
A TEST-BED FOR LINEAR TIME, CONSTANT SPACE

DIFFERENCING ALGORITHMS

Lo

Pauline Mouawad

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science

in Computer Science

Department of Computer Science

Faculty of Natural and Applied Sciences

Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

June 2004

A Test-Bed for Linear Time, Constant Space Differencing Algorithms

VA

Pauline Mouawad

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of Master of

Science in Computer Science

Department of Computer Science

Faculty of Natural and Applied Sciences

Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

!kL D. U..	 ARY
1

U I; i.'J 2C3'

+-'.	 •1	 ç'	 •'

Li,)

June 2004	 a LU. L7tYr1fl

RE(i
1

A Test-Bed for Linear Time Constant Space Differencing Algorithms

Pauline Mouawad

Approved

CLccL
Fouad Chedid: Professor of Computer Science

Advisor & Chairman of Committee

Issam Moghrabi: Associate Professor of Computer Science

Im

-1

Omar Rifi: ksistant Professor of Computer Science

Rached: Assistant Professor of Mathematics

Date qf Thesis Defiise: June 22/uI , 2004

Eli

ACKNOWLEDGEMENTS

"Let us, then, be up and doing, with a heart for any fate; still achieving, still pursuing, learn

to labor and to wait."

Henry Wadsworth Longfellow

If one finds passion in one's work, how can this merriment be full if it has no

gratitude to show? I cannot be content with a work that is merely the fruit of a singular

root but rather, I draw satisfaction from the knowledge that ultimately, I have

someone to thank.

My thanks are due to my parents and my sister, for always being there for me. Their

encouragement and support have been most precious to the fulfillment of this

achievement. I couldn't have done this without them.

To my advisor, Dr. Fouad Chedid, I offer heartfelt thanks for the pillar he has

been for this work. His tireless dedication and truthful support have been an

invaluable guidance to me and an incitement to my resolution. It is said that: "The

teacher who is indeed wise does not bid you to enter the house of his wisdom but

rather leads you to the threshold of your mind" (Khalil Gibran). I could not have said

this any better.

My deepest respect and gratitude to Notre Dame University, that gave me the

education and knowledge I sought. I also owe a well of gratitude to the teachers who

have taught me throughout the graduate study; they truly made this possible. I

dedicate this thesis to my family and loyal friends; they really make the world a nicer

place to live in.

111

ABSTRACT

This thesis is motivated by the latest work related to Differential compression

algorithms as it appears in the work of Ajtai, et al. - 2002. In particular, we pay special

attention to delta encoding algorithms that achieve good compression in linear time

and constant space. This is important because previous work in this area uses either

quadratic time and constant space or linear time and linear space, which is

unacceptable for large inputs. In delta encoding.. the algorithm reads two different

copies of the same file as input, termed the reference copy and the version copy. The

output of the algorithm is a sequence of Add/Copy commands that reconstructs the

version copy in the presence of the reference copy. Such algorithms have been

recommended to be integrated into the http protocol. The idea is to reduce the data

transfer time for text and http objects in order to decrease the latency of loading

updated web pages. Also, in a client server system, clients may perform delta

encoding to exchange delta encodings with a server instead of exchanging whole files.

This reduces the time needed to perform the backup and reduces the storage required

at the backup server. In the literature, the evaluation of delta encoding algorithms

depends on three metrics: the running time of the algorithm, the space it uses, and the

compression results it achieves. In this thesis we build a test-bed for delta encoding

algorithms that accommodates most of the previous work described in the literature.

Through intensive experimentations we are able to recommend a hybrid algorithm that

forms a good compromise among the existing methods.

lv

TABLE OF CONTENTS

Listof Figures ..vi

Listof Tables ...

IThe Problem ..I

II Literature Review ...4

2.1 Delta Encoding Compression Technique ..5

2.2 Notations ..7

2.3 Outline of the Algorithm ..9

IIIA Test-Bed ...21

3.1 The Algorithm ..22

3.2 Time and Space Complexity ..25

IV Experimental Results ..27

4.1 Tables and Graphs ..27

4.2 Recommendations ...39

VConclusion ...41

VIReferences ..42

VIIAppendix ...44

V

LIST OF FIGURES

Figure

	2.1	 Pseudocode for the Greedy algorithm

	

2.2	 Pseudocode for the One-Pass algorithm

	

2.3	 Pseudocode for the Correcting One-Pass algorithm

	

2.4	 Pseudocode for the Correcting 1.5-Pass algorithm

	

3.1	 Pseudocode for the Test-Bed algorithm

	

4.1	 Average Cost Graph - Files of Size 1K

4.2 Average Cost Graph - Files of Size 8K

4.3 Average Cost Graph - Files of Size 30K

4.4 Average Cost Graph - Files of Size 40K

4.5 Average Cost Graph - Files of Size 70K

4.6 Average Cost Graph - Files of Size lOOK

11,12

13,14

15, 16, 17

18,19

23,24

29

31

33

35

37

39

vi

LIST OF TABLES

Table

4.1.1.1	 Average Values. P = 1. 1K files
	

28

4.1.1.2	 Average Values. P = 2. 1K files
	

28

4.1.1.3	 Average Values. P = 3. 1K files
	

28

4.1.1.4	 Average Values. P = 8. 1K files
	

28

4.1.1.5	 Average Values. P= 16. 1K files
	

28

4.1.2.1	 Average Values. P = 1. 8K files
	

29

4.1.2.2 Average Values. P = 2. 8K files
	

29

4.1.2.3 Average Values. P = 3. 8K files
	

30

4.1.2.4 Average Values. P = 8. 8K files
	

30

4.1.2.5 Average Values. P = 16. 8K files
	

30

4.1.3.1	 Average Values. P = 1. 30K files
	

31

4.1.3.2 Average Values. P = 2. 30K files
	

31

4.1.3.3 Average Values. P = 3. 30K files
	

32

4.1.3.4 Average Values. P = 8. 30K files
	

32

4.1.3.5 Average Values. P = 16. 30K files
	

32

4.1.4.1 Average Values. P = 1. 40K files
	

33

4.1.4.2 Average Values. P = 2. 40K files
	

33

4.1.4.3 Average Values. P 3. 40K files
	

34

4.1.4.4 Average Values. P = 8. 40K files
	

34

vii

4.1.4.5 Average Values. P = 16. 40K files
	

34

4.1.5.1 Average Values. P = 1. 70K files
	

35

4.1.5.2 Average Values. P = 2. 70K files
	

35

4.1.5.3 Average Values. P = 3. 70K files
	

36

4.1.5.4 Average Values. P = 8. 70K files
	

36

4.1.5.5 Average Values. P = 16. 70K files
	

36

4.1.6.1 Average Values. P = 1. lOOK files
	

37

4.1.6.2 Average Values. P = 2. lOOK files
	

37

4.1.6.3 Average Values. P = 3. lOOK files
	

38

4.1.6.4 Average Values. P = 8. lOOK files
	

38

4.1.6.5 Average Values. P = 16. lOOK files
	

38

vii'

CHAPTER I

The Problem

During the last decade, the field of computer science has witnessed a

widespread development that grew significantly. This growth triggered an increase in

the demand for fast data transmission over the network (Internet or intranet). The

solution was to compress large files into smaller versions so that they can be managed

easily. Various techniques have been suggested and consequently provided solutions

to the problem. Unfortunately limitations were encountered because no matter what

the technique is, compressed files are still too large for a remote transmission and still

require enormous transfer time and create unacceptable traffic over the network.

Concisely, time and space are still a major issue to be dealt with.

Recent studies have used differential compression techniques in an attempt to

solve the problem and various algorithms have been proposed [1, 3, 4, 6, 7, 8, 9]. The

main concept is to try to find common strings between two versions of data and use

them to encode one version compactly; this is accomplished by describing the

encoding itself as a set of changes of one version with respect to its companion.

Instead of compressing a whole new file to replace wholly an older version of it, we

would rather check for the changes in it and generate some code that would only send

those changes to the older version. A simple process ultimately combines the file with

the changes. This is quite an interesting approach because it considerably cuts the size

of the file to be compressed.

1

Recently, new algorithms have been put that run in linear time and use constant

space. But the tradeoff is with the compression results. The algorithm has to disregard

some strings in the file in favor of its running time and space usage. And sometimes a

significant portion in the file is not encoded because the algorithms favor the recent

scanned strings over the previously read ones and therefore information about past

strings is completely lost. More on this will be described in the next chapter.

This thesis introduces a new algorithm, which attempts to yield near to optimal

results by checking almost every string of length p in both files: the old one called

Reference and the new one called Version. Similarities found are encoded with a Copy

command from the Reference while non-matching strings are encoded with an Add

command from the Version. The method used ensures a window into the past of the

files being scanned in a sense that it examines almost all strings and it does not favor a

string over the other except for strings that yield longer matches. We keep in mind that

one string may match differently depending on how long it can extend in the file and

still matches its copy in the other file. For example, a string of length p = 3 consisting

of abc in the Reference file that only matches to abc in the Version file is far less

beneficial than the same string abc that extends in both the Reference and Version

files to become abcdefghijklmnop of length p 16. Therefore this considerably

diminishes the amount of strings left un-encoded. Moreover, instead of having several

copy commands to encode a string of length p = 16, 1 copy command does so and

clearly decreases the cost of the compression. Also and very importantly, this

algorithm cuts down on transmission time and on storage space. Ultimately, only

variations of the file are being transmitted to the user, which means a major cut down

on Internet transfer time to the user's satisfaction. Finally and at the user-end, the

program is run and the file is assembled and becomes the new updated version.

The fashion by which the cost of such technique is computed will be described in a

later chapter, in full.

The rest of the thesis is organized as follows. Chapter II offers an overview of

related algorithms from the literature. Chapter III is our contribution in which we

describe a Test-Bed of differencing algorithms that run in linear time and constant

space. The actual code is included in the Appendix and heavily commented for a clear

and friendly reading. Chapter IV lays down a series of tests conducted on different

files of different sizes while varying the size of a specific variable L in the code to be

revealed later on. A series of Table and Graph representations will accompany those

tests for a concise and obvious conclusion about the Average Cost of our algorithm as

well as the time and space complexities. Chapter V is the conclusion.

3

CHAPTER II

Literature Review

Given two strings V and R, differential compression is about encoding V with

respect to R by finding regions of V identical to regions of R and encoding this data

with a reference to the location and size of the data in R [l]. At each step during

execution, the algorithm examines strings, also called seeds, having a constant length

p. Generally, the inputs to a differential compression algorithm are strings from both

the Reference and Version files, and the output is a delta string:

A(R: V) =A(R: V)

The output A will consist of a sequence of commands that will be described in the next

section under Delta Encoding.

