A TEST-BED FOR LINEAR TIME, CONSTANT SPACE DIFFERENCING ALGORITHMS

By

Pauline Mouawad

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science

Department of Computer Science Faculty of Natural and Applied Sciences

Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

June 2004

A Test-Bed for Linear Time, Constant Space Differencing Algorithms

By

Pauline Mouawad

A Thesis

Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Science in Computer Science

Department of Computer Science

Faculty of Natural and Applied Sciences

Notre Dame University - Louaize
Zouk Mosbeh, Lebanon

June 2004

A Test-Bed for Linear Time Constant Space Differencing Algorithms

By

Pauline Mouawad

Approved:

Fovad Chaired

Found Chedid: Professor of Computer Science
Advisor \& Chairman of Committee

Issam Moghrabi: Associate Professor of Computer Science

Omar Rifi: Assistant Professor of Computer Science
$\frac{\text { Madnachend }}{\text { Ziadf Reached: Assistant Professor of Mathematics }}$

Date of Thesis Defense: June 22 ${ }^{\prime \prime \prime}$, 2004

ACKNOWLEDGEMENTS

"Let us, then, be up and doing, with a heart for any fate; still achieving, still pursuing, learn

to labor and to wait."
Henry Wadsworth Longfellow

If one finds passion in one's work, how can this merriment be full if it has no gratitude to show? I cannot be content with a work that is merely the fruit of a singular root but rather, I draw satisfaction from the knowledge that ultimately, I have someone to thank.

My thanks are due to my parents and my sister, for always being there for me. Their encouragement and support have been most precious to the fulfillment of this achievement. I couldn't have done this without them.

To my advisor, Dr. Fouad Chedid, I offer heartfelt thanks for the pillar he has been for this work. His tireless dedication and truthful support have been an invaluable guidance to me and an incitement to my resolution. It is said that: "The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind" (Khalil Gibran). I could not have said this any better.

My deepest respect and gratitude to Notre Dame University, that gave me the education and knowledge I sought. I also owe a well of gratitude to the teachers who have taught me throughout the graduate study; they truly made this possible. I dedicate this thesis to my family and loyal friends; they really make the world a nicer place to live in.

Abstract

This thesis is motivated by the latest work related to Differential compression algorithms as it appears in the work of Ajtai, et al. - 2002. In particular, we pay special attention to delta encoding algorithms that achieve good compression in linear time and constant space. This is important because previous work in this area uses either quadratic time and constant space or linear time and linear space, which is unacceptable for large inputs. In delta encoding, the algorithm reads two different copies of the same file as input, termed the reference copy and the version copy. The output of the algorithm is a sequence of Add/Copy commands that reconstructs the version copy in the presence of the reference copy. Such algorithms have been recommended to be integrated into the http protocol. The idea is to reduce the data transfer time for text and http objects in order to decrease the latency of loading updated web pages. Also, in a client server system, clients may perform delta encoding to exchange delta encodings with a server instead of exchanging whole files. This reduces the time needed to perform the backup and reduces the storage required at the backup server. In the literature, the evaluation of delta encoding algorithms depends on three metrics: the running time of the algorithm, the space it uses, and the compression results it achieves. In this thesis we build a test-bed for delta encoding algorithms that accommodates most of the previous work described in the literature. Through intensive experimentations we are able to recommend a hybrid algorithm that forms a good compromise among the existing methods.

TABLE OF CONTENTS

List of Figures vi
List of Tables vii
I The Problem 1
II Literature Review 4
2.1 Delta Encoding Compression Technique 5
2.2 Notations 7
2.3 Outline of the Algorithm 9
III A Test-Bed 21
3.1 The Algorithm 22
3.2 Time and Space Complexity 25
IV Experimental Results 27
4.1 Tables and Graphs 27
4.2 Recommendations 39
V Conclusion 41
VI References 42
VII Appendix 44

LIST OF FIGURES

Figure
2.1 Pseudocode for the Greedy algorithm 11,12
2.2 Pseudocode for the One-Pass algorithm 13, 14
2.3 Pseudocode for the Correcting One-Pass algorithm $15,16,17$
2.4 Pseudocode for the Correcting 1.5-Pass algorithm 18,19
3.1 Pseudocode for the Test-Bed algorithm 23, 24
4.1 Average Cost Graph - Files of Size 1K 29
4.2 Average Cost Graph - Files of Size 8K 31
4.3 Average Cost Graph - Files of Size 30K 33
4.4 Average Cost Graph - Files of Size 40K 35
4.5 Average Cost Graph - Files of Size 70K 37
4.6 Average Cost Graph - Files of Size 100K 39

LIST OF TABLES

Table

4.1.1.1 Average Values. $\mathrm{P}=1.1 \mathrm{~K}$ files 28
4.1.1.2 Average Values. $\mathrm{P}=2.1 \mathrm{~K}$ files 28
4.1.1.3 Average Values. $\mathrm{P}=3.1 \mathrm{~K}$ files 28
4.1.1.4 Average Values. $\mathrm{P}=8.1 \mathrm{~K}$ files 28
4.1.1.5 Average Values. $\mathrm{P}=16.1 \mathrm{~K}$ files 28
4.1.2.1 Average Values. $\mathrm{P}=1.8 \mathrm{~K}$ files 29
4.1.2.2 Average Values. $\mathrm{P}=2.8 \mathrm{~K}$ files 29
4.1.2.3 Average Values. $\mathrm{P}=3.8 \mathrm{~K}$ files 30
4.1.2.4 Average Values. $\mathrm{P}=8.8 \mathrm{~K}$ files 30
4.1.2.5 Average Values. $\mathrm{P}=16.8 \mathrm{~K}$ files 30
4.1.3.1 Average Values. $\mathrm{P}=1.30 \mathrm{~K}$ files 31
4.1.3.2 Average Values. $\mathrm{P}=2.30 \mathrm{~K}$ files 31
4.1.3.3 Average Values. $\mathrm{P}=3.30 \mathrm{~K}$ files 32
4.1.3.4 Average Values. $\mathrm{P}=8.30 \mathrm{~K}$ files 32
4.1.3.5 Average Values. $\mathrm{P}=16.30 \mathrm{~K}$ files 32
4.1.4.1 Average Values. $\mathrm{P}=1.40 \mathrm{~K}$ files 33
4.1.4.2 Average Values. $\mathrm{P}=2.40 \mathrm{~K}$ files 33
4.1.4.3 Average Values. $\mathrm{P}=3.40 \mathrm{~K}$ files 34
4.1.4.4 Average Values. $\mathrm{P}=8.40 \mathrm{~K}$ files 34
4.1.4.5 Average Values. $\mathrm{P}=16.40 \mathrm{~K}$ files 34
4.1.5.1 Average Values. $\mathrm{P}=1.70 \mathrm{~K}$ files 35
4.1.5.2 Average Values. $\mathrm{P}=2.70 \mathrm{~K}$ files 35
4.1.5.3 Average Values. $\mathrm{P}=3.70 \mathrm{~K}$ files 36
4.1.5.4 Average Values. $\mathrm{P}=8.70 \mathrm{~K}$ files 36
4.1.5.5 Average Values. $\mathrm{P}=16.70 \mathrm{~K}$ files 36
4.1.6.1 Average Values. $\mathrm{P}=1.100 \mathrm{~K}$ files 37
4.1.6.2 Average Values. $\mathrm{P}=2.100 \mathrm{~K}$ files 37
4.1.6.3 Average Values. $\mathrm{P}=3.100 \mathrm{~K}$ files 38
4.1.6.4 Average Values. $\mathrm{P}=8.100 \mathrm{~K}$ files 38
4.1.6.5 Average Values. $\mathrm{P}=16.100 \mathrm{~K}$ files 38

CHAPTER I

The Problem

During the last decade, the field of computer science has witnessed a widespread development that grew significantly. This growth triggered an increase in the demand for fast data transmission over the network (Internet or intranet). The solution was to compress large files into smaller versions so that they can be managed easily. Various techniques have been suggested and consequently provided solutions to the problem. Unfortunately limitations were encountered because no matter what the technique is, compressed files are still too large for a remote transmission and still require enormous transfer time and create unacceptable traffic over the network. Concisely, time and space are still a major issue to be dealt with.

Recent studies have used differential compression techniques in an attempt to solve the problem and various algorithms have been proposed $[1,3,4,6,7,8,9]$. The main concept is to try to find common strings between two versions of data and use them to encode one version compactly; this is accomplished by describing the encoding itself as a set of changes of one version with respect to its companion. Instead of compressing a whole new file to replace wholly an older version of it, we would rather check for the changes in it and generate some code that would only send those changes to the older version. A simple process ultimately combines the file with the changes. This is quite an interesting approach because it considerably cuts the size of the file to be compressed.

Recently, new algorithms have been put that run in linear time and use constant space. But the tradeoff is with the compression results. The algorithm has to disregard some strings in the file in favor of its running time and space usage. And sometimes a significant portion in the file is not encoded because the algorithms favor the recent scanned strings over the previously read ones and therefore information about past strings is completely lost. More on this will be described in the next chapter.

This thesis introduces a new algorithm, which attempts to yield near to optimal results by checking almost every string of length p in both files: the old one called Reference and the new one called Version. Similarities found are encoded with a Copy command from the Reference while non-matching strings are encoded with an Add command from the Version. The method used ensures a window into the past of the files being scanned in a sense that it examines almost all strings and it does not favor a string over the other except for strings that yield longer matches. We keep in mind that one string may match differently depending on how long it can extend in the file and still matches its copy in the other file. For example, a string of length $p=3$ consisting of $a b c$ in the Reference file that only matches to $a b c$ in the Version file is far less beneficial than the same string $a b c$ that extends in both the Reference and Version files to become abcdefghijklmnop of length $p=16$. Therefore this considerably diminishes the amount of strings left un-encoded. Moreover, instead of having several copy commands to encode a string of length $\mathrm{p}=16,1$ copy command does so and clearly decreases the cost of the compression. Also and very importantly, this algorithm cuts down on transmission time and on storage space. Ultimately, only variations of the file are being transmitted to the user, which means a major cut down
on Internet transfer time to the user's satisfaction. Finally and at the user-end, the program is run and the file is assembled and becomes the new updated version. The fashion by which the cost of such technique is computed will be described in a later chapter, in full.

The rest of the thesis is organized as follows. Chapter II offers an overview of related algorithms from the literature. Chapter III is our contribution in which we describe a Test-Bed of differencing algorithms that run in linear time and constant space. The actual code is included in the Appendix and heavily commented for a clear and friendly reading. Chapter IV lays down a series of tests conducted on different files of different sizes while varying the size of a specific variable L in the code to be revealed later on. A series of Table and Graph representations will accompany those tests for a concise and obvious conclusion about the Average Cost of our algorithm as well as the time and space complexities. Chapter V is the conclusion.

CHAPTER II

Literature Review

Given two strings V and R , differential compression is about encoding V with respect to R by finding regions of V identical to regions of R and encoding this data with a reference to the location and size of the data in R [1]. At each step during execution, the algorithm examines strings, also called seeds, having a constant length p. Generally, the inputs to a differential compression algorithm are strings from both the Reference and Version files, and the output is a delta string:

$$
\Delta(\mathbf{R}: \mathbf{V})=A(\mathbf{R}: \mathbf{V})
$$

The output Δ will consist of a sequence of commands that will be described in the next section under Delta Encoding.

As mentioned earlier, the performance of this algorithm is measured using three metrics:

1. The time complexity. It is the running time of the algorithm.
2. The space complexity. It is the storage space the algorithm uses in order to process the strings read from both files.
3. The compression results achieved. These are the series of commands issued that differentiate between the similarities and the differences among the two versions of a file. Hence the term differential compression.

