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ABSTRACT

A well known problem with wormhole-routed packet networks is the

potentially large amount of blocking that packets can experience due to link

contention. Because of the very limited amount of buffering in such networks,

blocked packets remain in the network and keep using network resources. Thus,

blocked packets may in turn cause other packets to be blocked. This may affect a

large number of packets over a large portion of the network. Proper connection

management strategies and appropriate protocols must be devised to ensure that

blocking of packets due to link contention is bounded. In [3], Zhao et. al. have

developed a transmission control scheme that regulates the rate of transmission at

each source node. A worst-case achievable utilization of 50% could be proved, using

a simple regulated admission control scheme. The work of [3] assumes message

streams of fixed-sized messages and fixed inter-arrival periods.

In this thesis, we review the problem of routing in computer networks. Then,

we examine how well does the work of [3] generalizes to message streams of variable

length messages and variable inter-arrival periods.

Our simulation shows that the algorithms present in [3] can be generalized

even to a stochastic network. Comparisons are presented to show the difference in

performance between the regulated and unregulated methods.
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CHAPTER I

Defining the Problem

The increased development and use of networked real-time applications in

distributed multimedia, remote laboratoring, and distributed virtual reality has

generated a large amount of interest in the development of real-time communication

protocols to support such applications. Such protocols provide real-time guarantees

for message deliveries to the network clients, typically in terms of bounded delay and

jitter. This in turn enables the applications to meet their end-to-end time

requirements. In order to provide such guarantees on message delivery, resources in

the network must be appropriately allocated. The admission control component of the

protocol must ensure that enough resources are available in the system so that new

connections can in fact be guaranteed the required performance.

Due to the increasing bandwidth requirements in a large number of

applications such as incorporation of uncompressed video streams in control loops for

remote laboratoring, a number of very-high speed networking technologies are

currently under investigation for their applicability to support hard-real-time

communication, such as ATM, FDDI, GPPI. As exemplified by recently developed

technology, wormhole-routed networks are a promising approach for high-bandwidth,

low-latency communication for small and medium-sized networks.

A well known problem with wormhole-routed packet networks is the

potentially large amount of blocking that packets can experience of link contention.

Because of the very limited amount of buffering in such networks, blocked packets

remain in the network and keep using network resources. Thus, they may in turn
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cause other packets to be blocked. This may affect a large number of packets over a

large portion of the network. Proper connection management strategies and

appropriate protocols must be devised to ensure that blocking of packets due to link

contention is bounded.

The rest of this thesis is organized as follows: chapter II introduces Parallel

processing, chapter III introduces the Routing problem and reviews the Store and

Forward and the Wormhole routing networks, chapter IV introduces the work done in

[3], Chapter V includes our simulation results, and chapter V concludes with the

conclusion and ideas for future research.
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CHAPTER II

Parallel Processing

Parallel processing has emerged as a key enabling technology in modem

computers, driven by the ever-increasing demand for higher performance, lower costs,

and sustained productivity in real-life applications. Concurrent events are taking place

in today's high performance computers due to the common practice of

multiprogramming, multiprocessing, and multicomputing.

2.1 Historical Review

Over the past five decades, electronic computers have gone through five

generations of development. First-generation computers were built with a single

Central Processing Unit (CPU) which performed serial fixed-point arithmetic using a

program counter, branch instructions, and an accumulator machine or assembly

languages were used.

Index registers, floating-point arithmetic, multiplexed memory, and I/O

processors were introduced with second-generation computers. High-level languages

(HLLs), such as Fortran, ALGOL, and Cobol, were introduced along with compilers,

subroutine libraries, and batch processing monitors.

Microprogrammed control became popular with the third generation.

Pipelining and cache memory were introduced to close up the speed gap between the

CPU and main memory. The idea of multiprogramming was implemented to

interleave CPU and I/O activities across multiple user programs. This led to the
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development of time-sharing operating systems (OS) using virtual memory with

greater sharing or multiplexing of resources.

Parallel computers in various architectures appeared in the fourth generation

of computers using shared or distributed memory or optional vector hardware.

Multiprocessing OS, special languages, and compilers were developed for parallelism.

Software tools and environments were created for parallel processing or distributed

computing.

In the fifth generation, machines emphasize massively parallel processing

(MPP). Scalable and latency-tolerant architectures became a must in MPP systems.

The computing industry has grown up with promises of doubling processing

power and halving equipment costs every 18 months or so. That pace hasn't slowed.

We have vastly more powerful hardware today than we had even three years ago.

But the demand of real-time applications is increasing the need for processing power

at an even faster rate. Systems, nowadays, should provide the maximum performance

in order to work with real-time applications, and we should look to open new avenues

for gaining performance, even as microprocessors continue to advance.

Unfortunately, almost all existing systems were originally designed decades ago,

when the idea of personal computers dealing with real-time video, audio,

communications and other bandwidth applications was practically science fiction.

As the importance of audio, video and interactive communications has increased in

recent years, devising increasingly clever and complex methods of delivering the

performance required of media based applications is a necessity because the

foundations of today's systems were simply not designed with high-bandwidth media

in mind.
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The goal of routing for supporting real-time applications involving

audio/video traffic should be computing paths that satisfy the given Quality of Service

(Q0S) requirements of the applications while managing the network resources

efficiently.

Supporting real-time applications in high-speed networks requires reservation

of resources. Since network resources are limited, efficient routing strategy and

admission control are needed.

2.2 Parallel Computation

There are two major classes of parallel computers, namely shared-memory

multiprocessors and message-passing multicomputers. The major distinction between

multiprocessors and multicomputers lies in memory sharing and the mechanisms used

for interprocessor communication. The processors in a multiprocessor system

communicate with each other through shared variables in a common memory. Each

computer node in a multicomputer system has a local memory, unshared with other

nodes. Interprocessor communication is done through message passing among the

nodes.

2.2.1 Shared-Memory Multiprocessors:

Below are described three shared-memory multiprocessor models: the

uniform-memory-access (UMA) model, the nonuniform-memory-access (NUMA)

model, and the cache-only memory architecture (COMA) model.

A. UMA Model

In a UMA multiprocessor model (figure .1), the physical memory is uniformly

shared by all the processors. All processors have equal access time to all memory
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words, which is why it is called uniform memory access. Each processor may use a

private cache. Peripherals are also shared in some fashion. Multiprocessors are called

tightly coupled systems due to the high degree of resource sharing. The system

interconnect takes the form of a common bus, a crossbar switch, or a multistage

network.

When all processors have equal access to all peripheral devices, the system is

called a symmetric multiprocessor. In this case, all the processors are equally capable

of running the executive programs such as the OS kernel and I/O service routines.

In an asymmetric multiprocessor, only one or a subset of processors are executive

capable. An executive or a master processor can execute the operating system and

handle I/O. The remaining processors have no I/O capability and thus are called

attached processors.

I	 I'2	 I	 ...................	 I	 Pn

System Interconnect
(Bus, crossbar, Multistage network)

	

I/O IISMi I	 ISMm

Figure 1: UMA multiprocessor model

B. NUMA Model

A NUMA multiprocessor is a shared-memory system in which the access time

varies with the location of the memory word (figure 2). The shared memory is

physically distributed to all processors, called local memories. The collection of all

local memories forms a global address space accessible by all processors. It is faster
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to access a local memory with a local processor. The access of remote memory

attached to other processors takes longer due to the added delay through the

interconnection network.

Besides distributed memories, globally shared memory can be added to a

multiprocessor system. In this case, there are three memory-access patterns: the

fastest is local memory access. The next is global memory access. The slowest is

access of remote memory.

GSMI	 I GSM
	

GSM

Global Interconnect Network

Legend:
P: Processor
CSM: Cluster Shared Memory
GSM: Global Shared Memory
CIN: Cluster Interconnection
network.

Figure 2: NTJMA multiprocessor model

C. COMA Model

A multiprocessor using cache-only memory assumes the COMA model

(figure .3). The COMA model is a special case of a NUMA machine, in which the

distributed main memories are converted to caches. There is no memory hierarchy at

each processor node. All the caches form a global address space. Remote cache

access is assisted by the distributed cache directories.
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P: Processor
C: Cache
D:Directory

Figure 3: COMA model of a multiprocessor

Multiprocessor systems are suitable for general-purpose multiuser applications

where programmability is the major concern. A major shortcoming of

multiprocessors is the lack of scalability. It is rather difficult to build MPP machines

using centralized shared-memory model. Latency tolerance for remote memory

access is also a major limitation.

2.2.2 Distributed Memory Multicomputers

A distributed-memory multicomputer system is shown in figure 4.

The system consists of multiple computers, often called nodes, interconnected by a

message-passing network. Each node is an autonomous computer consisting of a

processor, local memory, and sometimes attached disks or I/O peripherals.

The message-passing network provides point-to-point static connections

among the nodes. All local memories are private and are accessible only by local

processors. For this reason, traditional multicomputers have been called no-remote-

memory-access (NORMA) machines. However, this restriction is removed in

multicomputers with distributed shared memories. Internode communication is

carried out by passing messages through the static connection network.
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M M

M P	 Message-passing	 P M
interconnection network

(Mesh, ring, torus, hYPercube4I
cube-connected cycle, etc.)

P

1rH.r
Figure 4: Message-passing multicomputer model

Message-passing multicomputers have gone through three generations of

development.