As mentioned earlier, the performance of this algorithm is measured using

three metrics:

1. The time complexity. It is the running time of the algorithm.

2. The space complexity. It is the storage space the algorithm uses in order to

process the strings read from both files.

3. The compression results achieved. These are the series of commands issued

that differentiate between the similarities and the differences among the two

versions of a file. Hence the term differential compression.

al

The purpose of this type of encoding is to find algorithms that would

ultimately, no matter the file sizes or the scale of the input, generate a near to optimal

compression result while cutting down on transmission time and storage space.

In this study, all the algorithms discussed follow the Delta Encoding

Compression Algorithm which we describe next.

2.1 Delta Encoding Compression Technique

Given two copies of a file, the Reference - standing for the old version - and the

Version - being the new version - , the delta encoding algorithm is about finding the

longest match possible of a given string after performing a left-to-right scan of both

files in a parallel fashion in search of matching seeds of an initial length p. In the

event where such match is found, an attempt to extend that match to a longer one takes

place. This is called the extension phase.

When a matching string is located, a command is issued in the form:

(C, I, a)

The character C stands for the command Copy, 1 stands for the length of the string to

be copied, and a stands for the address. This reads into the following: Copy a string of

length 1 found at offset a in the Reference file.

On the other hand, when a non-matching string is encountered, a different command is

issued in the form:

(A, 1, S)

The character A represents the command Add, I stands for the length of the string to

be added, and S is the actual string being added. And it reads: Add a string S of length

1 from the Version file.

A simple example follows to illustrate this concept:

Given:	 R =AB CDELMNOP QRSTXYZ

&

V= FGHIJKLMNOP UVWXYZ

A Delta Encoding output would be:

[(A, 4, 'FGHJJK'), (C. 5, '5'), (A, 3, 'UVW'), (C, 3, '14')]

The identification of fixed length matching strings is done by reducing the seed

to a fixed integer by means of a hash function F. The resulting integer of the form

F(S) is called the seed's footprint. Assuming an ideal hashing function, one footprint

should uniquely identif y a given seed; but such consideration would be misleading

since in a real life application, two different seeds might in fact hash to the same

footprint value.

The hashing function F generates a hash table with the number of its entries equal to

the number of footprints generated. Indeed, a hash table entry is a footprint and a hash

table size depends on the number of footprints stored. A hash table entry that

corresponds to one or more seeds scanned may hold one or more offsets indicating the

respective addresses of those seeds, depending on the algorithm used. Some

algorithms do not allow more than one offset to be stored at a given footprint, as we

shall see in the coming sections.

2.2 Notations

The notations used for differential compression are:

2.2.1 - Pointers:

The following pointers are defined in the code:

v: Current address of the Version string

r: Current address of the Reference string

v: Starting offset of a version string. This pointer holds the

starting offset of the un-encoded suffix of the version string.

Vm: Offset of a matching version string.

rm: Offset of a matching reference string.

2.2.2 - Parameters

The following parameters are defined as well:

p: Seed length. It's the length of substrings of which a footprint is

calculated.

q: The size of the hash table = the number of footprint values.

lxi: Length of a string X

n = IRI + IVI: The combined length of the reference and version

strings.

2.2.3 - Hashing function

The following hashing function due to Karp and Rabin [1987] is used in

the code

7

If x0 , x 1 , ... , x 1 1 are the symbols of a string X of length n, let Xr denote the

substring of length p starting at offset r. Thus,

Xr= XrXr+ 1 ... Xr+p.1.

Identify the symbols with the integers 0, 1, ..., b - 1, where b is the number of

symbols. Let q be a prime, the number of footprint values. To compute the modular

hash value (footprint) of Xr, the substring X is viewed as a base-b integer, and this

integer is reduced modulo q to obtain the footprint; that is:

r+p-1

F (a,a+p)= YXib'Jmodq.

Using this method, a footprint function is specified by two parameters: p, the

length of substrings (seeds) to which the function is applied; and q, the number of

footprint values. The choice of q involves a trade-off between space requirements and

the extent to which the footprint values of a large number of seeds have different

footprints. Typically, a footprint value gives an index into a hash table. The advantage

of this function is that footprinting allows an algorithm to detect matching seeds of

length p, but the algorithms in the literature are most successful when these seeds are

part of much longer matching substrings; in this case, a matching seed leads the

algorithm to discover a much longer match. The hashing function notations are:

F (a, a + p): The footprint of a seed X, starting at offset 'a' up to

offset a + p where p is the substring's length.

Hx: The hash table, indexed by seeds' footprints.

Hx [i]: The ith element in hash table H. In general, hash table entries

contain the starting offsets of seeds indexed by footprint value.

8

2.3 Outline of the Algorithm

1. Initialize the hash table(s). Create empty hash table(s).

2. Initialize pointers. Set v, r and v to zero.

3. Generate new footprints. Generate a new footprint at v and at r if there

is enough input string to the right of v and r to generate a new

footprint. If at least one footprint was generated, continue at Step (4). If

not,go to Step (8) to finish the encoding of V and terminate.

4. Try to find a matching seed. Use the newly generated footprint(s) and

the hash table(s) to try to find a matching seed in R and V. In some

algorithms, the new footprint(s) are also used to update the hash tables.

If a matching seed is not found, increment v (and increment r) by one,

and repeat Step (3). If a matching seed is found, continue at Step (5) to

extend the match.

5. Extend the match. Attempt to extend the matching seed to a longer

matching substring in both R and V by comparing symbols between R

and V.

6. Encode the match. Encode the substring of V from v to the end of the

matching substring by producing the appropriate command sequence;

this will always end with a copy command that encodes the matching

substring. Update v to the new start of the unencoded suffix.

7. Update and return to top of main loop. Update v (and r) and modify the

hash tables if needed. Return to Step (3).

8. Finish up. If there is an unencoded suffix of V, encode this suffix with

an add command.

2.3.1 - A Greedy Differencing Algorithm

This algorithm is based on [9]. The greedy algorithm first makes a pass

over the reference string R; it computes footprints and stores in a hash table, for each

footprint f, all offsets in R that have footprint f (colliding footprints are handled by

chaining footprints at each value). The algorithm then moves the pointer v through V,

and computes a footprint at each offset. At each step it does an exhaustive search,

using the hash table and the strings R and V, to find the longest substring of V starting

at v, that matches a substring appearing somewhere in R. The longest matching

substring is encoded as a copy command, v is set to the offset following the matching

substring, and the process continues.

The pseudocode in Figure 2.1 outlines the major steps of the greedy algorithm.

In Step(l), the algorithm hashes the contents of the reference string in a hash table

where each entry is a footprint containing all the offsets having that footprint; in

Steps(3) to (6), the algorithm then finds longest matching substrings in the version

string and encodes them.

Obviously, the space used by this algorithm is dominated by the space for the

hash table (= IRI - p + 1 offset values stored in linked lists). Since p is a constant, the

space is proportional to IRI. Concerning the bound of the time complexity, at each

offset in R, the algorithm spends 0(1) time, in the worst case, to find a matching

substring of length at most 1 starting at this offset. Thus, the total time is 0 (IVIIRI),

10

that is, 0 (n 2). It is known in [1] that the greedy algorithm provides a solution to the

perfect differencing
ZD

 problem if p :52. The pseudocode that follows represents the

basic steps executed by the greedy differencing algorithm.

Given a reference string R and a version string V, generate a delta encoding of

V as follows:

1. For all offsets in input string R in the interval [0, IRI - p1 generate the

footprints

2. Start string pointers vc and v at offset zero in V.

3. If v + p> IVI go to Step (8). Otherwise, generate a footprint Fv (va, v + p) at

VC

4. (and (5)) In this algorithm it is natural to combine the seed matching and

substring extension steps into one step. Examine all entries in the linked list at

HR [Fv (va, v + p)] (this list contains the offsets in R that have footprint F (va,

v + p)) to find an offset rm in R that maximizes 1, where I is the length of the

longest matching substring starting at rm in R and at v in V. If no substring

starting at the offsets listed in HR [Fv (va, v + p)] matches a substring starting

at v, increment v, by one and return to Step (3). Otherwise, set vm and rm to the

start offsets of the longest matching substring found. (In this algorithm, vm =

at this point.) Let 1 be the length of this longest matching substring.

5. The longest match extension has already been done in the combined step

above.

11

6. If V < Vm, encode the substring V [vs, Vm) using an add command containing the

substring V {v, Vm) to be added. Encode the substring V {Vm, Vm + 1) as a copy

of the substring of length 1 starting at offset rm in R. Set v to Vm + 1.

7. Set vc to Vm + 1 and return to Step(3)

8. All of the remaining unencoded input has been processed with no matching

substrings found. If v < IVI, encode the substring V [vs, lvi) with an add

command. Terminate the algorithm.

Figure 2.1 Pseudocode for the greedy algorithm

2.3.2 - The One-Pass Algorithm

The one-pass differencing algorithm finds a delta encoding in linear

time and constant space. It finds matching substrings in a next match sense. That is,

after copy-encoding a matching substring, the algorithm looks for the next matching

substring forward in both input strings and disregards the portion of R and V that

precedes the end of the substring that has just been copy-encoded. Hence it has a

linear time complexity. The one-pass algorithm does not store all offsets having a

certain footprint; instead it stores, for each footprint, at most one offset in R and at

most one in V. This makes the hash table for R smaller with a size q rather than IRI

and more easily searched however the compression is not always optimal. This

algorithm works in a first-fit fashion, which means that it retains only the first offset

found after each flush of the hash table. Hence it uses 0 (q) space. The drawback

though, is that in the presence of transposed data (with R as ... X... Y and V as ... Y

X ...), the algorithm will not detect both of the matching substrings X and Y.

Pseudocode of the one-pass algorithm follows.

12

Given a reference string R and a version string V, generate a delta encoding of

V as follows:

(1) Create empty hash tables, Hv and HR, for V and R. Initially, all entries are

empty.

(2) Start pointers r, v, and v at offset zero. Pointer v marks the start of the suffix

of V that has not been encoded.

(3) If v, + p> IV I and r + p> IRI go to Step (8). Otherwise, generate footprint Fv

(va , v, + p) when v + p:5 IVI and footprint FR (re, r + p) when r + p:5 IRI.