The purpose of this type of encoding is to find algorithms that would ultimately, no matter the file sizes or the scale of the input, generate a near to optimal compression result while cutting down on transmission time and storage space.

In this study, all the algorithms discussed follow the Delta Encoding Compression Algorithm which we describe next.

2.1 Delta Encoding Compression Technique

Given two copies of a file, the Reference - standing for the old version - and the Version - being the new version - , the delta encoding algorithm is about finding the longest match possible of a given string after performing a left-to-right scan of both files in a parallel fashion in search of matching seeds of an initial length p. In the event where such match is found, an attempt to extend that match to a longer one takes place. This is called the extension phase.

When a matching string is located, a command is issued in the form:

$$
(C, l, a)
$$

The character C stands for the command Copy, l stands for the length of the string to be copied, and a stands for the address. This reads into the following: Copy a string of length l found at offset a in the Reference file.

On the other hand, when a non-matching string is encountered, a different command is issued in the form:

$$
(A, l, S)
$$

The character A represents the command Add, lstands for the length of the string to be added, and S is the actual string being added. And it reads: Add a string S of length l from the Version file.

A simple example follows to illustrate this concept:

Given: $\quad R=A B C D E L M N O P Q R S T X Y Z$
\&
$V=F G H I J K L M N O P U V W X Y Z$
A Delta Encoding output would be:
[(A, 4, 'FGHIJK'), (C, 5, '5'), (A, 3, 'UVW'), (C, 3, '14')]

The identification of fixed length matching strings is done by reducing the seed to a fixed integer by means of a hash function F. The resulting integer of the form $F(S)$ is called the seed's footprint. Assuming an ideal hashing function, one footprint should uniquely identify a given seed; but such consideration would be misleading since in a real life application, two different seeds might in fact hash to the same footprint value.

The hashing function F generates a hash table with the number of its entries equal to the number of footprints generated. Indeed, a hash table entry is a footprint and a hash table size depends on the number of footprints stored. A hash table entry that corresponds to one or more seeds scanned may hold one or more offsets indicating the respective addresses of those seeds, depending on the algorithm used. Some algorithms do not allow more than one offset to be stored at a given footprint, as we shall see in the coming sections.

2.2 Notations

The notations used for differential compression are:

2.2.1 - Pointers:

The following pointers are defined in the code:
v_{c} : Current address of the Version string
r_{c} : Current address of the Reference string
v_{s} : Starting offset of a version string. This pointer holds the starting offset of the un-encoded suffix of the version string.
v_{m} : Offset of a matching version string.
r_{m} : Offset of a matching reference string.

2.2.2 - Parameters

The following parameters are defined as well:
p: Seed length. It's the length of substrings of which a footprint is calculated.
q : The size of the hash table $=$ the number of footprint values.
$|X|$: Length of a string X
$n=|R|+|V|$: The combined length of the reference and version strings.

2.2.3 - Hashing function

The following hashing function due to Karp and Rabin [1987] is used in the code:

If $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}$ are the symbols of a string X of length n, let X_{r} denote the substring of length p starting at offset r. Thus,
$X_{r}=\mathrm{x}_{\mathrm{r}} \mathrm{X}_{\mathrm{r}+1} \ldots \mathrm{X}_{\mathrm{r}+\mathrm{p}-1}$.
Identify the symbols with the integers $0,1, \ldots, \mathrm{~b}-1$, where b is the number of symbols. Let q be a prime, the number of footprint values. To compute the modular hash value (footprint) of X_{r}, the substring X_{r} is viewed as a base- b integer, and this integer is reduced modulo q to obtain the footprint; that is:

$$
\mathrm{F}_{\mathrm{X}}(\mathrm{a}, \mathrm{a}+\mathrm{p})=\left(\sum_{i=r}^{r+p-1} x_{i} b^{r+p-1-i}\right) \bmod q .
$$

Using this method, a footprint function is specified by two parameters: p, the length of substrings (seeds) to which the function is applied; and q, the number of footprint values. The choice of q involves a trade-off between space requirements and the extent to which the footprint values of a large number of seeds have different footprints. Typically, a footprint value gives an index into a hash table. The advantage of this function is that footprinting allows an algorithm to detect matching seeds of length p, but the algorithms in the literature are most successful when these seeds are part of much longer matching substrings; in this case, a matching seed leads the algorithm to discover a much longer match. The hashing function notations are:
$\mathrm{F}_{\mathrm{X}}(\mathrm{a}, \mathrm{a}+\mathrm{p})$: The footprint of a seed X , starting at offset ' a ' up to
offset $a+p$ where p is the substring's length.
H_{X} : The hash table, indexed by seeds' footprints.
H_{X} [i]: The i th element in hash table H_{X}. In general, hash table entries
contain the starting offsets of seeds indexed by footprint value.

2.3 Outline of the Algorithm

1. Initialize the hash table(s). Create empty hash table(s).
2. Initialize pointers. Set $\mathrm{v}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}$ and v_{s} to zero.
3. Generate new footprints. Generate a new footprint at v_{c} and at r_{c} if there is enough input string to the right of v_{c} and r_{c} to generate a new footprint. If at least one footprint was generated, continue at Step (4). If not, go to Step (8) to finish the encoding of V and terminate.
4. Try to find a matching seed. Use the newly generated footprint(s) and the hash table(s) to try to find a matching seed in R and V. In some algorithms, the new footprint(s) are also used to update the hash tables. If a matching seed is not found, increment v_{c} (and increment r_{c}) by one, and repeat Step (3). If a matching seed is found, continue at Step (5) to extend the match.
5. Extend the match. Attempt to extend the matching seed to a longer matching substring in both R and V by comparing symbols between R and V.
6. Encode the match. Encode the substring of V from v_{s} to the end of the matching substring by producing the appropriate command sequence; this will always end with a copy command that encodes the matching substring. Update v_{s} to the new start of the unencoded suffix.
7. Update and return to top of main loop. Update $\mathrm{v}_{\mathrm{c}}\left(\right.$ and $\left.\mathrm{r}_{\mathrm{c}}\right)$ and modify the hash tables if needed. Return to Step (3).
8. Finish up. If there is an unencoded suffix of V, encode this suffix with an add command.

2.3.1 - A Greedy Differencing Algorithm

This algorithm is based on [9]. The greedy algorithm first makes a pass over the reference string R; it computes footprints and stores in a hash table, for each footprint f, all offsets in R that have footprint f (colliding footprints are handled by chaining footprints at each value). The algorithm then moves the pointer v_{c} through V, and computes a footprint at each offset. At each step it does an exhaustive search, using the hash table and the strings R and V, to find the longest substring of V starting at v_{c} that matches a substring appearing somewhere in R. The longest matching substring is encoded as a copy command, v_{c} is set to the offset following the matching substring, and the process continues.

The pseudocode in Figure 2.1 outlines the major steps of the greedy algorithm. In Step(1), the algorithm hashes the contents of the reference string in a hash table where each entry is a footprint containing all the offsets having that footprint; in Steps(3) to (6), the algorithm then finds longest matching substrings in the version string and encodes them.

Obviously, the space used by this algorithm is dominated by the space for the hash table $(=|R|-p+1$ offset values stored in linked lists). Since p is a constant, the space is proportional to $|\mathrm{R}|$. Concerning the bound of the time complexity, at each offset in R , the algorithm spends $\mathrm{O}(l)$ time, in the worst case, to find a matching substring of length at most l starting at this offset. Thus, the total time is $\mathrm{O}(|\mathrm{V} \| \mathrm{R}|)$,
that is, $\mathrm{O}\left(\mathrm{n}^{2}\right)$. It is known in [1] that the greedy algorithm provides a solution to the perfect differencing problem if $\mathrm{p} \leq 2$. The pseudocode that follows represents the basic steps executed by the greedy differencing algorithm.

Given a reference string R and a version string V , generate a delta encoding of V as follows:

1. For all offsets in input string R in the interval $[0,|R|-p]$, generate the footprints
2. Start string pointers v_{c} and v_{s} at offset zero in V.
3. If $\mathrm{v}_{\mathrm{c}}+\mathrm{p}>|\mathrm{V}|$ go to Step (8). Otherwise, generate a footprint $F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ at v_{c}.
4. (and (5)) In this algorithm it is natural to combine the seed matching and substring extension steps into one step. Examine all entries in the linked list at $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$ (this list contains the offsets in R that have footprint $F_{V}\left(\mathrm{v}_{\mathrm{c}}\right.$, $\left.\mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$) to find an offset r_{m} in R that maximizes l, where l is the length of the longest matching substring starting at r_{m} in R and at v_{c} in V. If no substring starting at the offsets listed in $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$ matches a substring starting at v_{c}, increment v_{c} by one and return to Step (3). Otherwise, set v_{m} and r_{m} to the start offsets of the longest matching substring found. (In this algorithm, $\mathrm{v}_{\mathrm{m}}=\mathrm{v}_{\mathrm{c}}$ at this point.) Let l be the length of this longest matching substring.
5. The longest match extension has already been done in the combined step above.
6. If $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right)$ using an add command containing the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right)$ to be added. Encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ as a copy of the substring of length l starting at offset r_{m} in R. Set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
7. Set v_{c} to $\mathrm{v}_{\mathrm{m}}+l$ and return to Step(3)
8. All of the remaining unencoded input has been processed with no matching substrings found. If $\mathrm{v}_{\mathrm{s}}<|\mathrm{V}|$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}},|\mathrm{V}|\right)$ with an add command. Terminate the algorithm.

Figure 2.1 Pseudocode for the greedy algorithm

2.3.2 - The One-Pass Algorithm

The one-pass differencing algorithm finds a delta encoding in linear time and constant space. It finds matching substrings in a next match sense. That is, after copy-encoding a matching substring, the algorithm looks for the next matching substring forward in both input strings and disregards the portion of R and V that precedes the end of the substring that has just been copy-encoded. Hence it has a linear time complexity. The one-pass algorithm does not store all offsets having a certain footprint; instead it stores, for each footprint, at most one offset in R and at most one in V . This makes the hash table for R smaller with a size q rather than $|\mathrm{R}|$ and more easily searched however the compression is not always optimal. This algorithm works in a first-fit fashion, which means that it retains only the first offset found after each flush of the hash table. Hence it uses O (q) space. The drawback though, is that in the presence of transposed data (with R as ... X ... Y and V as ... Y ... X ...), the algorithm will not detect both of the matching substrings X and Y . Pseudocode of the one-pass algorithm follows.

