routing and fragmentation. In

fact, IP is responsible for transmitting blocks of data called datagrams from a source to a

destination identified by an IP address in the IP header, without a prior notification of the

routed path. It is also the responsibility of IP to fragment and reassemble datagrams when

necessary. However, IP is not highly reliable since there is no sequencing, flow control

or other services found in other host-to-host protocols.
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2.4.1 IP Header Fields

Next, we will give a brief description of some of the IP header fields that will be used in

this thesis.

01234567890123456789012345678901

Version IHL Type of Service 	 Total Length

Identification	 Flagsj	 Fragment Offset

Time to Live	 Protocol	 Header Checksum

Source Address

Destination Address

Options	 Padding

Figure2: Internet Datagrani Header

The main fields are:

Time to Live Field: Every packet in the Internet is given an amount of time to

reach its destination, which is set by the sender and reduced on every hop If the

time reaches zero before reaching the destination, the datagram is destroyed, and

is resent again.

. Ident(fication Field: this field contains a unique integer that identified the

datagram. It allows the destination to know which arriving fragments belong to

which datagrams since each fragment has the same identification number as the

other fragment belonging to the same datagram. In other words, it is used to

distinguish the fragments of one datagram from those of another.

The fragment-offset field tells the receiver the position of a fragment in the

original datagram.

. The More Fragments flag bit (IvIIF) is set if the datagram is not the last fragment.

18



We should notice that an unfragmented datagram has zero values in its all fragmentation

-	 information fields (i.e. MF = 0, fragment offset = 0).

2.4.2 Internet Routing

The Internet is partitioned into a number of autonomous systems (AS's), where routers

within an AS route packets according to an interior gateway protocol (IGP); IGP is used

for selecting paths within an AS, and each AS is free to use its own metrics for selecting

these internal routes. When leaving one AS, a packet is managed by a separate Exterior

Gateway Protocol (EGP) that is responsible for the communication to all other AS. A

newer version of EGP, called Border Gateway Protocol (BGP) [CHS99] does not

necessarily select routes by minimizing some global metric such as hop count or delay.

Instead, the network administrators at each AS define a "routing policy" that selects

routes to favor certain AS.

2.4.3 Fragmentation and Reassembly Process

In thi paragraph, we explain why Internet fragmentation is needed. In fact, when a TCP

connection is established between two hosts, these two hosts will negotiate abOut the

maximum datagram size they can handle. The smaller of these numbers is used for the

rest of the connection. The most serious problem is that the two ends don't necessarily

know about all of the steps in between. For example, when sending data between site A

and site B, it is likely that both computers will be on Ethernets. Thus they will both be

prepared to handle 1500-octet datagrams. However the connection will at some point end

up going over a smaller MTU network, that cannot handle packets of that size. For this

reason, fragmentation is needed. In this case, the Ethernet packets are usually split into

pieces that fit the Internet.

To be on the safe side and to minimize the fragmentation cost, TCP/IP implementors

suggested a 576-byte datagram size to be used along the Internet. This datagram size will

be divided for 20 bytes for a TCP header (on average), 20 bytes for an IP header (on

average) and 536 bytes for data. This conservative strategy is used to avoid any further

fragmentation at intermediary nodes, and also to avoid the bugs of the new
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implementation of reassembly code. Thus, 576 bytes is a "safe" size, which every

implementation must support [RFC-791].

2.4.3.1 Fragmentation

Host	 Host
A	 B

Net . 1	 Net 3
MTU=1 500

Net .2	 MTU=1500qR	 MTU=	
R2

Figzire3: Case of occuringfragmentation

As mentioned earlier, datagrams may need to traverse a network whose maximum packet

size is smaller than the size of the datagram. To overcome this difficulty, a fragmentation

mechanism is provided in the Internet protocol.

To fragment a long Internet datagram, an Internet protocol module creates two new

Internet datagrams and copies the contents of the Internet header fields from the long

datagram into both new Internet headers. The data of the long datagram is divided into

two portions on an 8 octet (64 bit). If the second fragment might not be multiple of 8, the

first must be. We refer to the number of 8 octet blocks in the first portion as the Number

of Fragment Blocks (NFB). The first portion of the data is placed in the first new Internet

datagram, and the total length field is set to the length of the first datagram. The more-

fragments flag is set to one. The second portion of the data is placed in the second new

Internet datagram, and the total length field is set to the length of the second datagram.

The more-fragments flag carries the same value as the long datagram. The fragment

offset field of the second new Internet datagram is set to the value of that field in the long

datagram plus NFB.This procedure can be generalized for an n-way split, rather than the

two-way split described above.
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It is important to note that an IP datagram can be marked "don't fragment". So, if this bit

is set, the datagram is not to be fragmented under any circumstances. If a datagram

marked don't fragment cannot be delivered to its destination without fragmenting it, it is

discarded, and is resent again.

2.4.3.2 Reassembly

The reassembly process is responsible to group the fragment packets at the destination

host. It requires four basic fields in the Internet header to be able to resequence the

fragments: Identification, source, destination, and protocol fields. The fragments having

the same identification correspond to the same packet; Fragment with offset zero will be

the first fragment, and the last fragment will have the more-fragments flag set to zero.

The reassembly resources consist of a data buffer, a header buffer, a fragment block bit

table, a total data length field, and a timer. The data from the fragment is placed in the

data buffer according to its fragment offset and length, and bits are set in the fragment

block bit table corresponding to the fragment blocks received.

If this is the first fragment (that is the fragment offset is zero) this header is placed in the

header buffer. If this is the last fragment (that is the more fragments field is zero) the

total data length is computed. If this fragment completes the datagram (tested by

checking the bits set in the fragment block table), then the datagram is sent to the next

step in datagram processing; otherwise the timer is set to the maximum of the current

timer value and the value of the time to live field from this fragment; If the timer runs

out, the all reassembly resources for this buffer identifier are released. The maximum this

timer value could reach is the maximum time to live (approximately 4.25 minutes). The

current recommendation for the initial timer setting is 15 seconds.

In the case that two or more fragments contain the same data either identically or through

a partial overlap, this procedure will use the more recently arrived copy in the data buffer

and datagram delivered.
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2.4.4 Example on Fragmentation and Reassembly

In this example, we show first an average size Internet datagram (452 data octets), then

two internet fragments that might result from the fragmentation of this datagram if the

maximum transmission size allowed is 280 octets.

01234567890123456789012345678901

Ver= 4 JIHL= 5 JTYPe of Service	 Total Length = 472

Identification = 111	 Flg=0	 Fragment Offset = 0

Time = 123	 Protocol = 6	 header checksum

source address

destination address

data

data

data

data

Figure4: Internet Datagrcinz

Now the first fragment that results from splitting the diagram after 256 data octets has the

following format:

01234567890123456789012345678901

Ver= 4 IHL= 5 Type of Service 	 Total Length = 276

Identification = 111	 Flg=1	 Fragment Offset = 0

Time = 119	 Protocol = 6	 Header Checksum

source address

destination address

data

data

data

Figure5: Internet Fragment No. 1
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And the second fragment has the following format:

01234567890123456789012345678901

Ver= 4 fIHL= 5 JType of Service	 Total Length = 216

Identification = 111 	 Flg=0 Fragment Offset = 32

Time = 119	 Protocol = 6	 Header Checksum

source address

destination address

data

data

data

data

Figure6: Internet Fragment No.2

2.4.5 Connectionless Unreliable IP

It is important to note that the Internet protocol is defined as unreliable, connectionless

packet delivery system. It is connectionless since each packet in the Internet is treated

independently, unrelated to any other Internet datagram. And, it is unreliable since

delivery is not guaranteed; i.e the packets may be lost, duplicated, arrived out of order,

without the notice of the sender nor the receiver.

Data is injected in the Internet as a sequence of datagrams where each datagram is sent to

its destination independent of the others. For example, suppose you want to transfer a file

of size 45000 bytes. Most networks cannot handle a 45000 bytes datagram. So the

protocols will break this up into something like 90 500-bytes datagrams. Each of these

datagrams will be sent to the other end. At that point, they will be put back together into

the file of 45000-bytes.
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However, while those datagrams are in transit, the network doesn't know that there is any

connection between them. It is perfectly possible that datagram 14 will actually arrive

before datagram 13. It is also possible that somewhere in the network, an error will occur,

and some datagram won't get through at all. In that case, that datagram has to be sent

again.

2.5 Transmission Control Protocol (TCP)

If IP protocol is responsible only for routing and fragmentation, TCP is the core of the

Internet. In fact, in addition to ensuring that all the data sent from the source reaches its

destination, TCP is responsible for deciding when and how fast to send data and this is a

hard task to perform since it should adapt to the available bandwidth in different

subnetworks across the Internet. Slowing down the sending rate when a congestion

occurs and speeding up when the bandwidth increases are the major issues of the TCP

protocol. As a result, over the last fifteen years TCP has grown increasingly complex.

2.5.1 The Mechanics of TCIP

To implement its service, TCP gives each byte in the stream a unique 32-bit sejuence

number. Then it divides the sequence of bytes into segments of some maximum segment

size (MSS) which is typically 536 bytes [TMW97]. Each TCP segment is placed in an IP

packet and then sent to the receiver.

Before sending any data, the two end-points (or hosts) must establish a connection

between themselves by a three-way hand-shake (see figure 7 below). First, the connection

initiator sends a "synchronize" sequence number segment (SYN) with its initial sequence

number to the other side. Then the other side responds by sending a segment with an

acknowledgment ACK for this sequence number. Finally, the initiator sends an ACK

segment acknowledging the other side's initial sequence number.
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Send Packet 1

Receive ACK 1
Send Packet 2

Receive ACK 2

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

Events At Sender Site
	

Network Messages	 Events At Receiver Site

Figure 7. TCP model 3-way Hand-Shake

Once the connection has been established, the sender begins sending data segments.

When the receiver receives a data segment, it sends back an acknowledgment that

specifies the highest in-sequence number that it has received. The sender then knows that

every byte up to that sequence number has been received. For example, if a receiver

receives segments 1 and 2 and 4, it will acknowledge segment 2, since there is a hole

where segment 3 should be. In general, not every packet is acknowledged upon its

receipt. However, a "delayed ACK" is usually used upon receipt of the second segment

and sometimes on the fourth segment.

As the sender is sending data segments, it must decide when and how fast to send them.

For this, TCP uses a window based scheme, The TCP sender always sends as much data

as its window allows, and then waits for an acknowledgment.

Moreover, after an occurrence of a congestion, TCP uses a "Slow Start" mode where

TCP sets its windows to one MSS and increases by one MSS for each acknowledgment

segment received. To avoid increasing the window size too quickly, TCP enters a
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"congestion avoidance" phase where it increases its window size by one only if all

segments in the window have been acknowledged [Ste97, RFC2581].

Finally, during a normal TCP connection, we can observe the following TCP aspects:

• The detection of lost packets: In fact, a lost packet is usually a dropped packet

since it arrives at a router faster than it can leave. Since TCP assumes that every

loss is a congestion loss and reduces its transmission rate in a direct way, TCP

throughput is very able to drop. For a fixed loss rate, the throughput goes down as

the inverse square of the bandwidth-delay product [MIKS98].

The creation of burst traffic: This is because data transmission in TCP is normally

acknowledged with every packet. If the packets have small sizes this will create

burstiness of traffic. Also, TCP slow start is very bursty due to the doubling of

the window sizes every round-trip time.

2.5.2 TCP Model

We can easily estimate TCP's performance by making some major simplifications

[MSM97].

Let p be the constant probability of a random packet loss; therefore, the link delivers

approximately i/p consecutive packets followed by one drop.

Let the maximum value of the window be W packets. Then by the definition of

Congestion Avoidance, we know that the minimum window must be

W12 packets.

If the receiver is acknowledging every segment, then the window opens by one segment

per round trip, so each cycle must be W/2 round trips, or

RTT * W/2 seconds.

The total data delivered is
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"I	 W )	 3	 2

t zJ + ii...'.	 = 8	
packets per cycle.

By assumption, each cycle also delivers Up packets. Solving for W we get:

W=
rilp-

Substitute W into the bandwidth equation below:

Data per cycle - MSS x
BW=	

W MSS/p
-

Time per cycle RTT
	 - RTT Il

2	 1f3p

	Collect the constants in one term, C =	 then we have:

BW=MC
RTT/	 Eq(1)

where:

MSS is the maximum segment size, RTT is the round trip time or delay, p the constant

probability of a random packet loss and C a constant depending on the window

mechanism.

Other forms of this derivation have been published in [F1o91,LM94]

2.5.2.1	 Example

Suppose a user needs to move 1 Gigabyte of data in 2 hours. This requires a sustained

transfer rate of about 1 Mb/s. The question will arise here is that what loss rate does the

user need to meet this requirement?

Assuming C < 1:

(MSS 
'2

p <I	 I	 Eq(2)
BW*RTT)
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The model predicts that the user needs a loss rate better than 0.18 % (i.e. p = 0.0018) with

536 byte packets and aRTT equal to 100 ms. At 1460 bytes, the maximum loss rate rises

to 1.4%. If the user upgrades to FDDI and uses 4312 byte packets, Equation 2 suggests

that the network only needs to have less than 11% loss.

2.6 RESEARCH MOTIVATION

Congestion collapse observed in the mid 1980's is the primarily result of lack of attention

of packet forwarding. Van Jacobson was the first to treat this problem in 1988. His work

on causing TCP connections to back off during congestion i.e. dropping packets from the

network, was a revolution on TCP congestion avoidance algorithm. However, that is not

the end of the story. Considerable research has been done on Internet dynamics since

1988, and the Internet has grown. It has become clear that the TCP congestion avoidance

mechanisms [RFC2581], while necessary and powerful, are not sufficient to provide

good service in all circumstances.

Another form of congestion collapse occurs due to undelivered packets. Dropping

packets before reaching their destination is probably the largest unresolved danger in the

Internet today. Therefore, these packets waste network bandwidth and make other

packets also to be delayed or dropped [FKS98]. Even more destructive would be best-

effort applications that increase their sending rate in response to an increased packet drop

rate.

This has motivated us to the development of a new congestion control mechanism which

is based on a combination of aggregation mechanism together with intranet

fragmentation. The aggregation of several small packets into one larger packet will

decrease the number of data and acknowledgement packets in the network and will have

the following effects:

. Decrease the congestion in the network and in the routers,

. Minimise the packet loss rate,

Improve the throughput of the system.
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CHAPTER 3

HFCPA Protocol

3.1 INTRODUCTION

The basic architecture of the Internet consists of communication nodes connected to each

other via a wide area communication network (figure 8).

3/7

Internet

node

Figure8: Internet

In the Internet, nodes from different networks are usually connected by routers (or

gateways). The ftinction of a router is to provide Internet protocol translation, to establish

a connection between networks, and to perform a number of other functions that permit

computers to communicate, independent of hardware differences.