(4) For footprints F (va, v, + p) and FR (re, r + p):

(a) Place the offset v (resp., r) into Hv (resp., HR), provided that no

previous entry exists. The hash tables are indexed by footprint. That is, if H

[F (va, v + p)] = empty assign v to H [Fv (va, vc + p)]; similarly, if HR [FR

(re , r + p)] = empty, assign r to HR [FR (re , r + p)].

(b) If there is a hash table entry at the footprint value in the other

string's hash table, the algorithm has found a likely matching substring. For

example, H1, [FR (re, r + p)] # empty indicates a likely match between the seed at

offset rc in R and the seed at offset H [FR (re, r + p)] in V. In this case set rm to r

and Vm to H [FR (re, r + p)] to the start offsets of the potential match. Check

whether the seeds at offsets rm and Vm are identical. If the seeds prove to be the

same, matching substrings have been found. If this is the case, continue at Step (5)

to extend the match (skipping the rest of Step (4b)). Symmetrically, if HR [F (va,

v + p)] # empty, set vm to vc and rm to HR [F1, (va, v + p)] . If the seeds at offsets rm

and vm are identical, continue at Step (5) to extend the match. At this point, no

13

match starting at v, or starting at r has been found. Increment both r and v by

one, and continue hashing at Step (3).

(5) At this step, the algorithm has found a matching seed at offsets Vm and rm. The

algorithm matches symbols forward in both strings, starting at the matching

seed, to find the longest matching substring starting at Vm and rm. Let 1 be the

length of this substring.

(6) If Vs < Vm, encode the substring V [vs, Vm) using an add command containing the

substring V [V5. Vm) to be added. Encode the substring V [Vm, Vm+ 1) as a copy of

the substring of length I starting at offset rm in R. Set v to the offset following

the end of the matching substring, that is, v to Vm + I.

(7) Set rc and v to the offset following the end of the match in R and V, that is, set

rc to rm+ 1. Flush the hash tables by setting all entries to empty. We use a non-

decreasing counter (version number) with each hash entry to invalidate hash

entries logically. This effectively removes information about the strings

previous to the new current offsets vc and r. Return to hashing again at Step

(3).

(8) All inputs have been processed. If v < lvi, output an add command for

substring V [v5, IV I). Terminate the algorithm.

Figure 2.2 Pseudocode for the one-pass algorithm

2.3.3 - The Correcting One-Pass Algorithm

The correcting one-pass algorithm differs from the one-pass algorithm

by:

14

(1) keeping all existing entries in the hash table tables after encoding a copy

command; and

(2) discarding a prior offset that has a particular footprint in favor of the current

offset having that footprint.

By retaining all entries in the hash table, the correcting one-pass retains

information about past substrings i.e. retains a window into the past which enables it

to detect nonsequential matching substrings, that is, substrings that occur in the

version string in an order different from the order in which they occur in the reference

string. The correcting one-pass algorithm extends matching strings both backwards

and forwards. This ability of reverse matching permits the correction of early bad

encodings and therefore an Add command of a string of length p = 10 with a cost

equal to 10, can be corrected to one Copy command with a cost equal to 1 in the best

case. Despite the similarity between the correcting one-pass algorithm and the one-

pass algorithm, the correcting one-pass algorithm does not have the same linear

running time guarantee. The algorithm spends a large amount of time extending

matches backwards at many executions, so that the total time spent during backwards

matching grows faster than linearly in the length of the input.

The correcting one-pass algorithm pseudocode is:

Given a reference string R and a version string V, generate a delta encoding of

Vas follows:

(1) Create empty hash tables, Hv and HR, for V and R.

(2) Start pointers r, v, and v at offset zero. Pointer v marks the start of the suffix

of V that has not been encoded.

15

(3) If v + p> IVI and r + p> IRI go to Step (8). Otherwise, generate footprint F

(va, v + p) when v, + p < lvi and footprint FR (re, r + p) when r + p:5 IRI.

(4) For footprints Fv (va, v + p) and FR (re , r + p):

(a) Place the offset v, (resp., r) into Hv (resp., HR). That is,	 assign H

[Fv(v, v, + p)] to v, and HR [FR (re, r + p)] to r.

(b) As in the one-pass algorithm, if H, [FR (re , r + p)] * empty, set rm to

r and Vm to Hv [FR (re, r + p)] to the start offsets of the potential match. If the

seeds at offsets rm and Vm are identical, continue at Step (5) to extend the match

(skipping the rest of Step (4b)). Symmetrically, if HR [Fv (v, v, + p)] # empty, set

Vm to v and rm to HR [Fv (va , v + p)] . If the seeds at offsets rm and Vm are identical,

continue at Step (5) to extend the match. At this point, no match starting at v or

starting at r has been found. Increment both r and v by one, and continue hashing

at Step (3).

(5) Having found a matching seed at Step(4b), extend this match forwards and

backwards from Vm and rm as long as possible, reset v,, and rm to the start

offsets of the matching substring (if the match extended backwards), and set 1

to the length of the matching substring.

(6) Encode the matching substring and attempt to use this substring to correct

encodings in the encoding lookback buffer. One of the following three sub-

steps is performed:

(a) If v :5 Vm, the matching substring overlaps only the previously

unencoded suffix V; it cannot be used to correct encodings already in the

buffer. If v< vm, encode the substring V [vs, Vm) using an add command.

16

Encode the substring V [Vm , Vm+ 1) as a copy of the substring of length 1 starting

at offset rm in R. Output the command(s) to the buffer. Set v to Vm + 1.

(b) If vm< v< vm+ 1, the matching substring overlaps both the encoded

prefix and the unencoded suffix of V. Perform tail correction. That is, attempt

to correct encodings from the tail of the buffer by integrating commands into

the new copy command. All whole and partial add commands and all whole

copy commands that encode the substring V [Vm, v) can be integrated into the

new copy command that also encodes the substring V {v. vm + 0. Delete from

the buffer all commands that were wholly integrated. Output the new copy

command to the buffer. Set v to Vm + 1.

(c) If vm+ 1 5 v, the matching substring overlaps only the existing

encoded prefix of V. Perform general correction. That is, perform binary search

in the buffer to find the commands that encode the substring V [vm, m + 1) and

correct sub-optimal encodings when possible. (In this case, v does not change.)

(7) Set v to max(vm + 1, v, + 1) and rc to max(rm + 1, r + 1); that is, we set the new

values of these pointers to the offsets just following the matching substring, but

we also require these pointers to advance by at least 1. Return to Step (3).

(8) All of the input has been processed. Flush all commands from the buffer to the

delta encoding. If v < 1VI, encode the substring V [v8, lvi) with an add

command. Terminate the algorithm.

Figure 2.3 Pseudocode for the correcting one-pass algorithm

17

2.3.4 - The Correcting 1.5-Pass Algorithm

The correcting 1.5-pass algorithm can be seen as a reformulation of the

greedy algorithm. The main difference is that it encodes the first matching substrings

found, rather than searching exhaustively for the best matching substrings. While both

algorithms make a pass over the reference string computing footprints and storing

information in the hash table, the greedy algorithm stores, for each footprint, all

offsets having that footprint; whereas the correcting 1.5-pass algorithm stores only the

first such offset encountered. Hence it's linear running time.

The pseudocode of this algorithm follows.

Given a reference string R and a version string V, generate a delta encoding of

Vas follows:

(1) For each offset a, in input string R in the interval [0, IRI - pJ, generate the

footprint FR (a, a + p). For each footprint generated, if the entry of HR indexed

by that footprint is empty, store the offset in that entry:

for a=0,1, ...,IRI-p:ifHR [FR (a,a+p)]= empty then HR [FR (a,a+p)]toa.

(2) Start v, and v at offset zero.

(3) If v+ p> lvi go to Step (8). Otherwise, generate a footprint [F (va, v +)] at

ye.

(4) If HR [Fv (va, v + p)] # empty, check that the seed in R at offset HR [Fv (va, V

+ p)] is identical to the seed in V at offset v. If matching seeds are found,

continue at Step (5). Otherwise, increment v by one and repeat Step (3).

(5) Extend the matching substring forwards and backwards as far as possible from

the matching seed. Set m and rm to the start of the matching substring in V and

18

R, respectively, and set 1 to the length of this substring. Note that v,:5 v, < Vm +

I because v never decreases, and because the match originated at the seed at

offset v.

(6) Encode' the match and attempt to correct bad encodings. The following two

sub-steps are identical to sub-steps (6a) and (6b) in the correcting one-pass

algorithm (sub-step (6c) cannot occur here, because v <v,,,+ 1):

(a) If Vs :5 Vm: If v< Vm, encode the substring V {v5, Vm) using an add

command. Encode the substring V [v,v,,+ 1) as a copy of the

substring of length 1 starting at offset rm in R. Output the

command(s) to the buffer.

Set v to Vm + 1.

(b) if vm < v: We have noted in Step (5) that v< Vm+ 1. Attempt to

correct encodings from the tail of the buffer. Delete from the buffer all commands

that were wholly integrated. Output the new copy command to the buffer. Set v to

Vm + 1

(7) Set vc to Vm + 1 and return to Step (3).

(8) All of the input has been processed. Flush all commands from the buffer to the

delta encoding. If v < M encode the substring V [vs, lvi) with an add

command. Terminate the algorithm.

Figure 2.4 Pseudocode for the correcting 1.5-pass

2.4 Conclusion

This chapter reviewed recent differencing algorithms that operate at a fine

granularity, make no assumptions about the format or alignment of input data and in

19

practice, run in linear time, use constant space, and give good compression. In the next

chapter, we describe a test-bed of differential algorithms that combines ideas from the

greedy differencing algorithm and the correcting one-pass differencing algorithm and

provides an environment that allows us to obtain experimental results on the

compression performance of the proposed algorithm versus the algorithms described

in [1]

20

CHAPTER III

A Test-Bed

As has been seen in the previous chapters, several differencing algorithms have

been written and implemented in order to achieve good compression results while

seeking the best possible time and space complexities. This chapter introduces our

contribution in this regards, which is a test-bed for a constant space, linear time

differencing algorithms.

The test-bed is based on the idea that if the greedy algorithm yields optimal

compression results while the one-pass algorithm maintains linear time and constant

space, an interesting approach would be to find an algorithm that would give better

compression results then the one-pass while maintaining linear time and constant

space. So the test-bed is an environment that allows a tradeoff between the greedy and

the one-pass algorithms. Also, the test-bed is important because it makes it possible to

test new algorithms as well as the algorithms described in [1] and gives experimental

results on their compression performance, hence the term test-bed. Future work on

differencing algorithms can be experimented using this test-bed as well. This

algorithm allows users to get very good compression results without having to

sacrifice time and space complexities, which is quite a burden with large data inputs;

as it maintains the bound on complexities without having to accept poor compression

results.