Given a reference string R and a version string V, generate a delta encoding of V as follows:
(1) Create empty hash tables, H_{V} and H_{R}, for V and R. Initially, all entries are empty.
(2) Start pointers r_{c}, v_{c}, and v_{s} at offset zero. Pointer v_{s} marks the start of the suffix of V that has not been encoded.
(3) If $\mathrm{v}_{\mathrm{c}}+\mathrm{p}>|\mathrm{V}|$ and $\mathrm{r}_{\mathrm{c}}+\mathrm{p}>|\mathrm{R}|$ go to Step (8). Otherwise, generate footprint F_{V} $\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{v}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{V}|$ and footprint $F_{R}\left(\mathrm{r}_{\mathrm{c},} \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{r}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{R}|$.
(4) For footprints $F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ and $F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$:
(a) Place the offset v_{c} (resp., r_{c}) into H_{V} (resp., H_{R}), provided that no previous entry exists. The hash tables are indexed by footprint. That is, if H_{V} $\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]=$ empty assign v_{c} to $H_{V}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$; similarly, if $H_{R}\left[F_{R}\right.$ $\left.\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]=$ empty, assign r_{c} to $H_{R}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$.
(b) If there is a hash table entry at the footprint value in the other string's hash table, the algorithm has found a likely matching substring. For example, $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty indicates a likely match between the seed at offset r_{c} in R and the seed at offset $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ in V. In this case set r_{m} to r_{c} and v_{m} to $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ to the start offsets of the potential match. Check whether the seeds at offsets r_{m} and v_{m} are identical. If the seeds prove to be the same, matching substrings have been found. If this is the case, continue at Step (5) to extend the match (skipping the rest of Step (4b)). Symmetrically, if $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}\right.\right.$, $\left.\left.\mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty, set v_{m} to v_{c} and r_{m} to $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$. If the seeds at offsets r_{m} and v_{m} are identical, continue at Step (5) to extend the match. At this point, no
match starting at v_{c} or starting at r_{c} has been found. Increment both r_{c} and v_{c} by one, and continue hashing at Step (3).
(5) At this step, the algorithm has found a matching seed at offsets v_{m} and r_{m}. The algorithm matches symbols forward in both strings, starting at the matching seed, to find the longest matching substring starting at v_{m} and r_{m}. Let l be the length of this substring.
(6) If $v_{s}<v_{m}$, encode the substring $V\left[v_{s}, v_{m}\right)$ using an add command containing the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right)$ to be added. Encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ as a copy of the substring of length l starting at offset r_{m} in R. Set v_{s} to the offset following the end of the matching substring, that is, v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
(7) Set r_{c} and v_{c} to the offset following the end of the match in R and V, that is, set r_{c} to $\mathrm{r}_{\mathrm{m}}+l$. Flush the hash tables by setting all entries to empty. We use a nondecreasing counter (version number) with each hash entry to invalidate hash entries logically. This effectively removes information about the strings previous to the new current offsets v_{c} and r_{c}. Return to hashing again at Step (3).
(8) All inputs have been processed. If $v_{s}<|V|$, output an add command for substring $V\left[\mathrm{v}_{\mathrm{s}},|\mathrm{V}|\right)$. Terminate the algorithm.

Figure 2.2 Pseudocode for the one-pass algorithm

2.3.3 - The Correcting One-Pass Algorithm

The correcting one-pass algorithm differs from the one-pass algorithm by:
(1) keeping all existing entries in the hash table tables after encoding a copy command; and
(2) discarding a prior offset that has a particular footprint in favor of the current offset having that footprint.

By retaining all entries in the hash table, the correcting one-pass retains information about past substrings i.e. retains a window into the past which enables it to detect nonsequential matching substrings, that is, substrings that occur in the version string in an order different from the order in which they occur in the reference string. The correcting one-pass algorithm extends matching strings both backwards and forwards. This ability of reverse matching permits the correction of early bad encodings and therefore an Add command of a string of length $p=10$ with a cost equal to 10 , can be corrected to one Copy command with a cost equal to 1 in the best case. Despite the similarity between the correcting one-pass algorithm and the onepass algorithm, the correcting one-pass algorithm does not have the same linear running time guarantee. The algorithm spends a large amount of time extending matches backwards at many executions, so that the total time spent during backwards matching grows faster than linearly in the length of the input.

The correcting one-pass algorithm pseudocode is:
Given a reference string R and a version string V, generate a delta encoding of V as follows:
(1) Create empty hash tables, H_{V} and H_{R}, for V and R.
(2) Start pointers r_{c}, v_{c}, and v_{s} at offset zero. Pointer v_{s} marks the start of the suffix of V that has not been encoded.
(3) If $\mathrm{v}_{\mathrm{c}}+\mathrm{p}>|\mathrm{V}|$ and $\mathrm{r}_{\mathrm{c}}+\mathrm{p}>|\mathrm{R}|$ go to Step (8). Otherwise, generate footprint F_{V} $\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{v}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{V}|$ and footprint $F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{r}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{R}|$.
(4) For footprints $F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ and $F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$:
(a) Place the offset $\mathrm{v}_{\mathrm{c}}\left(\right.$ resp., $\left.\mathrm{r}_{\mathrm{c}}\right)$ into $H_{V}\left(\right.$ resp., $\left.H_{R}\right)$. That is, assign H_{V} $\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$ to v_{c} and $H_{R}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ to r_{c}.
(b) As in the one-pass algorithm, if $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty, set r_{m} to r_{c} and v_{m} to $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ to the start offsets of the potential match. If the seeds at offsets r_{m} and v_{m} are identical, continue at Step (5) to extend the match (skipping the rest of Step (4b)). Symmetrically, if $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty, set v_{m} to v_{c} and r_{m} to $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$. If the seeds at offsets r_{m} and v_{m} are identical, continue at Step (5) to extend the match. At this point, no match starting at v_{c} or starting at r_{c} has been found. Increment both r_{c} and v_{c} by one, and continue hashing at Step (3).
(5) Having found a matching seed at Step(4b), extend this match forwards and backwards from v_{m} and r_{m} as long as possible, reset v_{m} and r_{m} to the start offsets of the matching substring (if the match extended backwards), and set l to the length of the matching substring.
(6) Encode the matching substring and attempt to use this substring to correct encodings in the encoding lookback buffer. One of the following three substeps is performed:
(a) If $\mathrm{v}_{\mathrm{s}} \leq \mathrm{v}_{\mathrm{m}}$, the matching substring overlaps only the previously unencoded suffix V; it cannot be used to correct encodings already in the buffer. If $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right.$) using an add command.

Encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ as a copy of the substring of length l starting at offset r_{m} in R. Output the command(s) to the buffer. Set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
(b) If $\mathrm{v}_{\mathrm{m}}<\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}+l$, the matching substring overlaps both the encoded prefix and the unencoded suffix of V. Perform tail correction. That is, attempt to correct encodings from the tail of the buffer by integrating commands into the new copy command. All whole and partial add commands and all whole copy commands that encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{s}}\right)$ can be integrated into the new copy command that also encodes the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}+l\right)$. Delete from the buffer all commands that were wholly integrated. Output the new copy command to the buffer. Set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
(c) If $\mathrm{v}_{\mathrm{m}}+l \leq \mathrm{v}_{\mathrm{s}}$, the matching substring overlaps only the existing encoded prefix of V. Perform general correction. That is, perform binary search in the buffer to find the commands that encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ and correct sub-optimal encodings when possible. (In this case, v_{s} does not change.)
(7) Set v_{c} to $\max \left(\mathrm{v}_{\mathrm{m}}+l, \mathrm{v}_{\mathrm{c}}+1\right)$ and r_{c} to $\max \left(\mathrm{r}_{\mathrm{m}}+l, \mathrm{r}_{\mathrm{c}}+1\right)$; that is, we set the new values of these pointers to the offsets just following the matching substring, but we also require these pointers to advance by at least 1 . Return to Step (3).
(8) All of the input has been processed. Flush all commands from the buffer to the delta encoding. If $\mathrm{v}_{\mathrm{s}}<|\mathrm{V}|$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}},|\mathrm{V}|\right)$ with an add command. Terminate the algorithm.

Figure 2.3 Pseudocode for the correcting one-pass algorithm

2.3.4 - The Correcting 1.5-Pass Algorithm

The correcting 1.5 -pass algorithm can be seen as a reformulation of the greedy algorithm. The main difference is that it encodes the first matching substrings found, rather than searching exhaustively for the best matching substrings. While both algorithms make a pass over the reference string computing footprints and storing information in the hash table, the greedy algorithm stores, for each footprint, all offsets having that footprint; whereas the correcting 1.5-pass algorithm stores only the first such offset encountered. Hence it's linear running time.

The pseudocode of this algorithm follows.
Given a reference string R and a version string V, generate a delta encoding of V as follows:
(1) For each offset a, in input string R in the interval $[0,|R|-p]$, generate the footprint $F_{R}(\mathrm{a}, \mathrm{a}+\mathrm{p})$. For each footprint generated, if the entry of H_{R} indexed by that footprint is empty, store the offset in that entry:
for $\mathrm{a}=0,1, \ldots,|\mathrm{R}|-\mathrm{p}$: if $H_{R}\left[F_{R}(\mathrm{a}, \mathrm{a}+\mathrm{p})\right]=$ empty then $H_{R}\left[F_{R}(\mathrm{a}, \mathrm{a}+\mathrm{p})\right]$ to a .
(2) Start v_{c} and v_{s} at offset zero.
(3) If $\mathrm{v}_{\mathrm{c}}+\mathrm{p}>|\mathrm{V}|$ go to Step (8). Otherwise, generate a footprint $\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$ at v_{c}.
(4) If $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty, check that the seed in R at offset $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}\right.\right.$ $+\mathrm{p})$] is identical to the seed in V at offset v_{c}. If matching seeds are found, continue at Step (5). Otherwise, increment v_{c} by one and repeat Step (3).
(5) Extend the matching substring forwards and backwards as far as possible from the matching seed. Set v_{m} and r_{m} to the start of the matching substring in V and
R, respectively, and set l to the length of this substring. Note that $\mathrm{v}_{\mathrm{s}} \leq \mathrm{v}_{\mathrm{c}}<\mathrm{v}_{\mathrm{m}}+$ l because v_{c} never decreases, and because the match originated at the seed at offset v_{c}.
(6) Encode the match and attempt to correct bad encodings. The following two sub-steps are identical to sub-steps (6a) and (6b) in the correcting one-pass algorithm (sub-step (6c) cannot occur here, because $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}+l$):
(a) If $\mathrm{v}_{\mathrm{s}} \leq \mathrm{v}_{\mathrm{m}}$: If $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right.$) using an add command. Encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ as a copy of the substring of length l starting at offset r_{m} in R. Output the command(s) to the buffer. Set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
(b) if $\mathrm{v}_{\mathrm{m}}<\mathrm{v}_{\mathrm{s}}$: We have noted in Step (5) that $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}+l$. Attempt to correct encodings from the tail of the buffer. Delete from the buffer all commands that were wholly integrated. Output the new copy command to the buffer. Set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$.
(7) Set v_{c} to $\mathrm{v}_{\mathrm{m}}+l$ and return to Step (3).
(8) All of the input has been processed. Flush all commands from the buffer to the delta encoding. If $\mathrm{v}_{\mathrm{s}}<|\mathrm{V}|$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}},|\mathrm{V}|\right)$ with an add command. Terminate the algorithm.

Figure 2.4 Pseudocode for the correcting 1.5-pass

2.4 Conclusion

This chapter reviewed recent differencing algorithms that operate at a fine granularity, make no assumptions about the format or alignment of input data and in
practice, run in linear time, use constant space, and give good compression. In the next chapter, we describe a test-bed of differential algorithms that combines ideas from the greedy differencing algorithm and the correcting one-pass differencing algorithm and provides an environment that allows us to obtain experimental results on the compression performance of the proposed algorithm versus the algorithms described in [1].

CHAPTER III

A Test-Bed

As has been seen in the previous chapters, several differencing algorithms have been written and implemented in order to achieve good compression results while seeking the best possible time and space complexities. This chapter introduces our contribution in this regards, which is a test-bed for a constant space, linear time differencing algorithms.

The test-bed is based on the idea that if the greedy algorithm yields optimal compression results while the one-pass algorithm maintains linear time and constant space, an interesting approach would be to find an algorithm that would give better compression results then the one-pass while maintaining linear time and constant space. So the test-bed is an environment that allows a tradeoff between the greedy and the one-pass algorithms. Also, the test-bed is important because it makes it possible to test new algorithms as well as the algorithms described in [1] and gives experimental results on their compression performance, hence the term test-bed. Future work on differencing algorithms can be experimented using this test-bed as well. This algorithm allows users to get very good compression results without having to sacrifice time and space complexities, which is quite a burden with large data inputs; as it maintains the bound on complexities without having to accept poor compression results.

