
Distributed Architectures And Web Services: Using .NET platform for
building an e-commerce application

By

Elie M. Jurascovitch

A Thesis

Submitted in Partial Fulfillment of
the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

Faculty of Natural and Applied Sciences

Notre Dame University - Louaize

Zouk Mosbeh, Lebanon

Fall 2002

Distributed Architectures And Web Services: Using .NET Platform for
Building an E-Commerce Application

by

Elie M Jurascovitch

Approved:

Kh'a1do6 E1-Khaldi: Assistant professor of Computer Science.
Advisor.

Hoda Maalouf: Assistant professor of Cd
	

Science and Chairperson.
Member of Committee.

Mary Khair: 'Assistant r
Member of Committee.

of Computer Science.

Ziad Rached: Assistant professor of Mathematics.
Member of Committee.

Date of thesis defense: Monday, November 18, 2002

Table of Contents

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS
	

VII

ACKNOWLEDGEMENTS
	

V1 11

CHAPTER 1 INTRODUCTION
	

2

CHAPTER 2 THE FIRST GENERATION CLIENT-SERVER

CHAPTER 3 THREE-TIER ARCHITECTURE

CHAPTER 4 THREE-TIER ARCHITECTURE	 19

CHAPTER 5 COMMUNICATION MODES BETWEEN DISTRIBUTED
COMPONENTS	 12

CHAPTER 6 INTERDEPENDENCE OF COMPONENTS	 15

CHAPTER 7 DISTRIBUTED ARCHITECTURES
	

17

7.1	 Windows Dynamic interNet Architecture (DNA)
	 1,

7.1.1	 Presentation Services
	 20

7.1.2	 Business Services
	 20

7.1.3	 Data Services
	 21

7.2 the Java J2EE Architecture	 21

7.2.1 Client Components
	 22

7.2.2	 Thin Clients
	 24

7.2.3 Web Components
	 25

7.2.3.1	 Business Components
	 25

111

	

7.2.4	 Enterprise Information System Tier

7.3	 Windows DNA vs. Java J2EE 	 27

CHAPTER 8 SERVICE-ORIENTED DISTRIBUTED ARCHITECTURE28

8.1	 Business and Technical Services	 28

8.2	 XML and Web services	 30

8.3	 "Loosely coupled" interfaces

CHAPTER 9 J2EE VS. MICROSOFT.NET: A COMPARISON OF
BUILDING XML-BASED WEB SERVICES

9.1	 Introduction

9.2
	

Building Web services with technologies that have gained the most acceptance

9.3
	

The J2EE and Microsoft.NET approach to Web Services

9.4	 J2EE
	9.4.1	 Java: The foundation for J2EE

9.4.2 J2EE and Web Services

9.5	 Microsoft's NET Platform
9.5.1 The .NET Framework

	

9.5.2	 NET Servers

Understanding J2EE and NET by analogy

Comparative Analysis
Single-Vendor Solution
Support for Existing Systems
Language Support
Portability
Web Services Support
Tools
Scalability

Conclusions

9.6

9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
9.7.7

9.8 51'

CHAPTER 10 DEVELOPMENT OF AN E-COMMERCE
APPLICATION USING .NET ARCHITECTURE

	
53

10.1	 Jurasco Style Store Application Overview	 53

10.2	 Designing the Sample Application 	 55

10.3	 Functional Walkthrough
	

56

10.4	 logical architecture	 65

10.5	 Architecture of the Application

	

10.5.1	 Database

	

10.5.2	 Middle-Tier	 67
	10.5.3	 Presentation-Tier

10.6	 Building an XML Web Service	 70
	10.6.1	 Web Services in .NET

	
70

	

10.6.2	 Testing the Web Service	 70

10.7	 Mobile Device Support

CHAPTER 11 CONCLUSION
	

80

BIBLIOGRAPHY
	

8

List of Figures

Figure 1 First generation client-server architecture.. 5
Figure 2 Key elements of the object approach..8
Figure 3 Three-tier architecture .. 11
Figure 4 Modes of communication between distributed components..............................14
Figure 5 Windows DNA static view...20
Figure 6 Multi-tiered applications..22
Figure 7 Server communications ..24
Figure 8 Web tier and J2EE application...25
Figure 9 Business and EIS tiers ...26
Figure 10 Example of an XML document..32
Figure 11 Architecture based on distributed objects - WSDL, WSUI, and SOAP..........33
Figure 12 Developing Web services with J2EE...39
Figure 13 Developing Web services with Microsoft.NET ...41
Figure 14 Jurasco Style Store business...54
Figure 15 Application Use Case diagram.. 56

Figure 16 Mobile information Web page..73
Figure17 log in mobile forms ..74
Figure 18 Purchase mobile form...75
Figure 19 Payment mobile form...77
Figure 20 Testing the mobile support using Openwave SDK..79

List of Tables

Table 1 Windows DNA Products and Services..19
Table 2 Windows DNA J2EE comparison ...27
Table 3 Analogies between J2EE and NET ..43

vi

List of Abbreviations

Active Data Objects

Computer Aided Software Engineering
Distributed Computing Architecture

Distributed Information Systems
Document Object Model
Enterprise Resource Planning

Hypertext Markup Language
Inter-ORB Protocol
Java 2 Enterprise Edition
Java Database Connectivity
Java Runtime Environment
Microsoft Intermediate Language
Microsoft Intermediate Language
Microsoft Transaction Server

Open Software Foundation

ADO
CASE
DCE
DIS
DOM
ERP
HTML
"OP
J2EE
JDBC
JRE
MIL
MSIL
MTS
OSF
PDA	 Personal Digital Assistant
RDBMS Relational Data Base Management Systems
RMI	 Remote Method Invocation
RPC	 Remote Procedure Call
SOAP	 Simple Object Access Protocol

SQL	 Structured Query Language

UDDI	 Universal Description, Discovery, and Integration
W3C	 World Wide Web Consortium
WSDL Web Services Description Language
WSUI	 Web Services User Interface
XML	 eXtensible Markup Language

vii

Acknowledgements

A word of thanks goes to Dr. khaldoun E1-Khaldi for his encouragement and
support. His enthusiasm and involvement implanted in me perseverance and
dedication to my research.
I would like to thank my friends for being a real backup to me when I needed
them.
Thanks to Toufic Mady for sharing with me some ideas for the implementation
of some web services.
A special thank you goes to every member of my family for their support
encouragement and trust.

viii

Abstract

The purpose of this thesis is to study distributed applications in the context of
heterogeneous clients (Web browser, mobile) and business-to-business (B2B)
integration. Two distributed architectures, leaders of the distributed app1icatios
market are presented and compared: Microsoft's .NET, and Sun's Java Enterprise
Java Beans (J2EE). After this comparative study, we chose NET to develop ane-
commerce application (Jurasco Style electronic shop) in order to outline the
major application architectural issues and solutions offered by NET technology.
Our study also shows how the NET Jurasco Style Shop application can be easily
extended to include support for XML Web Services (based on the SOAP and
UDDI standards) as well as support for mobile devices.

CHAPTER 1

Introduction

Technologies are constantly evolving and to try to effectively meet the needs of
companies' new operating modes and organizations, Information System
Departments must now refer to distributed systems, three-tier architecture,
increasingly user-friendly business services and user interfaces: thin clients
equipped with simple browsers, PDA (Personal Digital Assistant), cell phones,
multifunction teller machines and, in the near future, pens and other interface
peripherals incorporating wireless communication systems.

In addition, like its markets, its customers and the products that it offers, a
company continually evolves, adapts and redefines itself. Its computer
equipment should not be considered as a brake to the implementation of
effective operational changes. And finally, it is no longer conceivable to set up a
lasting information system that is compartmentalized and incapable of
exchanging data or even processes with other companies.

These multiple requirements (integration of technical innovations, adaptation of
the company and communication with the outside) result in a simple and
incisive conclusion: now more than ever, a company's computer system must be
able to evolve rapidly and take into account all of the strategic, tactical and
functional constraints that it faces.

Experts in the field (analysts, architects and technologists) all proclaim that the
solution must necessarily include the implementation of a service-oriented
information system. They all consider that only a service-oriented information
system can contribute to making the company more competitive, more profitable
and more accessible than ever before.

This thesis presents a study of the evolution of distributed architectures towards
service-oriented architecture. After a recall of the key principles of distributed
environments, placed in their historical context, it describes the two major
architectural models based on distributed services (standards of service-oriented
distributed architectures): SUN's J2EE (Java 2 Enterprise Edition) and Microsoft's

PJ

.NET. After a comparison of the two models, an e-commerce application (Jurasco
Style electronic shop) is developed using the NET platform. The application
includes support for XML Web Services (based on the SOAP and UDDI
standards) as well as support for mobile devices.

3

CHAPTER 2

The first generation client-server

Several models have seen the light of day since the eighties. The first and
doubtless most famous is client-server architecture. It distinguishes the specific
roles (layers of architecture) played by the distributed components: presentation
(user interface), application logic (processing), and data management. Each layer
makes up a logical and independent processing unit.

In its simplest version, the computer workstation (PC, Mac, etc.) called the
if client' t is responsible for presentation and global application logic. A server
manages data access. There is no surprise in this, as the first generation client-
server architecture corresponds to the advent of personal computers and
relational databases in companies. The growth of RDBMS (Relational Data Base
Management Systems) and the associated SQL (Structured Query Language)
largely contributed to this success.

The model was gradually enriched and produced in multiple versions, taking
advantage of the increasing maturity of distributed architectures: multitask
operating systems for workstations, development of network protocols,
implementation of the object model, theories of cooperative processing, data
distribution models, etc. In its most sophisticated version, the client-server
architecture installs the user interface on the client station and optionally a part
of the functional logic. A system for the management of local data can also be
part of the architecture.

4

1itR)f I_It

f 1-'

Figure 1 First generation client-server architecture

One or several remote programs (called servers) implement business processing
and give access to the shared data, and may even be managed by several
RDBMS. We then refer to shared data (appearance of shared relational databases)
and distributed processing (with the standardization of remote program-calling
mechanisms, including in particular the RPC (Remote Procedure Call) model.

But the idea of a transaction distributed between several machines (for example
between the workstation and a server or between several interconnected servers)
was not yet mature. In this field, standards were lacking despite the appearance
of some interesting proposals of standardized distributed architecture models
(such as DCE - Distributed Computing Architecture from the OSF - Open
Software Foundation).

The pressure from the final users was partly responsible for the real success
encountered by the client-server paradigm at the end of the eighties. The craze
that it generated was a result of the user-friendliness (at least theoretical) of the
man-machine graphic interface (compared to the awkwardness of screens
operating in character mode) and was also explained by the "multi-window"
possibilities (still in the development stage) proposed by the microcomputer
operating systems (Windows 3 in particular).

An important pitfall was however rapidly discovered: client-server architecture
required the explicit installation of application components on each user's
workstation. The administration and maintenance of the technical and
application stock could become nightmarish and very costly.

The results were however very positive. The client-server model favored the
growth of new paradigms for the development and production of user-friendly
applications. Associated with the Web and the strong development of networks,

Wi

it was the basis of the promising distributed services architectures that were
gradually appearing.

CHAPTER 3

The object reconciles data and processing

It was at the end of the eighties that the object-oriented development model met
with considerable success. This model, whose theoretical bases were outlined at
the end of the sixties, simplified the reuse of components and proved to be well
adapted to the development of applications in client-server architecture and
equipped with a graphic interface.
The object model introduced three key concepts:

• Class. This corresponds to an autonomous software unit that
"encapsulates" data (called class attributes) and processing (called class
methods). In this way, a class resembles a mold (some people refer to a
plant) allowing the fabrication of computer structures that model the
behavior and the functioning of management objects. Each class contains
(encapsulates) a data model (all of the attributes) and a set of processing
programs (the methods) that can be applied to the data.
Certain attributes and certain methods may be reserved for internal use,
within the object. We can now refer to the interface of a class. It is made
up of all the public methods (optionally public attributes) of the class,
meaning resources of the class that are accessible by a developer from an
application program. The other resources are naturally private.

• Objects. These are technical structures created from their mold (the
objects are called the 'instances" of a class). The attributes (data) of an
object possess values that can be modified thanks to the methods
associated with the class of which the object is an instance (strong
encapsulation). Certain object systems and languages allow the direct
manipulation of public attributes from an application program (we call
this a weak encapsulation model).
Figure 2 summarizes the three characteristic elements of objects; X its
identity (each object is unique), Y the values of its attributes, Z the
methods that can be applied to it.

• A class organization chart. This chart, called an inheritance graph, enables
factorization of the data and processing shared by several classes. Indeed,
each class "inherits" attributes and methods from its parent class (simple
inheritance) or from its different parents (multiple inheritance, capable of
leading to inheritance conflicts). When we look at the attributes and
methods encapsulated in the classes located in the upper level of the
inheritance graph, we discover the general properties that are
characteristic of the objects.

Logically, only the final classes (the inheritance graphs) are destined to be
instantiated and to produce objects (instantiation classes). The
intermediary level classes are used to factorize knowledge (abstraction
classes).

These definitions reveal the duality of the encapsulation concept. Firstly, it
designates the fact of building classes containing both data and processing. But it
also characterizes the possibility of protecting the data (object attribute values,
instance of a class) by imposing the calling of appropriate methods to ensure
accessing or updating (in strong encapsulation).