It has not been clear whether the idea of providing routers with some additional functions

(such as aggregation) could be useful for optimizing the throughput and improving the

delay performance. Therefore, the problem of whether routers should have some

intermediary functions in the flow control issue (which is normally implemented at the

end-nodes,) will be addressed in this thesis.
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Figure9: Utilisation of Routers

In this thesis we introduce a novel flow control strategy that is hop-by-hop flow control

vith packet aggregation. The aggregation procedure is performed at the routers where

every batch of several packets could be treated as a single new packet and be sent to

another router site, instead of sending the constituent smaller packets separately. This can

lead to a lower traffic in the following stage of the network and therefore to a lower

congestion, less packet drop at routers and finally higher throughput in the network:

The proposed technique at routers is adaptive by nature since with any changes in

network parameters (such as the packets' arrival rate, the network service rate and the

destination node service rate) the aggregation rate and the size of the aggregated packet

can be changed to minimize the system response time and to optimize the throughput.

Some other functions will be required at the routers to enable the successful

implementation of our aggregation techniques, namely encapsulation-decapsulation and

intranet fragmentation when neccesary. Also, in this thesis we will suggest the use of four

HFCPA messages to help implementating the flow control mechanism.

3.2 REQUIREMENTS

As the Internet evolves, there is a growing need to support more sophisticated services

(e.g., traffic management, QoS) than the traditional best effort service. Therefore, two

30



classes of solutions appeared: those maintaining the stateless property of the original IP

architecture, and those requiring a new stateflul architecture. Examples of stateless

solutions are RED for congestion control [FJ93] and Differentiated Service (Diffserv) for

Q0S. The corresponding examples of stateful solutions are Fair Queuing {DKS89} for

congestion control and Integrated Service (Intserv) for QoS. In general, stateflul solutions

can provide more powerful and flexible services, while stateless solutions have higher

flexibility and utilization, and are more scalable and robust than their stateflil

counterparts.

The question we want to answer is: is it possible to have the best of the two solutions:

Powerful as stateful networks, while utilizing algorithms as scalable and robust as those

used in stateless networks?

While we cannot answer directly this question, we can answer it from different aspects.

Remember that path information is not revealed in the current Internet; it is up to the TCP

protocol to investigate about network conditions and the presence of congestion. In our

HFCPA protocol, this problem is alleviated since we assume that messages are delivered

along the Internet path to reveal the specific information about the link.

In fact, the HFCPA protocol considers the Internet as subsequent tunnels where edge

routers are responsible for the intra-domain of the tunnel. Edge routers communicate

with each other through Path and ACK messages (which will be explained later on in this

chapter) and perform the corresponding aggregation, encapsulation and decapsulation of

the packets. However, core routers do not; they are intermediate routers to pass path

information messages and data packets.

Using this hop-by-hop architecture will prevent from congestion collapse and will

optimize network performance regarding throughput, delay and loss. The process of

aggregation and reassembly of end-to-end packets will be discussed in details. Next, we

will introduce the encapsulation process, the choice of the optimal path in addition to the

need of reassembly process in routers for security reasons.
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3.3 ENCAPSULATION

Encapsulation is a process of changing the normal route of an IP datagrams by delivering

them to an intermediate destination that is not selected on the IP Destination Address

field in the original IP header [RFC1241]. Once the encapsulated datagram arrives at this

intermediate destination node, it is decapsulated, yielding the original ]IP datagram, which

is then delivered to the destination indicated by the original Destination Address field.

This use of encapsulation and decapsulation of a datagram is frequently referred to as

"tunneling" the datagram, and the encapsulator and decapsulator are then considered to be

the "endpoints" of the tunnel.

In the most general tunneling case we have the following flow:

Source—* Encapsulator—o,. Decapsulator—* Destination

The encapsulator node is considered the "entry point" of the tunnel, and the decapsulator

node is considered the "exit point" of the tunnel. There, in general, may be multiple

source-destination pairs using the same tunnel between the encapsulator and

decapsulator.

3.3.1 Encapsulation Technique: IP-in-IP Encapsulation

IP-in-IP encapsulation technique is fairly simple [RFC1853]. An outer IP header is

added before the original IP header. Other headers for the path, such as security headers

specific to the tunnel configuration are inserted between them[RFC2003].

Outer IP Header

Tunnel Headers

	

IP Header	 I	 Inner IP Header

	

IP Payload	
I	 I	

IP Payload

FigiirelO: Encapsulation
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The format of IP headers is described in [RFC-791] and in chapter 2 of this thesis. Some

of the original IP header fields are copied to the new outer lIP header and some are not, as

described next:

• Type Of Service field is copied from the inner IP header, so that if the user was

expecting a given level of service, then the tunnel should provide the same

service. However, some tunnels may be constructed specifically to provide a

different level of service.

• Don't Fragment field is not copied from the inner IP header. Since no internal

router is allowed to fragment packets. It is the encapsulator that has permission to

fragment packets.

• More Fragments flag is usually set as required when fragmenting. Since

fragmentation is not allowed inside the tunnel, the flag is not copied to the outer

IP header.

• Time To Live field ensures that long unanticipated tunnels do not interrupt the

flow of datagrams between endpoints. When encapsulating a datagram, the TTL

in the inner 1P header is decremented by one if the tunneling process will forward

the datagram. The TTL in the inner IP header is not changed when decapsulating.

If, after decapsulation, the inner datagram has TTL = 0, the decapsulator must

discard the datagram. If, after decapsulation, the decapsulator forwards the

datagram to one of its network interfaces, it will decrement the TTL as a result of

doing normal IP forwarding.

• Source field contains an IP address associated with the sender of the datagram.

• Destination field contains an IP address of the tunnel decapsulator.

• Options field is not copied from the inner IP header. However, new options

particular to the path may be added. Other options are hidden within the tunnel.
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Field -
	

Mapping

Version
Header Length
Precedence
Q0S bits
Total Length
Identification
Don't Fragment Bit
More Fragments Bit
Fragment Offset
Time to Live
Protocol
Header Checksum
Source Address
Destination Address
Security Option

Ignore
Ignore
Ignore
Copy
Copy
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore
Ignore

Copy

Table 1. Surnrnaiy of IP Header Mappings

We should note the following:

The protocol field in the new IP header should be filled with the protocol rumber

of the encapsulation protocol.

• The packet offset for each packet encapsulated is usually required along with the

source address of the Encapsulator.

• The destination address becomes the IP address of the Decapsulator as found in

the encapsulation table.

3.3.2 Implementation

We treat the two tunnel end-points as a source and destination* host with Rnt y as the

source address and Rexjt as the destination address and as source and destination

ports.

However we could encapsulate the qualified packets not only with an IP header but also

with a TCP header. This allows intermediate routers to use standard filtering without

knowing the existence of tunnels.
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To simplify the implementation, we decided that all data packets using aggregation are

encapsulated in (IP+TCP) header. The source port for the TCP header is chosen by the

tunnel entry point Rentry when it establishes the initial Path message for the new tunnel

session. The destination TCP port used in tunnel sessions is a well known port,

established by the Path message.

We should note that all the packets that reach one of the tunnel end-points are

encapsulated before being sent to the other side. Hence, when this modified

IP-in-(IP+TCP) encapsulation model is used, two main issues are to be considered:

• First, the end-to-end packets become invisible to intermediate routers residing

between the tunnel end-points.

Second, the usual filters can be used, since data packets are also encapsulated

with an outer (IP+TCP) header, making the original I? (and T.JDP or TCP)

header(s) invisible to intermediate routes between the two tunnel end points.

3.4 OPTIMAL PATH

In this paragraph, we will give a brief description on the routing techniques used in the

Internet, and propose an optimal path within the tunnel to optimize our objective that is to

maximize throughput and to minimize packet loss.

3.4.1 Optimal Path vs Shortest Path

The relationship between path selection and end-to-end performance on the Internet has

not been the subject of much study. In fact, Internet routing concerns about providing

good (not optimum) end-to-end performance, and minimizing cost. Recent studies show

that, at any time t, there exists an alternate path that performs better than the Internet

shortest path found using OSPF "shortest path" routing algorithm.

One optimal path method was proposed by Bonuccelli [GP98]. Bonuccelli aimed to find

a path that minimizes the number of fragments C; and, this path should be no longer than
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a given length. He studied the relation between C and the bottleneck value along a path

and proposed a fast routing algorithm, called MAXBOTTLENECK, to find a maximum

bottleneck path. This path turns out to be optimum with respect to the objective function

C only if some conditions on the network MIPS's are met.

Seeking sub-optimal solutions in the network with respect to C, means that the first path

is the path along which the minimum number of fragments is produced and each

subsequent path gives an equal or greater value of C than the previous one. When a new

path is found, its length is compared to the length of the paths already generated in order

to test its possible membership to be the best path with respect to the objective function.

At any time there are many paths through the Internet connecting any two hosts. Some of

these paths have higher bandwidth than others, some have lower propagation delay, and

others see less congestion. So, end-to-end performance is limited by the path quality

along a given path. In other words, if packets sent over a path are delayed or lost this

directly reduces the throughput that a host can expect to obtain. In this case, an optimal

path is suggested, since the difference between the default path and the alternate paths is

largely seen.

Also Vern Paxon [Pax97] examined several existing Internet routing algorithms and

found that there are alternates with significantly improved measures of quality. In fact, he

found the following:

. For 30 to 55% of the paths measured, there is an alternate path through one or

more additional hosts resulting in a smaller round-trip time.

. The best alternate has 50% better latency.

75 to 85% of the paths have alternates with a lower loss rate.

70 to 80% of the paths have alternates with improved bandwidth.

Consequently, the presence of superior alternate paths is caused by avoiding parts of the

Internet with particularly poor quality and more specifically avoiding congestion, rather

than by minimizing propagation delay.
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3.4.3 Proposed Algorithm

Since the I-IFCPA protocol keeps the communication between the end tunnels, the

aggregator can select the, path inside the tunnel through different criteria:

One form of selection could be by implementing the algorithm of "the shortest path in the

maximum flow" concerning the desired bandwidth, for instance.

Another form is by selecting the highest PMTU in the tunnel. Therefore, routers should

adapt to the network conditions before forwarding packets inside the tunnel to reach the

maximum possible benefit.

3.5 SECURITY

The Internet has long suffered from several attacks that usually bypass Internet firewalls.

Most of these attacks were caused not by the way fragmentation is done but rather

because of the way datagrams are reassembled.

As previously stated, when datagrams are fragmented into packets, the header portion of

the packet remains intact except for the modification of the DF bit and the filling in of an

offset field in the IP header that indicates at which byte in the whole datagram the current

packet is supposed to start. In reassembly, the IP reassembler creates a temporary packet

with the fragmented part of the datagram in place and adds incoming fragments by

placing their data fields at the specified offsets within the datagram being reassembled.

Once the whole datagram is reassembled, it is processed as if it came in as a single

packet.

According to the IP protocol, fragmented packets are to be reassembled at the destination

host. This means that they are not supposed to be reassembled at intermediate sites such

as firewalls or routers. This decision was made to prevent repeated reassembly and

refragmentation in intermediate networks; so, when routers and firewalls followed the

rules, they found a strange problem[RFC 1858].

In fact, the way firewalls and routers block specific services (such as telnet) while

allowing other services (such as the world wide web http service) is by looking into the
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JP packet to determine which Transfer Control Protocol (TCP) port is being used. If the

port corresponds to 80, the datagram is destined for http service, while port 23 is used for

telnet. In normal datagrams, this works fine. But suppose we didn't follow the rules for

fragmentation and created improper fragmented packets. Here's what the result could be:

Create an initial packet that claims to be the first fragment of a multi-packet

datagram. Specify TCP port 80 in the TCP header so it looks like a datagram going to

hap service, which is allowed to pass the firewall.

The firewall passes the packet to the host under attack and passes the other packet

fragments in order to allow the destination host to reassemble the packet.

One of the subsequent packets has an offset of 1 that causes the reassembler to

overwrite the initial part of the 1P packet. This is the part of the IP packet that

specifies the TCP port. The attacker overwrites the 1P port number that was originally

80 with a new port number such as 23, and is now granted telnet access to the host

under attack despite the firewall that is supposed to block the service.

In this case, the attacker lies about the port this datagram is destined for, and the packet

filters and firewalls believe the lie. Since a datagram can be made to pass where it is not

supposed to go, it may be able to enter a trusted network and act as if it were a trusted

datagram. This can be exploited to corrupt information. If the firewall can be fooled into

allowing ICMP or similar packets to pass, this mechanism can also be used to deny

services. Once an attacker has hacked a host, the same mechanism may be repeated in

that host to send outbound packets past the firewall even though they are not supposed to

be passed.

Due to the fact that we cannot refuse to allow fragmentation, we have to live with it. The

question is how? This problem was being exercised and many vendors have resolved the

problem by reassembling fragments in the router before making access control decisions

[Coh96]; so, we can conclude that fragments should be reassembled in routers prior to

their arrival to their destination.
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3.6 ARCHITECTURE

The Internet nowadays is suffering from the low throughput of packets delivered from

their corresponding source to their ultimate destination; because packets of 576-byte are

routed in networks where the MTU is much higher and where the Bit Error Rate (BER) is

very low.

So, our main concern is to benefit from these high MTU networks. In fact, we will

aggregate packets on a per-hop basis rather than end-to-end in order to improve the

effectiveness of the links and to avoid the scalability problems in core routers. Per-hop

basis leads to a network size reduction. So, when reducing the size of the network (by

using tunnels), the congestion or the bottleneck will be reduced and the throughput will

be increased.

Backbone Network
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Figure]]: Interconnection of autonomous systems to the backbone

The solution suggested in this thesis has the following design principles or features:

. Each router can operate based on its own aggregation policy. Routers aggregate

on a next-hop basis (disaggregator) when sufficient classified packets with
11 similar" requirements are met.

. When a router decides to aggregate datagrams, it uses HFCPA protocol elaborated

later to establish and maintain the aggregated packet (PATH and ACK messages

are required within the tunnel.

• Packets are scheduled before being forwarded
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• Classified packets are scheduled according to the aggregate's characteristics

The larger the degree of aggregation at the tunnel end-points the larger is the gain in the

network backbone routers. At one end of the tunnel, we can achieve the largest amount of

aggregation possible by mapping all end-to-end packets of the same class or criteria to a

single aggregated datagram. At the opposite end of the tunnel, we have individual

end-to-end packets getting mapped to the other tunnel, thus achieving no reduction in the

intermediate routers. In this case intermediate routers in the tunnel only see one

aggregated packet per tunnel per predifined class, and due to encapsulation they are

invisible to intermediate routers in the tunnel and therefore require no processing.

This New architecture is to be discussed in the following paragraphs, introducing intranet

fragmentation, encapsulation and aggregation within the tunnel.
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3.7 INTRANET FRAGMENTATION

Since our BFCPA architecture subdivides the Internet into aggregating regions, we

advise to use the intra-net fragmentation inside the tunnels. Since fragmentation cannot

be avoided, careful design can make fragmentation normally unnecessary and can avert

its most serious drawbacks. Therefore, intranet fragmentation or transparent

fragmentation reduces and sometimes eliminates-the dangers of Internet fragmentation.
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Since all datagrams are tunneled and sent to a unique next hop router for reassembly or

aggregation, two benefits are obtained:

1. Fragment loss is reduced since the protocol between the two edge routers supports

acknowledgments of individual fragments, and the end-hosts are willing to accept

occasional lost or mis-sequenced datagrams.

2. If the (reassembled) datagram subsequently traverses a network with a larger MTU, it

makes more efficient use of that network than a collection of smaller fragments.

There is little value in the ability to send fragments of one datagram along different

routes within the tunnel, and reassembly by routers should not be prohibitively expensive.