21

3.1 - The Algorithm

The algorithm implementation relies on two major steps. In the first step, the

algorithm builds two hash tables, called H R and Hv, for the reference file and the

version file, respectively. The size of the hash tables is determined by the number of

entries they have, which is the number of footprints generated from R and V,

respectively. In the second step, the algorithm scans forward in both input strings R

and V reading strings of constant length p, summarizes those seeds by footprinting

them and then storing their offsets into H R and H, respectively, at their generated

footprint. Each footprint (in HR or Hv) is an entry into the hash table and each

footprint holds a linked list of constant size L where the offsets are stored. The

footprints in the hash tables are used to detect matching seeds, and when this happens,

we try to extend the match as far as possible in both R and V. Two different seeds

might yield the same footprint hence the need to store many offsets at one given entry.

Unlike the algorithms described in [11, this algorithm maintains two linked lists, one

for HR and one for H; having each a constant length L. All offsets scanned are stored

and when the size of the linked list is exceeded, we overwrite the offset that has been

used; this means that the string at that offset has been either copied or added therefore

has been accounted for and its offset can be overwritten. This ensures that no offsets

are overlooked. If no used offset is found on the linked list, the algorithm overwrites

the oldest one inserted. Pseudocode for the test-bed algorithm follows.

Pseudocode for the test-bed algorithm

22

Given a reference string R and a version string V, generate a delta encoding of V as

follows:

(1) Create empty hash tables, H R and H, for R and V, respectively. Initially, all

entries are empty.

(2) Start pointers r, v, and v at offset zero. Pointer v, marks the start of the suffix

of V that has not been encoded.

(3) If v + p> IV! and r + p> IR1 go to Step (8). Otherwise, generate footprint Fv

(va. v + p) when v + p:5 lvi and footprint FR (re. r + p) when r + p:5 IRI.

(4) At each footprint value maintain a linked list of constant size L at HR and Hv

of all offsets that hashed to this value. When the size of the linked list is

exceeded, overwrite the offsets flagged as used. If no flagged offset exists,

overwrite the oldest one on the list.

(5) For footprints F (va. v, + p) and FR (re. r + p):

(a) If there is a hash table entry at the footprint value in the other string's

hash table, the algorithm has found a likely matching substring. For example,

H [FR (re, r + p)] # empty indicates a likely match between the seed at offset

r in R and the seed at offset H [FR (re, r + p)] in V. In this case set rm to r and

Vm to Hv [FR (re, r + p)] to the start offsets of the potential match. Check

whether the seeds at offsets rm and vm are identical because this hashing

function is not ideal. If the seeds prove to be the same, matching substrings

have been found. If this is the case, continue at Step (6) to extend the match

(skipping the rest of Step (5)). Symmetrically, if HR [Fv (va , v + p)] # empty,

set Vm to v and rm to HR [Fv (va, v + p)] . If the seeds at offsets rm and Vm are

23

identical, continue at Step (6) to extend the match. At this point, no match

starting at v or starting at r has been found. Increment both r and v by one,

and continue hashing at Step (3).

(6) At this step, the algorithm has found a matching seed at offsets vm and rm. The

algorithm matches symbols forward in both strings, starting at the matching

seed, to find the longest matching substring starting at v,,, and r. Let 1 be the

length of this substring.

(7) If v <= v, encode the substring V [vs, Ym) using an add command containing

the substring V [vs, vm) to be added. Encode the substring V [Ym, Vm+ 1) as a

copy of the substring of length 1 starting at offset rm in R. Set v to the offset

following the end of the matching substring. that is, set v to Vm + 1.

Set the flag of the offset of the substring encoded in both HR and Hv to used

and coded respectively. These are the nodes that will be overwritten when the

linked list size is exceeded.

(8) Set r and v, to the offset following the end of the match in R and V

respectively Jr, is allowed to move backwards in the file to the matching offset

since a matching offset in HR may exist before the current pointer re.) That is

set r, to rm +1. and v to vm +1 (provided v, v.}

(a)	 If vm < v, increment v by one, and continue scanning {v is not

allowed to move back in the file. }

Return to hashing again at Step (3).

(9) All input has been processed. Terminate the algorithm.

Figure 3.1 Pseudocode for the Test-Bed Algorithm

The implementation of this algorithm is done using C++ and can be found in the

Appendix.

3.2 - Time and Space Complexity

In this section we prove the following theorem.

THEOREM 5.1. The test-bed differencing algorithm runs in time 0 (n) and Space

0 (1), where n is the total length of the input strings.

PROOF

The space bound is clear. At all times, the algorithm maintains two hash tables,

each of which has q entries, having each a linked list of constant length L. This

ensures a bound on the size of the hash tables. Except for the hash tables, the

algorithm uses constant space. So, the total space used by the algorithm is 0 (q * L) (=

0 (1) if q and L are constants).

The time bound can be proved as follows. Initially, during Steps (1), the

algorithm takes time 0 (q). In the subsequent steps, we follow the run of the algorithm

and bound the time used in terms of the amount that the pointers r and v, advance.

When r and v are advancing in hashing mode, before a match is found, the algorithm

uses time 0 (p) each time that the pointers advance by one. When a matching seed is

found, let M = max (Vm - V, rm - re). Because either vm = v or rm = r, then the total

time spent in hashing mode is 0 (pM). The number of non-empty hash table entries at

this point is at most 2M, M in Hv and M in HR. The match extension step takes time 0

(I). The encoding step takes time 0 (Vm - vs); that is 0 (M). After a match, the pointers

v and r are reset to the end of the match; let v = v 11, + 1 and r = rm + 1 be the values

25

of v and r after this is done at one given period. It follows that v, and r are advanced

by a total net amount of at least M + 21 during the period. The time spent in the period

is 0 (pM + 1). Let M* be the sum of all M. Because the pointers can advance by a

total net amount of at most n = IRI + I V1 during the entire run, then M + 21 :5 n. It

follows that the total time is 0 (np + q) = 0(n).

26

CHAPTER IV

Experimental Results

The tests included in this chapter are conducted over text files of different sizes

varying between 1K and lOOK. For each file, we apply the following steps:

For a given set of files of size s, run the test-bed as follows:

1. Let the seed's length p vary from ito 16. For each value of p go to Step (3)

2. Let the linked lists' sizes L and L' of HR and Hv respectively vary from 1 to cc.

Values are chosen randomly; in our tests we chose L and L' to have this set of

values 11, 5, 10, 20, 30, 40, cc), where cc takes integer numbers big enough,

such as 100,000. For each value of {L, U) go to Step (3).

3. For a constant L and L' and a fixed length p, generate the total number of copy

commands (number of copies) and the total length of strings encoded with an

add command { total length added. }

4. Compute the total cost of running the algorithm on the file. Total cost = total

copies + total length added.

5. The average cost per set of files of size s is then computed.

4.1 - Tables and Graphs

The tests results are displayed in a table showing the average cost per set of

files of size s. To compute the cost per file, a computation of the number of copy

27

commands, the number of add commands, and the total length of the strings added

is done for each given value of p and for different values of L. The total cost is the

summation of the total number of copies and the total length added. The average

cost per file size is then computed.

4.1.1 —Files of Size 1K

• Average Cost Tables

Table 41.1.1-Average Values. P =1

L	 1	 10

COPIES	 333 270 273

ADDS	 63	 87	 86

TOTAL
LENGTH	 91	 142 138
ADDED

TOTAL COST

Table 41.1.2 - Average Values. 0=2

L	 1	 10	 (0

COPIES	 73	 67	 63

ADDS	 51	 50	 48

TOTAL
LENGTH	 247 266 249
ADDED

TOTAL COST -42o 	 3

Table 41.1.3 - Average Values. P = 3

L	 1	 10	 co

COPIES	 34	 33	 33

ADDS	 26	 26	 26

TOTAL
LENGTH	 309	 311	 311
ADDED

TOTAL COST M. a"

Table 4. 1.1.5 - Average Values. P =16

L	 1	 10	 co

COPIES	 4	 4	 4

ADDS	 3	 3	 3

TOTAL
LENGTH	 264 260 260
ADDED

TOTAL COST 267 264 364

Table 41.1.4 - Average Values. P=8

L	 -i	 10	 co

COPIES	 7	 7	 7

ADDS	 6	 6	 6

TOTAL
LENGTH	 368 367 367
ADDED

TOTAL COST	 373

28

• Average Cost Graph

Average Cost Graph

450 -

400

3 350

300
I-

250

200 -

150 -
0
1- 100

50 -

0-

-	 -4-- P=1

______________	 ________________-	 • P 2

-A-P3 I

1	 10

LINKED LIST SIZE L

Figure 4.1 Average Cost Graph - Files of Size 1K

4.1.2 - Files of Size 8K

• Average Cost Tables

Table 4.L2.1 - Average Values. P 1

L	 1	 5	 10	 20	 30	 40

COPIES	 4783 4002 3891 3810 3756 3608 3890

ADDS	 9003 1278 1189 1225 1164 1215 1225

TOTAL
LENGTH	 1853 2308 2202 2309 2276 2394 2206
ADDED

TOTAL COST66q5 6.310 6 09,1 610 60ql

Table 4L22 - Average Values. P

L	 1	 5	 10	 20	 30	 40

COPIES	 1310 1186 1156 1145 1181	 1194 1201

ADDS	 944 866 81	 855 868 872 868

TOTAL
LENGTH	 4544 4254 4310 4336 4246 4217 404
ADDED

TOTAL COST	 BA65 SA80 SA27 S42 &tQ

4	 4

29

Table 4.L2.3 -Average Values. P=3

L	 1	 5	 10	 20	 30	 40	 (

COPIES	 434 416 46 420 423 425 426

ADDS	 346 341	 355 345 348 347 348

TOTAL
LENGTH	 5310 5338 5304 5323 5308 5298 5294
ADDED

TOTAL COST	 j 5754 50 5742 533 57-Q 5720

Table 41.2.4-Average Values. p =8

L	 1	 5	 10	 20	 30	 40

COPIES	 104	 92	 92	 92	 92	 92	 92

ADDS	 93	 86	 86	 87	 87	 87	 8

TOTAL
LENGTH	 5947 6356 6392 6385 685 6385 6385
ADDED

TOTAL COST 60.51 6448 6484 42Z42! 4ZZ 42Z

Table 4.1.2.5 -Average Values. P = 16

L	 1	 5	 10	 20	 30	 40	 c

COPIES	 91	 67	 8	 51	 50	 49	 49

ADDS	 44 1 48	 46 1 46	 46	 45	 45

TOTAL
LENGTH	 6164 6169 6232 6221 6211 6215 6215
ADDED

TOTAL COST	 2 6261

30

• Average Cost Graph

AVERAGE COST GRAPH

25000

	