Objett

Pr5on class	 Object. ins tance of Professor
Aribuic ilfl,'&ll

1dnIity

Iho.4

/Attributes (values)

Pro fess w inIi I U

ii.'n Piisozi
brofcsorcbs,I	 t	 L •••

AIIIII'LIt (model)

I	 c

Figure 2 Key elements of the object approach

Many layers and architectural elements of the information system were subject to
profound changes linked to the integration of the object approach: the design of
operating systems, data management systems, programming languages,
software engineering workshops, design and development methods for
applications, application architectures, etc. Moreover, as we will see, this model
is clearly at the base of service-oriented Distributed Information Systems (DIS).

8

It should be noted that the mainframe was not lagging behind and also benefited
from these innovations, with a slight time lag. This time lag turned out to be
sufficient to allow these types of concepts to mature "outside" the more closed
and sealed architecture of large proprietary systems.

CHAPTER 4

Three-tier architecture

In the mid nineties, with the mainframe still alive and allowing many companies
to pursue the development of their activities, the first generation client-server
was evolving towards the notion of architecture based on reusable and
interoperable components. This time, we can only talk about the client or the
server in a contextual manner. A client component is simply the one that sends a
service demand to another component, this same "client' being able to act as a
if

	 in another application context.
Now begins the asking of complex questions inherent to the implementation of a
truly distributed architecture, questions that we'll come back to further on:

How to effectively manage the integrity of data shared between
components?

. How to maintain the coherence of this data?
• How to render these types of components truly interoperable?
• How to guarantee the overall security of a distributed system?

The adoption of the "thin client" concept (which happened in stages and cannot
be totally assimilated into the appearance of Web browsers) caused the client-
server model to evolve: three-tier architecture was born. The first tier is executed
on the final user's workstation (PC, Mac, automated teller, PDA, etc.). This
station assumes the application's man-machine interface. With the growth of the
Web and HTML, the standard configuration of a thin client station henceforth
comprised navigation software (browser) capable of interpreting in a dynamic
manner (during execution and on-the-fly) the HTML code that it received from
another component of the application architecture. The Web server is located in
the intermediate level (middle-tier) that also hosts the business components
(programs).
The deployment of a new application is thereby considerably simplified:
management of the user authorizations relative to the application (paid-up
license for the different functions offered by the application) and training of the

10

new user. No program deployment on the client station is required (excepting,
only once, the technical components: browser, communication services, etc). The
overall system administration is considerably simplified.

The last tier concerns the mainframe, which was starting to raise serious
technical and operational problems of application integration. Although the new
applications (front-office, e-Business, etc.) were produced in compliance with the
object paradigm, developed using object-oriented languages, in an appropriate
software engineering approach, the mainframe was still hosting thousands of
batch and transactional programs, "homemade" developments or packages (ERP
- Enterprise Resource Planning), often written in PL/1 or in COBOL, or even
generated using an integrated CASE (Computer Aided Software Engineering)
not necessarily object-oriented (Pacbase for example).

These "closed" programs represented an undeniable functional wealth and there
could not reasonably be any question of re-writing them, or even less, simply
adapting them to a standardized client-server model.

Inn	 Server .1/iIu//rjcr	 E, I S

Ail-

Local
pracm

dknl

Figure 3 Three-tier architecture

Moreover, mainframes host strategic, reference databases, whose contents are
critical for the operation of the company. Large systems should thereby be able to
participate in the implementation of distributed architecture. In reality, things
are more complex.
Note: generalized client-server architecture does not prohibit the use of "fat
clients" in the first tier (the one responsible for the man-machine interface and a
part of the application logic), the weaknesses of the classic client-server model
thereby reappearing.

11

CHAPTER 5

Communication modes between distributed components

To connect two components within a distributed architecture, different modes of
communication and exchange may be used (not including data exchanges
performed in store and forward mode, for example through file transfers that
may include data transformation operations):

• Interactive mode. In this first mode, two distributed components dialogue
one with the other, exchange data and messages, generally in a
synchronous manner. The establishment of a dialogue requires that the
concerned programs be active simultaneously.

• Request / response mode. This is a limited version of the interactive
mode, involving a single pair of exchanges; a request (query) and its
response. The first program (caller, client...) sends a request to the second
program (recipient, server...). The caller normally interrupts its execution
while waiting for the response. The recipient then performs the requested
processing and sends the result to the caller.

• Message passing mode. The first component (A) uses a communication
channel to send a message (formatted) to the recipient component (B), like
a letter sent by a sender for the attention of the recipient (deposited in his
mailbox).

The interchange does not block the sender (except if it is waiting on a
response in the form of a new message, sent this time by component B
using a new communication channel).

• The use of message queuing. This is a more sophisticated version of the
message-oriented communication mode. This time, the messages posted
by component A for the attention of component B are firstly entrusted to
an intermediary level of architecture, which in particular ensures their
storage in a queue. This middleware guarantees the persistence of
exchanges. The recipient may freely consult the queue in order to be
informed of the messages addressed to him (like a person picking up their
mail in their mail box).

12

The sender may sometimes choose between posting and porting of
messages. In the first case, the communication is performed in an entirely
asynchronous manner. In the second, the sender suspends his execution
for the time that the sent message has not been delivered to its recipient
(pseudo-synchronous communication).

• Publish & subscribe mode. Program A uses an intermediary software
program to publish messages that could be of interest to other
components of the system. For its part, program B calls on the same
software in order to subscribe to certain types of messages that it wishes
to receive and process.

Numerous message-management modes are proposed by intermediary
software (middleware). All of them correspond to specific functional
situations. For example, a same message can be deleted (considered as
processed) as soon as the appropriate component (subscriber) extracts it
from the queue. Conversely, this message may be duplicated, at the
sender's request, as many times as required in order to make it available
to all of the subscribing components.
Note that functional logic sometimes leads to preventing the applications
from managing publication and subscription themselves. In this case,
these components dialogue with a centralized hub (in general a message
broker) whose behavior is decided by rules defined by an administrator.
This hub is responsible in particular for message transformation (change
of format) and routing, according to their type and even their content.
Several middleware products now support this mode of exchange, in
particular IBM's MQSeries, TIBCO and Microsoft's MSMQ.

13

[^ I

Manarnen1

'of

the

CQenl

1110101shft)

Interactive
p

p

Request 'response
p

UPç 5ac oriented	 iaernent
of the—0— ixptkii
oIIcaI

iento quu	 channel

0	 kidint.

Publish & Stti)ICEII)L'

uNk3t ion	 subscription

Figure 4 Modes of communication between distributed components

14

CHAPTER 6

Interdependence of components

Intuitively, we perceive that in order to maintain its effectiveness, a distributed
architecture must minimize the interdependence between each one of its
components: dependencies between components may cause a series of
malfunctions, whose causes are often difficult to diagnose. Increasing the
independence between components is a complex task, to be taken into account
upstream in the cycle of application development or integration.

The dependencies to be taken into account are notably the following:

• Functional isolation. Component A calls on component B. The functional
developments of B (performed without regression) must under no
circumstances affect the behavior of component A.

If the distributed system is well designed, the role of each component is
clearly defined and confined. Any change in this role must be controlled
and be part of a controlled functional logic.

• Call methods and returned data. The signature of a component may
evolve during maintenance operations (corrective and evolving) that
concern it. It is essential to ensure compatibility of the developments with
the potential callers (parameters, data formats, etc.)

• Localization. The localization of the called component, the system that
hosts it and the resources that it uses must be able to evolve without
requiring modification of the caller's behavior.

The object model constitutes a significant step in the search for logical
independence between distributed components.

Indeed, encapsulation and the use of public methods follow this same direction
by masking the implementation of objects (internal resources, data and
processing) from the applications that handle them.

The object approach has a strong influence on system design procedures. The
method (meaning the procedures, models and tools) of object design the most
widely used throughout the world is UML (Unified Modeling Language) for

15

which the specification is placed under the control of the 0MG [28] (Object
Management Group).

The arrival of XML [8] (eXtensible Markup Language) also constitutes re1
progress. Used within the framework of exchanges between distribute d
applications, XML and the associated dialects, notably the descriptions of the
structure of documents XML - DTD [21] (Document Type Definition) - and more
generally the schemas - XSD (XML Schema Definition), allow increased
independence between exchanged messages, their technical structure, and the
data formats that they contain, etc. 	 I

But the company often has a weighty existing structure that has little in common
with the object approach or XML. It is therefore difficult to guarantee
independence between the various components (often heterogeneous) of the said
existing structure, as well as between it and the new applications.

16

CHAPTER 7

Distributed Architectures

A distributed architecture corresponds to a generic description and operation
model for a distributed environment. It is therefore a set of principles and rules
to be respected in the deployment of a distributed execution environment
(including heterogeneous) in order to ensure conformity of the system relative to
the specification of the architecture.
The main objectives of this "standardization" are:

• To simplify the apparent operation of the system (to maintain a
homogeneous view of a heterogeneous world, to define and respect norms
and standards)

• To favor the reuse of software components (functional and technical
"bricks")

• To increase system security
• To increase the functional and technical scalability of the system (i.e. to

maintain a certain independence of the system relative to the potential
technical upgrades of each of its elements).

The quest to develop multi-tier enterprise systems has resulted in considerable
industry interest in component architectures [1]. Microsoft's Distributed interNet
Architecture (DNA) [2] and Sun's Java 2 Platform Enterprise Edition (J2EE) [3]
have both gained strong industry acceptance. These component architectures
attempt to define a standard framework for the development of enterprise
systems.

7.1 Windows Dynamic interNet Architecture (DNA)
Microsoft Windows DNA, originally described as the Windows Dynamic
interNet Architecture, started out as a set of design guidelines based on
Microsoft technologies. These technologies enabled the development,
deployment, and management of distributed applications. When DNA was first
introduced in 1997, it was described as an architecture for developing Internet

17

applications. As businesses started taking advantage of Internet and intranet
technologies, three-tier applications were being designed with each of the tiers
distributed across several machines. Windows DNA both supported and
encouraged this move toward distributed applications, and it has evolved into a
suite of products, services, and tools that support the creation of distributed
applications. Because of this evolution, Microsoft has also dropped the emphasis
on Dynamic interNet Architectures and describes Windows DNA as a platform
for Web solutions. One important point to remember is, even though the focus is
Web solutions, Windows DNA still supports solutions that don't require Web
services.

Windows DNA is based on COM [3, 4]. The architecture, as well as most of the
products and services that Windows DNA represents, are based on the
COM/DCOM programming model. However, Windows DNA isn't only about
COM. Windows DNA supports open standards and represents a unified
approach for building distributed applications. At the heart of Windows DNA is
a three-tier architecture based on a set of design guidelines that use services and
products with a common interface. That common interface is COM, which means
COM services and products developed up to this point would be supported with
Windows DNA. In addition, the investment developers have put into learning
COM wouldn't be lost; in fact that knowledge is valuable. Windows DNA makes
a lot of sense, is based on existing technologies, supports new technologies, and
represents a unified model for building distributed applications.
Table 1 shows an example of some of the products and services, and where they
fit into the three-tier architecture. These products represent applications and
systems that provide different services, such as managing components and
handling HTTP requests.

18

Product	 $etv(es	 Tier

Microsoft Access 	 Database	 Data
Microsoft SQL Server 	 Database Engine	 Data
Oracle	 Database Eng ine	 Data

Internet lnibrniation Server ci iS	 ASP. HTML. Scriptin. SSL	 1311siiiess
Microsoft Exchange Server	 MAI'l. POP3	 Data
Microsoft Transaction Server	 Distributed Transactions. Resource 	 lusiness
(MIS)	 Management. ('omponen I Uostiig
Microsoft Messa ge Queue	 Asynchronous Transactions, 	 i.lusiness
(MSMQ)	 Messaging

MicrosoFt Data Access 	 ADO. OLE l)IL RDS	 Presentation
Components (ME)AC)	 and flusiness
SNA Server	 COMTI. lleteroeneous Data	 flus mess

Internet Expkrer	 HTML. 1)HTML. Scripting 	 Presentation
Netscape Navigator	 lITM L, Scripting	 Presentation
Visual Studio	 Application Dee Iopment	 Presentation

and Business

Windows Operating System 	 COM!t)COM. CON1+. File	 All
Services. Active Directory.
MI S X I'll L

Table 1 Windows DNA Products and Services

The design guidelines Windows DNA proposes are based on using a three-tier
architecture. Figure 5 shows a Windows DNA Static View with the tiers labeled
according to Windows DNA specifications. Each of the tiers, or layers, in the
architecture has different requirements. The following descriptions define those
requirements and should help provide a better understanding of how all this fits
together.

19

&MI$ -

I	 I	 1

IssIrrI

	

L Oral*
	

J

WNW

Dda

Thin air*
	

Th&cis*

Figure 5 Windows DNA static view

7.1.1 Presentation Services
The Presentation Services layer represents the user interface. The user interface to a
Windows DNA application can be a thin client deployed to a browser, or a thick
client deployed as a stand-alone application. The functionality requirements of
the Presentation Services deal with providing an interface to the application for
users. Thin clients developed for Internet browsers have limited resources
compared to stand-alone applications. This may result in different presentation
components developed for the same application. Each set of components is
focused on managing the user interface and not the business operations behind
the interface. Some of the services used at this layer are HTML, DHTML,
Scripting, ADO, and RDS.

7.1.2 Business Services
The Business Services layer is responsible for managing the business operations
behind the Presentation Services layer. Business components can reside on the
same machine as the presentation components or on a separate machine. This is
where COM and DCOM provide benefit. It doesn't matter where you put the
component. Applications can link to it at run time using information from the
Registry. Business components themselves handle processing requests,
implementing business rules and providing a high-level Data Interface layer. It's
important to understand that the Data Interface layer here is an abstraction or
wrapper to the Data Services layer, which is discussed in the section that follows.
Some of the services found at this layer include transaction support, component
management, ADO, OLE [6] DB, resource management, and messaging.