Main memory sizes and costs are improving so rapidly that buffer space should no longer

be considered the limiting resource; the ability to record path information ---- not only

about MTU but also about congestion, bandwidth, etc.---- is so valuable that it will be

presented in the Path Message section.

Aggregators must know the MTU of the tunnel. In particular, it is much better to

fragment the original datagram when encapsulating, than to allow the encapsulated

datagram to be fragmented. Fragmenting the original datagram can be done by the

encapsulator without special buffer requirements and without the need to keep

reassembly state in the decapsulator. By contrast, if the encapsulated datagram is

fragmented, then the decapsulator must reassemble the fragmented (encapsulated)

datagram before decapsulating it, requiring reassembly state and buffer space within the

decapsulator.

However, no fragmentation is allowed within the tunnel. In case it will occur, an error

message will be generated to the encapsulator.

Concerning the reassembly process, in the HFCPA protocol, a destination host may still

have to perform reassembly, since the MTU of the last-hop link may be smaller than the

datagram size; this means that most of the problems associated with inter-network

fragmentation would still be present, although to a lesser degree.

42



Since transparent fragmentation cannot entirely neglect the use of inter-network

fragmentation, there must be a way to recover from inappropriate fragmentation. The

receiving host can detect the problem, and should notify the sending host via an IMP

message [RFC792].

3.8 AGGREGATION

We define an "aggregating region" as a set of routers for which end-to-end packets

arriving to that router in the set would be aggregated and encapsulated before traversing

one or more inside routers before finally traversing an outside interface. Such an end-to-

end packet is said to have crossed the aggregating region, or what is previously defined as

"tunnel".

The "aggregating" router is the first router that processes the end-to-end packet as it

enters the aggregation region. The "disaggregating" router is the last router to process the

end-to-end Path as it leaves the aggregation region.

3.8.1 Implementation

The following assumptions are made to enable the implementation of the aggregation

method:

1. A region, called an aggregating or encapsulating region, will aggregate packets

and will be responsible of all the mechanisms implemented in this region.

2. The choice to aggregate and the mechanism used to do so is an intra-domain

issue, not an inter-domain issue and therefore there can be variability across

different regions.

3. Data packets are classified, aggregated and encapsulated on entry to the

aggregating region; and, the aggregator does not determine which packets can

use the aggregation process, but merely specifies what amount of bandwidth is

available for that quantum of time.
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4. Each router in the Internet is not required to perform classification, scheduling,

aggregation, disaggregation and buffer management on the data path, since

performing aggregation inside the network affects both the network scalability

and robustness.

5. This aggregation scheme can be a recursive aggregation, with aggregated packets

being themselves aggregated. Multi-level aggregation can be accomplished in the

tunnels.

6. Each sender is logically distinct from a receiver, but any router can act as a sender

and receiver.

Finally, in the HFCPA protocol, the messages (Path, ACK) are a tunnel attribute that is

used to determine the way in which data packets are handled by routers (sender, receiver

or intermediate). To initiate a connection, a potential sender (aggregator) starts sending

Path messages to the IP destination address (disaggregator). The receiver application

receh'es a 'Path message and sends back appropriate ACK (ACK) messages for that

specific route. After the sender application receives a ACK message, the sende starts

sending data packets.

3.9 DISAGGREGATION AND DECAPSULATION

In the ideal situation, a Decapsulator receives an Encapsulated Datagram, cuts off the

Encapsulation Header and sends the original datagram back into IP so that it is forwarded

from that point. However, if the original datagram has not yet reached its original

destination, it must again be encapsulated to forward it toward its original destination. In

this latter case the Decapsulator becomes an encapsulator and hence will have to perform

the same job to generate the Encapsulation Header as did the previous Encapsulator.

One good question arises here is how to determine the disaggregator. One method for

Disaggregator determination is by manual configuration. With this method the network

operator would configure the Aggregator and the Disaggregator with the necessary
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information. Another method allows automatic Disaggregator determination and

corresponding Aggregator notification. For instance, if because of a topology change,

another disaggregator is now on the optimal path, this method will automatically identify

the new Disaggregator and swap to it.

3.10 PROTOCOL MESSAGES

We suggest that the state of the tunnel should be managed at each router by four different

types of messages, namely the Path messages, the AC'K messages, the Error messages

and the Refresh messages.

Each aggregator or sender periodically sends a Path message that establishes or updates

the route to the receiver, and each receiver periodically sends back a ACK message

established along the path to the sender. Path messages are forwarded using the existing

routing table, and ACK messages are forwarded back towards the sources by reversing

the paths of path messages. In fact, the path information is maintained solely to do this

reverse path forwarding of the ACK messages.

Like any normal datagram, path and ACK messages carry a timeout value that is used by

intermediate routers to set corresponding timers; the timers get reset whenever new

messages are received.

It is the responsibility of both senders (aggregators) and receivers (disaggregators) to

maintain the proper information inside the network by periodically refreshing the path

and ACK messages, so that when a route changes, routers will forward future path

messages along the new route(s) and reach new members. As a result, the path will be

updated, causing future ACK messages to traverse the new routes.

VALUE MESSAGE TYPE
1	 Path
2	 ACK
3	 Error
4	 Refresh

Table 2: HFCPA Message Type Field Values
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3.10.1 Path Messages

A path message is sent by each sender along the routes toward the receiver [DEZ] inside

the tunnel provided by the routing protocol(s). A path message is used to store the path

state in each node. The path state is used to route ACK messages in the reverse direction.

Path Messages are useful for discovering other path characteristics besides PMTU. As

long as one is processing an investigation, it makes sense to collect a variety of

information, since it comes at little additional cost. This information could include the

following fields:

Type

Identifier	 Sequence Number

Minimum MTU Encountered

Minimum Bandwidth Encountered

Maximum Delay Encountered

Maximum Queue length

Maximum Error Rate Encountered

Hop Count

Table3: Path Message Fields

JvIininnirn banthvidth

This field is useful for determining the appropriate transmission rates; if a host knows

that a 9600 bps link is part of the path, it should behave differently than if the path is

entirely via 100 Mbps fiber networks. Initially set to MAXINT. Each router compares

this value to the bandwidth of the incoming and outgoing links for the message, and

reduces the recorded value, if necessary.
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Maximum delay

This field is useful for determining round-trip times; if a satellite channel is in use, with a

delay of several hundred milliseconds, a host should not retransmit as quickly as if the

end-to-end delay was several milliseconds. Initially set to zero. Each router compares this

value to the time it will take the packet to traverse the incoming and outgoing links, and

increases the recorded value, if necessary.

Maximum queue length

A high value implies congestion; a flag could be set if any router along the path is

experiencing congestion. Initially set to the length of the output queue of the source host

when the packet is placed on that queue, or to zero. Each router compares this value to

the length of the queue in which the packet is placed, and increases the recorded value, if

necessary.

0
Maximum error rate

When' a link along the path is experiencing a high error rate, a host might choose to send

shorter packets (so as to reduce the likelihood that an entire datagram is dropped bcause

of a single error). Each router compares this value to the error rate of the incoming and

outgoing links, and increases the recorded value, if necessary.

Hop Count

The total number of links traversed along the route may be of interest, for example, in

choosing a value for the "Time To Live" field. Initially set to 1. Each router increments

this value by one.

Minimum MTU encountered

Initially set to the MAXINT. Each router compares this value to the MTU of the

incoming and outgoing links for the message, and reduces the recorded value, if

necessary.
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One of the main benefits of using Path messages, is to prevent multiple fragmentation of

a single datagram inside the tunnel; and, to improve the processing efficiency at the

decapsulator and the routers within the tunnel.

3.10.2 ACK Messages

An ACK message is sent by each receiver host toward the sender to acknowledge a given

path message. This message is created at the disagregator after its corresponding path

message has been processed. The necessary information is included in the ACK message

before it is sent back following in reverse the routes that the data packets use, all the way

to the sender hosts. Because ACK messages are initiated by each receiver, HFCPA must

make sure that the ACK messages from a receiver follow exactly the reverse routes of the

data packets from all the sources (that the receiver is interested in). In other words,

HFCPA must establish a sink tree from each disaggregator to all the aggregators to

forward ACK messages.

3.10.3 Error Messages

It is possible that one of the interior routers along the tunnel might encounter an error

while processing the datagram, causing it to return an ICMIP [RFC 792] error message to

the encapsulator at the IP Source of the tunnel. Unfortunately, ICMP only requires IP

routers to return 8 bytes (64 bits) of the datagram beyond the IP header. This is not

enough to include the entire encapsulated header. Thus, it is not generally possible for an

aggregating router to immediately reflect an ICMP message from the interior of a tunnel

back to the originating host.

However, the encapsulator could return accurate ICMP messages if it maintains the

following information:

. Reachability of the end of the tunnel (recording the Path msg).

• Congestion of the tunnel.

• MTU of the tunnel.
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After an encapsulated datagram has been sent, the encapsulator may receive an ICMP

message from any intermediate router within the tunnel other than the tunnel exit point.

The action taken by the encapsulator depends on the type of ICMP message received.

When the received message contains enough information, the encapsulator may use the

incoming message to create a similar ICMP message, to be sent to the originator of the

original unencapsulated IP datagram (the original sender).

3.10.4 Refresh Messages

Path messages and ACK messages are refreshed periodically in the tunnel using refresh

messages. The frequency of generation of these refresh messages depends on several

issues in the network. Our current implementation uses static timer values for generating

refresh messages. As a future work, one can investigate adaptive algorithms to optimally

adjust the timer values by taking into consideration the dynamics of route change as well

as the loss probability of the messages.

Wheri a route changes, no ACK messages will be sent along the new route until a Path

message will pass by it. Therefore, a new Path message will be initialized and a ACK is

established along the new route. So, the HFCPA protocol is responsible in propagating

those changes from end to end within the tunnel network without delay, and in refreshing

the network status continuously by sending refresh messages onward and backward.

3.11 ROUTERS

Advance in hardware capabilities during recent years have provided mechanisms to

overcome the limitation of quality of service and differentiation features in routers

{KLS}. The following operations can now be done at high speed:

1. Packet classification and filtering according to their different requirements (same

destination, sequence numbers in sequence).

2. Buffer management that determines how much buffer space should be given to

arriving burst of packets and which packets should be discarded.
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3. Packet scheduling that decides which packets to group so as to meet the specific

bandwidth and delay requirements of the outgoing link.

4. Determine the next hop of the packet, using the forwarding databases.

One important issue that we suggest is that aggregator routers should use caching

methods for forwarding packets. The justification is that packet arrivals are temporally

correlated and can be grouped into connections or flows, so that if a packet belonging to a

new connection arrives then more packets belonging to that same connection can be

expected to arrive in the near future.

3.11.1 Packet Lifetime

The idea behind our solution is that each aggregated packet carries in its header the TTL

field that is initialized by the aggregator, and then updated by the intermediate routers

along the packet's path within the tunnel. The aggregator aims to approximate the tunnel

it belongs to from the delay point of view using a delay-jitter controlled virtual clock

[HZ]. Remember that the deadline of the normal datagram before being aggregated

depends on the option variables of the encapsulated packet it belongs to. Option can be

stored only at the aggregator node into the packet header and retrieved later by core

nodes, which then use it to determine the packet's deadline.

3.11.2 Retransmission Timer (RTO) Estimation

A fundamental question is how long should an aggregator wait before retransmitting? In

fact, it is a very hard problem to decide whether waiting long enough for a packet to

arrive, or being fast to retransmit. In fact, the aggregator really needs to estimate the

bandwidth and the round-trip time from the aggregator to the disaggregator plus the

amount of time required for the aggregation for received data. Thus, estimating a good

value for the retransmission timer not only is an estimation of the network path, but also a

property of the tunnel itself. Moreover, during congestion, it will take the sender to wait

longer than the maximum round-trip time, in order to give congestion more time to drain

from the network. If the sender retransmits as soon as the time elapses, the retransmission

may also be lost, whereas sending it later would be successful. Therefore, the setting of
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the retransmission timer is a hard task and needs to be more studied since many factors

contribute to it.
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CHAPTER 4

QUEUE MANAGEMENT AT TCP/IP

ROUTERS

4.1 INTRODUCTION

In the Internet, it is important to avoid high packet loss rates. When a packet is dropped

before it reaches its destination, all of the resources it has consumed along its route have

been wasted. For this reason, studies during the last few years have been elaborated to

optimize the congestion control in the Internet [Fj93] [FloOO], and a number of TCP

enhancements have been implemented. But, still TCP connections experience high loss

rates. These loss rates are especially high during times of congestion, when a large

number of connections compete for network bandwidth.

If routers are considered as an integral entity in the Internet, then queues are considered

to be the key component of the routers, since they absorb arrivals of packets and hence

reduce losses. In the queues, the packets could be dropped (TCP/IP approach), or could

be aggregated and reassembled, and then forwarded (our suggested method).

This chapter is concerned with the queue management at routers. In fact, we propose a

new queuing technique (based on packet aggregation) to be implemented at Internet

routers. This new technique aims to manage the queue length, reduce the end-to-end

latency, minimize the packet dropping rate, and avoid the lock-out phenomenon within

the Internet.

Before explaining our new queuing technique we start by presenting some existing ones

namely, Random Early Detection (RED) [FJ93,FloOO] and Tail Drop method

[RFC2309,ComOO ]. Finally, we should mention that recent studies showed that RED
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does not outperform the tail drop especially when the traffic is formed of TCP and UDP

connections [NST]. Also, we notice that it is difficult to parameterize RED queues to

perform well under different congestion scenarios. So, in the next chapter, we will show

that the performance of Tail Drop queues, is not as good as our newly proposed

technique.

4.2 QUEUES IMPLEMENTATION

Before describing some existing queue management schemes, it is useful to distinguish

between two classes of router algorithms related to congestion control: • "queue

management" versus "scheduling" algorithms. Shortly, queue management algorithms

manage the length of packet queues by dropping packets when necessary or appropriate,

while scheduling algorithms determine which packet to send next and are used primarily

to manage the allocation of bandwidth among packets. While these two router

mechanisms are closely related, they address rather different performance

issues[RFC2309].

As previously stated, TCP congestion control is window based. The sender keeps a

congestion window whose size limits the number of unacknowledged packets. Upon

receiving acknowledgments for successfully transmitted data, the sender increases its

transmission rate by incrementing its window, and hence at some point, the transmission

rate eventually exceeds the network's capacity. Therefore, queues in the routers will

overflow, causing packets to be dropped. TCP assumes that packet loss is due to

congestion and reduces its congestion window when detecting the loss.

The problem with TCP congestion algorithm is that the sender will reduce its

transmission rate only after detecting a packet loss. We should note that time may pass

between the packet drop and the source detection. Hence, more packets will be dropped

meanwhile, until the source enters its "slow phase".

Active queue management has been proposed as a solution for preventing losses due to

buffer overflow. One form of active queue management being proposed by the IETF for
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deployment in the network is Random Early Detection (Red) described below in section

4.2.2.

4.2.1 Tail Drop Queue Management

The traditional technique for managing router queue lengths is to set a maximum length

(in terms of packets) for each queue, accept packets for the queue until the maximum

length is reached, then reject (drop) subsequent incoming packets until the queue

decreases because a packet from the queue has been transmitted. This technique is

known as "tail drop", since the packet that arrived most recently (i.e., the one on the tail

of the queue) is dropped when the queue is full. This method has served the Internet well

for years, but it has two important drawbacks:

1. Lock-Out. In some situations tail drop allows a single connection or a few

packets to fill up the queue space, preventing other connections from getting room

in the queue. This is known as "lock-out" phenomenon.