The First generation (1983-1987) was based on processor board technology

using hypercube architecture and software-controlled message switching. The

Caltech Cosmic and Intel iPSC/1 represented the first generation development.

The second generation (1988-1992) was implemented with mesh-connected

architecture, hardware message routing, and a software environment for medium-

grain distributed computing, as represented by the Intel Paragon.

The third generation (1993-1997) is fine-grain multicomputers, like MIT J-

machine.

2.3 Interconnection Networks

In general, a network is represented by the graph of a finite number of nodes

linked by directed or undirected edges. So let us define several parameters often used

to estimate the complexity, communication efficiency, and cost of a network.

The number of nodes in the graph is called the network size.
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The number of edges (links or channels) incident on a node is called node

degree d. The node degree reflects the number of I/O ports required per node, and

thus the cost of a node. Therefore, the node degree should be kept a constant, as small

as possible to reduce cost.

The diameter D of a network is the maximum shortest path between any 2

nodes. The path length is measured by the number of links traversed. The network

diameter should be as small as possible from a communication point of view.

When a given network is cut into two equal halves, the minimum number of

edges along the cut is called the channel bisection width b. The bisection width

provides a good indicator of the maximum communication bandwidth along the

bisection of a network.

Another quantitative parameter is the wire length between nodes. We say a

network is symmetric if the topology is the same looking from any node.

The topology of an interconnection network can be either static or dynamic.

Static networks are formed of point-to-point direct connections which will not

change during program execution.

Dynamic networks are implemented with switched channels, which are

dynamically configured to match the communication demand in user programs.

Static networks are used for fixed connections among subsystems of a

centralized system or multiple computing nodes of a distributed system. Dynamic

networks include buses, crossbar and multistage networks, which are often used in

shared-memory multiprocessor.

Static networks use direct links which are fixed once built. We describe some

of their topologies below in terms of network parameters.
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• Linear Array: This is a 1-dimensional network in which N nodes are connected by

N-i links in a line (figure 5). Internal nodes have degree 2 and the terminal nodes

have degree 1. The diameter is N- 1, which is rather long for N. The bisection

width b=i. The structure is not symmetric. For very small N, say N=2, it is rather

economic to implement a linear array. As the diameter increases linearly with

respect to N, it should not be used for large N.

0	 1	 2	 3

Figure 5: Linear Array

• Ring: A ring is obtained by connecting the two terminal nodes of a linear array

with one extra link (figure 6). It is symmetric with a constant node degree of 2,

the diameter is N/2 for a bidirectional and N for unidirectional.

14	 0

13	
1

12

	

3

10	
4

8

Figure 6: Ring

11



• Mesh: A 3x3-mesh network is show in figure 7. This is a popular architecture

which has been implemented in the Intel Paragon. In general, a k-dimensional

mesh with N = k nodes has an interior node degree of 2k and the network

diameter is k(n-1).

Figure 7: Mesh

• Hypercube: This is a binary n-cube architecture. In general, an n-cube consists of

N=2'1 nodes spanning along n dimensions, with 2 nodes per dimension.

A 3-cube with 8 nodes is shown in figure 8.

A 4-cube can be found by interconnecting the corresponding nodes of two 3-

cubes as shown in figure 9.

The node degree of an n-cube equals n and the network diameter also. The

node degree increases linearly with respect to the dimension.

Figure 8: 3-cube	 Figure 9: 4-cube
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Table 1 summarizes the parameters of the different architectures mentioned

above.

Network	 Node	 Network	 No.	 of Bisection Symmetry
type	 degree, d diameter, D	 links, 1	 width, B
Linear	 2	 N-i	 N-i	 1	 No
Array
Ring	 2	 N/2	 N	 2	 Yes
2D-Mesh	 4	 2(r-1)	 2N-2r	 R	 No
Hypercube N	 N	 Nn/2	 N/2	 Yes

Table 1: Interconnection Network parameters

The versality of a routing network will reduce the time needed for data

exchange and thus can significantly improve the system performance.
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CHAPTER III

Routing Algorithms

Routing is moving information across an internetwork from source to

destination. Along the way, at least one intermediate node is typically encountered.

Routing algorithms can be differentiated based on several key characteristics. First,

the particular goals of the algorithm designer affect the operation of the resulting

routing protocol. Second, there are various types of routing algorithms. Each

algorithm has a different impact on network resources. Finally, routing algorithms use

a variety of metrics that affects calculations of optimal routes.

3.1. Design Goals

Routing algorithms often have one or more of the following design goals:

• Optimality: It refers to the ability of routing algorithm to select the "best" route

which depends on the metric and metric weightings used to make the calculation.

• Simplicity: Routing algorithms are also designed to be as simple as possible. That

is, they must offer their functionality efficiently with a minimum of software and

utilization overhead.

• Robustness: Routing algorithms should perform correctly in the face of unusual or

unforeseen circumstances such as hardware failures, high load conditions, and

incorrect implementation. Because routers are located at network junction points,

they can cause considerable problems when they fail.

• Rapid convergence: Convergence is the process of agreement, by all routers, on

optimal routes. When a network event causes routes to either go down or become
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available, routers distribute routing update messages. Routing algorithms that

converge slowly can cause routing loops or network outages.

• Flexibility: routing algorithms should quickly and accurately adapt to a variety of

network circumstances. Routing algorithms can be programmed to adapt to

changes in network bandwidth, router queue size, network delay, and other

variables.

3. 2 Metric

Routing algorithms have used many different metrics to determine the best

route. Sophisticated routing algorithms can base route selection on multiple metrics,

combining them in a single (hybrid) metric. All of the following metrics have been

used

• Path length: Some routing protocols allow network administrators to assign

arbitrary costs to each network link. In this case, path length is the sum of the

costs associated with each link traversed. Other routing protocols define hop

count, a metric that specifies the number of passes through internetworking (such

as routers) that a packet must take en route from a source to a destination.

• Delay: Routing delay refers to the length of time required to move a packet from

source destination through the internetwork. Delay depends on many factors,

including the bandwidth of intermediate network links, the port queues at each

router along the way, network congestion on all intermediate network links.

Because it is a combination of several important variables, delay in a common and

useful metric.

• Bandwidth: It refers to the available traffic capacity of a link. Although

bandwidth is a rating of the maximum attainable throughput on a link, routes

15



through links with greater bandwidth do not necessarily provide better routes than

routes through slower links.

• Load: It refers to the degree to which a network resource (router) is busy. It can

be calculated in a variety of ways, including CPU utilization and packets

processed per second.

3.3 Examples of Routing Algorithms

In the following, we describe two routing algorithms: the E-cube used with

hypercubes and the X-Y used on a 2D-Mesh.

E-cube Routing algorithm: Consider an n-cube with N2 n nodes. The source node

is S = 5n1 ... s i so and the destination node is d d 1 ... d, do. We want to determine

a route from s to d with a minimum number of steps. We denote the n dimensions

as i= 1,2,. . .,n where the i h dimension corresponds to the (i-i) bit in the node

address. Let v = ... vivo be any node along the route. The route is determined

as follows:

1. Compute the direction bit r1 = si-i	 d 1 for all n dimensions (i = 1,...,n).

Start the following with dimension i =1 and v = s.

2. Route from the current node v to the next node v 21 if r1 = 1. Skip this step

if r	 0.

3. Move to dimension i+l (i.e., iE- i+l) if i[n go to step 2, else quit.

Example: n=4, s0110, d1101. So, r=r4r3r2r11011.

Route from s to s 20 = 0111 since ri = 0@1 =1. Route from v = 0111 to

v$2 1 = 0101 since r2 = 1Ol. Skip dimension i3 because r 3 = 11 0. Route

from v0101 to v23 =1101= d since r4 1. Note that if the i1h bit of s and d agree, no

16



W
	

E

Figure 11: X-Y routing on
a 2D-mesh computer

routing is needed along dimension i. Otherwise move from the current node to the

other node along the same dimension. The procedure is repeated until the destination

is reached. (Figure 10).

( ) O111	 1110

001
1010

001
	

1011

1100
	 /1101

RM
	

0001	 1000
	

1001

Figure 10: E-cube routing on a hypercube computer

• X-Y Routing: From any source node s(xl,yl) to any destination node

d(x2,y2), route from s along the x-axis first until it reaches the column y2,

where d is located. Then route to d along the y-axis. There are four possible X-Y

routing patterns corresponding to the east-north, east-south, west-north, and west-

south paths chosen.

Example:

17



An east-north route is needed from node (2,1) to node (7,6). An east-south is

set up from node (0,7) to node (4,2). A west-south route is needed from node (5,4) to

(2,0). The fourth route is west-north bound from node (6,3) to node (1,5).

The X-dimension is always routed first and then the Y-dimension; a deadlock

or circular wait situation will not exist.

3. 4 Store and Forward Versus Wormhole Routing

3.4.1 Store and Forward Routing

In multicomputers, with Store and Forward routing, packets are the smallest

unit of information transmission. The concept is illustrated in figure 12

Source node	 Destination node

a—
J

Packet buffer

Intermediate Nodes

Figure 12: Store and Forward routing

Each node is required to use a packet buffer. A packet is transmitted from a

source node to a destination node through a sequence of intermediate nodes.

When a packet reaches an intermediate node, it is first stored in the buffer.

Then it is forwarded to the next node if the desired output channel and a packet buffer

in the receiving node are both available.