3.1 - The Algorithm

The algorithm implementation relies on two major steps. In the first step, the algorithm builds two hash tables, called H_{R} and H_{V}, for the reference file and the version file, respectively. The size of the hash tables is determined by the number of entries they have, which is the number of footprints generated from R and V , respectively. In the second step, the algorithm scans forward in both input strings R and V reading strings of constant length p, summarizes those seeds by footprinting them and then storing their offsets into H_{R} and H_{V}, respectively, at their generated footprint. Each footprint (in H_{R} or H_{V}) is an entry into the hash table and each footprint holds a linked list of constant size L where the offsets are stored. The footprints in the hash tables are used to detect matching seeds, and when this happens, we try to extend the match as far as possible in both R and V . Two different seeds might yield the same footprint hence the need to store many offsets at one given entry. Unlike the algorithms described in [1], this algorithm maintains two linked lists, one for H_{R} and one for H_{V}; having each a constant length L. All offsets scanned are stored and when the size of the linked list is exceeded, we overwrite the offset that has been used; this means that the string at that offset has been either copied or added therefore has been accounted for and its offset can be overwritten. This ensures that no offsets are overlooked. If no used offset is found on the linked list, the algorithm overwrites the oldest one inserted. Pseudocode for the test-bed algorithm follows.

Pseudocode for the test-bed algorithm

Given a reference string R and a version string V , generate a delta encoding of V as follows:
(1) Create empty hash tables, H_{R} and H_{V}, for R and V , respectively. Initially, all entries are empty.
(2) Start pointers r_{c}, v_{c}, and v_{s} at offset zero. Pointer v_{s} marks the start of the suffix of V that has not been encoded.
(3) If $\mathrm{v}_{\mathrm{c}}+\mathrm{p}>|\mathrm{V}|$ and $\mathrm{r}_{\mathrm{c}}+\mathrm{p}>|\mathrm{R}|$ go to Step (8). Otherwise, generate footprint F_{V} $\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{v}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{V}|$ and footprint $F_{R}\left(\mathrm{r}_{\mathrm{c} .} \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$ when $\mathrm{r}_{\mathrm{c}}+\mathrm{p} \leq|\mathrm{R}|$.
(4) At each footprint value maintain a linked list of constant size L at H_{R} and H_{V} of all offsets that hashed to this value. When the size of the linked list is exceeded, overwrite the offsets flagged as used. If no flagged offset exists, overwrite the oldest one on the list.
(5) For footprints $F_{V}\left(\mathrm{v}_{\mathrm{c},}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)$ and $F_{R}\left(\mathrm{r}_{\mathrm{c},} \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)$:
(a) If there is a hash table entry at the footprint value in the other string's hash table, the algorithm has found a likely matching substring. For example, $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty indicates a likely match between the seed at offset r_{c} in R and the seed at offset $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ in V. In this case set r_{m} to r_{c} and v_{m} to $H_{V}\left[F_{R}\left(\mathrm{r}_{\mathrm{c}}, \mathrm{r}_{\mathrm{c}}+\mathrm{p}\right)\right]$ to the start offsets of the potential match. Check whether the seeds at offsets r_{m} and v_{m} are identical because this hashing function is not ideal. If the seeds prove to be the same, matching substrings have been found. If this is the case, continue at Step (6) to extend the match (skipping the rest of Step (5)). Symmetrically, if $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right] \neq$ empty, set v_{m} to v_{c} and r_{m} to $H_{R}\left[F_{V}\left(\mathrm{v}_{\mathrm{c}}, \mathrm{v}_{\mathrm{c}}+\mathrm{p}\right)\right]$. If the seeds at offsets r_{m} and v_{m} are
identical, continue at Step (6) to extend the match. At this point, no match starting at v_{c} or starting at r_{c} has been found. Increment both r_{c} and v_{c} by one, and continue hashing at Step (3).
(6) At this step, the algorithm has found a matching seed at offsets v_{m} and r_{m}. The algorithm matches symbols forward in both strings, starting at the matching seed, to find the longest matching substring starting at v_{m} and r_{m}. Let l be the length of this substring.
(7) If $\mathrm{v}_{\mathrm{s}}<=\mathrm{v}_{\mathrm{m}}$, encode the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right.$) using an add command containing the substring $V\left[\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{m}}\right)$ to be added. Encode the substring $V\left[\mathrm{v}_{\mathrm{m}}, \mathrm{v}_{\mathrm{m}}+l\right)$ as a copy of the substring of length l starting at offset r_{m} in R. Set v_{s} to the offset following the end of the matching substring, that is, set v_{s} to $\mathrm{v}_{\mathrm{m}}+l$. Set the flag of the offset of the substring encoded in both H_{R} and H_{V} to used and coded respectively. These are the nodes that will be overwritten when the linked list size is exceeded.
(8) Set r_{c} and v_{c} to the offset following the end of the match in R and V respectively $\left\{r_{c}\right.$ is allowed to move backwards in the file to the matching offset since a matching offset in H_{R} may exist before the current pointer r_{c}. . That is set r_{c} to $\mathrm{r}_{\mathrm{m}}+l$. and v_{c} to $\mathrm{v}_{\mathrm{m}}+l$ \{provided $\mathrm{v}_{\mathrm{s}}<\mathrm{v}_{\mathrm{m}}$.\}
(a) If $v_{m}<v_{s}$, increment v_{c} by one, and continue scanning $\left\{v_{c}\right.$ is not allowed to move back in the file. $\}$

Return to háshing again at Step (3).
(9) All input has been processed. Terminate the algorithm.

Figure 3.1 Pseudocode for the Test-Bed Algorithm

The implementation of this algorithm is done using C^{++}and can be found in the Appendix.

3.2 - Time and Space Complexity

In this section we prove the following theorem.
THEOREM 5.1. The test-bed differencing algorithm runs in time $O(n)$ and Space $O(1)$, where n is the total length of the input strings.

PROOF.
The space bound is clear. At all times, the algorithm maintains two hash tables, each of which has q entries, having each a linked list of constant length L. This ensures a bound on the size of the hash tables. Except for the hash tables, the algorithm uses constant space. So, the total space used by the algorithm is $O(q * L)(=$ O (1) if q and L are constants).

The time bound can be proved as follows. Initially, during Steps (1), the algorithm takes time O (q). In the subsequent steps, we follow the run of the algorithm and bound the time used in terms of the amount that the pointers r_{c} and v_{c} advance. When r_{c} and v_{c} are advancing in hashing mode, before a match is found, the algorithm uses time O (p) each time that the pointers advance by one. When a matching seed is found, let $M=\max \left(v_{m}-v_{c}, r_{m}-r_{c}\right)$. Because either $v_{m}=v_{c}$ or $r_{m}=r_{c}$, then the total time spent in hashing mode is $\mathrm{O}(\mathrm{pM})$. The number of non-empty hash table entries at this point is at most $2 \mathrm{M}, \mathrm{M}$ in H_{V} and M in H_{R}. The match extension step takes time O (l. The encoding step takes time $O\left(\mathrm{v}_{\mathrm{m}}-\mathrm{v}_{\mathrm{c}}\right)$; that is $\mathrm{O}(\mathrm{M})$. After a match, the pointers v_{c} and r_{c} are reset to the end of the match; let $\mathrm{v}_{\mathrm{c}}=\mathrm{v}_{\mathrm{m}}+l$ and $\mathrm{r}_{\mathrm{c}}=\mathrm{r}_{\mathrm{m}}+l$ be the values
of v_{c} and r_{c} after this is done at one given period. It follows that v_{c} and r_{c} are advanced by a total net amount of at least $M+2 l$ during the period. The time spent in the period is $\mathrm{O}(\mathrm{pM}+l)$. Let M^{*} be the sum of all M_{i}. Because the pointers can advance by a total net amount of at most $n=|R|+|V|$ during the entire run, then $\mathrm{M}^{*}+2 l \leq n$. It follows that the total time is $O(n p+q)=O(n)$.

CHAPTER IV

Experimental Results

The tests included in this chapter are conducted over text files of different sizes varying between 1 K and 100 K . For each file, we apply the following steps:

For a given set of files of size s, run the test-bed as follows:

1. Let the seed's length p vary from 1 to 16 . For each value of p go to Step (3)
2. Let the linked lists' sizes L and L^{\prime} of H_{R} and H_{V} respectively vary from 1 to ∞. Values are chosen randomly; in our tests we chose L and L ' to have this set of values $\{1,5,10,20,30,40, \infty\}$, where ∞ takes integer numbers big enough, such as 100,000 . For each value of $\{\mathrm{L}, \mathrm{L}$ ' $\}$ go to Step (3).
3. For a constant L and L ' and a fixed length p, generate the total number of copy commands \{number of copies \} and the total length of strings encoded with an add command \{total length added.\}
4. Compute the total cost of running the algorithm on the file. Total cost $=$ total copies + total length added.
5. The average cost per set of files of size s is then computed.

4.1 - Tables and Graphs

The tests results are displayed in a table showing the average cost per set of files of size s. To compute the cost per file, a computation of the number of copy
commands, the number of add commands, and the total length of the strings added is done for each given value of p and for different values of L. The total cost is the summation of the total number of copies and the total length added. The average cost per file size is then computed.

4.1.1 - Files of Size 1K

- Average Cost Tables

Table 4.1.1.1 - Average Values. $\mathrm{P}=1$				
L	1	10	∞	
COPIES	333	270	273	
ADDS	63	87	86	
TOTAL LENGTH ADDED	91	142	138	
TOTAL COST	424	412	412	

Table 41.1.2 - Average Values. P $=2$			
L	1	10	0
COPIES	73	67	63
ADDS	51	50	48
TOTAL LENGTH ADDED	247	266	249
TOTALCOST	320	332	312

Table 4.1.1.3-Average Values. P $=3$			
L	1	10	0
COPIES	34	33	33
ADDS	26	26	26
TOTAL LENGTH ADDED	309	311	311
TOTAL COST	343	344	344

Table 4.1.1.4-Average Values. P $=8$			
L	1	10	∞
COPIES	7	7	7
ADDS	6	6	6
TOTAL LENGTH ADDED	363	367	367
TOTAL COST	374	373	373

Table 4.1.1.5-Average Values. $\mathrm{P}=16$			
L	1	10	0
COPIES	4	4	4
ADDS	3	3	3
TOTAL LENGTH ADDED	264	260	260
TOTAL COST	$\underline{267}$	$\underline{264}$	$\underline{264}$

- Average Cost Graph

Average Cost Graph

Figure 4.1 Average Cost Graph - Files of Size 1 K

4.1.2 - Files of Size 8 K

- Average Cost Tables

Table 4.1.2.1-Average Values. $P=1$							
L	1	5	10	20	30	40	∞
COPIES	4783	4002	3891	3810	3756	3608	3890
ADDS	900.3	1273	1189	1225	1164	1215	1225
TOTAL LENGTH ADDED	1853	2308	2202	2309	2276	2394	2206
TOTAL COST	6635	$\underline{6310}$	$\underline{6093}$	$\underline{6120}$	$\underline{6031}$	6003	$\underline{6097}$

Table 4.1.2.2-Aperage Values. $P=2$							
L	1	5	10	20	30	40	0
COPIES	1310	1186	1156	1145	1181	1194	1201
ADDS	944	866	851	855	868	872	868
TOTAL LENGTH ADDED	4544	4254	4310	4336	4246	4217	4204
TOTAL COST	5854	5440	5465	5480	5427	5412	5405