2. Full Queues. The Tail Drop discipline allows queues to maintain a full (or,

almost full) status for long periods of time, since tail drop signals congestkrn (via

a packet drop) only when the queue has become full. it is important to reduce the

number of awaiting packets and this is perhaps queue management's most

important goal.

The probability of a packet being dropped p is computed as follows:

Assume that a drop occurs at time t = 0 in a Tail Drop router. The next incoming packet

is dropped if and only if its arrival time ç/, ) is smaller than the service time)/) of a

packet in the queue. Thus when a packet is dropped, the next packet is dropped with

probability p. where

00	
e _) -lix	 ______

e 
dx
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As a result, the probability Prob of a number ii of consecutive drops in a tail Drop router

satisfies

Prob=p

4.2.2 Random Early Detection (RED)

In contrast to traditional queue management algorithms, which drop packets only when

the buffer is full, the RED algorithm drops arriving packets probabilistically. The

probability of drop increases as the estimated average queue size grows. In other words,

RED responds to a time-averaged queue length, not an instantaneous one. Thus, if the

queue has been mostly empty in the "recent past", RED won't tend to drop packets unless

the queue overflows. On the other hand, if the queue has recently been relatively full,

indicating congestion, newly arriving packets are more likely to be dropped.

To do this, it uses two threshold values to mark positions in the queue. Tmin and Tmax:

. If the queue contains fewer than Tm/n datagrams, the new datagram is inserted in

the queue.

. If the queue contains more than Tmcrx datagrams, the new datagram is discarded.

. If the queue contains between Tm/n and Tmcix datagrams, the datagram is

discarded according to a probability p.

The choice of p, Tm/n and Tmcix is very important to make RED work perfectly. Tm/n

must be large enough, but it must not exceed Tniax. Tnzcix should be greater than Tm/n

by more than the typical increase in queue size during one TCP round-trip time.

RED randomly drops packets based on the average queue size that is estimated as

follows:

avg(i) *-. (1 W) avg(i —1) + Wq q

Where, wq is a value between 0 and 1; an example value suggested is 0.002; and, q is

the current queue size.
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For each arriving packet if avg is between a Trnin and Tmax then the packet is dropped

with a certain probabilityp.

Count = count + 1

avg—Tmin
Pb 4— maxp 

T max - Train

P b 4- PbuiM

P +- Pb/(1—COlult.Pb)

Table 4: Drop probability estimation steps for RED

In the above table, the significance of the used parameters and variables is as follows:

Pb is a temporarily dropping probability, max p is an upper bound on the temporarily

packet drop probability, T,,1 , n and T,,2 are the two thresholds limiting the region where

packets are randomly dropped, L is the size of the incoming packet, M is the maximum

packet size and count is the number of accepted packet since the last drop or since avg

exceeded Tmin.

When max p is small, early detection is ineffective and the behavior of the RED queue

approaches that of a drop tail queue. If max p increases, RED becomes more aggressive

and leads to a drop in the average queue length. Consequently, the round-trip times seen

by TCP connections also drop. Because packet loss rates increase with decreasing

round-trip times (see Equation (2) in chapter 3), this causes the loss rates in the RED

queue to eventually exceed that of the Tail Drop queue.

Finally, note that besides RED and Tail Drop, two alternative queue disciplines that can

be applied when the queue becomes full are "random drop on full" or "drop front on full".

Under the random drop on full discipline, a router drops a randomly selected packet from
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the queue (which can be an expensive operation, since it naively requires an 0(N) walk

through the packet queue) when the queue is full and a new packet arrives.

4.2.3 HFCPA Technique

IHFCPA queue management technique use packet aggregation approach and can be

implemented on any type of queue management. In fact, HFCPA can be used with Tail

Drop or RED.

The aggregation process is done in the router as follows. When packets arrive at the

queue, the queue management algorithm finds a free router in the tunnel, gets its PMTU,

and tries to aggregate packets as high as the seeking PMTU using the knapsack

algorithm. The benefit from this algorithm is to keep the links in the tunnel on their high

load. When exiting the tunnel, the disaggregator can fragment packets if the following

PMTU is lower than the aggregated packet size.

HFCPA provides the following advantages:

1. HFCPA reduces the number of packets dropped in routers and avoid the full

queue problem. Packet bursts are an unavoidable aspect of packet networks

[Willinger95]. If all the queue space in a router is already filled, then the router will

have no ability to buffer bursts. By packet aggregation, HFCPA queue management

will provide greater capacity to absorb bursts with the minimization of dropping

packets.

Furthermore, without HFCPA queue management, more packets will be dropped when a

queue does overflow, and this is undesirable for several reasons:

. It results in lowered average link utilization, and hence lowered network

throughput.

. TCP recovers with more difficulty from a burst of packet drops than from a single

packet drop.
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• Unnecessary packet drops represent a possible waste of bandwidth on the way to

the drop point.

Therefore, HFCPA is estimated to manage queue lengths and reduce end-to-end latency

even in the absence of end-to-end congestion control. Though, it will be able to reduce

packet dropping in an environment that continues to be dominated by end-to-end

congestion control.

2. HFCPA Avoids lock-out behavior. In fact, it can prevent lock-out behavior by

ensuring that there will almost always be a buffer available for an incoming packet. For

the same reason, HFCPA active queue management can protect routers from failure due

to low bandwidth and high packets bursts.

3. HFCPA Increases the Throughput. With HFCPA queuing technique, packets will be

aggregated, so the queue empty buffer size will increase, and thus the throughput of the

TCP connection increases. In fact, if the bottleneck router will have sufficient number of

buffers, to absorb incoming packets, with throughput X% higher, then its link bandwidth

will increase for duration of about a round-trip time. Then, if each source only increases

its transmission rate by X% every round-trip time, the network can ensure a minimal

amount of packet loss.

Bandwidth increase depends on the amount of buffering at the bottleneck link. If empty

buffers at the bottleneck link increase, the TCP sources can be more aggressive in

increasing their transmission rates. Therefore, increased buffering can also prevent this

problem by increasing the round-trip time and thus the latency in delivering the packets;

this will be a good advantage for the aggregation process.

4.3 CONCLUSION

HFCPA queue management is needed even for routers that use per-flow scheduling

algorithms such as Fair Queuing. This is because scheduling algorithms by themselves do

nothing to control the overall queue size or the size of individual queues.
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HFCPA Queue management controls the overall average queue sizes, so that arriving

bursts can be accommodated without dropping packets. In addition, HFCPA queue

management controls the queue size for each individual flow, so that they do not

experience unnecessarily high delays.

Therefore, HFCPA queue management should be applied in routers since it outperforms

normal Tail Drop queue management, and normal RED, as we will prove in the next

chapter.
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CHAPTER 5

SIMULATION RESULTS

5.1 INTRODUCTION

This chapter concentrates on analyzing and comparing two queuing strategies at routers

in the Internet using simulations. We have explained in the previous chapter that hop-by-

hop flow control with aggregation could optimize the throughput and minimize the

packet loss in TCP/IP networks. In this chapter we will be interested in proving these

ideas using simulations. We, therefore, will compare our system which includes

aggregation, with the end-to-end flow-control used in normal TCP/IP networks.

The results we develop in this chapter indicate that an end-to-end flow control system

with n-stages always gives a greater packet loss than that of an n-stages hop-by-hop flow

control with aggregation. We also show, that our newly developed technique provides

better throughput than normal TCP/IP implementation.

5.2 NETWORK SIMULATOR

In this section, we present the network simulator that we have developed using Delphi

software. This network simulator will enable us to compare the performance of different

types of systems namely end-to-end flow-control systems (such as in normal TCP/IP

networks) and hop-by-hop flow-control with aggregation systems.
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Our simulation model covers one tunnel of the network where aggregation and

fragmentation are taken into consideration. It includes:

• Source generating packets of different sizes (ranging from 48 bytes to 1500

bytes). It is not fixed for 576 bytes as the normal TCP/IP protocol packets since

we will take into consideration that they might be fragmented or aggregated

before they arrive to our simulated tunnel.

• The generation rate of packet 2 could be variable with 0.1 :!^ 2 :!^ 0.9.

• One bottleneck router with a buffer of 15 packets.

• Knapsack algorithm is implemented in the queue.

• 3 different TCP destinations groups.

• Timeout granularity is set to 200 ms.

• Propagation delay of 15 ms.

• 4 different routers with different bandwidth and different PMTU as described in

the following table.

Router	 PMTU	 Bandwidth

1	 1600	 100 Mbits/sec

2	 2000	 100 Mbits/sec

3	 2500	 10 Mbits/sec

4	 3500	 16 Mbits/sec

Note that the aggregation process is done in the bottleneck router as follows:

Packets arrive at the queue at a distribution rate with a random size. The queue

management algorithm finds the free router in the tunnel, gets its PMTU, and tries to

aggregate packets as high as the seeking PMTU using the knapsack algorithm. The

benefit from this algorithm is to keep the links in the tunnel on their high load. When

exiting the tunnel, the disaggregator can fragment packets if the following PMTU is

lower than the aggregated packet size.
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Figure] 4: Snapshot of simulation run-time

5.3.2 Dropped Packets Due to Congestion

The following diagram represents the results from three simulation tests, used to estimate

the loss rate in the network. These tests have the following characteristics:

1) Aggregation with an MTU varying between 48 bytes and 1500 bytes.

2) Aggregation with a fixed MTh = 576

3) Without aggregation a with fixed MTU = 576 (i.e. normal TCP/IP).

Figure 15 below shows that the current TCP/IP protocol has a much higher loss rate in

comparison with our new model.

In the first test where the MTU is variable, we observe that the loss rate is low for large

packets (1200-1500 bytes), in contrary to small packets (48-500 bytes). This is due to the

aggregation process that is benefiting from the big packets in the queue.

Our second test, run with a fixed size packet of 576 bytes, has the smallest loss rate,

because the queue rarely overflows due to the aggregation process that benefits from the

high PMTU links in the tunnel.
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Figure 15:Impact of Congestion on Packet Loss

5.3.3 Link Efficiency

One major benefit from the aggregation process, is that the links in the tunnel are run on

their high load. Here, we observe that (PacketSize I PMTU) ratio is almost at its high

capacity during the simulation of our new protocol, in contrast with the fixed 576-byte

packet model which remains in a constant region (around 0.3).

We should note that due to the fact that the knapsack algorithm is implemented in the

queue (or the aggregator), the outgoing links from the queue are always using their

highest possible load.
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5.3.4 Overhead

The overhead is calculated as the division of the size of the header over the size of data

contained in a given packet. We see that the overhead is inversly proportional to the

packet size.
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Figure 17: Impact of the MTU size on the Overhead
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5.3.5 Throughput

Here, we could notice (Figure 18) that the throughput in the network increases when the

packet size increases. In this chart, when the average packet size increases, the benefit of

the aggregation will be much higher.

We also should notice that if all the packets in the queue are approximately of size equal

to the links PMTU inside the tunnel, the aggregation process will be no more efficient

and the queue will be overflowed rapidly.
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Figure 18: Throughput (in packets/sec) as a function of the packet size

5.4 SIMULATION RESULTS FOR A VARIABLE PACKET

GENERATION RATE

5.4.1 Packet Drop due to Congestion

As we notice from Figure 19 below, that the normal TCP/IP has a higher loss rate than

our new protocol especially when the packet arrival rate is large. In fact, when there is a
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high network congestion, the new protocol outperforms the normal TCP/IP by means of

5.8 times.

In fact, as we have seen in the study, that the drop-tail queue (used in normal TCP/IP

networks) during the congestion drops packets as long as the queue is fill. However,

newly developed technique, tries to locate a place for that coming packet in the queue, by

aggregating before forwarding.

Moreover, the HFCPA protocol still outperforms the Normal TCP/IP in dropping

packets, even when lambda is small (link is not congested) as the figure shows.
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Figure 19: The Impact of the arrival rate on the packet loss

5.4.2 Link Efficiency

We could notice here, that the new protocol is far more efficient than the normal TCP/IP

protocol, since with the aggregation process, the links in the tunnel are run on their high

load. This improvement is especially noticed when the packet arrival rate 2 is high (i.e.

when the network is congested).
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5.4.3 Throughput

Here, we can notice that the throughput of the network increases when the packet arrival

rate increases. This improvement is even more obvious, when the average packet size

increases, since in this case the benefit of the aggregation process will be much higher.
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Figure2l: Impact of the arrival rate on the Throughput
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5.4.4 Aggregation

Our simulation has revealed that small packets are willing to be more aggregated in our

new model than the large packets. The process of aggregating more packets has the

following benefits:

1) Getting fewer packets at the destination; i.e. less time to process the data.

2) Returning back fewer acknowledgments to the sender, which makes the network

more efficient.

Hence we can conclude that the end-to-end delay performance will be improved when

using hop-by-hop flow control with aggregation.

Average Aggregation Percentage

• smal Packets
• Large Packets

Figure22: Aggregation function of the traffic

55 CONCLUSION
In this chapter, we have presented a network simulator used to model TCP/IP networks.

This simulator helped us comparing the performance of normal TCP/IP implementation

with our proposed technique based on packet aggregation at routers. We have shown that

for a large number of packets in the Internet, our new protocol exhibits superior quality as

measured by loss rate, bandwidth and round-trip delay. We have proven that this finding

is a robust one, and is largely independent of the precise set of hosts measured.
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CHAPTER 6

CONCLUSIONS

This chapter summarizes the main results and contributions of the thesis and provides

possible extensions to it. We start first by presenting the main results.

6.1 MAINRESULTS

This thesis deals with flow control problems in general TCP/IP networks. In this thesis a

novel strategy is introduced, namely hop-by-hop flow control with packet aggregation.

The packet aggregation procedure is performed at the routers. The proposed technique at

routers is adaptive by nature since, with any changes in network parameters, the

aggregation rate can be changed to minimize the packet loss, optimize the throughput and

minimize the system response time.

An approximate analysis (using Delphi programming tools) for the packet loss and the

throughput as a function of the packet size and the packet arrival rate is obtained. And,

the ranges of values for the packet size, which give the minimum packet loss (i.e. the

optimum performance) for a given system are found.

The main contributions are:

1. We proved that our proposed strategy (i.e. hop-by-hop flow control with packet

aggregation), gives a better performance (in term of packet loss, throughput, round-

trip delay) than end-to-end flow control methods (as in normal TCP/IP networks).

2. The methodology developed in this thesis is a general one and is not limited to the

present problem (i.e. TCP/IP networks) but covers any communication system with

buffering constraints.
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3. We found that we can minimize the packet loss in the system by changing the

aggregation size. In fact, by making the aggregated packet large enough, the

departing packets will not interfere with each other because in this case the batch-

interdeparture time would be larger than the variance of the network delay. However,

having very large packets will increase the end-to-end delay. Hence, a compromise is

required to optimize the system performance.

4. We have argued on the need for the tunnels, and further on the need for the

aggregation process in the Internet. Such mechanisms provide a support for the end-

to-end congestion control, in addition to an important issue which allocates more

buffering space to incoming packets which otherwise could have been dropped.

