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ABSTRACT 

 

Purpose: The purpose of this thesis is to investigate and assess the predictive ability of the 

GARCH (1,1), IGARCH (1,1), EGARCH (1,1), GJR-GARCH (1,1), APARCH (1,1), TGARCH 

(1,1) and CGARCH (1,1) models in forecasting the volatilities of six major cryptocurrencies: 

Bitcoin, Ripple, Litecoin, Monero, Dash, Dogecoin and six world currencies: Euro, British Pound, 

Canadian Dollar, Australian Dollar, Swiss Franc and the Japanese Yen. The optimal volatility 

model selected for each virtual and hard currency is then integrated into the Volatility Update 

Historical Simulation approach to evaluate the accuracy of VaR in quantifying the level of down-

side risk in cryptocurrencies and fiat currencies. 

 

Design/Methodology/Approach: The daily closing prices for each cryptocurrency and fiat currency 

are collected over a sampled period extending from October 13th 2015 till November 18th 2019. 

The sampled period is divided into two sub-sample periods: the in-sample period extending from 

October 13th 2015 till December 3rd 2018, and the out-of-sample period covering the period from 

December 4th 2018 till November 18th 2019. In-sample returns are calculated from daily closing 

prices and are used to estimate the parameters of the selected models, subject to the assumptions 

and constraints of each model. Accordingly, the calculated in-sample parameters are applied to 

forecast the volatilities for both the in-sample and out-of-sample periods. The three error metrics 

RMSE, MAE and MAPE are then utilized to determine the optimal model for each currency and 

cryptocurrency and for each of the in-sample and out-of-sample periods. The Rolling Window 

procedure is conducted in conjunction with the out-of-sample optimal model’s parameters to sim-

ulate the variances and volatilities of each cryptocurrency and fiat currency. Using the Volatility 

Update Historical Simulation method, future return scenarios are generated for each cryptocur-

rency and fiat currency over each day extending from December 4th 2018 till November 18th 2019. 

The Value at Risk is then calculated for those 250 days at four confidence levels (90%, 95%, 

97.5% and 99% confidence levels) for each cryptocurrency and fiat currency. The Kupeic test is 

eventually performed to determine the accuracy of the underlying VaR model. 
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Findings: By comparing the realized volatility to the estimated volatilities, the results show con-

sistency among fiat currencies whereby the Integrated GARCH has proven to be the best performer 

during both sampled periods for most of the fiat currencies, particularly the British Pound, Aus-

tralian Dollar, Swiss Franc and the Japanese Yen. The IGARCH model is also found to be the most 

accurate model for the Canadian Dollar, but only for the out-of-sample period given that the 

Threshold GARCH performs better during the in-sample period. However, the Component 

GARCH is the optimal model for the Euro for both the in-sample and out-of-sample contexts. 

Therefore, the IGARCH has proven to be the prevailing model when modeling foreign exchange 

markets. Exceptionally and among all cryptocurrencies, the Integrated GARCH is also the best 

performing model for Monero, for both sampled periods. As for the remaining cryptocurrencies, 

the GJR-GARCH model proved to be superior during the in-sample period while the CGARCH 

and TGARCH models proved to be best performers during the out-of-sample period. Specifically, 

for the in-sample period, the GJR-GARCH model is selected for Bitcoin, Litecoin and Dash, 

APARCH is selected for Ripple, and SGARCH is selected for Dogecoin. For the out-of-sample 

period, TGARCH performed best for Bitcoin and Dash while CGARCH is selected for Ripple and 

Dogecoin and APARCH is selected for Litecoin. The results validate the assumption that advanced 

GARCH models better model asymmetries in cryptocurrencies’ volatility. Finally, the Kupeic test 

showed that the VaR provides a very accurate measure for the level of downside risk exposing fiat 

currencies, as the results were accepted at all confidence levels for each of the Euro, British Pound, 

Canadian Dollar, Australian Dollar, Swiss Franc, and the Japanese Yen, given that the VaR model 

was only rejected at the 97.5% confidence level for the latter. Dash and Dogecoin provided similar 

results to fiat currencies where the VaR results were accepted at all confidence levels. As for the 

remaining cryptocurrencies, the results were different. The VaR results displayed increased accu-

racy with an increase in confidence level in the case of Litecoin, where the model was accepted at 

the 95%, 97.5% and 99% confidence levels and was rejected at the 90% significance level. As for 

Monero, the VaR model was accepted at 90% and 99% confidence levels and rejected at the 95% 

and 97.5% confidence levels. Nevertheless, it is evident that the VaR provides a poor measure for 

Bitcoin and Ripple whereby the model was rejected at all confidence levels, noting that it was only 

accepted at the 99% confidence level. Therefore, it can be deduced that the Value at Risk provides 

a viable measure of the risk exposure in fiat currencies and some cryptocurrencies, such as Dash 
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and Dogecoin. However, this metric fails in accurately quantifying the level of downside risk in 

major cryptocurrencies such as the Bitcoin and Ripple.  

 

Research Limitations/Implications: Despite the proven significance of the Student’s t and Gen-

eral Error Distributions that have been introduced in this thesis, there are several other distributions 

that could have been considered. Furthermore, even though the selected models: SGARCH, 

IGARCH, EGARCH, GJR-GARCH, TGARCH, APARCH and CGARCH models have proven 

their superiority in predicting the volatility of not only fiat currencies and cryptocurrencies but 

most securities, this thesis could have integrated further models. Moreover, while the expression 

“Value at Risk” is widely used, the expression does not refer to one particular methodology or 

approach for quantifying risk. Although this thesis employed the best possible method, the Vola-

tility Updating Historical Simulation Method, there are other few methods that could have been 

utilized to measure VaR. In addition, another limitation in this thesis is that the VaR failed in 

accurately quantifying the level of downside risk in highly volatile markets such as in cryptocur-

rencies, particularly Bitcoin and Ripple which are the leading cryptocurrencies today. For this 

reason, more refined and sophisticated tools could have been integrated into our research to remedy 

deficiencies in VaR. Lastly, there are few uncertainties whether the findings of this thesis and the 

behavior of the selected cryptocurrencies could be theorized on the entire cryptocurrency market 

as the market prices of the selected cryptocurrencies have changed since the beginning of this 

research, thereby as has their representative portion from the entire cryptocurrency market. 

 

Practical Implications: The results of this thesis and the assumptions drawn from our findings 

can be particularly useful for certain parties. For governmental institutions and regulators, it is 

recommended from authorities to examine the risk enfolding cryptocurrencies. This thesis pro-

vided further wisdom concerning the risks conveyed in the cryptocurrency market. Based on those 

results, governments and regulatory authorities could strengthen regulations and arouse further 

awareness by enforcing policies and restraining investors from devoting too much investment in 

cryptocurrencies. Accordingly, financial managers and investors need to be aware before consid-

ering an investment in cryptocurrencies, given their extremely volatile behavior. For this reason, 

investors and senior managers are advised to limit their positions in cryptocurrencies, specifically 
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during strained conditions. As for academicians, this thesis provides further clarification surround-

ing the behavior of cryptocurrencies with respect to world currencies, the relative performance of 

diverse GARCH models, and reliability concerns of the Value at Risk measure. This thesis can be 

considered the groundwork and motive for further examining and modeling the volatility of cryp-

tocurrencies or employing alternative models to the Value at Risk.  

 

Originality/Value: The findings of this thesis are novel to those of preceding research, as this 

research is the first and latest to inspect the volatility and the Value at Risk of six major crypto-

currencies along with that of the top six hard currencies, all together, particularly with the use of 

several GARCH Models and the Volatility Updating Historical Simulation Method.   

 

Keywords: Bitcoin, Ripple, Litecoin, Monero, Dash, Dogecoin, EURUSD, GBPUSD, CADUSD, 

AUDUSD, CHFUSD, JPYUSD, GARCH(1,1), IGARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1), APARCH(1,1), TGARCH(1,1), CGARCH(1,1), modeling volatility, GARCH 

models, in sample, out of sample, Value at Risk, VaR, realized volatility, cryptocurrencies, fiat 

currencies, Kupiec test, rolling window, volatility update historical simulation. 
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Chapter 1: Introduction 

 

The study of finance is to a large extent a study of volatility and volatility really permeates finance. 

Since the 2007 credit crisis, the word ‘volatility’ has become even more prevalent and contagious 

in the lexicon of financial services professionals, the media and, the public at large. This is why 

volatility has become increasingly conventional over the last decade. Therefore, understanding 

price volatility dynamics has become of considerable interest to those seeking to understand the 

price dynamics of financial assets. 

 

What is volatility; it is a statistical measure that gauges the dispersion of returns for a given security 

or financial instrument. It can either be measured by using the standard deviation or square root of 

the variance between daily returns from that same instrument (Kuepper, 2020). Practically, vola-

tility has provoked fears of uncertainty and skepticism as it has been a sole indicator of risk. Also, 

volatility is a major player in the state of the economy where it represents an indicator of investor 

and consumer’s confidence. Theoretically speaking, therefore, the higher the volatility the riskier 

the security. For this reason, precision is very eminent. Inaccurate estimates of volatility can have 

a substantial impact on financial decisions. An understated volatility can provoke a greater risk 

exposure, and an overstated volatility may incite an opportunity cost (Naimy & Hayek, 2018). As 

such, efficient and effective risk management frameworks must be braced to accurately calibrate 

the level of volatility. In this essence, it is vital to ensure that this risk is being optimally monitored 

and mitigated.  

 

As such, volatility is a key element around which financial markets revolve. Its preeminence and 

essence in the different areas of risk management, trading, security pricing, asset allocation, port-

folio optimization and monetary policy has enticed interest from investors, governments, and reg-

ulators. From this context, modeling and predicting the volatility of financial markets has been, for 

years, the core of extensive empirical and hypothetical investigation of both academics and practi-

tioners. Many models have evolved and rectified to model volatility but no model has unveiled 

extreme superiority for predicting volatility for all financial instruments. Therefore, model reliabil-

ity is associated with the foundation and distinctive feature of the asset itself. 
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Apart from Bitcoin, there appears to be little or no literature on modeling the volatility of crypto-

currencies (Chu et al., 2017), despite the extensive literature on the predictive capacity of models 

in forecasting a diverse range of asset classes. Given their typical volatile behavior, coupled with 

their significance in the financial field and on the financial system in particular, the need to predict 

their volatility has become more and more imperative. Therefore, the importance of a comprehen-

sive study encircling the behavior of cryptocurrencies with respect to fiat currencies like the Swiss 

Franc, Euro, and the British Pound is self-evident that may unveil unknown characteristics, amend 

on or improve existing findings. Thereby, this thesis contributes to the existing literature by at-

tempting to fill this gap in current research. 

 

The purpose of this thesis, therefore, is to inspect and demarcate the behavior and liaison of gener-

ally two types of currencies, cryptocurrencies and fiat currencies. This is addressed by monitoring 

and predicting their volatility, as cryptocurrencies have risen and have thrived in altering many 

people’s exchange mechanism thereby asserting their prominence in the marketplace and on the 

financial system.  

 

Formerly, most currencies were backed by physical commodities such as gold through a monetary 

system known as the gold standard, which was abandoned and replaced by fiat money. In-

vestopedia (2019) defines fiat money as a currency issued by the government and declared to be 

legal tender whereby its value is derived from unlimited supply and demand factors and is thereby 

solely based on the faith and credit of the economy. Fiat money rose to eminence in the 20th 

century, particularly after the collapse of the Bretton Woods Agreement, which was dissolved 

between the late 60s and early 70s, when the United States abolished the international convertibil-

ity of the American dollar into gold, in what became known as the Nixon Shock. Ever since, a 

local fiat money system has been used globally, allowing for floating exchange rate regime be-

tween the major currencies. As such, fiat money is centralized and inflationary.  

 

Unlike traditional currencies, a cryptocurrency is a digital or virtual currency and a medium of 

exchange that uses cryptography to secure financial transactions. A defining characteristic of most 

cryptocurrencies, and perhaps their most appealing allure, is that they have a confined supply and 

https://www.investopedia.com/terms/c/currency.asp
https://www.investopedia.com/terms/b/brettonwoodsagreement.asp
https://en.wikipedia.org/wiki/Nixon_Shock
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are not supported by any central authority, rendering them theoretically deflationary and decen-

tralized thereby immune to central banking system and governmental interference providing many 

advantages over traditional payment methods including speed, high liquidity, lower transaction 

costs, and anonymity (Fantazzini et al., 2016). However, it is an emerging, retail focused, highly 

speculative market that lacks a legal and regulatory framework comparable to other assets. Ac-

cordingly, the unregulated and digital aspect of a cryptocurrency makes it an attractive target for 

hackers (Grinberg, 2011) as it is not difficult to counterfeit because of this insecurity feature. In 

essence, it is claimed that they could be used to hedge popular fiat currencies backed by the most 

powerful economies. As such, a cryptocurrency was designed to be everything fiat currency could 

not be. This is why it is vital to unveil the nature of the relationship between cryptocurrencies and 

fiat.  

 

Bitcoin (BTC), often regarded as father of cryptocurrencies, is the most leading and prominent 

cryptocurrency and probably the most controversial virtual currency scheme to date that has been 

the main focus of interest since its release in 2009. Since 2009, the finance world has been watch-

ing the exceptional rise of Bitcoin with a combination of captivation and, in many cases, severe 

skepticism. The original concept was to create a digital payment protocol and peer-to-peer unit of 

currency that can be transferred instantly and securely between any two parties (Ametrano, 2016).  

The underlying technology of Bitcoin creation and transactions is called ‘Blockchain’, a shared 

public ledger on which the entire Bitcoin network relies and whereby all confirmed transactions 

are recorded and verified by a massive amount of computer power. As such, the blockchain tech-

nology allows rapid transactions where their history is saved in a chain (Nakamoto, 2008). How-

ever, it is a flaw when it comes to the speed of transactions. Bitcoin can only undertake a 

maximum of 7 transactions per second. That’s why alternative cryptocurrencies or altcoins 

have been in development since the beginning of this decade. Their purpose is to unravel 

the challenges presented by Bitcoin. Nevertheless, the said wallets keep a secret piece of data 

called a private key or seed, which is used to sign transactions. Consequently, miners solve cryp-

tographic puzzles to validate those transactions; through a process called mining; adding a new 

block to the blockchain, whereby a reward namely a fraction of a bitcoin is awarded afterwards 

(Brière et al., 2015).  Bitcoin is limited to 21 million coins that can come into circulation. Once 

miners have unlocked this many, the planet’s supply will be eventually tapped out and miners 

https://bitcoin.org/en/vocabulary#private-key
https://www.investopedia.com/terms/b/blockchain.asp
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would get rewarded only through transactions fees unless certain protocol is adjusted to allow for 

a larger supply. Controversies exist around the nature of the Bitcoin, as some label it as a currency-

like asset whereas others classify it as a commodity and a ‘digital version of gold.’ Nevertheless, 

Bitcoin’s price has gone through cycles of appreciation and depreciation, better known as bubbles 

and busts. Accordingly, Bitcoin is more liable to speculative bubbles and exhibits higher volatility 

than traditional hard currencies. Bitcoin has therefore a central position in financial markets and 

in portfolio management (Dyhrberg, 2016) and examining its volatility is important.   

 

Because it was the first, bitcoin gets all the publicity, but it competes against dozens of aspiring 

alternatives as currently, there are over a thousand different cryptocurrencies in circulation. 

Among these, one name that has garnered increasing interest is Litecoin (LTC). Launched in 2011, 

Litecoin is the second most popular decentralized cryptocurrency; but differs from Bitcoin with 

notable advantages in aspects like faster block generation rate thereby handling higher volume of 

transactions with a greater transactability and use of scripts as a proof of work scheme. Every 2.5 

minutes, as opposed to 10 minutes for Bitcoin, the Litecoin network generates a block with the 

same mining procedure with minor variations. There will eventually be only 84 million litecoins 

in circulation at the upper limit. Nevertheless, it remains unlikely that any of Bitcoin’s potentially 

challenging features will provoke any further substantial problems, thereby enticing people to al-

ternatively shift towards Litecoin. 

 

While Bitcoin has the largest market capitalization among all cryptocurrencies, many users believe 

that it is fundamentally flawed with its lack of privacy. Today, many cryptocurrencies exhibit cer-

tain deficiencies in terms of privacy, security, or fungibility at the protocol or fundamental code 

level. Launched in 2014, Monero (XMR) has successfully resolved this concern by designing a 

currency that operates on a secure, untraceable and private system. Monero is a decentralized open-

source, privacy-oriented cryptocurrency that operates to mollify privacy concerns using concepts 

such as ring signatures and stealth addresses thereby preserving anonymity.  Similar to bitcoin, it 

issues new coins and incentivize miners to secure the network and validate transactions but with a 

transaction speed of 2 minutes. The total cap for the ultimate supply of Monero is 18.4 million 

coins that are expected to be totally mined by 2022. Unlike Bitcoin however, Monero will continue 

https://www-sciencedirect-com.neptune.ndu.edu.lb:9443/topics/economics-econometrics-and-finance/financial-market
https://www-sciencedirect-com.neptune.ndu.edu.lb:9443/topics/economics-econometrics-and-finance/portfolio-selection
https://www-sciencedirect-com.neptune.ndu.edu.lb:9443/science/article/pii/S0165176517302501#b7
https://www.investopedia.com/terms/b/bitcoin.asp
https://www.forbes.com/sites/ktorpey/2017/12/29/comparing-bitcoin-and-other-cryptocurrencies-by-market-cap-can-be-very-misleading/#28df0f572509
https://www.investopedia.com/terms/b/block-bitcoin-block.asp
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generating small 0.6 XMR block rewards indefinitely after 2022, through a process known as tail 

emission.  

 

Many virtual assets lack a clear purpose. They may be used to store value, acquire commodities 

or for personal transactions, but were not designed with a single specific application. By contrast, 

Ripple (XRP) is typically about the transfer of value and is designed for enterprises, rendering 

it one of the few digital assets with a real and clear purpose. Although Ripple also has its own 

cryptocurrency, it is mainly defined as a payment settlement, asset exchange, and a remittance 

system that works more like SWIFT, a service for international money and security transfers and 

the only digital asset specifically designed for banks and financial intermediaries enabling faster, 

cheaper and more reliable cross-border payments. No one owns Bitcoin and payments can be made 

without an intermediary. However, Ripple is privately owned and currently operated by Ripple 

Labs, Inc. rendering it theoretically, a centralized cryptocurrency and whereby payments require 

third party gateways. While Bitcoin transaction validations generally take 10 minutes, Ripple’s 

transaction validations take 5 seconds. Furthermore, Ripple is not designed to be mined at all. They 

are pre-mined and burned as transaction fees whereby 100 billion Ripples have been pre-mined 

initially. This cryptocurrency is moving fast and becoming more credible each day, so much so 

that even the Federal Reserve are backing them and are telling banks to use Ripple XRP because 

of their fast and innovative technology. As of this writing, ripple ranks third on the list of top 

virtual currencies by market capitalization, behind Bitcoin and Ethereum.  

 

Dogecoin is a decentralized cryptocurrency that was originally featured as a randomized reward 

system. The mining process is quite similar with rewards received for mining blocks of coins but 

the reward has not always been the same. Nonetheless, after the 600,000th block was mined, the 

developers emplaced an eternal reward of 10,000 Dogecoins. However, the Dogecoin system has 

no cap on the number of dogecoins that users can mine. Provided that miners continue on operat-

ing, the Dogecoin supply will keep on increasing. The supply is set to surge by an estimated 5.2 

billion dogecoins per year, endlessly. Additionally, Dogecoin differs from Bitcoin and Litecoin in 

several other respects. Most importantly, Dogecoin miners generally require 1 minute to verify a 

transaction, which significantly less than both its competitors.  

 

https://en.bitcoinwiki.org/wiki/Mining
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Dash has gained popularity because it offers better privacy and higher transaction speed than 

Bitcoin. At Dash’s core is an exclusive fully-incentivized peer-to-peer network. Rewards are given 

to miners for securing the blockchain and master nodes are rewarded for confirming, storing and 

providing the blockchain to users. Master nodes represent another level of network servers that 

operate in highly secure bundles called quorums to provide a variety of decentralized services, like 

fast transactions, privacy and governance, while removing the threat of low-cost network attacks. 

Dash is limited to 19 million coins that can come into circulation with an average block time and 

transaction speed of 2.5 minutes ascertaining itself as an attractive alternative.  

 

Since the existing literature is scarce and the concept is relatively new to financial theory and the 

cryptocurrency itself as an asset class is still in its nascent stages, as cryptocurrencies are not 

widely credible, lack regulation and insurance, and are prone to illegal activities and technical 

flaws, the increasing circulation and abundance of cryptocurrencies is translated by some central 

banks’ decision to regulate them. And since the stability of the market is always at a stake, the 

importance to look at the volatility of cryptocurrencies has gained further appeal in the recent past.  

 

The purpose of this thesis is to evaluate and determine the best model or set of models for modeling 

the volatility of six of the most eminent cryptocurrencies: Bitcoin, Dash, Monero, Dogecoin, Lite-

coin, and Ripple against the behavior of six of the most influential currencies, namely the Euro, 

Japanese Yen, Swiss Franc, Canadian Dollar, Australian Dollar and the British Pound. The vola-

tility of each cryptocurrency and hard currency is predicted for both in-sample and out-of-sample 

contexts. The selected models are SGARCH, IGARCH, EGARCH, GJR-GARCH, TGARCH, 

CGARCH, and APARCH. The literature has revealed that some models have constantly better 

predicted the volatility of a specific asset class. Defining the relatively best model in predicting 

each cryptocurrency’s and fiat currency’s volatility will, therefore, allow associating their behavior 

with that of a particular asset class and enhance existing literature with regard to their classifica-

tion. Therefore, we aim to assess, through econometric analysis, financial statistics and modeling, 

the best-fitted volatility model by fitting GARCH-type models based on certain adopted maximum 

likelihood forecasting schemes, accuracy and goodness of fit measures, and assessment criteria 

chosen to evaluate forecasting performances and eventually conclusions are drawn about model 

capacity and reliability. Once the best model during the out-of-sample period for each asset is 
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determined, we then forecast a one-step-ahead Value at Risk for each asset using the selected 

model. Eventually, back testing procedures are conducted to assess the accuracy of the Value at 

Risk results.  

