
MINIMIZING COMMUNICATION DELAY
IN TCP/IP NETWORKS

Pascale Y. Ghanem

A Thesis

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

Department of Computer Science
Faculty of Natural and Applied Sciences

Notre Dame University

mLD.l. LIBRARY

June 2001	 cECEVED



Minimizing Communication Delay
In TCP/IP Networks

Pascale Y. Ghanem

Committee Members

Hoda Maalouf: AssistanTTroYessor of Computer Science
Advisor

Jean FaiëAssociatè Professor of Mathematics. Dean of Faculty
Member of Committee

Fouad Chedid: Associate Professor of Computer Science. Chairperson
Member of Committee

K4aidoün El-Khalidi: Assistant Professor of Computer Science
Member of Committee



ABSTRACT

The global Internet has experienced many years of sustained exponential growth

doubling in size every nine months or faster [8]. Millions of users at tens of thousands of sites

around the world depend on the global Internet as part of their daily work environment.

This massive use of the Internet as well as the continuous interconnection of new

groups arises many problems such as: packet loss, network congestion, insufficient

bandwidth, increase in delay...

In this thesis, we focus mainly on the problem of communication delay and bandwidth

allocation. Our main goal is to find a way to minimize the communication delay in the

TCP/IP network. Therefore we introduced a new technique that of adopting hop-by-hop

packet reassembly with resequencing in opposition to the current method, which consists on

end-user resequencing and reassembly. In addition, we introduced a new technique in

routing based on finding the fastest path with high MTU. Furthermore, in our study, we

alternate the job of the gateway to have the ability of reassembling and resequencing in

addition to fragmentation.

With these new techniques, we have shown that communication delay was reduced

approximately by 45% comparing to the delay calculated during the end-user resequencing

and reassembly adopted by the traditional TCP/IP networks as well as we resulted an increase

of 55% in throughput comparing to the common method.

11



TABLE OF CONTENTS

Listof Figures..............................................................................v
Listof Equations...........................................................................vi
List of Abbreviations.....................................................................vii

Chapter 1 Introduction and Problem Definition 	 09

1.1 Introduction	 09

1.2 Problem Definition
	

11

1.3 Research Goals
	 12

1.4 Approach
	

13

1.5 Outcomes
	

14

1.6 Thesis Organization
	

14

Chapter 2 Background and Motivation
	 15

2.1 Introduction
	 15

2.2 TCP/IP Protocol: Structure and Functionality
	 15

2.2.1 Internet Protocol (IP)
	

16

2.2.2 Transmission Control Protocol (TCP)
	

18

2.3 Packet Delivery Services
	 20

2.3.1 Internet Routing
	 20

2.3.2 Queue Management
	

22

2.3.3 Fragmentation and Reassembly
	 23

2.3.4 Disordering and Resequencing
	 26

2.4 Motivations
	 26

Chapter 3 Hop-By-Hop Resequencing and Reassembly
	 29

3.1 Introduction
	 29

3.2 Packet Handling
	 30

In



3.2.1 Packet Size	 30

3.2.2 Packet Arrival Process	 31

3.3 Queueing Management
	

32

3.3.1 Queueing Delay	 32

3.3.2 Queueing Theory	 33

3.3.3 MJMJ1 Queueing Model
	

34

3.4 Packet Routing	 34

3.4.1 Transmission Delay	 34

3.4.2 Path MTU Discovery	 35

3.4.3 Fastest Path Routing	 36

3.5 Gateway	 37

3.5.1 Internet Gateways	 37

3.5.2 Gateway Functionality	 38

3.6 Hop-By-Hop Resequencing and Reassembly Technique 	 38

3.6.1 Fragmentation Process 	 39

3.6.2 Buffer Management
	

41

3.6.3 Resequencing and Reassembly Process 	 42

Chapter 4 Simulation Analysis	 44

4.1 Introduction	 44

4.2 Network Topology 	 44

4.3 Packet Generation	 47

4.4 Queueing Delay	 49

4.5 Transmission Delay	 51

4.6 Fragments Tracing
	

52

Chapter 5 Conclusion
	 54

Bibliography	 55

Appendix A Simulation Code	 58

lv



List of Figures	 . Page

The structure of networks and routers that provide interconnection 	 10

Format of an Internet datagram	 16

The format of a TCP segment	 19

Routing Algorithm	 20

Routing Table	 22

Format of an Internet datagram	 24

Fragment 1	 24

Fragment 2	 25

Poisson Process	 31

Birth-Death Process	 33

Packet Transmission	 34

Gateways	 37

Level Partitioning of our simulation network 	 39

Sequence number settings in Hop-By-Hop Resequencing and Reassembly 40

Resequencing Buffer Allocation 	 41

Flop-By-Hop Resequencing and Reassembly Algorithm	 43

Network Topology	 46

Mean Arrival Delay for gl.5	 48

Throughput for different Arrival Rates A (t = 1.5)	 48

Mean Service Delay forA=0.5	 50

Routing Table	 52

Throughput vs Mean Delay for A = 0.5 and p. = 1.5 	 52

Fragments Tracing in Normal TCP/IP Networks 	 53

Fragments Tracing in our simulated TCP/IP Networks 	 53

Fig 1.1

Fig 2.1

Fig 2.2

Fig 2.3

Fig 2.4

Fig 2.5

Fig 2.6

Fig 2.7

Fig 3.1

Fig 3.2

Fig 3.3

Fig 3.4

Fig 3.5

Fig 3.6

Fig 3.7

Fig 3.8

Fig 4.1

Fig 4.2

Fig 4.3

Fig 4.4

Fig 4.5

Fig 4.6

Fig 4.7

Fig 4.8



List of Equations. Page

Eql.1

Eq 1.2

Eq 1.3

Eq 1.4

Eql.5

Eql.6

Eq 1.7

Eql.8

EqI .9

Eq 2.0

Eq 2.1

TCP Performance

Buffer size

P( T > t ) = Po(t) =

P(T2 >Ti +tlTi = s) = e	 fors,t>O

Transmission Delay

Traffic Intensity

Service Time

Queueing Delay for packet i

p = Intensity Traffic

Transmission Time

Transnission Delay

19

26

31

32

35

45

49

49

49

51

51

'7l



List of Abbreviations

BSD

DF

EGP

FTP

HLEN

ICMP

IGMP

IGP

IHL

'p

'so
LAN

LFN

MF

MTU

NFB

PMTU

RED

SMTP

SPF

TCP

TELNET

TTL

WAN

YAW

Berkley Software Distribution

Don't Fragment

Exterior Gateway Protocol

File Transfer Protocol

Header Length Field

Internet Control Message Protocol

Internet Group Management Protocol

Interior Gateway Protocol

Internet Header Length

Internet Protocol

International Standards Organization

Local Area Network

Long Fat Pipe

More-Fragments Flag

Maximum Transmission Unit

Number of Fragment Blocks

Path MTU

Random Early Detection

Simple Mail Transfer Protocol

Shortest Path First Protocol

Transportation Control Protocol

Remote Login

Time To Live

Wide Area Network

World Wilde Web

V11



ACKNOWLEDGEMENTS

This thesis is the fulfilment of one full year of work I want to thank all those who helped in
the realization of this achievement.

I want to express my sincerest appreciation for the help and supervision of Dr. Hoda
Maalouf, my thesis advisor, to my work Without her patience, helpful advices and
encouragement, it would have been very difficult to achieve this thesis on time and complete.

I am also grateful to the faculty and staff of the Natural and Applied Sciences department
who helped me along these three years of my graduate study and made my years at Notre
Dame University frui'ful and enjoyable.

I would like to thank all the friends who helped me achieving this study in a way or another.
A special appreciation to Samira Riachi my bossfor her patience and encouragement, which
gives me the motivation to continue, especially in the difficult periods of this thesis. I would
like also to thank Nathalie and Camille, my best friends, for standing by me and helping me
in my work

Finally, the gratefulness is to my parents and my sisters. Without their priceless love, their
continuous support and their sacrifices, I would not have been able to realize this
achievement. Without them, I would not have realized my Masters study.

VII!



Chapter 1

INTRODUCTION AND PROBLEM
DEFINITION

1.1 Introduction

The Internet concept aims to connect different types of networks at different locations

and with different architecture. The concept of Internet arises in the early 1960s. It moved

from a military project known as ARPANET, which was under the supervision of the US

department of defense, to a wider interconnection of several hosts belonging to different

sectors of the economy forming what is commonly known today as INTERNET [30].

The Internet concept is extremely powerful since it consists of an interconnection

scheme that hides the low level details from the user and makes the collection of networks

appears to be a single large network. This interconnection allows communication between a

new network added and all other existing networks even though there is no physical

connection between them. Of course, this communication will take place only if both

computers agree on a set of universal identifiers for moving data to its destination [8]; the

International Standards Organization (ISO) sets these standard identifiers. Those ISO

standards are rules that each network willing to adhere to the Internet should satisfy despite

the structure of this network. (i.e.: LAN, WAN, . . ) [30].

Architecture wise, the Internet topology consists of multiple physical networks such

as LANs or WANs interconnected to each other by routers. (See Fig 1.1) Those Internet

routers are computers that interconnect two networks and pass packets from one network to

the other.



Chap.!: Introduction and Problem Definition 	 10

Internet

Fiji 1.1: The structure of networks and routers that provide interconnection

To communicate between those interconnected networks we use Internet protocols.