6.2 PROPOSED FUTURE WORK

We think that several aspects of the work conducted in this thesis could be extended.

Possible directions to be explored are suggested below:

• . For optimally efficient routing decisions, route selection should be integrated so

that the choice of route can depend on the bandwidth requested, and so that the

stability of the route can be maintained over the duration of the aggregation. Such

an integration would lead to more coordination between the choice of which

packets to aggregate and the mechanics of establishing the aggregation. This

integration is something that requires further research.

• The reassembly of packets in the present models involves only packets that have

the same destination, but we can work on different levels:

1) Reassenbly of packets that are in increasing sequence number.

2) Reassembly of packets that take the same path.

• Include the process of out-of-order delivery and resequencing in the simulation

model.

• Analyze the impact of packet aggregation on the end-to-end delay performance,

and find the optimum packet size that minimizes the delay and the packet loss

together.
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APPENDIX
unit SimFormUnt;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
SimulationUtils, SimulationPanel, ExtCtrls, ComCtrls, TooiWin, Menus,
ImgList, ImageRepository, MovableUnit;

cons t
MINWIDTJ-I = 404;
MINHEIGHT = 240;
MINZOOM = -4;
MAXZOOM = 4;
ZOOMINCREMENT = 50;
STATUSPANELWIDTH = 200;

type
TSimulationForm = class (TForm)
MainMenu: TMainMenu;
ActionMnu: TMenultem;
MainTEar: TToolBar;
MainSBar: TStatusBar;
SpacerPnl: TPanel;
MainSEox: TScrollBox;
HelpMnu: TMenultem;
LayoutMnu: TMenultem;
ViewMnu: TMenultem;
ContentsMnultm: TMenultem;
IndexMnultm: TMenultem;
SpacerMnultm: TMenultern;
AboutMnultm: TMenultem;
AlwaysOTMnultm: TMenultem;
SpacerlMnultm: TMenultem;
CloseMnultm: TMenultem;
CentreMnultm: TMenultem;
ModifyMnultm: TMenultem;
ShowGridNnultrn: TMenultem;
SnapToGridMnultm: TMenultem;
ConfigureMnultm: TMenultem;
Spacer2Mnultm: TMenultem;
Spacer3Mnultm: TMenultem;
BackgroundNnultm: TMenultem;
ColorMnultm: TMenultem;
ObjectNameMnultm: TMenultem;
ObjectLabelMnultm: TMenultem;
SpriteMnultm: TMenultem;
Spacer4Mnultm: TMenultem;
CloseTBtn: TToolButton;
SpacerTBtn: TToolButton; 	 HelpTBtn: TToolButton;
Spacer5TBtn: TToolButton;	 CentreTBtn: TToolButton;
GridTBtn: TToolButton; 	 ModifyTBtn: TToolButton;
SpacerlTBtn: TToolButton; 	 BackgroundTBtn: TToolButton;



NamesTBtn: TToolButton;
LabelsTBtn: TToolButton;
AnimationTEtn: TToolButton;
Spacer2TBtn: TToolButton;
ColourTBtn: TToolButton;
Space r4TBtn: TToolButtori;
ZoomoutTBtn: TToolButton;
ZoominTBtn: TToolButton;
Spacer3TBtn: TToolButton;
SnapTBtn: TToolButton;
AutoCentreMnultm: TMenultem;
MainSimPnl: TSimulationPanel;
RefreshMnultm: TMenultem;
RefreshTBtn: TToolButton;
ConnectorTBtri: TToolButton;
ConnectorLineMnultm: TMenultem;
ModelBrowseTBtn: TToolButton;
Spacer5Mnu: TMenultem;
ModelBrowserMnultm: TMenultem;
ZoomoutMnultm: TMenultem;
ZoominMnultm: TMenultem;
Spacer6Mnu: TMenultem;
ToolBarMnultm: TMenultem;
StatusBarMnultm: TMenultem;
Space r7Mnu: TMenultem;
procedure AlwaysOTMnultmClick(Sender: TObject);
procedure AnirnationTBtnClick(Sender: TObject);
procedure AutoCentreMnultmClick(Sender: TObject);
procedure BackgroundTBtnClick(Sender: TObject);
procedure CentreTBtnClick(Sender: TObject);
procedure CloseTBtriClick(Sender: TObject);
procedure ColourTBtnClick(Sender: TObject);
procedure ConfigureMnultmClick(Sender: TObject);
procedure ConnectorTBtnClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure GridTBtnClick(Sender: TObject);
procedure LabelsTBtnClick(Sender: TObject);
procedure MainSBoxResize(Sender: TObject);
procedure ModelBrowseTBtnClick(Sender: TObject);
procedure ModifyTBtnClick(Sender: TObject);
procedure NamesTBtnClick(Sender: TObject);
procedure RefreshTBtnClick(Sender: TObject);
procedure SnapTBtnClick(Sender: TObject);
procedure ZoorninTBtnClick(Sender: TObject);
procedure AboutMnultmClick(Sender: TObject);
procedure ContentsMnultmClick(Sender: TObject);
procedure IndexMnultmClick(Sender: TObject);
procedure FormMousewheelDown(Sender: TObject; Shift: TShiftState;

MousePos: TPoint; var Handled: Boolean);
procedure FormMouseWheelUp(Seflder: TObject; Shift: TShiftState;

MousePos: TPoint; var Handled: Boolean);
procedure FormResize(Sender: TObject);
procedure ZoomoutMnultmClick(Sender: TObject);
procedure ZoominMnultmClick(Sender: TObject);
procedure ToolBarMnultmClick(Seflder TObject);
procedure StatusBarMnultmClick(Sender: TObject);
procedure ApplicationHint(Sender: TObject);

11



procedure Forml½ctivate(Sender: TObject);
private

Private declarations
ModeiBrowser: TForm;
//procedure WMOpenDialogue(var Message: TMessage); message WMOPENDIALOGUE;
procedure WMSizing(var Message: TMessage); message WMSIZING;

protected
Protected declarations

ZoomLevel: integer;
public

Public declarations
procedure BuildFormCaption;
procedure OpenDialogue(XPos, YPos: integer); virtual;
procedure ReleaseDialoguePtr;
procedure SetSpriteAniBtn(Value: Boolean);

end;

var
SimulationForm: TSimulationForm;

implementation

{$R *D}

uses
ConfigGrid, ModelBrowserDlg;

Private Procedures ------------------------------------------------------------

{procedure TSimulationForm.WMOpenDialogue(var Message: TMessage);
begin

OpenDialogue;
Message.Result := LRESULT(True);

end;

procedure TSimulationForm.WMSizing(var Message: TMessage);
var

pr: PRect;
begin

pr := PRect(Message.lparam);
if ((pr.Right - pr.Left) < MINWIDTH) then pr.Right : pr.Left + MINWIDTH;
if ((pr.Bottom - pr.Top) < MINHEIGHT) then pr.Bottom := pr.Top + MINHEIGHT;
Message.Result := LRESULT(False);

end;

{Public Procedures ------------------------------------------------------------

procedure TSimulationForm. BuildFormCaption;
begin

Caption : '''' + BuildLocationString(Self) + ttt - Simulation Form';
end;

procedure TSimulationForm.OpenDialogue(XP05, YPos: integer);
var

TopLeft: TPoint;
begin

if (Caption = '') then BuildFormCaption;
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if Visible then SetFocus
else
begin

//Set initial location of Form
if (XPos > -1) and (YPos > -1) then
begin

TopLeft := Point(XPos, YPos);
if (TopLeft.x + Width) > Screen.Width then
TopLeft.x : Screen.Width - Width;

if (TopLeft.y + Height) > Screen.Height then
TopLeft.y : Screeri.Height - Height;

SetBounds(TopLeft.x, TopLeft.y, Width, Height);
end;
Show;

end;
end;

procedure TSimulationForm. ReleaseDialoguePtr;
begin
ModelErowser : nil;

end;

procedure TSimulationForm.SetSpriteAniBtn(Value: Boolean);
begin

SpriteMnultm.Checked : Value;
AnirnationTBtn.Down : Value;

end;

{Delphi Procedures -------------------------------------------------------------

procedure TSimulationForm.AboutMnultmClick(Sender: TObject);
begin

DisplayAboutBox (Self);
end;

procedure TSimulationForm.AlwaysOTMnUltmClick(Seflder TObject);
begin

if (Sender is TMenultem) then
begin

TMenultem(Sender) .Checked := not TMenultem(Sender) .Checked;
if TMenultem(Sender) .Checked then

//Self.FormStyle 	 fsStayOnTop
SetWindowPos(Handle, HWMD TOPMOST, Left, Top, Width, Height, 0)
else

I/Self.FormStyle	 fsNormal;
SetWindowPos(Handle, HWNDNOTOPMOST, Left, Top, Width, Height, 0);

end;
end;

procedure TSimulationForm.AnimationTBtnClick(Seflder TObject);
begin

MainSimPnl . SpriteAnimation := not MainSimPnl. SpriteAnimation;
SetSpriteAniBtn (MainSimPnl. SpriteAnimation);

end;

procedure TSimulationForm.ApplicationHint(Sender TObject);
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begin
if ((Sender is TApplication) and

((Sender as TApplication) .1-lint <> It)) and
Windows. PtlnRect (BoundsRect, Mouse. CursorPos) then

MainSBar.Panels[O] .Text := GetLongHint((Sender as TApplication) .Hint);
end;

procedure TSimulationForm.AutoCentreMnultmClick(Sender: TObject);
begin

if (Sender is TMenultem) then
begin

(Sender as TMenultem) .Checked 	 not (Sender as TMenultem) .Checked;
CentreTBtn.Enabled := (not (Sender as TMenultem) .Checked and

MainSimPnl .Modify);
CentreMnultm.Enabled := (not (Sender as TMenultem) .Checked and

MainSimPnl .Modify);
if (Sender as TMenultem) .Checked then CentreTBtn.Click;

end;
end;

procedure TSimulationForm.EackgroundTBtnClick(Sender: TObject);
begin

MainSimPnl . ShowBackground : = not MainS imPnl. ShowBackground;
BackgroundNnultm. Checked : = MainSimPni . ShowBackground;
BackgroundTBtn. Down := MainS imPni. ShowBackground;

end;

procedure TSimulationForm.CentreTEtnClick(Sender: TObject);
var

cr: TRect;
TopLeft: TPoint;

begin
if (MainSimPnl.Align = aiNone) then
with MainSimPni do
begin

cr : MainSBox.CiientRect;
TopLeft.x := 0; TopLeft.y := 0;
if (Width < cr.Right) then TopLeft.x : (cr.Right - Width) shr 1;
if (Height < cr.Bottom) then TopLeft.y : (cr.Bottom - Height) shr 1;
SetBounds(TopLeft.x - MainSEox.HorzScroliBar.POsitiOn, TopLeft.y -

MainSBox.VertScrollEar. Position,
Width, Height);

end;
end;

procedure TSimulationForm.CloseTBtnClick(Sender TObject);
begin

Close;
end;

procedure TSimulationForm.ColourTEtnClick(Sender TObject);
begin

ImageRepositoryForm. ColorDialog. Color := MainSimPnl . Color;
if ImageRepositoryForm. ColorDialog. Execute then
MainSimPnl.Color := ImageRepositoryForm.ColorDialOg.COlor

end;
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procedure TSimulationForm.ConfigureMnultmclick(sender: TObject);
begin

ConfigGridFrm := TConfigGridFrm.Create (Application);
ConfigGridFrm. SimulationPanel := MainSimPnl;
ConfigGridFrm. InitialiseForm;
ConfigGridFrm. ShowModal;
ConfigGridFrm. Release;

end;

procedure TSimulationForm.ConnectorTBtnClick(Sender: TObject);
begin

MainSimPnl. ShowConnectingLines := not MainSimPnl . ShowConnectingLines;
ConnectorLineMnultm. Checked := MainSimPnl . ShowConnectingLines;
ConnectorTBtn. Down := MainSimPnl . ShowConnectingLines;

end;

procedure TSimulationForm.ContentsMnultmClick(Sender: TObject);
begin

DisplayHelpFile (hmContents, HelpContext);
end;

procedure TSimulationForm. FormActivate (Sender: TObject);
begin

Application. OnHint := ApplicationHint;
end;

procedure TSimulationForm. FormCreate (Sender: TObject);
begin

ZoomLevel : 0;

MainSimPnl.Modify := not MainSimPnl.Modify;
NodifyTBtn. Click;
ShowGridNnultm. Checked := MainSimPnl . ShowGrid;
SnapToGridNnultm. Checked := MainSimPnl. SnapGrid;
SnapTBtn. Down : = MainSimPnl. SnapGrid;
GridTBtn. Down : = MainS imPnl . ShowGrid;
BackgroundMnultm. Checked := MainSimPnl. ShowBackground;
BackgroundTBtn. Down := MainSimPnl . ShowBackground;
ConnectorLineMnultm. Checked	 MainSimPnl ShowConnectingLiries;
ConnectorTBtn. Down := MainSirnPnl. ShowConnectingLines;
ObjectNameMnultm. Checked := MainSimPnl . ShowObjectName;
NamesTBtn. Down := MainSimPnl . ShowObj ectName;
Obj ectLabelMnultm. Checked := MainSimPnl . ShowObj ectLabel;
LabelsTBtn. Down := MainSimPnl . ShowObj ectLabel;
SpriteMnultm. Checked := MainSimPnl. SpriteAriimation;
AnimationTBtn. Down := MainSimPnl . SpriteAnitnation;
StatusBarMnultm.Checked := MainSBar.Visible;
ToolBarMnultm.Checked : MainTBar.Visible;

end;

procedure TSimulationForm. FormMouseWheel Down (Sender: TObject;
Shift: TShiftState; MousePos: TPoint; var Handled: Boolean);

procedure SetScrollBar(SBar: TControlScrollBar);
begin

with SBar do
if IsScrollBarVisible and (Position < Range) then
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begin
Position := Position + (Increment * Trunc(Mouse.WheelScrollLines *
MainSimPnl.ScaleFactor));

Handled := True;
end;

end;

begin
if (ssCtrl in Shift) then

SetScrollBar (MainSBox.HorzScrollBar)
else

SetScrollBar (MainSBox.VertScrollBar);
end;

procedure TSimulationForm. FormMouseWheelUp (Sender: TObject;
Shift: TShiftState; MousePos: TPoint; var Handled: Boolean);

procedure SetScrollBar(SBar: TControlScrollBar);
begin
with SEar do

if IsScrollEarVisible and (Position > 0) then
begin

Position := Position - (Increment * Trunc(Mouse.WheelScrollLines *
MainSimPnl ScaleFactor));