 

The thesis is structured as follows. Section 2 conducts a literature review on findings explicating 

the predictive capacity of the most common forecasting models and their findings on fiat and cryp-

tocurrencies. Section 3 continues by first presenting and defining the basic structure of a volatility 

model and then details the specific models studied in this thesis. It then unravels the adopted pro-

cedures and methodology and the employed data while underlining the specificity of each. Their 

respective properties are discussed and an explicit expression of the forecasts of each model is 

presented. Section 4 portrays the main findings of the research where the parameters of the under-

lying models are estimated and the volatility for each asset is forecasted for the in sample period, 

and projected for the out of sample period. In addition, this section assesses the predictive ability 

of the selected model in accurately estimating the Value at Risk of each cryptocurrency and world 

currency. The empirical results are then presented, analyzed and back tested. Section 5 concludes 

the thesis and suggests topics for further research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 
 

Chapter 2: Review of Literature 

 

Modeling and forecasting the volatility of financial time series has become a field that has enticed 

a lot of scrutiny from empirical and theoretical practitioners. Over the past decades, volatility pro-

jection has been subject to an extensive number of studies, several of which draw a comparison 

between different forecasting models and assess their predictive abilities. As the future is always 

uncertain, the number of crashes and the size of their effects have enforced many analysts to look 

more prudently to the level and stationarity of volatility in time, with researchers shifting their 

attention towards the development and improvement of econometric models able to generate the 

most accurate forecasts and to optimally capture swings in returns’ volatility.  In the not too distant 

past, many theoretical models such as Merton (1969) and Black and Scholes (1973) supposed 

constant volatility. However, many researchers unveiled that traditional time series models that 

operate under the main assumption of constant variance were actually deficient in estimating asset 

return movements. 

 

The traditional methods of measuring volatility (variance and standard deviation) are uncondi-

tional and cannot capture the characteristics exhibited by financial time series, such as, time vary-

ing volatility, volatility clustering, leverage effect, excess kurtosis, heavy tails, and long memory 

properties (Omar et al., 2017). 

 

Today, however, it is a well-known fact that volatility of asset returns is time-varying and predict-

able; see Andersen and Bollerslev (1997). The original Autoregressive Conditional Heteroskedas-

ticity (ARCH) specification, introduced by Engle (1982), was one of the first models that provided 

a way to model conditional heteroskedasticity in volatility and to capture these properties of finan-

cial time series data. Engle proposed the use of ARCH models that allows the conditional variance 

to change over time as a function of past errors leaving the unconditional variance constant by 

assigning equal weights to the squared residuals solely and disregarding past variances. The model 

was simple and intuitive but had limitations and required usually many parameters to describe 

adequately its volatility process.  
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Bollerslev (1986) amended this idea addressing the weakness found in Engle’s model, which put 

forward the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) framework al-

lowing a longer memory and a more adaptable lag structure. In practice, variance rates do tend to 

be pulled back to a long-run average level in a process known as mean reversion. GARCH incor-

porates mean reversion whereas ARCH does not, as GARCH integrates an additional parameter, 

the long term mean variance, which allows tracking the persistence of variance around the mean. 

Therefore, GARCH is theoretically more appealing than ARCH. Moreover, the GARCH process 

is generally favored by financial modeling professionals because it provides a better real-world 

context as it allocates more weight for recent observations and entails only three parameters al-

lowing for an infinite number of past squared innovations to influence the conditional variance. 

These aspects enable GARCH to be more efficient and effective than ARCH thereby providing a 

better fit when the data exhibits heteroskedasticity and volatility clustering. However, when con-

sidering the forecasting accuracy of a model, the model’s predictive ability should be tested both 

in in-sample and out of sample periods. ARCH and GARCH models were found to result in sig-

nificant in sample parameters estimates and were regarded as the main tools for modeling volatility 

and have become widespread tools for dealing with time series heteroskedastic models as they 

have proven surprisingly successful in predicting conditional variances. Despite the empirical suc-

cess of ARCH and GARCH models, questions still remain surrounding the true motives why vol-

atility tends to cluster. This explains why certain models tend to outperform other models occa-

sionally and over a specified period, rather than regularly.  

Nevertheless, although the standard Gaussian GARCH has been used extensively in practice, 

Bollerslev evaluates his model based only on in sample forecasts. Therefore, it fails at forecasting 

the out of sample performance. The other problem encountered by the GARCH model is that it 

does not fully embrace the property of thick/heavy tails which is so much evident in the distribution 

of financial time series. Nelson (1991) criticizes GARCH from another perspective. He recognizes 

three main weaknesses in the symmetric GARCH model. First, he finds that there is an adverse 

correlation between assets’ returns and changes in return volatility which is not captured by 

GARCH. Second, he asserts that the no negativity constraint of the parameters can complicate the 

model’s forecasting process. Finally, the author expresses many concerns as to the explanation on 

the persistence of shocks and how it may affect the term structure of volatility whereby he claims 

that both ARCH and GARCH impose the assumption that the conditional volatility is affected 
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symmetrically by positive and negative innovations. In light of the above complications, analysts 

were not satisfied with the existing models whereby many extended models of GARCH were pro-

posed.  

To be able to model this behavior and overcome the weaknesses in the GARCH model, Nelson 

(1991) proposed an extension to the GARCH model in a process known as Exponential GARCH 

(EGARCH). The model overcomes the previously mentioned drawbacks allowing for asymmetric 

effects of positive and negative asset returns by integrating both the sign and the size of shocks 

thereby ameliorating the estimation process. Other widely used extensions of the GARCH model 

and additional specifications were then developed that are known as “asymmetric power auto-

regressive conditional heteroskedasticity models” with each model conquering the disadvantages 

of the other: the Student’s t-GARCH model of Bollerslev (1987), GJR-GARCH of Glosten, Jag-

annathan and Runkle (1993), APARCH of Ding, Granger and Engle (1993), the Threshold 

GARCH (TGARCH) model of Zakoian (1994), et cetera.  

Virtually, a volatility model should not only aim to forecast volatility; but must integrate certain 

crucial elements. In their paper, Engle & Patton (2001) use the Dow Jones Industrial Index to stress 

on some stylized facts about volatility that should be integrated in a model. Typically, they mainly 

cite four essential features. First, the model should exhibit volatility clustering, meaning that peri-

ods of high (low) volatility are followed by another period of high (low) volatility. Engle and 

Patton displayed the daily returns on the Dow over a twelve-year period and revealed evidence 

that the volatility of returns varies over time. Similarly, Mandelbrot (1963), Chou (1988), and 

Baillie et al (1996) also reported evidence of volatility clustering. The second aspect involved is 

the mean reversion principle. This principle states that there is an average volatility level to which 

volatility shall eventually converge to. In addition, a fit model should have an asymmetric structure 

that permits the leverage effect, allowing negative and positive shocks to have different impacts 

on the volatility. Finally, a model should recognize that exogenous variables can impact volatility 

forecasts. The authors favor asymmetrical GARCH models to linear models; however, these mod-

els may lack the ability to take into consideration the impact of exogenous variables. 

The volatility of exchange rates, specifically after the fall of the Bretton Woods agreement, has 

been a constant source of concern for both policymakers and academics (Héricourt & Poncet, 
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2015). Indeed, in the existing era of ever-escalating globalization and intensified currency volatil-

ity, fluctuations in exchange rates have a substantial impact on companies’ operations and deci-

sion-making. This is why exchange rate risk has risen to be a useful measure of uncertainty as it is 

of crucial importance specifically in investment analysis and risk management whereby it can im-

pact welfare, inflation, exposure in terms of transaction costs, translation exposure, international 

trade, etc. Over the last decade, the foreign exchange market has become one of the most volatile 

and liquid financial markets in the world. Therefore, volatility revolving around exchange rate risk 

should be effectively mitigated.  

 

Accordingly, because of the dynamics of the foreign exchange market, it is essential to study the 

behavior of currencies and currency exchange. In their paper, Omari, Mwita, & Waititu (2017) 

applied symmetric and asymmetric GARCH models to model the exchange rates of the US Dollar 

with respect to the Kenyan Shilling over the period 2003-2015 in order to capture some stylized 

facts about exchange rate returns, such as volatility clustering and leverage effect. Daily data were 

extracted from the Central Bank of Kenya. The data revealed significant departure from normality 

combined with a negative skewness and excess kurtosis. The paper evaluates the performance of 

the symmetric GARCH (1,1) and GARCH-M models in addition to the asymmetric EGARCH 

(1,1),  APARCH (1,1) and GJR-GARCH (1,1) models allowing them to follow three innovative 

distributions: Normal, Student’s t, and Skewed Student’s t distributions.  The relative performance 

of the symmetric & asymmetric GARCH family models in estimating and forecasting the Value 

at Risk (VaR) is also tested. It was concluded that the asymmetric APARCH, GJR-GARCH and 

EGARCH models with student’s t-distribution provide superior results in modeling the volatility 

of the US Dollar with respect to the Kenyan Shilling. The log likelihood function was applied and 

the models were assessed for accuracy using the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). Then, the authors compared the VaR estimates of each asymmetric 

model following the student’s t distribution. It was derived that the APARCH (1,1) model is the 

best model for estimating the one-step ahead value at risk. Similarly, Thorlie et al. (2012) inspected 

the volatility of the SLL/USD exchange rate over the period 2004-2013. Their results showed that 

the forecasting performance of GJR-GARCH model using the skewed Student t-distribution is 

most successful in measuring the conditional variance as the Asymmetric GARCH and GARCH 

models were found to better fit under the non-normal distribution than the normal distribution. 

https://www.investopedia.com/terms/c/currency.asp
https://www.investopedia.com/terms/v/volatility.asp
https://www.investopedia.com/terms/v/volatility.asp
https://www.investopedia.com/terms/e/exchangerate.asp
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Olowe (2009) modeled the volatility of Naira / US Dollar exchange rates on a sample of monthly 

data from 1970 to 2007. Six different GARCH models were tested. His findings were quite anal-

ogous as the best fitted models were the Asymmetric Power ARCH and the Threshold Symmetric 

GARCH. As such, many studies have shown that countries from Western, Eastern, and Central 

Africa tend to perform relatively better under asymmetric GARCH. However, a limitation of those 

studies is that each empirical research focused solely on a single exchange rate and therefore their 

findings cannot be generalized to other exchange rates in the market. Furthermore, the study itself 

might have become obsolete with the ever alternating dynamics of the foreign exchange market as 

the findings may have become outdated and thereby invalid.  

 

Nevertheless, although there have been extensive empirical studies accentuating on modeling and 

estimating exchange rate volatility in developing, emerging and developed countries by applying 

different specifications, little attention has been devoted to Arab countries despite the importance 

of the Gulf States in the region. Abdalla (2012) is the first to investigate this concern by modeling 

the exchange rate return volatility in a panel of nineteen Arabian countries using daily observations 

covering the year span 2000 - 2011. The main currencies examined are the Bahraini Dinar (BHD), 

Kuwaiti Dinar (KWD), Omani Rial (OMR), and etc. all against the US Dollar. The daily returns 

for all currencies display either a positive or negative skewness or excess kurtosis indicating de-

parture from normality.  In addition, a highly leptokurtic distribution is observed for all series. The 

ARCH-LM test results provided strong evidence of heteroskedasticity and presence of ARCH ef-

fects in the residuals for all currencies except for the Iraqi Dinar and Libyan Dinar. In order to 

investigate further the existence of leverage effect, he conducts sign and size bias tests for asym-

metry. The empirical results suggest that returns volatility exhibit asymmetric behavior, suggesting 

that the asymmetric volatility models are better suited for capturing dynamics of the volatility 

process in the data series. Under GARCH (1, 1), the conditional variance is an explosive process 

for ten of the nineteen currencies, while it was found to be quite persistent for seven currencies. 

This revealed that shocks to volatility are very high and will remain forever as the variance is not 

stationary under GARCH (1, 1). The asymmetrical EGARCH found evidence of leverage effects 

for all currencies except for the Jordanian Dinar inferring that negative shocks imply a higher next 

period conditional variance than positive shocks. The author concludes by asserting that exchange 

rates volatility can be adequately modeled by the different classes of GARCH models. However, 
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a stronger and a more accurate insight about exchange rate behavior would have been attained if 

further models were integrated.  

 

Yet, Granger and Poon (2005) compare 93 studies that carried out tests on the predictive ability of 

volatility forecast models. They classify the models as historical volatility models, ARCH models, 

stochastic volatility models and implied volatility models. Then they present pair wise compari-

sons of the models in order to determine which models are the most frequent winners. It is found 

that implied volatility models outperform other models. One possible explanation could be that 

options prices incorporate all market information and characteristics. Historical volatility models 

and GARCH rank next, while stochastic volatility models are the worst performers. However, the 

authors report that within the ARCH class, asymmetric GARCH models do better than the sym-

metric GARCH (1, 1).  

Many authors have also shown interest in comparing predictive models beyond the 

ARCH/GARCH class. Pilbeam and Langeland (2014) for instance draw a comparison between 

GARCH models and the implied volatility model in estimating volatilities of foreign exchange 

markets. They choose to evaluate the traditional GARCH (1,1) model, two asymmetric GARCH 

models- EGARCH and GJR-GARCH- and the implied volatility model from call and put options 

prices. In addition to comparing the predictive ability of the models, the authors examine the pric-

ing efficiency of currency options and observe whether market characteristics are well captured. 

The models are tested over the period of 2002–2012, and in-sample forecasts are generated. It is 

found that the implied volatility model outperforms symmetric and asymmetric GARCH models, 

as corroborated by Granger and Poon (2005). However, the authors highlight an interesting point 

that was missed by other authors and which shows that during periods of high volatility, the accu-

racy of all models lessens and models’ outputs are further away from realized volatilities. The 

limitation of this study is that the dataset does not include out of sample forecasting. 

The literature depicting the predictive capacity of models does not only revolve around exchange 

rates but almost all asset classes. Since 2009, controversies have scaled with the rise of Bitcoin as 

it was unclear whether to classify it as a currency or a commodity, and many inquiries were raised 

regarding its essence and implications in the world of finance. Baek and Elbeck (2015) address 

two vital issues concerning Bitcoin: how unstable is it and what is ‘electrifying’ its volatility. First, 
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the authors compare the volatility of Bitcoin with respect to the S&P 500. The comparison, which 

is an indication of the intrinsic risk of the Bitcoin, shows that the Bitcoin market is extremely risky 

and speculative. Then, in order to identify the drivers of such volatility, the authors conduct a 

regression analysis to study the impact of many market variables on the Bitcoin’s return. It is found 

that external economic factors do not influence the cryptocurrency’s market returns, and the vola-

tility is internally driven by forces of demand and supply. On January 5 2017, Bitcoin has marked 

one of its sharpest rallies and falloffs over just 24 hours of trading as Bitcoin’s value plunged from 

a high $1,151 down to a low $874. The crash was so swift that at one point Bitcoin lost more than 

$3 Billion in market value in just 40 minutes, “slashing” its market capitalization. Bitcoin has also 

revealed its upside volatility particularly in December. Between November and December 2017, 

Bitcoin’s price has increased by around $12,000 as the CBOE started its futures trading on bitcoin 

that has reached a record high of $19,783 (Worah, 2018). Shortly after in 2018, Bitcoin kept on 

trading below $10,000 declining by more than 80% from its record-high. Therefore, within a pe-

riod of 12 months, Bitcoin rose by 2,373% marking its presence, thus far, as one of the highest 

volatile financial instruments.  

 

Accordingly, volatility has been heavily accentuated recently specifically after the subprime mort-

gage crisis that has seen the financial system dissolve. Compared with traditional currencies, 

Bitcoin and cryptocurrencies, in general, have been relentlessly scrutinized as they have proven to 

be less stable, easier influenced by speculative factors and revealed intensified levels volatility. 

And with many forecasting models at hand, considering the massive fluctuation in cryptocurren-

cies and its associated percussions on the financial system, it is getting more and more urgent to 

predict their volatility.  

At this stage, the amount of research that has been done on Bitcoin and other cryptocurrencies is 

still in short supply. Naimy & Hayek (2018) were the first to contrast and assess the predictive 

abilities of GARCH (1, 1), EWMA, and EGARCH in forecasting the volatility of the Bitcoin/USD 

exchange rate. 1093 daily observations were extracted covering the sampled period April 1st 2013 

until March 31st 2016. Upon plotting the return series, Bitcoin seemed to exhibit persistence and 

volatility clustering implying that the volatility can be forecasted. The authors used the student’s t 

distribution and generalized error distribution along with the normal distribution but the latter was 
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found to be the most precise probability density function. Parameters were calibrated and calcu-

lated using maximum likelihood estimates from in-sample returns in order to compute in-sample 

volatility. Out of sample volatility is calculated afterwards. Estimated volatilities are then com-

pared to realized volatilities relying on error statistics, namely the mean absolute error (MAE), the 

root mean square error (RMSE) and the mean absolute percentage error (MAPE) that pointed out 

the relative superiority of EGARCH (1,1) in both in sample and out of sample contexts with in-

creased accuracy in out of sample period. Their findings are, therefore, consistent with the conclu-

sions reached by Engle & Patton (2001) with the authors concluding that the predictive abilities of 

the models are worsened when volatility exhibits extreme movements and improves when volatil-

ity is relatively low. The authors note that the implied volatility model is not tested since the 

Bitcoin options’ market is very recent and immature as data on historical option prices is not yet 

available. Finally, the authors assert that the Bitcoin’s behavior is not similar to the behavior of 

currencies. A limitation of the study is that the research focused entirely on Bitcoin which was still 

in its nascent stages with short history whereby past behaviors might not be good indicators to 

reflect on its future performance. 

Similarly, Krogt (2018) investigates the behavior of Bitcoin and whether it can be classified as a 

currency or security. In his paper, he analyses the volatility of Bitcoin and compares its volatility 

process with that of a security (S&P-500) and a currency (EUR/USD exchange rate). The one-day 

ahead volatility is examined for the GARCH (p,q), TGARCH (1,1), EGARCH (1,1) and APARCH 

(1,1) models. The goodness-of-fit and forecasting abilities are evaluated with the use of 

Akaike/Bayesian information criteria and the Mincer-Zarnowitz regression, respectively.  The 

analysis shows there are similarities between Bitcoin and the S&P-500 from a volatility process 

point of view. The EGARCH (1, 1) model fitted the volatility best for the Bitcoin and the S&P-

500 whereby APARCH (1, 1) seemed to have fairly accurate forecasting power on the EUR/USD. 

Nevertheless, the author demands for the use of a more detailed analysis on choosing the ex-post 

volatility proxy for Bitcoin in the Mincer-Zarnowitz regression model. He also emphasizes the 

highly volatile distinctive feature of Bitcoin that is 35 times as high as the S&P-500 and 200 times 

as high as the EUR/USD exchange rate. Briere et al. (2015) and Cheah and Fry (2015) confirm 

that the Bitcoin market is highly speculative and more susceptible to speculative bubbles than other 

currencies. The European Central Bank has a valid motivation, therefore, which is consistent with 

the findings of this paper for not labeling Bitcoin as a true currency due to its high volatility (ECB, 



16 

 

 
 

2015) as Bitcoin behaves similar to a security rather than a currency. As such, the asymmetry in 

the Bitcoin market is still significant suggesting that the Bitcoin market is still far from being 

mature.  

The recent spike in the Bitcoin prices has triggered an increased interest in exploring the dynamics 

of the cryptocurrency markets. In a turbulent time with the main-stream financial system reeling 

from the aftershocks of the 2008 crisis and the European Sovereign debt-crisis, cryptocurrencies 

started gaining traction with the cryptocurrency market expanding rapidly. As such, Kumar & 

Anandarao (2019) investigate the dynamics of volatility spillover across four major cryptocurrency 

returns namely Bitcoin, Ethereum, Ripple and Litecoin and implement a comprehensive method-

ology in order to capture the cryptocurrency market dynamics. The period selected is August 2015 

till January 2018 because it is characterized by extreme fluctuations in the cryptocurrency markets 

and therefore providing better insights about the nature of volatility spillover across cryptocur-

rency markets. It is seen that there is statistically significant volatility spillover from Bitcoin to 

Ethereum and Litecoin during that period with increased spillover after 2017. Overall, the results 

indicate the possibility of herding behavior and turbulence in the cryptocurrency markets. Noting 

that the cryptocurrencies’ market capitalization lost at least 243 billion US dollars in the first quar-

ter of 2018 and by September 2018, cryptocurrencies collapsed by 80% from their peak marking 

this crash as the worst in the history of cryptocurrencies. From here, the cryptocurrency market 

still remains a potential source of financial instability and uncertainty. For that reason, predicting 

their volatility has become more evident than ever. 

Chu et al. (2017) provided the first GARCH modeling of the seven most popular cryptocurrencies 

ranked by market capitalization as of May 2017. They fitted SGARCH (1, 1), EGARCH (1, 1), 

GJRGARCH (1, 1), APARCH (1, 1), IGARCH (1, 1), CSGARCH (1, 1), GARCH (1, 1), 

TGARCH (1, 1), AVGARCH (1, 1), NGARCH (1, 1), NAGARCH (1, 1) and ALL GARCH (1, 

1) models to the log returns of the exchange rates of each of the following cryptocurrencies: 

Bitcoin, Dash, Dogecoin, Litecoin, Maidsafecoin, Monero and Ripple. The distribution of the in-

novation process were taken to be one of normal distribution, skew normal distribution, Student’s 

t distribution, skew Student’s t distribution, skew generalized error distribution, normal inverse 

Gaussian distribution, generalized hyperbolic distribution or Johnson’s SU distribution. The good-

ness of fit measures were evaluated based on the values of the Akaike Information Criterion (AIC), 
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the corrected Akaike Information Criterion (AICc), the Bayesian Information Criterion (BIC), the 

Hannan-Quinn criterion (HQC) and the Consistent Akaike Information Criterion (CAC).  The nor-

mal distribution was found to give the most accurate measures for each cryptocurrency and among 

the GARCH models, IGARCH (1,1) provided the best fit for Bitcoin, Dash, Litecoin, Maidsafe-

coin and Monero; while the GJRGARCH (1,1) model gave the best fit for Dogecoin; and the 

GARCH (1,1) was found to be the optimal fit for Ripple. Upon having a clear insight about the 

best suited model for each cryptocurrency, the authors then move on to perform the unconditional 

and conditional coverage value at risk exceedance test. All p-values were found to be significant 

at the five percent confidence level. Hence, it was derived that the best fitting models can be used 

to provide acceptable estimates of the Value at Risk. Eventually, the results show that cryptocur-

rencies exhibit extreme volatility with a future work depicting their joint behavior using a multi-

variate GARCH deemed necessary.  