The Internet protocols are protocols that define the connectionless delivery mechanism [8].

They can be used to communicate across any set of interconnected networks. They suit well

both LANs and WANs communications. The two best-known protocol suites are: Internet

Protocol (IP) and Transmission Control Protocol (TCP). Other protocols exist such as: File

Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP) and Remote Login

(TELNET). TCP/IP protocol was included with Berkley Software Distribution (BSD) UNIX

and has since become the foundation on which Internet and World Wilde Web (WWW) are

based.

The Internet Protocol (IP) is defined as an unreliable, connectionless delivery

mechanism. This service is unreliable because delivery is not guaranteed; packets may be

lost, duplicated, delayed or delivered out of order. It is said comiectionless because each

packet is treated independently from all others. While IP protocol is responsible for routing

individual packets, Transmission Control Protocol (TCP) is responsible for breaking up the

message into IP level packets, reassembling them at the other end, resending anything that

gets lost and putting things in the right order. The TCP protocol takes a file that has to be

sent to another computer and breaks it into size-suitable packets. TCP adds a header to each



Chap. 1: Introduction and Problem Definition 	 -	 11

of those packets containing the source "Port Number", the destination 'Port Number" and a

"sequence nwnber". The "Port Number" of the destination is used to keep track of all the

packets belonging to the same destination. The destination user reorder and reassemble those

packets according to their "sequence number". A "More Fragment" (MF) bit is used with

each packet. This MF is set to zero in the last packet of the file. The destination user uses this

MF to identify the last packet and starts reassembling the file.

When we talk about reassembly in the Internet we talk about disordered arrival of

packets. When the packet rate sent over the Internet increases, the communication delay

between source and destination increases as well as the resequencing and reassembly delay of

messages at the end-user increases. Furthermore, all the packets received for a specific file by

the destination host will be discarded if one of the packets does not reach the destination host.

Our main objective in this thesis is to find techniques to minimize communication delay and

maximize throughput for real time applications.

1.2 Problem Definition

If we consider the fact that billions of microprocessors were fabricated since 1997 and

many of these embedded microprocessors were connected to Internet since then, we can see

the size of the load that is occurring on the Internet since 1997 [29].

On the Internet whenever hosts want to communicate with each other, they divide

their data into sequenced packets (i.e.: datagrams) and those packets will be delivered from

source to destination using Internet gateways and following different routing algorithms. The

communication delay, we are focusing on in our study, results while delivering packets from

source to their destination on the Internet. It consists of queueing delay, propagation delay,

transmission delay and resequencing delay. The cumulative of those delays increases the

overall Communication Delay during packet delivery over the Internet as well as decreases

throughput.

As we have said previously Internet consists of several types of networks

interconnected to each other by gateways. Each of those networks adapts different size for

a packet and have different Path MTh sizes. In the usual TCP/IP network, the datagrams are

subdivided into packets of 576-bytes, which are transmitted over a certain path. If those



Chap. 1: Introduction and Problem Definition 	 12

packets are routed over a path with large MTh, the network utilization is low leading to a

decrease in the throughput. On the other hand, if those packets pass through a small MTU

path, this will lead to additional fragmentation. Those additional fragmentations increase the

transmission delay as well as the resequencing delay because the increase in the number of

fragments lead to an increase in network disorder and hence, an increase in the resequencing

delay.

In the TCP/IP network, the job of routers was limited to the routing of packets

between two hosts and fragmenting those packets when needed, leaving the resequencmg and

reassembly process to the destination host. This end-user resequencing and reassembly

process has two main disadvantages. First, the reassembly of the fragments at the destination

will lead to inefficiency witnessed by the decrease of throughput. In fact, although some of

the networks at the point of fragmentation have large MTU, datagrams will be divided into

small size packets as a result we will not benefit from the resources of these large networks.

Second, since the reassembly takes place at the destination host, this host has to wait

until all the fragments of a certain packet reach this host in order to start the reassembly

process. It is a major factor of the increase in communication delay especially in a heavily

disordered network. Furthermore, if one of the fragments is lost on the way and does not

reach the destination, the packet cannot be reassembled and will be discarded.

Our main objective is to suggest better algorithms for packet sizing, packet delivery as

well as for the fragmentation and reassembly process. In this thesis, we introduced new

technique for resequencing and reassembling packets at the gateways. in addition, we

proposed a new technique for packet sizing and routing.

1.3 Research Goals

This research suggests solutions to minimize communication delay on TCP/IP

networks and optimize the throughput. Our study will do the following:

1 - Optimize Packet size. We will set the packet size equal to the MTU available for

the path with the highest bandwidth.

2— Maximize Throughput. Datagrams with sizes smaller than path MTh will waste

Internet resources.



Chap.!: Introduction and Problem Definition 	 13

3— Minimize Communication Delay. We will introduce a new hop-by-hop

resequencing and reassembly technique.

1.4 Approach

The Communication Delay is the average delay required to deliver a packet from

source to its destination. The approach considered in this thesis consists of adopting Flop-By-

Hop resequencing and reassembly technique to minimize this communication delay and

maximize throughout Our study is done on a system composed of two networks connected

by an exterior gateway where a source host generates packets using a Poisson process with

arrival rate X and routers receive those packets fragmenting and reassembling them according

to the MTU of the fastest path before they route them to their destination. (See Figure 1.1)

Our first suggestion concerns the packet size. The usage of small packet size in large

MTU paths wastes Internet resources leading to a decrease in the throughput. Therefore, we

suggest that the packets will be fragmented into fragments with sizes equal to the MTU of the

path they will be routed to. This will minimize the number of fragments and benefit from the

resources to the maximum; especially, that throughput increases linearly with packet size.

Second, we are adopting the iniranet fragmentation. In this method, the fragmentation

and reassembly are performed in every hop of the network. It starts at the source where only

fragmentation occurs then at the gateways where both fragmentation and reassembly take

place and finally at the destination host where a final reassembly will take place in case some

of the packets remain fragmented. This intranet fragmentation allows maximum packet size

of each network to be used, since the individual fragments are reassembled by each gateway

in the route.

Concerning the resequencing and reassembly process, we introduced a new type of

routers having an additional buffer and a new job that of resequencing and reassembling

packets which consists of allowing the router to reassemble the packets in a separate buffer

called "resequencing buffer". In addition, we introduced a new Hop-By-Hop resequencing

and reassembly technique. This new method consists of allowing the router grouping the

fragments belonging to the same packet and checking the Miii of the fastest path available.

If the MTU is larger than the packet's original size, they reassemble them to the original size

otherwise to the available MTU. This method sequences the packets according to a new



Chap. 1: Introduction and Problem Definition	 14

sequence number assigning techniques. This technique gives each packet 3 numbers: the first

number refers to the Packet ID, the second refers to the fragment ID and the last number is a

sequence for the order of the fragment. This method will avoid wasting Internet resources by

sending small packet size into large MW paths.

Fourth, in our study, we adopted the Shortest Path method in selecting the path to

send the packet through it This method based on Dijkstra's method for finding Shortest

Path. This will allow us to find a path with highest bandwidth, which will deliver the packets

faster minimizing the delay, and with largest MW, which will reduce the number of

fragments and maximize the throughput.

1.5 Outcomes

In order to study and analyze our research goals, we used a simulation model

imitating a special Internet topology consisting of two networks interconnected by an exterior

gateway. In this simulated networks, delay can reach high degree with the presence of several

paths with different MTU and bandwidth. However, this simulation showed that our Hop-by-

Hop resequencing and reassembly technique as well as our new packet sizing and routing

algorithm outperformed the end-user reassembly method adopted in the TCP/IP network.

Concerning the delay and throughput calculation, the simulation showed that our method

increases 55% the throughput and decreases 50% the delay. (Please, refer to Chapter 4 for

results' details)

1.6 Thesis Organization

This thesis consists of five chapters. In Chapter 2, we introduce the TCP/IP protocols

as structure and functionalities. In addition, we elaborate on certain packet delivery services

such as Internet routing, queueing management, fragmentation and reassembly as well as

disordering and resequencing. In Chapter 3, we highlight the different causes of

communication delay from packet handling, to transmission delay passing through the

queueing delay and resequencing delay. Then, we introduce the new Hop-By-Hop

Resequencing and Reassembly technique. In Chapter 4, we analyze the results of the

simulation for the new technique and compare it to the End-User resequencing technique.

Finally in Chapter 5, we summarize the main results of the thesis.



Chapter 2

Background and Motivation

2.1 Introduction

To be able to understand the delay that occurs when packets flow the Internet from

host to host as well as the delay resulting from the Resequencing and reassembly process, we

have to understand the TCP/IP protocol which is responsible for managing and routing

packets through the Internet. In this chapter, we start by describing in section 2.2 the TCP/IP

protocol as structure and functionality. In section 2.3, we elaborate on some processes

involved in the packet delivery through Internet such as Internet Routing, Queuing Process,

fragmentation/reassembly process and disordenng/resequencing process. Finally, this

chapter ends with the presentation of our motivations in section 2.4 based on the

communication delay problems faced while delivering packets in TCP/IP networks.