Table 41.2.3-Average Values. P $=3$							
L	1	5	10	20	30	40	0
COPIES	434	416	426	420	423	425	426
ADDS	346	341	355	345	348	347	348
TOTAL LENGTH ADDED	5310	5338	5304	5323	5308	5298	5294
TOTALCOST	5744	5754	5730	543	5739	5723	5720

Table 4.1.2. - Average Values. $\mathrm{P}=8$							
L	1	5	10	20	30	40	0
COPIES	104	92	92	92	92	92	92
ADDS	93	86	86	87	87	87	87
TOTAL LENGTH ADDED	5947	6356	6392	6385	6385	6385	6385
TOTAL COST	$\underline{6051}$	$\underline{6448}$	$\underline{6484}$	$\underline{6477}$	$\underline{6477}$	$\underline{6477}$	$\underline{6477}$

Table 4.1.2.5-Average Values. $P=16$							
L	1	5	10	20	30	40	∞
COPIES	91	67	58	51	50	49	49
ADDS	44	48	46	46	46	45	45
TOTAL LENGTH ADDED	6164	6169	6232	6221	6211	6215	6215
TOTALCOST	$\underline{6255}$	$\underline{6236}$	$\underline{6289}$	$\underline{6272}$	$\underline{6261}$	$\underline{6264}$	$\underline{6263}$

- Average Cost Graph

Figure 4.2 Average Cost Graph - Files of Size 8K

4.1.3 - Files of Size 30K

- Average Cost Tables

Table 4.1.3.1 - Average Values. $\mathrm{P}=1$							
	$\stackrel{+}{4}$,	4				
L	+1	5	10	20	30	40	0
COPIES	20416	18066	16333	15365	15076	15470	15646
$\square \mathrm{ADDS}$	2873	2870	2999	3282	3129	3203	3146
TOTAL LENGTH. ADDED.	4624	4566	4734	5167	4999	5087	4911
TOTAL COST	25039	22632	21067	20532	20075	20557	20558

Table 411.3.2 Average Values, $P=2$							
-							
\because, \square,	Y 1	5 5	10	20.	30	40	¢ ${ }^{\circ}$
COPIES	7336	6704	6521	6377	6277	6373	6717
ADDS	3471	3483	$35 \geq 6$	3578	3591	3602	3477
TOTAL LENGTH ADDED	10703	11200	11514	11852	12062	11840	11079
TOTAL COST	18039	17004	18035	18229	18339	18213	17797

4, $4 \cdot 3$ - Averas							
L	1	5	10	20	30	40	∞
COPIES	2806	2672	2641	2563	2514	2574	2702
ADDS	2140	2076	2069	2033	2015	2039	2082
$\begin{aligned} & \text { TOTAL } \\ & \text { LENGTH } \\ & \text { ADDED } \end{aligned}$	17502	17778	17838	18092	18291	18077	17608
TOTAL COST	20308	20450	20479	20655	20805	20651	$\underline{20310}$

Table 4.1.3.4-Average Values. $\mathrm{P}=8$							
L	1	5	10	20	30	40	∞
COPIES	257	264	257	264	254	257	256
ADDS	247	254	244	257	247	249	248
TOTAL LENGTH ADDED	26744	26631	26681	26712	26665	26755	26656
TOTAL COST	$\underline{27001}$	26895	26932	26977	26919	27012	26911

L	1	5	10	20	30	40	∞
COPIES	39	34	35	35	35	35	35
ADDS	30	31	32	33	33	33	33
TOTAL LENGTH ADDED	25480	26003	25975	25969	25968	25968	25968
TOTAL COST	25519	26038	26010	$\underline{26004}$	$\underline{26004}$	26004	26004

- Average Cost Graph

Figure 4.3 Average Cost Graph - Files of Size 30K

4.1.4 - Files of Size 40K

- Average Cost Tables

Table 4.1.4:2 A Aerage Values, $P=1$							
.	+\%.			T\%	,	m.	+3.
¢		+	-	¢		Tre	T
$\therefore<1$	1	5	10.	20	30	40	\pm
COPIES	15932	22214	20663	19514	19077	18891	19487
namum			+		W		
A ADDS	2786	4784	47^{80}	4896	4801	4797	5018
I TOTAL	\%		+	Tmiz			
Length	17216	8309	8294	8518	8472	8544	8688
ADDEED	Y,	-			-		+
			0	+	W		
TOTALCOST	33147	30522	28958	28032	38549	27435	28175

	Table						4
	4						
L	11 1		10			x^{4}	
COPIES	9691	8902	8672	8391	83 2	8216	879
ADD	446	4393	4431	4449	4500	4554	4376
TOTAL							
LENGTH	14122	14940	15137	15491	15959	$16 \geq 38$	14824
ADDED	-		+		+		
TOTALCOST	23813	23842	23809	23882	24282	24454	3362

Table 4.1.4.3-Average Values. $P=3$							
L	1	5	10	20	30	40	0
COPIES	4154	4112	3963	3881	3828	3850	4030
ADDS	3009	2923	2891	2885	2862	2886	2903
$\begin{aligned} & \text { TOTAL } \\ & \text { LENGTH } \\ & \text { ADDED } \end{aligned}$	21512	21074	21500	21785	21955	21871	21240
TOTAL COST	25665	$\underline{25186}$	25462	25666	25783	25722	25270

Table 4.1.4-4-Arerage Values. $\mathrm{P}=\mathrm{B}$							
			-		\%		
L	1	5	10	20	30	40	∞
COPIES	292	339	336	339	331	331	343
ADDS	277	326	195	328	321	319	330
$\begin{aligned} & \text { TOTAL } \\ & \text { LENGTH } \\ & \text { ADDED } \\ & \hline \end{aligned}$	35242	34954	34894	34950	34976	34978	34933
TOTAL COST	35.535	35292	35231	35289	35308	35309	35276

Table 4.1.4.5-Average Values. $P=16$							
L	1	5	10	20	30	40	∞
COPIES	9	21	18	18	16	18	16
ADDS	8	17	17	17	15	17	15
TOTAL LENGTH ADDED	27137	35047	31530	31523	30709	31210	30709
TOTAL COST	37145	35068	31548	31542	30725	31228	30725

- Average Cost Graph

Figure 4.4 Average Cost Graph - Files of Size 40K

4.1.5 - Files of Size 70K

- Average Cost Tables

L	1,	$=$	10	20	30	40	∞
COPIES	50198	43403	40460	39027	38439	37990	38322
DDS				\%			
ADDS	7270	3 O 44	7934	7813	7907	7944	7994
TOTAL							
LENGTH	10343	11800	11760	11561	11757	11849	12199
ADDED				㕸	,	.	-
TOTAL COST	60.544	55203	52220	50588	50196	49839	50520

W ${ }^{4}$	4 417		m.	\%		4]	
\%.	\%						
L\#\#	1	\% 5	10	20	30.	$4{ }^{4}$	\cdots
COPIES	18695	16039	14556	16232	14922	14708	14508
ADDS	8274	8111	8031	8479	3565	8535	7948
THOTAL							+1314
LENGTH	23804	27703	30911	26539	29680	30112	30949
Q ADDED		+x	\because	1			
					1		
TOTAL COST	42499	43742	45467	42770	44602	44820	45457

	Table 4.1.5.3-Average Values. $P=3$							
L	1	5	10	20	30	40	∞	
COPIES	7561	7130	6919	6690	6579	6551	6955	
ADDS	5630	5436	5356	5241	5216	5224	5352	
TOTAL LENGFH ADDED	40068	40989	41414	42216	42620	42797	41261	
TOTAL COST	47629	48119	48333	48906	49198	49348	48216	

Table 4.1.5-4-Average Values. $P=8$							
					\%		\cdots
L	1	5	10	20	30	40	ω
COPIES	740	637	662	603	589	614	603
ADDS	642	606	631	584	573	598	588
TOTAL LENGTH ADDED	63763	64176	63635	64264	64413	64225	64322
TOTAL COST	64503	64813	64297	64867	65002	64839	64925

- Table 4.1.5.5-Average Values. $P=16$							
L	1	5	10	20	30	40	∞
COPIES	61	61	74	65	56	58	52
ADDS	53	48	50	50	46	48	43
TOTAL LENGTH ADDED	48693	52126	55478	58035	61002	57291	47301
TOTAL COST	48754	52187	55552	58100	61058	57349	47353

- Average Cost Graph

Figure 4.5 Average Cost Graph - Files of Size 70K

4.1.6 Files of Size 100 K

- Average Cost Tables

Table 4.1.6.1-Average Values. $\mathrm{P}=1$							
L	1	5	10	20	30	40	0
COPIES	75907	66759	62858	57717	57322	56718	57946
ADDS	10841	10986	10454	11933	10982	12124	12336
TOTAL LENGTH ADDED	16579	17989	16945	19606	17898	20443	20692
TOTAL COST	$\underline{92486}$	$\underline{84748}$	79803	77323	$\underline{75220}$	$\underline{77161}$	78639

Table 4.1.6.2-Average Values. $\mathrm{P}=2$							
L	1	5	10	20	30	40	∞
COPIES	29440	27245	26553	26197	25797	25714	26555
ADDS	11769	12239	12473	12243	12400	12412	12334
TOTAL LENGTH ADDED	35319	37491	38702	38379	39487	39326	38024
TOTAL COST	$\underline{64760}$	$\underline{64736}$	$\underline{65255}$	$\underline{64576}$	$\underline{65284}$	$\underline{65039}$	$\underline{64578}$

Table 4.1.6.3-Average Values. P=3							
L	1	5	10	20	30	40	0
COPIES	12227	11767	11449	11306	11205	11267	11601
ADDS	8552	8341	8236	8205	8250	8293	8296
TOTAL LENGTH ADDED	58004	60669	61564	62024	62404	62069	61016
TOTAL COST	70232	72436	73013	73331	73608	73336	72618

Table 4.1.6-Average Values. $\mathrm{P}=8$							
L	1	5	10	20	30	40	∞
COPIES	919	1423	1363	1353	1385	1326	4558
ADDS	830	1349	1300	1294	1321	1263	3555
TOTAL LENGTH IDDED	95638	97533	98596	98638	98456	98735	87155
TOTAL COST	96556	98956	99958	99991	99841	100061	91713

Table 4.1.6.5-Average Values. $P=16$							
L	1	5	10	20	30	40	∞
COPIES	43	109	69	87	93	76	77
ADDS	41	75	67	83	89	72	73
TOTAL LENGTH ADDED	95977	96347	91292	95227	95186	88528	88524
TOTALCOST	96090	96456	91362	95314	95278	$\underline{88604}$	$\underline{88600}$

- Average Cost Graph

Figure 4.6 Average Cost Graph - Files of Size 100K

4.2 Recommendations

Based on the above set of experiments, some recommendations can be made as to the values of p and L that relatively yield good compression results. Next, and for each set of files of size s, we highlight which values of p and L give good compression results while maintaining linear time and constant space.

4.2.1 - Files of Size 1K

The experimental results show that a good average compression cost of files of size 1 K , is achieved for a seed's length $p=2$ and for a constant linked list size $\mathrm{L}=40$. The values are as follows:

Good Average Cost: 264 for $p=16$ and $L=10$

4.4.2 - Files of Size 8 K

A good average compression cost is achieved for the following values:
Good Average Cost: 5412 for $p=2$ and $L=40$

4.2.3 - Files of Size 30K

A good average compression cost is achieved for the following values: Good Average Cost: 17904 for $p=2$ and $L=5$

4.4.4 - Files of Size 40K

A good average compression cost is achieved for the following values: Good Average Cost: 23809 for $P=2$ and $L=10$

4.4.5 - Files of Size 70K

A good average compression cost is achieved for the following values:
Good Average Cost: 42499 for $P=2$ and $L=1$

4.4.6 - Files of Size 100K

A good average compression cost is achieved for the following values:
Good Average Cost: 64576 for $p=2$ and $L=20$

CHAPTER VI

Conclusion

In this thesis, we have created a test-bed for differencing algorithms that run in linear time and use constant space. We have discussed the delta encoding differencing technique. Our experimental results provided the best values for the length of the linked list and the length of the seed to be used in the hash tables as function of the input size.