20000	 ---------;---	 -	 -,

-

	

15000	 -----	 ------------

	

10000	 ---- --- ------	 -
P=16

5000

0
1	 5	 10	 20	 30	 40

LINKED LIST SE L

Figure 4.2 Average Cost Graph - Files of Size 8K

4.1.3 - Files of Size 30K

Average Cost Tables

Table 4.1.3.1 - Average Values. P = 1	 -

L	 1	 5	 10	 20	 30	 40

	COPIES	 20416 18066 16,333 15365 i5o6 1540 15646

ADDS	 283 2870 2999 :3282 3129 3203 3146

TOTAL

	

LENGTH	 4624 4566 4734 5167 4999 5087 4911
ADDED

TOTAL COST 25039 22632 21067 2052 20075 20557 20558

Table 4.1.3.2 - Average Values. P = 2

L	 1	 10	 20	 30	 40	 c

	

COPIES	 7336 6704 6521 63777 6277 637:3 6717

ADDS	 3471 3483 3526 358 3591 3602 3477

TOTAL
LENGTH 1003 11200 11514 11852 12062 11840 11079
ADDED

TOTAL COST 18039 17904 18035 18229 1833 18213 17797

31

Table 4.1.3.3 - Average Values. P

L	 1	 5	 10	 20	 30	 40

COPIES	 2806 2672 26 . 11 256:3 2514 2574 2702

ADDS	 2140 206 2069 2033 2015 2039 2082
TOTAL
LENGTH io 178 1-838 18092 18291 18077 17608
ADDED

TOTAL COr 20308 20450 2049 206.c 2080.5 2o61 20310

•	 :TabIe4i34 - Average Values.. p 2	 =

L	 1	 5	 10	 20	 30	 40	 c

COPIES	 257 264	 251	 264--254 257	 256

ADDS	 247 254 244 257 247 249 248
.TOTAL
LENGTH 26744 26631 26681 26712 26665 26755 26656
ADDED

TOTAL COST 27001 2689c 2692 26977 26919 27012 26911

Table 4.1.3.5 - Average Values. P..-= i6

L	 1	 .	 10	 20	 30	 40	 x'

COPIES	 89	 34	 35: 35 	 35	 35	 35

ADDS	 30	 31	 32	 33	 33	 33	 33
TOTAL

LENGTH 25480 26003 25975 25969 59,68 25968 25968
ADDED

TOTAL COST 25j9 26038 26010 26003 26004 26004 26004

32

• Average Cost Graph

AVERAGE COST GRAPH

30000--------

-25000
---4-------

20000 - A==r=-A---- j
.--------R.--- --U -.	 --

8 15000 ---•--. -- - ------

10000

- 5000

0	 I

1	 5	 10	 20	 30	 40

LINKED LIST SIZE L

-*--P=8

-*- P = 16

Figure 4.3 Average Cost Graph - Files of Size 30K

4.1.4 - Files of Size 40K

• Average Cost Tables

33

Table 4.1.4.3 - Average Values. F = 3

	

L	 1	 5	 W	 20	 30	 40

OPlES4154 4112 3963 3881 3828 3850 4030

	

ADDS	 3009 29232891 2885 262 2886 2903

TOTAL
LENGTH	 21512 21074 21500 21785 219.5521871 21240
ADDED

TOTAL cor 2.66.c 2186 2462 566 253 25722 25O

Table 4.1.4.4 - Average Values. P.=.9

	

L	 1	 5	 10	 20	 30	 40

	

COPIES	 292	 339	 3:36	 :339	 :3:31	 331	 343

	

ADDS	 2	 326	 195	 328	 321	 319 L330

TOTAL

	

LENGTH.	 -34954 34894 34950 34976 34978 34933
ADDED

TOTAL COST :ç.c '1.1;292..:3.23I :5289 s.ç:o8	 309 :3.5276

Talk 4.1.4.5 - Average Values. P = i6

	

L	 1	 5	 10	 20	 30	 40	 1

	COPIES	 9	 21	 18	 18	 !6,-.18	 16

	

ADDS	 i	 17	 17	 13	 17	 15

TOTAL

	

LENGTH	 27137 35047 3 1530 31523 30709 31210 30709
ADDED

TOTAL COST 211.5 ao8 31548 :15 4 2 30'2.5 :31228 3O72

34

40000

35000

ig 30000

- 25000
0)
to 20000

15000

10000

5000

0

-+- P =1
-s- P = 2
-*- P = 3
-- P=8
-*-- P =16

• Average Cost Graph

AVERAGE COST GRAPH

1	 5	 10	 20	 30	 40
LINKED LIST SIZE L

Figure 4.4 Average Cost Graph - Files of Size 40K

4.1.5 - Files of Size 70K

• Average Cost Tables

Table 4.1.5.1 - Average Values. P = 1	 -	 - -

L	 1	 5	 10	 20	 30	 40

COPIES	 50198 43403 40460 3902 38439 37990 38322

ADDS	 8044 7934 7813 7907 7944 7994

TOTAL
LENGTH	 10343 n800 11760 i1561 11757 11849 12199
ADDED

TOTAL COST 60541 5203 52220 50588 oiç6 4989 50520

Table 4.1.5.2 - Average Values. P = 2

L	 1	 5	 10	 20	 30	 40

COPIES	 18695 16039 14556 16232 14922 1408 145(

ADDS	 8274 3111 8031 849 8565 8535 794

TOTAL
LENGTH 23804 2703 30911 26539 29680 30112 309
ADDED

TOTAL COST 42499 4742 45467 42770 44602 44820 454

35

- itverae vaxues. r

L	 1	 5 1 10	 20	 30	 40

COPIES	 7561 7130 6919 6690 6579 6551 6955

ADDS	 5630 5436 5356 5241 5216 5224 5352
TOTAL

LENGTH 140068 40989 41414 42216 42620 42797 41261

TOTAL COST 147629 14811() (48 	 48906 49198 I 4948 148216

Table 4.1.&4.7 Average Values. P= S

L	 1	 10	 20'30	 40	 •

COPIES	 740 637 662 603 589	 64 603

ADDS	 642 606	 631	 584	 573	 598 588

TOTAL
LENGTH 6363 6416 6365 64264 64413 64225 64322
ADDED

TOTAL COST 64.co:i 6481:1 64-y' 6486' 6002 648:19 6492.5

Table 4.1-5.5 Average Values. P = i6

L	 1	 5 r	 10	 20 r r r30	 40

COPIES	 61	 Gi	 74	 65 	 56. 58 ..
2

ADDS	 53	 L 48	 50	 50	 46	 48
L 	 43

TOTAL
LENGTH .48693 52126 5548 58035 61002: : 57291 I.°'
ADDED

TOTAL COST 48751 2187	 .81oo	 57249 47::

36

• Average Cost Graph

AVERAGE COST GRAPH

70000

c3 60000 -

50000

40000 -

30000

20000
0
I- 10000

0 --
1	 5

-

1=
-A--P3
-4- P=8

P=16

10	 20	 30	 40

LINKED LIST SIZE L

Figure 4.5 Average Cost Graph - Files of Size 70K

4.1.6 Files of Size lOOK

• Average Cost Tables

Table 4.1.6.1- Average Values. P=1

L	 1	 5	 10	 20	 30	 40	 £

COPIES 75907 66759 62858 57717 57322 56718 57946

ADDS	 10841 10986 10454 11933 10982 12124 12336

TOTAL
LENGTH 16579 17989 16945 19606 17898 20443 20692
ADDED

TOTAL COST 92486 84748 7980 ZZ32a 75220 77161 7869

able 4.1.6.2 - Average Values. P = 2

L	 1	 5	 10	 20	 30	 40	 '

COPIES 29440 27245 26,553 26197 25797 25714 26555

ADDS	 11769 12239 12473 12243 12400 12412 12334

LENGTH I 35319 I 37491 38702 I 38379 I 39487 I 39326 38024

AL COST I 646o 1647,36 1 6sss 164,576 16.!2841 6.co g 164,:;78

37

Table 4..1.6. - Avera'e Values. P = 3

L	 1	 5	 10	 20	 30	 40

COPIES 12227 11767 11449 11306 11205 11267 ii6oi

ADDS	 8552 8341 8236 8205 8250 8293 8296

TOTAL
LENGTH 58004 60669 61564 62024 62404 62069 61016
ADDED

TOTAL COST 702a2	 moii 71 7608 736 72618

Table 4.1.6.4 - Average Values. P = 8

L	 1	 5	 10	 20	 30	 40	 c

COPIES	 919 1423 1363 1353 1385 1326 -4558

ADDS	 830 1349 1300 1_94 1321 1268 3.555

TOTAL
LENGTH 95638 97533 98596 98638 98456 98735 87155
ADDED

)TAL COST 96556 g8g 6 99958 99991 99841 i0006i 9171

Table 4.1.6.5 - Average Values. P = 16

L	 1	 5	 10	 20	 30	 40	 c

COPIES	 43	 109	 69	 87	 93	 76	 77

ADDS	 41	 75 1 67	 83	 89	 72	 73
TOTAL

LENGTH 95977 96347 91292 95227 95186 88528 88524
ADDED

TOTAL COST 96020 964.c6 g162 95214 95278 88604 88600

38

• Average Cost Graph

AVERAGE COST GRAPH

120000

100000

80000

60000

40000 -	 •-
0
- 20000--

0 --I----
1	 5

---r.
10	 20	 30	 40

LINKED LIST SIZE L

--	
-.

-E- P=8
= 16

M.

Figure 4.6 Average Cost Graph - Files of Size 100K

4.2 Recommendations

Based on the above set of experiments, some recommendations can be

made as to the values ofp and L that relatively yield good compression results. Next,

and for each set of files of size s, we highlight which values ofp and L give good

compression results while maintaining linear time and constant space.