2.2 TCP/IP Protocol: Structure and Functionality

TCP/IP Protocol is designed to provide a universal interconnection among machines

independent of the particular networks to which they attach [8]. The TCP/IP protocol is

suitable to any interconnected network whether a LAN or a WAN. The TCP/IP Internet

protocol suite includes: TCP, IP, TELNET. .... Our focus will be on TCP and IP. The

Internet Protocol (IP) is responsible for the fragmentation and reassembly of packets as well

as it is responsible for the routing of those packets. In addition to routing and fragmentation,

IP handles security on the Internet. Internet Control Message Protocol (ICMP) and Internet

Group Management Protocol (IGMP) are considered integral parts of IP, although they are

architecturally layered upon IP. ICMP provides error reporting, flow control, first-hop router

redirection, and other maintenance and control functions. IGMP provides the mechanisms by

which hosts and routers can join and leave IP multicast groups. Concerning the Transmission

Control Protocol (TCP), it is responsible for the reliable data delivery. TCP provides end-to-

end retransmission, resequencing and connection control. [1]



Chap.2: Background and Motivation	 16

2.2.1 Internet Protocol

Internet protocol (IP) is the protocol that defines the unreliable, connectionless

delivery mechanism [8]. The IP protocol specifies the exact format of all data as it passes

across a TCP/IP Internet. In addition, the IP software performs the routing function, choosing

a path over which data will be sent Furthermore, the IP includes a set of rules that defines

how the hosts should process packets, how and when error messages should be generated and

the conditions under which packets can be delivered. Finally, IP is responsible of fragmenting

and reassembling packets when necessary [14].

As we have mentioned earlier, the Internet protocol implements two basic functions:

routing and fragmentation. One important mechanism of the Internet Protocol is the Internet

routing, which is the selection of a path for transmission. The Internet modules use the

addresses carried in the IP header to transmit the datagrams from one host to another until

they reach their destinations. During this process, the Internet protocol treats each datagram

as an independent entity. These Internet modules (especially in gateways) have procedures

for making routing decisions and other functions. The second functionality of IP is

fragmentation. The Internet modules use fields in the IP header to fragment and reassemble

the datagrams when necessary for transmission through "small packet" networks [13]. In fact,

while routing datagrams from host to another, these datagrams may need to traverse a

network whose maximum packet size is smaller than the size of the datagram. To overcome

this difficulty, a fragmentation mechanism is provided in the Internet Protocol.

Fragmentation of Internet datagrams will be elaborated later in this chapter.

Architectural wise, the Internet Protocol layout can be described as follow: the

Internet datagram consists of a header part and a data part. (see Fig 2.1)

0	 10	 20	 31

Version J ifiL I Type of Service	 Total Length

Identification	 Flags	 Fragment Offset

Time to Live	 Protocol	 Header Checksum

Source Address
Destination Address

Options

	

	 Padding
Data

Figure 2.1: Format of an Internet datagram



Chap.2: Background and Motivation 	 17

The Internet datagram structure starts with a 4-bit Version field indicating the IP

protocol version. It is used to verify that the sender, receiver and gateways agree upon the

format of the datagram. The current version used is IPv4. Internet Header Length (IHL)

follows the Version field. It is also a 4-bit field referring to the length of the IP header in 32

bit words, pointing to the beginning of the data. The Total Length field is the length of the

datagram, measured in octets, including Internet header and data. This field allows the length

of a datagram to be up to 65,535 bytes. Such long datagrams are impractical for most hosts

and networks. All hosts must be prepared to accept datagrams of up to 576 bytes. It is

recommended that hosts only send datagrams larger than 576 octets if they have assurance

that the destination is prepared to accept the larger datagrams. The number 576 is selected to

allow a reasonable sized data block to be transmitted in addition to the required header

information. For example, this size allows a data block of 512 bytes plus 64 header bytes to

fit inadatagram[13].

The Internet protocol uses four key mechanisms in providing its service: Type of

Service, Time to Live, Options, and Header Checksum [13]. The Type of Service is used to

indicate the quality of the service desired. The type of service is an abstract or generalized

set of parameters, which characterize the service choices provided in the networks that make

up the Internet. This type of service indication is to be used by gateways to select the actual

transmission parameters for a particular network, the network to be used for the next hop, or

the next gateway when routing an Internet datagrain. This Type of Service field is subdivided

into six parameter zones. Those parameters will be set according to the quality of service

desired. In fact, some of the networks treat high precedence traffic as more important than

other traffic. Those parameter zones are: Precedence a 2-bit field specifying the priority (0—

Normal, I - High), D, T and R a one-bit fields. When set, D bit requires a low delay, T bit

requests high throughput and R bit requests high reliability. The Type of Service is used to

specify the treatment of the datagram during its transmission through the Internet system.

The Time to Live (TTL) is an indication of maximum lifetime of an Internet datagram. It is

set by the sender of the datagram and reduced at the points along the route where it is

processed. If the Time to Live reaches zero before the Internet datagram reaches its

destination, the Internet datagram is destroyed. If a gateway holds a datagram for more than

one second, it must decrement the TTL by one for each second [4]. The TTL can be thought

of as a self-destruct time limit. The Option field is used in selected datagrams to carry

additional information relating to security for e.g. the data field may be encrypted, source

routing, route recording, timestamp and stream identification. The routing and timestamp



Chap.2: Background and Motivation	 18

options are the most interesting because they provide a way to control how gateways route

datagrams and to monitor network performance. The Options provide for control functions

needed or useful in some situations but unnecessary for the most common communications.

The Header Checksum provides a verification that the information used in processing Internet

datagram has been transmitted correctly. The data may contain errors. If the header

checksum fails, the Internet datagram is discarded at once by the entity that detects the error.

The three fields Identification, Flags and Fragment Offset, control fragmentation and

reassembly. If Flags is set to don 'tfragmenl D bit the datagram will be transferred without

fragmentation otherwise discarded. The Source Address and Destination Address contain a

32-bit IP address of the sender and receiver although the datagrams may be routed to several

intermediate routers but the source and destination remains the same.

2.2.2 Transmission Control Protocol

TCP is represented as part of the Internet protocol suite. TCP provides full-duplex,

acknowledged and flow-controlled service to upper-layer protocols. It is the responsible for

transporting the data from source to destination. It defines when and how fast data should be

sent. TCP gives each packet a unique 32-bit sequence number. TCP can also support

numerous simultaneous upper-layer conversations. TCP insures that a packet is delivered by

using one of two protocols: the 3-way handshake protocol or sliding window protocol. In the

3-way handshake protocol the sender sends one fragment at a time to a certain receiver and

for each fragment it waits for an acknowledgment from receiver before sending another one

otherwise it will retransmit the same packet again. Whereas, in the second method, the

sender sends several packets at a time; then, he waits for one acknowledgment from the

receiver once he receives those packets. The sliding window protocol is faster than the 3-way

handshake protocol.

The TCP protocol was designed to operate reliably over almost any transmission

medium regardless of transmission rate, delay, corruption, duplication, or reordering of

segments. Production TCP implementations currently adapt to transfer rates in the range of

100 bps to 107 bps and round-trip delays in the range I ms to 100 seconds. Recent work on

TCP performance has shown that TCP can work well over a variety of Internet paths, ranging

from 800 Mbit/sec I/O channels to 300 bit/sec dial-up modems [12]. The introduction of

fiber optics is resulting in ever-higher transmission speeds, and the fastest paths are moving

out of the domain for which TCP was originally engineered. TCP performance depends not



Chap.2: Background and Motivation 19

upon the transfer rate itself, but rather upon the product of the transfer rate and the round-trip

delay. This

Bandwidth x Delay 	 Eq 1.1

measures the amount of data that would "fill the pipe"; it is the buffer space required at

sender and receiver to obtain maximum throughput on the TCP connection over the path.

TCP performance problems arise when the Eq 1.1 is large. We refer to an Internet path

operating in this region as a "long, fat pipe", and a network containing this path as an "LFN"

(pronounced "elephan(t)") [13].

Architectural wise, the TCP Protocol packet format as shown in figure 2.2 consists of
the following:

0	

Source Port	
20	 31

Destination Port 

Sequence Number

Acknowledgment Number

HLEN I Reserved I Code Bits	 Window
Checksum	 Urgent Pointer

Options (if Any)	 Padding
Data

Figure 2.2: Theformat of a TCP segment

The fields Source port and destination port identify the points at which upper-layer

source and destination processes receive TCP services. The Sequence Number field specifies

the number assigned to the first byte of data in the current message. Regarding the

Acknowledgment Number, it contains the sequence number of the next byte of data the sender

of the packet expects to receive. The Reserved field is for future use. The Code Bits field

carries a variety of control information whereas the Window field specifies the size of the

sender's receive window. Checksum in TCP segment indicates whether the header was

damaged in transit. The Urgent pointer points to the first urgent data byte in the packet. The

Options fields specifies various TCP Options which makes the Header Length Field (ULEN)

field a must to identify the length of the fragment since Options could vary in length. Finally,

Data field contains upper-layer information.



Chap.2: Background and Motivation	 20

The operational aspect of both TCP and IP protocols are represented by certain

message delivery services such as Internet routing, queuing processes, fragmentation and

reassembly as well as disordering and resequencing. Those services will be elaborated

further in section 2.3 below.

2.3 Packet Delivery Services

23.1 Internet Routing

An Internet is composed of multiple physical networks interconnected by computers

called routers or gateways. Each router has direct connections to two or more networks. (see

Fig. 2.3)

Net 2

R — Da—pj
Fig 2.3: Two Physical Networks interconnected by a router K

Some of the main Internet routers' functions are:

1- They conform to most of the Internet protocols.