The latency in store-and-forward networks is directly proportional to the

distance (the number of hops) between the source and destination.
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Output

Ready

Ack

Input

Ready

Ack

Rea

3.4.2 Pipelining

A linear pipeline processor is constructed with k processing stages. External

inputs are fed into the pipeline at the first stage Si. The processed results are passed

from stage Si to stage S j+i for all i 1,2,...,k-1. The final result emerges from the

pipeline at the last stage Sk.

Depending on the control of data flow along the pipeline, we model linear

pipelines in two categories: asynchronous and synchronous.

A.	 Asynchronous Model

As shown in figure 13, data flow between adjacent stages in an asynchronous

pipeline is controlled by a handshaking protocol. When stage S i is ready to transmit

data, it returns an acknowledge signal to Si.

Asynchronous pipelines are useful in designing communication channels in

message-passing multicomputers where pipelined wormhole routing is practiced.

Asynchronous pipelines may have a variable throughput rate. Different amounts of

delay may be experienced in different stages.

Figure 13: Asynchronous pipeline model

The pipelining of successive flits in a packet is done asynchronously using a

handshaking protocol as shown in figure 14
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Router S	 Router D
RIA (low)

Channel

D is ready to receive a flit S is ready to send flit i

R/A (high)

pop

Flit i is received by D

RJA (high)

iI
R/A(Iow)

Flit i is removed from Ds buffer and flit
k-I arrives at Ss buffer

Figure 14: Asynchronous model using handshaking protocol

Along the path, a 1-bit ready/request (RIa) line is used between adjacent

routers. When the receiving router (D) is ready to receive a flit (the flit buffer is

available) it pulls the R!A line low. When the sending router (S) is ready, it raises the

line high and transmits flits I through the channel. While the flit is being received by

D, the R!A line is kept high. After flit i is removed from D's buffer (it is transmitted

to the next node), the cycle repeats itself for the transmission of the next flit 1+1 until

the entire packet is received. Asynchronous pipelining can be very efficient, and the

clock used can be faster than that used in a synchronous pipeline. However, the

pipeline can be stalled if flit buffers or successive channels along the path are not

available during certain cycles. Should that happen, the packet could be buffered,

blocked, dragged, or detoured.
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Output

B.	 Synchronous Model

Synchronous pipelines are illustrated in figure 15. Clocked latches are used to

interface between stages. The latches are made with master-slave flip-flops, which

can isolate inputs from outputs. Upon the arrival of a clock pulse, all latches transfer

data to the next stage simultaneously.

The pipeline stages are combinational logic circuits. It is desired to have

approximately equal delays in all stages. These delays determine the clock period and

thus the speed of the pipeline.

L	 L	 L	 L	 L

Clockfl____

Ii	 t	 tm	 m'IdIi

Figure 15: A synchronous pipeline model

3.4.3 Wormhole Routing

A common interconnection network switching technology that is used in

MPP's such as the Intel Paragon is wormhole routing, a switching technique whereby

packets are immediately forwarded to the proper output port upon arrival.

In a wormhole routing, a message is transmitted as a contiguous sequence of

flits (flow control units) and the sequence of moves along the path from the source to

the destination in a pipelined manner. There are two defining characteristics of

wormhole routing:
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-	 Message contiguity: every edge along the path must transmit all flits of the

message in a contiguous manner, i.e. the bits of two different messages cannot be

interleaved.

- Minimal buffering: each intermediate node can only buffer few flits. Hence, if

the head of the message cannot move forward because another message is using

the edge it wants, then the message must wait, and as it waits, it occupies a

contiguous sequence of edges along its path.

Wormhole routing is a cost-effective way to provide very-high speed, very-

low latency communication for emerging distributed real-time applications with high-

bandwidth demands. As long as the worm is using this output port, no other worm

can use it. The output port is released when the tail of the worm passes through the

switches along the path of the worm.

Unfortunately, the lack of traffic buffering in the switches makes it difficult to

give real-time guarantees to traffic streams that contend for communication links.

By subdividing the packet into smaller flits, newer multicomputers implement

the wormhole routing scheme shown in figure 16.

Source node
Flit buffer

Intermediate Nodes

Figure 16: Wormhole routing
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All the flits in the same packet are transmitted in order as inseparable

companions in a pipelined fashion. The packet can be visualized as a railroad train

with an engine car (the header flit) towing a long sequence of box cars (data flits).

Only the header flit knows where the train (packet) is going. All the data flits must

follow the header flit. Different packets can be interleaved during transmission.

However, the flits from different packets cannot be mixed up. Otherwise, they may

be towed to the wrong destinations. Wormhole routing has latency almost

independent of the distance between the source and destination.

3.4.4 Latency Comparison Between Store-and-Forward and Wormhole Routing

Let L be the packet length (in bits), W the channel bandwidth (in bits/s), D the

distance (number of nodes traversed minus 1) and F the flit length (in bits).

The communication latency TSF for a store-and-forward network is expressed

by:

TSF = - (D +1)
W

TSF is directly proportional to D

II TSF

NIH

N2
	

j/
header
	 Packet
	

Figure 17: Latency for
N3
	

Store and Forward

N4
	 routing.

The communication latency for a wormhole routed network is:
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TWH = L- + F- * D
W 

TWH= L/W if L>>F. thus the distance D has a negligible effect on the routing

latency.

TWH

Time

Figure 18: Latency for Wormhole routing

3.5 Meeting Delay Requirements in Real Applications

In a real-time system, timing constraints must be met for the application to be

correct. In a distributed real-time system, many of these time constraints are end-to-

end, and often require the scheduling of different resources (e.g., processors on each

node and the communication facilities between them).

The primary performance metric for real-time computing is acceptable

predictability of the timeliness of a set of activities. This applies to both hard and soft

real-time cases. In contrast, non real-time computing performance is usually

measured in terms of throughput.

One of the things that makes real-time resource management so much more

difficult than non real-time resource management is that, the real-time performance

requirement of acceptable predictability of timeliness must be met along with other
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requirements, such as precedence constraints and resource utilization conflict

resolution constraints.

Real-time systems require that timing constraints be expressed, enforced, and

their violations handled.

Timing constraints may be expressed as absolute time or relative time.

Absolute time may be based on wall clock time or a system global time. Absolute

time may be served centrally or in a decentralized manner; the latter usually requires

some form of clock synchronization. Relative time is relative to when the request is

made.

The following terms are often used to express timing constraints:

• An "earliest start time" constraint specifies a time before which the activity may

not start. That is, the task must wait for the specified time before it may start.

• A "latest start time" constraint specifies a time before which the activity must

start. That is, if the activity has not started by the specified time, an error has

occurred. Latest start times are useful to detect potential violations of planned

schedules or eventual deadline violations before they actually occur.

• A "deadline" specifies a time before which the activity must complete.

A periodic constraint specifies earliest start times and deadlines at regular time

intervals for repeated instances of an activity.

The delay experienced by the service traffic (packets) is an important aspect of

the perceived QoS. Various aspects of delay have a different impact on different

services:

- End-to-end delay.

- Delay variation or Jitter.
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Interactive real-time applications (e.g. voice communication) are sensitive to

end-to-end delay and jitter. Long delays reduce the interactivity of the

communication. Non-interactive real-time applications (e.g. one-way broadcast) are

not sensitive to end-to-end delay but are affected by jitter. Jitter is usually

accommodated by using a buffer at the receiver where received packets are stored and

then "played back" at the appropriate time offset. The time offset (also called

"playback point") is determined by maximum jitter. Applications that can adjust the

playback point based on changes in the jitter value are called "adoptive" applications.

Packets that arrive after their playback point has passed, are generally not useful to

the application.

Non real-time applications are usually not delay-sensitive. However, because

these applications may use delay measurements to control their traffic rate (e.g. TCP)

or may have to buffer data until it is acknowledged (e.g. FTP), large or variable delays

may affect the quality of these applications as well.

There are various components of end-to-end delay:

. Transmission delay: the time it takes to put all the bits of a packet onto the link.

• Propagation delay: the time it takes for a bit to traverse a link (usually, at the

speed of light).

• Processing delay: the time it takes for a packet in a network element (e.g. routing

it to the output port).

• Queuing delay: the time a packet must wait in a queue before it is scheduled for

transmission.

At the endpoints, there may be additional delays in getting the packet from the

network interface to the application and eventually to the user (e.g. delays in
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transferring the packet across the host bus, delays in copying the packet from kernel

space to user space, delays in scheduling the application).
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CHAPTER IV

Meeting Delay Requirements With

Wormhole Routing

In [3], Biao Chen, Hong Li, and Wei Zhao investigated the problem of

wormhole routing applied to applications with real-time constraints. Their model of

interconnection network was that of the Intel Paragon System. The algorithms

presented in [3] assume fixed-length messages and fixed inter-arrival times. In this

chapter, we write computer programs to simulate the behavior of these algorithms

using variable-length messages and variable inter-arrival times.

4.1 Intel Paragon system

In the 1980s, hypercube multicomputers were made with homogeneous nodes

because all I/O functions were given to the host. This limited the I/O bandwidth, and

thus these computers could not be used in solving large-scale problems with

efficiency or high throughput. The Intel Paragon was designed to overcome this

difficulty. The usage model turns the multicomputer into an application server with

multiuser access in a network environment. The Paragon system uses a simple but

effective approach called X-Y routing works in the following way: a packet is first

sent in the horizontal direction and then in the vertical direction. A change of

direction is allowed only once in the path.