4.2.1 - Files of Size 1K

The experimental results show that a good average compression cost of

files of size 1K, is achieved for a seed's length = 2 and for a constant linked list size

L = 40. The values are as follows:

Good Average Cost: 264 for = 16 and L = 10

4.4.2 - Files of Size 8K

A good average compression cost is achieved for the following values:

Good Average Cost: 5412 forp = 2 and L = 40

39

4.2.3 - Files of Size 30K

A good average compression cost is achieved for the following values:

Good Average Cost: 17904 for p = 2 and L = 5

4.4.4 - Files of Size 40K

A good average compression cost is achieved for the following values:

Good Average Cost: 23809 for P = 2 and L = 10

4.4.5 - Files of Size 70K

A good average compression cost is achieved for the following values:

Good Average Cost: 42499 for P = 2 and L = 1

4.4.6 - Files of Size lOOK

A good average compression cost is achieved for the following values:

Good Average Cost: 64576 for p = 2 and L = 20

40

CHAPTER VI

Conclusion

In this thesis, we have created a test-bed for differencing algorithms that run in

linear time and use constant space. We have discussed the delta encoding differencing

technique. Our experimental results provided the best values for the length of the

linked list and the length of the seed to be used in the hash tables as function of the

input size.

41

References

[1] M. Ajtai, R. Burns, R. Fagin, D.D.E. Long, and L. Stockmeyer, Compactly

encoding unstructured inputs with differential compression, Journal of the

ACM 49:3, 2002, 318-3 67.

[2] S. Baase and A. Van Gelder, Computer Algorithms, 3rd Edition. Addison

Wesley, 2000.

[3] G. Banga, F. Douglis, and M. Rabinovitch, Optimistic deltas for WWW

latency reduction. In Proceedings of the 1997 USENIX Annual Technical

Conference. USENIX Association, Berkeley, California, 1997, 289-303.

[4] R. C. Burns and D.D.E. Long, In-place reconstruction of delta compressed

files. In Proceedings of the 1 7thAnnual ACM Symposium on Principles of

Distributed Computing. ACM, New York, 1998.

[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge

University Press, New York, 1997.

[6] J. P. MacDonald, File system support for delta compression. Masters thesis.

Department of Electrical Engineering and Computer Science, University of

California at Berkeley, Berkeley, California, 2000.

[7] W. Miller and E. W. Myers, A file comparison program. Softw. Pract.

Exper. 15:11, 1985, 1025-1040.

[8] J. C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy, Potential

benefits of delta encoding and delta compression for HTTP. In Proceedings of

ACM SIGCOMM'97, ACM, New York, 1997.

Wj

[9] C. Reichenberger, Delta storage for arbitrary non-text files. In Proceedings

of the 3rd International Workshop on Software Configuration Management.

ACM, New York, 1991, 144-152.

[10] W. F. Tichy, The string to string correction problem with block move,

ACM Trans. Comput. 2:4,1984,309-321.

43

APPENDIX

A TEST-BED FOR LINEAR TIME CONSTANT SPACE DIFFERENCING

ALGORITHMS

#include "list.cpp"

#include "Node.h"

#include rVlist.cppu

#include "VNode.h"

#include "declarations.h"

#include <iostream.h>

#include <fstream.h>

#include <iomaniph>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <stdio.h>

#include <limits.h>

1*

*1

main()
{

ifstream readReference(' t reference.txt", ios: : in), read Version(" version. txt",
ios::in);

if(! readReference)
{

cerr<<"File could not be opened"<<endl;
exit(1);

//endif

if(!readVersion)
{

cerr<<"File could not be opened"<<endl;
exit(l);

//endif

readReference. read((char*)& current, p);

read Version.read((char*)& versionstring, p);

//BUILD THE HASH TABLES INCREMENTALLY
proceed(readReference, readVersion, HR,HV,current, versionstring,rc, vc, p);

cout<<"\n\n\n\t n-----------------Total # of Copies for this File are:
'"<<COPYCOUNTER<<" "<<endl;

cout<<"\n\n\n\t n-----------------Total # of Adds for this file are:
"<<ADDCOUNTER<<""<<endl;

cout<<"\n\n\n\t n-----------------Total Length of the Strings Added for this file
are: "<<TOTALLEN<<"'"<<endl;

cout<<"\n\n\n FILES OVER!!!!! PROCEEDO IS OVER";
return 0;

} //endofmain()

1*

End of Main()
*1

1*

Proceed()
*1

void proceed(ifstream readReference, ifstream readVersion, List HR{LISTSIZE, VList
HV[LISTSIZE], Seed current, VerSeed versionstring, mt rc, mt vc, mt p)

45

while ((!readReference.eofQ)
&& (!readVersion.eofO))

{

Ifcout<<"\n\n
	 \U;

//getcharO;

II
	

cout<<z"\n Current REFERENCE String is:

outputline(cout. current);

//rc is the starting offset of each scanned string in the file
rc = readReference. tell g() - p;
cout<<" At Offset RC = 'z<rc;
cout<<"

//Compute footprint of the reference seed
unsigned long fprintR = footprint(current,rc, p);
cout<< With Footprint = "<<fprintR;

HR[fprintR] .insertAtFront(rc);	 I/insert rc into hash table HR
flat its footprint fprintR

cout<<"\n\n Current VERSION String is:
outputline2(cout, versionstring);

vc = readVersion. tell g() - p; //Vc is the starting offset of a scanned
I/string in the file

cout<<" At Offset VC =

I/compute a Version seed's footprint
unsigned long fprintV = footprint2(versionstring,vc, p);
cout<<" With Footprint = "<<fprintV<<endl;
HV [fprintV] .VinsertAtFront(vc);

I/Check for each seed scanned in the version file whether its footprint
I/exists in the hash table of R.
I/And simultaneously, for each seed scanned in the reference file,
1/check whether its footprint exists in the hash table of V.

46

I/This ensures we are maintaining a window into the past for finding
1/transposed seeds

II 1) Search forfooptrintfprintV in hash table HR[]

I/if firstptr != 0 then fprintV exists in HR
if (!HR[fprintV].isEmptyQ)
{

cout<<" \n\n Footprint from HV[] zzfprintV<<' was found in
HR [] . \n\n\t Examine offsets in HR[]: \n"<<endl;

Rptr = HR [fprintV] .FptrO; /IRptr = first node on the list
//of HR[fprintV]

mt offR = HR[fprintV].getOffset(Rptr);//offR = offset
//stored at Rptr

I/now go in V to the offset stored at HV[fprintV]
Vptr = HV[fprintV].VFptrO;	 /IVNode = first node on the

Mist of HV[fprintV]
mt offV = HV[fprintV].VgetOffset(Vptr);	 //offV = offset

II stored at Vptr

while (Rptr != 0)	 I/while an offset exists on the next node of
I/the list at HR{fprintV]

//search the list for a node that has not yet been encoded
I/i.e. used=false.
I/if no such node is found encode the used ones on the

Mist.

offR = HRfprintV] .getOffset(Rptr); 	 I/get next offset
I/in the list

rm = offR; I/a possible match exists: set rm. = offR

vm = offV; I/a possible match exists; set vm = offV;

if (vs <= vm)
{

readReference.seekg(offR); I/go to offR in R
readVersion.seekg(offV); I/go to offV in V

47

//scan from both files a string of length p=3
readReference.read((char*)&indexedseed, p);
read Version .read((char*) &indexedverseed,p);

Encode(Rptr,Vptr,readReference, read Version, HR,
HV, indexedseed, indexedverseed,rc,vc, rm, vm, p,
fprintR, fprintV);

I/keeping record of the longest match only.
if ((len >= leng) && (len != 0))

{
for (mt cp = 0; cp <len; cp++)

tempstring[cp] = REFlongestmatch{cp};

tempstring[len] =

matchingR = rm;
matchingV = vm;
longestRptr = Rptr;
longestVptr = Vptr;

leng = strlen(tempstring);
} //endif()
else ;	 //if length of a new string is smaller

I/than its predecessor disregard it
} //endif(vs<vm)
else;	 I/if vm<vs don't accept it. We only

I/move forward in V

Rptr = HR [fprintV] .nPtr(Rptr); I/next pointer
offR = HR [fprintV].getOffset(Rptr);	 I/next offset

} I/endwhile()

if ((leng> 0) && (vm >= vs))
{

I/Before Copy-encoding a matching seed, Add() the
1/string [Vs, Vm)

intl = vm-vs; I/i = length of string [Vs, Vm-11

if (1 == 0)
cout<<"\n\n\t No String TO ADD.;

48

else
{

mt cu = read Version.tellgO;
mt Rcurr = readReference. tell gQ;

readVersion. seekg(vs);	 I/position pointer at Vs
mt initial = read Version.tellgO; 1/vs value

read Version.read((char*)&vstring,l):	 //scan
//seed {Vs,Vm)

ADD(vstring,l,vs);
mt stin = strlen (vstring.VerSubstring);

for (mt i = 0; i <= sUn; i++)
vstring.VerSubstring[i] =

readVersion. seekg(curr); I/reposition the pointer
}//endof Else()

COPY(tempstring, leng,matchingR);	 //matchingR =
I/offset of the longest

I/string stored in REFlong

I/Set Flags in HR & Hv of the encoded offsets
HR [fprintR] . setflag(IongestRptr,matchingR);

HV [fprintV] .Vsetflag(longestVptr,matchingV);

vs = matchingV + leng;// + 1;
vc=vs+p- 1;

rc = matchingR + leng + p-i; 	 I/rc moves backwards

read Version. seekg(vc) ;
readReference.seekg(rc);

} //endif(leng>0)
else;

} //endif(! HR[fprintV] .isEmptyQ)
else
{

cout<<"\n\n FOOTPRINT from HV[] NOT FOUND IN

HR [] tt<<endl;
}

Me

for (mt e = 0; e <= SIZE; c++)
	

I/re-initialize tempstring[]
tempstring[e] ='\O';

leng=0;	 //re-initialize leng

for (mt ee = 0; ee <= SIZE; ee++) //re-initialize REFlongestmatch
REFlongestmatch[ee]

len = 0;

/1 2) Search for fooptrint fprintR in hash table HV[]

//If firstptr != 0 then fprintR exists in H
if (!HV[fprintR] .VisEmptyO)

cout<< " \n\n Footprint from HR[] "<<fprintR<<" was found in
HV[]. \n\n\t Examine offsets in HV[]: \n"<<endl;

I/get first offset from H at fprintR in the first node of the list;
VVptr = HV{fprintR}.VFptrO;
mt ofV = HV[fprintR].VgetOffset(VVptr);

RRptr = HR[fprintR].FptrQ;
mt ofR = HR[fprintR].getOffset(RRptr);

while (VVptr != 0)