2- Encapsulating and decapsulating IP datagrams [1].

3- Sending and receiving IP datagrams up to the maximum size supported by those

networks, this size is the network's Maximum Transmission Unit or MTU.

4- Routers receive and forward Internet datagrams taking into consideration

important issues in this process such as buffer management, congestion control,

and fairness.

5- Routers choose a next-hop destination for each IP datagram, based on the

information in its routing database.

Forwarding an IP datagram generally requires the router to choose the address and

relevant interface of the next-hop router or (for the final hop) the destination host. This

choice, called relaying or forwarding, depends upon a route database within the router. The

forwarding algorithm consists of the following: The router receives the IP packet from the



Chap.2: Background and Motivation	 21

Link Layer. It validates the IP header. After that, it performs most of the processing of any IP

options. Some IP options require additional processing after the routing decision has been

made. Following this step, the router examines the destination IP address of the IP datagram

to determine how it should continue to process the IP datagrani In this case, there are three

possibilities:

• Either, the IP datagram is destined for the router. In this case, it should be

queued for local delivery, doing reassembly if needed.

• Alternatively, The IP datagram is not destined for the router. It should be

queued for forwarding.

• Otherwise, the IP datagram should be queued for forwarding, but (a copy)

must also be queued for local delivery.

The usual IP routing algorithm employs an Internet routing table called IP routing

table on each machine that stores information about the possible destination and how to reach

them [8]. Whenever the IP routing software in a host or router needs to transmit a datagram,

it consults the routing table to decide where to send the datagram. This IP Routing Table or

Forwarding Table contains network prefix and not full IP addresses. The size of this table

depends on the number of the networks in the Internet. IP routing protocols are dynamic.

Dynamic routing calls for routes to be calculated at regular intervals by software in the

routing devices. In fact, IP routing specifies that IP datagrams travel through internetworking

one hop at a time. The entire route is not known at the beginning of the journey. Instead, at

each stop, the next destination is calculated by matching the destination address within the

datagram with an entry in the current node's routing table. (See Fig 2.4)



Chap.2: Background and Motivation 	 22

20.0.0.5	 30.0.0.6	 40.0.0.7

10.0.0.5
	

20.0.0.6
	

30.0.0.7

(a)

TO REACH HOSTS	 ROUTE TO
ON NETWORK	 THIS ADDRESS

20.0.0.0	 DELIVER DIRECTLY

30.0.00	 DELIVER DIRECTLY

10.0.0.0	 20.0.0.5

40.0.0.0	 30.0.0.7

(b) I
Fig 2.4: (a) Example of Internet with 4 networks and 3 routers, and (b) the routing table in R.

231 Queuing Management

Typical router queues use a First-In-First-Out queue management policy. The

traditional technique for managing router queue lengths is to set a maximum length (in terms

of packets) for each queue, accept packets for the queue until the maximum length is reached,

then reject (drop) subsequent incoming packets until the queue decreases because a packet

from the queue has been transmitted. This technique is known as "tail drop", since the packet

that arrived most recently (i.e., the one on the tail of the queue) is dropped when the queue is

full.

This method has served the Internet well for years, but it has two important

drawbacks: Lockout and Full Queues. In some situations, tail drop allows a single connection

or little flows to monopolize queue space, preventing other connections from getting room in

the queue. This "lockout" phenomenon is often the result of synchronization or other timing

effects. The tail drop discipline allows queues to maintain a full (or, almost full) status for

long periods, since tail drop signals congestion (via a packet drop) only when the queue has

become full. It is important to reduce the steady-state queue size, and this is perhaps queue

management's most important goal. We should note that the drop of packets occurs when the



Chap.2: Background and Motivation	 23

arrival rate (A.) of packets becomes lower than the service rate (li) of a packet in a given

queue.

Random Early Detection, or RED, is another active queue management algorithm for

routers that will provide the Internet performance advantages cited in the previous section [3].

In contrast to traditional queue management algorithms, which drop packets only when the

buffer is full, the RED algorithm drops arriving packets probabilistically. The probability of

drop increases as the estimated average queue size grows. Note that RED responds to a time-

averaged queue length, not an instantaneous one. Thus, if the queue has been mostly empty

in the "recent past", RED would not tend to drop packets (unless the queue overflows). On

the other hand, if the queue has recently been relatively full, indicating persistent

congestion, newly arriving packets are more likely to be dropped.

2.3.3 Fragmentation and Reassembly

The Internet fragmentation and reassembly procedure needs to be able to break a

datagram into an almost arbilraiy number of pieces that can be later reassembled. The

receiver of the fragments uses the identification field to ensure that fragments of different

datagrams are not mixed. The fragment-offset field tells the receiver the position of a

fragment in the original datagram. The fragment offet and length determine the portion of

the original datagram covered by this fragment. The more-fragments flag (MF) indicates (by

being reset) the last fragment. These fields provide sufficient information to reassemble

datagrams. There are two different fragmentation methods: Intranet fragmentation and

Internet Fragmentation. With intranet fragmentation, the fragmentation/reassembly is

performed at every subnetwork. With Internet fragmentation, the gateways do not perform

any reassembly, only fragmentation procedures. The reassembly job is left to end-systems.

Fragmentation of an Internet datagram is necessary when a packet, in a local network

allowing a large packet size, must traverse a local net that limits packets to a smaller size in

order to reach its destination. To fragment a long Internet datagram, an Internet protocol

module, creates two new Internet datagranis and copies the contents of the Internet header

fields from the long datagram into both new Internet headers. The data of the long datagram

is divided into two portions on an 8-octet (64 bit) boundary (the second portion might not be

an integral multiple of 8 octets, but the first must be). Call the number of 8-octet blocks in

the first portion NFB (for Number of Fragment Blocks). The first portion of the data is



Chap.2: Background and Motivation	 24

placed in the first new Internet datagram, and the total length field is set to the length of the

first datagram. The more-fragments flag is set to one. The second portion of the data is

placed in the second new Internet datagram, and the total length field is set to the length of

the second datagraim The more-fragments flag carries the same value as the long datagram.

The fragment offset field of the second new Internet datagram is set to the value of that field

in the long datagram plus NFB. An example of fragmentation is given in Figure 2.5:

U	 10	 20

Vers 4 
1
IHL 

J 
Type of Service	 Total Length = 472

Identification = 111	 MF=O	 Fragment Offset =0
Time to Live=123	 Protocol 6	 Header Checksum

Source Address
Destination Address

Options	 Padding
Data
Data
Data

Figure 2.5: Format of an Internet datagram

Now the first fragment that results from splitting the datagram after 256 data octets

0	 10	 20	 31
	Ver =4 

J 
IHL=5 

J 
Type of Service	 Total Length = 276 

Identification =111	 MF=1	 Fragment Offset =0
TTL =119	 Protocol = 6	 Header Checksum

Source Address
Destination Address

	

Options	 Padding
Data
Data
Data

Figure 2.6: Fragment 1



Chap.2: Background and Motivation	 25

Moreover, the second fragment has the following:

10	 20	 31
Ver = 4 1 IHL=5 I Type of Service	 Total Length = 216

Identification = 111	 MF=O	 Fragment Offset =32
TTL = 119	 Protocol = 6	 Header Checksum

Source Address
Destination Address

Options	 Padding
Data
Data

Data

Figure 2.7: Fragment 2

To assemble the fragments of an Internet datagram, an Internet protocol module

combines Internet datagrams that all have the same value for the four fields: identification,

source, destination, and protocol. The combination is done by placing the data portion of

each fragment in the relative position indicated by the fragment offset in that fragment's

Internet header. The first fragment will have the fragment offset zero, and the last fragment

will have the more-fragments flag reset to zero [23]. For each datagram, the buffer identifier

is computed as the concatenation of the source, destination, protocol, and identification fields.

If this is a whole datagram (that is both the fragment offset and the more fragments fields are

zero), then any reassembly resources associated with this buffer identifier are released and the

datagram is forwarded to the next step in datagram processing. If no other fragment with this

buffer identifier is on hand then reassembly resources are allocated.

The reassembly resources consist of a data buffer, a header buffer, a fragment block

bit table, a total data length field, and a timer. The data from the fragment is placed in the

data buffer according to its fragment offset and length and bits are set in the fragment block

bit table corresponding to the fragment blocks received. If this is the first fragment, (that is

the fragment offset is zero) this header is placed in the header buffer. If this is the last

fragment, (that is the more fragments field is zero) the total data length is computed. If this

fragment completes the datagram, tested by checking the bits set in the fragment block table,

then the datagram is sent to the next step in datagram processing. Otherwise, the timer is set

to the maximum of the current timer value and the value of the time to live field from this

fragment; and the reassembly routine gives up control. If the timer runs out, the all

reassembly resources for this buffer identifier are released. Note that the choice of the timer



Chap.2: Background and Motivation	 26

value is related to the buffer capacity available and the data rate of the transmission medium;

that is,

buffer size = data rate  timer value	 Eq 1.2
(e.g., 10Kb/s * 15s = 150Kb) [23].

2.3.4 Disordering and Resequencing

In a store and forward communication network, such as the Internet, packets may go

out of order when multiple links are used between intermediate nodes or routers [31]. The

presence of this disordering process will affect the input arrival stream of datagrams and

hence delays each datagram by a random amount, making them leave the network in a

different order than the one in which they enter it. However, since the constraint that the

datagrams should leave the Internet in the same order in which they entered it, than a

datagram may have to undergo an additional delay, which is known as resequencing delay in

addition to transmission and queuing delays.