Handled := True;
end;

end;

begin
if (ssCtrl in Shift) then

SetScrollBar (MainSEox.HorzScrollBar)
else

SetScrollBar (MainSBox.VertScrollBar);
end;

procedure TSimulationForm.FormResize(Sender: TObject);
begin

MainSBar. Panels [0] .Width := MainSBar.Width - STATUS PAN ELWIDTH;
end;

procedure TSimulationForm.GridTBtnCliCk(Seflder TObject);
begin
MainSimPnl.ShowGrid := not MainSimPnl.ShowGrid;
ShowGridNnultm. Checked := MainSimPnl. ShowGrid;
GridTBtn. Down := MainSimPnl ShowGrid;

end;

procedure TSimulationForm.IndexMnultmClick(Seflder TObject);
begin

DisplayHelpFile (hmlndex, HelpContext);
end;

procedure TSimulationForm.LabelsTBtnClick(Sender TObject);
begin

MainSimPnl. ShowObj ectLabel : = not MainSimPnl. ShowObj ectLabel;
ObjectLabelMnultm. Checked := MainSimPnl ShowObjectLabel;
LabelsTBtn. Down := MainSimPnl ShowObj ectLabel;
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end;

procedure TSimulationForm.MainSBoxResize(Sender: TObject);
begin

if (Showing and AutoCentreMnultm.Checked) then
CentreTBtn. Click;

end;

procedure TSimulationFo rm. Model Brows eTBtnClick(Sender: TObject);
begin

if (ModeiBrowser <> nil)
then

ModeiBrowser. Show
else

begin
ModeiBrowser := TModelBrowserForm.Create (Application);
TModelBrowserForm(ModelBrowser) . SimulationForm : self;
TModelBrowserForm(ModelBrowser) . InitialiseForm;
ModelBrowser. Show;

end;
end;

procedure TSimulationForm.ModifyTBtnClick(Sender: TObject);
begin

MainSimPnl.Modify := not MainSimPnl.Modify;
ModifyTBtn. Down := MainSimPnl .Modify;
ModifyMnultm. Checked := MainSimPnl .Modify;
CentreTBtn.Enabled	 (MainSimPnl.Modify and not
CentreMnultm.Enabled := (MainSimPnl.Modify and nc
GridTBtn. Enabled := MainSimPnl .Modify;
ShowGridNnultm. Enabled := MainSimPnl .Modify;
SnapToGridMnultm. Enabled := MainSimPnl .Modify;
SnapTBtn. Enabled = MainSimPnl . Modi fy;
ConfigureMnultm. Enabled := MainSimPnl .Modify;
BackgroundTBtn. Enabled := MainSimPnl .Modify;
BackgroundNnultm. Enabled := MainSimPnl .Modify;
ConnectorLineMnultm. Enabled := MainSimPnl .Modify;
ConnectorTBtn. Enabled := MainSimPnl .Modify;
NamesTBtn. Enabled := MainSimPnl .Modify;
ObjectNameMnultm.Enabled := MainSimE'nl .Modify;
LabelsTBtn.Enabled : MainSimPnl.Modify;
ObjectLabelMnultm. Enabled := MainSimPnl .Modify;
AnimationTBtn. Enabled = MainSimPnl .Modify;
SpriteMnultm. Enabled := MainSimPnl .Modify;
ColourTBtn. Enabled : = MainSimPnl .Modify;
ColorMnultm. Enabled = MainSimPnl .Modify;
ZoominTBtn.Enabled := (MainSimPnl.Modify and not
ZoomoutTBtn.Enabled := (MainSimPnl.Modify and not
ZoominMnultm. Enabled := ZoorninTBtn. Enabled;
ZoomoutMnultm. Enabled := ZoomoutTBtn. Enabled;

end;

procedure TSirnulationForm.NamesTBtnCliCk( Sender TObject);

begin
MainSimPnl . ShowObj ectName : = not MainSimPnl. ShowObj ectName;
ObjectNameMnultm. Checked = MainSimPnl . ShowObjectName;
NamesTBtn. Down := MainSimPnl. ShowObj ectName;

AutoCentreMnultm. Checked);
t AutoCentreMnultm.Checked);

(ZoomLevel = MPXZOOM));
(ZoomLevel = MINZOOM));
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end;

procedure TSimulationForm.RefreshTBtnClick(Sendei: TObject);
begin
MainSimpnl Repaint;

end;

procedure TSimulationForm. SnapTBtnClick (Sender: TObject);
begin
MainSimPnl.SnapGrid := not MainSimPnl.SnapGrid;
SnapToGridMnultm. Checked := MainSimPnl. SnapGrid;
SnapTBtn. Down := MainS imPnl . SnapGrid;

end;

procedure TSimulationForm.StatusBarMnultrnClick(Sender: TObject);
begin
MainSBar.Visible : not MainSBar.Visible;
StatusBarMnultm.Checked := MainSBar.Visible;

end;

procedure TSimulationForm.ToolBarMnultmClick(Sender: TObject);
begin
MainTBar.Visible := not MainTEar.Visible;
ToolBarMnultm.Checked := MainTBar.Visible;

end;

procedure TSimulationForm.ZoominMnultmClick(Sender: TObject);
begin

ZoominTBtnClick (ZoominTBtn);
end;

procedure TSimulationForm. ZoominTBtnClick (Sender: TObject);
var

ClipEox: TRect;
MidValX, MidValY: single;
Multiplier: integer;

begin
if (Sender is TToolButton) then
begin

(Calculate middle of current viewport)
ClipBox : = MainS imPnl Canvas ClipRect;
MidValX := (ClipBox.Left + ((ClipBox.Right - ClipBox.Left) shr 1)) I

MainSimpnl .Width;
MidValY := (ClipBox.Top ± ( (ClipBox. Bottom - ClipBox.Top) shr 1))

MainS iraPnl Height;

if ((Sender as TToolButton) = ZoominTBtn) then
begin

inc(ZoomLevel);
ZoominTBtn.Enabled : not (ZoomLevel = MPXZOOM);
ZoomoutTBtn.Enabled : True;

end
else

if ((Sender as TToolButton) = ZoomoutTBtn) then
begin
dec(ZoomLevel);
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ZoomoutTBtn.Enabled := not (ZoomLevel = MINZOOM);
ZoominTBtn.Enabled : True;

end;	 -
ZoominMnultm. Enabled : = ZoominTBtn. Enabled;
ZoomoutMnultm. Enabled : = ZoomoutTBtn. Enabled;
if (ZoomLevel < 0) then
Multiplier : 10000 div (100 + (-ZoomLevel * ZOOMINCREMENT))
else
Multiplier := 100 + (ZoomLevel * ZOOMINCREMENT);

MainSimPnl.Visible := False;
MainSimPnl. ScalePanelBy (Multiplier, 100);
if AutoCentreMnultm.Checked then
CentreTBtn.Click
else
with MainSimPnl do

SetBounds(-MainSBox.HorzScrollBar.Position, -
MainSBox.VertScrollBar.Position, Width, Height);

MainSimPnl.Visible : True;

{Scroll so same area is in middle of viewport}
MainSBox.HorzScrollBar.Position := Round(MainSBox.HorzScrollBar.Range *

MidVaiX) - MainSBox.ClientWidth shr 1;
MainSBox.VertScrollBar.Position : Round(MainSBox.VertScrollBar.Range *

MidValY) - MainSEox.ClientHeight shr 1;
end;

end;

procedure TSimulationForm.ZoomoutMnultmClick(Seflder: TObject);
begin

ZoominTBtnClick (ZoomoutTBtn);
end;

end.
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unit MainSimFormUnt;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
SimulationUtils, SimFormUnt, Menus, SimulationPanel, ExtCtrls, ComCtris,

ToolWin,
ObjectBasement, ObjectBase, EventControlier, MovableUnit, SimSink,
SimStore, SimSingleProcess, SpriteControl, MovableElement, MovableObject,
EventProcessor, EventDisruptor, EventBlock, MaterialFlow,
Material FlowAni, Material FlowStats, MaterialBlock, Material Disruptor,
MaterialFlowMU, Material FlowCap, SimSource, StdCtrls, SimDistribution,
SimGenerator, SimFlowControl, SimMultiProcess, Db, ADODB, SimStatistics;

const INF	 =	 1000;
maxobject =	 50;
CONSTANT =	 0.33333;

type
ARPN	 = array[l. .maxobject] of integer;

TSynchronizeEvents = (seNone, seClose, seZoomln, seZoomOut);

TMainSimForm = class (TSimulationForm)
EventController: TEventController;
SimSourcel: TSimSource;
packet: TMovableObj ect;
SpriteControll: TSpriteControl;
SimSingleProcessi: TSimSingleProcess;
SimStorel: TSimStore;
SimSingleProcess2: TSimSingleProcess;
SimSinkl: TSimSink;
ListBoxl: TListBox;
ListBox2: TListBox;
ListBox3: TListBox;
Edit3: TEdit;
SimDistributionl: TSimDistribution;
SimDistribution2: TSimDistribution;
Label2: TLabel;
Label3: TLabel;
SimGeneratorl: TSimGenerator;
ZeroDist: TSimDistribution;
Label4: TLabel;
ListBox4: TListBox;
ListBox5: TListBox;
SimFlowControll: TSimFlowControl;
SimSingleProcess3: TSimSingleProcesS;
recycle: TSimSink;
SimDistribution3: TSimDistribution;
SimDistribution4: TSimDistribution;
Aggregate: TMovableObj ect;
SpriteControl2: TSpriteControl;
Labell: TLabel;
Label5: TLabel;
dropped: TSimSink;
ListBox6: TListBox;
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Label6: TLabel;
SimSink2: TSimSink;
SimSingleProcess4: TSimSingleProcess;
SimSingleProcess5: TSimSingleProcess;
SimFlowControl2: TSimFlowControl;
SimSink3: TSimSink;
SimDistribution5: TSimDistribution;
ListBox7: TListBox;
SimMultiProcessi: TSimMultiProcess;
SimMultiProcess2: TSimMuitiProcess;
SimMultiProcess3: TSiniMultiProcess;
SpriteControl3: TSpriteControl;
fragment: TMovableObj ect;
Label7: TLabel;
ListBox8: TListBox;
Label8: TLabel;
Label9: TLabel;
ADOConnectioni: TADOConnection;
Source: TADOTab1e;
SourceSequenceNb: TAutolncField;
SourceSimTime: TlntegerField;
SourceSize: TSmallintField;
SourceTTL: TWordField;
SourceAgg: TWordField;
Queue: TADOTab1e;
QueueSequenceNb: TAutolncField;
QueueSimTime: TlntegerField;
QueueAggSize: TSrnallintField;
QueuePMTU: TSmallintFieid;
QueueTTL: TWordField;
QueueAgg: TWordField;
QueuePacketsAggregated: TWideStringField;
SimDistribution6: TSimDistribution;
Destination: TADOTab1e;
DestinationSequenceNb: TAutolncField;
DestinationSimTime: TlntegerField;
DestinationSize: TSmallintField;
DestinationTTL: TWordField;
Des tinationAgg: TWordField;
TTLDr0p: TADOTab1e;
TTLDropSequenceNb: TAutolncField;
TTLDropSimTime: TlntegerField;
TTLDropSize: TSmallintField;
TTLDropTTL: TWordField;
TTLDropAgg: TWordField;
SimStatisticsl: TSimStatistics;
SimStatistics2: TSimStatistics;
SimDistribution7: TSimDistribution;
SimDistribution8: TSimDistribution;
SimDistribution9: TSimDistribution;
CongestionDropped: TADOTab1e;
CongestionDroppedSeqUeflceNb TlntegerField;
CongestionDroppedSimTime: TlntegerField;
CongestionDroppedSize: TSmallintField;
CongestionDroppedAgg: TWordField;
SourceCurrentTime: TWideStriflgField
QueueEW: TSmallintField;
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EndTunnel: TADOTab1e;
SimFlowControl3: TSimFiowControl;
Congestion: TSimSink; -
QueueSeqNbs: TWideStringField;
EndTunnelSequenceNb: TlntegerField;
EndTunneiCurrentTime: TWideStringField;
EndTunneiSimTime: TlntegerField;
EndTunnelSize: TSmaiiintField;
EndTunneiPacketsAggregated: TWideStringField;
EndTunneiSeqNbs: TWideStringField;
Des tinationCurrentTime: TwideStringField;
LabellO: TLabei;
Routers: TADOTab1e;
Routers SequenceNb: TAutolncField;
RoutersSirriTime: TlntegerField;
RoutersSize: TSmaiiintField;
RoutersRouter: TSmallintField;
RoutersPMTU: TSmaliintField;
RoutersEW: TlntegerField;
procedure FormCiose(Sender: TObject; var Action: TCioseAction);
procedure FormCreate(Sender: TObject);
procedure EventControllerStop(Sender: TObject);
procedure ZoominTEtnCiick(Sender: TObject);
procedure EventControllerSafeCall(Sender: TObject; SimTime: 1nt64);
procedure EventControllerEventDone(Sender: TObject; SirnTime: 1nt64);
procedure EventControilerinit(Sender: TObject);
procedure EventControllerReset (Sender: TObject);
procedure EventControilerStart(Sender: TObject);
procedure EventControllerStep(Sender: TObject);
procedure EuttonlClick(Sender: TObject);
PROCEDURE KNAPAPPROX (N: INTEGER; VAR P,W,X:ARRN;VAR V, PROFIT: INTEGER; VAR

EPS:REAL);
procedure SimSingleProcesslMUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovabieUnit);

procedure SimStorelMUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovabieUnit);

procedure SimGeneratorlGenerate_Int(Sender: TObject; SimTime: 1nt64);
procedure SimSinklMUDestroy(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSourcelMUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimStorelMUEntrance(Seflder TObject; SimTime: 1nt64;
MU: TMovabieUnit);

function SirnFlowControllFlowMethod(Sender TObject) : Integer;
function whichRouterlsFree: Integer;
function EmptyQueue(Queue: TsimStore): Boolean;
procedure recycleMuEntrance(Seflder: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSinklMUEntrance(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure recycleMUDestroy(Sender: TObject; SimTime: 1nt64;
MU: TMovabieUnit);

procedure droppedMUDestroy(Seflder: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure droppedMt.JEntrance(Seflder: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSink2MUEntrance(Sender: TObject; SimTime: 1nt64;
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MU: TMovableUnit);
procedure SimSink3MUEntrance(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimMultiProcesslMUEntrance(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimMultiProcess2MUEntrance(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SirnMultiProcess3MuEntrance (Sender: TObject; SirnTime: 1nt64;
MU: TMovableUnit);

procedure SimStorelBlocked(Sender: TObject; SimTime: 1nt64);
procedure SimSingleProcessiMUEntrance (Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimGeneratorlGenerateDur(Sender: TObject; SimTime: 1nt64);
function SimFlowControl3FlowMethod(Sender: TObject): Integer;
procedure CongestionMUEntrance(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSingleProcess3MUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSingleProcess5MUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSingleProcess4MUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

procedure SimSingleProcess2MUExit(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

private
Private declarations

RunningEcCount: integer;
SynchEvent: TSynchronizeEvents;

protected
protected declarations I

procedure loaded; override;
public

Public declarations
mudestroyed: integer;
blockedmu: integer;
countpackets: integer;
constructor Create(AOwner: TComponent); override;
procedure WriteStatus(Status: string);

end;

var
MainSimForm: TMainSimForm;
N,	 Nextint

P, W
x
V,	 PROFIT

EPS

implementation

($R *D)

integer;
ARRN;
ARRN;

integer;
real;

Register all 'Child' Simulation Form Units Below!!!
e.g. uses TestUnit;
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Function TMainSimForm.EmptyQueue(Queue: TsimStore): Boolean;
var

i: integer;
check: integer;

begin
check := 0;
for i := 0 to Queue.NumMu-1 do
if Queue.Content(i) <> nil then
else

inc(check);
if check = Queue.NumMU then

Result := True
else Result := False;

end;