I/search the list for a node that has not yet been encoded
I/i.e. used=false.
i/if no such node is found we encode the used ones on the
Mist.
vm = ofV;	 //a possible match exists
rm = ofR;

I/Go in R to the offset stored at HR[fprintR]
if (vs <= vm)

readVersion. seekg(ofV);
readReference. seekg(ofR);

II scan from R &V a string of length p=3
readReference . read((char*)&Rseed, p);
readVersion.read((char*)&Vseed,p);

50

Encode(RRptr,VVptr,readReference, read Version,
HR, HV, Rseed, Vseed,rc,vc, rm, vin, p, fprintR,
fprintV);

if (len >= in)
{

for (mt ss = 0; ss <len; ss++)
returned [ss] = REFlongestmatch[ss];

returned [len] ='\O';

matchingR = rm;
matchingV = vm;
longestRptr = RRptr;
iongestVptr = VVptr;

In = strlen(returned);//update length of returned[]
I
else;

I/endif(vs<=vm)
else;

//VVptr =next node-offset in the list at fprintR
VVptr = HV [fprintR] .VnPtr(VVptr);
ofV = HV{fprintR].VgetOffset(VVptr);

} //endwhile()

if ((leng > 0) && (vm >= vs))
{

I/Before Copy-encoding a matching seed, Add() the
1/string [Vs, Vm)
intl = vm-vs;	 I/I = length of string [Vs Vm-1]

if (I == 0)
cout<<"\n\n\t No String TO ADD.";

else

mt curr = read Version.tellgQ;
mt Rcurr = readReference.tellgO;

readVersion.seekg(vs);	 I/position the file pointer at VS

mt initial = read Version.tellgQ;

readVersion.read((char*)&vstring,1);	 //get string [Vs,Vm)

51

ADD(vstring,l,vs);
mt sting = strlen(vstring.VerSubstring);

for (mt i = 0; i <= sting; i++)
vstring.VerSubstring[i] =

readVersion. seekg(curr); 	 I/reposition the pointer
}//endof Else(

COPY(returned, ln,matchingR);

I/Set flags in both HR & Hv
HR[fprintR] .setflag(IongestRptr,matchingR);
HV [fprintV] .Vsetflag(longestVptr,matchingV);

vs = matchingV + In;//In = length of the matching seed
vc = vs + p - 1;

rc = matchingR + in + p -1;	 //cc moves backwards

readVers ion. seekg(vc);	 I/re-position pointer mV
readReference.seekg(rc); f/re-position pointer in R

} //end if(ieng>O)
else

}//endif(! HV{fprintR} .isEmptyO)
else
{

cout<<\n\n FOOTPRINT from HR[] NOT FOUND IN HV[]'<<endi;
}

I/re-initializefor (intf= 0; f<= SIZE; f++)
returned[f] =

In = 0;

for (ee = 0; ee <= SIZE; ee++)
REFiongestmatch[ee] =

len = 0;

//re-initialize

I/re-initialize

mt vv = readVersion. tell g() - p + 1;

52

readVers ion. seekg(vv);

mt rr = readReference.tellg() - p + 1;
readReference.seekg(rr);

readReference.read((char*)¤t, p);
readVersion.read((char*)&versionstring, p);

}//endofwhile() ---------- > end of file is reached.
} //endof Proceed()

1*

Encode()
*1

void Encode(Node * rrptr, VNode * Vvptr,ifstream readReference, ifstream
readVersion, List HR[LISTSIZE], VList HV[LISTSIZE], Seed current, VerSeed
versionstring, mt rc, mt vc, mt rcm, mt vcm, mt p, mt fprintR, mt fprintV)
{

ExtendMatch stretch;
ExtendMatch2 grow;

I/Check if two strings match

cmp = CompareSeeds(current, versionstring);

if(vcm >= vs)
{

if (cmp == 0)	 //The two strings match
{

rcmatch = rcm;
vcmatch = vcm;

cout<<"\n\n\t	 MATCHING SEEDS FOUND!!!";

53

for (mt m=O; m <3;m++)

matchkEF[m] = current. substring[mjj;
matchVER[m] = versionstring.VerSubstring[m];

//endfor

strcpy(REFlongestmatch,matchREF);
strcpy(VERlongestmatch,matchVER);

mt off;
mt Voff;

off = readReference.tellg() - p; I/offset of the matching seed in R
Voff = readVersion. tell g() - p; f/offset of the matching seed in V

mt Vextensionpoint = vcm + p;
mt Rextensionpoint = rcm + p;
readReference. seek g(Rextensionpoint);
read Version. seekg(Vextensionpoint);

while (1)

readReference. read((char*) &stretch, 1); I/check next
//character

readVersion. read((char*) &grow, 1); //check next
I/character

I/if next characters don't match, extension not possible.
if (stretch.R1ongest[O] != grow. Vlongest[O])
{

break;
}
else
{

strncat(REFlongestmatch, stretch. Rlongest, 1);
strncat(VERlongestmatch,grow.Vlongest, 1);

if((readReference.eofQ) 11 (read Version.eofO))
{

break;

54

}//endif()
} //endelse()

}//endWhile()
I/len = length of the longest matching string
len = strlen(REFlongestmatch);

} I/endif(cmp==0)
else	 I/strings don't match
{

cout<<'\n\n\n\n\t STRINGS DON'T MATCH!!! ";

rc = rc + p;

	

	 //advance rc by p since we scan strings from
I/current location - length + 1

readReference.seekg(rc);

vc = vc + p; I/advance vc by p
read Version. seek g(vc) ;

} //endElse()
} //endif(vcm>=vs)

else;	 /Ivm < vs, disregard.
}I/endof Encode()

1*

footprint()
*1

unsigned long footprint(Seed curr, mt r, mt p)
{

F=0; I/the footprint of a scanned seed

mt q = 1001; II number of entries in the hash table

hr = current offset & corresponds to j=0 of the seed stored in substring[j] of
//length p=3
//and i <= r + p - 1 corresponds j <= p- 1.

intj = 0;

55

while (j <= p - 1)
if(j<=p-1)
{

intl = r;
while (i <= r + p - 1)
{

F += pow(127,r + p - 1 - i) * curr.substringj];

//endwhile()

j++; //j>2 : Get next string
} //endFor()

return F % q;
}/Iend of footprint()

1*

Footprint2()
*1

unsigned long footprint2(VerSeed s, mt r, mt p)

Fv=0; I/the footprint of a scanned seed

mt q = 1001; II number of entries in the hash table

//r=current offset & corresponds to j=0 of the seed stored in substring[j] of
I/length p=3
Hand i <= r + p - 1 corresponds j <= p- 1.

intj = 0;
while (j <= p - 1)

if(j<=p-1)
{

mt i = r;

56

while (i <=r+p- 1)
{

Fv += pow(127,r + p - 1 - i) * S.VerSubstring[j];

j++;
} //endwhile()

j++; //j>2: get the next string
} //endFor()

return Fv % q;
)//end of footprint2()

1*

Outputline()
*1

void outputline(ostream &out, Seed s)
I

out<<"<<s.substring<<"";

} //endof outputline()

1*

Outputline2()
*1

void outputline2(ostream &print, VerSeed vs)
{

57

print<<" ' <<vs.VerSubstring<<";

}/Iendof outputline2()

1*

Corn pareSeeds()
*1

mt CompareS eeds (Seed cs, VerSeed VCS)

{

mt comp;
comp = strcmp(cs. subs tring, Vcs.VerSubstring);
return comp;

} //endofCompareSeeds()

Copy()
*1

void COPY (Char * REFstr, irit leng, mt addr)

COPYCOUNTER++;

Cout<<"\n\fl\fl ------ COPY MATCHING REFERENCE STRING---";

cout<<"\n\n COPY "'<<REFstr<< ;
cout<<"\n (C, '<<leng<<" , zaddr<<") "<<endi;

coUt<<"\fl TOTAL LENGTH ENCODED WITH A COPYQ is: "<<leng.<<endl;
cout<<"\n TOTAL NUMBER OF COPIES = "<zCOPYCOUNTER<<endI;

}I/end of Copy()

58

1*

Add()
*1

void ADD(VerSeed Vstr,int LEN,int q)

ADDCOUNTER++;
TOTALLEN += LEN;
cout<<"\n\n------ADD NON-MATCHING VERSION STRING------

cout<<"\n\n (A, "<<LEN<< , "<zVstr.VerSubstring<<")"<<end1;

cout<<"\n TOTAL LENGTH ENCODED WITH AN ADD() is: "<<LEN<<endl;
couv<"\n TOTAL NUMBER OF ADDS = 'z<ADDCOUNTER<<end1;

) //end of add()

59

#ifndef NODE _H
#define NODE_H

class Node{
friend class List;

public:
Node(const mt &);
mt getdataQ;
mt NodelsFlagged(Node *);
bool used;

private
Node * nextPtr;
mt data;

Node:: Node(const mt & info)
:data(info),nextPtr(0), used(false) {

mt Node::getdata()

return data;

#endif

//checks if a given node has been flagged

/ILIST.H
//This is the header file for the list class.

4tifndef List_H
#define List _H
#include" node.h"

class List(
friend class Node;

public:
ListO;
void insertAtFront(const int);
bool isEmptyO;
void printO;
Node * getNewNode(const mt &);

bool setflag(Node *,jnt); //setflag() takes an encoded offset as
I/argument & sets its node to used=true.

mt getOffset(Node *);

Node * FptrO;
Node *nptr(fs4ode*);

private:
Node * firstPtr;
Node * lastPtr;
mt count;

#endif

61

//LIST.CPP

#include<iostream.h>
#include<cassert>
#include "node.h"
#include "list.h"
#include <stdio.h>
#incllude <iomanip.h>

const mt MAXCOUNT = 5;

List HR[231 l];

List: :List()
:firstPtr(0) ,lastPtr(0), count(0) { }

mt List:: CaetOffset(Node * ptr)

if(ptr != O){
mt a = ptr->data;
return a;

}
else

return -1;
I

Node * List::nPtr(Node *ptr)
{

return ptr->nextPtr;

}

Node * List::Fptr()
{

return firstPtr;
}

bool List::setflag(Node * rptr, mt offset)

while(rptr->data != offset)
rptr=rptr->nextPtr;

62

rptr->used = true;
mt nodeoffset = rptr->getdataO;
cout<<"\n\n\t FLAG OF NODEOFFSET "<<nodeoffset<<'" IS SET TO
TRUE" <<endi;
return true;	 I/node is flagged as used.