2.4 Research Motivation

The TCP/IP Internet protocol architecture was designed in the early 1980s, at a time

when there were many fewer hosts connected to it and typical long-haul links carried only 56

Kbps. Over the past three decades, the Internet has added support for automatic name

translation, hierarchical routing, congestion avoidance, dynamic address assignment,

multicast, mobility, and most recently, attempts at real-time support [29]. The Internet's

scalability is the result of the single-minded focus of its designers on robustness and

adaptability. Unfortunately, although its design has focused ovenidingly on robustness, for

all practical purposes, the Internet's largest performance issue is its availability and speed for

real-time applications. The Internet's scale, heterogeneity, and dynamic nature make it

difficult to determine the exact causes of Internet performance problems. Our focus will be

mainly on the communication delay problem. This communication delay problem results

from certain policies adopted in the Internet as well as it is the sum of several delays

occurring at different parts of the Internet during packet delivery.

The packet size policy adopted nowadays in Internet is one of the causes behind the

problem of high latency and low throughput. As we have seen above, the TCP/IP protocol



Chap.2: Background and Motivation	 27

fragments the packets into fragments of 576-bytes. Those fragments are routed through

networks with high MTU preventing the full utilization of those networks.

Routing inefficiency is another problem causing communication delay. The Internet

was originally designed to provide universal reachability between networks; all network links

were available to carry traffic for any host. Today's Internet restricts the exchange of routing

information according to business agreements between service providers. This results in

situations where A can reach B and B can reach C, but A cannot reach C [29]. Furthermore,

because current Internet routing ignores performance information, two hosts may be forced to

communicate over excessively long or overloaded links. Adding a slow link can actually hurt

performance; because packets can be routed over it in preference to faster links, in this case

the router is called inefficient

A third cause behind communication delay on the Internet is the propagation and

queueing delay. As anyone who has used the Internet knows, the path to a server can be very

slow or often completely unavailable. The result of the extreme delay is lost of productivity

while users wait for documents to be transmitted over the Internet. Moreover, queuing delay

is also one of the main causes to communication delay. Recent publications strongly

recommended the widespread deployment of active queue management technology in routers

to improve the performance of today's Internet [7]. Active queue management refers to the

manipulation of the queue in a router as prejudice to the performance of flows that transit the

router. The goals of active queue management are: first, to reduce the average length of

queues in routers and thereby decrease the end-to-end delay experienced by packets. Second,

ensure that network resources are used more efficiently by reducing the packet loss that

occurs when queues overflow.

All the above problems consisted a main motivation for us to consider a new

technique for packet delivery over the Internet since packet delay greatly influences the

overall performance of the network applications [24]. Therefore, it is a necessary to find the

causes of delay performance degradation on the Internet and try to suggest solutions for them.

In this thesis, we adapt a new technique called "Hop-By-Hop Resequencing and

Reassembly". This technique takes into consideration the different types of problems

mentioned above and tries to suggest a new method of improvement. This method consists

on:



Chap.2: Background and Motivation	 28

1 Avoiding as much as possible the fragmentation of packets by selecting the path

with the highest bandwidth and MTh, which reduced the propagation delay and

processing delay.

2 The reassembly and resequencing of the packets at each router improves the

routing phenomena, reduces the queuing delay, the resequencing delay and hence

minimizes the overall communication delay.



Chapter 3

Hop-by-Hop
Resequencing and Reassembly

3.1 Introduction

One of the most important performance measures of a data network is the average

delay required to deliver a packet from origin to destination known as communication delay.

The packet delay will affect the choice and performance of several network algorithms such

as routing and flow control. This communication delay is the sum of the delays experienced

by the packet at each hop while being forwarded to the destination. Each communication

delay consists of the transmission delay at a node and the propagation delay at the links. In

addition, it contains a variant component including the processing and queuing delay at a

node. To understand and minimize the communication delay we have to introduce better

designs and algorithms for the routing and flow control as well as new studies concerning

buffer size, link capacity and parameter selection. In this chapter, we are advancing a

comparison between the normal TCP/IP protocol and a new method we are introducing:

"Hop-by-Hop Resequencing and Reassembly". Our study starts by introducing in section 3.2

the packet handling routine at the source node. We elaborate on the size of a packet as well

as we discuss the Poisson process based on which packets are routed from source to

destination through the Internet. In section 3.3, we will discuss the queueing management.

We start by elaborating on queueing delay, which the delay between the time the packet is

assigned to a queue for transmission and the time it is being transmitted. During this time, the

packet waits in the queue while other packets are being transmitted; then, we talk about the

queueing theory focusing mainly on the M/M/l model adopted in this thesis. In section 3.4,

we describe the packet routing mechanism. We introduce the transmission delay that

corresponds to the delay from the time the packet is transmitted at one end of the link until

the time it is received at the other end of the link. We explain the Path MTU discovery and

introduce the Fastest Path Routing method used in this thesis to select a path. In section 3.5,

we introduce Internet Gateways and their functionalities. Finally, in section 3.6, we describe



Chap.3: flop-By-Hop Resequencing and Reassembly	 30

the Hop-By-Hop resequencing and reassembly method newly advanced; elaborating on its

fragmentation technique, buffer management and resequencing and reassembly procedure.

3.2 Packet Handling

3.2.1 Packet Size

The ideal case in networking is to let a datagram fit in one frame that will be

transmitted from source to destination making transmission across the network efficient.

Many Link Layer protocols define a maximum frame size according to which no frame with

higher size is allowed to be transmitted. We refer to this limit as the MTU; The MTU of a

network element is defined to be the maximum transmission unit the network element can

accommodate without fragmentation, including IP and upper-layer protocol headers but not

including link level headers [8]. MTU could vary from network to another, some networks

like Ethernet has an MTU of 1500 bytes for a bandwidth of 10Mbps; whereas, the FDDI

network has an MTU equal to 4470 bytes for a bandwidth of 100Mbps. Some hardware

technologies limit MTU of certain networks to 128 bytes. Usually, the TCP protocol

computes a maximum segment size such that the resulting IP datagrams will match the

network MTh. If the end-point does not lie on the same physical network, they can attempt to

discover the minimum MTU along the path between them or choose a maximum size of 576

bytes.

Studies have been made to find the link between the packet size and the network

delay and throughput. A set of experiments was designed to determine whether delays across

the Internet are significantly influenced by packet length [21]. In cases where the usual

propagation delays are high relative to the time of transmission for an individual packet, one

would expect that delays would not be strongly affected by packet length. However, the data

resulting from these experiments shows a strong correlation between delay and length, with

the longest packets showing delays two to three times the shortest Also, other studies

showed that limiting datagrams to fit the smallest possible MTh in the Internet makes

transfers inefficient when those datagrams pass across a network that can carry large size

frames [8]. So, as we can see, in a general Internet environment, choosing a good maximum

segment size can be difficult because performance can be poor for either extremely large

segment sizes or extremely small sizes. When the segment size is small, the network



Chap3: Hop-By-Hop Resequencing and Reassembly 	 31

utilization remains low. On the other hand, extremely large fragments can also produce low

performance if they are sent across small MTh networks where they will be fragmented

leading to a larger delay.

In order, to maintain the lowest delay possible with the highest throughput we have to

find  an optimal segment size that will be keeping the packets in the maximum size possible

adaptable to the highest MTh of the network. In this thesis, we adapted this approach. In

fact; before sending each packet, we select for each packet the available path having the

MTU greater or equal to the size of the packet. If no such path exists then we select the

largest path's MTU available and fragment the packet according to this MTU. On the next

hop, the host compares the packet maximum size, to which the fragments belong, to the MTU

available; if a path with MTU greater or equal to the packet size exists, the gateway will

reassemble the fragments of this packet. The fragmentation and reassembly process will be

discussed later in this chapter.

3.2.2 Packet Arrival Process

The generation of packets at the source occurs on the Internet according to a Poisson

Process. As we know a Poisson Process is a sequence of events randomly spaced in time. In

our case, it is the packets generation from source according to X. (See Figure 3.1)

atj	 t2	 t3	 f4 si
Figure 3.1: Poisson Process [321

The rate A. of a Poisson process is the average number of packet arrival per unit time.

The Interarrival Times of a Poisson Process is set as follow. First, we pick an arbitrary

starting point in time (call itt=O). Let Ti = the time until the next arrival.

P(T1 > t ) = Po(t) = elt	 Eq. 1.3

So

Let T2 = the time between the first and second arrival. We can show that



Chap-3: Hop-By-Hop Resequencing and Reassembly	 32

P (T2 > Ti + t I Ti = s) = c7xt for s,t >0 Eq. 1.4

independently of T I ! Similarly define T3 as the time between the second and third arrival; T4

as the time between the third and fourth arrival; . . . The random variables T 1 , T2, T3....., T11,

are called the interarrival times of the Poisson process. Those interarrival times are

independent of each other and each have an exponential distribution with mean 1/X. In our

thesis, we are adopting this Poisson Process in the generation of packets with arrival rate A.;

having arrival rate i greater than service rate p.. We start our process at time T 0 =t=O for the

first packet. The second packet generated will have time T i = T0 + t where t is randomly

generated and so on for n packets.