The study of Holtappels (2018) inspects this issue by quantifying the manner in which the variance 

of cryptocurrencies behaves compared to this same effect for fiat currencies and indices. For cryp-

tocurrencies, he constructs six individual portfolios (Bitcoin, Ethereum, Ripple, Litecoin, EOS, 

NEO) and an altcoin package consisting of 15 other cryptocurrencies (Dogecoin, Byetcoin, Verge, 

Lisk, Waves, Dash, Bitshares, NEM, Steem, Ethereum Classic, Monero, Stellar, Siacoin, 

DigixDAO, and Stratis). The fiat currencies examined are the Euro, Japanese Yen, British pound, 

Canadian dollar, Australian dollar, and the Swiss franc whereas the Indices data considered where 

the USA Dow Jones Industrial Average, Japanese Nikkei 225 Stock Average, French CAC 40, 

Chinese SSE Composite, German DAX 30 and the British FTSE 100. The author uses the 

MGARCH model for the joint modelling of several time series since the volatility of one time 

series is influenced by both its own past values and the past values of other time series in regres-

sion. With the influence of Bitcoin on altcoins confirmed in many studies and since the MGARCH 

model also captures the volatility spillover between variables, it is of high interest now to detect 

what influences cryptocurrencies’ volatility. The study revealed that the lagged values of the var-

iance have a relatively strong impact on the current variance in terms of strength and persistence 

as compared to fiat currencies and indices. Additionally, the correlation among cryptocurrencies 

was found to be substantially larger than those between fiat and indices. Finally, the results show 

that the variance of fiat currencies and indices seems to revert to a long run average level whereby 

cryptocurrencies tend to exhibit an unstable and explosive variance forecast. A limitation of this 
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study, however, is quite similar to that of Naimy & Hayek (2018) whereby the author emphasizes 

that the cryptocurrency market is relatively new compared to that of equities and fiat currencies 

whereby their behavior might change in the future as the cryptocurrency market matures. There-

fore, the findings of this research may become irrelevant in the distant future in terms of using 

them to explain the behavior of variances. Over a certain amount of years, a more comprehensive 

research can be executed, as results can be compared within multiple periods of economic pros-

perity and economic downturn. Also, this research is limited to the number of cryptocurrencies 

used, whereby an increase in the dataset provides a possibility to run further divergent regressions 

and hence, examine a more detailed relationship among several asset classes.  

In light of the above and with the ever increasing interest in cryptocurrencies and their importance 

in the financial world, there is need for a comprehensive analysis to study volatility dynamics and 

out-of-sample forecasting behavior of cryptocurrencies. Moreover, the complex dynamics under-

lying the evolution of the cryptocurrencies’ volatility is yet to be “fully” explored. However, de-

spite the growing interest, acceptance and integration of cryptocurrencies to the global financial 

markets, the majority of recent studies have focused entirely on Bitcoin’s behavior or a few other 

cryptocurrencies and specifically on the in-sample modelling framework (Trucios, 2019). Never-

theless, the most out-of-sample comparisons available in the existing literature focusing on the 

volatility dynamics of the cryptocurrency market are restrictive since they only consider few mod-

els leaving out several GARCH-type models and several innovations distributions.  

In their paper, Omari et al. (2019) unfold those issues. Their study contributes and extends on the 

existing literature on modeling cryptocurrencies volatility dynamics by employing a wider range 

of GARCH-type models (namely: SGARCH, IGARCH, EGARCH, GJR-GARCH, TGARCH, 

APARCH, CSGARCH, AVGARCH, NGARCH, NAGARCH, FGARCH, and FIGARCH), and 

assuming nine different innovations term distributions and a longer time period to try and fill a 

gap in the literature. The eight most popular cryptocurrencies considered (by market capitalization 

as of August 2018) are: Bitcoin, Ethereum, Litecoin, Ripple, Monero, Dash, Stellar and NEM. For 

each cryptocurrency, the parameters for all GARCH models were estimated using the QMLE 

method and the optimal model was selected based on the AIC, BIC, and HQIC. Subsequently, the 

out-of-sample forecast results were used to determine the GARCH-type specification that has a 
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better VaR forecasting performance. The accuracy tests of VaR forecast of each model are evalu-

ated next by means of back testing procedures using the conditional and unconditional coverage 

tests. The results demonstrate that the asymmetric GARCH models mostly have better VaR fore-

casting performance for all cryptocurrencies especially at the 99% level of significance. Moreover, 

the skewed versions of student-t, GED, and hyperbolic distributions confirm their predominance 

over the alternatives in terms of better predictive ability. Finally, concerning the accuracy tests, 

the VaR forecasting performance results differ among cryptocurrencies. The authors conclude by 

recommending asymmetric GARCH models with a long memory property, skewed and heavy 

tailed distributions to optimally forecast the value of risk of cryptocurrencies.  

 

As the cryptocurrency market has relatively now conciliated, it is now apparent that a study ana-

lyzing the volatility of the cryptocurrency market with respect to fiat currencies is inevitable with 

questions being raised about whether cryptocurrencies have a stand to be a viable alternative to 

fiat currencies. Section 3 continues by first presenting and defining the basic structure and assump-

tions of each volatility model. It then unravels the adopted procedures and methodology and even-

tually analyzes the employed data while underlining the required specificities to model financial 

time series.  
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Chapter 3: Methodology & Procedure 
 

The review of the available literature in the previous section reveals a complete absence of research 

on comparing the behavior of cryptocurrencies with that of exchange rates, and more specifically 

on assessing their relative performance upon identifying the best volatility process around which 

each one revolves. Unsurprisingly, the main reasons behind the inconsistencies found in research 

studies are due to the time frames involved and volatility models employed, as the returns of cryp-

tocurrencies are highly volatile with regard to other asset classes.  Despite the inconsistency and 

inconclusiveness found in research studies, GARCH models are identified among the most preva-

lent superior ones.  In this section, we first present the GARCH-type models that will be used to 

model time-varying volatility in cryptocurrencies and exchange rates return series. Their parame-

ters are estimated and the volatility for each asset under each of the selected models is then com-

puted for the in-sample and out-of-sample periods. To assess the accuracy of the tested models, 

the estimated volatility is compared to the realized volatility. The selection criteria that will be 

exploited to reveal the most pertinent model with its relative distribution for each asset class are 

then described. Accordingly, the optimal GARCH-type models selected eventually are used to 

forecast the one-day ahead conditional variance for all cryptocurrencies and exchange rates. Next, 

formulas are provided for estimating the value at risk based on the volatility updated historical 

simulation method. Afterwards, back testing tests are employed. Finally, the data is presented and 

statistical analysis is conducted for qualification purposes to determine whether the inspected mod-

els can be implemented.  

 

3.1. Applied Models 

 

Let Pt  denote by the daily observations of the respective cryptocurrencies and exchange rate data 

series at time t for t = 1,…,n. In risk management, daily volatility is defined as the standard devi-

ation of the proportional change in the variable during a day whereby the simple return is used 

instead of the continuously compounded return (Hull, 2012). Hence, daily prices are converted 

into daily returns as per the following equation:  

 

𝑢𝑡 =  
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
                                                                   (1) 
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where 𝑢𝑡 represents the return at day t, Pt and Pt-1 are the corresponding cryptocurrencies and fiat 

currencies prices against the US Dollar at the end of day t and at the end of the preceding day t-1 

respectively. Then, GARCH models can be specified as: 

 

      𝑋𝑡 =  𝜇𝑡 +  𝜎𝑍𝑡                                                                  (2) 

 

Where 𝜇𝑡 denotes the conditional mean and 𝜎𝑡 denotes the volatility process. For brevity, all mod-

els are restricted to a maximum order of one where we consider only the first order lags (p=q=1), 

since empirical evidence has proven them to be more flexible, efficient and significant with higher 

order models rarely performing better than lower order models in the out-of-sample analysis (Han-

sen & Lunde, 2005).  

 

Essentially, we employ seven GARCH-type specifications to model the volatility behavior of cryp-

tocurrencies and exchange rates, namely: SGARCH, IGARCH, EGARCH, GJR-GARCH, 

APARCH, TGARCH and CGARCH models. All of the GARCH models implemented follow the 

above specification in (2); however, in each case, the volatility process “σt” is different. A brief 

description on the applied models is illustrated in the following subsection. 
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3.1.1. Estimated Volatility using Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) Models 

 

Bollerslev (1986) provided an extension to the basic ARCH model, allowing the conditional vari-

ance to vary as a function of its lagged returns and conditional variance. As such, the conditional 

variance for the Standard GARCH (1, 1) process introduced by Bollerslev is given by: 

 

                                                        𝜎𝑡
2 = 𝜔 + 𝛼𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2                                        (3) 

 

                                                                                 𝜔 =  𝛾 𝑉𝐿                                                                    (4)   
 

 

Where 𝜎𝑡
2 is the estimate of the variance for day t, 𝑢𝑡−1

2  and 𝜎𝑡−1
2   represent the associated return 

and the variance on the previous day with α and β being their respective weights. The long run 

variance "𝑉𝐿"  is an average level towards which variances revert to through a principle called 

mean reversion, with 𝛾 being the weight assigned to 𝑉𝐿. The model is considered stable when the 

weights 𝛾, α and β sum-up to 1. The main feature of this model is that it captures volatility clus-

tering and persistence in the data through the parameters α+β with restrictions  ≥ 0, α ≥ 0, β ≥ 0 

and α+β < 1 to ensure a uniquely stationary process and positivity of the conditional variance. 

However, if the sum of the parameters α and β equals 1, the GARCH model converges to the 

Integrated GARCH model where the long term volatility bears an explosive process.  

 

Engle and Bollerslev (1986) later unveiled the Integrated GARCH model. It is a restricted version 

of the standard GARCH (1, 1) model where the parameters α and β sum up to 1 and typically 

imports a unit root under the GARCH process. Thus, the IGARCH (1, 1) can be expressed as 

follows, given that β is now set equal to (1 – α) with restrictions  ≥ 0, α ≥ 0 and 1 - α ≥ 0: 

 

                                                                𝜎𝑡
2 = 𝜔 + 𝛼𝑢𝑡−1

2 + (1 − 𝛼)𝜎𝑡−1
2                                                     (5) 

 

 

In the SGARCH and IGARCH models, the impact of positive and negative news on the conditional 

variance are symmetrical. Although the Standard GARCH model has a greater applicability due 

to its easy computation, the GARCH model cannot explain the negative correlation between return 

and volatility. Moreover, the GARCH model restraints all coefficients to be greater than zero, 

which complicates the model’s application. For this reason, Black (1976) discovered that current 
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return and future volatility have negative correlation and that the impact of positive and negative 

shocks on the conditional variance is rather asymmetrical. This came to be known as the “leverage 

effect” after which more advanced models were developed to incorporate its effect. 

 

In 1991, a few years later, Nelson unfolded a more prevalent model known as Exponential 

GARCH model, denoted by EGARCH (p, q), to incorporate for the asymmetric impact of positive 

and negative shocks on volatility whereby the latter is believed to produce greater levels of vola-

tility, despite having the same magnitude.  A difference from the SGARCH (1, 1) model is that it 

considers log returns, which suggests that the parameters are unrestricted, and are thereby allowed 

to take negative values while ensuring a positive conditional variance. In addition, the conditional 

variance is written as a function of past standardized innovations, instead of past innovations.  

Formally, an EGARCH (1, 1) can be written as: 

                                   ln (𝜎𝑡
2) = 𝜔 + 𝛽 ln(𝜎𝑡−1

2 ) + 𝛾
𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛼 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
]                             (6) 

 

Where 𝛽 represents the persistence parameter and 𝛼 and 𝛾 capture the size and the sign (leverage) 

effect, respectively. The above specification exhibits an asymmetric effect when 𝛾 ≠ 0. More spe-

cifically, if the leverage parameter “𝛾” is negative, this means that negative news affect volatility 

more than positive news. Conversely, if returns and volatility are positively correlated, 𝛾 will be 

positive thereby positive shocks will have a higher impact on volatility than negative shocks, which 

is irregularly the case. 

 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten et al. (1993) is 

similar to EGARCH (1, 1) in that they both incorporate the asymmetric impact of positive and 

negative shocks. However, GJRGARCH is given by:  

 

                                 𝜎𝑡
2 = 𝜔 + (𝛼 +  𝛾𝐼𝑡−1)𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2                                                       (𝟕)            

 

      

Where It-1 = 1 if 𝑢𝑡−1 < 0 and It-1 = 0 if 𝑢𝑡−1 ≥ 0. A defining feature of this model is that a positive 

shock will increase volatility by 𝛼𝑡, whereas a negative shock will increase volatility by 𝛼𝑡+ 𝛾𝑡 at 

a specified time t. However, in contrast to the EGARCH model, the leverage effects exists when  

𝛾 > 0, indicating that past “bad news” have stronger impact on current volatility than past “good 
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news”. If 𝛾 < 0, then past positive returns increase current volatility more than past negative re-

turns. The persistence in this model relies on 𝛼, 𝛽, and 𝛾𝑘 with k representing the average value of 

standardized errors. Parameters restrictions are similar to the Standard GARCH whereby  ≥ 0, α 

≥ 0, and β ≥ 0.  

 

The Asymmetric Power ARCH model by Ding et al. (1993) models for both the leverage and 

the effect that the sample autocorrelation of absolute returns are usually larger than that of 

squared returns through its “power parameter”; allowing for more flexibility where 𝜎𝑡
2 is re-

placed by 𝜎𝑡
𝛿  and it is given by: 

 

                             𝜎𝑡
𝛿 = 𝜔 + 𝛼(|𝑢𝑡−1| − 𝛾𝑢𝑡−1)𝛿 + 𝛽𝜎𝑡−1

𝛿                                                    (𝟖)  

 

                     

For δ, α, β and  being ≥ 0 and -1 ≤ γ ≤ 1, where 𝛿 is the Taylor (power effect) parameter after 

Taylor (1986) for the Box-Cox Transformation [1], 𝛾 is the leverage parameter and the persistence 

parameter is given by 𝛽 + 𝛼𝑘. Signs analysis for the leverage parameter are similar to the GJR-

GARCH model, where a leverage effect exists once 𝛾 > 0. Noting that APARCH (1, 1) converges 

to the GJR-GARCH (1, 1) model when δ = 2 and to the Standard GARCH (1, 1) model with 

restrictions: δ = 2 and γ = 0. 

 

The Threshold GARCH model due to Zakoian (1994) is similar to the GJR-GARCH model and 

is a particular case of APARCH (1,1) with 𝛿 = 1, which models for the conditional standard devi-

ation instead of the conditional variance with the restraint -1 ≤ γ ≤ 1. TGARCH (1, 1) is typically 

expressed as follows:  

 

                               𝜎𝑡 = 𝜔 + 𝛼(|𝑢𝑡−1| − 𝛾𝑢𝑡−1) + 𝛽𝜎𝑡−1                                                   (𝟗)    
 

 

 

 

                 

                                                           
[1] The Box-Cox Transformation is a statistical technique used to transform non-normal dependent 

variables into a normal shape. 
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By contrast to the standard GARCH (1,1) model that shows mean reversion to a constant term 

“𝜔", the Component GARCH model by Engle and Lee (1999) allows mean reversion to a varying 

level “𝑞𝑡”, known as the time varying long run volatility. Bauwens & Storti (2009) emphasized 

that the volatility is modeled as a convex combination of unobserved GARCH components where 

the weights are time varying as a function of appropriately chosen state variables. As such, The 

CGARCH (1, 1) splits the conditional variance into its transient (eq.10) and permanent compo-

nents (eq.11) to examine short and long-term effects on volatility, as presented below: 

 

                               𝜎𝑡
2 = 𝑞𝑡 +  𝛼(𝑢𝑡−1

2 − 𝑞𝑡−1) + 𝛽(𝜎𝑡−1
2 − 𝑞𝑡−1) +  𝛾(𝑢𝑡−1

2 − 𝑞𝑡−1)𝐼𝑡−1                    (𝟏𝟎)    
                    

             𝑞𝑡 = 𝜔 + 𝜌(𝑞𝑡−1 − 𝜔) +  𝜙(𝑢𝑡−1
2 −  𝜎𝑡−1

2 )                                               (𝟏𝟏)     
                                     

 

Similar to GJR-GARCH model, The CGARCH specification in eq. (10) captures asymmetric re-

sponses to shocks by introducing  the slope dummy variable “𝐼𝑡−1” to the leverage parameter that 

takes the value of “1” for 𝑢𝑡−1< 0, and 𝐼𝑡−1 = “0” if otherwise. A positive gamma “𝛾” indicates 

the presence of transitory leverage effect in the conditional variance. Stationarity of the CGARCH 

model and non-negativity of the conditional variance are ensured once the following inequality 

constraints are satisfied:  ≥ 0, α ≥ 0, 𝜙 ≥ 0, β ≥ 0, β ≥ 𝜙 and α+β ≤ 𝜌 ≤ 1. 

 

3.1.2. Realized Volatility using Merton’s Model 

 

In order to gauge the accuracy of the tested models, estimated volatility should be compared to the 

realized volatility (Naimy & Hayek, 2018). In 1980, Robert Merton proposed a model to calculate 

the realized volatility based simply on the asset’s returns. His model suggested that when the sam-

pled variable consists of many observations, the sum squared returns is an accurate estimation of 

volatility. As such, the formula that will be adopted for the annual realized volatility “𝜎𝑡” is ex-

pressed as follows: 

                                                                            𝜎𝑡 =  √
252

22
∑ 𝑢𝑖

2

𝑡−1

𝑡−22

                                                                     (𝟏𝟐)   

 

Where t represents the day of observation and 𝑢𝑖 is the return on day i such that t-22 < i < t-1. In 

other words, this indicates that the monthly realized volatility “σt” is calculated based on the most 

recent 22 daily returns. Results are then annualized by multiplying monthly volatilities by 252/22. 
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3.2. Maximum Likelihood Methodology for Parameters Estimation 

 

After setting 𝜔 =  𝛾 𝑉𝐿, the parameters 𝜔, 𝛼 and 𝛽 in equation (3) can be estimated using the 

Maximum Likelihood Method where: 

 

                                                                            𝛾 = 1 − 𝛼 − 𝛽                                                           (13) 
 

Therefore, the Long-run Variance 𝑉𝐿 will be set equal to:  
 

𝑉𝐿 = 
𝜔

𝛾
                                                (14)        

 

The Maximum Likelihood Estimation (MLE) is a method for estimating the parameters of a dis-

tribution by maximizing a certain likelihood function so that under the assumed statistical model 

the observed data is most probable.  In finance, however, the Likelihood Function is often re-

placed by the Log Likelihood Function (LLF).  It is the adopted approach to estimate the param-

eters of the underlying models in this study. This method is generally preferred since it is con-

sistent, intuitive, efficient and provides asymptotic standard errors that are valid under non-nor-

mality. The LLF is given as per the below equation:  

 

                                                ln 𝐿∗ =  ∏ ln 𝑓(𝑦𝑡−1, 𝑦𝑡−2,𝑇 
𝑡−1 … , 𝑦1, 𝜃1, 𝜃2, 𝜃𝑘),                                      (15) 

 

 

are the respective values of the  t𝛳 andt  yis the conditional probability density function, f Where 

time series and the model parameters at time t. Throughout this thesis, however, the following 

log likelihood function is applied: 

 

− ln(𝜎𝑛) − 𝑢𝑛
2  / 2𝜎𝑛

2                                                               (16)                                                                   

 

Where 𝜎𝑛 and 𝜎𝑛
2 represent the daily conditional volatilities and variances over each observation 

and 𝑢𝑛
2  being the respective square of returns. 
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3.3. Distribution & Model Selection  

 

For each model, the innovation process 𝑍𝑡 is allowed to follow one of three distributions. In addi-

tion to the Normal Distribution, the Student’s t Distribution and the Generalized Error Distribution 

(GED) are used as skewed and heavy-tailed distributions have recently proven to yield better re-

sults such as in the papers of Naimy & Hayek (2018) and Omari et al. (2019).  

 

The selection of the best distribution curve is based on three information criteria: Akaike Infor-

mation Criterion (AIC), Bayesian Information Criterion (BIC) and the Hannan-Quinn Information 

Criterion (HQC).  

 

 The Akaike Information Criterion due to Akaike (1974) is defined by: 

 

                                                                   𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛𝐿(𝛩̂)                                                             (17) 

 

Where k denotes the number of unknown parameters, 𝛩 the vector of unknown parameters and 𝛩̂ 

their maximum likelihood estimates.  

 

 The Bayesian Information Criterion due to Schwarz (1978) is defined by:  

 

                                                               𝐵𝐼𝐶 = 𝑘 𝑙𝑛 𝑛 − 2𝑙𝑛𝐿(𝛩̂)                                                           (18) 

 

Where n denotes the number of observations 

 

 The Hannan-Quinn Criterion due to Hannan and Quinn (1979) is given by: 

 

                                                          𝐻𝑄𝐶 =  −2𝑙𝑛𝐿(𝛩̂) + 2𝑘 ln ln 𝑛                                                     (19) 

 

 

In addition, other test statistics are used to assess the forecasting accuracy of the models: the Mean 

Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Mean Absolute Percentage 

Error (MAPE). Generally, the error term is expressed as follows: 

 

      𝑒𝑡 =  𝑦̂𝑡 − 𝑦𝑡                                               (20) 
 

With 𝑦̂𝑡 and 𝑦𝑡 representing the predicted and actual values respectively.  
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 The Mean Absolute Error is simply an average of the absolute errors and is given by:  

 

                                                                               𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑒𝑡|

𝑛

𝑡=1

                                                                      (𝟐𝟏) 

 

 The Root Mean Squared Error, however, is the square root of the average squared errors: 
 

                                                                           𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

                                                                      (𝟐𝟐) 

 The Mean Absolute Percentage Error equation below shows how each residual is scaled against 

the actual value, as follows: 

                                                        𝑀𝐴𝑃𝐸 =  
100%

𝑛
 ∑

|𝑒𝑡|

|𝑦𝑡|

𝑛

𝑡=1

                                                         (𝟐𝟑) 

 

A lower measure for these test statistics indicate a better performance. Ranks from the alternative 

evaluation methods are then presented for the in sample and out of sample periods. The purpose 

of selecting the optimal out-of-sample GARCH model for each currency and cryptocurrency is to 

forecast the one-day ahead volatility that will be successively used to make VaR projections. 
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3.4. Value at Risk & Estimation 
 

Nowadays, the importance and the adoption of an efficient risk management framework have in-

creased dramatically. It is important for risk managers and financial institutions to continuously 

update and monitor the volatilities of market variables compromising their portfolios on which 

their values depend. Often a financial institution’s portfolio depends on hundreds, or even thou-

sands, of market variables. While very useful to traders, some risk measures do not provide senior 

management, fund managers and financial institutions with an indication of the total risk to which 

a financial institution is exposed (Hull, 2012). 