Procedure TMainSimForm.KNAPAPPROX(N:integer;var P,W,X:ArrN;var
V,Profit:integer;var EPS:real);
var

I,J,K,L,MaxPl,MaxP2,MaxP3,PP,Q,R,S,U,VV:integer;
check: boolean;

Procedure LB (var G, H, Q, U: integer);
var

K: integer;
begin

K := 0;
repeat
K:k+1;
if (K <> G) and (K <> H) and (W[K] <= U) then
begin

Q := Q + P[k];
U := U -

end;
until k = N;

end;

procedure Max;
begin

if P[i] > MaxPi then
begin
MaxP3 := Maxp2;
Maxp2 : Maxpi;
Maxpi :

end
else

if P[i] > Maxp2 then
begin
Maxp3 : Maxp2;
Maxp2 : P[i]

end
else if P[i] > Maxp3 then
Maxp3 : P[i]

end;

begin
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i := 1;
U :=v;
profit	 0;
maxpi := 0; maxp2 := 0; maxp3 := 0;
check := false;
while (w[i] < u) do
begin

u
max;
x[i]	 1;
profit : profit + p[i];
i	 i + 1;
check	 true;
if i = N then break;

end;
if check = false then

begin
exit;

end;

i := i - 1;
S :	 i;
repeat

i :	 i + 1;
if w[i] < u then
begin

u	 U -

X[i] := 1;
profit : profit + p[i];

end
else

x(i] := 0;
max;

until i	 n;
q : profit;
k :	 0;
L := 0;
for i : S to n do
if x[i] <> 1 then
begin
vv : v - w[iJ;
pp := p[i);
LB(i, i, pp, vv);
if pp > profit then
begin

profit := pp;
k := i;

end;
end;
r :	 s;
for i:= 1 to n-i do
begin

if i > s then
r := i;

for j : r+i to n do
begin

vv	 v-w[i] -w[j];
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if vv >= 0 then
begin

pp := p[i] + p[j];
LB (i, j, pp, vv);
if pp > profit then
begin

profit	 pp;
k := i;
1 :=

end
end

end
end;
if profit > q then
begin

if k > 0 then
begin
v : v -w[k];
x[k] := 1;

end;
if 1 > 0 then
begin

v := v - w[1];
X[l] :	 1;

end;
for i := 1 to n do
if (i <> k) and (i <> 1) then

if w[i] <= v then
begin

x[i] := 1;
v := v - w[i];

end
else

X[i]	 0;
end;
EPS : maxp3/profit;
if BPS > 0.33333 then

BPS : 0.33333
end;

procedure TMainSimForm. loaded;
begin

inherited;
WriteStatus (l Idle');

end;

constructor TMainSimForm.Create(AOwner: TComponent);
begin

Register all 'Child' Simulation Forms Below!!!
e.g. RegisterClass (Testunit.TTestSimulationForlTl);
Note: Place code BEFORE 'inherited' statement I

inherited;
Caption := '''.' + Name + 	 - Main Simulation Form';

end;
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procedure TMainSimForm.WriteStatus (Status: string);
var

Counter: integer;
Component: TComponent;

procedure Recurs eWriteStatus (Component: TComponent);
var

Counter: integer;
Control: TComponent;

begin
for Counter := 0 to Component.ComponentCount - 1 do
begin

Control : Component.Components [Counter];
if (Control is TSimulationForm) then
begin

(Control as TSimulationForm) .MainSBar. Panels [1] .Text :=
MainSBar. Panels [1] .Text;

RecurseWriteStatus (Control);
end;

end;
end;

begin
MainSBar. Panels [1J.Text := Simulation Status: T + Status;
if not (csDesigning in ComponentState) then
begin

for Counter := 0 to Application.ComponentCount - 1 do
begin

Component : Application. Components [Counter];
if (Component is TSimulationForrn) then Recurs eWriteStatus(Componnt);

end;
end;

end;

procedure TMainSimForm.EventControllerSafeCall(Sender: TObject;
SimTime: TSimulationTime);

begin
case SynchEvent of

seZoomln: begin
dec (RunningECCount);
if RunningECCount <= 0 then ZoominTBtnClick(ZoominTBtn);

end;
seZoomOut: begin

dec (RunningECCount);
if RunningECCount <= 0 then ZoominTBtnClick(ZoomoutTEtfl);

end;
end;
SynchEvent := seNone;

//Disconnect Event
if (Sender is TEventController) then

(Sender as TEventController) .OnSafeCall := nil;
end;

procedure TMainSimForm.EventCont roll erEVentDOne(Sender TObject;
SimTime: TSimulationTime);

begin
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labellO.caption : inttostr(simtime);
WriteStatus ('Finished');

end;

procedure TMainSimForm.EventControllerlriit(Sender: TObject);
begin

WriteStatus ( 'Initialising');
RunningECCount := 0;
SynchEvent : seNone;

end;

procedure TMainSimForm.EventControllerReset(Sender: TObject);
begin

WriteStatus ('Resetting');
end;

procedure TMainSimForm.EventControllerStart(Sender: TObject);
begin
mudestroyed := 0;
blockedrnu := 0;
countpackets := 0;
WriteStatus ('Running');

end;

procedure TMainSimForm.EventControllerStep(Sender: TObject);
begin

WriteStatus ('Stepping');
end;

procedure TMainSimForm. EventControllerStop(Sender: TObject);
begin

case SynchEvent of
seClose: begin

dec (RunningECCount);
if RunningECCount < 0 then
Windows.PostMessage(Handle, WMCLOSE, 0, 0);

end;
end;
SynchEvent := seNone;
WriteStatus ('Stopped');

end;

procedure TMainSirnForm. FormClose (Sender: TObject;
var Action: TCloseAction);

var
Counter: integer;

begin
with MainSimPnl do

for Counter := 0 to ControlCount - 1 do
if (Controls[ Counter ] is TEventController) then
begin

if (Controls[ Counter ] as TEventController) .ThreadStopped then
(Controls[Counter ] as TEventController) .ShutDown
else
begin

inc (RunnirigECCount);
(Controls (Counter] as TEventController) .Stop;
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end;
end;

//Check if they have all stopped
if RunningECCount = 0 then
Action := caFree
else

begin
Action := callone;
SynchEvent := seClose;

end;
end;

procedure TMainSimForm. FormCreate(Sender: TObject);
begin

inherited;
Application.HintHidePause : 5000;
RunningECCount : 0;
SynchEvent := seNone;

end;

procedure TMainSimForm.ZoominTBtnClick(Sender: TObject);
va r

Counter: integer;
begin

with MainSimPnl do
for Counter := 0 to ControlCount - 1 do

if (Controls [Counter) is TEventController) and
not assigned( (Controls [Counter) as TEventController).OnSafeCall) and

not (Controls [Counter] as TEventController) .ThreadStopped thn
begin

(Controls (Counter] as TEventController) .OnSafeCall
EventControllerSafeCall;

inc (RunningECCount);
end;

//Check if they have all stopped
if RunningECCount = 0 then
inherited
else
begin

if (Sender = ZoominTBtn) then
SynchEvent := seZoomln
else if (Sender = ZoornoutTBtn) then

SynchEvent : seZoomOut;
end;

end;

procedure TMainSimForm. SimSingleProcessiMUExit (Sender: TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
contentind: integer;
stockobj: TSirnStore;
size: integer;
SeqNb: Integer;
Agg: byte;

begin
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inherited;
stockobj := simstorel;
if stockobj.nummu >= stockobj.capacity then
begin

mu.SimProperties.Items[O] .GetValue(size);
mu.SimProperties.Items[3] .GetValue(Agg);
rnu.SimProperties.Items[2] .GetValue(SeqNb);
CongestionDropped . Append;
Conges tionDroppedSirnTime . Value . := SimTime;
CongestionDroppedSize.Value := Size;
CongestionDroppedAgg.Value := Agg;
CongestionDroppedSequenceNb .Value := SeqNb;
CongestionDropped. Fost;

end;
end;

procedure TMainSimForm. SimStorelMUExit (Sender: TObj ect; SimTime: 1nt64;
MU: TMovableUnit);

var
PAcketSize, TTLValue: Integer;
InnerPackets: string;

begin
inherited;

label3.caption := IntTostr(simstorel.nummu);

end;

procedure TMainSimForm. SimGeneratorlGenerate mt (Sender:
SimTime: 1nt64);

var
contentind: integer;
packet: integer;
stockobj: TSimStore;
obj: TMovableUnit;
counter: integer;
whichpath: integer;
router : TMAterialFlow;
Aggregated: Integer;
irand: integer;
i,j: integer;
PacketsAggregated, PAcketsFragmented: String;
packetsize, size, test, index: integer;
a:array[l. .5] of integer;
PMTU, 3W, TTL: integer;
PathSize: Integer;
Seq: Longlnt;
SeqNbs : String;

begin

stockobj := SimStorel;
obi : nil;
Listbox5 * Clear;
listbox3. clear;

with stockobj do
begin

for contentind := 0 to NumMU - 1 do

TObject;
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begin
obi : content(contentind);
if obj = nil then

listbox5. items. append( '0')
else
begin

Content(contentind) .SimProperties.Items[0] .GetValue(packetsize);
listbox5.items.append(inttostr(packetsize)

end;
end;

if NumMu > 1 then
begin

EPS := CONSTANT;
N := Stockobj.NumMu;
whichpath	 whichrouterisfree;
if whichpath = 4 then
begin

II showmessage ( congestion');
exit;

end;

router := simflowcontroll.Successors.Items[WhichPath] .Successor;
router.SimProperties.items[O] .getvalue(v);
router.SimProperties.items[l] .getvalue(BW);

PathSize := v;

for counter := 1 to N do
begin

P( counter] : StrTolnt(listbox5. Items. Strings [counterl]);
W[counter] : StrTolnt(listbox5. Items. Strings[ counter- l]h

end;

if (EmptyQueue(simstorel)) and (countpackets
=simsourcel .NumToGen) then

begin
simgeneratorl.stop : 1;
exit;

end;

KNAPAPPROX(N,P,W,X,V,PROFIT,EPS);

for index : 0 to N do
listbox3.Items.Strings[ifldeX] : inttostr(X[index+l1);

II fragmentation part
index : 0;
if (profit = 0) or (v < 0) then
begin

for index	 0 to listbox5.items.count-1 do
begin

whichpath := whichrouterisfree;
if whichpath = 4 then
begin

II showmessage( 'congestion');
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exit;
end;
router :=	 -

simflowcontroll.Successors.Iterns[WhichPath] .Successor;
router.SimProperties.items[0] .getvalue(PMTU);
Packet : strtoint(listbox5. Items. strings [index]);
if packet > PMTU then
begin

for i	 1 to 5 do
a[i] := 0;

j	 Packet div PMTU;
for i	 1 to j do

a[i] : PMTU;
if Packet mod PMTU <> 0 then

a[i] :	 (Packet - j*PMTU);

i :	 1;
PacketsFragmented	 It;

SeqNbs :	 It;

stockobj .Content(i-1) .Move(recycle);
listbox5.Items.Strings[i-1] 	 lot;

while a[i] <> 0 do
begin

fragment. SimProperties. Items[ O] .SetValue(a[i])
fragment.CreateUnit.Move(router);
listbox7.Items.add(inttostr(a(i]));

inc(i);

Queue .Append;
QueueSimTime.Value := SimTime;
QueueAggSize.Value := a[i-1];
QueuePMTU.Value := PathSize;
QueueBW.Value := EW;
QueueAgg.Value : 3;
QueueTTL.Value	 5;
PacketsFragmented: PacketsFragmented + I I +

Inttostr(a[i]);
QueuePacketsAggregated.ValUe := PacketsFragmented;
Queue. Post;

end;
end;

end;
end
//end of fragmentation

else begin
aggregated : 0;
for counter := 1 to N do
begin
listbox3.Items.Strings[counter- 1 ] : inttostr(X[Counter]);
if X[counter] <> 0 then

Aggregated := Aggregated + P(counter);
end;
router.SimProperties.items[1] .getvalue(BW);
aggregate.SimProperties. Items [0] . SetValue (Aggregated);
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TTL : 5;
aggregate.SimProperties.Items[1] .SetValue(TTL);
aggregate. CreateUnit . Move ( router)
PacketsAggregated :=
for counter := 1 to N do

if (X[counter] <> 0) and (stockobj.content(counter-1)<>nii) then
begin

stockobj . content (counter-
1) .SirnProperties.Items{O] .GetValue(packetsize);

stockobj .content(counter-1) .SimProperties.Items[2] .GetVaiue(Seq);
stockobj .Content(counter-1) .Move(recycie);
PacketsAggregated := PacketsAggregated + ' ' +

Inttostr (PacketSize);
SeqNbs : SeqNbs + '	 + Inttostr(Seq);
stockobj . content (counter-

1) .SimProperties.Items[4] .SetValue(PacketsAggregated);
iistbox5.Items.Strings[counter-1] := t0;

end;
aggregate.SimProperties.Iterns[4] .SetValue(PacketsAggregated);
aggregate.Sim2roperties.Items[5] .SetValue(SeqNbs);
Queue .Append;
QueueSimTime.Vaiue := SirnTirne;
QueueAggSize.Value := Aggregated;
QueuePMTU.Value : PathSize;
QueueAgg.Value : 2;
QueueBw.Value := BW;
QueueTTL.Value : 5;
QueuePacketsAggregated.Value := PacketsAggregated;
QueueSeqNbs.value : SeqNbs;
Queue.Post;

end;
end;

end;
if mudestroyed = simsourcel.NumToGen-1 then

simgeneratorl.stop := 1;
end;

procedure TMainSimForm. SimSinklMUDestroy(Sender: TObject; SirnTime: 1nt64;
MU: TMovableUnit);

begin
inherited;II	 inc (mudestroyed);II	 iabei4.caption := inttostr(mudestroyed);

end;

procedure TMainSimForm. SimSourcelMUExit (Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);
var

PacketSize: Integer;
currenttime: ttimestamp;
Seq: Longlnt;

begin
inherited;

inc (countpackets);
randomize;
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II	 PacketSize := random(1600);
II	 while packetsize < 500 do
II	 PacketSize := random(1600);

packetSize : 576;
Packet.SimProperties.Items[0] .SetValue(packetsize);
Listbox4 . Items .Append (inttostr (packetsize));
Source .Append;
SourceSimTime.Value := SimTime;
SourceSize.Value := PAcketSize;
SourceTTL.Value : 10;
SourceAgg.Value : 1;
currenttime := DateTimeToTimeStamp(time);
SourceCurrentTime. Value := floattostr (times tamptomsecs (currenttime);
Source. Post;
Seq := SourceSequenceNB.Value;
Packet.SimProperties.Items[2] .SetValue(Seq);

end;

procedure TMainSimForm. SimStorelMUEntrance (Sender: TObj ect; SimTime: 1nt64;
MU: TMovableUnit);
Va r

packetsize: integer;
i: integer;
counter: Integer;

begin
inherited;
if simstorel.riummu = simstorel.capacity-1 then
begin

listbox5.Clear;
for i := 0 to simstorel.nurnmu do

begin
simstorel. Content (i) .SimProperties. Items [0I .GetValue(packetsize);
Listbox5.Items.Append(iflttOstr(packetSiZe)).