3.3 Queueing Management

3.3.1 Queueing Delay

Queuing delay is defined as the time between when a packet first arrives at the node

output buffer until when it reaches the head of the output buffer. After processing the packet

from source to the router, the packet reaches the queue. At the queue, the packet experiences

a queuing delay as it waits to be transmitted onto the link. The queuing delay of a specific

packet will depend on the number of other earlier-arriving packets that are queued and

waiting for transmission across the link; the delay of a given packet can vary significantly

from packet to packet. If the queue is empty and no other packet is currently being

transmitted, then our packet's queueing delay is zero. On the other hand, if the traffic is heavy

and many other packets are waiting to be transmitted, the queuing delay will be long. In our

thesis, the number of packets that an arriving packet might expect to find on arrival is a

function of the intensity and nature of the traffic arriving to the queue. The queueing delay is

big when the average rate at which the traffic arrives to the queue is greater than the average

rate of service in the queue [15]. Let A. denotes the average rate at which packets arrive to the

queue (A. is units of packets). Recall that p. is the service rate. It is the rate at which bits are

served in the queue. Assume that the queue is very big, so that it can hold essentially an

infinite number of bits. The ratio Alp., called the traffic intensity, often plays an important role

in estimating the extent of the queuing delay. If Alp.> 1, then the average rate at which bits



Chap-3., Hop-By-Hop Resequencing and Reassembly 	 33

arrive to the queue exceeds the rate at which the bits can be transmitted from the queue. In

this situation, the queue will tend to increase without bound and the queuing delay will

approach infinity. Therefore, one of the main rules in traffic engineering is to design your

system so that the traffic intensity is no greater than one. When the traffic intensity

approaches 1, the average queueing delay increases rapidly. A small percentage of increase in

the intensity will result in a much larger percentage wise increase in delay [28]. Therefore, in

our system we assumed that the traffic intensity remains <1, by using infinite buffers and

having service rate greater than arrival rate.

3.3.2 Queueing Theory

The queueing theory is the primary methodology for analyzing network delay. The

classical queueing systems used are the MIMI!, MIGI1 and U/Mu. According to Kendall
notation XIYIm/k refers to the following: [32]

X is a symbol representing the inter-arrival process:

M = Poisson Process (exponential inter-arrival times t)

D = deterministic (constant t)).

Y is a symbol representing the service distribution

• M = exponential

D = deterministic.

• G = General distribution for inter-arrival time.
in 	 the number of servers.

k is the number of buffer slots (omitted when k = cx)

The M/M/1 system is based on the theory of Makov Chain. In particular, it is based on a

special case of Markov process named the birth-death process in which two consecutive

states can only differ by a unit. (See figure 3.2)

Figure 3.2: Birth-Death Process 132J



Chap.3: Hop-By-Hop Resequencing and Reassembly 	 34

The MIMII queue is the most basic and important queueing model. It has a Poisson Arrival

with rate A., an exponential service time (with mean 14i., so it is the service rate), one server
and an infinite length buffer [26].

3.33 MIM/1 Queueing Model

The system advanced in this thesis adopts the M/MIl queueing model. It has a
Poisson arrival (Interarrival time = I/A.), an exponential service time mean 14t, so p is

the service rate) as well as I server and an infinite length buffer; hence, packets will never be

dropped. In this system the arrival rate is less than the service rate (A. < it). In the simulation,
we took 0.1 <A. <0.9 and I <t <3. We will elaborate deeply on this issue in the Chapter 4

The Simulation. This selection infers that A. It that means the queueing delay is not

diverging to infinity. Furthermore, we do not suffer from the problem of lockout in the
M/M/! system since we have an infinite size of buffer so at no time a packet will find no

room in the queue. Regarding the "Full Queues" problem, the M/M/! system adopted in this

thesis as well as the selection of A. < ji avoid the problem of "Full Queues" since the delay

does not diverge and hence at no time the queue will be full if the arrival rate is less than the

service rate.

3.4 Packet Routing

3.4.1 Transmission Delay

The transmission delay is the amount of time required for the router to push out the

packet; it is a function of the packet's length and the transmission rate of the link. It has

nothing to do with the distance between the two routers. (See Figure 3.3)

rnismission LineArriving Packets I L --0	 OFO-

Buffer	 Transmitter

Figure 3.3: Packet Transmission

The transmission delay is calculated as: (see Eq.1. 5)



Chap3: Hop-By-Hop Resequencing and Reassembly 	 35

Transmission Delay = Packet Size (bits)-- Bandwidth (bits/see) Eq.1.5

It is sometimes referred to as serialization delay for a single packet The major issue that

affects transmission time is the maximum transmission unit (MTU). For example, it takes

almost .25 seconds to transmit 1500 bytes on a 64-kbps link. A queue build-up of ten or

twenty 1500-byte packets would take two or three seconds to transmit. Long-haul lines in the

Internet today are most frequently full duplex; For example, there are the 56 KBPS, the DS 
lines with 1.544 Mbps, or DS3 lines with 45Mbps speeds [1].

3.4.2 Path MTU Discovery

To eliminate fragmentation or minimize it it is desirable to know what is the path

MTU along the path from the source to destination- The path MTU is the minimum of the

MTUs of each hop in the path- This single path routing technique adopted in the usual

Internet sets MTU less or equal to 576 bytes and the first-hop MTU as the Path MTU

(PMTU) for any destination that is not connected to the same network or subnet as the

source. In many cases, this results in the use of smaller datagrams than necessary, because

many paths have a PMTU greater than 576 bytes. A host sending datagrams much smaller

than the PMTU allows is wasting Internet resources and probably getting low throughput.

Furthermore, current practice does not prevent fragmentation in all cases; since there are

some paths whose PMTU are less than 576 bytes.

Another technique is suggested to discover the PMTU based on the Don't Fragment

(DF) bit in the IP Header [14}. This method is based on the following: the source host

assumes the PMTU is the MTU of the first hop, sends all datagrams on that path with the DF

bit set. If any of the datagrams are too large to be forwarded without fragmentation by some

router along the path, that router will discard them and return a message. Upon receipt of

such a message, the source host reduces its assumed PMTU for the path [20}. Although, this

method maximizes the throughput; however, it does not improve latency in the Internet [14].

Studies made by Vern Paxon examined several routing algorithm and found out that:

• For 30% to 55% of the path measured there exist an alternate path with a

shorter round-trip time.

• The best alternate path has 50% better latency



Chap.3: Hop-By-Hop Resequencing and Reassembly	 36

70% to 80% of the paths have alternates with enhanced bandwidth.

As a result of this study, we proposed in our thesis a new technique consisting on each router

should find the shortest path in term of higher bandwidth and higher MTU to forward a

packet through it. This technique is elaborated in the next section.

34.3 Fastest Path Routing

As we have seen in the previous section, some techniques used to find the PMTU can

forward packets along non-optimal routes, or it can spread load unequally, over-utilizing

some links while leaving others idle, resulting an increase in delay and sometime decrease in

throughout [29]. To find solution to those problems, we advanced in our thesis a method that

finds the fastest path. In this method, the selection of the path is done base on the Shortest

Path First (SPF) protocols. Those based routing protocols are a class of link-state algorithms

that are based on the shortest-path algorithm of Dijkstra. In an SPF based system, each router

obtains the entire topology database through a process known as flooding. Flooding insures a

reliable transfer of the information. Each router then runs the SPF algorithm on its database

to build the IP routing table [30].

We adjusted the IP routing table to include in addition to the path address between

two hosts, the path's MTh and bandwidth. Using this technique, each router in our network

will be able to consult its IP routing table and select the fastest path available. Using the IP

routing table, we split the traffic of packets over several paths between two single pair nodes.

We usually refer to this technique as "multi-path routing". The advantage of this method is

the possibility of sending different packets over different paths depending on the size of the

packet. Not only does this method transfer the packets through a high bandwidth path as they

need but also prevents short packets from being delayed behind a queue of long packets. As

a result, our method has proven a decrease in the transmission delay and a better throughput.

Results will be elaborated later in the Simulation chapter.



Chap-3: Hop-By-Hop Resequencing and Reassembly	 37

3.5 Gateways

3.5.1 Internet Gateways

As explained earlier, the term routing refers to the process of choosing a path over

which to send packets, and router refers to any computer making such a choice. Routing

devices in the Internet have traditionally been called gateways. Local networks are connected

together in the Internet model by means of Internet gateways. These gateways provide

datagram transport only and normally seek to minimize the state information necessary to

sustain this service in the interest of routing flexibility and robustness. (See Figure 3.4)

Nwcrk 1	 Htwi k 2
Gateway

Figure 3.4: Gateways

In the conventional model, the gateway has a physical interface and address on each

of the local nets between which it provides forwarding services [22]. Furthermore, The

gateways provide Internet protocol translation, in order to establish a connection between

networks, and to perform number of other functions that permit computers to communicate

independent of hardware differences. The major problem with routing is how the host and

gateways in the Internet obtain and maintain their routing information.

Gateways within the Internet are organized hierarchically. Some gateways are used to

move information through one particular group of networks under the same administrative

authority and control (such an entity is called autonomous system) [271. Gateways used for

information exchange within autonomous systems are called interior gateways, and they use a

variety of interior gateway protocols (IGPs) to accomplish this purpose. Gateways that move

information between autonomous systems are called Exterior Gateways and uses exterior

gateways protocol (EGP) for this purpose [17].