 

Value-at-Risk (VaR) has become the main tool of reporting to the bank regulators the risk that 

financial institutions face (Angelidis & Degiannakis, 2008). It is a standard risk measure that is 

commonly used in risk management which measures and quantifies the level of downside risk into 

a single value. It is defined as the maximum loss expected for a given portfolio/position over a set 

time horizon “T” and a confidence level “X” percent. Put alternatively, it is the loss at the Xth 

percentile of the losses distribution over the next T days (Hull, 2012). Generally, risk is mainly 

categorized in five areas: market, liquidity, business, credit and operational risk. The focus of this 

thesis is on market risk, as VaR is widely adopted for measuring it. It is worth noting that Market 

Risk exposure is usually computed using a 99% confidence level and a 1-day time horizon.  

 

The VaR forecast for the GARCH-type models relies on the one-day ahead conditional mean, 

𝜇𝑡+1  and the conditional variance forecast, 𝜎𝑡+1
2  of the volatility model. Under each of the innova-

tions term distribution assumptions, the one-day-ahead VaR forecast is calculated as: 

 

                                                           𝑉𝑎𝑅𝑡+1(𝛼) =  𝜇𝑡+1  + 𝐹−1(𝛼) 𝜎𝑡+1                                            (24) 

 

 

Where 𝐹−1(𝛼) is the 𝛼-quantile of the cumulative distribution function of the innovation distribu-

tion. Once the optimal out-of-sample GARCH model has been computed for each cryptocurrency 

and exchange rate, their corresponding Value at Risk can be forecasted.  
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3.4.1. The Historical Simulation Method & Volatility Updating Procedure  

 

First, the “rolling returns” of each cryptocurrency and fiat currency are calculated from a 400 day 

rolling window procedure on their prices, simulated over 250 times. Then, the out-of-sample op-

timal models of each cryptocurrency and fiat currency are applied to compute the conditional var-

iances and volatilities accordingly over each of the 250 sub-samples, with each sub-sample having 

400 observations. Note that the number of sub-sample periods is chosen in accord with the number 

of days in the out of sample period. 

 

The original approach integrates the optimal model selected for each cryptocurrency and fiat cur-

rency and involves using “n” day-to-day changes in the values of cryptocurrencies and exchange 

rates that have been observed in the past in a direct way to estimate the probability distribution of 

the change in the value of these assets between today and tomorrow thereby providing “n -1” 

alternative scenarios of what could be the value of those assets over the succeeding day using the 

following expression: 

                                                               Value under 𝑖th scenario =  𝑣𝑛 

𝑣𝑖

𝑣𝑖−1
                                                   (𝟐𝟓) 

 

Where 𝑣𝑖 and 𝑣𝑖−1 are the respective values of the cryptocurrencies or exchange rates on day i and 

day i-1 and 𝑣𝑛 being a fixed value representing the asset’s price on the most recent day of the 

selected sampled time frame.  

 

However, since the volatility of market variables may vary over time, Hull and White (1998) sug-

gested an extension to the Basic Historical Simulation approach to reflect on those variations in 

the market. They proposed a further adjustment by integrating “volatility updating” to the original 

procedure. In general, when this approach is used, the expression in equation (25) for the value of 

each cryptocurrency or currency under the ith scenario becomes: 

 

                                          Value under 𝑖th scenario =  𝑣𝑛 

𝑣𝑖−1 + (𝑣𝑖 − 𝑣𝑖−1)𝜎𝑛+1/𝜎𝑖

𝑣𝑖−1
                             (𝟐𝟔) 

 

The main modifications to the original approach to be raised from the above expression are the 

volatility parameters “𝜎𝑖” and “𝜎𝑛+1” denoting the estimated volatility at day i and the most recent 
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estimate of volatility. For this reason, this approach typically accounts for volatility changes in a 

natural and intuitive way and produces VaR estimates that incorporate fresher information. 

 

Subsequently, using the rolling window procedure, a viable list of return scenarios is computed 

under each simulation trial thereby generating a list of “possible percentage gains or losses”, as 

per the below equation: 

 

                                             Return under 𝑖th scenario =  
(𝑣𝑖𝑡ℎ 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝑣𝑛)

𝑣𝑛
                                           (𝟐𝟕) 

 

 

With 𝑣𝑖𝑡ℎ 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 representing one of the possible future values for the selected cryptocurrency or 

fiat currency, previously calculated from equation (26). However, 𝑣𝑛 represents the value of the 

selected cryptocurrency or fiat currency on the most recent out of sample date of the rolling win-

dow trial. Once all simulation trials have been generated, the VaR can be now calculated as the 

appropriate percentile of the probability distribution of this change. 

 

The above procedure is undergone repeatedly for the 250 sub-sample periods in order to compute 

the VaR for the 250 days (extending from December 4th 2018 till November 18th 2019) at the 1%, 

2.5%, 5% and 10% levels of significance.  
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  3.5. Back testing Value at Risk 

 
Whatever the method used for calculating VaR, an important reality check is back testing. Back 

testing is a technique for simulating a model on past data to gauge the accuracy and effectiveness 

of the Value at Risk calculations. In other words, it is a test of how well the current procedure for 

calculating VaR would have worked if it was performed in the past. Therefore, if a VaR model 

truly provides the level of coverage defined by its confidence level, then the failure rate (also 

known as the hit ratio) over the full sample will equal 𝛼 for the (1-𝛼)th percentile VaR. 

 

The accuracy of the estimated VaR in forecasting returns is assessed by comparing the out-of-

sample VaR forecasts to the actual realized returns during the same time period and this is sum-

marized in terms of a violation ratio. If violations happen on α % of the days (say on about 1% of 

the days for a 99% VaR), we can feel reasonably comfortable with the current methodology for 

calculating VaR. However, if the actual observed loss over the forecast period exceeds the VaR 

forecast, then the VaR limit is said to have been violated and an exception is recorded. If the 

number of exceptions surpass expectations, then the reported VaR measure systematically under-

states the asset’s actual level of risk. Similarly, if the number of exceptions fall behind expecta-

tions, then this alternatively signals an overly conservative VaR measure.  

 

Therefore, if the number of violations differ considerably from 𝛼 x 100% of the sampled series, 

then the accuracy of the underlying model is called into question. Progressively, we perform the 

most prominent test widely known as Kupiec’s Unconditional Coverage Test to conduct the back 

testing process and to determine whether the incorporated VaR model should be accepted. 

 

 

 

 

 

 

 

 

 



33 

 

 
 

3.5.1. Unconditional Coverage Test 

 

Kupiec (1995) proposed a likelihood ratio test, known as the “Unconditional Coverage Test” that 

gauges the level of accuracy in back testing VaR. Specifically, the test is employed to verify 

whether the sample point estimate is statistically consistent with the model’s prescribed confidence 

level. In other words, the Kupiec test will reject the model if it overstates/understates the true VaR. 

The null hypothesis states that the observed failure rate 𝑝̂ is equal to the failure rate suggested by 

the VaR’s confidence interval which is expressed as: 

 
                                        𝐻0 ∶  𝑝 =  𝑝̂ = 𝑋 / 𝑇                         

Where: 

𝑝 – The specified model probability (in accordance to the VaR confidence level) 

𝑝̂ – The observed failure rate  

𝑋 – Number of exceptions/violations 

𝑇 – Number of trials 

 

Effectively, the likelihood ratio, denoted by “𝐿𝑅𝐾”, after Paul Kupiec (1995) is given by:  
 

                                                               𝐿𝑅𝐾 =  −2 ln
[𝑝𝑥  (1 − 𝑝)𝑇−𝑋]

[(
𝑋
𝑇)

𝑋

(1 −
𝑋
𝑇)

𝑇−𝑋

]

  ~ 𝑋2                                             (𝟐𝟖) 

 

For the purpose of making a valid conclusion about the model’s accuracy, the critical value from 

the Chi-Squared Distribution is used. If the likelihood ratio is greater (lower) than the associated 

critical value of ‘3.84’, the test statistic reveals that the model should be rejected (accepted) at the 

level of confidence. Noting that the above expression can be greater than the said value of ‘3.84’ 

for either a high or a low number of violations, implying that the model would be rejected on both 

occasions. As mentioned earlier, the number of violations, denoted by “X”, is computed by re-

cording how regularly the actual loss exceeds VaR, which is the amount of exceptions noted once 

all days are account for. All cryptocurrencies and fiat currencies will have equal number of trials. 

Therefore, the number of trials denoted by “T”, is 250 at all times. We proceed with the below 

subsection to present and analyze the data related to the selected cryptocurrencies and fiat curren-

cies. 
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3.6. Data and Descriptive Statistics  
 

The data employed in this study are the global historical daily prices extracted from “FinanceYa-

hoo” for cryptocurrencies, whereas the data for exchange rates was extracted from “Invest-

ing.com”. Estimates from the softwares Microsoft Excel & Spider Financial’s Numerical Analysis 

for Excel (NumXL) will be integrated as a base for our evaluation.  

 

For our analysis, we extracted the daily closing prices spanning from 10th October 2015 until 18th 

November 2019 yielding a total of 1,501 daily observations for cryptocurrencies and 1,071 daily 

observations for exchange rates. Note this difference is because data for fiat currencies can only 

be obtained for weekdays.  

 

To avoid any disparity that may result from the relative quotings obtained on the respective days 

between cryptocurrencies and exchange rates, the data is filtered and adjusted for the gaps on 

weekends to conserve reliability and consistency in our estimations. Accordingly, this adjustment 

provided us with 1,071 compatible observations ranging from 12th October 2015 until 18th No-

vember 2019 (excluding weekends.)  

 

As a result, the in-sample period for each cryptocurrency and exchange rate was chosen to extend 

from October 13th 2015 till December 3rd 2018 yielding a total of 820 returns whereas the out-of-

sample period ranges from December 4th 2018 till November 18th 2019 generating a total of 250 

returns.  

 

The six cryptocurrencies chosen to be a part of our analysis are: Bitcoin (BTC), Dash (DASH), 

Monero (XMR), Dogecoin (DOGE), Litecoin (LTC) and Ripple (XRP) on one hand, and the cur-

rencies: Euro (EUR), Japanese Yen (JPY), British Pound (GBP), Swiss Franc (CHF), the Canadian 

Dollar (CAD), and the Australian Dollar (AUD) on the other hand; all against the US dollar. Not-

ing that the latter was excluded given that all currencies are priced with respect to the US Dollar. 

Furthermore, an influential cryptocurrency, Ethereum, was also excluded as its price was relatively 

stable until early 2017, after which we started noticing considerable movements in its volatility. 

Moreover, due to data deficiency, several other cryptocurrencies were omitted from our study such 

as Bitcoin Cash, EOS, Cardano, Neo, etc. Nevertheless, the selected currencies were purposely 

http://www.finance.yahoo.com/
http://www.finance.yahoo.com/
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chosen as recent research such as Chu et al. (2017) and Holtappels (2018) have suggested them to 

be among the most deliberated and traded currencies among investors and practitioners.   

 

It is worth noting, however, that Bitcoin represented 70% of the overall cryptocurrency market 

capitalization as of July 2019 with the next largest share corresponding to Ethereum (a cryptocur-

rency excluded in this study due to the volume of available data; given that Ethereum started wit-

nessing movements beginning Q2/2017) that relatively holds only 10% (Cap, 2019). Intrinsically, 

the remaining cryptocurrencies hold only a combined share of 8% and a presentable combined 

total share of 79%. However, due to the volatility of cryptocurrencies, the rankings of the respec-

tive cryptocurrencies changes continuously. Nevertheless, a summary of our cryptocurrencies’ rel-

ative share is summarized below. 

 

Cryptocurrency Market Cap. ($B) Percentage (%) 

BTC 215.47 70.50 

XRP 15.37 5.03 

LTC 6.76 2.21 

XMR 1.62 0.53 

DASH 1.35 0.44 

DOGE 0.40 0.13 

Portfolio $ 240.97B 78.84% 

Cryptocurrency Market $ 305.63B 100.00% 

Table 1: The Relative Dollar and Percentage Share of the Selected Cryptocurrencies (Bitcoin, Ripple, Lite-

coin, Monero, Dash & Dogecoin) with respect to the entire Cryptocurrency Market as of July 10th 2019 

(Cap, 2019). 

 

Therefore, taking into consideration the dominance that Bitcoin imposes on the cryptocurrency 

market, it is more reasonable to conduct a separate analysis on each cryptocurrency independently 

to avoid any biased inferences.  

 

Table 2 presents the summary statistics for the returns of the six cryptocurrencies and currencies. 

All cryptocurrencies have positive average returns and a significant positive skewness. The excess 

kurtosis for all series implies that they follow a heavy tailed leptokurtic distribution, coupled with 

high probability of extreme outlier values and a peakness significantly greater than that of a normal 

distribution, specifically for Ripple and Dogecoin. To verify, the results of the Jarque-Bera test, 
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after Jarque & Bera (1987), reject the null hypothesis of normality for all series since the calculated 

test statistics are greater than the critical values at their respective significance levels. Table 2 

displays the results of the Jarque-Bera test for all cryptocurrencies and fiat currencies.  

 

Conversely, due to the lower volatile nature of fiat money, the selected currencies revealed an 

average return of 0% and a relatively smaller standard deviation and a slighter kurtosis. With the 

exception of the British Pound, all currencies display an approximately symmetrical distribution 

that, however, exhibit a leptokurtic distribution and demonstrate deviation from normality.   

 

 

Table 2: Summary Statistics of the daily returns of the cryptocurrencies (Bitcoin, Ripple, Litecoin, 

Monero, Dash and Dogecoin) and currencies (Euro, British Pound, Canadian Dollar, Australian Dollar, 

Swiss Franc and Japanese Yen) over the sampled period 10th October 2015 – 18th November 2019. 

 

Figure 1 presents the times series plot of the six cryptocurrencies and hard currencies. A defining 

feature for all cryptocurrencies, as per presented figures, is that their prices increased abruptly as 

they recorded “exceptional” highs near the end of 2017, as prices started to plunge successively 

during 2018. The figure also highlights the main aspect of hard currencies regarding their relative 

stability.  

 

BTC XRP LTC XMR DASH DOGE EUR GBP CAD AUD CHF JPY

Nbr of Obser 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070 1070

Mean 0.0043 0.0068 0.0050 0.0080 0.0052 0.0061 0.0000 -0.0001 0.0000 -0.0001 0.0000 0.0001

Standard Err 0.0014 0.0027 0.0022 0.0026 0.0020 0.0027 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002

Median 0.0031 -0.0039 -0.0009 -0.0003 -0.0012 -0.0004 -0.0001 -0.0001 -0.0003 0.0001 -0.0001 0.0000

Standard Dev 0.0461 0.0875 0.0707 0.0859 0.0664 0.0876 0.0046 0.0062 0.0046 0.0056 0.0044 0.0058

Variance 0.0021 0.0077 0.0050 0.0074 0.0044 0.0077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Kurtosis 7.5221 42.3348 24.8775 31.3553 8.9870 55.9986 6.1380 30.2116 4.2499 3.9739 4.6042 7.1852

Skewness 0.4127 4.4201 2.8073 3.1523 1.1189 4.8158 0.2084 -1.8542 0.1970 -0.2030 0.2550 0.5342

Range 0.4649 1.4155 1.0421 1.2866 0.7106 1.6322 0.0545 0.1109 0.0388 0.0436 0.0411 0.0639

Minimum -0.2124 -0.2967 -0.3263 -0.2541 -0.2308 -0.3891 -0.0238 -0.0806 -0.0190 -0.0237 -0.0158 -0.0306

Maximum 0.2525 1.1188 0.7157 1.0325 0.4798 1.2431 0.0307 0.0303 0.0198 0.0198 0.0253 0.0333

Sum 4.6519 7.2994 5.3236 8.5071 5.6026 6.5082 -0.0139 -0.1485 -0.0045 -0.0608 -0.0178 0.1220

Jarque-Bera 942.05 72455 22740 37613.1 1820.66 129353 446.72 33626 76.439 49.541 126.44 831.85

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 1: Time series plot of the daily prices of the six cryptocurrencies and exchange rates between Oc-

tober 10, 2015 and November 18, 2019 
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When analyzing their historical returns, however, Figure 2 validates a stylized and distinctive fea-

ture of leptokurtosis in cryptocurrencies that arises from the pattern of time-varying volatility clus-

tering in the market where periods of high (low) volatility are followed by periods of high (low) 

volatility underlining, undeniably, the high probability of extreme returns in cryptocurrencies men-

tioned earlier. As a result, from the plot of return series below, persistence and volatility clustering 

are visible, which implies that volatility can be forecasted. 
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Figure 2: Time series plot of the daily simple returns of the six cryptocurrencies and exchange rates be-

tween October 10, 2015 and November 18, 2019. 
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Subsequently, the Durbin-Watson test, after Durbin & Watson (1950, 1951) verified that no serial 

correlation was present in the residuals for all series. Therefore, no autocorrelation is detected and 

no remediation is required. This means that there is neither an AR, nor a MA, nor an ARMA [2] 

process. Hence, our data is most likely to exhibit an ARCH effect. Moving forward, the below 

table depicts the Augmented Dickey-Fuller (ADF) test statistics, after Dickey & Fuller (1979), and 

their corresponding P-values for each data set. Results, inevitably, rejected the original hypothesis 

of non-stationary and asserted that in sample returns are strongly stationary for all series, suggest-

ing that no transformation in the return series is required.   

 

 

Table 3: ADF Test verifying the stationarity of the cryptocurrencies and exchange rates data series over 

the sampled period.  

 

In essence, the above section has thoroughly described the employed models and the relative eval-

uation techniques having also integrated value at risk into the framework. Following certain sta-

tistical analysis, this section has also ensured that the data is qualified. Before proceeding with the 

advised approach and prior to implementing any forecasts, heteroskedasticity test for ARCH effect 

was conducted for the squared residuals. Given that the probability of the Chi Squared turned out 

to be less than 5% for all series, the null hypothesis of no ARCH effect has been rejected for all 

series. Therefore, an ARCH effect exists. Accordingly, full justification is gained to run GARCH 

volatility models.   

 

 

 

 

                                                           
[2] In statistical analysis of time series, the Auto-Regressive Moving Average (ARMA) models provide 

parsimonious description of a weakly stationary stochastic process in terms of two polynomials; where 

the AR part involves regressing the variable against its own lagged/prior values and the MA part involves 

regressing the variable against the current and previous white noise error terms.  

  

BTC XRP LTC XMR DASH DOGE EUR GBP CAD AUD CHF JPY

Statistic -31.581 -18.388 -28.999 -11.729 -32.443 -7.599 -33.826 -32.551 -32.332 -34.948 -32.262 -35.415

P-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Augmented Dickey-Fuller Test Statistics
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Chapter 4: Findings 

 
After theoretically describing the adopted methodology approach, this section presents the detailed 

findings under each of the volatility models for each of the selected cryptocurrencies and fiat cur-

rencies.  

 

4.1. In-Sample Modeling 

 
Upon extracting the historical daily prices for each cryptocurrency and fiat currency and compu-

ting their respective daily returns, the daily conditional variance for each observation is calculated 

from equations (3), (5), (6), (7), (8), (9), (10 & 11) for each of the GARCH (1,1), IGARCH (1,1), 

EGARCH (1,1), GJR-GARCH (1,1), APARCH (1,1), TGARCH (1,1) and CGARCH (1,1) models 

respectively. Results are then annualized assuming 250 trading days per year and the annualized 

volatility is deduced from the annualized variance by taking the square root of the latter.  

 

4.1.1. Parameters Estimation & Volatility Modeling 

 
First, parameters estimation is performed for the in-sample period extending from October 13th 

2015 through December 3rd 2018, which will be subsequently used to forecast volatility for both 

the in-sample and out-of-sample periods. 

 

For each model and under each of the selected cryptocurrencies and fiat currencies, the sum of the 

log likelihood estimates on each observation for the in-sample data set is maximized using the 

“Solver” add-in function in Excel, subject to the conditions and constraints defined in section 3.1.1. 

The resulting parameters obtained once the LLF is maximized are those used to estimate the con-

ditional volatilities for the in-sample period. Below is a detailed table presenting the computed 

parameters under each model for each of the selected cryptocurrencies and fiat currencies. 
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BTC 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00003798 0.00003693 -0.2911965 0.00003265 0.00003798 0.00190668 0.03162807 

 0.121 0.1233 0.2843 0.1428 0.1231 0.1409 0.0482 

 0.8769 0.8767 0.9479 0.8839 0.8769 0.8635 0.1180 

β 0.9979 1.0000 1.2322 1.0267 1.0000 1.0044 0.1662 

ϒ - - 0.0153 -0.0508 0.0085 0.0033 -0.0548 

VL 213.71 % - 96.64 % - - - - 

δ - - - - 2 - - 

ρ - - - - - - 0.99890 

Ø - - - - - - 0.11797 

LLF 2193.47 2193.45 2195.9 2195.71 2193.47 2191.83 2193.94 

XRP 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00053230 0.00054250 -0.9315335 0.00346279 0.00053230 0.01043814 0.11880610 

 0.2971 0.3735 0.4166 0.5240 0.1943 0.1997 0.4077 

 0.6536 0.6265 0.8152 0.6529 0.6536 0.6643 0.5423 

β 0.9507 1.0000 1.2317 1.1769 0.8479 0.8640 0.9500 

ϒ - - 0.1916 -0.9601 -0.2365 -0.4523 0.0454 

VL 164.241 % - 127.204 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99936 

Ø - - - - - - 0.00000 

LLF 1823.69 1822.37 1819.15 1755.14 1823.69 1806.71 1845.22 

LTC 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00022466 0.00016634 -0.3066892 0.00020611 0.00022463 0.00384824 0.00662378 

 0.0979 0.1325 0.1577 0.1398 0.0456 0.0607 0.1581 

 0.8583 0.8675 0.9401 0.8724 0.8583 0.8708 0.0636 

β 0.9561 1.0000 1.0978 1.0122 0.9038 0.9315 0.2216 

ϒ - - 0.1129 -0.1158 -0.4657 -0.8174 0.2292 

VL 113.150 % - 122.227 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.98976 

Ø - - - - - - 0.04070 

LLF 1884.26 1877.83 1901.16 1894.21 1884.26 1882.15 1893.43 

XMR 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00073569 0.00034368 -8.4872648 0.00076781 0.00073572 0.00701040 0.00752625 

 0.0911 0.1564 0.1047 0.1316 0.0308 0.0552 0.0000 

 0.8103 0.8436 -0.7175 0.8141 0.8103 0.8444 0.0898 

β 0.9014 1.0000 -0.6128 0.9458 0.8411 0.8996 0.0898 

ϒ - - 0.0568 -0.1151 -0.7204 -0.9407 0.0295 

VL 136.573 % - 133.623 % 131.036 % - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.90329 

Ø - - - - - - 0.08976 

LLF 1646.19 1634.46 1617.29 1654.09 1646.19 1637.21 1646.28 
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DASH 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00019596 0.00015124 -0.2836452 0.00017579 0.00019595 0.00346804 0.00814057 

 0.1530 0.1776 0.2750 0.1727 0.1078 0.1340 0.0000 

 0.8217 0.8224 0.9441 0.8366 0.8217 0.8359 0.1587 

β 0.9747 1.0000 1.2191 1.0093 0.9295 0.9700 0.1587 

ϒ - - 0.0495 -0.0687 -0.1913 -0.1913 -0.0871 

VL 139.095 % - 124.864 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.97624 

Ø - - - - - - 0.15870 

LLF 1854.74 1853.83 1860.34 1857.20 1854.74 1854.82 1855.68 

DOGE 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00016896 0.00016896 -0.2071793 0.00015342 0.00012582 0.00204339 1.02507108 

 0.2286 0.2286 0.3702 0.4085 0.1542 0.1865 0.1234 

 0.7714 0.7714 0.9521 0.7545 0.7598 0.8138 0.8195 

β 1.0000 1.0000 1.3223 1.1630 0.9140 1.0003 0.9429 

ϒ - - 0.1137 -0.2167 -0.4093 -0.3580 0.0689 

VL N/A - 181.860 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99995 

Ø - - - - - - 0.11627 

LLF 1824.99 1824.99 1840.91 1838.22 1829.76 1824.76 1833.07 

EUR 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00000090 0.00000000 -5.7318176 0.00000006 0.00000106 0.00760915 0.00002167 

 0.0000 0.0091 -0.0630 0.0051 0.0000 -0.0383 0.0000 

 0.9614 0.9909 0.4607 0.9935 0.9520 -0.5048 0.7594 

β 0.9614 1.0000 0.3977 0.9985 0.9520 -0.5431 0.7594 

ϒ - - 0.1266 -0.0024 0.1018 0.0158 -0.0661 

VL 7.635 % - 7.784 % 7.406 % - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99767 

Ø - - - - - - 0.05089 

LLF 3936.08 3937.54 3940.18 3938.33 3934.83 3936.76 3927.40 

GBP 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00000382 0.00000072 -0.7482446 0.00000445 0.00000378 0.00041999 0.00003529 

 0.1635 0.0872 0.2727 0.2500 0.1123 0.1202 0.1821 

 0.7557 0.9128 0.9256 0.7349 0.7524 0.8133 0.7473 

β 0.9192 1.0000 1.1983 0.9849 0.8646 0.9335 0.9294 

ϒ - - 0.0934 -0.1690 -0.2355 -0.3651 -0.1129 

VL 10.872 % - 10.375 % 10.572 % - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99446 

Ø - - - - - - 0.00488 

LLF 3777.10 3765.28 3782.59 3784.01 3777.13 3776.15 3780.18 
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Table 4: Summary of the Estimated Parameters for all GARCH models under each Cryptocurrency and 

Fiat Currency. 