References

[1] M. Ajtai, R. Burns, R. Fagin, D.D.E. Long, and L. Stockmeyer, Compactly encoding unstructured inputs with differential compression, Journal of the ACM 49:3, 2002, 318-367.
[2] S. Baase and A. Van Gelder, Computer Algorithms, $3^{\text {rd }}$ Edition. Addison Wesley, 2000.
[3] G. Banga, F. Douglis, and M. Rabinovitch, Optimistic deltas for WWW latency reduction. In Proceedings of the 1997 USENIX Annual Technical Conference. USENIX Association, Berkeley, California, 1997, 289-303.
[4] R. C. Burns and D.D.E. Long, In-place reconstruction of delta compressed files. In Proceedings of the $17^{\text {th }}$ Annual ACM Symposium on Principles of Distributed Computing. ACM, New York, 1998.
[5] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York, 1997.
[6] J. P. MacDonald, File system support for delta compression. Masters thesis. Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California, 2000.
[7] W. Miller and E. W. Myers, A file comparison program. Softw. Pract. Exper. 15:11, 1985, 1025-1040.
[8] J. C. Mogul, F. Douglis, A. Feldman, and B. Krishnamurthy, Potential benefits of delta encoding and delta compression for HTTP. In Proceedings of ACM SIGCOMM'97, ACM, New York, 1997.
[9] C. Reichenberger, Delta storage for arbitrary non-text files. In Proceedings of the $3^{\text {rd }}$ International Workshop on Software Configuration Management. ACM, New York, 1991, 144-152.
[10] W. F. Tichy, The string to string correction problem with block move, ACM Trans. Comput. 2:4, 1984, 309-321.

APPENDIX

A TEST-BED FOR LINEAR TIME CONSTANT SPACE DIFFERENCING ALGORITHMS

\#include "list.cpp"
\#include "Node.h"
\#include "Vlist.cpp"
\#include "VNode.h"
\#include "declarations.h"
\#include <iostream.h>
\#include <fstream.h>
\#include <iomanip.h>
\#include <stdlib.h>
\#include <string.h>
\#include <math.h>
\#include <stdio.h>
\#include <limits.h>

/*
Main()
*/
main()
\{
ifstream readReference("reference.txt", ios::in), readVersion("version.txt", ios::in);

```
if(!readReference)
{
```

cerr<<"File could not be opened"<<endl;
exit(1);
\}//endif
if(!readVersion)
\{
cerr<<"File could not be opened"<<endl; exit(1);
\}//endif
readReference.read((char*)\¤t, p);
readVersion.read((char*) \& versionstring, p$)$;
//BUILD THE HASH TABLES INCREMENTALLY
proceed(readReference, readVersion, HR,HV,current, versionstring, rc, vc, p);
cout<<" $\ln \backslash n \backslash a l t$ n----------....... Total \# of Copies for this File are:
'"<<COPYCOUNTER<<"'"<<endl;
cout<<" $\ln \ln \backslash n \backslash t n---------------$ Total \# of Adds for this file are:
'"<<ADDCOUNTER<<"'"<<endl;
cout<<" $\ln \backslash n \backslash n \mid t n----------------$ Total Length of the Strings Added for this file are: '" \ll TOTALLEN \ll "'" $\ll e n d l$;

return 0 ;
\}//endofmain()
/*
End of Main()
*/
/*
Proceed()
*/
void proceed(ifstream readReference, ifstream readVersion, List HR[LISTSIZE], VList HV[LISTSIZE], Seed current, VerSeed versionstring, int rc, int vc, int p)

```
while ((!readReference.eof())
    && (!readVersion.eof()))
{
    //cout<<"\nln --------------------------------------------------------------------------
//getchar();
// cout<<"\n Current REFERENCE String is: ";
outputline(cout, current);
//rc is the starting offset of each scanned string in the file
rc = readReference.tellg() - p;
cout<<" At Offset RC = "<<rc;
cout<<" ";
//Compute footprint of the reference seed
unsigned long fprintR = footprint(current,rc, p);
cout<<" With Footprint = "<<fprintR;
HR[fprintR].insertAtFront(rc); //insert rc into hash table H}\mp@subsup{H}{R}{
                                    //at its footprint fprintR
cout<<"\n\n Current VERSION String is: ";
outputline2(cout, versionstring);
vc = readVersion.tellg() - p;//Vc is the starting offset of a scanned
                                    //string in the file
cout<<" At Offset VC = "<<vc;
//compute a Version seed's footprint
unsigned long fprint V = footprint2(versionstring,vc, p);
cout<<" With Footprint = "<< fprintV<<endl;
HV[fprintV].VinsertAtFront(vc);
```

//Check for each seed scanned in the version file whether its footprint //exists in the hash table of R.
//And simultaneously, for each seed scanned in the reference file, $/ /$ check whether its footprint exists in the hash table of V.
//This ensures we are maintaining a window into the past for finding //transposed seeds

```
// 1) Search for fooptrint fprintV in hash table HR[]
```

```
//if firstptr != 0 then fprintV exists in HR
if (!HR[fprintV].isEmpty())
{
cout<<" \n\n Footprint from HV[] "'<<fprintV<<"' was found in
HR[]. In\nlt Examine offsets in HR[]: \n"<<endl;
\[
\begin{array}{r}
\text { Rptr }=\mathrm{HR}[\text { fprintV].Fptr(); } / / \mathrm{Rptr}=\text { first node on the list } \\
\text { ///of HR[fprintV] }
\end{array}
\]
int offR = HR[fprintV].getOffset(Rptr);//offR = offset
                                    //stored at Rptr
```

//now go in V to the offset stored at HV[fprintV]
Vptr $=\mathrm{HV}[f \mathrm{fprintV}] . \mathrm{VFptr}() ; \quad / / \mathrm{VNode}=$ first node on the
//hist of HV[fprintV]
int offV $=\mathrm{HV}[f p r i n t V] . V g e t O f f s e t(V p t r) ; \quad / / / o f f V=$ offset
// stored at Vptr

while (Rptr != 0) //while an offset exists on the next node of //the list at $\mathrm{HR}[f \mathrm{fprintV}$]

//search the list for a node that has not yet been encoded //i.e. used=false.
//if no such node is found encode the used ones on the //list.

```
offR = HR[fprintV].getOffset(Rptr); //get next offset
                                    //in the list
rm = offR; //a possible match exists: set rm = offR
vm = offV; //a possible match exists; set vm = offV;
if (vs <= vm)
{
    readReference.seekg(offR); //go to offR in R
    readVersion.seekg(offV); //go to offV in V
```

```
                    //scan from both files a string of length p=3
                    readReference.read((char*)&indexedseed, p);
readVersion.read((char*)&indexedverseed,p);
Encode(Rptr,Vptr,readReference, readVersion, HR, HV, indexedseed, indexedverseed,rc,vc, rm, vm, p, fprintR, fprintV);
//keeping record of the longest match only. if ((len >= leng) \&\& (len !=0))
\(\{\)
for (int \(\mathrm{cp}=0 ; \mathrm{cp}<\) len; \(\mathrm{cp}++\) ) tempstring \([\mathrm{cp}]=\) REFlongestmatch \([\mathrm{cp}]\);
tempstring[len] = ' 10 ';
matchingR \(=\mathrm{rm}\);
matching \(V=\mathrm{vm}\);
longestRptr \(=\) Rptr;
longestVptr \(=\) Vptr;
leng \(=\) strlen(tempstring);
\}//endif()
else; \(\quad / /\) if length of a new string is smaller //than its predecessor disregard it
\}//endif(vs<vm)
else; \(\quad / / i f\) vm<vs don't accept it. We only //move forward in V
\(\mathrm{Rptr}=\mathrm{HR}[\mathrm{fprint} \mathrm{V}] . \mathrm{nPtr}(\mathrm{Rptr}) ; \quad / /\) next pointer
offR = HR[fprintV].getOffset(Rptr); //next offset \}//endwhile()
if \(((\) leng \(>0) \& \&(\mathrm{vm}>=\mathrm{vs}))\)
\{
//Before Copy-encoding a matching seed, Add() the //string [Vs,Vm)
int \(\mathrm{l}=\mathrm{vm}-\mathrm{vs} ; / / \mathrm{l}=\) length of \(\operatorname{string}[\mathrm{Vs}, \mathrm{Vm}-1]\)
if \((\mathrm{l}==0)\) cout<<" \(\ln \ln \backslash t\) No String TO ADD.";
```

```
            else
            {
            int curr = readVersion.tellg();
            int Rcurr = readReference.tellg();
                    readVersion.seekg(vs); //position pointer at Vs
                    int initial = readVersion.tellg(); //vs value
                    readVersion.read((char*)&vstring,l); //scan
                        //seed [Vs,Vm)
                    ADD(vstring,l,vs);
                    int stln = strlen (vstring.VerSubstring);
                    for (int i=0;i<=stln; i++)
                        vstring.VerSubstring[i] = '10';
                    readVersion.seekg(curr); //reposition the pointer
    }//endof Else()
            COPY(tempstring, leng,matchingR); //matchingR =
                                    //offset of the longest
                                    //string stored in REFlong
            //Set Flags in HR & HV
            HR[fprintR].setflag(longestRptr,matchingR);
            HV[fprintV].Vsetflag(longestVptr,matchingV);
            vs = matchingV + leng;// + 1;
            vc=vs + p-1;
            rc = matchingR + leng + p-1; //rc moves backwards
            readVersion.seekg(vc);
            readReference.seekg(rc);
    }//endif(leng>0)
    else;
}//endif(!HR[fprintV].isEmpty())
else
{
    cout<<"\n\n FOOTPRINT from HV[] NOT FOUND IN
    HR[]"<<endl;
}
```

```
for (int \(\mathrm{e}=0 ; \mathrm{e}<=\) SIZE; \(\mathrm{e}++\) ) //re-initialize tempstring[]
    tempstring[e] = ' 10 ';
leng \(=0 ; \quad / /\) re-initialize leng
for (int ee \(=0\); ee \(<=\) SIZE; ee++) //re-initialize REFlongestmatch
    REFlongestmatch[ee] = '10';
len \(=0\);
```