20

For the purpose of Windows DNA, all these services in the middle tier represent
Business Services. As previously described, though, several different layers can
be within the Business Services tier. This layering is sometimes referred to as an
n-tier design, which means any number of tiers can be within the design. The
main point here is, in the Windows DNA platform, these are all considered part
of one tier or layer: Business Services. In alternate platforms, such as .NET, these
different tiers can also represent different service layers.

7.1.3 Data Services

The Data Services layer represents database engines, file systems, and directory
services. Database engines can be deployed to a single server or multiple servers.
With Windows DNA, the database can also reside on a completely different
platform. The Data Service components are responsible for managing the actual
data store. With file systems, this means the management of physical data on a
hardware medium. Directory Services include the capability to control and
manage access to the data. Although some people consider components like
ADO and OLE DB as Data Services, they really represent Business Service
components that access Data Services in the Windows DNA platform.

7.2 the Java J2EE Architecture

The J2EE platform uses a muiltitiered distributed application model. This means
application logic is divided into components according to function, and the
various application components that make up a J2EE application are installed on
different machines depending on which tier in the multitiered J2EE environment
the application component belongs. Figure 6 shows two multitiered J2EE
applications divided into the tiers described in the bullet list below. The J2EE
application parts shown in Figure 6 are presented in J2EE Application
Components.

• Client tier components run on the client machine
• Web tier components run on the WE server
• Business tier components run on the J2EE server
• Enterprise information system (EIS) tier software runs on the EIS server

While a J2EE application can consist of the three or four tiers shown in Figure 6,
J2EE multitiered applications are generally considered to be three-tiered
applications because they are distributed over three different locations: client
machines, J2EE server machine, and the database or legacy machines at the back-
end. Three-tiered applications that run in this way extend the standard two-

21

tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

J2EE	 J2EE
Application 1	 Application 2

a lentApplicati on
 II	 EEJ	

tier
client

_j Machine

JSP pages

Enterprise	 Enterprise
Beansj _j

Web
tier

JZEE
Server
Machine

Business
tier

Database
Server
Machine

Database I	 Database I EIS
tier

Figure 6 Multi-tiered applications

J2EE applications are made up of components. A J2EE component is a self-
contained functional software unit that is assembled into a J2EE application with
its related classes and files and communicates with other components. The J2EE
specification defines the following J2EE components:

Application clients and applets are client components.

• Java Servlet and JavaServer Pages (JSP) technology components are Web
components.

• Enterprise JavaBeans [23] (EJB) components (enterprise beans) are
business components.

J2EE components are written in the Java programming language [9] and
compiled in the same way as any Java programming language program. The
difference when you work with the J2EE platform, is J2EE components are
assembled into a J2EE application, verified that they are well-formed and in
compliance with the J2EE specification, and deployed to production where they
are run and managed by the J2EE server.

7.2.1 Client Components
A J2EE application can be Web-based or non-Web-based. An application client
executes on the client machine for a non-Web-based J2EE application, and a Web

22

browser downloads Web pages and applets to the client machine for a Web-
based J2EE application.

7.2.1.1 Application Clients
An application client runs on a client machine and provides a way for users to
handle tasks such as J2EE system or application administration. It typically has a
graphical user interface created from Project Swing or Abstract Window Toolkit
(AWT) APIs, but a command-line interface is certainly possible.
Application clients directly access enterprise beans running in the business tier.
However, if the J2EE application client requirements warrant it, an application
client can open an HflP connection to establish communication with a servlët
running in the Web tier.

7.2.1.2 Web Browsers
The user's Web browser downloads static or dynamic Hypertext Markup
Language (HTML), Wireless Markup Language (WML), or Extensible Markup
Language (XML) Web pages from the Web tier. Dynamic Web pages are
generated by serviets or JSP pages running in the Web tier.

7.2.1.3 Applets
A Web page downloaded from the Web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java VM installed in the Web browser. However, client
systems will likely need Java Plug-in and possibly a security policy file so the
applet can successfully execute in the Web browser.
JSP pages are the preferred API for creating a Web-based client program because
no plug-ins or security policy files are needed on the client systems. Also, JSP
pages enable cleaner and more modular application design because they provide
a way to separate applications programming from Web page design. This means
personnel involved in Web page design do not need to understand Java
programming language syntax to do their jobs.
Applets that run in other network-based systems such as handheld devices or car
phones can render Wireless Markup Language (WML) pages generated by a JSP
page or serviet running on the J2EE server. The WML page is delivered over
Wireless Application Protocol (WAP) and the network configuration requires a
gateway to translate WAP to HTTP and back again. The gateway translates the
WAP request coming from the handheld device to an HTTP request for the J2EE

23

server, and then translates the HTTP server response and WML page to a WAP
server response and WML page for display on the handheld device.

7.2.1.4 JavaBeans Component Architecture
The client tier might also include a component based on the JavaBeans
component architecture (JavaBeans component) to manage the data flow
between an application client or applet and components running on the J2EE
server. JavaBeans components are not considered components by the J2EE
specification.
JavaBeans components written for the J2EE platform have instance variables and
get and set methods for accessing the data in the instance variables. JavaBeans
components used in this way are typically simple in design and implementation,
but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

7.2.1.5 J2EE Server Communications
Figure 7 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the J2EE server either directly,
or as in the case of a client running in a browser, by going through JSP pages or
servlets running in the Web tier.

Client Tier

Web Browser
Web pages, applets,

and optional
JavaBeans class

Application Client
and optional

JavaBeans class

Business
Tier

Web Tier

J2EE Server

Figure 7 Server communications

7.2.2 Thin Clients
J2EE applications use a thin client. A thin client is a lightweight interface to the
application that does not do things like query databases, execute complex
business rules, or connect to legacy applications. Heavyweight operations like
these are off-loaded to Web or enterprise beans executing on the J2EE server
where they can leverage the security, speed, services, and reliability of J2EE
server-side technologies.

24

7.2.3 Web Components
J2EE Web components can be either JSP pages or serviets. Serviets are Java
programming language classes that dynamically process requests and construct
responses. JSP pages are text-based documents that contain static content and
snippets of Java programming language code to generate dynamic content.
When a JSP page loads, a background serviet executes the code snippets and
returns a response.

Static HTML pages and applets are bundled with Web components during
application assembly, but are not considered Web components by the J2EE
specification. Server-side utility classes can also be bundled with Web
components, and like HTML pages, are not considered Web components.
Like the client tier and as shown in Figure 8, the Web tier might include a
JavaBeans object to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Web Tier

Web Browser	 J1
Web pages, applet,"

and optional
JavaBeans class

JSP Pages	 Java8eans
Serviets	 Class

(optional)

Business
Tier

Application Clien
and optional

JavaBeans class

J2EE Server

Figure 8 Web tier and J2EE application

7.2.3.1 Business Components
Business code, which is logic that solves or meets the needs of a particular
business domain such as banking, retail, or finance, is handled by enterprise
beans running in the business tier. Figure 9 shows how an enterprise bean
receives data from client programs, processes it (if necessary), and sends it to the
enterprise information system tier for storage. An enterprise bean also retrieves
data from storage, processes it (if necessary), and sends it back to the client
program.
There are three kinds of enterprise beans: session beans, entity beans, and
message-driven beans. A session bean represents a transient conversation with a
client. When the client finishes executing, the session bean and its data are gone:.
In contrast, an entity bean represents persistent data stored in one row of a

25

database table. If the client terminates or if the server shuts down, the underlying
services ensure the entity bean data is saved.

A message-driven bean combines features of a session bean and a Java Message
Service (JMS) message listener, allowing a business component to receive JMS
messages asynchronously. This introduction describes entity beans and session
beans.

Business
Tier
	 EIS Tier

Web pages, applet
and optional

JavaBeans class

Application Client
and optional

JavaBeans class

JSP PagesJava8earisServlets	 Class
(optional)

Entity Beans
Session Beans

Message-Driven
Beans

Database I
&	 ILegacy

Systems

I	 I
•J2EE Server

Figure 9 Business and EIS tiers

7.2.4 Enterprise Information System Tier

The enterprise information system tier handles enterprise information system
software, and includes enterprise infrastructure systems such as enterprise
resource planning (ERP), mainframe transaction processing, database systems,
and other legacy information systems. J2EE application components might need
access to enterprise information systems for database connectivity, for example.

26

7.3 Windows DNA vs. Java J2EE

The following table illustrates the differences in application architecture
influenced by the respective DNA and J2EE base technologies.

Service	 Windows DNA	 J2EE

Operating Systems	 Windows CE/95/98/NT/2000	 Any operating system

Browser	 Internet Explorer 	 Any browser

Browser Components 	 ActiveX [6] Controls 	 Java Applets

Web Server	 Internet Information Server 	 Any Web server

Web Server Components Active Server Pages 	 Java Server Pages and Serviets

Application Server 	 Microsoft Transaction Server	 Any EJB Compliant Server (there are
about 20 to choose from)

Application	 Server MTS Components	 Enterprise Java Beans
Components

Communication Protocol DCOM	 HOP

Database Access	 ADO and OLE DB	 JDBC

Transaction Management Microsoft Distributed Transaction Any transaction service through JTA
Coordinator	 (Java Transaction APIs)

Messaging	 Microsoft Message Queuing	 Any messaging service through JMS
(Java Messaging Service)

Security	 Windows NT Security Services 	 Any security service through Java
Security Services

Directory	 Windows Registry	 Any directory service through JNDI

Table 2 Windows DNA J2EE comparison

27

CHAPTER 8

Service-oriented distributed architecture

This architecture, directly inspired by the object model, is based on the notion of
service, be it technical or functional (business).

8.1 Business and Technical Services

If the generalized client-server model allows the reuse of certain elements of the
information system, it is nonetheless based on the concept of tight coupling
between components and cannot guarantee total independence between them.
Developers wanting to integrate a component into an application must be aware
of its existence, the overall operation and the signature (call modes, entry points,
expected parameters and returned data). This type of architecture remains very
sensitive to change and makes the different elements of the system more
interdependent than truly interoperable.
The limits of the approach are particularly felt in a changing economic context
and a market in permanent development requiring the adaptation of the overall
operation of the information system.
What's more, new business practices (one-to-one marketing, e-Business, etc.)
impose the fact that applications designed independently and in an isolated
manner will be communicating. Moreover, the overall effectiveness and
relevance of the system depend heavily on the people responsible for its set-up,
its maintenance and its daily operation. These observations generate the need for
a more flexible architecture, where the components are really independent and
autonomous, capable of rapidly deploying new applications. These are the
objectives of the transition from a generalized client-server architecture, heavily
based on the object model (object-oriented distributed architecture), to a service-
oriented distributed architecture.
The principal idea behind service-oriented architecture is that any element of the
information system must become a service:

28

• Clearly identifiable. To identify a service signifies being able to know of
the existence, independently of its localization, its operating mode, its call
mode, etc.

• Performing a set of perfectly defined tasks. This means understanding the
overall operation of the service, meaning knowing the list of tasks that it is
capable of processing, its operational execution conditions, the exceptions
that it may cause, etc.

• Documented. The documentation must clearly describe how to call on the
service. It must clearly specify (and if possible in a unified or even
standardized manner) the call methods, the proposed functions and the
signature of the service.

• Autonomous and equipped with a controlled security level.
• Reliable in a given context. The reliability of a service naturally depends

on its context of use. These must be clearly identified and the service's
operating conditions explicitly described.

• Independent relative to other services (even if able to call on some of
them).

• Accessible on the network.
As you can see, the service notion is based on many concepts stemming from the
object model (for example, the implementation details of a service only interest
its developers and not its users).
More precisely, a service must be:

• Encapsulated. Its technical implementation is masked by the methods that
it makes available to the other components of the information system
(certain methods naturally remain reserved for the private use of the
developers of the service, rather like the internal and private resources of
an object)

• Available to application developers
• Documented (localization, call method, generated exceptions, signature,

etc.)
In short, an application service is a component that may be described, published
(made available to other services), localized and called in a remote manner. Note:
The notion of a Web Service corresponds to the notion of an application service,
with the addition of a constraint on component accessibility from the Internet
network.
A service-oriented architecture requires the definition of three key concepts:

FM

• How to publish the existence of a service (identity, description, signature,
etc.)?

. How to allow other components to find the services available in the core
of a distributed architecture?

• How to allow these same components to bind with a service and to
execute the processing that it proposes?

Today, these three questions (however simple) preoccupy many people and are
at the core of major debates with important stakes. Certain invariants have been
clearly revealed by such studies:

• Service-oriented architectures must make full use of the strengths of the
object approach. In particular, services (Web Services and Business
Services) must behave like objects. Then developing a new application
becomes essentially building an assembly of components, according to an
order and to rules that depend entirely and only on the activity and the
functional operation of the company.

• The system must provide a group of technical services facilitating the task
of developers and guaranteeing total independence between the business
services and the technical architecture.

• XML must play a major role in the service orientation. As it is simple,
open, offering appropriate specialization abilities and sufficiently
widespread, XML is a guarantee of simplicity and scalability. It should in
particular facilitate the description of services, communication between
services and data exchanges. Beyond the purely "marketing" functions
proposed by certain products on the market, the orientation towards XML
reveals itself to be promising.

From among the main proposals of architecture models based on distributed
services (standards of service-oriented distributed architectures), we'll mention
in particular SUN's J2EE (Java 2 Enterprise Edition) and Microsoft's .NET, as well
as their different predecessors such as the Object Management Group's CORBA
[26] (Common Object Request Broker Architecture), Distributed Smaltalk, Java
RMI [16] (Remote Method Invocation) and even Microsoft's COM[DCOM.