In the following, we describe the architecture of the Paragon system.
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4.1.1 Node and Router Architecture

The Paragon was designed as an experimental system. Only one unit was built

and delivered to Caltech in May 1991 for research use by a consortium of 13 national

laboratories and universities. The Paragon is still a medium-grain multicomputer with

the typical node architecture shown in figure 19.

Each router has 10 I/O ports, 5 for input and 5 for output. Four pairs of I/O

channels are used for mesh connection to the four neighbors at the north, south, east,

and west nodes. The fifth pair is used for internal connection between the router and

local nodes. A 5x5 crossbar switch is used to establish a connection between any

input channel and any output channel. Figure 20.

Node I

	

	 Floating pI
Board	 j Processor(s) 	 unit(s)

Other
unit(s)

Router
(on

backplane)

Communication
I	 channels

Figure 19: Intel Paragon node architecture

(South)

Figure 20: Intel Paragon router architecture
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4.1.2 Waiting Queue

When a packet is sent from one node to another, if the channel linking these

two nodes is not free, the packet has to wait for its turn. And so for other packets.

Whenever packets are waiting for a channel to be free, this waiting status is called the

waiting queue. And we might have a waiting queue on each node.

4.2 Message Model

In [3 ], the authors assumed that there are n streams of real-time messages {M1,

M2, ..., M} where the real-time message M 1 is characterized by M 1=(C 1 , P, D, NS1,

ND 1) where

C 1 is the length in number of flits of a message in M1

P 1 is the inter-arrival period between messages in the real-time message

stream

Di is the maximum amount of time that may elapse between the generation

time of a message at its source node and the receiving time of its last bit at the

destination.

NS 1 is the source node of the message stream.

ND 1 is the destination node of the message stream.

In the following, i refers to the message stream i, j refers to the j1h message in

M1 , and k refers to the k 1 packet in the message j in M1

The j1h message in stream M1 is guaranteed at time t1 = t1,i + (j- 1)P 1 where j>=1

and is received at the destination by t 1 + D1.

We also make use of the following notations:

K1 is the number of flits per packet per message.

H1 is the real packet size. H = 3+K 1 . (2 header flits and itail flit).
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Ni is the number of packets per message. It is calculated as follows:

Ni=
K

W1 is the number of channels on the route of stream M1 = ND1 - NS1.

ti,k is the time when the packet k becomes the first packet in the waiting

queue

t ij,k is the arrival time of the first flit of packet

t'	 is the transmission time of the last flit of the packet MIJ,k from the source

node

t' ij,k is the arrival time of the last flit of packet

The end-to-end delay of the packet MI,k is the following:

- tij,k = end-to-end delay of the first flit + time taken to transmit the rest

of a packet.

(t ' j ,jk - tj,k) + H1 - 1 (Hi - 1 flits follow in a pipelined fashion)

<= W + H1 —1

= W1 + K1 +2

So W + H1 - 1 is the minimum end-to-end packet delay for M.

Note that the transfer delay includes handshaking delay, transmission delay,

propagation delay, etc, but not the blocking time. Thus, if there is no blocking on the

route, it takes H units of time for a flit to pass through a route of H channels,

assuming that it takes 1 unit of time to pass through 1 channel.

4.3 Transmission Control Methods

We would like to explain the two-transmission control methods, regulated and

unregulated on which will be based our simulation.
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The traditional transmission control method is a greedy one. Whenever the

channel that connects the source node with the associated router is free, the

transmission control module on the node will transmit a flit from the waiting packet

into the channel. Although effective on average cases, this approach may have unfair

network access in some situations.

When a packet is on the route from its source node to its destination, it can be

blocked at an intermediate router because the next channel it requires has been taken

by another packet. Two message steams sharing a channel on their paths may not

have the same chance to access the channel even if they have the same message

characteristics. A packet traveling on a long path will be in a disadvantageous

position when competing for communication bandwidth with packets from a short

path. This is simply because the header flit of the long path packet has to go through

more routers and has to wait for its turn on all these routers before the whole packet

can go through. This will result in rate disparity and unfairness of network access.

To further illustrate this point, let us consider an example. Four nodes are

involved in this example. We assume an extreme case that each node generates

messages sufficiently fast so that whenever the associated channel is available, a

packet is ready to be transmitted.

Ni, N2 and N3 each send a flow of packets into the network. We label the

packets from N  as Al, A2, ... Similarly, we label the packets from N2 and N3 as Bl,

B2, ..., and Cl, C2, ..., respectively. The destination node of all the packets is N4.

Packets from node N  may be blocked by those from node N2 at router R2.

Packets from both nodes Ni and N2 may be blocked by those from node N3 at router

R3. This what will happen: Al is blocked by BI at R2 while BI is blocked by Cl and

R3. This is because C  is holding channel L3 and B  is holding channel L2. At the
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time where the last flit of C  arrives at N4, B 1 obtains access to L3. While flits of B 1

are being transmitted across channel L3, the first header flit of C2 arrives at R3. As

the last flit of B 1 leaves R2, L2 becomes available to Al. Now both C2 and Al are

waiting for U. According to Round Robin scheduling algorithm, L3 will be granted

to C2. After C2 releases L3, Al can eventually get L4 and reach N4. Therefore we

should observe that on L3, the packets appear in the following order: Cl, BI, C2, Al,

C3, B2, C4, A2... Thus, the packets from N3 appear on channel L3 twice as often as

those from Ni or N2. (Figure 21).

Figure 21: Traditional transmission control method

This will cause the unfairness of network access, and a poor performance in

terms of meeting message deadlines.

To overcome this problem, the authors in [3] suggested the regulated method

where they allow holding some packets for a while before transmitting them. This

will be done by using a token to manage the transmissions. Flits of a packet waiting

at the waiting queue can be transmitted if and only if-

* The channel that connects to the associated router is free and

. There is a token.

The token is generated in the following manner:

• Initially there is a token at the transmission control module.

• If a token is discarded at time t, the next token will be generated at time t + TP.
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This will reduce the unfairness of network access, resulting in a better network

performance in terms of meeting message deadlines.

The objective of this paper is to analyze message transmission control

methods that aim meeting message's delay requirements.

Now, for both cases, the Regulated and Unregulated method, messages should

arrive to destination before their deadline D.

So for the Regulated method, as discussed earlier, we should have a token to

schedule the time of packets. So the algorithm of the regulated will be as follows:

First, we let TP (Token Generation Interval) be the minimum of all message

deadlines so at least one packet from a message can be transmitted before the

deadline. So TP is the time elapsed between the transmission of one packet and

another from the same message.

Second, in order for the messages to reach their destination before their

deadline, we should bound the packet delay within the token generation interval (TP)

In this case, whenever a new token is generated, a new packet can start its

transmission. So within a time interval of Di, [Di/TP] packets can be transmitted.

So the number of flits in a packet will be calculated as follows:

KCi
I -

Dir

1TP
As for the Unregulated method, no token is needed. The first flit of the first

packet of a certain queue will be transmitted whenever the channel is free. Note that

in this method, the blocking time at node i will be equal to the blocking time at node

i+l and the holding time at node i.
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4.4 Algorithms Al and A2 Applied to Variable Ci and P1.

A. Algorithm Al

The following is the pseudocode for the regulated method. In [3], the authors

have done their experiments on a 2D-Mesh architecture. In our simulation we use the

same algorithm except that C 1 and P1 are variables and a simple linear array

architecture is used.

Input: Set M{ M 1 , M2, ..., M}
Output: TP and K 1 , i1,2,. . .,n.
Begin

/* Select token generation period*/
/* Choose packet size K 1 for each stream*/

TP = min, (Di)

K=[']
Di

TP
for i1 ton do
Endfor

End.

First we need to generate messages. When a message is generated, files are

created in which we have the length of the message as C 1 (chosen randomly), the

inter-arrival period P 1 (chosen randomly), the deadline of the every message D1

(randomly chosen), its source node N5 1 and its destination node ND 1 (randomly

chosen)

While running the program, the messages from a file are read. Once read, the

messages are divided into packets which is done as follows:

Every message C 1 is divided into Ni packets, each of K1 flits determined as

follows
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Ki=[']

TP

where TP is the token generation period computed as

TP = min, (Di)

Thus Ni = CiIK1.

Every P 1 a message M1 is generated and packets are sent to their corresponding

source node along with the packet number, the source address, the destination

address, the message deadline, the inter-arrival period, and the message sent-time.

If the last packet of M1 is at ND1 and a TP is generated than the arrival time is

set. The time elapsed between the generation of the message and the arrival time of

its last packet to destination will show whether the message has reached its

destination within its deadline D i or not.

If, at any node I, a packet k exists and TP is generated, this packet is sent to

either node i+1 or node i-i depending on its destination until it reaches NDi where it

will be removed totally.

At the end of the simulation, we would be able to know how many messages

arrived to their destination within their deadlines and how many messages missed

their deadlines.

In figure 22 below, we show a snapshot of Al in execution.
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Figure 22: Al running algorithm

B. Algorithm A2

The following is the pseudocode for the unregulated method. In [3], the

authors have done their experiments on a 2D-Mesh architecture. In our simulation we

will use the same algorithm except that C 1 and P i will be variables and on a simple

linear array architecture.