//2) Search for fooptrint fprintiR in hash table HV[]

```
//if firstptr != 0 then fprintR exists in H}\mp@subsup{H}{V}{
```

if (!HV[fprintR].VisEmpty())
\{
cout<<" $\ln \ln$ Footprint from HR[] '"<<fprintR<<"' was found in
HV[]. In\nlt Examine offsets in HV[]: $\ln " \ll e n d l$;
//get first offset from H_{V} at fprintR in the first node of the list;
VVptr = HV[fprintR].VFptr();
int of $V=H V[$ fprint $R] . V$ getOffset(VVptr);
RRptr $=\mathrm{HR}[$ fprintR].Fptr();
int ofR $=H R[$ fprint $R]$.getOffset $(R R p t r)$;
while (VVptr !=0)
\{
//search the list for a node that has not yet been encoded
//i.e. used=false.
//if no such node is found we encode the used ones on the
//list.
$\mathrm{vm}=\mathrm{ofV} ; \quad / / \mathrm{a}$ possible match exists
$\mathrm{rm}=\mathrm{ofR}$;
$/ / \mathrm{Go}$ in R to the offset stored at H_{R} [fprintR]
if ($\mathrm{vs}<=\mathrm{vm}$)
\{
readVersion.seekg(ofV);
readReference.seekg(ofR);
// scan from R \&V a string of length $\mathrm{p}=3$
readReference.read((char*)\&Rseed, p);
readVersion.read((char*)\&Vseed,p);

```
                    Encode(RRptr,VVptr,readReference, readVersion,
                    HR, HV, Rseed, Vseed,rc,vc, rm, vm, p, fprintR,
                    fprintV);
            if (len >= ln)
            {
                for (int ss = 0; ss < len; ss++)
                                    returned[ss] = REFlongestmatch[ss];
                                    returned[len] = '\0';
                matchingR = rm;
                matchingV = vm;
                longestRptr = RRptr;
                longestVptr = VVptr;
                ln = strlen(returned);//update length of returned[]
    }
    else;
    }//endif(vs<=vm)
    else;
    //VVptr =next node-offset in the list at fprintR
    VVptr = HV[fprintR].VnPtr(VVptr);
    ofV = HV[fprintR].VgetOffset(VVptr);
}//endwhile()
if ((leng > 0) && (vm >= vs))
{
    //Before Copy-encoding a matching seed, Add() the
    //string [Vs,Vm)
    int l = vm-vs; }\quad//l=\mathrm{ length of string [Vs Vm-1]
    if (l== 0)
    cout<<"\n\n\t No String TO ADD.";
    else
    {
    int curr = readVersion.tellg();
    int Rcurr = readReference.tellg();
    readVersion.seekg(vs); //position the file pointer at VS
    int initial = readVersion.tellg();
    readVersion.read((char*)&vstring,l); //get string [Vs,Vm)
```

ADD(vstring,l,vs); int stlng = strlen(vstring. VerSubstring);
for (int $\mathrm{i}=0 ; \mathrm{i}<=$ stlng; $\mathrm{i}++$)
vstring. VerSubstring[i] = ' 10 ';
readVersion.seekg(curr); //reposition the pointer
\}//endof Else()

COPY(returned, ln,matchingR);
//Set flags in both $H_{R} \& H_{V}$
HR[fprintR].setflag(longestRptr,matchingR);
HV[fprintV].Vsetflag(longestVptr,matchingV);
$\mathrm{vs}=$ matching $\mathrm{V}+\ln ; / / \mathrm{ln}=$ length of the matching seed $\mathrm{vc}=\mathrm{vs}+\mathrm{p}-1$;
$\mathrm{rc}=$ matching $\mathrm{R}+\ln +\mathrm{p}-1 ; \quad / / \mathrm{rc}$ moves backwards
readVersion.seekg(vc); //re-position pointer inV readReference.seekg(rc); //re-position pointer in R

```
        }//endif(leng>0)
else
}//endif(!HV[fprintR].isEmpty())
else
{
        cout<<"\n\n FOOTPRINT from HR[] NOT FOUND IN HV[]"<<endl;
}
for (int f=0; f <= SIZE; f++) //re-initialize
    returned[f] = '10';
ln=0;
//re-initialize
for (ee = 0; ee <= SIZE; ee++) //re-initialize
REFlongestmatch[ee] = '10';
len = 0;
int vv = readVersion.tellg() - p + 1;
```

```
            readVersion.seekg(vv);
            int rr = readReference.tellg() - p + 1;
            readReference.seekg(rr);
            readReference.read((char*)&current, p);
            readVersion.read((char*)&versionstring, p);
            }//endofwhile()-------->> end of file is reached.
}//endof Proceed()
```

```
/*
    Encode()
*/
```

void Encode(Node * rrptr, VNode * Vyptr,ifstream readReference, ifstream readVersion, List HR[LISTSIZE], VList HV[LISTSIZE], Seed current, VerSeed versionstring, int rc, int vc, int rcm, int vcm, int p, int fprintR, int fprintV)
\{

```
ExtendMatch stretch;
ExtendMatch2 grow;
//Check if two strings match
cmp = CompareSeeds(current, versionstring);
if(vcm >= vs)
{
    if (cmp == 0) //The two strings match
    {
            rcmatch = rcm;
            vcmatch = vcm;
            cout<<"\n\n\t MATCHING SEEDS FOUND !!!";
```

```
for (int m=0; m < 3;m++)
{
    matchREF[m] = current.substring[m];
    matchVER[m] = versionstring.VerSubstring[m];
}//endfor
```

strcpy(REFlongestmatch,matchREF);
strcpy(VERlongestmatch,matchVER);
int off;
int Voff;
off $=$ readReference.tellg ()$-\mathrm{p}$; //offset of the matching seed in R
Voff $=$ readVersion.tellg() - p; //offset of the matching seed in V
int Vextensionpoint $=v \mathrm{~cm}+\mathrm{p}$;
int Rextensionpoint $=\mathrm{rcm}+\mathrm{p}$;
readReference.seekg(Rextensionpoint);
readVersion.seekg(Vextensionpoint);
while (1)
\{
readReference.read((char*) $\&$ stretch, 1); //check next
//character
readVersion.read((char*) $) \&$ grow, 1$) ; / /$ check next
//character
//if next characters don't match, extension not possible. if (stretch.Rlongest[0] != grow.Vlongest[0]) \{ break;
\}
else
\{
strncat(REFlongestmatch,stretch.Rlongest,1);
strncat(VERlongestmatch, grow.Vlongest,1);
if((readReference.eof()) \|(readVersion.eof()))
\{
break;

$$
\begin{array}{l}\text { \}//endif() } \\ \text { \}//endelse() } \\ \text { \}//endWhile() } \\ \text { //len = length of the longest matching string } \\ \text { len = strlen(REFlongestmatch); }\end{array}
$$

```
        }//endif(cmp==0)
        else //strings don't match
        {
        cout<<"\n\n\n\n\t STRINGS DON'T MATCH !!! ";
        rc = rc + p; //advance rc by p since we scan strings from
        //current location - length + 1
            readReference.seekg(rc);
```

 \(\mathrm{vc}=\mathrm{vc}+\mathrm{p} ; / /\) advance vc by p
 readVersion.seekg(vc);
 \}//endElse()
 \}//endif(vem>=vs)
 else ; \(\quad / / \mathrm{vm}<\mathrm{vs}\), disregard.
 \}//endof Encode()
/*
footprint()
*/
unsigned long footprint(Seed curr, int \mathbf{r}, int p)
\{
$\mathrm{F}=0$; //the footprint of a scanned seed
int $\mathrm{q}=1001$; // number of entries in the hash table
$/ / r=$ current offset $\&$ corresponds to $j=0$ of the seed stored in substring[j] of
//length $\mathrm{p}=3$
//and $\mathrm{i}<=\mathrm{r}+\mathrm{p}-1$ corresponds $\mathrm{j}<=\mathrm{p}-1$.
int $\mathrm{j}=0$;

```
    while (j <= p-1)
        if(j<=p-1)
        {
            int i = r;
                while (i<=r + p-1)
                {
                F += pow(127,r + p - 1-i)* curr.substring[j];
                i++;
                j++;
            }//endwhile()
            j++;//j>2: Get next string
    }//endFor()
        return F % q;
}//end of footprint()
```

/*
Footprint2()
*/
unsigned long footprint2(VerSeed S, int r, int p)
\{
$\mathrm{Fv}=0$; //the footprint of a scanned seed
int $\mathrm{q}=1001$; // number of entries in the hash table
$/ / r=$ current offset \& corresponds to $\mathrm{j}=0$ of the seed stored in substring[j] of
//length $\mathrm{p}=3$
//and $\mathrm{i}<=\mathrm{r}+\mathrm{p}-1$ corresponds $\mathrm{j}<=\mathrm{p}-1$.
int $\mathrm{j}=0$;
while ($\mathrm{j}<=\mathrm{p}-1$)
if $(j<=p-1)$
\{
int $\mathrm{i}=\mathrm{r}$;

```
            while (i<= r + p-1)
            {
                        Fv += pow (127,r + p-1-i)*S.VerSubstring[i];
                i++;
                - j++;
                    }//endwhile()
                    j++;//j>2 : get the next string
    }//endFor()
    return Fv % q;
}//end of footprint2()
/*
                                    Outputline()
    */
    void outputline(ostream &out, Seed s)
    {
        out<<"'"<<s.substring<<"'";
    }//endof outputline()
    /*
        Outputline2()
    */
    void outputline2(ostream & print, VerSeed vs)
    {
```

print<<"" \ll vs.VerSubstring<<""";
\}//endof outputline2()

```
/*
    CompareSeeds()
*/
int CompareSeeds(Seed cs, VerSeed Vcs)
{
    int comp;
    comp = strcmp(cs.substring, Vcs.VerSubstring);
    return comp;
}//endofCompareSeeds()
/*
Copy()
*/
```

void COPY (char * REFstr, int leng, int addr)
\{
COPYCOUNTER++;
cout<<"\n\n\n------COPY MATCHING REFERENCE STRING------";
cout<<" $\ln \ln$ COPY '" \ll REFstr<<""";
cout<<"ln (C,"<<leng<<","<<addr<<")"<<endl;
cout<<"ln TOTAL LENGTH ENCODED WITH A COPY() is: "<<leng<<endl;
cout<<"ln TOTAL NUMBER OF COPIES = "<<COPYCOUNTER<<endl;
\}//end of Copy()
void ADD(VerSeed Vstr,int LEN,int q)
\{
ADDCOUNTER++; TOTALLEN += LEN;

cout<<" $\ln \ln (\mathrm{A}, " \ll \mathrm{LEN} \ll ", " \ll$ Vstr.VerSubstring<<<")"<<endl;
cout \ll " \ln TOTAL LENGTH ENCODED WITH AN ADD() is: "<<LEN<<endl; cout<<" \ln TOTAL NUMBER OF ADDS = "<<ADDCOUNTER<<endl;
\}//end of add()
\#ifndef NODE_H
\#define NODE_H
class Node $\{$
friend class List;
public:
Node(const int \&);
int getdata();
int NodeIsFlagged(Node *); //checks if a given node has been flagged bool used;
private:
Node * nextPtr;
int data;
\};
Node::Node(const int \& info)
:data(info),nextPtr(0), used(false) \{\}
int Node::getdata()
\{
return data;
\}
\#endif

//LIST.H

//This is the header file for the list class.
\#ifndef List_H
\#define List_H
\#include"node.h"
class List\{
friend class Node;
public:
List();
void insertAtFront(const int);
bool isEmpty();
void print();
Node * getNewNode(const int \&);
bool setflag(Node *,int); //setflag() takes an encoded offset as //argument \& sets its node to used=true.
int getOffset(Node *);

Node * Fptr();
Node ${ }^{*}$ nPtr(Node*);
private:
Node * firstPtr;
Node * lastPtr;
int count;
\};
\#endif

//LIST.CPP

```
#include<iostream.h>
#include<cassert>
#include "node.h"
#include "list.h"
#include <stdio.h>
#include <iomanip.h>
const int MAXCOUNT = 5;
List HR[2311];
List::List()
    :firstPtr(0),lastPtr(0), count(0){}
int List::getOffset(Node * ptr)
{
        if(ptr !=0){
                int a = ptr->data;
            return a;
        }
        else
            return -1;
}
```