8.2 XJvIL and Web services

A simplified heir to the document management language SGML (ISO compliant
since 1986), XML is a tagged text language rather like HTML. But XML is both
more structuring and more open than HTML (moreover XHTML proposes an
elegant formulation of HTML 4 in XML) and enables the description of

REI

structured contents using strict rules and conventions, which are astonishingly
simple.

The first version of the standard (XML 1.0) appeared in June 1996 and specified
the rules for constructing a well formed XML document (compliance with XML
syntax and its writing conventions) and the compliance conditions of the
document (valid document) relative to a model, a standard structure: a DTD
(Document Type Definition) or an XSD schema (XML Schema Definition).
These rules are unchanging and common to all of the forms of the language. The
constantly increasing number of these forms reflects the numerous fields of use
of the language.
XML adapts to a multitude of technical and functional contexts for which specific
extensions (essentially predefined sets of tags) were ratified by the WK (World
Wide Web Consortium), the organization responsible for the standardization of
XML and its derivatives.
Firstly XLink describes how to add hyperlinks to a XML document. XPointer and
XFragments enable the management of pointers between document fragments.
The definition language of CSS style sheets, applicable to HTML, is also
applicable to XML documents. An extended and exclusively XML version of CSS
is proposed with XSL, itself a derivative of XSLT, a powerful language enabling
the specification of rules for the transformation, addition or deletion of tags and
attributes in a document.
In order to facilitate the use of the language in varied fields, and to avoid the risk
of semantic collisions between tags, XML enables the creation of namespaces:
collections of reserved names (tags and attributes) associated with a single
identifier (an URI). An XML document may contain orders that are of interest to
a determined application, which will recognize and interpret the predefined tags
of the appropriate namespace.
From this point on, XML permitting the encapsulation of any data structures and
application processing, like the object model, there is no longer anything
standing in the way of its generalization within the various layers of the
information system.
<7xml versi6n"1.-0" eñ?dir="iSO-8859-1 starida16neno 7>
<'DOCTYPE Mainframeoptimist SYSTEM="mo dtd' >
<Component ID= 45001 >
<Cal l_model>Synch ronous</Cal Lmode>
<Access>API</Access>
<subsys>CICS</SubSys>
<Method>
<Name>Creati onAccount</Name>
<Parameters>

</Method>	 -
31

<Method>
<Name>C1 051 ng_ACCount</Name>
<Parameters>

<I Component >

Figure 10 Example of an XML document

To assist developers in the processing of the XML flow, the DOM (Document
Object Model) standardizes a set of document manipulation functions from a
programming language (C, C++, Java, VB, etc.): analysis of XML structures
(parser), syntax control, validation of a document relative to a DTD or a XSD
schema, extraction of document fragments, manipulation of nodes, etc.

A rival proposal called SAX [24] (Simple API for XML) was produced by
independent Java developers and defined a specific API for this language.

XPath enables navigation in a XML flow represented as a tree structure where
the nodes are tags. As concerns the transactional manipulation of XML data (in
an RDBMS), several proposals aiming to define a query language based on the
contents of documents have appeared: XQL, QXML, etc.

Recently, XMLQuery (recommendation proposal dated June 7 2001) attempts to
group the main versions of the query language dialects within a single consistent
standard and also to extend these dialects to data management whose structure
may be of an arbitrary complexity.

Moreover, the big RDBMS (DB2, Oracle, SQL Server) have progressively
integrated XML type data and document manipulation functions (external to or
inside the same engine). Finally a new generation of native XML data managers
have already appeared (Software AG's Tamino notably).

XML plays an essential role in the deployment of a service-oriented architecture.
Each service must in fact list and describe the functions that it proposes, rather
like IDL (Interface Definition Language) files in OMG's CORBA (Common Object
Request Broker Architecture). This type of description can easily be done in
XML.

This is moreover the proposal of a several working groups that are trying to
define the generic implementation of an architecture based on Web services.

32

Description

0
Wth Servic	 offlinctions	 SYch &iice

___	 Ucr	 --
Interle

XMI. now

Figure 11 Architecture based on distributed objects - WSDL, WSUI, and SOAP

In this field, WSDL (Web Services Description Language) and WSUI (Web
Services User Interface) standards have newly been created. According to these
proposals, a Web service proposes functions, answers to a group of outside
stimuli (actions of the final user, specific events, etc.) and if required generates a
data flow (XML or not). The proposed functions are described within XML
documents, in a format defined by the WSDL standard.
The WSUI proposal is focused on the standardized definition of a generic user
interface for Web services. Like WSDL, WSUI takes full advantage of XML.
Finally, the SOAP [5] protocol (Simple Object Access Protocol) conveys messages
between different Web services (clients and servers) via HTTP. Naturally, these
messages are written in XML.

8.3 "Loosely coupled" interfaces
Web services are considered "loosely coupled" because they are extremely
abstract, unlike their predecessors CORBA and COM/DCOM [29]. The user need
not know much about a Web service in order to use one. This is because a Web
service will describe itself telling you how to use it, where to find it, etc. Even
more remarkable, the architecture of a Web service hides the 'plumbing" of the
service, including the language it is written in, the platform it runs on, the type of
network, 0/S, and hardware it runs on, etc.
In contrast, a 'tightly coupled" interface requires a tremendous amount of prior
knowledge about a service in order to use it. This is because it is tightly tied to a
particular platform, 0/S, or language.
The advantage of a "loosely coupled" approach is flexibility and convenience.
You can change every single piece of the plumbing (0/S, platform, language, and

33

hardware) without the consumer of the service knowing or caring. You can even
add capabilities. This is because the interface never changes and therefore
applications and services calling the service do not have to change either.
consumer of the services need only access the capabilities that apply to her, thus
reducing the need to "upgrade" to features she does not need. 	 I

34

CHAPTER 9

J2EE vs. Microsoft.NET: A comparison of building
XML-based Web services

Although both J2EE and NET cover a great deal of technologies and standards,
we will focus specifically on building server-side systems as Web services using
these architectures (for example, we will not be mentioning Jini or Office XP).
The first half of this chapter is background information about Web services, J2EE,
and .NET. The 2nd half is the comparison.

9.1 Introduction

Prior to the advent of Web services, enterprise application integration was very
difficult due to differences in programming languages and middleware used
within organizations. The chances of any two business systems using the same
programming language and the same middleware were slim to none, since there
has not been a de-facto winner. These 'component wars' spelled headaches for
integration efforts, and resulted in a plethora of custom adapters, one-off
integrations, and integration 'middlemen'. In short, interoperability was
cumbersome and painful.
With Web services, any application can be integrated so long as it is Internet-
enabled. The foundation of Web services is XML messaging over standard Web
protocols such as HYFP. This is a very lightweight communication mechanism
that any programming language, middleware, or platform can participate in,
easing interoperability greatly. These industry standards enjoy widespread
industry acceptance, making them very low-risk technologies for corporations to
adopt. With Web services, you can integrate two businesses, departments, or
applications quickly and cost-effectively.
The vision for Web services predicts that services will register themselves in
public or private business registries. Those Web services will fully describe
themselves, including interface structure, business requirements, business
processes, and terms and conditions for use. Consumers of those services read
these descriptions to understand the abilities of those Web services. Web services

35

will be smart, in that once a service has been invoked, it will spontaneously
invoke other services to accomplish the task and to give users a completely
personal, customized experience. In order for these services to dynamically
interact, they need to share information about the user's identity, or context
information. That context information should only need to be typed in once, and
then made available at the user's discretion to selected Web services.

9.2 Building Web services with technologies that have gained the
most acceptance

Now that we've seen the general philosophy behind Web services, let's look at
how to build and use a Web service. Web services are in reality simply XML-
based interfaces to business, application, and system services, and are really old
technologies wearing a new hat. The following technologies that have gained the
most industry acceptance, and is one possible way to perform Web services:

A provider creates, assembles, and deploys a Web service using the
programming language, middleware, and platform of the provider's own
choice.

• The provider defines the Web service in WSDL (the Web Services
Description Language). A WSDL document describes a Web service to
others5.

• The provider registers the service in UDDI [10] (Universal Description,
Discovery, and Integration) registries. UDDI enables developers to
publish Web services and that enables their software to search for services
offered by others.

• A prospective user finds the service by searching a UDDI registry.

• The user's application binds to the Web service and invokes the service's
operations using SOAP (the Simple Object Access Protocol). SOAP offers
an XML format for representing parameters and return values over HTTP.
It is the communications protocol that all Web services use.

Note that the above technologies are only sufficient for simple Web services.
Extended business exchanges require an agreed-upon structure for business
transactions, multi-request transactions, schemas, and document flow. These
application requirements often stretch the limits of a purely SOAP based
implementation. This is the motivation for ebXML, which is a suite of XML
specifications and related processes and behavior designed to provide an e-
infrastructure for B213 collaboration and integration.

36

Note that the above approach is but one way of making Web services work.
There are other choices as well, but we feel that these technologies are the most
important and will achieve the widest industry adoption. Because of this, in
reality, we really haven't reached complete consensus on building Web services,
and there are still a lot of issues to be resolved. For example, there is vendor
disagreement on SOAP extensions, ebXML, and service flow descriptions. The
good news is that:

• For once, all major players, including Sun and Microsoft, generally agree
that SOAP, WSDL, and UDDI are good things and that they (or their
standard derivatives) will provide a foundation for the future.

• All the vendors are working together to establish Web services standards,
and a foundation is emerging.

9.3 The J2EE and Micros oft.NET approach to Web Services
If you want to build a usable Web services system, there is more than meets the
eye. Your Web services must be reliable, highly available, fault-tolerant, scalable,
and must perform at acceptable levels. These needs are no different than the
needs of any other enterprise application.
J2EE and NET are evolutions of existing application server technology used to
build such enterprise applications. The earlier versions of these technologies
have historically not been used to build Web services. Now that Web services has
arrived, both camps are repositioning their solutions as platforms that you can
also use to build Web services.
The shared vision between both J2EE and NET is that there is an incredible
amount of 'plumbing' that goes into building Web services, such as XML
interoperability, load-balancing, and transactions. Rather than writing all that
plumbing yourself, you can write an application that runs within a container that
provides those tricky services for you.
This paradigm allows you to specialize in your proficiencies. If you were a
financial services firm, for example, you'd have proficiency in financial services,
but likely very little proficiency in Web services plumbing compared to a
specialist such as Sun, IBM, BEA, Oracle, or Microsoft. By purchasing the
container off-the-shelf, you won't need to be an expert at plumbing to build a
financial services-based Web service. Rather you just need to understand their
business problem at hand, and leave the Web service plumbing to the container.
With that said, let's take a look at the details of each vision.

37

9.4 J2EE

The Java 2 Platform, Enterprise Edition (J2EE) was designed to simplify complex
problems with the development, deployment, and management of multi-tier
enterprise solutions. J2EE is an industry standard, and is the result of a large
industry initiative led by Sun Microsystems.

It's important for you to realize that J2EE is a standard, not a product. You
cannot "download" J2EE. Rather you download a set of Adobe Acrobat PDF files
which describe agreements between applications and the containers in which
they run. So long as both sides obey the J2EE contracts, applications can be
deployed in a variety of container environments.

The J2EE camp's goal is to give customers choice of vendor products and tools,
and to encourage best-of-breed products to emerge through competition. The
only way this would ever happen is if the industry as a whole were bought-into
J2EE. To secure buy-in, Sun collaborated with other vendors of eBusiness
platforms, such as BEA, IBM, and Oracle, in defining J2EE. Sun then initiated the
Java Community Process (JCP) to solicit new ideas to improve J2EE over time.
The reason Sun did this is because they had to do so to achieve success--the best
way to secure buy-in to an idea is to involve others in defining that idea.

9.4.1 Java: The foundation for J2EE
The J2EE architecture is based on the Java programming language. What's
exciting about Java is that it enables organizations to write their code once, and
deploy that code onto any platform. The process is as follows:

1. Developers write source code in Java.
2. The Java code is compiled into bytecode, which is a cross-platform

intermediary, halfway between source code and machine language.

3. When the code is ready to run, the Java Runtime Environment (JRE)
interprets this bytecode and executes it at run-time.

J2EE is an application of Java. Your J2EE components are transformed into
bytecode and executed by a JRE at runtime. Even the containers are typically
written in Java.

9.4.2 J2EE and Web Services
J2EE has historically been an architecture for building server-side deployments
[1] in the Java programming language. It can be used to build traditional Web
sites [2], software components, or packaged applications. J2EE has recently been
extended to include support for building XML-based Web services as well. These

38

Web services can interoperate with other Web services that may or may not have
been written to the J2EE standard.

J2EE Web services development model is shown in Figure 12.

Client Tier

1essPadner'fl

L
ot other system W

Web seMces tech r,1es
(SOAP, UDDI, VVSDL, ebXML)

I	 Applets.

L App4icflqn j

flop

Web Browser	 PDA

IITTP	 HTTP

Firewall

Senkts	 JS?s

i.
EJOs

-1	 ConocV>c

Web Service
Container

VVeb se< technologies
Back-End	 Propnetarj Protocol 	 sot.	 Propnetary Protocol (SOAP. LJDDI, wsot., ebXML)

Systems -.-	 I	 _____________

Legacy System	 Partner

Context Repository Databases

Figure 12 Developing Web services with J2EE

Briefly, Figure 12 is explained as follows:

J2EE application is hosted within a container, which provides qualities of service
necessary for enterprise applications, such as transactions, security, and
persistence services.