Chap3: Hop-By-Hop Resequencing and Reassembly 	 38

3.5.2 Gateway Functionality

In normal TCP/IP implementation, two methods are used to define the job of the

Exterior Gateway. The first method consists of letting the gateway do a transparent

fragmentation. In this way, subsequent networks are not aware of the fragmentation-

However, this method showed some problems such as each packet should include the fields

end-of-packet so that the exit gateway will be able to know when it received the last packet.

Furthermore, all packets should be routed in the same path otherwise we will witness packet

loss. The second method consists of not allowing the reassembly at the gateway but to send

all packets and fragments as original packets and keep the reassembly process to the

destination host. This method was adopted as a way to solve the problem occurring from

large size packets trying to access a network with MTU very small [30].

In our study, we gave the exterior gateway a new facility, that of resequencing and

reassembly of packets. We are implementing our proposed hop-by-hop resequencing and

reassembly algorithm at the exterior gateway. Previous studies made on multi-stage

networks, showed that providing gateways with resequencing technique minimizes the

latency and improves throughput [16]. Our study on the Internet domain showed the same

performance improvement. Results are elaborated in the Simulation chapter. This gateway

will check the NIT  of the path through which the packets will be forwarded. Then according

to this path the exterior gateway will fragment the packets or reassemble them. The

fragmentation and reassembly method is done based on a numbering technique; this

technique will be elaborated thoroughly in the next section. This numbering method will

allow this gateway or any gateway to reassemble the fragments received according to their

original packet number, their fragment number and their sequence number.

3.6 Hop-By-Hop Resequencing and Reassembly Method

In this thesis, we adopted the fact that the Fragmentation/Reassembly process is done

at each router or gateway and not at the destination host. Therefore at each gateway of the

Internet the Hop-By-Hop Resequencing and Reassembly" algorithm is applied.



Chap3: flop-By-Hop Resequencing and Reassembly	 39

3.6.1 Fragmentation

The fragmentation process, in the "Hop-By-Hop Resequencing and Reassembly"

algorithm, consists on the following. First, we select the path with the largest MTU and

Bandwidth. After that, we check for each datagram in the buffer, if its size is less than or

equal the MTU of the path then submit this datagram to the next hop using selected path;

otherwise cut the datagram into two fragments, the first fragment being the maximum size,

and the second fragment being the rest of the datagram. The first fragment is submitted to the

next hop at the end of the path, while the second fragment is fragmented again into new

fragments in case it is still too large and so on until all the datagrams can be sent In the

fragmentation procedure, each fragment (except the last which usually less in size) was made

the maximum allowable size.

We also suggest the following numbering technique while fragmenting packet. The

numbering of packets is done according to a system of numbering giving each packet three

numbers:

• First number refers to the original packet.

• Second number refers to the fragment number.

• Third number refers to a sequence number.

Of course, the sequence number depends on the sub-fragment position in the packet. Each

fragment will be identified by those three numbers; in addition to its source, destination as

well as network level id. We meant by network level the number of the each phase between

two hosts or a host and a gateway. (See Fig 3.5)

Levell	 Level2	 IA10111	 I tws44	 I cvI	 I

Figure 3.5: Levd Partitioning of our simulation network

During fragmentation, the packet number remains the same. Whereas the fragment

number will be equal to I if packet is not fragmented otherwise it will refer to the number of

the fragment in this packet. Moreover, the last number refers to the sequence number of the



Levell

Level2

Level3

Chap.3: Hop-By-Hop Resequencing and Reassembly	 40

fragments. This number will be equal to the sequence number of the sub fragments of the

main fragment. In case we had a third level of fragmentation, a resequencing will take place

to reassign sequence numbers for the packets. Check flowchart below to visualize this

procedure. (See Fig 3.6)

Figure 3.6: Sequence number selfings in Hop-By-Hop Resequencing and Reassembly

The fragmentation process consists on assigning to each packet fragmented two

identifiers the identifier of the original packet and the number of the fragment. In addition,

we identify a sequence number for sub levels fragmentation. Example, a packet is send from

source it has the following identifiers 1.1.0 is fragmented at level I into 2 fragments: 1.1.0

and 1.2.0. The fragment 1.2.0 remains intact. At level 2, the fragment 1.1.0 is fragmented

into 1.1.1 and 1.1.2; At level 3, the fragment 1.1.1 in divided into 1.1.1 and 1.1.2. Since,

there is a fragment 1. 1.2 then all the fragments that comes after will be reassigned a different

sequence number according to the reordering; hence, 1.1.2 of level 2 becomes 1.1.3. At the

reassembly stage, the system will reorder the fragments in the packets according to those

three identifiers and reassemble the available packets. For example, if packets 1.1.1, 1. 1.2 and

1. 1.3 reach a certain router where it is possible to reassemble them, they will be regrouped

into a packet having the number 1.1.1. Reassembly and resequencing of the fragments will

be explained in the section 3.6.3.



Chap3: flop-By-Hop Resequencing and Reassembly	 41

3.6.2 Buffer Management

In our thesis, we added to the gateways a resequencing buffer. The incoming packets

at any of the routers or gateway are placed in memory for processing. Ideally, a system could

make memory allocation efficient by dividing memory into fixed size buffers, where each

buffer is sufficient to hold a packet. In practice, choosing an optimum buffer size is complex

for several reasons. First, each network connected to the Internet could have different packet

size. Second, IP may need to store large datagrams especially for reassembly. One of the

suggested solutions for these problems is to use large buffers. However, in the case of 576-

byte we will be having a lot of waste space in memory [9].

In out thesis we introduced resequencing and reassembly buffer based on the

dynamic allocation concept. We adopt a large size buffer. This large buffering is no more a

constraint now with 512Mbyte memory available. The allocation of coming packets is done

as follow: We check the packet original size of the first fragment received and we reserve a

space in the buffer equal to this size. When the second fragment arrives, if it belongs to the

same packet already allocated it will be set after the first fragment otherwise if it belongs to a

new packet not allocated yet then it will be allocated a space in the buffer after the space

reserved for the first packet. When all the fragments of the same packet arrive, they are

resequenced in the buffer then reassembled depending on the available paths from the source.
(See Figure 3.7)

3000
2.2.2

22.3 1	 I J Packet 2 allocation

221

1600	 I
(31.01

3 allocation

1000

112
Packet 1 allocation

12.0

0	 I	 Li1

Figure 3.7: Resequencing Buffer Allocation



Chap3: hop-By-hop Resequencing and Reassembly	 42

3.6.3 Resequencing and Reassembly

In our methodology, the reassembly and resequencing occur at each Internet gateway.

The algorithm works as follow: at each router, we group fragments in the Resequencing

Buffer according to their packet ID using the method explained in the previous section.

Then, we start for each packet whose complete fragments are received by resequencing those

fragments according to their three numbers references. The router selects from its routing

table the path with the highest MTU and largest bandwidth. Then, the router compares the

original size of the packet with that of the Path MTU selected. If the Packet Size is less than

the MTU the packets fragments will be reassembled to the original size of the packet; after

that, the reassembled packet will be routed. Otherwise, we will apply a partial reassembly to

the fragments into new fragments of size equal to the MTU of the path. And so on until the

last packet, leave the gateway. Note that, the packets will be treated in the buffer according

to FIFO method. The packet arrival time plus the resequencing delay will be calculated to

specify which packet will be routed first. (See Figure 3.8)



Chap.3: flop-By-Hop Resequencing and Reassembly	 43

For 1 = I to RouterNo Do I	 Exit

Allocate
Fragments
into Buffer

Frpments

For jltoPackeftlo Do

selectPith Witt
Ikgh Bandwidth

and
Lage MIII

' Packet Size.

Path MIII

	

ReaaseITIIly /	 RoidforFull	 /	 Partial

of	 /	 Fragments of a
Picket /
	

Packet according
to Path MIII

Figure 3.8: Hop-By-Hop Recequencing and Reassembly Algorithm



Chapter 4
Simulation Analysis

4.1 Introduction

We have discussed in the two previous chapters the main types of delays that occurs

in TCP/IP network as well as how the problems faced in those delays affected the overall

packet delivery delay or communication delay. Furthermore, we proposed solutions and

suggestions to minimize the delay at each of those levels leading to the minimization of the

whole communication delay. In this chapter, we will prove the ideas and techniques

advanced using a simulation program. In this simulation, we will compare the results of the

end-user resequencing technique normally used in TCP/IP networks with the new hop-by-hop

resequencing and reassembly technique. The results that will be displayed in this chapter

show clearly that our techniques gives better throughput and lower delay.

Our simulation is generated using Visual Basic software. We will start by describing

the network topology we are studying in section 4.2. Then we describe the packet generation

and size handling in the section 4.3. In the section 4.4, we elaborate on the transmission

delay and the link selection. Finally, 'in section 4.5, we describe the queueing technique and

its results.

4.2 Network Topology

This topology consisted of two networks linked together by an exterior gateway.

Each of those two networks contains a source host linked by three different links to three

routers having the same service rate (p.). Those links have different MTUs and Bandwidths.