CAD 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00002253 0.00000000 -16.922744 0.00000001 0.00000000 0.00007177 0.00005638 

 0.0923 0.0171 0.2088 0.0053 0.0037 0.0239 0.0267 

 0.9014 0.9829 -0.5943 1.0021 0.9902 0.9647 0.9683 

β 0.9937 1.0000 -0.3854 1.0074 0.9939 0.9886 0.9949 

ϒ - - 0.0323 -0.0155 -0.5712 -0.1151 -0.0144 

VL 7.877 % - 7.834 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 1.00000 

Ø - - - - - - 0.00000 

LLF 3936.71 3942.93 3939.12 3925.18 3942.55 3943.82 3944.81 

AUD 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00000022 0.00000000 -0.0748181 0.00000020 0.00000016 0.00002450 0.00003206 

 0.0060 0.0186 0.0466 0.0000 0.0123 0.0134 0.0000 

 0.9867 0.9814 0.9927 0.9889 0.9782 0.9794 0.0168 

β 0.9927 1.0000 1.0393 0.9889 0.9905 0.9928 0.0168 

ϒ - - 0.0167 0.00650 -0.1757 -0.5494 0.0121 

VL 8.692 % - 9.463 % 8.01 % - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99521 

Ø - - - - - - 0.01683 

LLF 3806.22 3809.20 3811.48 3801.02 3810.42 3811.10 3810.44 

CHF 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00000166 0.00000000 -4.6933254 0.00000650 0.00000155 0.0000114 0.00004540 

 0.0001 0.0124 -0.0526 0.0650 0.0028 0.0016 0.1643 

 0.9204 0.9876 0.5651 0.6825 0.9257 0.9998 0.0043 

β 0.9204 1.0000 0.5125 0.7474 0.9229 1.0014 0.1686 

ϒ - - 0.1571 -0.1132 -0.2330 -1.0000 -0.2319 

VL 7.232 % - 7.171 % 7.250 % - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 1.00000 

Ø - - - - - - 0.00434 

LLF 3999.46 4005.80 4007.80 4004.35 3997.44 4007.09 4002.84 

JPY 

  GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

 0.00000000 0.00000000 0.00417207 0.00000003 0.00000000 0.0000149 0.00000000 

 0.0195 0.0260 0.0005 0.0224 0.0087 0.0298 0.0000 

 0.9793 0.9740 1.0006 0.9894 0.9850 0.9811 0.0230 

β 0.9989 1.0000 1.0011 1.0118 0.9937 1.0109 0.0230 

ϒ - - 0.0512 -0.0309 -0.2400 0.0033 -0.0054 

VL - - 55.739 % - - - - 

δ - - - - 2.000 - - 

ρ - - - - - - 0.99895 

Ø - - - - - - 0.02301 

LLF 3828.77 3828.67 3822.82 3828.45 3826.89 3805.11 3828.97 
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4.1.1.1. GARCH (1,1) 

 

Table 5: The Goodness-of-Fit of the GARCH (1,1) Model assuming Three Innovation Term Distributions 

and covering the entire sampled period for each Cryptocurrency & Fiat Currency. 

 

First, an important component in fitting a GARCH process is the distribution of the innovations 

term. In order to select the most appropriate distribution for the innovations term for each crypto-

currency and fiat currency, the GARCH (1,1) model is utilized covering the entire sampled period, 

from October 13th 2015 until November 18th 2019, and assuming three distributions for the inno-

vations term: Normal, Student’s t and the Generalized Error distributions. Based on the empirical 

results from table 5, we note that the use of skewed and heavy-tailed innovations distributions is 

justified, as they give better results based on the goodness-of-fit measures. The Student’s t distri-

bution demonstrates superiority having the highest log-likelihood value, as well as the lowest AIC, 

BIC and HQC values among the three innovation term distributions for 9 out of the 12 modeled 

assets. In particular, the Student’s t distribution is selected for Bitcoin, Ripple, Litecoin, Monero, 

Dogecoin, Euro, the British Pound, Australian Dollar and the Japanese Yen while the Generalized 

Error Distribution is selected for Dash, the Canadian Dollar and the Swiss Franc. Progressively, a 

thorough analysis surrounding the achieved results is conducted, as depicted below: 

 

 

 

 

 

AIC BIC HQC LLF AIC BIC HQC LLF AIC BIC HQC LLF

BTC -3.4566 -3.4426 -3.4513 1852.26 -3.7812 -3.7626 -3.7742 2026.94 -3.7797 -3.7611 -3.7726 2026.12

XRP -2.6956 -2.6817 -2.6903 1445.16 -3.1375 -3.1189 -3.1305 1682.59 -3.1181 -3.0995 -3.1110 1672.17

LTC -2.6430 -2.6291 -2.6378 1417.03 -3.2896 -3.2710 -3.2825 1763.92 -3.2482 -3.2296 -3.2411 1741.76

XMR -2.2290 -2.2150 -2.2237 1195.49 -2.5882 -2.5696 -2.5812 1388.71 -2.5637 -2.5451 -2.5567 1375.60

DASH -2.7436 -2.7296 -2.7383 1470.81 -2.9452 -2.9266 -2.9382 1579.68 -2.9474 -2.9288 -2.9403 1580.84

DOGE -2.7026 -2.6887 -2.6973 1448.90 -3.1679 -3.1493 -3.1609 1698.84 -3.1425 -3.1239 -3.1354 1685.23

EUR -8.0013 -7.9873 -7.9960 4283.68 -8.0137 -7.9951 -8.0067 4291.35 -8.0132 -7.9946 -8.0062 4291.07

GBP -7.4616 -7.4477 -7.4564 3994.98 -7.5599 -7.5413 -7.5529 4048.57 -7.5384 -7.5198 -7.5314 4037.06

CAD -7.9941 -7.9801 -7.9888 4279.82 -8.0014 -7.9828 -7.9943 4284.73 -8.0050 -7.9864 -7.9980 4286.68

AUD -7.5843 -7.5703 -7.5790 4060.58 -7.5922 -7.5736 -7.5851 4065.81 -7.5898 -7.5712 -7.5828 4064.55

CHF -8.0640 -8.0501 -8.0588 4317.26 -8.0776 -8.0590 -8.0706 4325.52 -8.0860 -8.0674 -8.0789 4329.99

JPY -7.6656 -7.6516 -7.6603 4104.08 -7.7152 -7.6966 -7.7082 4131.63 -7.6779 -7.6621 -7.6835 4129.45
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GARCH (1,1) 

     VL LLF 

BTC 0.00003798 0.1210 0.8769 213.708 % 2193.47 

XRP 0.00053230 0.2971 0.6536 164.241 % 1823.69 

LTC 0.00022466 0.0979 0.8583 113.150 % 1884.26 

XMR 0.00073569 0.0911 0.8103 136.573 % 1646.19 

DASH 0.00019596 0.1530 0.8217 139.095 % 1854.74 

DOGE 0.00016896 0.2286 0.7714 - 1824.99 

EUR 0.00000090 0.0000 0.9614 7.635 % 3936.08 

GBP 0.00000382 0.1635 0.7557 10.872 % 3777.10 

CAD 0.00002253 0.0923 0.9014 7.877 % 3936.71 

AUD 0.00000022 0.0060 0.9867 8.692 % 3806.22 

CHF 0.00000166 0.0001 0.9204 7.232 % 3999.46 

JPY 0.00000000 0.0195 0.9793 - 3828.77 

 

Table 6: GARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

The ARCH component “”, known also as the GARCH reaction parameter, ranges between 9% and 30% 

for the cryptocurrencies and between 0% and 9% for the fiat currencies, except for the British Pound having 

an of 16%. This parameter determines the impact of market shocks on volatility. Predictably, the rela-

tively high disturbance realized in the British Pound compared to the remaining hard currencies is due to 

the Brexit turmoil following the UK-wide referendum in June 2016 and effectively, its associated repercus-

sions. Intrinsically, the ARCH components for the Euro, Australian Dollar, and Swiss Franc are 0%, im-

plying that market shocks have no effect on their volatilities, unlike the remaining fiat currencies. Predict-

ably, all cryptocurrencies are however, sensitive to disturbances in the market, specifically Ripple and 

Dogecoin.  

 

The GARCH component “β” explains the relative significance of today’s returns in determining 

the variance for periods ahead. With the exception of the British Pound, all fiat currencies exhibit 

a relatively larger beta compared to cryptocurrencies suggesting that exchange rates are more ex-

plicable and less “spiky” as illustrated in figures 1 & 2 in section 3.6.  

 

Noticeably, the “ω” term for fiat currencies is relentlessly insignificant and close to zero. A high 

persistence and a low omega often suggests that volatility might be nonstationary which points 

towards conversion of the Standard GARCH model to the Integrated GARCH (Zivot, 2008) in the 

case of fiat currencies. Also, it is important to note that this is exceptionally true in the case of 

Dogecoin, where the sum of parameters α+β equals 1, thereby indicating that the conditional var-

iance is strictly stationary with an unattainable long term variance. As for Bitcoin, Ripple, Litecoin, 
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Monero and Dash, the series are stationary and mean reverting with long term volatilities surpas-

sing the 100% mark. Specifically, Bitcoin and Ripple reported the highest long term volatilities 

with respective values of 214% and 164%, which further underlines cryptocurrencies’ “intensify-

ing” levels of volatility. 

 

4.1.1.2. IGARCH (1,1) 
 

IGARCH (1,1) 

     LLF 

BTC 0.00003693 0.1233 0.8767 2193.45 

XRP 0.00054250 0.3735 0.6265 1822.37 

LTC 0.00016634 0.1325 0.8675 1877.83 

XMR 0.00034368 0.1564 0.8436 1634.46 

DASH 0.00015124 0.1776 0.8224 1853.83 

DOGE 0.00016896 0.2286 0.7714 1824.99 

EUR 0.00000000 0.0091 0.9909 3937.54 

GBP 0.00000072 0.0872 0.9128 3765.28 

CAD 0.00000000 0.0171 0.9829 3942.93 

AUD 0.00000000 0.0186 0.9814 3809.20 

CHF 0.00000000 0.0124 0.9876 4005.80 

JPY 0.00000000 0.0260 0.9740 3828.67 

 

Table 7: IGARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

The Integrated GARCH model validates the presumptions drawn from the GARCH model and 

provides further clarification concerning the British Pound. Remarkably, the GARCH component 

“β” estimates for all cryptocurrencies and fiat currencies were reasonably analogous in both mod-

els once compared to the British Pound, where the latter’s beta has increased drastically from 76% 

in GARCH(1,1) to 91% in IGARCH(1,1). This suggests that if it wasn’t of the UK-referendum 

and Brexit’s effect on UK’s economy, the Pound would have behaved “smoother” to market 

shocks, thereby providing a clearer insight with regard to predicting its volatility.   

 

In contrast to the Standard GARCH model, however, the unconditional variance in the Integrated 

GARCH model is not finite and therefore the model does not exhibit volatility mean reversion 

(Zivot, 2008). Hence, the omega term “ω” now takes the form of a constant. 

 

Nevertheless, it is worth highlighting again the “ω” term for fiat currencies where each of the Euro, 

Pound, Canadian Dollar, Australian Dollar, Swiss Franc and Japanese Yen have a ω of 0. This 
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provides further verification that the IGARCH model provides a very good fit for the fiat curren-

cies, while at the same time, drawing attention towards advanced GARCH models as they may 

provide better explanation to cryptocurrencies’ volatility. 

 

4.1.1.3. EGARCH (1,1) 
 

EGARCH (1,1) 
    ϒ VL LLF 

BTC -0.291197 0.2843 0.9479 0.0153 96.636 % 2195.90 

XRP -0.931534 0.4166 0.8152 0.1916 127.204 % 1819.15 

LTC -0.306689 0.1577 0.9401 0.1129 122.227 % 1901.16 

XMR -8.487265 0.1047 -0.7175 0.0568 133.623 % 1617.29 

DASH -0.283645 0.2750 0.9441 0.0495 124.864 % 1860.34 

DOGE -0.207179 0.3702 0.9521 0.1137 181.860 % 1840.91 

EUR -5.731818 -0.0630 0.4607 0.1266 7.784 % 3940.18 

GBP -0.748245 0.2727 0.9256 0.0934 10.375 % 3782.59 

CAD -16.922744 0.2088 -0.5943 0.0323 7.834 % 3939.12 

AUD -0.074818 0.0466 0.9927 0.0167 9.463 % 3811.48 

CHF -4.693325 -0.0526 0.5651 0.1571 7.171 % 4007.80 

JPY 0.004172 0.0005 1.0006 0.0512 55.739 % 3822.82 

 

Table 8: EGARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

What distinguishes this model from the Standard GARCH model is the specification of its condi-

tional variance equation allowing to incorporate the impact of asymmetries on volatility and 

thereby the variance to react differently depending on the sign and size of the shock it receives. 

For clarity, bear in mind that the ARCH term “α” represents the extent towards which the magni-

tude (size) of shocks to the variance affects future volatility in the returns. The GARCH term “β” 

gives insight into persistence of past volatility and how it helps predict future volatility. The key 

coefficient to look at, however, is the leverage effect term “γ”. This parameter describes how the 

sign of the shock influences the future volatility of returns.  

 

The leverage coefficient “γ” ranges between 1% and 19% and carries a positive value for all cryp-

tocurrencies and fiat currencies. This implies that none of the cryptocurrencies and fiat currencies 

exhibit a leverage effect and positive shocks have a greater impact on their volatility than negative 

shocks, particularly for Ripple (19%) and the Swiss Franc (16%). However, the asymmetry effect 

on Bitcoin, Australian Dollar and Canadian Dollar is relatively insignificant (≤ 3%). 
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The ARCH term “α” is positive for all cryptocurrencies and fiat currencies except for the  Euro 

and Swiss Franc, with the highest values displayed by Ripple (42%) and Dogecoin (37%). This 

shows that cryptocurrencies and fiat currencies generally exhibit a positive relationship between 

their past variances and current variances in absolute value, which means that the bigger the mag-

nitude of shocks to their variance, the higher their volatility.  

 

The GARCH term “β” is quite significant for all cryptocurrencies and fiat currencies except for 

the Euro, Canadian Dollar and the Swiss Franc, revealing that one distinctive feature in cryptocur-

rencies is persistence in their volatility.  

 

The long term volatility “VL” of fiat currencies ranges between 7% and 10%, and 56% exception-

ally for the Japanese Yen. Nevertheless, cryptocurrencies’ long term volatility ranges between 

97% and 182%. For instance, Ripple’s long term volatility is around 18 times larger than the Swiss 

Franc’s long term volatility, further emphasizing the increased volatility in cryptocurrencies with 

respect to fiat currencies.  

 

4.1.1.4. GJR-GARCH (1,1) 
 

GJR-GARCH (1,1) 

     ϒ VL LLF 

BTC 0.000033 0.1428 0.8839 -0.0508 - 2195.71 

XRP 0.003463 0.5240 0.6529 -0.9601 - 1755.14 

LTC 0.000206 0.1398 0.8724 -0.1158 - 1894.21 

XMR 0.000768 0.1316 0.8141 -0.1151 131.036 % 1654.09 

DASH 0.000176 0.1727 0.8366 -0.0687 - 1857.20 

DOGE 0.000153 0.4085 0.7545 -0.2167 - 1838.22 

EUR 0.000000 0.0051 0.9935 -0.0024 7.406 % 3938.33 

GBP 0.000004 0.2500 0.7349 -0.1690 10.572 % 3784.01 

CAD 0.000000 0.0053 1.0021 -0.0155 - 3925.18 

AUD 0.000000 0.0000 0.9889 0.0065 8.010 % 3801.02 

CHF 0.000007 0.0650 0.6825 -0.1132 7.250 % 4004.35 

JPY 0.000000 0.0224 0.9894 -0.0309 - 3828.45 

 

Table 9: GJR-GARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

The GJR-GARCH model is similar to the EGARCH model in that it models asymmetries effects 

on volatility. However, this model incorporates the non-negativity constraint on the three param-

eters: ω, α, and β, while only the leverage term can be negative. As described in chapter 3, this 
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model differs from the Standard GARCH model by introducing a dummy variable “𝐼𝑡−1” allowing 

the conditional variance to increase in response to bad news more than good news. 

 

Typically, the generated figures display similar results to the Standard GARCH model in terms of 

mean reverting (ω), volatility clustering (α) and volatility persistence (β). Firstly, all cryptocurren-

cies display higher long term volatilities with a value for “ω” different from 0, whereas for fiat 

currencies the constant term is set to be 0. Secondly, the volatility of cryptocurrencies tend to 

cluster in response to market shocks, unlike fiat currencies. Thirdly, the larger beta in the case of 

most fiat currencies evidences that they are relatively more explicable and are subject to less 

‘spikes’ than cryptocurrencies, in general.  

 

The leverage coefficient “γ” ranges between 0% and -96%.  Results show consistency with the 

EGARCH model, where a negative leverage coefficient implies the absence of leverage effect for 

all cryptocurrencies and fiat currencies. This confirms that positive shocks have a higher impact 

on volatility than negative shocks, except for the Euro and Australian Dollar whose gamma are 0, 

thereby pose no asymmetry effects. Noticeably, the gamma coefficient is relatively significant for 

all cryptocurrencies compared to fiat currencies, specifically Ripple (-96%). However, the low 

values for the leverage coefficient attained for most of the fiat currencies (namely: Australian Dol-

lar, Canadian Dollar, Euro, and Japanese Yen) in conjunction with the absence of the constant term 

“ω” proves yet again that the IGARCH model provides the best fit for fiat currencies. 
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4.1.1.5. APARCH (1,1) 
 

APARCH (1,1) 
    ϒ δ LLF 

BTC 0.000038 0.1231 0.8769 0.0085 2.000 2193.47 

XRP 0.000532 0.1943 0.6536 -0.2365 2.000 1823.69 

LTC 0.000225 0.0456 0.8583 -0.4657 2.000 1884.26 

XMR 0.000736 0.0308 0.8103 -0.7204 2.000 1646.19 

DASH 0.000196 0.1078 0.8217 -0.1913 2.000 1854.74 

DOGE 0.000126 0.1542 0.7598 -0.4093 2.000 1829.76 

EUR 0.000001 0.0000 0.9520 0.1018 2.000 3934.83 

GBP 0.000004 0.1123 0.7524 -0.2355 2.000 3777.13 

CAD 0.000000 0.0037 0.9902 -0.5712 2.000 3942.55 

AUD 0.000000 0.0123 0.9782 -0.1757 2.000 3810.42 

CHF 0.000002 0.0000 0.9257 -0.2329 2.000 3999.45 

JPY 0.000000 0.0087 0.9850 -0.2400 2.000 3826.89 

 

Table 10: APARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

The Asymmetric Power ARCH, as the GJR-GARCH and EGARCH models, additionally captures 

asymmetry in return volatility. The computed values of the alpha, beta and omega parameters show 

consistency in the behavior of cryptocurrencies and exchange rates. A defining and distinctive 

aspect of this model is that the conditional volatility originally assumes a varying power of “δ” 

However, since the maximum likelihood estimates of the power parameter for all cryptocurrencies 

and fiat currencies ranged between “1.8” and “2.1”, the modeled version in this thesis assumes a 

fixed value of “2.00” for the delta parameter to preserve consistency among the assets and to con-

form with the remaining models. Consequently, the APARCH model exposes similar properties 

to the GJR-GARCH model.  

 

Estimates for the leverage parameter “γ” for each cryptocurrency and hard currency have changed 

significantly compared to the GJR-GARCH model, with gamma ranging between 0% and -72%. 

Curiously, the lowest percentage (in absolute value) for the leverage coefficient was for Bitcoin 

(0%) which reveals that its volatility is affected symmetrically to positive and negative shocks. 