end;

end;
end;

function TMainSimForm. SimFlowControllFlowMethod(Sender: TObject) : Integer;
var
PathMtu, PacketSize : Integer;
begin

inherited;

simflowcontroll.predecessor.MU.SimProPerties. Items [ O 1 .GetValue(PacketSize);

if packetSize < 1600 then
result :	 1

else if PacketSize <2000 then
result := 0

else if packetsize < 2500 then
result := 3

else if packetsize < 3500 then
result : 2;

end;

function TMainSimForm.WhichRoUterisFree integer;
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var
randi: integer;

begin
randomize;
randi : random(4);
if (randi = 0) and (simsingleprocess3.NumMu = 0) then

result := 0
else if (randi = 1) and (simsingleprocess2.NumMU = 0) then

result := 1
else if (randi = 2) and (simsingleprocess4.NurnMU = 0) then

result := 2
else if (randi = 3) and (simsingieprocess5.NumMU = 0) then

result : 3
else result := 4;

end;

procedure TMainSimForm. recycleMUEntrance(Sender: TObject; SirnTime: 1nt64;
MU: TMovableUnit);
var

size: integer;
begin

inherited;
mu.SimProperties.Items[0).GetValue(size);
listboxl.Items.Append(inttostr(siZe))

end;

procedure TMainSimForm.SimSinklMUEntraflce(Sender TObject; SimTime: 1nt64;
MU: TMovableUnit);
var

size: integer;
begin

inherited;
mu.SimProperties.Items[0] .GetValue(size);
listbox2.Items.Append(inttOstr(size)).

end;

procedure TMainSimForm. recycleMUDestroy(Sender: TObject; SimTime: 1nt64;
MU: TMovableUnit);

begin
inherited;

inc (mudestroyed);
label4.caption : inttostr(mudestroyed);

end;

procedure TMainSimForm.droppedMUDestrOy(Sender TObject; SimTime: 1nt64;
MU: TMovableUnit);

begin
inherited;II	 inc(mudestroyed);II	 label4.caption := inttostr(mudestroyed);

end;

procedure TMainSimForm.drOPPedNUEntranCe(Sender TObject; SimTime: 1nt64;

xxvi



MU: TMovableUnit);
var
size: integer;

begin
inherited;

mu.SimProperties.Items[O] .GetVaiue(size);
iistbox6.Items.Append(inttostr(size));

end;

procedure TMainSimForm. SimSink2MUEntrance (Sender: TObj ect; SimTime: 1nt64;
MU: TMovabieUnit);
var

size: integer;
begin

inherited;
mu.SimProperties.Items[O1 .GetVaiue(size);
iistbox2.Items.Append(inttostr(size));

end;

procedure TMainSimForm.SimSink3MUEntrance(Seflder: TObject; SimTime: 1nt64;
MU: TMovab.leUnit);
var
size: integer;

begin
inherited;

mu.SimProperties.Items[O].GetVa]ue(size);
listbox2.Iterns.Append(inttostr(size));

end;

procedure TMainSimForm. SiniMultiProcessiMUEntrance (Sender: TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
a:array[1. .5] of integer;
i,j: integer;
Packet, PMTU: integer;
TTLVa1ue: byte;
InnerPackets, Seqs: string;
currenttime: ttimestamp;

begin
inherited;
MU.SimProperties.Items[O1 .GetVaiue(Packet);
simMuitiProcessl.SimProperties.items[O1 .GetVaiue(PMTU);

MU.SimProperties.ItemS[4] .Getvalue(InnerPacketS);
MTJ.Simproperties.Items[5].GetVaiUe(SeqS)
endtunnel . Append;
endtunnelsize.Value := Packet;
endturinelSimTime .Vaiue : = SimTime;II	 endtunnelSeqNbs.ValUe := Seqs;II	 endturinelPacketsAggregated.valUe := InnerPackets;
currenttime := DateTimeToTimeStarnp(tiflle)
EndTunnelCurrentTime.ValUe := floattostr (timestamptomsecs (currenttime));
endtunnel . post;
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if packet > PMTU then
begin
for i := 1 to 5 do
a[i] := 0;

j := Packet div PMTU;
for i := 1 to j do
a[i] := PMTU;

if Packet mod PMTU <> 0 then
a[i] := (Packet - j*PMTU);

i := 1;
while a[i] <> 0 do
begin

fragment.SimProperties.Items[O1 .SetValue(a[i]);
fragment. CreateUnit .Move (simsinkl);
listbox7.Items.add(inttostr(a[i]));
inc(i);
MU.SimProperties.Items[1] .GetValue(TTLVa1ue);
dec(TTLVa1ue);
Destination .Append;
DestinationSimTime.ValUe := SimTime;
DestinationSize.Value := a[i];
DestinatioriAgg.Value : 3;
DestinationTTL.Value : TTLVa1ue;
currenttime := DateTimeToTimeStamp(time);
DestinationCurrentTime.ValUe := floattostr(timestamptomsecs (currenttime));

Destination. Post;
end;

end
else begin

MU. SimProperties. Items [1J .GetValue(TTLVa1ue);
dec (TTLVa1ue);
Destination .Append;
DestinationSimTime.ValUe := SimTime;
DestinationSize.ValUe : Packet;
DestinationAgg.ValUe := 2;
DestinationTTL.ValUe := TTLValue;
currenttime	 DateTimeToTimeStamp(time).
Des tinationCurrentTime .Value : =

floattostr (times tamptomsecs (currenttime));
Destination. Post;

end;

end;

procedure TMainSimForm. SimMultiProcess2MUEntrance(Seflder TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
a:array[1. .51 of integer;
i,j: integer;
Packet, PMTU: integer;
TTLValue: byte;
InnerPackets, Seqs: string;

currenttime: ttimestamp;
begin
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inherited;
MU.SimProperties.Items{O] .GetValue(Packet);
SimMultiProcess2.SimProperties.items[O] .GetValue(PMTU);

MU.SimProperties.Items[4] .GetValue(InnerPackets);II MU.SimProperties.Items[5] .GetValue(Seqs);
endtunnel .Append;
endtunnelsize.Value 	 Packet;II	 endtunnelPacketsAggregated.value := InnerPackets;II	 endtunnelSeqNbs.value := Seqs;

endtunnelSimTime.Value : SimTime;
currenttime := DateTimeToTimeStamp(time);
EndTunnelCurrentTime.Value := floattostr (timestamptomsecs (currenttime));
endtunnel .post;

if packet > PMTU then
begin
for i	 1 to 5 do
a[i] := 0;

j := Packet div PMTU;
for i := 1 to j do

a[i] :	 PMTIJ;
if Packet mod PMTU <> 0 then

a[i] :	 (Packet - j*PMTU);

i := 1;
while a[i] <> 0 do
begin

fragment.SimProperties.Items[O] .SetValue(a[i]);
fragment.CreateUnit.Move(simsink2);
listbox7.Items.add(inttostr(a[ifl);
inc(i);
MU.SimProperties.Items[1] .GetValue(TTLVa1ue);
dec(TTLValue);
Destination .Append;
DestinationSimTime.Value : SimTime;
DestinationSize.Value := a[iJ;
DestinationAgg.Value	 3;
DestinationTTL.Value := TTLVa1ue;
currenttime	 DateTimeToTimeStamp(time);
DestinationCurrentTime.ValUe := floattostr(timestamptomsecs (currenttime));
Destination. Post;

end;
end
else begin

MU.SimProperties.Items[l] .GetValue(TTLVa1ue);
dec(TTLVa1ue);
Destination .Append;
DestinationSimTime .Value := SimTime;
DestinationSize.ValUe := Packet;
DestinationAgg.Value : 3;
DestinationTTL.ValUe := TTLVa1ue;
currenttime := DateTimeToTimeStamp(time)
DestinationCurrentTime.ValUe := floattostr(timestamptomSeCs (currenttime));
Destination. Post;
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end;
end;

procedure TMainSimForm. SimMultiProcess3MUEntrance (Sender: TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
a:array[1. .5] of integer;
i,j: integer;
Packet, PMTU: integer;
TTLVa1ue: byte;
InnerPackets, Seqs: String;
currenttime: ttimestamp;

begin
inherited;
MU.SimProperties. Items [O] .GetValue(Packet);
SimMultiProcess3.SimProperties. items [O] .GetValue(PMTU);

II	 MU. SimProperties. Items (4] .GetValue(InnerPackets);II MU. SimProperties. Items [5] .GetValue(Seqs);
endtunnel .Append;
endtunnelsize.Value : Packet;

endtunnelSimTime .Value := SimTime;II	 endtunnelPacketsAggregated.value : InnerPackets;II	 endtunnelSeqNbs.value : Seqs;
currenttime := DateTimeToTimeStamp(time);
EndTunnelCurrentTime. Value := floattostr (times tamptornsecs (currenttime));
endtunnel .post;

if packet .> PMTU then
begin
for i := 1 to 5 do

	

a[i] :	 0;

j := Packet div PMTU;
for i := 1 to j do
a[i] := PMTU;

if Packet mod PMTU <> 0 then
a[i] := (Packet - j*PMTu);

i :	 1;
while a(i) <> 0 do
begin

fragment. SimProperties. Items [O1 .SetValue(a[i]);
fragment. CreateUnit . Move (simsink3);
listbox7.Items.add(inttoStr(aEi]))
inc(i);
MU. SimProperties. Items [ll .GetValue(TTLVa1ue);
dec(TTLValue);
Destination .Append;
DestinationSimTirfle . Value := SimTime;
DestinationSize.ValUe : a[i];
DestinatioriAgg.ValUe : 3;
DestinationTTL.ValUe := TTLVa1ue;
currenttime := DateTimeToTimeStamp (time);
Des tinationCurrentTime.Value := floattostr (times tamptomSecS (currenttime));

Destination. Post;
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end;
end
else begin

MU.SimProperties.Items[l] .GetValue(TTLVa1ue);
dec(TTLValue);
Destination .Append;
DestinationSimTirne .Value : SimTime;
DestinationSize.Value : Packet;
DestinationAgg.Value := 3;
DestinationTTL.Value := TTLVa1ue;
currenttime := DateTimeToTimeStamp(time);
DestinationCurrentTime.Value := floattostr(tirnestamptornsecs (currenttime));
Destination. Post;

end;
end;

procedure TMainSiraForm.SimStorelBlocked(Sender: TObject; SimTime: 1nt64);
begin

inherited;
inc(blockedmu);
label7.caption := inttostr(blockedmu);

end;

procedure TMainSimForm. SirnSingleProcesslMUEntrance(Sender TObject;
SimTime: 1nt64; MU: TMovableUnit);
var

sizevalue,TTLVa1ue: integer;
begin

inherited;
mu.SimProperties. items ll] .GetValue(TTLVa1ue);
dec(TTLVa1ue);
mu. SimProperties. items [l) .SetValue(TTLVa1ue);
if TTLVa1ue <= 0 then
begin

MU.Move(recycle);
mu. SimProperties. items [O] .GetValue(sizeValue);

listbox8.Items.Append(inttOstr(siZevalue))
end;

end;

procedure TMainSimForm. SimGeneratorlGenerate_DUr (Sender: TObject;
SimTime: 1nt64);

var
stockobj: TSimStore;
obj: TMovableUnit;
counter, contentind: integer;
TTLVa1ue, sizeValue: integer;
DropAgg : byte;

begin
inherited;

stockobj : SimStorel;
if (stockobj <> nil) then
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begin
obj := nil;
with stockobj do

for contentind := 0 to NumMU do
begin

obj := content(contentind);
if obj <> nil then

break;
end;

if obj <> nil then
begin

obj .SimProperties.items[l] .GetValue(TTLVa1ue);
dec(TTLVa1ue);
obj .SimProperties.iterns[l] .SetValue(TTLVa1ue);
if TTLValue <= 0 then
begin

obj .Move (dropped);
obj .SimProperties.items[01 .GetValue(SizeValue);
listbox8 . Items .Append(inttostr (SizeValue));
TTLDR0p .Append;
TTLDropSimTime.Value := SimTime;
TTLDropSize.Value := SizeValue;
obj .SimProperties.items[3] .GetValue(DropAgg)
TTLDropAgg.Value := DropAgg;
TTLDr0p. Post;

end;
end;

end;

end;

function TMainSimForm.SimFlowControl3FlOWMethOd(Seflder TObject) : Integer;
var

stockobj: TSimStore;
begin

inherited;
stockobj := simstorel;
if stockobj.nummu >= stockobj.capacity then
Result : 1

else Result := 0;
end;

procedure TMainSimForm. CongestionMUEntrance (Sender: TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
size: integer;
begin
inherited;

mu.simProperties.ItemsEOI.GetValue(Size)
listbox6.Items.Append(intt05tr(s3Ze))

end;

procedure TMainSimForm. simSingleProcess3MUExit (Sender: TObject;
SimTime: 1nt64; MU: TMovableUnit);

var
Size, PMTU: integer;
BW: longint;
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begin
inherited;

MU.SimProperties.Items{O] .GetValue(Size);
SimSirigieProcess3.SimProperties. Items[ O] .GetValue(PMTU);
SimSingieProcess3.SimProperties. Items [1] .GetValue(BW);
Routers .Append;
RoutersSimTime.Value : SimTime;
RoutersSize.vaiue := Size;
RoutersPMTU.vaiue : PMTU;
RoutersBW.vaiue := BW;
RoutersRouter.vaiue := 1;
Routers. Post;

end;

procedure TMainSimForm. SimSingleProcess5MUExit(Sender: TObject;
SimTime: 1nt64; MU: TMovableunit);

var
Size, PMTU: integer;
BW: longint;

begin
inherited;

MU.SimProperties.Iterns{O] .GetVaiue(Size);
SimSingleProcess5.SimProperties.Items[O] .GetVaiue(PMTU);
SimSingieProcess5.SimProperties. Items [11 .GetVaiue(BW);
Routers .Append;
RoutersSimTime.Value := SimTime;
RoutersSize.vaiue : Size;
RoutersPMTU.vaiue := PMTU;
RoutersBW.value := BW;
RoutersRouter.vaiue := 2;
Routers. Post;

end;

procedure TMainSimForrn.SimSingieProcess4MUExit(Sender TObject;
SimTime: 1nt64; MU: TMovabieUnit);

var
Size, PMTU: integer;
EW: longint;

begin
inherited;

MU.SimProperties.ItemS[O] .GetValue(Size);
SimsingleProcess4.SimProperties . Items [O] .GetValue(PMTU);
SimSingieProcess4.SimPropertieS. Items [l] .GetValue(BW);

Routers .Append;
RoutersSimTime.ValUe : SimTime;
RoutersSize.value := Size;
RoutersPMTU.value : PMTU;
RoutersBW.value : BW;
RoutersRouter.ValUe : 3;
Routers. Post;

end;

procedure TMainSimForm. simSingleProcess2MUExit (Sender: TObject;
SimTime: 1nt64; MU: TMovabieUnit);

var
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Size, PMTU: integer;
BW: longint;

begin
inherited;

MU.SimProperties. Items( O] .GetValue(Size);
SimSingieProcess2.SimProperties. Items( O] .GetVaiue(PMTU)
SimSingieProcess2.SimProperties.Items[1] .GetValue(BW);
Routers .Append;
RoutersSimTime.Value := SimTime;
RoutersSize.value := Size;
RoutersPMTU.value	 PMTU;
RoutersBW.value := BW;
RoutersRouter.value := 4;
Routers. Post;

end;

end.
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