The business layer performs business processing and data logic. In large-scale
J2EE applications, business logic is built using Enterprise JavaBeans (EJB)

components. This layer performs business processing and data logic. It connects
to databases using Java Database Connectivity (JDBC) or SQL/J, or existing
systems using the Java Connector Architecture (JCA). It can also connect to
business partners using Web services technologies (SOAP, IJDDI, WSDL,
ebXML) through the Java APIs for XML (the JAX APIs).

Business partners can connect with J2EE applications through Web services
technologies (SOAP, UDDI, WSDL, ebXML). A serviet, which is a
request/response oriented Java object, can accept Web service requests from
business partners. The servlet uses the JAX APIs to perform Web services
operations. Shared context services will be standardized in the future through
shared context standards that will be included with J2EE.

Traditional 'thick' clients such as applets or applications connect directly to the
EJB layer through the Internet Inter-ORB Protocol (hOP) rather than Web
services, since generally the thick clients are written by the same organization
that authored J2EE application, and therefore there is no need for XML-based
Web service collaboration.

Web browsers and wireless devices connect to JavaServer Pages (JSPs) which
render user interfaces in HTML, XHTML, or WML.

9.5 Microsoft's NET Platform
Microsoft.NET is product suite that enables organizations to build smart,
enterprise-class Web services. Note the important difference: NET is a product
strategy, whereas J2EE is a standard to which products are written.

Microsoft.NET is largely a rewrite of Windows DNA, which was Microsoft's
previous platform for developing enterprise applications. Windows DNA
includes many proven technologies that are in production today, including
Microsoft Transaction Server (MTS) and COM+ [11], Microsoft Message Queue
(MSMQ), and the Microsoft SQL Server database. The new NET Framework
replaces these technologies, and includes a Web services layer as well as
improved language support.

40

Web Service
Container

Web seM
SOAP, U

The developer model for building Web services with Microsoft.NET is shown in
Figure 13.

Client Tier

Busnessr1ncr .

Web services tethroIogies
qr p nnri wsr! P.iTIki

Web Browser

HITP

Wireless Device

HTTP

Back-End
	

SQL
	

Propiietay Prooco; (SOAP. UDDI. WSDL. BTa!k

Systems

an

Passport.NET SQL Server 2000

Figure 13 Developing Web services with Microsoft.NET

Briefly, Figure 13 is explained as follows:

The NET application is hosted within a container, which provides qualities of
service necessary for enterprise applications, such as transactions, security, and:
messaging services.
The business layer of the NET application is built using NET managed
components. This layer performs business processing and data logic. It connects
to databases using Active Data Objects (ADO.NET) and existing systems using

41

services provided by Microsoft Host Integration Server 2000, such as the COM
Transaction Integrator (COM TI). It can also connect to business partners using
Web services technologies (SOAP, UDDI, WSDL).

Business partners can connect with the NET application through Web services
technologies (SOAP, IJDDI, WSDL, BizTalk).

Traditional 'thick' clients, Web browsers, wireless devices connect to Active
Server Pages (ASP.NET) which render user interfaces in HTML, XHTML, or
WML. Heavyweight user interfaces are built using Windows Forms.

9.5.1 The .NET Framework

Microsoft.NET offers language-independence and language-interoperability.
This is one of the most intriguing and fundamental aspects of the NET platform.
A single NET component can be written, for example, partially in VB.NET , the
.NET version of Visual Basic, and C#, Microsoft's new object-oriented
programming language.

How does this work? First, source code is translated into Microsoft Intermediate
Language, sometimes abbreviated MSIL, sometimes IL. This IL code is language-
neutral, and is analogous to Java bytecode.

The IL code then needs to be interpreted and translated into a native executable.
The NET Framework includes the Common Language Runtime (CLR),
analogous to the Java Runtime Environment (JRE), which achieves this goal. The
CLR is Microsoft's intermediary between NET developers' source code and the
underlying hardware, and all .NET code ultimately runs within the CLR.

This CLR provides many exciting features not available in earlier versions of
Windows DNA, such as automatic garbage collection, exception handling, cross-
language inheritance, debugging, and "side-by-side" execution of different
versions of the same NET component.

9.5.2 NET Servers
The NET platform includes the following NET Enterprise Servers. Many of
these are repackagings of existing products under a common marketing term:

• SQL Server 2000 is Microsoft's relational database.

• Exchange 2000 Server is a messaging and collaboration platform useful in
developing and running core business services and is now tightly
integrated with Windows 2000.

42

• Commerce Server 2000 offers you quicker and less complicated
development and deployment of customizable online e-commerce
solutions.

• Application Center Server 2000. Application Center Server 2000 lets you
manage clustered servers.

• Host Integration Server 2000. Host Integration Server 2000 gives you
access to selected legacy systems running on other platforms (primarily
IBM-based).

• Internet Security and Acceleration (ISA) Server 2000 offers firewall and
Web caching capabilities.

• Bizlalk Server 2000 is Microsoft's XML-based collaborative e-business
solution for integrating applications, trading partners and business
processes via the Internet.

9.6 Understanding J2EE and .NET by analogy

To help you understand both models, we offer analogies between J2EE and NET
technologies in Table 3. This table only showcases the similarities--we will get to
the differences in a few moments.

Feature	 J2EE	 NET

Type of technology	 Standard	 Product

Middleware Vendors	 30+	 Microsoft

Interpreter	 JRE	 CLR

Dynamic Web Pages 	 JSP	 ASP.NET

Middle-Tier Components	 EJB	 NET Managed Components

Database access	 JDBC SQL/J ADO.NET

SOAP, WSDL, UDDI	 Yes	 Yes

Implicit middleware(load-balancing, etc) Yes 	 Yes

Table 3 Analogies between J2EE and NET

9.7 Comparative Analysis

9.7.1 Single-Vendor Solution
When building Web services, in general you should always prefer to have a
single-vendor solution. A single vendor solution is usually more reliable,
interoperable, and less error-prone than a two-vendor bridged solution.

43

One of J2EE's strengths is that it has spawned a wide variety of tools, products,
and applications in the marketplace, which provide more functionality in total
than any one vendor could ever provide. However, this strength is also a
weakness. J2EE tools are often-times not interoperable, due to imperfections in
portability. This limits your ability to mix and match tools without substantial
low-level hacking. With lower-end J2EE implementations, you need to mix and
match to get a complete solution, and this is the tradeoff when choosing a less
complete package. Larger vendors, such as IBM, Oracle, BEA, and iPlanet, each
offer a complete Web services solution.
.NET provides a fairly complete solution from a single vendor--Microsoft. This
solution may lack some of the higher end features that J2EE solutions offer, but
in general, the complete Web services vision that Microsoft will be providing is
equal in scope to that of a larger J2EE vendor.
Another way to look at a single-vendor solution is from a legacy perspective.
Many legacy systems are written by J2EE vendors, such as IBM or BEA. J2EE
offers a single-vendor solution from the legacy integration perspective, since you
can re-use existing relationships with those vendors. A PEE solution would
therefore be a single-vendor solution, since you can stay with that legacy system
vendor rather than inject a new vendor such as Microsoft. For users with existing
Microsoft-based systems, the reverse argument applies.

9.7.2 Support for Existing Systems

Most large corporations have existing code written in a variety of languages, and
have a number of legacy systems, such as CICS/COBOL, C++, SAP R/3, and
Siebel. It is vital that corporations be given an efficient, rapid path to preserve
and reuse these investments. After all, it is likely that businesses will have
neither the funds nor the time to reinvent all existing systems. This legacy
integration often is one of the most challenging (if not the most challenging)
tasks to overcome when building a Web service.
There are several ways to achieve legacy integration using J2EE, including

The Java Message Service (JMS) to integrate with existing messaging
systems

• Web services to integrate with any system
• CORBA for interfacing with code written in other languages that may

exist on remote machines.
• JNI for loading native libraries and calling them locally.

44

But by far, the most important part of the J2EE vision for integration is the J2EE
Connector Architecture (JCA). The JCA is a specification for plugging in resource
adapters that understand how to communicate with existing systems, such as
SAP R/3, CICS/COBOL, Siebel, and so-on. If such adapters are not available, you
can write your own adapter. These adapters are reusable in any container that
supports the JCA. The major vendors of existing systems are bought into the
JCA.

.NET also offers legacy integration through the Host Integration Server 2000.
COM Transaction Integrator (COM TI) can be used for collaborating transactions
across mainframe systems. Microsoft Message Queue (MSMQ) can integrate with
legacy systems built using IBM MQSeries. Finally, BizTalk Server 2000 can be
used to integrate with systems based on B2B protocols, such as Electronic Data
Interchange (EDT) (the reader should note, however, that BizTalk does not serve
as an access point to a proprietary network on which EDT takes place).

In conclusion, we believe that the legacy integration features offered by J2EE are
superior to those offered by .NET. The JCA market is producing a marketplace of
adapters that will greatly ease enterprise application integration. Integration
with packaged applications and legacy systems will become much easier--
imagine integrating with a system such as Siebel, Oracle, or SAP without ever,
leaving the Java programming environment. There is no analog to this in the
Microsoft domain; rather, there is limited connectivity to select systems provided
off-the-shelf through the Host Integration Server

9.7.3 Language Support

J2EE promotes Java-centric computing, and as such all components deployed
into a J2EE deployment (such as EJB components and servlets) must be written in
the Java language. To use J2EE, you must commit to coding at least some of your
eBusiness systems using the Java programming language. Other languages can
be bridged into a J2EE solution through Web services, CORBA, JNI, or the JCA,
as previously mentioned. However, these languages cannot be intermixed with
Java code. In theory, JVM bytecode is language-neutral, however in practice, this
bytecode is only used with Java.

By way of comparison, NET supports development in any language that
Microsoft's tools support due to the new CLR. With the exception of Java, all
major languages will be supported. Microsoft has also recently introduced its
new C# language which is equivalent (with the exception of portability) to Java
and is also available as a programming language within the Visual Studio.NET
environment. All languages supported by the CLR are interoperable in that all

45

such languages, once translated to IL, are now effectively a "common" language.
A single NET component can therefore be written in several languages.
The multiple language support that Microsoft has introduced with the CLR is an
exciting innovation for businesses. It is clearly a feature advantage that NET has
over J2EE. But is the CLR a business advantage for you? This is a more
interesting discussion. We are a bit concerned that the CLR may represent a poor
design choice for you if more than one language is used. This is for the following
reasons:

• Risk. Many existing systems are internally convoluted. Disrupting such
existing systems is a risky proposition, since knowledgeable engineers,
original source code, and a general understanding of the existing system
are often-times unavailable. The old adage, "if it ain't broke, don't fix it"
applies here.

• Maintainability. We speculate that a combination of languages running in
the CLR may lead to a mess of combination spaghetti code that is very
difficult to maintain. If you have an application written in multiple
languages, then to fully develop, debug, maintain, and understand that
application, you will need experts in different languages. The need to
maintain code written in several languages equates to an increase in
developer training expenditures which contributes further to an increased
total cost of ownership.

• Knowledge building. With combination language code, your developers
are unable to share best practices. While individual productivity may
increase, communication breaks down, and team productivity decreases.

• Skills transfer. While developers using different languages may have
very quickly coded a NET system using VB.NET and C#, what happens if
the new C# developers leave your organization? You have two choices.
Train your VB.NET developers to understand and write code with C#, or
hire other C# developers who know nothing about your code base. The
resulting lack in productivity equates to a reduced time to market and a
higher total cost of ownership.

In most cases, we feel that it's much better design to standardize on a single
language, and to treat legacy systems as legacy systems and integrate with them
by calling them through legacy APIs, which can be achieved using either J2EE or
.NET.
We do feel the CLR still adds significant value. The value is that a new eBusiness
application can be written in a single language of choice other than Java. This is

46

useful for organizations that are not ready to embrace Java. However, again we
must provide words of caution.

• It will not be seamless to transition existing developers from their familiar
language into productive NET developers. Procedural languages such as
COBOL and VB are being rewritten for NET to be object-oriented.
Teaching developers object-oriented programming is much more of a
stepping stone than understanding syntactical rules.

• Languages such as COBOL or VB were never intended to be object-
oriented. Legacy code will not seamlessly transition into .NET. The
resulting code is forever bound to NET and can never be taken from its
.NET home.

• We question the general wisdom in reinvesting in outdated technologies,
such as COBOL, with new eBusiness or Web services initiatives.

In summary, there are pros and cons to both approaches to language support.
Use the approach that best suits your business needs, but at least be aware of the
consequences of your decision.

9.7.4 Portability

A key difference between J2EE and NET is that J2EE is platform-agnostic,
running on a variety of hardware and operating systems, such as Win32, UNIX,
and Mainframe systems. This portability is an absolute reality today because the
Java Runtime Environment (JRE), on which J2EE is based, is available on any
platform.

There is a second, more debatable aspect of portability as well. J2EE is a
standard, and so it supports a variety of implementations, such as BEA, IBM, and
Sun. The danger in an open standard such as J2EE is that if vendors are not held
strictly to the standard, application portability is sacrificed. CORBA, for example,
did not have any way to enforce that CORBA middleware did indeed comply
with the standard, and thus there were numerous problems with portability. In
the early days of J2EE there were the same problems.

To help with the situation, Sun has built a J2EE compatibility test suite, which
ensures that J2EE platforms comply with the standards. This test suite is critical
because it ensures portability of applications. At the time of this writing, there
were 18 application server vendors certified as PEE-compatible. There are a
myriad of other vendors as well that are not certified10.