Input: Set M={M 1 , M2, ..., M}
Output: K1 , i1,2,. . .,n.
Begin

For i 1 to n do
K1 = 1;

Endfor
Repeat

Check the following inequality
Let i be the first index that the corresponding inequality is not

satisfied.
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Ni * ( Bi, M)(K) + W + H, —1) :!^ D
1€R

Begin
K = K 1 +1;
If (K 1 > C 1) then

Return with no solution;
Endif

End
Until (no K 1 is modified);
Return all K i as the solution;

End

The procedure concerning generation of files is similar to the previous

algorithm. But when it comes to dividing the message into packets, we do not need

TP in order to get K. Here we use the inequality used in [3].

Ni * (I B(l, M)(K) + Wi + H —1) :!^ D
leRi

where B = max b and b is the blocking time of every packet at each node.

The inequality should be satisfied in order to know what is K 1 . First we

initialize K 1 to 1 for all messages. So initially N i = C 1/K 1 = C 1 . W 1 = (ND 1 - NS1)

H1 = K 1 + 3. Given D1, the only thing that we need to calculate is B. The blocking

time at node i is equal to the blocking time at node i + 1 added to it the holding time at

node i. The blocking time at the destination node is 0. We assume that the holding

time at each node is K 1 + 2.

Consider for example a packet with source node 2 and destination node 5, the

blocking time at each node is calculated as follows:

At node 5, B 0, at node 4, B= B 5 + h4 = 0+K1+2 = 1(1+2, at node 3,

B= B 5+ B4 + 113= 0+ K+2+ K 1+2= 2(K1+2),

at node 2, B= B 5+ B4 +B 3+ h2= 0+ K+2+ K+2 + K+2 = 3(K1+2).

B (ND 1 - NS1)x(K1+2)
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If the inequality is satisfied, we find K 1 and we divide the message into packets

using Ni = C1/K1.

If the inequality is not satisfied, we increment K 1 by 1 until it is satisfied or

until K1 becomes greater than C 1 . If K 1 is greater than C 1 than the message is not sent.

Once the messages are divided into packets, these packets are sent to their

source nodes. At destination node, if the packet existing is the last packet of Mi, than

the arrival time is set. The time elapsed between the generation of the message and

the arrival time of its last packet will indicate whether the message reached its

destination within its deadline Di or not.

If at any node i, a packet k exists, its blocking time will be calculated as

follows: (ND1 - Current node)x(K1+2) . At every unit of time, the blocking time at

node i is decremented by 1 until its blocking time gets to 0 than the packet can be sent

to either node i+1 or node i-i depending on its destination. This is repeated until the

packet reaches its destination where it will be removed totally.

At the end of the simulation, we would be able to know how many messages

arrived to their destination within their deadlines, how many messages missed their

deadlines and how many messages were unable to be sent for K i is greater than C1.

In figure 23, we show a snapshot of A2 running where K 1 is greater than C.

39



Time Unites Passed:
	

154
	

May T me 	 3000

Mesges Read From File
	

3
	

1esaqeDerthCj: Jioo	 j
klax F

Messages Reached On Time
	

U	
Di

Go	 Mem ges Beyond Time
	

3	
NLn±ir of rees

Delay Dik.play T.
	 Generate Message Fries-

Figure 23: A2 running algorithm with K 1 > C

In figure 24, we show a snapshot of A2 in execution.
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The actual code of both algorithms can be found in Appendix A.

The results of the simulation are presented in chapter V.
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Figure 24: Al Routing
efficiency function of C1 & P1
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CHAPTER V

Simulation Results

This chapter summarizes the results of our simulation.

Algorithm Al

We set the running time to be 3000 units of time. We assume that Di is 200

units of time and a maximum number of messages of 1000.

Table 2 below shows the results of our simulation for different values of C1

and P1.

Ci	 25	 50	 100	 150	 200
Pi
100	 0.9	 0.81	 0.55	 0.29	 0.19
150	 0.89	 0.87	 0.55	 0.45	 0.18
200	 0.86	 0.84	 0.6	 0.42	 0.21

Table 2: Al Routing efficiency function of C & P1

Pictorially put, the results are as shown below:
o,_ -f4I
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Algorithm A2

We set the running time to be 3000 units of time. We assume that D 1 is 200

units of time and a maximum number of messages of 1000.

Table 3 below shows the results of our simulation for different values of C1

and P1

25	 50	 100	 150	 200

100	 0.57	 0.29	 0.38	 0.24	 0.19
150	 0.65	 0.41	 0.41	 0.35	 0.2
200	 0.67	 0.48	 0.34	 0.35	 0.2

Table 3: A2 Routing efficiency function of C 1 & P1

Pictorially put, the results are as shown below:

% of the reached messages

100

0.67
0.65

50 7VOLS

0.35

0.29

Figure 25: A2 Routing

Ci	 efficiency function of C1 & P1
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It is clear from figures 25 and 26 that the regulated transmission control

method gives a better result than the unregulated transmission control method which

generalizes the algorithms in [3] to networks with variable length messages and inter-

arrival periods.

44



CONCLUSION AND FUTURE RESEARCH

In this thesis, we have discussed the issue of meeting delay requirements in

computer networks using wormhole routing. In [3], the authors showed that if they

regulate the rate of transmission at each source node, over 50% of messages would

reach their deadlines. They used message streams of fixed length messages and fixed

inter-arrival times using a 2D-Mesh architecture. In this thesis, we investigated the

performance of the algorithms presented in [3] in a computer network with message

streams of variable length messages and variable inter-arrival times using a simple

linear array architecture. Our simulation showed that the regulated transmission

control continues to provide better results than the unregulated transmission method.

Many extensions of this study are possible. The idea of controlling

transmission at the source node is definitely worth further investigation. Additional

research in this direction may consider the performance of the same algorithms

applied to different architectures with different parameters or the creation of an

entirely different technique than the token generation method adopted in this thesis.
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APPENDIX A

Al Algorithm

This program implements the regulated transmission control method applied to
variable length messages and inter-arrival periods.

'Written in VB version 5.0
Option Explicit
Const MaxNode 10
'Const MaxTime 20000 'Units of time
Const NMessages = 4000
Dim Channel(MaxNode - 1) As Integer
Dim NumberOfMessages As Long

Dim MaxTime As Long

'Declare the message info
Dim Msgl As String' contains the message
Dim Ci As Integer' Length of Message # of Flits
Dim Pi As Integer' Inter-arrival Period
Dim Di As Integer' Deadline for the message reach destination
Dim Sn As Integer' Sourse Node
Dim Dn As Integer ' Destination Node
Dim TP As Integer' Token Generation Period
Dim MessageSendTime As Long

'This will help us track the packets to know which packet ends a message
Dim PacketNumber As Long

'The nodecol corresponds to the list of packets waiting
'on the corresponding nodes.
Dim NodeCol(1 To MaxNode) As New Collection

'The Token generation period for the packets on every node
Dim NodeTP(1 To MaxNode) As Integer

'Holding the message information
Dim Messagelnfo(1 To NMessages) As New Collection

'The counter of my time
Dim TimeCount As Long

'Message Pos is for knowing the message number where the last packet belongs to inside the message
info
Dim MessagePos As Long

Sub main()

'Read the data from the file
Dim strfilter As String
Dim strFileName As String
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Dim DefaultName As String
Dim FileStrLen As Integer

'The file management related material
'strfilter = "Textstr (*.str)I*.strjAll Files (*.*)I*.*
strfilter = "All Files (*.*)*.*1

'strfilter = "TextStr (*.str)j*.str"

CD1g1.Filter strfilter
'Open the common dialog in open mode
CDlgl.DialogTitle = "Open the Str file..."
CD1g1.filename = "c:\tony\Rania  B\proj under VB5\*.*"
CD1g1.ShowOpen
'Make sure the retrieved filename is not a blank string
If CD1g1.filename = " Then

MsgBox "Invalid File Name!"
Exit Sub

End If
'If it is not blank, open the file

'Get the name without the path
'strFileName = CD1g1.FileTitle
'Dim FileExt As String
'FileExt Right(strFileName, 4)
'MsgBox FileExt
'If FileExt <> ".str" Then

MsgBox "Invalid file name ! ! !"
Exit Sub

'End If

If Not (CD1g1.filename Like "*.str") Then
MsgBox "Invalid file name, *.str expected... !!!"
Exit Sub

End If

'Get the original file name without the extension
FileStrLen = Len(CD1g1.filename)
DefaultName = Left(CD1g1.filename, FileStrLen -4)
'MsgBox DefaultName

'Get the token generation period for the given file input
GetTP (DefaultName)

'Open the files in request
Open (DefaultName + ".str") For Input As #1
Open (DefaultName + ".pi") For Input As #2
Open (DefaultName + ".di") For Input As #3
Open (DefaultName + ".sn") For Input As #4
Open (DefaultName + "An") For Input As #5

'Initialize the packet number for tracing packets
PacketNumber = 0
MaxTime = Val(Text5.Text)
Dim i, j As Integer
For i = 1 To MaxNode

TPVa1(i).Caption = "0"
NodeTP(i) = 0
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free the nodes from any packets
For  = 1 To NodeCol(i).Count