Nonetheless, all remaining cryptocurrencies and fiat currencies have a significant negative value 

for gamma verifying that positive shocks have a higher impact on cryptocurrencies’ and fiat cur-

rencies’ volatility than negative shocks. In particular, the leverage parameter appears to be largest 

(in absolute value) for Monero (72%) and the Candadian Dollar (57%) with only the Euro having 

a positive leverage parameter (10%), which is still significant. These results are inconsistent with 

the previous models where some fiat currencies showed insignificant asymmetry effects. 
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4.1.1.6. TGARCH (1,1) 
 

TGARCH (1,1) 

     ϒ LLF 

BTC 0.001907 0.1409 0.8635 0.0033 2191.83 

XRP 0.010438 0.1997 0.6643 -0.4523 1806.71 

LTC 0.003848 0.0607 0.8708 -0.8174 1882.15 

XMR 0.007010 0.0552 0.8444 -0.9407 1637.21 

DASH 0.003468 0.1340 0.8359 -0.1913 1854.82 

DOGE 0.002043 0.1865 0.8138 -0.3580 1824.76 

EUR 0.007609 -0.0383 -0.5048 0.0158 3936.76 

GBP 0.000420 0.1202 0.8133 -0.3651 3776.15 

CAD 0.000072 0.0239 0.9647 -0.1151 3943.82 

AUD 0.000025 0.0134 0.9794 -0.5494 3811.10 

CHF 0.000011 0.0016 0.9998 -1.0000 4007.09 

JPY 0.000015 0.0298 0.9811 0.0033 3805.11 

 

Table 11: TGARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

The TGARCH model is a particular case of the APARCH model once the power effect, “δ”, takes 

the value of 1. However, in contrast to the remaining models, the TGARCH distinctively models 

for the standard deviation instead of the conditional variance.  

 

As shown in the above table, the Bitcoin and Japanese Yen have a positive gamma of 0.33%, which 

is insignificant and relatively close to 0. This implies that the impact of returns on their volatility 

is symmetrical and thereby, they do not exhibit an asymmetric effect. The Euro appears to be the 

only asset with a positive leverage parameter of 1.58%, indicating that a leverage effect is present. 

However, this effect is neglected since its non-representative, once the remaining cryptocurrencies 

and hard currencies are considered. All of the remaining 9 cryptocurrencies and fiat currencies 

have a significant negative leverage parameter, further emphasizing the results attained earlier.  
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4.1.1.7. CGARCH (1,1) 

 
CGARCH (1,1) 

     α + β ϒ ρ Ø LLF 

BTC 0.031628 0.0482 0.1180 0.1662 -0.0548 0.99890 0.1180 2193.94 

XRP 0.118806 0.4077 0.5423 0.9500 0.0454 0.99936 0.0000 1845.22 

LTC 0.006624 0.1581 0.0636 0.2216 0.2292 0.98976 0.0407 1893.43 

XMR 0.007526 0.0000 0.0898 0.0898 0.0295 0.90329 0.0898 1646.28 

DASH 0.008141 0.0000 0.1587 0.1587 -0.0871 0.97624 0.1587 1855.68 

DOGE 1.025071 0.1234 0.8195 0.9429 0.0689 0.99995 0.1163 1833.07 

EUR 0.000022 0.0000 0.7594 0.7594 -0.0661 0.99767 0.0509 3927.40 

GBP 0.000035 0.1821 0.7473 0.9294 -0.1129 0.99446 0.0049 3780.18 

CAD 0.000056 0.0267 0.9683 0.9949 -0.0144 1.00000 0.0000 3944.81 

AUD 0.000032 0.0000 0.0168 0.0168 0.0121 0.99521 0.0168 3810.44 

CHF 0.000045 0.1643 0.0043 0.1686 -0.2319 1.00000 0.0043 4002.84 

JPY 0.000000 0.0000 0.0230 0.0230 -0.0054 0.99895 0.0230 3828.97 

Table 12: CGARCH (1,1) Estimated Parameters for each Cryptocurrency and Fiat Currency 

 

Perhaps the most complex among all selected models is the Component GARCH model, as it 

allows the conditional variance to revert to a varying level “𝑞𝑡” instead of “ω”. In other words, the 

intercept parameter is now a time-varying first order autoregressive process. As a result, the con-

ditional variance is highly dependent its permanent component “𝑞𝑡”.  

 

Curiously, the high value attained for the trend intercept “ω” in the case of Ripple and Dogecoin 

points towards the relative significance of their permanent component, suggesting that the 

CGARCH model may provide a good fit for these two cryptocurrencies.  

 

This is further supported by the fact that Ripple and Dogecoin are the only cryptocurrencies among 

all cryptocurrencies that present shocks of transitory nature (sum of alpha and beta coefficients 

“α+β” are close to “ρ”). Noting that the British Pound and the Canadian Dollar also reveal that 

their volatilities are highly prone to short term effects.  

 

The AR coefficient of the permanent volatility “ρ” is highly significant (almost 1) for all crypto-

currencies and fiat currencies and its size exceeds the coefficients of the transitory component in 

all cases implying that the CGARCH model is quite stable for all cryptocurrencies and fiat curren-

cies.   
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The forecasting error term “Ø” is positive but insignificant for most cryptocurrencies and fiat cur-

rencies which implies that actual volatilities are close to estimated volatilities.  

 

However, in contrast to all remaining models, the CGARCH is the only model that reports the 

presence of leverage effect in most cryptocurrencies, particularly for Litecoin (γ = 23%). This 

implies that negative shocks have generally a higher impact on cryptocurrencies’ volatility than 

positive shocks. However, this isn’t the case for fiat currencies where positive shocks still have a 

higher influence than negative shocks, specifically in the case of Swiss Franc (γ = -23%). 

 

4.1.2. Realized Volatility & Volatility Comparison 
 

To proceed, realized volatilities are computed using equation (12), described in section 3.1.2, as 

many research such as Andersen & Benzoni (2008) and Lanne & Ahoniemi (2010) have evinced 

that the square root of sum of squared returns provides a viable approximation of realized volatil-

ity. As mentioned earlier, annualized volatilities were derived from monthly volatilities by multi-

plying the latter by the amount of “trading months per trading year,” that is 252/22. The below 

figure plots the realized volatility against GARCH volatilities for each cryptocurrency and fiat 

currency over the in-sample period.  
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Figure 3: Realized Volatility versus GARCH Models Volatilities for each Cryptocurrency and Fiat Cur-

rency covering the In-Sample period. 
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Once computed, the realized volatilities related to the six cryptocurrencies and six fiat currencies 

are compared to their calculated in-sample volatilities under each model in order to determine the 

most accurate model for predicting their volatilities. This comparison is addressed using the three 

error metrics, as defined in section 3.3: The Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE) and the Mean Absolute Percentage Error (MAPE). These error metrics determine the 

optimal model by subtracting the calculated volatility from the realized volatility under each model 

for each cryptocurrency and fiat currency. The model with the least error difference is considered 

the most accurate. The following table details the in-sample error statistics values along with their 

rankings for each cryptocurrency and fiat currency under each of the selected models: 
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.1438834 0.1452684 0.1626541 0.1420283 0.1438827 0.1543428 0.1446455 

Rank 3 5 7 1 2 6 4 

MAPE 0.2597495 0.2600098 0.2872678 0.2513765 0.2597456 0.2917471 0.2570306 

Rank 4 5 6 1 3 7 2 

MAE 0.1150521 0.1160461 0.1361096 0.1118629 0.1150513 0.1295820 0.1143421 

Rank 4 5 7 1 3 6 2 

R
ip

p
le

 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.5606818 0.6118490 0.6899646 0.7824047 0.5606813 0.5310634 0.6502455 

Rank 3 4 6 7 2 1 5 

MAPE 0.4470383 0.4684544 0.4947561 0.7136717 0.4470379 0.4704342 0.4792861 

Rank 2 3 6 7 1 4 5 

MAE 0.3831406 0.4076085 0.4384743 0.5492027 0.3831403 0.3870977 0.4342990 

Rank 2 4 6 7 1 3 5 

L
it

ec
o

in
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.3142638 0.3159657 0.3365539 0.3258989 0.3142511 0.3240884 0.3882587 

Rank 2 3 6 5 1 4 7 

MAPE 0.4986707 0.4956276 0.4674167 0.4915881 0.4986553 0.4883770 0.5264090 

Rank 6 4 1 3 5 2 7 

MAE 0.2501523 0.2647562 0.2612368 0.2493461 0.2501420 0.2643273 0.2985987 

Rank 3 6 4 1 2 5 7 

M
o

n
er

o
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.3797907 0.3752803 0.5668703 0.4026492 0.3797942 0.3895298 0.3798416 

Rank 2 1 7 6 3 5 4 

MAPE 0.2982211 0.2959970 0.4417629 0.3070350 0.2982247 0.3041831 0.2992323 

Rank 2 1 7 6 3 5 4 

MAE 0.2921630 0.2997151 0.4386953 0.3084665 0.2921662 0.3048044 0.2929214 

Rank 1 4 7 6 2 5 3 
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.2534699 0.2697845 0.2521968 0.2533920 0.2534681 0.2489615 0.2576457 

Rank 5 7 2 3 4 1 6 

MAPE 0.2470614 0.2486341 0.2445397 0.2395079 0.2470599 0.2554356 0.2465609 

Rank 5 6 2 1 4 7 3 

MAE 0.2032780 0.2114108 0.2014295 0.1985643 0.2032765 0.2040712 0.2053800 

Rank 4 7 2 1 3 5 6 

D
o

g
ec

o
in

 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.5064305 0.5064303 0.5490583 0.6602732 0.5920399 0.4847540 0.5473900 

Rank 3 2 5 7 6 1 4 

MAPE 0.3729656 0.3729680 0.3851809 0.4153554 0.3994000 0.3855438 0.3777930 

Rank 1 2 4 7 6 5 3 

MAE 0.3393688 0.3393693 0.3612364 0.4055001 0.3836772 0.3454698 0.3614334 

Rank 1 2 4 7 6 3 5 

E
u

ro
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0167027 0.0137294 0.0182184 0.0149769 0.0168460 0.0172814 0.0081503 

Rank 4 2 7 3 5 6 1 

MAPE 0.1592232 0.1413479 0.1819595 0.1489521 0.1521989 0.1753247 0.0770562 

Rank 5 2 7 3 4 6 1 

MAE 0.0123338 0.0104168 0.0138541 0.0112251 0.0121169 0.0132459 0.0059228 

Rank 5 2 7 3 4 6 1 

B
ri

ti
sh

 P
o

u
n

d
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0317732 0.0199425 0.0340562 0.0344916 0.0321520 0.0297481 0.0317099 

Rank 4 1 6 7 5 2 3 

MAPE 0.1866371 0.1744161 0.1920843 0.2026332 0.1892557 0.1804646 0.1777932 

Rank 4 1 6 7 5 3 2 

MAE 0.0183853 0.0153797 0.0192712 0.0200396 0.0186582 0.0176004 0.0177472 

Rank 4 1 6 7 5 2 3 

C
a

n
a

d
ia

n
 D

o
ll

a
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0170002 0.0109265 0.0179887 0.0184561 0.0129582 0.0107604 0.0103680 

Rank 5 3 6 7 4 2 1 

MAPE 0.1721560 0.1169429 0.1832628 0.1627358 0.1330819 0.1085776 0.1139570 

Rank 6 3 7 5 4 1 2 

MAE 0.0129722 0.0087688 0.0138477 0.0133409 0.0101546 0.0081901 0.0082551 

Rank 5 3 7 6 4 1 2 
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0167435 0.0120629 0.0125309 0.0178898 0.0123189 0.0122403 0.0123128 

Rank 6 1 5 7 4 2 3 

MAPE 0.1487503 0.1112955 0.1160254 0.1596206 0.1153037 0.1146732 0.1150881 

Rank 6 1 5 7 4 2 3 

MAE 0.0132555 0.0097394 0.0100715 0.0142299 0.0100603 0.0100071 0.0100386 

Rank 6 1 5 7 4 2 3 

S
w

is
s 

F
ra

n
c
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0152728 0.0108196 0.0173273 0.0157562 0.0161374 0.0130508 0.0146707 

Rank 4 1 7 5 6 2 3 

MAPE 0.1816106 0.1316578 0.2056852 0.1879071 0.1845078 0.1393637 0.1742015 

Rank 4 1 7 6 5 2 3 

MAE 0.0121120 0.0088518 0.0137593 0.0124809 0.0126762 0.0099685 0.0116783 

Rank 4 1 7 5 6 2 3 

J
a

p
a

n
es

e 
Y

en
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0163927 0.0149071 0.0220859 0.0191509 0.0186790 0.0207713 0.0153348 

Rank 3 1 7 5 4 6 2 

MAPE 0.1389362 0.1298187 0.1827249 0.1563098 0.1551345 0.1755943 0.1300348 

Rank 3 1 7 5 4 6 2 

MAE 0.0120576 0.0109139 0.0166857 0.0142432 0.0137705 0.0155573 0.0112381 

Rank 3 1 7 5 4 6 2 

Table 13: Error Statistics by Rankings under each Volatility Model for each Cryptocurrency and Fiat Cur-

rency covering the In-Sample Period. 

 

4.2. Out-of-Sample Modeling 

 
Exact calculations are carried forward for the out-of-sample period extending from December 4th  

2018 till November 18th 2019, where the only modification is that the resulting parameters obtained 

from the in-sample period (check Table 4) are those used to forecast the conditional volatilities for 

the out-of-sample period. Therefore, the parameters are now plugged into formulas rather than 

being re-calculated. This is done in order to determine whether there are any consistencies among 

the selected models upon shifts in time.  

 

4.2.1. Realized Volatility & Volatility Comparison 

To proceed, realized volatilities are computed as in section 4.1.2 and are compared to calculated 

volatilities. The below figure plots the realized volatility against the modeled GARCH volatilities 

for each cryptocurrency and fiat currency covering the out-of-sample period.  
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Figure 4: Realized Volatility versus GARCH Models Volatilities for each Cryptocurrency and Fiat Cur-

rency covering the Out-of-Sample period. 
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Subsequently, the realized volatilities are compared to the calculated out-of-sample volatilities to 

determine the optimal model for predicting each cryptocurrency’s and fiat currency’s volatility for 

the out-of-sample period. This comparison is also addressed using the error statistics: RMSE, 

MAPE and MAE. The following table details the out-of-sample error statistics values along with 

their rankings for each cryptocurrency and fiat currency under each of the selected models. 

B
it

co
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.1408560 0.1422242 0.1576708 0.1514731 0.1408557 0.1349229 0.1426873 

Rank 3 4 7 6 2 1 5 

MAPE 0.1746768 0.1754714 0.1920261 0.1842919 0.1746752 0.1718826 0.1743728 

Rank 4 5 7 6 3 1 2 

MAE 0.1065257 0.1071604 0.1205260 0.1127929 0.1065251 0.1049094 0.1063803 

Rank 4 5 7 6 3 1 2 

R
ip

p
le

 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.2836429 0.3157890 0.3587448 0.5122478 0.2836421 0.3072511 0.2988604 

Rank 2 5 6 7 1 4 3 

MAPE 0.3751473 0.3982823 0.4826442 0.6771766 0.3751465 0.4158141 0.3139430 

Rank 3 4 6 7 2 5 1 

MAE 0.2241280 0.2430162 0.2883991 0.3849528 0.2241274 0.2531108 0.2147268 

Rank 3 4 6 7 2 5 1 

L
it

ec
o

in
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.1646110 0.2140478 0.2057390 0.1920021 0.1646023 0.1765855 0.2361351 

Rank 2 6 5 4 1 3 7 

MAPE 0.1705084 0.2090270 0.2099013 0.1811546 0.1705011 0.1843552 0.2037097 

Rank 2 6 7 3 1 4 5 

MAE 0.1390615 0.1720250 0.1716690 0.1523151 0.1390551 0.1438349 0.1708536 

Rank 2 7 6 4 1 3 5 

M
o

n
er

o
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.3642975 0.3154638 0.5537820 0.3856993 0.3643024 0.3472789 0.3645876 

Rank 3 1 7 6 4 2 5 

MAPE 0.4929623 0.4053284 0.7601671 0.5192801 0.4929694 0.4613187 0.4934940 

Rank 3 1 7 6 4 2 5 

MAE 0.3210113 0.2796983 0.4965147 0.3388234 0.3210159 0.3126987 0.3213154 

Rank 3 1 7 6 4 2 5 

D
a

sh
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.2268232 0.2389969 0.2330716 0.2345549 0.2268218 0.2147497 0.2283810 

Rank 3 7 5 6 2 1 4 

MAPE 0.2497570 0.2504086 0.2582297 0.2573711 0.2497556 0.2391720 0.2500200 

Rank 3 5 7 6 2 1 4 

MAE 0.1905541 0.1945864 0.1967049 0.1967433 0.1905530 0.1814664 0.1918504 

Rank 3 5 6 7 2 1 4 
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.2579243 0.2579248 0.3538872 0.3413393 0.3031388 0.2714862 0.2684947 

Rank 1 2 7 6 5 4 3 

MAPE 0.3333432 0.3333463 0.3971993 0.3788513 0.3485463 0.3323091 0.2913433 

Rank 3 4 7 6 5 2 1 

MAE 0.1972936 0.1972946 0.2521531 0.2382838 0.2190991 0.2068837 0.1938899 

Rank 2 3 7 6 5 4 1 

E
u

ro
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0263039 0.0096160 0.0298588 0.0127606 0.0246930 0.0293008 0.0061158 

Rank 5 2 7 3 4 6 1 

MAPE 0.5244953 0.1541455 0.6007713 0.2306426 0.4924492 0.5936001 0.0909191 

Rank 5 2 7 3 4 6 1 

MAE 0.0238637 0.0075435 0.0275541 0.0107483 0.0223726 0.0272811 0.0044955 

Rank 5 2 7 3 4 6 1 

B
ri

ti
sh

 P
o

u
n

d
 

 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0191869 0.0147745 0.0200180 0.0226044 0.0195144 0.0185480 0.0182524 

Rank 4 1 6 7 5 3 2 

MAPE 0.2152740 0.1865596 0.2125813 0.2370252 0.2170239 0.2109993 0.1744509 

Rank 5 2 4 7 6 3 1 

MAE 0.0154997 0.0131359 0.0160869 0.0175669 0.0157099 0.0152953 0.0139454 

Rank 4 1 6 7 5 3 2 

C
a

n
a

d
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n
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o
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0259045 0.0066675 0.0265882 0.0105759 0.0075323 0.0122491 0.0136170 

Rank 6 1 7 3 2 4 5 

MAPE 0.5102805 0.1091050 0.5181345 0.1863255 0.1248719 0.2282569 0.2635371 

Rank 6 1 7 3 2 4 5 

MAE 0.0244134 0.0054879 0.0248008 0.0091914 0.0063423 0.0106642 0.0125132 

Rank 6 1 7 3 2 4 5 

A
u

st
ra

li
a

n
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o
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0161378 0.0101321 0.0132442 0.0167421 0.0119262 0.0122043 0.0119056 

Rank 6 1 5 7 3 4 2 

MAPE 0.2272484 0.1228304 0.1794958 0.2335342 0.1587185 0.1611424 0.1583059 

Rank 6 1 5 7 3 4 2 

MAE 0.0148469 0.0084156 0.0118765 0.0151698 0.0104083 0.0107356 0.0103784 

Rank 6 1 5 7 3 4 2 
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0224845 0.0130925 0.0241501 0.0229456 0.0219850 0.0168339 0.0157209 

Rank 5 1 7 6 4 3 2 

MAPE 0.4328319 0.2270885 0.4617816 0.4446551 0.4218030 0.2694923 0.2690886 

Rank 5 1 7 6 4 3 2 

MAE 0.0189396 0.0110173 0.0204856 0.0197631 0.0185408 0.0146837 0.0131818 

Rank 5 1 7 6 4 3 2 

J
a

p
a

n
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Y
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 GARCH IGARCH EGARCH GJR-GARCH APARCH TGARCH CGARCH 

RMSE 0.0131185 0.0121331 0.0137439 0.0152725 0.0143299 0.0130453 0.0124106 

Rank 4 1 5 7 6 3 2 

MAPE 0.1830458 0.1765844 0.1734588 0.2487440 0.1923998 0.1832938 0.1745765 

Rank 4 3 1 7 6 5 2 

MAE 0.0107012 0.0100164 0.0106849 0.0135592 0.0115151 0.0107230 0.0101379 

Rank 4 1 3 7 6 5 2 

Table 14: Error Statistics by Rankings under each Volatility Model for each Cryptocurrency and Fiat Cur-

rency covering the Out-of-Sample Period. 
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4.3. Model Optimization Results 
 

  In-Sample (A) Out-of-Sample (B) 

C
ry

p
to

cu
rr

en
ci

es
 BTC GJR-GARCH (1,1) TGARCH (1,1) 

XRP APARCH (1,1) CGARCH (1,1) 

LTC GJR-GARCH (1,1) APARCH(1,1) 

XMR IGARCH (1,1) IGARCH (1,1) 

DASH GJR-GARCH (1,1) TGARCH (1,1) 

DOGE GARCH (1,1) CGARCH (1,1) 
F

ia
t 

C
u

rr
e
n

ci
es

 EUR CGARCH (1,1) CGARCH (1,1) 

GBP IGARCH (1,1) IGARCH (1,1) 

CAD TGARCH (1,1) IGARCH (1,1) 

AUD IGARCH (1,1) IGARCH (1,1) 

CHF IGARCH (1,1) IGARCH (1,1) 

JPY IGARCH (1,1) IGARCH (1,1) 

Table 15: Optimal Models for each Cryptocurrency and Fiat Currency under the (A) In-Sample & (B) Out-

of-Sample Periods. 

 

As illustrated in the above table, the results show consistency among fiat currencies, whereby the 

Integrated GARCH has proven to perform best for most of the fiat currencies, particularly the 

British Pound, Australian Dollar, Swiss Franc and the Japanese Yen. The IGARCH model was 

also found to be the most accurate model for the Canadian Dollar, but only for the out-of-sample 

period given that the Threshold GARCH performed better during the in-sample period. However 

and quite surprisingly, the Component GARCH modeled the Euro almost “impeccably”. This may 

be contributed to the distinctive characteristics of the CGARCH model which divides the condi-

tional variance into its transitory and permanent components, whereby the long-run component is 

allowed to be continuously updated rather than held uniform, thereby better capturing and reflect-

ing on volatility clusters and persistence in Euro’s returns. It is important to note that when the 

omega term “ω” takes the value of zero, the IGARCH model becomes nothing different from the 

Exponentially Weighted Moving Average (EWMA) Model, which is the case of all fiat currencies. 