} //endofsetflag()

void List::insertAtFront(const mt value)
{

Node * newPtr = getNewNode(value);
Node * p = firstPtr;
if(isEmptyQ)
{

firstPtr = lastPtr = newPtr; count = 1;
}
else
{

if (count < MAXCOUNT)
{	 I/while there is still empty nodes in the list

Node * f firstPtr;

if (f !=O)
while (f != 0)

	

	
//Insert the offset ONLY if it's not

//previously inserted i.e. no duplication
{

if (f->data == value)
{

	

	 I/offset exists in list of Hp, don't duplicate
break;

f = f->nextPtr;
}
if (f==0)
{

newPtr->nextPtr = firstPtr;
firstPtr = newPtr;
count++;

} //endif()
//endif()

63

else
{

booT found;
found = false;
do	 //(p->nextPtr != firstPtr)
{

if (p->used == true)
{

cout<<'\n one used offset found in HR";

p->data = value;
p->used = false;
found = true;

//end if 0
else

p = p->'nextPtr;
} //endwhile()
while ((p != 0) && !found);

if (!found)	 II none of the offsets has been used
{

if (firstPtr == lastPtr)
{

firstPtr->data = value;
}
else
{

Node * current = lastPtr;
Node * previous;

while (firstPtr->nextPtr != current)
{

previous = firstPtr;

while (previous->nextPtr != current)
previous = previous->nextPtr;

current->data = previous->data;
current = previous;

} //endwhileQ

current->data = firstPtr->data;
firstPtr->data = value;

} //endelse
} //endif(! found)

64

//endElse()
}//endif()

} //endlnsertAtFront()

Node * List::getNewNode(const mt & value)

Node * ptr = new Node (value);
assert (ptr != 0);
return ptr;

bool List::isEmpty()

return (firstPtr == 0);

void List::print()

Node * Ptr = firstPtr;
while(Ptr != 0)

cout<<Ptr->data<<" H;

Ptr = Ptr->nextPtr;
} //endwhile()

} //endprint()

65

//VNODE.H

#ifndef VNODE_H
#define VNODE_H

class VNode{
friend class VList;

public:
VNode(const mt &);
mt getVdataQ;
mt VNodelsFlagged(VNode *);	 //checks if a given node is empty
bool coded;

private:
VNode * VnextPtr;
mt Vdata;

VNode::VNode(const mt & Vinfo)
:Vdata(Vinfo) ,VnextPtr(0), coded(fal se) { }

mt VNode: :getVdata()

return Vdata;
}

#endif

Mel

//VLIST.H
//This is the header file for the VList class.

#ifndef VList_H
#define VList_H
#include"Vnode.h"

class VList{
friend class VNode;

public:
YListO;
void VinsertAtFront(const int);
bool VisEmptyQ;
void VprintQ;

VNode * VgetNewNode(const mt &);

bool Vsetflag(VNode *,jnt);	 //Vsetflag() takes an encoded offset as
I/argument & sets its node to used=true.

mt SearchHashTable_V(VNode *);	 I/search HV[I for a given footprint
mt VgetOffset(VNode *);
VNode * VFptrQ;
VNode *VpJtr(VNode*);

private:
VNode * VfirstPtr;
VNode * VlastPtr;
mt Vcount;

#endif

67

//VLIST.CPP

#include<iostream.h>
#include<cassert>
#include "Vnode.h"
#include "VList.h"
#include <stdio.h>
#include <iomanip.h>

const mt MAXSIZE = 20;

VList HV[2311

VList: :VList()
:VfirstPtr(0) ,VlastPtr(0), Vcount(0) { }

mt VList::VgetOffset(VNode * Vptr)
{

if(Vptr != 0) {
mt a = Vptr->Vdata;
return a;

}
else

return -1;
}
VNode * VList::VnPtr(VNode *Vptr)
{

if(Vptr)
return Vptr->VnextPtr;

else
return 0;

}
VNode * VList::VFptr()
{

return VfirstPtr;

boo! VList::Vsetflag(VNode * vvptr,int of)
{

while (vvptr->Vdata != of)
vvptr = vvptr->VnextPtr;

vvptr->coded = true;
mt VNODEOFFS ET = vvptr->getVdataQ;
cout<<"\n\n\t FLAG OF VNODEOFFSET '"<<VNODEOFFSET<<" IS SET
TO TRUE"<<endl;

68

return true;	 I/node is flagged as coded
}/Iend of Vsetflag()

void VList: :VinsertAtFront(const jilt Vvalue)
{

VNode * VnewPtr = VgetNewNode(Vvalue);
VNode * p = VfirstPtr;
if(VisEmptyO)
{

VfirstPtr = VlastPtr = VnewPtr;
Vcount= 1;

}
else
{

if (Vcount < MAXSIZE)

VNode * v = VfirstPtr;

if (v =0)
while (v != 0)
{

if (v->Vdata == Vvalue)
(I/Offset exists in H4on 't duplicate

break;
}
v v->VnextPtr;

}//endWhile()
if (v == 0)
{

VnewPtr->VnextPtr = VfirstPtr;
VfirstPtr = VnewPtr;
Vcount++;

} //endif()
//endifVcount<MAXSIZE)

else

VNode * p = VfirstPtr;

RE

bool found = false;
do
{

if (p->coded == true)

cout<<"\n ONE USED OFFSET FOUND ON HV[]";

p->Vdata = Vvalue;
p->coded = false;
found = true;

} //endif()
else

p = p->VnextPtr;

}
while ((p != 0) && !found);

if (!found)	 II none of the offsets has been used
{

if (VfirstPtr == VlastPtr)

VfirstPtr->Vdata = Vvalue;
}
else {

VNode * current = VlastPtr;
VNode * previous;

while (VfirstPtr->VnextPtr != current)
{

previous = VfirstPtr;

while (previous->VnextPtr != current)
previous = previous->VnextPtr;

current->Vdata previous->Vdata;
current = previous;

} //endwhileQ

current->Vdata = VfirstPtr->Vdata;
VfirstPtr->Vdata = Vvalue;

} //endElse()
} //endif(!found)

} //endElse()
} //endif()

70

}//endVlnsertAtFront()

VNode * VList::VgetNewNode(const mt & Vvalue)
{

VNode * Vptr = new VNode (Vvalue);
assert (Vptr != 0);
return Vptr;

}

bool VList: :VisEmpty()

return VfirstPtr == 0;
}

void VList::Vprint()
{

VNode * VPtr = VfirstPtr;
while(VPtr != 0)
{

couv<VPtr->Vdata<<"
VPtr = VPtr->VnextPtr;

}//endWhile()
}//endVprint()

71

I/DECLARATIONS .H
//This file includes all the declarations of the variables, functions and structures
used I/in the code.

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
mt p = 3;	 I/length of the seed.
mt TOTALLEN = 0;	 I/total length of the adds encoded
const mt LISTSIZE 2311;
const mt SIZE = 100000;
struct Seed {

char subs tring[2000];

struct VerSeed{
char VerSubstring[2000];

struct ExtendMatch
char Rlongest[2];

struct ExtendMatch2
char Vlongest[2];

1*

THE FUNCTIONS

*1

void proceed(ifstream, ifstream, List [LISTSIZE], VList [LISTSIZE], Seed,
VerSeed,int, int, int);

//The following functions encode a string as an Add() or Copy() command.

void Encode(Node *,VNode , ifstream, ifstream, List[LISTSIZE],
VList [LISTS IZE], Seed, VerSeed,int, int,int, int, int, int, int);

void outputline(ostream&, Seed); 	 //outputs a reference string
void outputline2(ostream&, VerSeed); 	 //outputs a version string

72

unsigned long footprint(Seed, int, int); 	 //footprint() function for R
unsigned long footprint2(VerSeed, int, int);	 //footprint() function for V
mt CompareSeeds(Seed, VerSeed);	 II compare 2 seeds both files

void COPY (char , int, int);	 //copy a string
void ADD(VerSeed,int,int); 	 I/add a string

1*

THE VARIABLES

*1

1*

Variables of type Struct()
*1

Seed current, indexedseed, Rseed;
VerS eed versionstring, vstring, indexedverseed, Vseed;

ExtendMatch stretch;
ExtendMatch2 grow;

1*

POINTERS
*1

Node * Rptr;
Node * RRptr;
Node * longestRptr;
Node * bestRptr;
Node * Tptr;
Node * Sptr;

VNode * Vptr;
VNode * VVptr;
VNode * IongestVptr;
VNode * bestVptr;
VNode * Uptr;
VNode * Zptr;

int. vs = O,rs = 0;
	 I/initial offset = 0 in the Version file

73

unsigned long F;
	

I/footprint of seed in R
unsigned long Fv;
	

I/footprint of a seed in V

I/mt Fr=0;
	

I/footprint stored in HR[]
I/mt FFv=O;
	

I/footprint stored in HV[jJ

I/mt Rsearchresult = 0; 	 I/the value returned by function
SearchHashTable_RQ: either an 1 or -1
I/mt Vsearchresult = 0; 	 //the value returned by function
SearchHashTable_VQ: either an 1 or -1

I/the following arrays will temporarily hold each string currently being
manipulated
char matchREF[3];
char matchVER[3];

char matchREF2[3];
char matchVER2[3];

I/the following arrays will hold the longest matching substrings to be copied
char REFlongestmatch[SIZE];
char VERlongestmatch[SIZE];

char REFlongestmatch2[SIZE];
char VERlongestmatch2[SIZE];

char REFlong[SIZE];
char VERlong[SIZE];
char REFlong2[SIZE];

char tempstring[SIZE];
char returned[SIZE];

char STRING_TO_ADD[3];
be Encoded with an ADD()
char ADDED _STRINGS [1000]; H
the Strings Encoded with an ADDO

I/temporary storage for the strings to

PERMANENT STORAGE of ALL

mt cmp;

74

long rc=O,rcc=O,rcmatch=O; II offset of the first character of the substring in R
long rm = 0; I/the starting offset of a matching substring in R
long vc=0,vcc=0,vcmatch=0; II offset of the first character of the current string
in
long vm = 0; II starting offset of a matching substring in V

mt ln=0,1n2=0;	 I/length of the longest matching string
mt len=0,leng=0, len2=0; /Tholds the length of the longest matching string
mt longueur = 0;
intlngth=0;

mt bestoffsetR=0;
mt bestoffsetV=0;

mt matchingV = 0;
mt matching--R = 0;

mt ADDCOUNTER =0;
mt COPYCOUNTER =0;

1*

END OF DECLARATIONS

*1

75

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85