NodeCol(i).Remove 1
Next 

For  = I To List l(i).ListCount
List! (i).Removeltem 0

Next 

Next i

Dim tmpval As Integer
'free the message info if any
tmpval = Val(Label3 .Caption)
For i = 1 To tmpval

For  = I To Messagelnfo(i).Count
Messagelnfo(i).Remove 1

Next 
Next i
Label3.Caption = "0"
Label4.Caption = "0"
Label8.Caption = "0"
Labe!9.Caption = "0"

GetNewMessagelnfo
DivideMessagelntoPackets
'MessageSendTime TimeCount 'Get the time of sending the message

For TimeCount 1 To MaxTime
Label4.Caption = Str(TimeCount)
Label4.Refresh
CheckPackets 'checks the packets
'MsgBox Pi,, "PT"

If (Pi = 0) Then
If (Not EOF(1)) Then

GetNewMessagelnfo
DivideMessagelntoPackets

End If
'MessageSendlime = TimeCount 'Get the time of sending the message
'the get message info will get the new Pi as well

Else
Pi = Pi - 1

End If

'1* * * * * * * * * * * * *

Dim Pauselime As Double
Dim start As Double
PauseTime = Text6.Text
start = Timer 'Set start time.
Do While Timer < start + PauseTime

'do nothing
Loop
'1* * * * * * * * * * * * *

Next TimeCount

'Close the file when completed
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Close #1
Close #2
Close #3
Close #4
Close #5

End Sub

Sub GetNewMessagelnfo()
Dim xStr As String
Dim xlnt As Integer

Line Input #1, Msgl
'MsgBox MsgI,, "Message"
Ci = Len(Msgl)
'MsgBox Ci,, 'Ci'

Line Input #2, xStr
Pi = Val(xStr)
'MsgBox Pi, , "Pi"

Line Input 93, xStr
Di = Val(xStr)
'MsgBox Di,, "Di"

Line Input #4, xStr
Sn Val(xStr)
'MsgBox Sn,, "Sn"

Line Input #5, xStr
Dn Val(xStr)
'MsgBox Dn, , "Dn"

'Setting the display representing the number of messages read
Label3.Caption = Str(Val(Label3.Caption) + 1)
LabeI3 .Refresh

End Sub

Private Sub Command6Click()
main

End Sub

Sub DivideMessagelntoPackets()

'store the send time of the message

Dim Ki As Integer
Dim NoOfPackets As Integer
Dim PacketString As String
Dim i As Integer
PacketString =

'Get the packet size Ki
Ki = Ci / (Di / TP)
'MsgBox Ki,, "Ki"
IfKi=OThen

NoOfPackets = 1
Else

'Get the number of packets in this message
NoOfPackets = Ci / Ki
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'MsgBox NoOfPackets, , "No of Packets"
End If

'Fill the packet string
Dim LocalStr As String
LocalStr = Msgl
For i = I To NoOfPackets - 1

'First fill the packet Number
PacketNumber PacketNumber + I
PacketString = Str(PacketNumber) + " i' * *"

'Fill the destination node
PacketString = PacketString + Str(Dn) +
'Fill the data ki characters
PacketString = PacketStririg + Left(LocalStr, Ki)
LocalStr = Right(LocalStr, Len(LocalStr) - Ki)

'Fill the packet in the correspondign node waiting list
NodeCol(Sn).Add PacketString
List l .ltern(Sn).Addltem Str(PacketNumber)

Next i

'Fill the last packet in this string
'First fill the packet Number
PacketNumber = PacketNumber + 1
PacketString = Str(PacketNumber) +
'Fill the destination node
PacketString = PacketString + Str(Dn) +
'Fill the data ki characters
PacketString = PacketString + LocalStr
'Set the wanted info in the message such as packet no

Messagelnfo(Val(Label3 .Caption)).Add TimeCount
Messagelnfo(Val(Label3 .Caption)).Add Sn
Messagelnfo(Val(Label3.Caption)).Add Dn
Messagelnfo(VaI(Label3 .Caption)).Add PacketNumber
Messagelnfo(Val(Label3 .Caption)).Add Di
Messagelnfo(Val(Label3 .Caption)).Add Pi

'Fill the packet in the correspondign node waiting list
NodeCol(Sn).Add PacketString
List 1. Item(Sn).Addltem  Str(PacketNumber)

End Sub

Private Sub Command7Click()

Dim i As Integer
Dim myString As String
Dim CharVal As Integer
Dim strfilter As String
Dim strFileName As String
Dim msgCount As Integer
Dim RetVal As Variant

'The file management related material
'strfilter = "StrText (*.str)I*.strIAll Files (*.*)I*.*
strfilter = "All Files (*.*)I*.*
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CD1g 1 Filter = strfilter
'Open the common dialog in save mode
CD1g1.filename =
CD1g1 .ShowSave
'Make sure the retrieved filename is not a blank string
If CDIg1.filename = " Then

MsgBox "Invalid File Name
Exit Sub

End If

'MsgBox (CD1gI)
'Exit Sub

'If it is not blank, open the file
strFileName = CD1g1.filename

'Open the files for entry
'Open a file for writing strings in it
Open (strFileName + ".str") For Output As #1
'Open a file for writing Pi in it
Open (strFileName + ".pi") For Output As #2
'Open a file for writing Di in it
Open (strFileName + ".di") For Output As #3
'Open a file for writing Sri it
Open (strFileName + ".sn") For Output As #4
'Open a file for writing Dn in it
Open (strFileName + "An") For Output As #5

'Fill the message data in the respective files
Form 1.MousePointer = vbHourglass
TP = 10 'max of di value

NumberOfMessages VaI(Text 1 .Text)
For msgCount = 1 To NumberOfMessages

t*****

'make the string and put it in the file
Ci = Rnd * Val(Text4.Text)
IfCi = 0 Then Ci = 1
'MsgBox Ci, , "Ci"
myString =
For i = 1 To Ci

CharVal = (Rnd * 100) + 30 'The +30 is just to skip the special characters
myString = myString + Chr(CharVal)

Next i
'MsgBox myString, , "MyStirng Value is
'Do the write
Print #1, my String
1*****

'Time between message and another
Pi = (Rnd * Val(Text3.Text)) 'The + I is for the first time it is called to replace the -1
IfPi=O Then Pi
'MsgBox Pi,, "P1"
'Do the write
Print #2, Pi
'* * ** *

'Deadline for the message
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Di = Rrid * Val(Text2.Text)
IfDiO Then Di= 1
'MsgBox Di,, "Di"
'Do the write
Print #3, Di

If Di <TP Then
TP = Di

End If
1*****

Sn = Rnd * MaxNode 'the limit is the MaxNode
If Sn = 0 Then Sn =
'MsgBox Sn,, "Sn"
'Do the write
Print #4, Sn
1*****

Dn = Rnd * MaxNode 'the limit is the MaxNode
IfDn = 0 Then Dn =
'MsgBox Dn,, "Dn"
'Do the write
Print #5, Dn
'* * ** *

Next msgCount
Form 1 .MousePointer = vbDefault

MsgBox TP,, "TP"
'Close the file when completed
Close #1
Close #2
Close #3
Close #4
Close #5

End Sub

Sub CheckPackets()
Dim i As Integer
Dim LastPacket As Boolean
Dim PacketNo As Long
Dim packetdn As Integer
Dim CurrPacket As String
Dim SubPacket As String
Dim StarPos As Integer

For i = 1 To MaxNode

If NodeTP(i) = 0 Then
'GetPacketlnfo done here
If NodeCol(i).Count	 0 Then

CurrPacket = NodeCol(i),Item(1)
'MsgBox CurrPacket, , "Current Packet Value"

StarPos = InStr(CurrPacket, ***)
'MsgBox StarPos - 1

PacketNo = Val(Left(CurrPacket, StarPos - 1))
'MsgBox PacketNo,, "packet No in packet"
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SubPacket Right(CurrPacket, Len(CurrPacket) - (StarPos - 1) - 3)
'MsgBox SubPacket, , "Sub packet"

StarPos = InStr(SubPacket, ***)
'MsgBox StarPos - I

packetdn = VaI(Left(SubPacket, StarPos - 1))
'MsgBox packetdn, , "packet destination in packet"

If (i = packetdn) Then

CheckLastPacket (PacketNo)
If MessagePos c' -1 Then

LastPacket True
Else

LastPacket = False
End If

If (LastPacket) Then
'Set the arrival time in the message info
'MsgBox (TimeCount - Messagelnfo(MessagePos),Item( 1))
'MsgBox Messagelnfo(MessagePos),Item(5)
If ((TimeCount - Messagelnfo(MessagePos),Item( 1)) <

Messagelnfo(MessagePos).Jtem(5)) Then
'messages arrived before deadline
Label8.Caption = Str(Val(Label8.Caption) + 1)
Label8.Refresh

Else
'messages arrived after message deadline
Label9.Caption = Str(VaI(Label9.Caption) + 1)
LabeI9.Refresh