Therefore, the IGARCH has proven to be the prevailing model when modeling foreign exchange 

markets. This may be contributed to their low volatile nature, their typical symmetrical behavior 

to shocks, and ‘persistent variance’ in which current information remains important when fore-

casting volatility. 
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Exceptionally and among all cryptocurrencies, the Integrated GARCH was also the best perform-

ing model for Monero, for both sampled periods. This might be due to the fact that the absence of 

a long-run average variance in the IGARCH model entails that any disturbance in the market brings 

an everlasting change in Monero’s volatility structure, which explains the overstated volatility es-

timates obtained under the IGARCH model (Figures 3 & 4). 

 

As for the remaining cryptocurrencies, the GJR-GARCH model proved to be superior during the 

in-sample period while the CGARCH and TGARCH models proved to be best performers during 

the out-of-sample period which validates the assumption that advanced GARCH models better 

model asymmetries in cryptocurrencies’ volatilities. Specifically, for the in-sample period, the 

GJR-GARCH model is selected for Bitcoin, Litecoin and Dash, APARCH is selected for Ripple, 

and GARCH is selected for Dogecoin. For the out-of-sample period, TGARCH performed best for 

Bitcoin and Dash while CGARCH is selected for Ripple and Dogecoin and APARCH is selected 

for Litecoin. Apparently, it is natural to observe some discrepancies among cryptocurrencies due 

their relatively highly volatile feature. But remarkably, however, the EGARCH model which was 

considered superior in many papers such as Krogt (2018) and Abdalla (2012), was one of the worst 

performing models among all fiat and virtual currencies.  

 

Nevertheless, the rankings obtained are consistent with what can be visually observed in the time 

series of volatilities (Figures 3 & 4) where the volatilities predicted by the optimal models seem 

to graphically best fit the realized volatilities. Consequently, the optimal models inferred from the 

out-of-sample period and implied from table (15/B) will be used in the next section to calculate 

Value at Risk. 
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4.4. Value at Risk & Back Testing Results 

 
This section details how the out-of-sample results are integrated as part of our adopted procedure 

for estimating the Value at Risk for each cryptocurrency and fiat currency at different significance 

levels (90%, 95%, 97.5% and 99% CLs) and in performing the corresponding Kupiec Likelihood 

Ratio Test, which is ultimately used to measure the model’s efficiency by back testing the obtained 

VaR results.  

 

4.4.1. The Rolling Window Procedure for Variance Estimation 

 
Given that the number of simulated VaR is 250 days and since the rolling window procedure is 

conducted for every time interval of 400 days to each VaR, a further 400 days of additional data 

on the daily closing prices of each cryptocurrency and fiat currency is required from the in-sample 

period. As a result, the rolling window framework spans from May 23rd 2017 till November 18th 

2019 yielding to a total of 650 daily closing prices for each cryptocurrency and fiat currency.  

 

Subsequently, the chosen sample of 650 days will be divided into 250 sub-sample periods with 

each sub-sample consisting of 400 daily prices/observations. As mentioned in section 3.4.1, the 

rolling window procedure is conducted and simulated over 250 times, in accordance with the cho-

sen period for VaR and number of days in the out-of-sample period.  

 

Then, the “rolling returns” of each cryptocurrency and fiat currency are calculated from the previ-

ously “rolled prices” generating a list of 399 returns for each sub-sample period.  

 

Accordingly, the daily variances are computed 399 times for each sub-sample period using the 

“rolled returns” and the out-of-sample parameters (from tables 4 & 15/B) for each cryptocurrency 

and fiat currency. Therefore, the out-of-sample optimal models of each cryptocurrency and fiat 

currency are integrated into the rolling window procedure to compute the variance 99,750 times 

(399 x 250) for each asset. Particularly, the parameters from the CGARCH (1,1) model are used 

for Ripple, Dogecoin and the Euro, while those of TGARCH (1,1) are used for Bitcoin and Dash, 

and the parameters of the APARCH (1,1) are used for Litecoin. As for Monero, the British Pound, 

Canadian Dollar, Australian Dollar, Swiss Franc and the Japanese Yen, the IGARCH (1,1) model 

and its relevant parameters are used to compute each of their variances. Note that the parameters 
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have not been re-estimated in this section and thereby the out of sample optimal model and their 

previously estimated parameters for each cryptocurrency and fiat currency have been utilized to 

calculate the variances, as the simulated trial period from which variances are calculated exactly 

mirrors the out-of-sample period extending from December 4th 2018 through November 18th 2019. 

The resulting volatilities, however, are deduced by simply taking the square root of the correspond-

ing variances. 

 

4.4.2. Adjusting for the Values of Cryptocurrencies & Fiat Currencies 

 
The “rolled” values of each cryptocurrency and fiat currency from the previous subsection are 

adjusted using equation (26) from section 3.4.1 to update for variations in volatility taking place 

in the market, as proposed by Hull and White (1998). This leads to 399 different possible scenarios 

for the value of each cryptocurrency and fiat currency on each of the days between December 4th 

2018 and November 18th 2019.  

 

Subsequently, once the 399 scenarios corresponding to the values of these assets are generated on 

each of the days between December 4th 2018 and November 18th 2019, a viable return scenario is 

estimated accordingly from each value computed thereby generating a combined total of 99,750 

returns (399 x 250) for all the days between December 4th 2018 and November 18th 2019. For 

instance, the return scenarios, which represent the “possible percentage gains or losses” after ad-

justment, for the day “December 4 2018” is calculated as per equation (27) as follows: 

 

Return on December 4th 2018 under 𝑖th scenario =  
(𝑣𝐴𝑖 −  𝑣4/12/2018)

𝑣4/12/2018
                    

 

Where “𝑣𝐴𝑖” represents 1 of the 399 adjusted values for the selected cryptocurrency or fiat cur-

rency, previously calculated from equation (26), in correspondence with the scenario number “i” 

where 1 < i < 399. The original value of the cryptocurrency or fiat currency on December 4th 2018, 

denoted by “𝑣4/12/2018”, is deducted from each of the 399 adjusted values and the results are di-

vided by the original amount “𝑣4/12/2018” again in order to obtain the returns, whether the relative 

percentage changes are interpreted as gains or losses.  
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4.4.3. Value at Risk Calculations & Comparison with Actual Returns 

 

Upon computing the return scenarios for every cryptocurrency and fiat currency on each day ex-

tending from December 4th 2018 till November 18th 2019, the 90th, 95th, 97.5th and 99th percentiles 

of the loss distribution are computed resulting in 250 Value at Risk estimates obtained for each 

confidence level and for each of the selected cryptocurrencies and fiat currencies. The below table 

presents a partial illustration of the daily actual returns, the VaR estimates and number of excep-

tions at each confidence level in the case of Bitcoin. A further illustration on the computed results 

for the remaining cryptocurrencies and fiat currencies is available in the Appendix (table 18), not-

ing that similar calculations are carried for all cryptocurrencies and fiat currencies.  

 

 

Table 16: Partial Illustration of the Actual Returns, Value at Risk, and Number of Exceptions Estimates for 

Bitcoin at the Different Levels of Significance between December 4th 2018 and November 18th 2019. 

 

Notice how on each date the VaR increases evidently with a corresponding increase in confidence 

level. It is worth mentioning that the missing dates between columns in the above table pertain to 

weekend days that have been previously adjusted for, as per section 3.6. The above VaR results 

are computed using the function =PERCENTILE.EXC(ReturnScenariosArray, ) where “” takes 

the values of 10%, 5%, 2.5% and 1% corresponding to the 90th, 95th, 97.5th ad 99th percentiles 

respectively. The above function is computed 250 times for each confidence interval to determine 

the VaR on each of the 250 days extending from December 4th 2018 till November 18th 2019. As 

a result, each cryptocurrency and fiat currency has a combined total of 1,000 (250 x 4) VaR esti-

mates.  

 

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90%  CL -5.834% -6.144% -6.626% -6.234% … -3.124% -2.987% -3.113% -3.168%

Exceptions - - - - 15 - - - -

VaR at 95%  CL -8.208% -8.393% -8.770% -8.425% … -4.464% -3.976% -4.434% -4.512%

Exceptions - - - - 6 - - - -

VaR at 97.5%  CL -10.408% -10.760% -11.469% -10.916% … -5.475% -5.280% -5.509% -5.639%

Exceptions - - - - 2 - - - -

VaR at 99%  CL -14.279% -14.601% -15.257% -14.656% … -8.131% -7.242% -7.626% -8.375%

Exceptions - - - - 1 - - - -

Actual Returns 1.612% -5.128% -6.204% -2.873% … -0.084% -1.137% -2.482% -2.152%

Bitcoin
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The VaR estimates obtained under each confidence level are then compared to the actual returns 

for every cryptocurrency and fiat currency. Days were the actual return exceeds VaR are recorded 

as an exception. Figure 5 shows these results by graphically comparing the VaR estimates of each 

confidence level with the corresponding actual returns over the entire 250 day sampled period for 

each of the selected cryptocurrencies and fiat currencies. 
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Figure 5: Value at Risk vs Actual Returns for all Cryptocurrencies and Fiat Currencies over the entire 250 

Days Sampled Period between December 4th 2018 & November 18th 2019. 
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4.4.4. Kupiec Test Results 

 
As defined in section 3.5, the above comparison is performed in order to assess the accuracy of 

the underlying VaR model in forecasting returns. This is addressed by exploiting certain back 

testing procedures, such as the Kupiec Test. 

 

The Kupiec Test summarizes this level of accuracy into a single number by computing the Likeli-

hood Ratio (LRK) as depicted in equation (28). The parameters required to compute the LRK are 

the number of exceptions, probability of failure and number of VaR trials. 

 

The total number of exceptions “X” is computed 4 times for each cryptocurrency and fiat currency 

(1 for each confidence level). Noting that the failure rate “𝑝” for a 90%, 95%, 97.5% and 99% 

VaR are 10%, 5%, 2.5% and 1% respectively. The total number of trials “T”, is 250. 

 

Given that the total number of exceptions for Bitcoin at the 95% VaR confidence level is 6, then 

the respective LRK can be computed as: 

 

BTC LRK at 95% CL = -2ln [(1-0.05) (250-6) x 0.056] +2ln {[1-(6/250)] (250-6) x (6/250)6} = 4.369 

 

Similar calculations were performed for the remaining cryptocurrencies and fiat currencies at each 

confidence level following the computation of the number of exceptions. The Kupiec Test results 

for each cryptocurrency and fiat currency are illustrated in Table 17. 
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Model Integrated into the 

Volatility Weighted Historical 

Simulation Method 

VaR 

CL 

Number of 

Exceptions 

Non-Rejection 

Interval 
LRK 

Critical 

Value 
Result 

C
ry

p
to

cu
rr

en
cy

 

BTC TGARCH (1,1) 

90% 15 [17 , 35] 5.113 3.84 Reject 

95% 6 [7 , 20] 4.369 3.84 Reject 

97.5% 2 [2 , 11] 4.016 3.84 Reject 

99% 1 [0 , 5] 1.176 3.84 Accept 

XRP CGARCH (1,1) 

90% 12 [17 , 35] 9.122 3.84 Reject 

95% 4 [7 , 20] 8.185 3.84 Reject 

97.5% 2 [2 , 11] 4.016 3.84 Reject 

99% 1 [0 , 5] 1.176 3.84 Accept 

LTC APARCH (1,1) 

90% 16 [17 , 35] 4.074 3.84 Reject 

95% 9 [7 , 20] 1.138 3.84 Accept 

97.5% 4 [2 , 11] 0.950 3.84 Accept 

99% 2 [0 , 5] 0.108 3.84 Accept 

XMR IGARCH (1,1) 

90% 18 [17 , 35] 2.389 3.84 Accept 

95% 5 [7 , 20] 6.071 3.84 Reject 

97.5% 1 [2 , 11] 6.947 3.84 Reject 

99% 0 [0 , 5] - 3.84 Accept 

DASH TGARCH (1,1) 

90% 20 [17 , 35] 1.185 3.84 Accept 

95% 9 [7 , 20] 1.138 3.84 Accept 

97.5% 4 [2 , 11] 0.950 3.84 Accept 

99% 0 [0 , 5] - 3.84 Accept 

DOGE CGARCH (1,1) 

90% 16 [17 , 35] 3.245 3.84 Accept 

95% 6 [7 , 20] 3.787 3.84 Accept 

97.5% 3 [2 , 11] 1.854 3.84 Accept 

99% 1 [0 , 5] 1.046 3.84 Accept 

F
ia

t 
C

u
rr

e
n

cy
 EUR CGARCH(1,1) 

90% 18 [17 , 35] 2.149 3.84 Accept 

95% 11 [7 , 20] 0.150 3.84 Accept 

97.5% 8 [2 , 11] 0.522 3.84 Accept 

99% 2 [0 , 5] 0.093 3.84 Accept 

GBP IGARCH (1,1) 

90% 20 [17 , 35] 1.014 3.84 Accept 

95% 8 [7 , 20] 1.796 3.84 Accept 

97.5% 4 [2 , 11] 0.878 3.84 Accept 

99% 1 [0 , 5] 1.128 3.84 Accept 
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CAD IGARCH (1,1) 

90% 20 [17 , 35] 1.014 3.84 Accept 

95% 12 [7 , 20] 0.008 3.84 Accept 

97.5% 6 [2 , 11] 0.004 3.84 Accept 

99% 2 [0 , 5] 0.093 3.84 Accept 

AUD IGARCH (1,1) 

90% 19 [17 , 35] 1.475 3.84 Accept 

95% 7 [7 , 20] 2.783 3.84 Accept 

97.5% 3 [2 , 11] 2.008 3.84 Accept 

99% 1 [0 , 5] 1.116 3.84 Accept 

CHF IGARCH (1,1) 

90% 22 [17 , 35] 0.339 3.84 Accept 

95% 8 [7 , 20] 1.833 3.84 Accept 

97.5% 6 [2 , 11] 0.005 3.84 Accept 

99% 1 [0 , 5] 1.140 3.84 Accept 

JPY IGARCH (1,1) 

90% 18 [17 , 35] 0.938 3.84 Accept 

95% 6 [7 , 20] 2.940 3.84 Accept 

97.5% 1 [2 , 11] 5.767 3.84 Reject 

99% 1 [0 , 5] 0.852 3.84 Accept 

Table 17: The Kupiec Test Results of all Cryptocurrencies and Fiat Currencies. 

 

Remarkably, the Kupiec Test results show that the VaR provides a very accurate measure for the 

level of downside risk imperiling fiat currencies, where the LRK values were below the critical 

value of “3.84” at all confidence levels for each of the Euro, British Pound, Canadian Dollar, 

Australian Dollar, Swiss Franc, and the Japanese Yen, given that the VaR model was only rejected 

at the 97.5% confidence level for the latter. Dash and Dogecoin provided similar results to fiat 

currencies where the VaR results were accepted at all confidence levels. 

 

As for the remaining cryptocurrencies, the results were disparate. The VaR results displayed in-

creased accuracy with an increase in confidence level in the case of Litecoin, where the model was 

accepted at the 95%, 97.5% and 99% confidence levels and was rejected at the 90% significance 

level. Perhaps the most peculiar results were that of Monero, where the VaR model was accepted 

at 90% and 99% confidence levels and rejected at the 95% and 97.5% confidence levels. Never-

theless, it is evident that the VaR provides a poor measure for Bitcoin and Ripple whereby the 

model was rejected at all confidence levels, noting that it was accepted only at the 99% confidence 

level which implies that precision was attained only at the highest degree of certainty. Notice that 

in all rejected situations, the number of exceptions roughly fall behind expectations, signifying 
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that the model overstates the risk in cryptocurrencies due to their distinctively highly volatile fea-

ture. 

 

Therefore, it can be deduced that the Value at Risk provides a viable measure of the risk exposure 

in fiat currencies and some cryptocurrencies, such as Dash and Dogecoin. However, this metric 

fails in accurately quantifying the level of downside risk in major cryptocurrencies such as the 

Bitcoin and Ripple. This is mainly due their precarious behavior, which requires further refined 

and more sophisticated tools such as the Extreme Value Theory. First pioneered by Leonard Tip-

pett, the Extreme Value Theory (EVT) aims to remedy a deficiency in Value at Risk, as it attempts 

to estimate the probability of extreme values by assuming a separate distribution for extreme 

losses, as observed in cryptocurrencies.  
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Chapter 5: Conclusion 

 
5.1. Summary & Thorough Review 
 

This thesis assessed and compared the predictive ability of the GARCH (1,1), IGARCH (1,1), 

EGARCH (1,1), GJR-GARCH (1,1), APARCH (1,1), TGARCH (1,1) and CGARCH (1,1) in mod-

eling the volatilities of six cryptocurrencies (Bitcoin, Ripple, Litecoin, Monero, Dash and Doge-

coin) and six fiat currencies (Euro, British Pound, Canadian Dollar, Australian Dollar, Swiss Franc 

and the Japanese Yen) over a sampled period extending from October 13th 2015 till November 18th 

2019. The sampled period was divided into two sub-sample periods: the in-sample period extend-

ing from October 13th 2015 till December 3rd 2018, and the out-of-sample period covering the 

period from December 4th 2018 till November 18th 2019. The models’ parameters were estimated 

for the in-sample period by maximizing the log likelihood function subject to the assumptions and 

constraints of each model. Accordingly, the parameters computed during the in-same period were 

used to forecast volatility for both the in-sample and out-of-sample periods. Then, predicted vola-

tilities under each model were then compared to the realized volatilities using three error metrics 

(MAE, RMSE and MAPE) to determine the optimal model for each cryptocurrency and fiat cur-

rency for both the in-sample and out-of-sample periods. 

 

The results showed consistency among fiat currencies, whereby the Integrated GARCH has proven 

to be the best performer for most of the fiat currencies, particularly the British Pound, Australian 

Dollar, Swiss Franc and the Japanese Yen. The IGARCH model was also found to be the most 

accurate model for the Canadian Dollar, but only for the out-of-sample period given that the 

Threshold GARCH performed better during the in-sample period. However and quite surprisingly, 

the Component GARCH modeled the Euro almost “impeccably” during both periods. Therefore, 

the IGARCH has proven to be the prevailing model when modeling foreign exchange markets. 

 

Exceptionally and among all cryptocurrencies, the Integrated GARCH was also the best perform-

ing model for Monero, for both sampled periods. As for the remaining cryptocurrencies, the GJR-

GARCH model proved to be superior during the in-sample period while the CGARCH and 

TGARCH models proved to be best performers during the out-of-sample period. Specifically, for 

the in-sample period, the GJR-GARCH model is selected for Bitcoin, Litecoin and Dash, 
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APARCH is selected for Ripple, and SGARCH is selected for Dogecoin. For the out-of-sample 

period, TGARCH performed best for Bitcoin and Dash while CGARCH is selected for Ripple and 

Dogecoin and APARCH is selected for Litecoin. This validates the assumption that advanced 

GARCH models better model asymmetries in cryptocurrencies’ volatility. 

 

Using the Rolling Window procedure and by incorporating the out-of-sample optimal models into 

the Volatility-Weighted Historical Simulation method, the Value at Risk was calculated for 250 

days between December 4th 2018 and November 18th 2019 at four confidence levels (90%, 95%, 

97.5% and 99% confidence levels) for each cryptocurrency and fiat currency. The Value at Risk 

results were then compared to Actual Returns to determine the number of days or exceptions in 

which Actual Returns exceed VaR estimates over the 250 days period. Finally, the Kupiec Test 

was performed using the number of exceptions generated in order to assess the accuracy of the 

underlying VaR model in forecasting the returns of each cryptocurrency and fiat currency under 

each confidence level. This was addressed by measuring and comparing Kupiec’s Likelihood Ra-

tio (LRK) to the critical value of “3.84”. 

 

The Kupiec Test results showed that the VaR provides a very accurate measure in determining the 

level of downside risk exposing fiat currencies, where the LRK values were below the critical value 

of “3.84” at all confidence levels for each of the Euro, British Pound, Canadian Dollar, Australian 

Dollar, Swiss Franc, and the Japanese Yen, given that the VaR model was only rejected at the 

97.5% confidence level for the latter.  

 

Dash and Dogecoin provided similar results to fiat currencies where the VaR results were accepted 

at all confidence levels. As for the remaining cryptocurrencies, the outcomes were different. The 

VaR results displayed increased accuracy with an increase in confidence level in the case of Lite-

coin, where the model was accepted at the 95%, 97.5% and 99% confidence levels and was rejected 

at the 90% significance level. As for Monero, the VaR model was accepted at the 90% and 99% 

confidence levels and rejected at the 95% and 97.5% confidence levels. Nevertheless and quite 

evidently, VaR provided unconvincing results for major cryptocurrencies, such as Bitcoin and 

Ripple, whereby the model was rejected at all confidence levels and was accepted only at the 99% 

significance level.  
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5.2. Main Findings & Exclusivity of This Research 

 

The findings of this thesis are novel to those of preceding research, as this research is the first and 

latest to inspect the volatility and the Value at Risk of six major cryptocurrencies along with that 

of the top six fiat currencies, all together, particularly with the use of several GARCH Models and 

the Volatility Updating Historical Simulation Method.   

 

Regarding the predictive capacity of the selected models, this research has evidenced the superi-

ority of the IGARCH model in forecasting the volatility of world currencies, namely the British 

Pound, Canadian Dollar, Australian Dollar, Swiss Franc and the Japanese Yen. The preeminence 

of the IGARCH model was present in both in-sample and out-of-sample contexts. Up to our 

knowledge, Holtappels (2018) is the only author to inspect the behavior of the six world currencies 

considered in this thesis. However, the findings of this thesis contradicts those of Holtappels, who 

found that the sum of ARCH and GARCH parameters for fiat currencies is less than 1, suggesting 

there is mean reversion in their variances. Nevertheless, our findings validate his assumption con-

cerning cryptocurrencies, implying that they exhibit an unstable and explosive variance forecast. 

Indeed, this research has revealed that the volatilities of cryptocurrencies are better vindicated by 

advanced models such as the CGARCH, GJR-GARCH, APARCH, and TGARCH.  

 

Unfortunately, however, the majority of recent studies have focused entirely on the Bitcoin’s be-

havior or a few other cryptocurrencies and specifically on the in-sample modelling framework and 

little work has been devoted to the entire cryptocurrency category and out-of-sample context. Nev-

ertheless, our thesis conforms to the findings of Gyamerah (2019) who concluded that the 

TGARCH model is the best model to forecast time-varying volatility in Bitcoin for the period 

extending from January 1st 2014 till August 16th 2019. This contradicts the results of Naimy & 

Hayek (2018) who found that the EGARCH model outperformed the EWMA and GARCH (1,1) 

models in modeling Bitcoin’s volatility. Katsiampa (2017) found that the best conditional het-

eroskedasticity model for Bitcoin is the AR-CGARCH, highlighting the importance of including 

both a transitory and permanent component in the conditional variance equation.  