Our opinion is that in reality, J2EE portability will never be completely free. It is
ridiculous to think that complex enterprise applications can be deployed from

47

one environment to the next without any effort, because in practice,
organizations must occasionally take advantage of vendor-specific features to
achieve real-world systems. However--and this is important--portability is
exponentially cheaper and easier with J2EE and the compatibility test suite than
with proprietary solutions, and that is a fact we stand behind through years of
consulting with customers using a variety of J2EE solutions. Over time, as the
J2EE compatibility test suite becomes more and more robust, portability will
become even easier.
By way of comparison, NET only runs on Windows, its supported hardware,
and the NET environment. There is no portability at all. It should be noted that
there have been hints that additional implementations of NET will be available
for other platforms. However, a question remains - how much of the complete
.NET framework will be (or even can be) supplied on other platforms? History
has taught us to be skeptical of Microsoft's claims of multiple platform support.
Microsoft ported COM to other platforms, but never ported the additional
services associated with COM that were necessary to make COM useful. We find
it hard to believe that NET portability will ever become a reality given
Microsoft's historically monopolistic stance.
So how important is portability to you? This is the key question businesses must
ask themselves. When evaluating the importance of portability, there are three
scenarios worth considering.

If your firm is selling software to other businesses, or if you are a
consulting company, and your customers are on a variety of platforms, we
recommend specializing in J2EE architecture. Unless you can guarantee
that every one of your customers will accept a Windows/.NET solution,
you are restricting your salespeople from major accounts that may have
solutions deployed on UNIX or mainframes. This is rarely acceptable at
most ISVs or consulting firms.

• If, on the other hand, your customers are on the Windows platform, then
either J2EE or NET will suffice, since they both run on Windows. You
should then ask your sales force and consultants what middleware your
customers are using on that platform, and make your architecture decision
from there. It's important to really be proactive and get this information--
the more data you have, the better.

• If you host your own solutions, then you control the deployment
environment. That enables you to pick J2EE as well as .NET. If you are
willing to standardize on the Win32 platform, and live with the
advantages and disadvantages of that platform exclusively, then platform

48

neutrality is irrelevant, and you should consider other factors when
deciding on J2EE or .NET. But we offer a word of caution: you can never
predict the future. Business goals might change, new vendors might be
introduced into the picture, and mergers and acquisitions might happen.
All of these may result in a heterogeneous deployment environment. Your
applications will not be portable to those platforms in this scenario.

9.7.5 Web Services Support

The future of eBusiness collaboration is undoubtedly Web services. For
organizations that are pursuing a Web services strategy, or are preparing for the
future of Web services, their underlying eBusiness architecture must have strong
Web services support.

Today, J2EE supports Web services through the Java API for XML Parsing
(JAXP). This API allows developers to perform any Web service operation today
through manually parsing XML documents. For example, you can use JAXP to
perform operations with SOAP, UDDI, WSDL, and ebXML.

Additional APIs are also under development. These are convenience APIs to
help developers perform Web services operations more rapidly, such as
connecting to business registries, transforming XML-to-Java and Java-to-XML,
parsing WSDL documents, and performing messaging such as with ebXML.

A variety of J2EE-compatible 3rd party tools are available today that enable rapid
development of Web services. There are at least sixteen SOAP implementations
that support Java. Almost all of these implementations are built on J2EE (servlets
or JSP). There are only five UDDI API implementations available, and four of
them support Java (IBM UDDI4J, Bowstreet jUDDI, The Mind Electric GLUE,
and Idoox WASP). Third-party software vendors such as Tradia
(www.tradia.com), CapeClear (www.capeclear.com) and The Mind Electric
(www.themindelectric.com) also offer tools for creating Web services.

The preview release of Microsoft.NET also enables organizations to build Web
services. The tools that ship with Microsoft.NET also offer rapid application
development of Web services, with automatic generation of Web service
wrappers to existing systems. You can perform operations using SOAP, UDDI,
and SDL (the precursor to WSDL). Visual Studio.NET provides wizards that
generate Web services.

Our conclusions from our Web services comparison are as follows.

With J2EE, you can develop and deploy Web services today using JAXP.
However, this is not the ideal way to build Web services, since it requires much
manual intervention. An alternative is for organizations to leverage 3rd party

49

libraries to accelerate their development. In the future these libraries will be
standardized through the JAX APIs. For now, if you develop Web services
rapidly, you'll need to bundle these libraries with your application.

With .NET, you can develop Web services today using the partial release of
.NET. However, since this is only a beta implementation, it does not represent a
realistic deployment platform. Another issue with NET is that it does not
support true Web services because of a lack of support for ebXML. ebXML is a
very important standard for eBusiness collaboration, and is experiencing broad
adoption from around the world. Thousands of vendor and non-vendor
companies, government institutions, academic and research institutions, trade
groups, standards bodies, and other organizations have joined the ebXML
community. This includes HL7 (Health Care), OTA (Open Travel Alliance),
RosettaNet, OAG (Open Applications Group), GCI (Global Commerce Initiative),
and DISA (Data Interchange Standards Association). Undoubtedly, ebXML is
going to be an important force in Web services, and we hope that Microsoft
chooses to embrace it. Microsoft is still clinging to their BizTalk proprietary
framework which has proprietary SOAP extensions. This evidence makes us
question Microsoft's true commitment to open and interoperable Web services.

9.7.6 Tools

The Sun J2EE Product Portfolio includes Forte, a modular and extensible Java-
based IDE that pre-dates both Sun J2EE and .NET. Developers who prefer other
IDEs for Java development are free to use WebGain's Visual Café, IBM's
VisualAge for Java, Borland's JBuilder, and more. Numerous 3rd party tools and
open source-code products are available.

Microsoft has always been a strong tools vendor, and that has not changed. As
part of its launch of .NET, Microsoft released a beta version of the Visual
Studio.NET integrated development environment. Visual Studio.NET supports
all languages supported by earlier releases of Visual Studio - with the notable
exception of Java. In its place, the IDE supports C#, Microsoft's new object-
oriented programming language, which bears a remarkable resemblance to Java.
Visual Studio.NET has some interesting productivity features including Web
Forms, a Web-based version of Win Forms, .NET's GUI component set. Visual
Studio.NET enables developers to take advantage of .NET's support for cross-
language inheritance.

Our conclusion is that Microsoft has the clear win when it comes to tools. While
the functionality of the toolset provided by J2EE community as a whole
supercedes the functionality of the tools provided by Microsoft, these tools are

50

not 100% interoperable, because they do not originate from a single vendor.
Much more low-level hacking is required to achieve business goals when
working with a mixed toolkit, and no single tool is the clear choice, nor does any
single tool compare with what Microsoft offers in Visual Studio.NET . Microsoft's
single-vendor integration, the ease-of-use, and the super-cool wizards are
awesome to have when building Web services.

9.7.7 Scalability

Scalability is essential when growing a Web services deployment over time,
because one can never predict how new business goals might impact user traffic.

A platform is scalable if an increase in hardware resources results in a
corresponding linear increase in supported user load while maintaining the same
response time. By this definition, the underlying hardware (Win32, UNIX, or
Mainframe) is irrelevant when it comes to scalability, because both J2EE and
.NET allow one to add additional machines to increase user load while
maintaining the same response time. The major implementations based on J2EE
architecture, as well as .NET, provide load-balancing technology that enable a
cluster of machines to collaborate and service user load that scales over time.

The significant difference between J2EE and NET scalability is that since NET
supports Win32 only, a greater number of machines are needed than a
comparable J2EE deployment due to processor limitations. This multitude of
machines may be difficult for organizations to maintain.

9.8 Conclusions

Arguments supporting both platforms

• Regardless of which platform you pick, new developers will need to be
trained (Java training for J2EE, 00 training for .NET)

• You can build Web services today using both platforms

• Both platforms offer a single-vendor solution.

• The scalability of both solutions are theoretically unlimited.

Arguments for NET and against J2EE

• .NET has Microsoft's A-team marketing it

• NET released their Web services story before J2EE did, and thus has some
mind-share

• .NET has an awesome tool story with Visual Studio.NET

• .NET has a simpler programming model, enabling rank-and-file
developers to be productive without shooting themselves in the foot

51

• NET gives you language neutrality when developing new eBusiness
applications, whereas J2EE makes you treat other languages as separate
applications

• NET benefits from being strongly interweaved with the underlying
operating system

Arguments for J2EE and against NET

• J2EE is being marketed by an entire industry

• J2EE is a proven platform, with a few new Web services APIs. NET is a
rewrite and introduces risk as with any first-generation technology

• Existing J2EE code will translate into a J2EE Web services system without
major rewrites. Not true for Windows DNA code ported to .NET.

• J2EE is a more advanced programming model, appropriate for well-
trained developers who want to build more advanced object models and
take advantage of performance features

• J2EE gives you platform neutrality, including Windows. You also get
good (but not free) portability. This isolates you from heterogeneous
deployment environments.

• J2EE lets you use any operating system you prefer, such as Windows,
UNIX, or mainframe. Developers can use the environment they are most
productive in.

52

CHAPTER 10

Development of an e-commerce application using .NET
architecture

10.1 Jurasco Style Store Application Overview
The application is a typical e-commerce application: an online store enterprise
that sells products—clothes—to customers. The application has a Web site
through which it presents an interface to customers. The users interact with the
application through a user interface mechanism.

While the application handles most tasks automatically, some tasks must be done
manually, such as managing inventory and shipping orders. You can consider
the entire application as the Jurasco Style Store.

53

Order FWfiJhncni
clatter

Credit Card Sew kc3amcc Style Store Wth Site

Customer

Figure 14 Jurasco Style Store business

54

10.2Designing the Sample Application
Designing an application starts with assessing functional requirements and then
determining an optimal software implementation to meet those requirements.
There are numerous analysis tools for gathering and assessing application
requirements.
Use case analysis is one such tool. Use case analysis identifies the actors in a
system and the operations they may perform.
The Jurasco Style store application is a typical e-commerce site. The customer
selects items from a catalog, places them in a shopping cart, and, when ready,
purchases the shopping cart contents. Prior to a purchase, the application
displays the order: the selected items, quantity and price for each item, and th
total cost. The customer can revise or update the order. To complete the
purchase, the customer provides a billing address, a shipping address, and a
credit card number.
Figure 15 shows a high-level use case diagram for the sample application. It
shows the potential system actors and their actions:

55

Q

P:k and
hipin Ord€i

NVh ihous,

Cdit Card

<)te'fl>.
Cr'dit Card Svvic

Figure 15 Application Use Case diagram

• A customer shops, places orders, manages his user account
• A bank system processes credit cards.
• A warehouse worker packs and ships orders.
Once you have determined the system's requirements, you can begin designing
the application.

10.3 Functional Walkthrough
Jurasco Style Store, is an e-commerce application where customers can buy
clothes online. When you start the application you can browse and search for
various types of clothes from shirts to jeans.
A typical session using Jurasco Style Store is as follows:

56

Homepage - This is the main page that loads when the user first starts the
application.
R MEMO Mil rarx.-MM17-M.

Fe Edit Viw Favoes Tools Help

Back	 -4[:	 Search jjFaOnte	 .̂ Mecka

	

Lkk jCusornze Lirks	 jFree Hotm1 46Wndows J V"owsMcda

j'J	 j	 'GO

Jo •t

Welcome to Jurasco Style
password *

First Name

last nwite

eitkail

Register To View the Collection
eounü7

Register FOrm :Register

If registered click here

Fields are required	 Mobile Internet Acrss Click Here

s art 1	 i I	 JJ	 JJJ 6 : 19 PM

57

Login - The user must enter a user name and password to log in

Rle E& Vi"4 Fvc*t.s Tools I-p

4-ck	 'Search WFvoes JN1e	 3 r 4 f II R
Liks JCusksrne LinksFre Hotm 	 Widows JWdows Mei	 -.	 -

Adthes	 J

J urasco
Hodeh euItebonon Soon Món

Please select your name and enter your password to log in:

Name

Password	 H

Sübnit j	 IF Not Registered please.. CO BACK

stert.j

Local intranet

621 PM

58

Category View - There are 3 top- level categories: Each category has several
products associated to it.

jCor	 - -	 -- -	 -	 --	 Loc ntr&t

6:23PM

59

Products - When a category is selected within the application, all the products
are displayed.

File Et V	 Fevoes TWs h

tS&ch	 Fvor	 Me

L	 CLtomze 1irks	 Free Hotm.]Wixiow AJWwxow Me

1i htp:flo8/Database/15hlrtpage.aspx	 J	 G
View Cart I View Items I Sian Out

New i-Shirt Collection

RIX_____	

fr	 _____
view i-shirt	 view i-shirt]	 view i-shirt]	 view 1-shirti

-- BackToJterns -	 --

Startj k f2	 J jJJ	 J

Product Details - Each product will have a detailed view that displays the
product image, price, and the available colors and sizes.

Fe Edt View Favorites Toc4s Help

5, arch LijFa y orke5	 JMe	 '	 .

Links 	 Cusoe Lirds JFree Hm&l JWwdows .jW-,do M'd

A&fres j'J p:/t (bef hwtt .spx

Armand Ishirt

Price: $40

X

COlOr	 Size
I red	 Is

Add To Cart	 Back To [-Shirts

Done-

Start,.	 j 6:25 PM

61

Shopping Cart - Allows the user to manipulate the shopping cart (add, remove,
and update line items).

Fe Et Vew Fvorte To* He

ck -	 Sch	 Fvore5	 Meth

Liks JCustome Ls	 Free hotn	 jWrdows jWrJcs fl

Addressj) http//locahost/VBfDatabasefcart.aspx

 109A —k

.

jGo

Yo u roShoppi tip C art
Welcome To Jurascocom

Delete	 326 Armani Jeans	 1	 50020	 2	 140

Delete	 327 Arniath Shirt 	 1	 10010	 1	 45

Delete	 328 Arniani Shirt	 1	 10,020	 1	 45

Totd Amount: 230

CiZ	 Corithue Shoppping j

%

j

Start[6:27 PM

62

Checkout - The user is asked to give a billing and shipping address.