End If

'* ** ** * * * * **

NodeCol(i).Remove 1
List l(i).Removeltem (0)
List! (i).Refresh

Else
NodeCol(i).Remove 1
List l(i).Removeltem (0)
List! (i).Refresh

End If
NodeTP(i) = TP
TPVa1(i).Caption = NodeTP(i)
TPVa!(i).Refresh

Else
If (i <packetdn) Then

NodeCol(i + !).Add (NodeCol(i),Item(1))
Listl(i + 1).Addltem List !(i).List(0)
Listl(i + !).Refresh
NodeCol(i).Remove!
List I (i).Removeltem (0)
List! (i).Refresh
NodeTP(i) = TP
TPVaI(i).Caption = NodeTP(i)
TPVa1(i).Refresh
If List !(i + !).ListCount = I Then

i = i + 1
Else
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End If
Else

NodeCol(i - 1).Add (NodeCol(i),Item(1))
Listl(i - 1).Addltem List l(i).List(0)
Listl(i - 1).Refresh
NodeCol(i).Remove 1
List I (i).Removeltem (0)
List I (i).Refresh
NodeTP(i) = TP
TPVa1(i).Caption = NodeTP(i)
TPVaI(i).Refresh

End If
End If

End If
Else

NodeTP(i) = NodeTP(i) - 1
TPVa1(i).Caption NodeTP(i)
TPVaI(i).Refresh

End If
Next i

End Sub

Sub GetTP(Dlfname As String)
Dim xStr As String

TP = 10 max possible value for tp
Open (Dlfname + ".di") For Input As #9

While Not EOF(9)

Line Input #9, xStr
Di = Val(xStr)
'MsgBox Di,, 'Di'

If Di <TP Then
TP = Di

End If

Wend
'Close the file when completed
Close #9

'MsgBox TP
End Sub

Sub CheckLastPacket(pacNo As Long)
Dim i As Integer

For i = I To Val(Label3 Caption)
If(Messagelnfo(i),Item(4) = pacNo) Then

MessagePos =
Exit Sub

End If
Next i
MessagePos = -1

End Sub
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APPENDIX B

A2 ALGORITHM

This program implements the unregulated transmission control method applied to
variable length messages and inter-arrival periods.

Written in VB version 5.0

Option Explicit
Const MaxNode = 10
'Const MaxTime = 20000 'Units of time
Const NMessages = 4000
Dim Channel(MaxNode - 1) As Integer
Dim NumberOfMessages As Long

Dim MaxTime As Long

'Declare the message info
Dim Msgl As String contains the message
Dim Ci As Integer' Length of Message # of Flits
Dim Pi As Integer' Inter-arrival Period
Dim Di As Integer' Deadline for the message reach destination
Dim Sn As Integer' Sourse Node
Dim Dn As Integer ' Destination Node
'Dim TP As Integer' Token Generation Period
Dim MessageSendTime As Long

'This will help us track the packets to know which packet ends a message
Dim PacketNumber As Long

'The nodecol corresponds to the list of packets waiting
on the corresponding nodes.

Dim NodeCol(1 To MaxNode) As New Collection

'not used in unRegulated
'The Token generation period for the packets on every node
Dim NodeB(1 To MaxNode) As Integer

'Holding the message information
Dim Messagelnfo(1 To NMessages) As New Collection

'The counter of my time
Dim TimeCount As Long

'Message Pos is for knowing the message number where the last packet belongs to inside the message
info
Dim MessagePos As Long

Sub Main()

'Read the data from the file
Dim strfilter As String

55



Dim strFileName As String
Dim DefaultName As String
Dim FileStrLen As Integer

The file management related material
'strfilter = 'Textstr (*.str)I*.strlAll Files
strfilter = "All Files (*.*)j*.*
'strfilter = "TextStr (*.str)p*.str'

CD1g1 Filter = strfilter
'Open the common dialog in open mode
CD1gI .Dialoglitle = "Open the Str file..."
CD1g1.filename = "c:\tony\Rania  B\proj under VB5\*.*'
CDlgl .ShowOpen
'Make sure the retrieved filename is not a blank string
If CD1gI.filename = " Then

MsgBox "Invalid File Name!"
Exit Sub

End If
'If it is not blank, open the file

'Get the name without the path
'strFileName = CDIg1.FileTitle
'Dim FileExt As String
'FileExt = Right(strFileName, 4)
'MsgBox FileExt
'If FileExt	 ".str" Then

MsgBox "Invalid file name !!
Exit Sub

'End If

If Not (CDlgl.filename Like "*.str") Then
MsgBox "Invalid file name, *str expected... !!!"
Exit Sub

End If

'Get the original file name without the extension
FileStrLen = Len(CD1g1.filename)
DefaultName = Left(CD1g1 filename, FileStrLen - 4)
'MsgBox DefaultName

'Open the files in request
Open (DefaultName + ".str") For Input As #1
Open (DefaultName + ".pi") For Input As #2
Open (DefaultName + ".di") For Input As 93
Open (DefaultName + ".sn") For Input As #4
Open (DefaultName + "An") For Input As #5

'Initialize the packet number for tracing packets
PacketNumber = 0
MaxTime Val(Text5.Text)
Dim i, j As Integer
For i = I To MaxNode

BVal(i).Caption = "-1"
NodeB(i) = -1
'free the nodes from any packets
For  = 1 To NodeCol(i).Count

NodeCol(i).Remove 1
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Next 

Forj = I To List l(i).ListCount
List I (i).Removeltem 0

Next 
Next i

Dim tmpval As Integer
'free the message info if any
tmpval = VaI(Label3.Caption)
For i = 1 To tmpval

Forj = 1 To Messagelnfo(i).Count
Messagelnfo(i).Remove 1

Next 
Next i
Label3.Caption = "0"
Label4.Caption = "O"
Label8.Caption "0"
Label9.Caption = "0"

GetNewMessagelnfo
DivideMessagelntoPackets
'MessageSendTime = TimeCount 'Get the time of sending the message

For TimeCount 1 To MaxTime
Label4.Caption Str(TimeCount)
Label4.Refresh
CheckPackets 'checks the packets
'MsgBox Pi,, "P1"

If (Pi = 0) Then
If (Not EOF(1)) Then

GetNewMessagelnfo
DivideMessagelntoPackets

End If
'MessageSendTime = TimeCount 'Get the time of sending the message
'the get message info will get the new Pi as well

Else
Pi=Pi-1

End If

'1* * * * * * * * * * * * *

Dim PauseTime As Double
Dim start As Double
PauseTime = Text6.Text
start = Timer ' Set start time.
Do While Timer < start + Pauselime

'do nothing
Loop
'1* * * * * * * * * * * * *

Next TimeCount

'Close the file when completed
Close #1
Close #2
Close #3
Close #4
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Close #5

End Sub

Sub GetNewMessagelnfo()
Dim xStr As String
Dim xlnt As Integer

Line Input #1, Msgl
'MsgBox Msgl,, 'Message"
Ci = Len(Msgl)
'MsgBox Ci, , "Ci"

Line Input #2, xStr
Pi = Val(xStr)
'MsgBox Pi, , "Pi"

Line Input #3, xStr
Di Val(xStr)
'MsgBox Di,, "Di"

Line Input #4, xStr
Sn = Val(xStr)
'MsgBox Sn,, "Sn"

Line Input #5, xStr
Dn = Val(xStr)
'MsgBox Dn,, "Dn"

'Setting the display representing the number of messages read
Label3 .Caption = Str(Val(Label3 .Caption) + 1)
Label3 .Refresh

End Sub

Private Sub Command6Click()
Main

End Sub

Sub DivideMessagelntoPackets()

'store the send time of the message

Dim Ki As Integer
Dim NoOfPackets As Integer
Dim PacketString As String
Dim i As Integer
PacketString =

'Get the packet size Ki
'Ki = Ci / (Di / TP)

'Obtaining the ki in the unregulated case.
Ki = GetKi

'MsgBox Ki,, "Ki"
IfKi = -1 Then

'the message did not reach the destination
'increase the number of undelivered messages by one
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Label9.Caption = Str(Val(Label9.Caption) + 1)
Label9.Refresh

'add message info
Messagelnfo(Val(Label3 .Caption)).Add TimeCount
Messagelnfo(Val(Label3 .Caption)).Add Sn
Messagelnfo(Val(Label3 .Caption)).Add Dn
Messagelnfo(Val(Label3 .Caption)).Add PacketNumber
Messagelnfo(Val(Label3 .Caption)).Add Di
Messagelnfo(Val(Label3 .Caption)).Add Pi

'exit the funciton without sending the packets
Exit Sub

Else
'Get the number of packets in this message
NoOfPackets Ci / Ki
'MsgBox NoOfPackets, , "No of Packets"

End If

'Fill the packet string
Dim LocalStr As String
LocalStr = Msgl
For i = 1 To NoOfPackets - I

'First fill the packet Number
PacketNumber = PacketNumber + I
PacketString = Str(PacketNumber) +
'Fill the destination node
PacketString = PacketString + Str(Dn) +
'Fill Ki for the unregulated method only
PacketString = PacketString + Str(Ki) +
'Fill the data ki characters
PacketString = PacketString + Left(LocalStr, Ki)
LocalStr = Right(LocalStr, Len(LocalStr) - Ki)

'Fill the packet in the correspondign node waiting list
NodeCol(Sn).Add PacketString
List 1 .Item(Sn).Addltem Str(PacketNumber)

Next i

'Fill the last packet in this string
'First fill the packet Number
PacketNumber = PacketNumber + 1
PacketString = Str(PacketNumber) +
'Fill the destination node
PacketString = PacketString + Str(Dn) +
'Fill Ki for the unregulated method only
PacketString = PacketString + Str(Ki) +
'Fill the data ki characters
PacketString = PacketString + LocalStr
'Set the wanted info in the message such as packet no