Node * List: $\mathrm{nPtr}($ Node *ptr)
\{
return ptr->nextPtr;
\}
Node * List::Fptr()
\{
return firstPtr;
\}
bool List::setflag(Node * rptr, int offset)
\{
while(rptr->data != offset)
rptr=rptr->nextPtr;
rptr->used = true;
int nodeoffset $=$ rptr->getdata();
 TRUE"<<endl;
return true; //node is flagged as used.
\}//endofsetflag()

```
void List::insertAtFront(const int value)
{
Node * newPtr = getNewNode(value);
Node * p = firstPtr;
if(isEmpty())
{
    firstPtr = lastPtr = newPtr; count = 1;
}
else
{
    if (count < MAXCOUNT)
    { //while there is still empty nodes in the list
        Node * f = firstPtr;
        if (f!=0)
        while (f !=0) //Insert the offset ONLY if it's not
                //previously inserted i.e. no duplication
            {
        if (f->data == value)
        { /loffset exists in list of HR, don't duplicate
                                break;
            }
        f=f->nextPtr;
        }
        if (f==0)
        {
        newPtr->nextPtr = firstPtr;
        firstPtr = newPtr;
        count++;
        }//endif()
    }//endif()
```

```
else
{
        bool found;
        found = false;
        do //(p->nextPtr != firstPtr)
        {
        if (p->used == true)
        cout<<"\n one used offset found in H}\mp@subsup{H}{R}{\prime\prime}\mathrm{ ;
        p->data = value;
        p->used = false;
        found = true;
    }//endif()
    else
        p = p->nextPtr;
}//endwhile()
while ((p != 0) && !found);
if (!found) // none of the offsets has been used
{
    if (firstPtr == lastPtr)
    {
        firstPtr->data = value;
    }
else
{
        Node * current = lastPtr;
        Node * previous;
        while (firstPtr->nextPtr != current)
        {
            previous = firstPtr;
                    while (previous->nextPtr != current)
                        previous = previous->nextPtr;
                    current->data = previous->data;
                    current = previous;
        }//endwhile()
        current->data = firstPtr->data;
        firstPtr->data = value;
    }//endelse
    }//endif(!found)
```

```
}//endElse()
}//endif()
}//endInsertAtFront()
Node * List::getNewNode(const int & value)
{
    Node * ptr = new Node (value);
    assert (ptr != 0);
    return ptr;
}
bool List::isEmpty()
{
    return (firstPtr == 0);
}
void List::print()
{
    Node * Ptr = firstPtr;
    while(Ptr !=0)
    {
        cout<<Ptr->data<<<" ";
            Ptr = Ptr->nextPtr;
        }//endwhile()
}//endprint()
```

```
//VNODE.H
#ifndef VNODE_H
#define VNODE_H
class VNode{
    friend class VList;
public:
        VNode(const int &);
        int getVdata();
        int VNodeIsFlagged(VNode *); //checks if a given node is empty
        bool coded;
private:
        VNode * VnextPtr;
        int Vdata;
};
VNode::VNode(const int & Vinfo)
    :Vdata(Vinfo),VnextPtr(0), coded(false){}
int VNode::getVdata()
{
    return Vdata;
}
#endif
```


//VLIST.H

//This is the header file for the VList class.
\#ifndef VList_H
\#define VList_H
\#include"Vnode.h"
class VList\{
friend class VNode;
public:
VList();
void VinsertAtFront(const int);
bool VisEmpty();
void Vprint();

VNode * VgetNewNode(const int \&);
bool Vsetflag(VNode *,int); //Vsetflag() takes an encoded offset as $/ /$ argument \& sets its node to used=true.
int SearchHashTable_V(VNode *); //search HV[] for a given footprint int VgetOffset(VNode *);
VNode * VFptr();
VNode $* \operatorname{VnPtr}($ VNode $*) ;$
private:
VNode * VfirstPtr;
VNode * VlastPtr;
int Vcount;
\};
\#endif

```
//VLIST.CPP
#include<iostream.h>
#include<cassert>
#include "Vnode.h"
#include "VList.h"
#include <stdio.h>
#include <iomanip.h>
const int MAXSIZE = 20;
VList HV[2311];
VList::VList()
    :VfirstPtr(0),VlastPtr(0), Vcount(0) {}
int VList::VgetOffset(VNode * Vptr)
{
        if(Vptr != 0){
            int a = Vptr->Vdata;
            return a;
    }
        else
            return -1;
}
VNode * VList::VnPtr(VNode *Vptr)
{
        if(Vptr)
        return Vptr->V VnextPtr;
            else
                return 0;
}
VNode * VList::VFptr()
{
    return VfirstPtr;
bool VList::Vsetflag(VNode * vvptr,int of)
{
    while (vvptr->V Vdata != of)
                            vvptr = vvptr->VnextPtr;
vvptr->coded = true;
int VNODEOFFSET = vvptr->getVdata();
cout<<"\n\n\t FLAG OF VNODEOFFSET '"<<VNODEOFFSET<<"' IS SET
TO TRUE"<<endl;
```

return true; \}//end of Vsetflag()

```
void VList::VinsertAtFront(const int Vvalue)
{
VNode * VnewPtr = VgetNewNode(Vvalue);
VNode * p = VfirstPtr;
if(VisEmpty())
{
VfirstPtr = VlastPtr = VnewPtr;
Vcount = 1;
}
else
{
if (Vcount < MAXSIZE)
{
    VNode * v = VfirstPtr;
        if (v != 0)
            while (v != 0)
            {
                if (v->Vdata == Vvalue)
                {//Offset exists in HVdon't duplicate
                break;
                }
                    v = v->VnextPtr;
            }//endWhile()
        if (v==0)
        {
            VnewPtr->VnextPtr = VfirstPtr;
            VfirstPtr = VnewPtr;
            Vcount++;
            }//endif()
}//endifVcount<MAXSIZE)
else
{
            VNode * p = VfirstPtr;
```

```
            bool found = false;
    do
    {
        if (p->coded == true)
        {
        cout<<"\n ONE USED OFFSET FOUND ON HV[]";
                    p->Vdata = Vvalue;
                    p->coded = false;
                    found = true;
}//endif()
else
                        p = p->VnextPtr;
    }
    while ((p != 0) && !found);
    if (!found) // none of the offsets has been used
    {
        if (VfirstPtr == VlastPtr)
        {
        VfirstPtr-> Vdata = Vvalue;
        }
        else {
                            VNode * current = VlastPtr;
                    VNode * previous;
            while (VfirstPtr->VnextPtr != current)
            {
                previous = VfirstPtr;
                while (previous->VnextPtr != current)
                    previous = previous->VnextPtr;
                current->Vdata = previous-> Vdata;
                current = previous;
        }//endwhile()
        current->Vdata = VfirstPtr->V data;
        VfirstPtr->Vdata = Vvalue;
}//endElse()
    } //endif(!found)
}//endElse()
```

\}//endif()

\}//endVInsertAtFront()

```
VNode * VList::VgetNewNode(const int & Vvalue)
{
    VNode * Vptr = new VNode (Vvalue);
    assert (Vptr != 0);
    return Vptr;
}
```

bool VList::VisEmpty()
\{
return VfirstPtr $=0$;
\}
void VList::Vprint()
\{
VNode * VPtr = VfirstPtr;
while(VPtr ! = 0)
\{
cout<<<VPtr->Vdata<<" ";
VPtr $=$ VPtr $->$ VnextPtr;
\}//endWhile()
\}//endVprint()
//DECLARATIONS.H
//This file includes all the declarations of the variables, functions and structures used //in the code.
\#include <iostream.h>
\#include $<$ fstream.h>
\#include <iomanip.h>.
\#include <stdlib.h>
\#include <string.h>
\#include <math.h>
\#include <stdio.h>
\#include <limits.h>
int $\mathrm{p}=3$; //length of the seed.
int TOTALLEN $=0 ; \quad / /$ total length of the adds encoded
const int LISTSIZE $=2311$;
const int SIZE $=100000$;
struct Seed \{
char substring[2000];
\};
struct VerSeed\{
char VerSubstring[2000];
\};
struct ExtendMatch \{
char Rlongest[2];
\};
struct ExtendMatch2 \{
char Vlongest[2];
\};
/*

THE FUNCTIONS

*/
void proceed(ifstream, ifstream, List[LISTSIZE], VList[LISTSIZE], Seed, VerSeed,int, int, int);
//The following functions encode a string as an $\operatorname{Add}()$ or Copy() command.
void Encode(Node *,VNode *, ifstream, ifstream, List[LISTSIZE],
VList[LISTSIZE], Seed, VerSeed,int, int, int, int, int, int, int);
void outputline(ostream\&, Seed); //outputs a reference string
void outputline2(ostream\&, VerSeed); //outputs a version string
unsigned long footprint(Seed, int, int); //footprint() function for R unsigned long footprint2(VerSeed, int, int); //footprint() function for V int CompareSeeds(Seed, VerSeed); // compare 2 seeds both files

```
void COPY (char *, int, int); //copy a string
void ADD(VerSeed,int,int); //add a string
```

/*
THE VARIABLES
*/
/*
Variables of type Struct()
*/

Seed current, indexedseed, Rseed;
VerSeed versionstring, vstring, indexedverseed, Vseed;
ExtendMatch stretch;
ExtendMatch2 grow;

1*

POINTERS

*/
Node * Rptr;
Node * RRptr;
Node * longestRptr;
Node * bestRptr;
Node * Tptr;
Node * Sptr;
VNode * Vptr;
VNode * VVptr;
VNode * longestVptr;
VNode * bestVptr;
VNode * Uptr;
VNode * Zptr;
int vs $=0, \mathrm{rs}=0 ;$
//initial offset $=0$ in the Version file
unsigned long F ; //footprint of a seed in R
unsigned long Fv; //footprint of a seed in V
//int $\mathrm{Fr}=0$; //footprint stored in HR[]
//int $\mathrm{FFv}=0$;
//footprint stored in HV[]
//int Rsearchresult $=0 ; \quad / /$ the value returned by function
SearchHashTable_R(): either an 1 or -1
//int Vsearchresult $=0 ; \quad / /$ the value returned by function
SearchHashTable_V(): either an 1 or -1
//the following arrays will temporarily hold each string currently being manipulated
char matchREF[3];
char matchVER[3];
char matchREF2[3];
char matchVER2[3];
//the following arrays will hold the longest matching substrings to be copied char REFlongestmatch[SIZE];
char VERlongestmatch[SIZE];
char REFlongestmatch2[SIZE];
char VERlongestmatch2[SIZE];
char REFlong[SIZE];
char VERlong[SIZE];
char REFlong2[SIZE];
char tempstring[SIZE];
char returned[SIZE];
char STRING_TO_ADD[3];
//temporary storage for the strings to
be Encoded with an ADD() char ADDED_STRINGS[1000]; //

PERMANENT STORAGE of ALL
the Strings Encoded with an ADD()
int cmp;
long $\mathrm{rc}=0, \mathrm{rcc}=0, \mathrm{rcmatch}=0$; // offset of the first character of the substring in R long $\mathrm{rm}=0$; //the starting offset of a matching substring in R
long $\mathrm{vc}=0, \mathrm{vcc}=0, \mathrm{vcmatch}=0 ; / /$ offset of the first character of the current string in V
long $\mathrm{vm}=0$; // starting offset of a matching substring in V
int $\ln =0, \ln 2=0 ; \quad / /$ length of the longest matching string
int len $=0$, leng $=0$, len $2=0 ; \quad / /$ holds the length of the longest matching string int longueur $=0$;
int lngth $=0$;
int bestoffset $\mathrm{R}=0$;
int bestoffset $V=0$;
int matching $V=0$;
int matchingR $=0$;
int $\mathrm{ADDCOUNTER}=0$;
int COPYCOUNTER $=0$;
/*
\qquad

END OF DECLARATIONS

*/