He Edk Yieoj Fvareo Took he

5e&d	 Froro rØjD

Lr	 JFr H&trr	 jWdowc ;6Window Me

Adcke

Billing and Delivery Adress

Billing Address

First Name JEhe	 City, Street,EJd.. JLA Ve

Last Name IJurasco
Telep}ioiie	 12330654 123

ountry.I	 l

Shippitig Address 	 . IF shipping is same ashillin address, leave this section empty

First Name:	 City, Street, Bid..

Last Name J	 Telephone	 I

Country

PaymentType IF Back TO' Cart
..

-

63

Payment Info - The user enters the credit card information.

Wwows M

ic

Locwrnet

___	 j

Place Order - This is the final step in the order-processing pipeline. The order is
now committed to the database at this point.

10.4 logical architecture
The overall logical architecture of the NET Jurasco Style Shop is detailed in
Figure 16.

ts 5 .	70^
	 CdtFtA, PD

Tcd'4

APIET

MoMe rce

CLR

Credit Ctrd Pty?ntht
	 Ccrcr,

\tJb Srv.ce

F

'"ct f2Ct

Figure 16 NET Jurasco Style Shop logical architecture

There are three logical tiers: the presentation tier, the middle tier, and the data
tier. The three tiers allow for clean separation of the different aspects of a
distributed application. The application represents a complete logical three-tier
implementation using .NET, and illustrates coding best-practices for the
Microsoft.NET platform.

65

10.5 Architecture of the Application
The previous section addressed the high- level architecture of the application. To
gain a better understanding of how the application works, this section will
walkthrough a section of the code, demonstrating the interaction between the
presentation tier, the middle-tier, and the data tier.
In designing n-tier applications, there are a variety of approaches. In
implementing the NET Jurasco Style Shop, a data-driven approach was used.

10.5.1 Database
The database for the Jurasco Style Store is SQL Server 2000. The database has the
following overall structure of tables:

Table Name	 Purpose

item	 Product information.

articles	 Article information.

cart	 Shopping Cart information.

transactions	 The orders placed by the customer. An order contains 1 or more
line items.

users	 User details.

Line items	 Order details.

Table 4 Database Table Names

Cu5tomerID
5asionU
ItemID

/	 Quantity
j Price

/

1

Io9nd
password
Rime
Warne
Ema
Coutry

arathm_kJ

date
------ - bl-fnarne

bg-lname
bng-CityStreet
bng-Cos*ry
bring-telephone

pngLname
hipping-cIty5treet
spg-Cositry
st4ppw-teIephcne

. FC70l̂or J'	 trarv^jd

Figure 17 Jurasco Style Shop physical database schema

The complete physical database schema for the NET Jurasco Style Shop is
illustrated in Figure 17.

10.5.2 Middle-Tier

The NET JurascoStyle Shop follows a Web centric architecture. The middle-tier
business logic is encapsulated into multiple ASPX pages implemented using VB.
The ASPX pages are located in the presentation tier developed in the next
section. The only component that we find in the middle tier is the primary key
class ItemCode used to calculate the bar code of an item based on its color and
size entered by the user from the ASPX page displaying detailed information
about a selected product in a category. The code of this class is shown below.
Public C1ss itemcode

Private iSize As Integer
Private icolor As Integer
Private icode As Integer
Public Function GetColorCode(ByVal scolor As String, ByVal ssize As

String, ByVal iClothNumber As Integer) As Integer
Dim RetCode As Integer

icode = iClothNumber	 100
select Case LCase(sColor)

Case 'white"
iColor = 10

Case "black'
icolor = 20

case "blue"
67

iColor	 30
Case "green"

iColor=40
Case "red'

icolor = 50
Case "grey"

H	 iColor = 60
Case Else

iColor=0
End select

Select Case LCase(sSize)
Case "s"

iSize=0
Case "m"

•	 iSize = 1
Case "1"

iSize = 2
• •	 Case "xl'

iSize=3
Case Else

iSize=9
End select
RetCode = iCode + iSize + icolor
Return RetCode

End Function
Eflç1 Class	 •,

68

10.5.3 Presentation-Tier

The presentation-tier for Juraco Style Shop was written using ASP.NET Web
Forms combined with User Controls. The site was created with Visual Studio
.NET [20] and therefore uses code-behind where the code for each ASPX page is
encapsulated into a separate file.

The configuration is detailed in Table 5.

ASPX page	 VB Code-behind	 Description

register.aspx	 register.aspx.vb	 Enables users visiting Jurasco Style Store to register as customers.

login. aspx	 login.aspx.vb	 Enables a customer to log in.

item.aspx	 item.aspx.vb	 Displays a list of product categories.

ishirtpage.aspx ishirtpage.aspx.vb Displays a list of products in the selected iShirt category.

shirtpage.aspx	 shirtpage.aspx.vb	 Displays a list of products in the selected shirt category.

jeanspage.aspx jeanspage.aspx.vb Displays a list of products in the selected jeans category.

ishirti .aspx	 ishirtl .aspx.vb	 Displays detailed information about the particular product iShirtl.

cart.aspx	 cart.aspx.vb	 Enables customers to view the current state of their shopping cart.
They can also remove items.

checkout.aspx checkout.aspx.vb Used to get the billing address and the shipping address of the
customer.

payments.aspx payments.aspx.vb Used to get the credit card information from the customer and
validate the purchase.

Table 5 ASPX pages of the Web centric architecture

10.6 Building an XIvIL Web Service

In this chapter we examine an actual Web service design implemented on an
internal business application. Our application is not deployed as a public Web
service since an electronic shop is not usually involved in a business-to-business
(B2B) communication unless it exposes a particular service to a retail customer
business like checking the number of available items in stock. Therefore, and in
order to look at some features available with Visual Studio.NET that make it easy
to build, deploy, and access Web services, we emulated the Web service of a
credit card system used to verify the validity of the credit card information
entered by the customer to accomplish a purchase operation in the ASPX page
payment.aspx.

10.6.1 Web Services in .NET
The NET framework takes care of all the plumbing, so we don't need to know
anything about SOAP or WSDL to build and deploy the Web service.
In a B2B communication, when a Web application needs to perform business
operation exiting in another Web application, it makes a call into the business tier
through the use of a Web service listener. The Web service listener then
instantiates a Web service processor that is part of the business tier. The Web
service listener is a .asmx file deployed to the Web site and the processor is a
code behind file written in VB (.asmx.vb) or C# (.asmx,cs).

10.6.2 Testing the Web Service

Our Web service is called CCValidator. The Web service listener is:
ccvalidator.asmx, and the Web service processor is: ccvalidator.asmx.vb. The
.NET framework automatically generates a test harness for the Web service.
Figure 18 shows a browser with the first page of the test harness created. This
page provides two types of links: one to get the WSDL file, or Service
Description, and another to test the interface for each method in the Web service.

70

Add Web Reference
•=, '	 3	 AJ.Jurs: Jtto:/Jloio/CreMVerfierIccvthtorix	 .i t

_______flI__ A thb references;
'!Fksr•	 Wb 'crviLes

The following operations are supported. For a formal definition, 	 http:I/loc&host/CredkVerier/ccvaMator.asmx?wed
please review the Service Description. 	 VWContract

View Docisnentbcn

Method to check a card number and Type validity

• CeditCValjd	 +
•	 Method to check a card number validity

Add Reference	 Camel I 	He

Figure 18 Test harness for CCValidator Web service

The following screen (Figure 19) shows the page displayed when the
CreditCard Valid link is accessed. From looking at this illustration, you can see in
the top of the page the framework created an input box based on what it saw in
the schema. When a value is entered, and the Invoke button is pressed, the Web
service is called and the result is then displayed in a browser. The bottom of the
page contains a section that describes the SOAP message that will be sent.

71

	

Addes	 j

CreditCardvalid
Method to check a card number validity

Test
To test the operation using the HTTP GET protocol, didc the 'Invoke' button.

Parameter Value

Cnum:

in¼ieTJ

SOAP
The following is a sample SOAP request and response. The placehalders shown need to be replaced with
actual values

POST /CrèditVerifier/ccvelldotor.asmx HTTP/l.l
ot: .Locelhot.

Content-Type: text/xml; cher5etutf-8
Content-Length: length
SOAPAction: 'http://1oca1hot/CreditVer1fier/CCVal1datOr.5mX/CreditCatdVelid'

-?xnl verion"1.0 encoding'utf-e"?>
<oap:Envelope xxnIn5:x5i"http://wwr.w3.org/2OOl/XLSchema-intaflC& xmln:xc

	

<oep:Body	 4
<CrectitCardVa.Lid

t) 3

PeFerer	 HeIp
-

Figure 19 Web service interface

72

10. 7Mobi!e Device Support
ASP.NET provides some excellent mechanisms to target a variety of Web
browsers ranging from previous versions of Internet Explorer to Netscape. One
area of growth for Web applications has been extending to browsing with a
variety of devices ranging form PocketPCs (Windows CE) running Pocket
Internet Explorer to cell phones using WAP browsers. The Microsoft Mobile
Internet Toolkit provides a set of assemblies that allow developers to write one
code base that can support a multitude of different devices. During the
development of the application using .NET, we decided that it would be great if
customers could visit our store using a cell phone. The customers should be
registered to Juraco Style store. Figure 20 shows the page presenting the mobile
service to the customers of Jurasco Style Store Web site.

FpJe	 LC,kl yow 	 Poj:t	 j!i	 ig Co FQurt	 TtI	 [n..ert	 Fr.ses Tools	 Help

	

PDe1&IQ	 tTIec

I	 I eepaspx I Jrpage.apx.vb Jne.asx n1oJiIe4o.aspH mobdenfc4 P)<

....elcome to mobile page::::::::::::::::::::
•	 .	 ::::.:.:.:. :	 :%iuTa00m:::::

l'acts
• Over the past few years, the world has seen an

explosion of new wireless devices, such as veil

• hones, pagers, and personal digital assistants	 : . : :
(PDAZ), which enable users to browse Web sites
at any time from any location.

:
For browsing our website, you need to be registered first then :
use your username and password in order to view and 	 •::	 : : ::
purchase from our new collection 2003 via your mobile phone.

•	 .	 - Welcome to Jnrasco.com

-
• : www.iurasco.com/moblle

13

Elck1oJiirascororn	 I
-•

Desbn lLHi

- - a-- - -

Figure 20 Mobile information Web page

Using the Mobile Internet Toolkit was very straightforward. The toolkit also
integrates nicely into Visual Studio NET making it possible to create the page
using the visual design surface as shown in Figures 21, .22, and 23.

73

Figure 21 shows the log in mobile form. The customer should have already
registered in our application otherwise he will not be able to purchase items via a
mobile. Thus, a valid user name and password will redirect him to the items
view mobile page (figure 23) in order to view and purchase desirable items.

Ji 2J

e	 ck	 w Proct	 d Qebci C*a Frrt Tab1	 [ncet From	 10	 ow 11615

r-f—;+ : Shit

erns.asb mobgelog IMaSPH I rnobklogiaspx.Vb I maeu-io.spx I nbeo.aspxvb I rbepe.p.

Ve1come To Jurasco Style

tser name

password

tease Check Your Credentials

Login .

0eN,O6taAdapter1	 O4eOComec1

IDesi	 I:r

Figure 21 log in mobile forms

The code for the login mobile form mobile form can be seen below:
%@ PgLãFigua9e=Vb" AutEveiTtWi rëii="fal'	 -

1codebehi nd='rnobi lelo9i n . aspx .vb" Inherits="Database .mobi 1 e".. %>

<%@ Register TagPreflx="fllobile"
NamespaCe="SYStern.Web.UI.MObileCOfltrOls Assembly="SyStem.Web.Mobile
version=1.0.3300.0, Culture=neutral, PublicKevToken-bO3fSf7flldSOa3a

<meta narne="GENERATOR" content='MiCrOSoft visual studio. NET , 7.0">
<meta name="CODE_LANGUAGE' content="Vi sual Basic 7.0">
<meta name="vs_targetSchema"
content='http : //schemas . microsoft. corn/Mobil e/Page">
<body xm1ns: mobil e="http://schernaS.rniCrO50ft ,C0m/M0be/We01">

<mobile: Form I d="Forrnl runat=' server">
<mobile: Label i d='Label 1' runat="server" ForeColor="Bl ack"

Font-BOl d="True>Wel come To J urasco Style </mobi 1 e: Label>
<mobile:Label id="Label3" runat='server'>USer,

'name</mobi 1 e: Label>
<mobile:TextBox id="username"

runat='server"></mobile :TextBox>
<mobile:Label id='Label4'

74

4.x

1259P1

<mbi1eTéxtB6i
runat="server"></mobi 1 e :TextBox>

<mobile:Label id="lblerror" runat="server"
ForeColor="#COOOOO" Vi si bi e='Fal se'>Pl ease Check Your
Credential s</mobile: Label>

<mobile:Command id="commandl"
runat='server>Logi n</mobi 1 e : command>

</mobile: Form>
-	 .-	 -

The button "Login" will verify the customer's credentials and then display the
list of available items (Figure 22). The customer will select a particular item,
choose the size and color.