Messagelnfo(Val(Label3 .Caption)).Add TimeCount
Messagelnfo(Val(Label3 .Caption)).Add Sn
Messagelnfo(Val(Label3 .Caption)).Add Dn
Messagelnfo(VaI(Label3 .Caption)).Add PacketNumber
Messagelnfo(Val(Label3 .Caption)).Add Di
Messagelnfo(Val(Label3 .Caption)).Add Pi

'Fill the packet in the correspondign node waiting list
NodeCol(Sn).Add PacketString
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List 1 .Item(Sn).Addltem Str(PacketNumber)

End Sub

Function GetKi()
Dim SumB As Long 'The summation of the blocking at each node
Dim HoldingTime As Long
Dim Wi As Long 'The number of channels
Dim Hi As Long 'The real number of flits in a packet
Dim Ni As Long 'The number of packets in a message
Dim Ki As Integer

Ki=l

Do While (1 <2)

If(Ki> Ci) Then
GetKi -1
Exit Function

End If

HoldingTime = Ki +2
Wi = Abs(Dn - Sn)
SumB = Abs((Dn - Sn)) * (HoldingTime)
Hi = Ki +3
Ni=Ci/Ki

If((Ni * (SumB + Wi + Hi - 1)) <= Di) Then
GetKi = Ki
Exit Function

Else
Ki = Ki + 1

End If
Loop

End Function

Private Sub Command7Click()

Dim i As Integer
Dim myString As String
Dim CharVal As Integer
Dim strfilter As String
Dim strFileName As String
Dim msgCount As Integer
Dim RetVal As Variant

'The file management related material
'strfilter = "StrText (*.str)I*.strIAll Files (*.*)I*.*
strfilter = "All Files (*.*)*.*

CD1g1.Filter = strfilter
'Open the common dialog in save mode
CD1g1.filename
CD1g 1 .ShowSave
'Make sure the retrieved filename is not a blank string
If CD1g1.filename = " Then
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MsgBox "Invalid File Name
Exit Sub

End If

'MsgBox (CD1g1)
'Exit Sub

'If it is not blank, open the file
strFileName = CD1g 1 .filename

'Open the files for entry
'Open a file for writing strings in it
Open (strFileName + ".str') For Output As #1
'Open a file for writing Pi in it
Open (strFileName + ".pi") For Output As #2
'Open a file for writing Di in it
Open (strFileName + ".di") For Output As #3
'Open a file for writing Sn in it
Open (strFileName + ".sn") For Output As #4
'Open a file for writing Dn in it
Open (strFileName + "An") For Output As #5

'Fill the message data in the respective files
Form I .MousePointer = vbHourglass
'TP = 10 'max of di value

NumberOfMessages = Val(Textl Text)
For msgCount = 1 To NumberOfMessages

'* * * * *

'make the string and put it in the file
Ci = Rnd * Val(Text4.Text)
IfCi=O Then Ci 1
'MsgBox Ci,, "Ci"
myString =
For i = 1 To Ci

CharVal = (Rrid * 100) + 30 'The +30 is just to skip the special characters
myString = myString + Chr(CharVal)

Next i
'MsgBox myString,, "MyStirng Value is
'Do the write
Print #1, myString
'* * * * *

'Time between message and another
Pi = (Rnd * Val(Text3.Text)) 'The + 1 is for the first time it is called to replace the -1
IfPi=O Then Pi
'MsgBox Pi,, "P1"
'Do the write
Print #2, Pi
t*****

'Deadline for the message
Di = Rnd * Val(Text2.Text)
IfDi=O Then Di 1
'MsgBox Di,, "Di"
'Do the write
Print #3, Di
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'If Di <TP Then
TP=Di

'End If
1*****

Sn = Rnd * MaxNode 'the limit is the MaxNode
If Sn 0 Then Sn =
'MsgBox Sn,, "Sn"
'Do the write
Print #4, Sn
'* * ***

Dn = Rnd * MaxNode 'the limit is the MaxNode
IfDn = 0 Then Dn = 1
'MsgBox Dn,, "Dn"
'Do the write
Print #5, Dn
t*****

Next msgCount
Form 1 .MousePointer = vbDefault

'MsgBox TP, , "TP"
'Close the file when completed
Close #1
Close #2
Close #3
Close #4
Close #5

End Sub

Sub CheckPackets()
Dim i As Integer
Dim LastPacket As Boolean
Dim PacketNo As Long
Dim packetdn As Integer
Dim CurrPacket As String
Dim SubPacket As String
Dim StarPos As Integer
Dim packetKi As Integer

For i 1 To MaxNode
'Ifi I Then

MsgBox i, , "The 11111111"
'End If

'If NodeB(i) = -1 then need to get the blocking time for the next packet if it exists
If NodeB(i) = -I Then

'GetPacketlnfo done here
If NodeCol(i).Count <> 0 Then

CurrPacket = NodeCol(i),Item(l)
'MsgBox CurrPacket, , "Current Packet Value INITIALIZE"

StarPos = InStr(CurrPacket, "
PacketNo = Val(Left(CurrPacket, StarPos - I))
SubPacket = Right(CurrPacket, Len(CurrPacket) - (StarPos - 1) - 3)
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StarPos = InStr(SubPacket, "It *

packetdn = Val(Left(SubPacket, StarPos - 1))
SubPacket = Right(CurrPacket, Len(SubPacket) - (StarPos - 1) - 3)
StarPos = InStr(SubPacket, "' * *)
packetKi = Val(Left(SubPacket, StarPos - 1))

NodeB(i) = (Abs(packetdn - i) * (packetKi + 2))
BVa1(i).Caption = NodeB(i)
BVa1(i).Refresh

End If
End If

If NodeB(i) = 0 Then
'GetPacketlnfo done here
If NodeCol(i).Count	 0 Then

CurrPacket = NodeCol(i),Item(1)
'MsgBox CurrPacket,, "Current Packet Value'

StarPos = InStr(CurrPacket, "I * *)

'MsgBox StarPos - 1
PacketNo = Val(Left(CurrPacket, StarPos - 1))

'MsgBox PacketNo,, "packet No in packet"
SubPacket = Right(CurrPacket, Len(CurrPacket) - (StarPos - 1) - 3)

'MsgBox SubPacket,, "Sub packet"
StarPos = InStr(SubPacket, * *)

'MsgBox StarPos - 1
packetdn = Val(Left(SubPacket, StarPos - 1))

'MsgBox packetdn,, "packet destination in packet"
SubPacket = Right(CurrPacket, Len(SubPacket) - (StarPos - 1) - 3)

'MsgBox SubPacket,, "Sub packet"
StarPos = InStr(SubPacket, "I * * t)

'MsgBox StarPos - I
packetKi = Val(Left(SubPacket, StarPos - 1))

'MsgBox packetKi,, "Packet Ki"

If (i = packetdn) Then

CheckLastPacket (PacketNo)
If MessagePos <> -1 Then

LastPacket = True
Else

LastPacket = False
End If

If (LastPacket) Then
'Set the arrival time in the message info
'MsgBox (TimeCount - Messagelnfo(MessagePos),Item(l))
'MsgBox Messagelnfo(MessagePos),Item(5)
If((TimeCount - Messagelnfo(MessagePos),Item(1)) <

Messagelnfo(MessagePos),Item(5)) Then
'messages arrived before deadline
Label8.Caption = Str(Val(Label8.Caption) + 1)
Label8 .Refresh

Else
'messages arrived after message deadline
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Label9.Caption = Str(Val(Label9.Caption) + 1)
Label9.Refresh

End If

NodeCol(i).Remove 1
List 1(i).Removeltem (0)
List! (i).Refresh

Else
NodeCol(i).Remove 1
List I (i).Removeltem (0)
List 1 (i).Refresh

End If
NodeB(i) = NodeB(i) - 1
BVaI(i).Caption = NodeB(i)
BVal(i).Refresh

Else
If (i <packetdn) Then

NodeCol(i + 1).Add (NodeCol(i)Jtem(1))
List 1 (i + 1 ).Addltem List  (i).List(0)
Listl(i + 1).Refresh
NodeCol(i).Remove 1
List 1 (i).Removeltem (0)
List l(i).Refresh
NodeB(i) NodeB(i) - I
BVa1(i).Caption = NodeB(i)
BVa1(i).Refresh
If List l(i + 1).ListCount 1 Then

i=i+1
Else
End If

Else
NodeCol(i - 1).Add (NodeCol(i),Item(1))
List! (i - 1 ).Addltem List 1 (i).List(0)
Listl(i - 1).Refresh
NodeCol(i).Remove I
List! (i).Removeltem (0)
List l(i).Refresh
NodeB(i) = NodeB(i) - 1
BVa1(i).Caption = NodeB(i)
BVal(i).Refresh

End If
End If

End If
ElseIf (NodeB(i)> 0) Then

NodeB(i) = NodeB(i) -!
BVaI(i).Caption = NodeB(i)
BVaI(i).Refresh

End If
Next i

End Sub

Sub CheckLastPacket(pacNo As Long)
Dim i As Integer

For i = 1 To Val(Label3.Caption)
If(Messagelnfo(i),Item(4) = pacNo) Then

MessagePos =
Exit Sub
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End If
Next i
MessagePos = -1

End Sub
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