 

To date, the only two papers that have investigated the behavior of the cryptocurrencies examined 

in our thesis along with their Value at Risk are that of Chu et al. (2017) and Omari et al. (2019). 
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However, among the twelve GARCH models fitted in the paper of Chu et al. (2017), the IGARCH 

model gave the best fit for Bitcoin, Dash, Litecoin and Monero, whereas the GJR-GARCH and 

SGARCH gave the best fit for Dogecoin and Ripple respectively. Nevertheless, the application of 

this thesis can be perhaps mostly linked with that of Omari et al. (2019), who employed twelve 

GARCH specifications and nine distributions to eight of the most popular cryptocurrencies. Our 

findings were quite analogous in that empirical results proved that asymmetric GARCH models 

with long memory property and skewed and heavy tailed innovations distributions demonstrated 

better overall performance and that the optimal in-sample GARCH-type models varied from the 

out-of-sample VaR forecasts models, for all cryptocurrencies. Similar to Chu et al. (2017), the 

IGARCH was selected for Bitcoin, Dash and Monero while the FIGARCH and TGARCH were 

selected for Ripple and Litecoin respectively for the in-sample period. Nonetheless, for the out-of-

sample period, advanced models displayed supremacy. Regarding the accuracy tests, both papers 

derived that the best fitting models can be used to provide acceptable estimates for the Value at 

Risk in cryptocurrencies.   

 

Remarkably, however, it is important to highlight that the EGARCH model which was considered 

superior in many papers such as Krogt (2018), Abdalla (2012) and Naimy & Hayek (2018) was 

one of the worst performing models among all fiat and virtual currencies in our research.  

 

Therefore, it is natural to observe some discrepancies especially in the cryptocurrency markets as 

they are more susceptible to uncertainties and unexpected changes in market sentiment which may 

eventually alter their volatility structure, given their regulatory concerns and virtual feature which 

make it continually exposed to internal and external forces. Hence, such contradictions may arise 

as a result of eternal evolvements in cryptocurrency markets. Another justification is the number 

of cryptocurrencies involved and models employed in the research. As stated earlier and from the 

review of available literature, little or no effort has been devoted for the entire cryptocurrency 

market as most research focused solely on Bitcoin, and besides which most of those papers inte-

grated no more than three models. An alternative explanation might be associated with the time 

frame involved, as most research were conducted no less than a year ago and from which different 

periods were selected. The paper of Naimy & Hayek (2018) examined the behavior of Bitcoin fom 

April 2013 up to March 2016. Chu et al. (2017) considered the period between June 2014 and May 
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2017 while the period extending from August 2015 through August 2018 was selected by Omari 

(2019). Essentially, this thesis however, has investigated the behavior of the twelve cryptocurren-

cies and world currencies over the period extending from October 2015 till November 2019, which 

makes it novel.  

 

Moreover, this thesis revealed that cryptocurrencies generally exhibit a positive leverage effect 

with positive returns having higher impacts on cryptocurrencies’ volatility than negative returns. 

Using asymmetric GARCH models, our findings conform to those of Naimy & Hayek (2018), 

Bouri et al. (2017), Baur et al. (2018) and Stavroyiannis (2018) who investigated the response of 

the conditional variance to past positive and negative shocks and unveiled that an inverted leverage 

effect exists. The findings of this research also verify those of Kwek & Koay (2006) who showed 

weak evidence of asymmetries in most currencies’ volatility and underlined that strong time var-

ying symmetric effects are apparent in all the series examined, especially in the Australian dollar. 

Nonetheless, our findings contradict that of Bouoiyour & Selmi (2016) who suggested that Bitcoin 

prices were driven more by negative shocks than positive shocks.  

 

In addition, this thesis has proven that the Value at Risk provides a viable measure of the risk 

exposure in fiat currencies and some cryptocurrencies, such as Dash and Dogecoin. However, this 

metric fails in accurately quantifying the level of downside risk in major cryptocurrencies such as 

the Bitcoin and Ripple. The high volatile aspect in cryptocurrencies has turned them into a genu-

inely risky investment and consequently, appropriate risk measures have been deemed increasingly 

necessary. For this reason, measuring the Value at Risk of cryptocurrencies rather than fiat cur-

rencies has gained more enthusiasm, as noticed in the available literature. Our results conform to 

those of Stavroyiannis (2018), who implemented a large variety of Value-at-Risk measures and 

back testing criteria. He emphasized that Bitcoin violates VaR and other risk measures. In addition, 

results from our thesis and those of Omari et al. (2019) and Caporale & Zekokh (2019) demonstrate 

that the asymmetric GARCH models particularly have better VaR forecasting performance than 

standard GARCH models for all cryptocurrencies with an increased accuracy at the 99% confi-

dence level. In addition, the presence of outliers in cryptocurrency returns has been observed by 

many researchers such as Troster et al. (2019); Chaim and Laurini (2019); Charles and Darne 

(2019), among others. This is mainly due to their precarious behavior. Hence, it has become more 
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evident that cryptocurrencies require further refined and more sophisticated tools such as Extreme 

Value Theory in order to unravel deficiencies in VaR.  

 

In light of the above, and given the highly volatile distinctive feature of cryptocurrencies, coupled 

with their significance in the financial field and on the financial system in particular, the need to 

forecast their volatility has recently become more and more imperative. Therefore, the importance 

of a comprehensive study encircling the behavior of cryptocurrencies with respect to world cur-

rencies has become crucial which may unveil unknown characteristics, amend on or improve ex-

isting findings. From here, this thesis contributes to the existing literature by filling the gap in the 

current research around modeling the behavior of cryptocurrencies with respect to world curren-

cies. It also aims to eliminate any controversies and uncertainties that remain regarding the classi-

fication of cryptocurrencies, and whether they are viable alternatives to fiat currencies. Baek and 

Elbeck (2015) emphasized that the Bitcoin is extremely volatile and speculative. In their research, 

Uyar and Kahraman (2019) found Bitcoin to be significantly risky with respect to the major cur-

rencies; and it is six times riskier than the singular most risky currency. Similarly, Naimy & Hayek 

(2018) implied that Bitcoin is more susceptible to speculative bubbles and displays higher volatil-

ity than traditional currencies. In fact, it had lately lost more than fifty percent of its value, plunging 

by more than five thousand dollars over the course of one month, between February and March 

2020. Therefore, given its virtual nature, unregulatory concerns and uncertainties, it cannot be 

considered as a currency. Krylov et al. (2018) also revealed that the volatility of Bitcoin is signif-

icantly higher than fiat money, whereby the recognition of Bitcoin and cryptocurrencies, in gen-

eral, as real money is premature mainly due to its violation of the essential requirements for the 

properties of a currency, which is low level of volatility.  This thesis validates the conclusions 

drawn from earlier studies. Given the relative stability of world currencies, coupled with their low 

volatility, symmetric behavior to shocks, and their typical response to standard risk measures, all 

cryptocurrencies and particularly Bitcoin, cannot be considered as viable alternatives to fiat and 

world currencies as they violate the most crucial element of a standard currency: confidence.  
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5.3. Limitations of This Research  

 
Although, the original GARCH model assumed the Normal (Gaussian) distribution, this distribu-

tion cannot accommodate to the fat-tail disturbance occurring in financial time series. Despite the 

proven significance of the Student’s t and General Error Distributions that have been introduced 

in this thesis, there are several other distributions that could have been considered: Skew-Normal, 

Skew-t, Skew GED, Normal Inverse Gaussian Distribution, Generalized Hyperbolic Distribution, 

and Johnson’s SU distribution. For instance, the Johnson’s SU distribution has proven to be the 

best fitted model for four of the eight cryptocurrencies considered in the paper of Omari et al. 

(2019), namely Litecoin, Dash, Stellar and NEM. 

 

Furthermore, even though the selected models: SGARCH, IGARCH, EGARCH, GJR-GARCH, 

TGARCH, APARCH and CGARCH models have proven their superiority in predicting the vola-

tility of not only fiat currencies and cryptocurrencies but most securities (stocks, commodities, 

etc.), this thesis could have integrated further models such as MGARCH as in Holtappels (2018) 

and NGARCH, NAGARCH, FIGARCH, and ALLGARCH in Omari (2019) and Chu et al. (2017), 

etc.  

 

Moreover, while the expression “Value at Risk” is widely used, the expression does not refer to 

one particular methodology or approach for quantifying risk. Although this thesis employed the 

best possible method, the Volatility Updating Historical Simulation Method, there are other few 

methods that could have been utilized to measure VaR such as the Basic Historical Simulation 

Method, Parametric Variance-Covariance Approach and MonteCarlo Simulaton. For example, Al 

Janabi (2006) provided an excellent primer on the Variance-Covariance Method to measuring 

Value at Risk while the article of Glasserman, Heidleberger, and Shahabuddin (2002) discusses 

the use of MonteCarlo Simulation to estimate Value at Risk. Even though those methods were not 

directly employed in this thesis, the MonteCarlo Simulation was integrated in our Volatility Up-

dating Historical Simulation Method. Nevertheless, the Variance-Covariance Approach was not 

utilized as it supposes the existence of a normal distribution, which is impractical. 

 

In addition, another limitation in this thesis is that the VaR failed in accurately quantifying the 

level of downside risk in highly volatile markets such as in cryptocurrencies, particularly Bitcoin 
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and Ripple which are the leading cryptocurrencies today. For this reason, The Extreme Value The-

ory (EVT) could have been integrated into our research to remedy deficiencies in VaR, as it at-

tempts to estimate the probability of extreme values by assuming a separate distribution for ex-

treme losses, as observed in cryptocurrencies. For instance, the paper of Osterrieder & Lorenz 

(2017) employed extreme value analysis on Bitcoin and revealed that Bitcoin is more volatile and 

much riskier than traditional currencies. Then, Osterrieder et al. (2017) further extended on his 

research to include five additional cryptocurrencies. He deduced that cryptocurrencies are ex-

tremely volatile, noting that Bitcoin is the least volatile among the cryptocurrencies considered. 

Gkillas and Katsiampa (2018) then discovered that Bitcoin Cash is the riskiest cryptocurrency, 

with results consistent with that of Osterrieder et al. (2017) regarding Bitcoin. Zhang et al. (2019) 

later on went to employ extreme value analysis on hourly log returns of four cryptocurrencies. The 

analysis was conducted on high-frequency data, altering the threshold and estimating the Value at 

Risk and Expected Shortfall for each cryptocurrency. Their findings revealed that Ripple is the 

riskiest at every percentile and threshold and Bitcoin to be the least volatile.  

 

As stated previously, the cryptocurrency market is relatively new compared to that of fiat curren-

cies. For this reason, many major cryptocurrencies were excluded, particularly Ethereum, either 

due to the scarcity of data or because of their non-volatile feature by the time this thesis was pre-

pared. Nevertheless, due to their high volatility, the market prices of the selected cryptocurrencies 

have since changed, thereby as has their share portion from the entire cryptocurrency market. As 

a result, there are few uncertainties whether the findings of this thesis and the behavior of the 

selected cryptocurrencies could be theorized on the entire cryptocurrency market.    
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5.4. Implications & Recommendations 

 
As such, volatility is a key element around which financial markets revolve. Its preeminence and 

essence in different areas of risk management, trading, security pricing, asset allocation, portfolio 

optimization and monetary policy has enticed continuous interest from scholars, investors, gov-

ernments, and regulators. From this context, modeling and predicting the volatility of financial 

markets has been, for years, the core of extensive empirical and the theoretical investigation of 

academics, authorities and practitioners. 

 

Based on the results of this thesis and the assumptions drawn from our findings, multiple recom-

mendations can be inferred for various parties:  

 

For governmental institutions and regulators, it is recommended from authorities to examine the 

risk enfolding cryptocurrencies and all relevant research on this subject. Academic papers can 

substantiate political and monetary decisions by providing relevant information surrounding the 

behavior of cryptocurrencies. This thesis unfolded the risks conveyed from the cryptocurrency 

market. For instance, it provided further wisdom concerning the reaction of returns in cryptocur-

rencies compared to world currencies. Based on those results, governments and regulatory author-

ities could strengthen regulations and arouse further awareness by enforcing policies and restrain-

ing investors from devoting too much investment in cryptocurrencies.  

 

Accordingly, financial managers and investors need to be aware before considering an investment 

in cryptocurrencies, given their extremely volatile behavior. The results from this thesis have 

shown that the most stable cryptocurrency is ten times more volatile than the most unstable cur-

rency. Consequently, stakeholders are recommended to be attentive for outbursts in volatile peri-

ods as this thesis has evidenced that these periods can be quite persistent. Thus, investors and 

senior managers are advised to limit their positions in cryptocurrencies, specifically during strained 

conditions. 
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For academicians, this thesis provides a thorough overview and further clarification surrounding 

the behavior of cryptocurrencies with respect to world currencies, the relative performance of di-

verse GARCH models, and reliability concerns of the Value at Risk measure. This thesis can be 

considered the groundwork and motive for further examining and modeling the volatility of cryp-

tocurrencies or employing alternative models to the Value at Risk.  

 

Nevertheless, few attempts have been made so far to examine the extreme value behavior of cryp-

tocurrencies, as the majority of the present research focuses on the extreme value behavior of daily 

data on Bitcoin. For this reason, the most relevant extension of this research would be to further 

exploit the Extreme Value Theory on many cryptocurrencies in order to investigate their tail be-

havior and whether it could accommodate for extreme outliers, which might give further insight 

surrounding the risk exposure in cryptocurrencies. 
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APPENDIX 

 

 

 

 

 

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -6.060% -5.583% -7.413% -6.052% … -5.288% -4.223% -4.050% -3.728%

Exceptions - - 1 - 11 - - - -

VaR at 95% CL -7.082% -6.474% -8.596% -7.018% … -6.424% -5.071% -4.907% -4.516%

Exceptions - - - - 4 - - - -

VaR at 97.5% CL -7.418% -6.781% -9.003% -7.351% … -6.952% -5.530% -5.325% -4.902%

Exceptions - - - - 2 - - - -

VaR at 99% CL -7.814% -7.144% -9.484% -7.744% … -7.453% -5.929% -5.686% -5.234%

Exceptions - - - - 1 - - - -

Actual Returns 0.997% -3.972% -8.073% -2.875% … 0.227% -0.969% -3.231% -2.527%

Ripple

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -6.728% -6.630% -6.983% -6.975% … -4.693% -4.879% -4.759% -4.700%

Exceptions - - 1 - 15 - - - -

VaR at 95% CL -8.838% -8.690% -8.990% -8.979% … -6.747% -6.713% -6.681% -6.591%

Exceptions - - - - 9 - - - -

VaR at 97.5% CL -11.397% -11.419% -11.814% -11.799% … -8.887% -8.943% -8.838% -8.762%

Exceptions - - - - 4 - - - -

VaR at 99% CL -12.778% -12.801% -13.244% -13.228% … -9.604% -9.555% -9.510% -9.492%

Exceptions - - - - 2 - - - -

Actual Returns 0.365% -6.063% -8.027% -6.202% … -0.373% -2.751% -2.723% -1.489%

Litecoin

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -9.062% -9.323% -9.874% -9.268% … -5.395% -5.067% -5.337% -5.417%

Exceptions - - 1 - 16 - - 1 -

VaR at 95% CL -11.697% -11.991% -12.359% -11.601% … -6.541% -6.107% -6.432% -6.534%

Exceptions - - - - 5 - - - -

VaR at 97.5% CL -14.772% -15.218% -15.684% -14.722% … -8.560% -8.350% -8.795% -9.000%

Exceptions - - - - 1 - - - -

VaR at 99% CL -16.471% -16.886% -17.403% -16.336% … -9.598% -9.357% -9.856% -10.596%

Exceptions - - - - 0 - - - -

Actual Returns 3.906% -9.323% -9.933% -0.156% … 4.935% 0.318% -5.462% -4.227%

Monero

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -7.339% -8.046% -9.582% -8.761% … -3.627% -3.528% -3.571% -3.987%

Exceptions - 1 1 - 18 - - - -

VaR at 95% CL -10.545% -11.349% -13.631% -12.463% … -4.602% -4.487% -4.771% -5.389%

Exceptions - - 1 - 8 - - - -

VaR at 97.5% CL -13.503% -14.531% -17.267% -15.787% … -6.473% -6.392% -6.374% -7.378%

Exceptions - - - - 4 - - - -

VaR at 99% CL -16.098% -17.325% -20.586% -18.822% … -7.436% -7.226% -7.420% -8.617%

Exceptions - - - - 0 - - - -

Actual Returns 0.784% -8.870% -15.254% 2.435% … -0.540% -1.201% -1.369% -3.973%

Dash
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Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -7.733% -6.404% -5.561% -5.615% … -3.166% -2.611% -2.185% -2.636%

Exceptions - - - - 15 - - - 1

VaR at 95% CL -9.987% -8.235% -7.357% -7.505% … -4.174% -3.395% -2.851% -3.503%

Exceptions - - - - 6 - - - -

VaR at 97.5% CL -10.545% -8.718% -7.693% -7.831% … -4.538% -3.779% -3.189% -3.776%

Exceptions - - - - 3 - - - -

VaR at 99% CL -11.319% -9.338% -8.320% -8.499% … -5.092% -4.245% -3.571% -4.216%

Exceptions - - - - 1 - - - -

Actual Returns -7.381% -0.729% -3.807% 0.334% … -0.991% -0.667% -0.858% -3.425%

Dogecoin

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.619% -0.617% -0.601% -0.580% … -0.370% -0.360% -0.355% -0.348%

Exceptions - - - - 18 - - - -

VaR at 95% CL -0.779% -0.781% -0.760% -0.735% … -0.512% -0.479% -0.475% -0.467%

Exceptions - - - - 11 - - - -

VaR at 97.5% CL -0.869% -0.872% -0.849% -0.820% … -0.629% -0.640% -0.643% -0.616%

Exceptions - - - - 8 - - - -

VaR at 99% CL -1.196% -1.199% -1.167% -1.128% … -0.773% -0.752% -0.746% -0.735%

Exceptions - - - - 2 - - - -

Actual Returns -0.079% -0.009% 0.282% 0.018% … -0.018% 0.145% 0.263% 0.181%

Euro

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.691% -0.638% -0.658% -0.650% … -0.563% -0.554% -0.549% -0.578%

Exceptions - - - - 20 - - - -

VaR at 95% CL -0.872% -0.829% -0.829% -0.821% … -0.701% -0.720% -0.705% -0.732%

Exceptions - - - - 8 - - - -

VaR at 97.5% CL -1.074% -1.024% -1.009% -0.998% … -0.890% -0.905% -0.880% -0.894%

Exceptions - - - - 4 - - - -

VaR at 99% CL -1.277% -1.148% -1.175% -1.162% … -1.022% -0.998% -0.971% -0.986%

Exceptions - - - - 1 - - - -

Actual Returns -0.031% 0.102% 0.408% -0.438% … 0.047% 0.233% 0.155% 0.411%

British Pound

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.502% -0.548% -0.560% -0.561% … -0.345% -0.369% -0.326% -0.578%

Exceptions 1 1 - - 18 - - - -

VaR at 95% CL -0.614% -0.668% -0.672% -0.673% … -0.467% -0.480% -0.410% -0.732%

Exceptions - 1 - - 11 - - - -

VaR at 97.5% CL -0.704% -0.804% -0.869% -0.870% … -0.512% -0.533% -0.482% -0.894%

Exceptions - - - - 6 - - - -

VaR at 99% CL -0.861% -0.899% -1.021% -1.022% … -0.633% -0.671% -0.616% -0.986%

Exceptions - - - - 2 - - - -

Actual Returns -0.515% -0.676% -0.187% 0.442% … -0.132% 0.013% 0.185% 0.132%

Canadian Dollar
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Table 18: Partial Illustration of the Actual Returns, Value at Risk, and Number of Exceptions estimates for 

the remaining Cryptocurrencies and Fiat Currencies at the Different Levels of Significance between De-

cember 4th 2018 and November 18th 2019. 

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.651% -0.784% -0.782% -0.731% … -0.523% -0.518% -0.473% -0.578%

Exceptions - 1 - - 17 - 1 - -

VaR at 95% CL -0.952% -1.012% -1.009% -1.003% … -0.694% -0.700% -0.608% -0.732%

Exceptions - - - - 6 - 1 - -

VaR at 97.5% CL -1.137% -1.276% -1.272% -1.174% … -0.843% -0.772% -0.718% -0.894%

Exceptions - - - - 3 - - - -

VaR at 99% CL -1.305% -1.596% -1.591% -1.418% … -1.130% -1.018% -0.813% -0.986%

Exceptions - - - - 1 - - - -

Actual Returns -0.258% -0.954% -0.454% -0.498% … -0.058% -0.746% 0.486% -0.132%

Australian Dollar

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.530% -0.500% -0.458% -0.458% … -0.431% -0.425% -0.456% -0.578%

Exceptions - - - - 22 - - - -

VaR at 95% CL -0.672% -0.627% -0.572% -0.572% … -0.594% -0.591% -0.624% -0.732%

Exceptions - - - - 8 - - - -

VaR at 97.5% CL -0.866% -0.771% -0.691% -0.698% … -0.756% -0.737% -0.905% -0.894%

Exceptions - - - - 6 - - - -

VaR at 99% CL -1.257% -1.044% -0.969% -0.982% … -0.915% -0.902% -1.094% -0.986%

Exceptions - - - - 1 - - - -

Actual Returns 0.030% -0.020% 0.489% 0.238% … 0.298% 0.218% -0.198% 0.040%

Swiss Franc

Day 1 2 3 4 5 → 246 247 248 249 250

Date 4-12-18 5-12-18 6-12-18 7-12-18 10-12-18 → 12-11-19 13-11-19 14-11-19 15-11-19 18-11-19

VaR at 90% CL -0.425% -0.427% -0.448% -0.435% … -0.431% -0.444% -0.443% -0.578%

Exceptions - 1 - - 17 - - - -

VaR at 95% CL -0.532% -0.529% -0.586% -0.542% … -0.544% -0.557% -0.556% -0.732%

Exceptions - - - - 6 - - - -

VaR at 97.5% CL -0.638% -0.644% -0.714% -0.651% … -0.629% -0.646% -0.646% -0.894%

Exceptions - - - - 1 - - - -

VaR at 99% CL -0.829% -0.837% -0.972% -0.845% … -0.850% -0.866% -0.865% -0.986%

Exceptions - - - - 1 - - - -

Actual Returns 0.795% -0.451% 0.566% -0.113% … 0.109% 0.326% -0.325% 0.218%

Japanese Yen
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