EiIe-.. .g.&. .ew Erolect	 d Qebug Dta Fvmat Table jn5ei	 rnes loos W-do	 e4p

sh

tem aspx.vb mthebg .pc I	 I moeThfoacpx mceb-oacp.vb mobikpJrchaseassnj mob urchaea,px.. I) X

fT
Available Items

buit

form2

Ii..
Available Items:

L!i	 j
-	 Arniani I-Shirt

%rmari Jeans

F61ru3

r- Small
rMedium
C large
C x-L

II

1OleObDataAdt	 t	 ObCedon1

c'l

ii

7n El HTfyt

 Ii	 OtabaseekVeH	 d

Figure 22 Purchase mobile form

The code of the forms used for purchase is shown below:
%@é Láñiiê="L5" AutE\7entWiré"fa1se"

tcodebehind="mobilepurChaSe.aSPX.Vb" Inherits="Database.mobilePurChaSe"
%>
<%@ Register TagPrefiX="mObile"
Namespace="SyStem.Web.UIMobileCOfltr0l5 Assembly="SYStem.Web.MObile,
wersion=1.O.3300.0, culture=neutral, PublicKeyToken=bO3f5f7flld5Oa3a"

<meta content="Mi crosoft visual studio. NET 7.0' name="GENERATOR">
<meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
-<meta content="http://schemas .mi crosoft.com/Mobi le/Page"
name="vs_targetSchema">

75

obilfo	 iForI'
<mobil e: Label i d="Label 1" runat="server" Font '-

-Bold="True">Jurasco style</mobile:Label>
<mob 1 é : Link i d="Li nkl" runat=ttserver"

Navi gateurl ="#Form2 ">AV 1 able items</mobi 1 e: Li nk>
<mobile:Link id="002" runat="server">Quit</mobile:Link>

</mobile:form>
<mobile:form id="Form2" runat="server">

<mobile: Label i d="Label 3" runat="server">Avai 1 able
Items :</mobi le : Label>

<mobile:Link id="Link3" runat="server"
Navi gateUrl ="#Form3 ">Armani 1-shirt $40/mobil e: Li nk>

<mobile: Link I d='Li nk4" runat="server"
NavigateUr1="#FOrm3">Armani Jeans $70</mobile:LInk>

</mobile: form>
<mobile:form id="Form3" runat="server">

<mobile:SelectionList id="slsize" runat="server"
Sel ectType="Radi o">

<Item value-_"s" Text="Smal 1 "></Item>
<Item val ue="m" Text="Medi um'></Item>
<Item value="]" Text="l argé"></Item>
<Item value="xl" Text="X-Large"></Itefll>

</mobi 1 e: sel ecti onLi st>
<mobile: Label i d=" Label 4" runat="server"

115ESIGNTIMEDRAGDROP="111">Choose color</mobile: Label>
<mobile:SelectionList id="slColor" runat="server"

kel ectType='RadI o">
<Item Value="Black" Text="Black"></Item>
<Item value="white" Text="White"></Itern>

</mobile:SelectionList>
<mobile:Label id="notavailable" runat="server" Font-

ol d="True" Vlsi bi e=" Fal se">-Out of stock</mobi 1 e: Label>
<mobile:Command id="command2" runat="server">Place

!O_rder</mobi1e:Command>
</mobile:form>

</body>	 *	 ---	 ----- J
Then, the customer will provide a billing address, shipping address, and his credit card
information. (figure 23)

76

dt yjaw 	ojet	 d Qeb	 Dta FQrmat Tab(a ' In-t Flames Ioos

61 0 [bc-j .Debug .r,ew

I	 oburthe.aox.vb I MobElewekomeasDx	 bitPáyrnentc.as IMobieftwerkmaiox.yb 1914 I'

:H	 i1Iingadress

>	 r
hipping address

IL

Q

redit Card Number

Lp^y Date

November 2002	 >

Sun Mon Tuc Wed Thu Fzi Sat
27 28 29 30 31 1 2

L3 4 5 6 7 89
Design E1HTM

.}•	 .8 1PM

Figure 23 Payment mobile form

The code for mobile payment forms is shown below:
<%cPa9

1codebehind="MobllePaymentS.aSPX.Vb" Inherits="Database.MobilePaYmefltS"

k%@ Register TagPrefix="mObile"
NameSpaCe='SyStem.Web.UI.MObileCOfltrOl5" Assembly="SyStem.Web.MObile,
wersion=1.0.3300.0, culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
%>
meta name="GENERATOR" content="MiCrOSOft visual Studio.NET 7.0">

Qmeta name="CODELANGUAGE" content="Vi sual Basic 7.0">
<meta name="vs_targetSchema"
content="http://schemas.microsOft.cOm/MObile/Page ">
<body Xm1ns:mobile="http://schemaS.micrOSOft.c0m/M0bile/0rm ">

<mobile: Form I d=" Formi" runat=" server">
<mobile:Label id="Labell" runat="server">Billiflg

adress</mobi] e: Label>
<mobil e : Text BOX I d="TextBoxl"

runat="server"></mobile:TextBOX>
<mobile: Label I drz"Label 2" runat"server">Shi ppi ng

address</mobi 1 e: Label>
<mobile:TextBox id="TextBOX2

lrunat="server"></mobile:TextBoX>
<mobile:Link id="Linkl" runat'server"

NavigateUrl="#Form2">fleXt</mObile Link>
</mobile:Form>
<mobile:Form id="Form2" runat="server">

77

W6bilLà15el
Number</mobi 1 e: Label>

<mobile:TextBox id="creditbox" runat="server"
MaxLength="12"></mobi le :TextBox>

<mobile: Label i d= t' Label 4" runat="serve">Exi r
Date</mobi 1 e: Label>

<mobile:calendar id="calendarl"	 -
runat="server"></mobi 1 e : Calendar>

<mobile: Label id"errorcard" runat="sèrver"

(isible="False">Try

isible="False">Not valid credit card</mobilà:Labe
<mobile:Label id="error2card" runat=4tserver"

 Agal n</mobi 1 e: Label>
<mobile:commänd id="commandl"

runat="server">Purchase</mobi 1 e : command>
</mobile:Fôrm>

1</,bo,dv>	 +

The benefit of using the Mobile Internet Kit is realized whenever the developer
will need to support a wide range of devices and browsers with a variety of
capabilities. To test cell phone support for the mobile page, a great emulator can
be found on the developer section Openwave.com . We tested this mobile page
with the Openwave SDK version 4.1 (figure 24) which can be downloaded at
http://developer.openwave.com/download/index.html.

78

t;LI
Figure 24 Testing the mobile support using Openwave SDK

79

CHAPTER 11

Conclusion

This thesis has presented an overview of distributed application design and
development. Its goal has been to introduce, from an enterprise developer view,
the concepts and technologies used in designing applications for distributed
platforms, and to give a practical example with a typical enterprise application.
Service-oriented architecture has been presented as the natural evolution of
distributed architectures. The thesis has shown that this new architecture is not
simply a fashion, or the latest marketing discovery providing professionals in the
sector with new ammunition. Instead, it has its place in the logical continuity of
multiple attempts at processing and data distribution, applications integration,
homogenization of the information system, etc. It is aimed at increasing
independence between:

. The miscellaneous components of the system (considered as services)
Each component and the technical architecture implemented.

A relevant comparison has been done between the two choices that businesses have for
building XML-based web services: the Java 2 Platform, Enterprise Edition (J2EE), built
by Sun Microsystems and other industry players, and Microsoft.NET , built by Microsoft
Corporation.
In summary as can be seen from a technological perspective, J2EE and NET each
provide unique solutions to a maturing distributed environment. Posing the
question of what new technologies might emerge in the future, only
improvements on past experience and adoption of bleeding edge technologies
will tell.

80

Bibliography

[1] Armstrong, Eric; Bodo_, Stephanie; Carson, Debbie; Fisher, Maydene;
Green, Dale; Haase, Kim (2002). The Java Web Services Tutorial. Palo
Alto, CA. Sun Microsystems.
http ://java.sun.com/webservices/downloads/webservicestutorial.html

[2] Blum, Adam (1996). Building Business Web Sites, New York, NY: MIS:
Press.

[3] Box, Don (1998). Essential COM. Reading, MA: Addison-Wesley
Longmann, Inc.

[4] Box, Don (2000a) House of COM. MSJ 15(1): 87-92.

[5] Box, Don (2000b) A Young Person's Guide to the Simple Object Access
Protocol: SOAP Increases Interoperability Across Platforms and
Languages. MSDN Magazine 15(3):67-81.

[6] Chappell, David (1996). Understanding ActiveX and OLE. Redmond,WA:
Microsoft Press.

[7] Crouch, Matt J. (2000). Web Programming with ASP and COM, Reading,
Massachusetts: Addison-Wesley.

[8] Deadman, Richard (1999). XML as a Distributed Application Protocol.
Java Report 4(10): 16-21.

[9] Eckel, Bruce (2000) Thinking in Java: Second Edition, Upper Saddle River,
NJ: Prentice Hall PTR.

[10]Ehnebuske, David; Rogers, Dan; Riegen, Claus Von (Ed.). (2001). UDDI
Version 2.0 Data Structure Reference. uddi.org
http://www.uddi.org/pubS/DataStrUctUre-V.200-OPen20010608.Pdf

[11]Ewald, Tim (2001). COM+ Integration: How .NET Enterprise Services Can
Help You Build Distributed Applications. MSDN Magazine 16(10):42-50.

[12]Faliside, David C. (Ed.). (2000). XML Schema Part 0: Primer.
http ://www.w3.orgITR/2000/WD-xmlSchelfla-O2000040?

[13]Gudgin, Martin; Hadley, Marc; Moreau, Jean-Jaques; Nielsen, Henrik
Frystyk (Ed.). (2001a). SOAP Version 1.2 Part 1: Messaging Framework.
http://www.w3.orgITR/2001IWD-Soapl2-Partl200l 1217/

81

[14]Gudgin, Martin; Hadley, Marc; Moreau, Jean-Jaques; Nielsen, Henrik
Frystyk (Ed.). (2001b). SOAP Version 1.2 Part 2: Adjuncts.
http://www.w3.orgfrR/2001/WD-soapl2-part2-20011217/

[15]Homer, Alex (1999). XML 1E5 Programmer's Reference, Birmingham, UK:
Wrox Press.

[16]Juric, Matjaz B.; Rozman, Ivan (2000). Java 2 RivIl and IDL Comparison.
Java Report 5(2): 36-48.

[17]Juric, Matjaz B.; Rozman, Ivan (2001). RMI, RMI-IIOP, and IDL
Performance Comparision. Java Report 6(4): 26-34.

[18]Kirtland, Mary (2000). The Programmable Web: Web Services Provide
Building Blocks for the Microsoft .NET Framework. MSDN Magazine
15(9):73-82.

[19]Linthicum, David S. (1999). XML: It's EAT For the Rest of Us. Enterprise
Development 1(13):12-16.

[20]Microsoft (2001). Delivering .NET: Visual Studio NET and the NET
Framework. Microsoft ad 1-9.

[21]Mikula, Norbert; Levy, Ken (2000). Schemas Take DTDs to the Next
Level. XML Magazine 1(1): 81-82.163

[22]Mitra, Nib (Ed.). (2001). SOAP Version 1.2 Part 0: Primer.
http://www.w3c.org/TR/2001/WD-soapl2-partO-20011217

[23]Monson-Haefel, Richard (2001). Enterprise JavaBeans, Third Edition.
Sebastpol, CA: O'Reilly & Associates Inc.

[24]Musayev, Eldar A. (2001). SAX2: A Simple API for XML. Dr. Dobbs
Journal #321: 130-133.

[25]Naughton, Patrick (1996). The Java Handbook, Berkeley, California,
Osborne McGrawHill.

[26]Olson, Mike (1999). Introduction to CORBA, Part 1: CORBA basics to get
you started.
ht://www.linuxworld.com/linuxwOrld/1w499909/lw09c0ba 1 p.html

[27]0MG (2000). The Common Object Request Broker Architecture
Specification v2.4. http://cgi.omg.org/cgi-bin/doc?formal/00-10-Ol.pdf

[2810MG (2001). About the Object Management Group.
http://www.omg.org/gettingstarted/gettingstartedifldex.htm

[29] Raj, Gopalan Suresh (1998). A Detailed Comparison of CORBA, DCOM
and Java/RMI. http://gsraj.tripod.com/misc/compare.html

82

[30]Rosen, Michael; Curtis, David (1998). Integrating CORBA and COM
Applications. New York, NY: John Wiley & Sons Inc.

[31]Scribner, Kennard; Stiver, Mark C. (2000). Understanding SOAP,
Indianapolis, IN: Sams Publishing. 165

[32]Seshadri, Govind (1999). Remote Object Activation. Java Report 4(19): 60-
68.

[33]Shohoud, Yasser (2001). Getting the Web Services You Need. XML
Magazine..
http://www.fawcette.com/Archives/premier/mgznarch/xml/2001/O6junOl/
ys103/ys0103.asp

[34]Skonnard, Aaron (2000). SOAP: The Simple Access Protocol. Microsoft
Internet Developer 5(1): 24-33.

[35]Tapang, Carlos C. (2001). Web Services Description Language (WSDL)
Explained. Microsoft.
http://msdn.microsoft.comllibrary/en-us/dnwebsrv/html/wsdlexplairied.a
sp.

[36]Thai, Thuan L. (1999). Learning DCOM, Sebastpol, CA: O'Reilly &
Associates Inc.

[37]Tsai, Wei-Tek (1999). Verification and Validation of Knowledge-Based
Systems. IEEE Transactions on Knowledge and Data Engineering 11(1)
202-211. uddi.org (2000). UDDI Technical White Paper.
http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf

[38]Vinoski, Steve (1993). Distributed Object Computing with CORBA.
http://www.cs.wustlFschmidt/PDF/docwc.pdf.

83

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91