Than, each of those routers is connect to two hosts; in the second network those hosts

consisted the destination hosts. The 32kbps gateway links both networks. This gateway is

responsible for fragmenting and reassembling packets before transmitting them to the next

network. (Sec figure 4.1) In this network, we are assuming that no packet-drop will occur

and that all packets will reach their destination. Furthermore, the source host is in the first

network whereas the destination host is in the second network. Therefore, the packets will



Chap.4: Simulation Analysis	 45

have to travel through both networks facing different level of disordering and delay before

reaching its destination On the other hand, since no packets will be dropped we are taking
the arrival rate less than the service rate such that the traffic intensity is: (Eq. 1.6)

^ 11 <1	 (having A<it)	 Eq 1.6

The propagation delay is neglected and the buffer size is infinite. Below is a figure

representing the network topology we are studying. (See Fig 4.1)



Chap.4: Simulation Analysis	 46

Network Topology

cII

I



Chap.4: Simulation Analysis	 47

4.3 Packet Generation

Fist we generate a random number of packets with sizes varying from 600 bytes to

3000 bytes. The source at the first network generates packets at different size in a random

way for a range between 600 and 3000 bytes. The generation of those packets occurs

according to a Poisson process with an arrival rateX varying between 0.1 and 0.9. In the end-

user method, the first source will start by fragmenting the packets into 576-bytes fragments.

All the fragments will be of the same size except for the last packet. Then the source will

select a random path out of the three paths to which it is connected and forward the packets.

In our methodology, the source selects the path with the largest bandwidth and checks its

MTU. If the MTh of this path is greater than that of the packet will be forwarded without

fragmentation. Otherwise, if the highest bandwidth path has an MTU smaller than the packet

size, this packet will be fragmented into packets having the paths' MTU. This method

reduces the number of fragments that will be routed through the network-

At the source of the second network, the packets will arrive with distributed time after

traversing the first network. In the end-user resequencing technique, the source 2 will select

a random path for those fragments and start sending each packet according to the first in first

out concept. Whereas, in our hop-by-hop resequencing, the source 2 will check for the

highest bandwidth path and compare its MTU with that of the packets arriving if some of the

packets' fragments could be reassembled it will do so else if other packets have higher size

than the path's MTU it will fragmented them according to the MTU of the path.

Our studies for the effect of the variation of arrival rate on the mean delay showed

that as the arrival rate increase the mean delay increases with it. This assumption was studied

for a fixed service rate ji = 1.5. However, our simulation showed a lower mean delay with

our method than that of end-user resequencing method. The figure 4.2 shows the results.



250

225

200

175
.0

150

125
0

100
.0
-* 75

50

End-User Resequencing I
—Hop-By-Hop Resequencing

Chap.4: Simulation Analysis 	 48

Mean Arrival Delay (pt = 1.5)

16

14.5 ----- -	 - - -	 -	 - -

13 --p --
End-UserRequencmg

115	
L	 Hop-By-HopResequencing

10 ------------------- ----,

85	 ----- ----
7	 H	 1-r--i-------

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Amval Rate ()

Figure 4.2: Mean Arrival Delay for p = 1.5

Furthermore, our methodology showed a better throughput for a variation of arrival rate X.

Since, the selection of large packets for small MTU paths lead the inefficient use of network

resources and drop the throughput as well as the use of small packets in large MTU paths will

lead to the same situation. Figure 4.3 shows the optimization.

Throughput vs Arrival Rate (ji = 15)

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9

Arrival Rate ()

Figure 4.3: Throughputfor djferent Arrival Rates 2	 1.5)



Chap.4: Simulation Analysis	 49

4.4 Queueing Delay

These networks, queueing delay can be seen in the routers at each of the networks as

well as in the gateway connecting both networks. As we have mentioned previously each

networks contains three routers. The service rate adopted in those routers is identical for all
of them; it is equal to t=l.5. Whereas, the service rate at the gateway is fixed to 11 = 3. The
service time in the routers is calculated as:

Service Time = (I- It) x log (1-rand) 	 Eq 1.7

As we see, the service time is generated according to an exponential distribution process.

Whereas the queueing delay for packet i is calculated as follow: (in Eq 1.8)

QDeIay[iI= (ArviTimel - IJ + SrvcTime[i.- 11 + QDelayi- lJ)- (ArvlTimelJ) Eq 1.8

We are adapting the M/M/l model. This is the easiest Markovian model. It is considered as

the single server with infinite capacity. We are assuming that the packet arrival occurs in a

Poisson process and the service time is exponentially distributed with service rate It. The

assumption that customers arrival and service is done separately is known as birth-death

structure. In our simulation, we are adopting the condition: (see Eq 1.9)

p=IIJL <I.?<pt	 EqL9

The p calculated in Eq 1.9 consists the traffic intensity. We are assuming that p < 1 which

means that the number of packets arriving is less than the number of packets leaving.

Therefore, the arrival rate A. is between 0.1 and 0.9 whereas the service rate It is between I

and 3.

Concerning the routing algorithm, the routers adopt the SPF (shortest path first)

algorithm to find the fastest path in our method whereas in the normal TCP/IP protocol the

router selects a path randomly. When we talk about shortest path,, we refer to the Dijkstra's

algorithm. However, here since we are ignoring the processing delay we are not interested in

searching the shortest distance rather than the fastest path. The method consists on the

following: each router will search for the path with the largest bandwidth. When this path is



Chap.4: Simulation Analysis 	 50

found the packet size is checked with the size of this path then it will be either fragmented

accordingly to the size of the path, or reassembled if path larger that packet fragments when

reassembled; otherwise the packet will be routed as one piece. If two paths have the same

bandwidth then we select one of them randomly. We repeat this step at each router until the

packets reaches their destination. The selection of the path is done by referring to a routing

table in which each router set all the paths available from its location to all other location of

the next hop. This method is adopted in the hop-by-hop resequencing method whereas in the

usual TCP/IP protocol, the router will select one path randomly and route the packet of 576-

byte size. However, if the MTU of this path is small the fragment has to be divided into

several fragments. This will increase the delay and performance of the Internet will decrease.

According to our assumptions, the simulation showed that our method of routing

outcome the end-user resequencing method. In fact, when we simulate for different the

variation of the service rate, we get a mean delay for the end-user resequencing method

bigger than the mean delay of the hop-by-hop resequencing. We can check figure 4.4

Mean Service Delay ( = 0,5)
18

16.5

115
13.5

t 12
	 - End-User Resequencmg

—Hop-By-Hop Reseqjencmg

10.5

9

7.5

6

1.1	 1.3	 1.5	 1.7	 1.9	 2.3	 2.5	 2.7	 3.0

Service Rate (i')

Figure 4.4: Mean Service Delayfor2 = 0.5



Chap.4: Simulation Analysis	 51

4.5 Transmission Delay

As we have seen in the previous section, the routers adopt the SPF (shortest path first)

algorithm to find the fastest path for the hop-by-hop resequencing method whereas in the

normal TCP/IP protocol the router selects a path randomly. When the packet is routed in a

certain path, the transmission time is calculated according to Eq 2.0

TransTime= FragmentSve /Bandwidth (in sec) 	 Eq 2.0

The transmission delay is calculated according to Eq 2.1

TransDelaylij = (InitTime -11 + TransTime -1J + TransDelayti -1J)- InitTimel4 Eq 2.1

The "lnitTime" consists the start the first time at which the fragment start its routing in the

link, whereas the "Transtime" is the time taken by the packet to path all along the link. The

delay is calculated as being the total time of the previous packet (-) the time the current

packet for the first time enters the link. The transmission delay varies according to the MTU

and bandwidth of the path. The selection of the path in our simulation is done according to a

routing table: (see Figure 4.5)

Network A-2 FomNao T&NodIMi1ffiytes)
1	 1	 1S1	 Ri	 600	 250j
1	 1	 2S1	 R2	 1500	 800
1	 i)	 3,S1	 R3	 2500	 4250
1	 2	 1 R	 Hi	 300	 750
1	 2	 1R2	 Hi	 2000	 4000

2	 1R3	 Hi	 750	 5001
1	 2	 2R1	 H2	 850	 8751
1	 2	 2R2	 H2	 950	 900J
1	 2	 2R3	 H2	 2500	 42501

1	 3	 1 H	 GI	 3000	 50001

1	 3	 1H2	 Gi	 3500	 52501

2	 4	 1 G	 S2	 3750	 60001

2	 5	 1S2	 RI	 3200	 9001
2	 5	 2S2	 R2	 3500	 52501

2	 5	 3S2	 R3	 3000	 750

21	 6	 1 Ri	 Dl	 2600	 900

21	 6	 1 R2	 Dl	 1	 34001	 5150

2 6 I iR3 IDI	 23001 _850

L	 6	 13001



MA

(I)

1Z5

11

5

Chap.4: Simulation Analysis	 52

Figure 4.5: Routing Table

The application of our method on traffic of 1000 packets showed better results for the

throughput comparing to the mean delay. (See Figure 4.6)

Throughput vs Mean Delay

• End-Usa Resequcing
• Hop-By-Hop Resequencing

N	 I	 U)	 0)	 U)	 U)	 C)
(.,	 C.)	 0	 0	 C	 0)	 U)

C.)	 (0	 CO	 0	 0	 N	 '	 P-
i- 	 N N N N N
1	 .	 N N N N

Throughput (bytes/sec)

Figure 4.6: Throughput vs Mean Delay for 2=0.5 andp =1.5

4.6 Fragments Tracing

In this section we are tracing the fragmentation and reassembly of the fragments

belonging to a packet of size = 3000 bytes using both End-user reassembly method (See

Figure 4.7) and Hop-By-Hop Resequencing and Reassembly method (See Figure 4.8)



Chap.4: Simulation Analysis	 53

Fragments Tracing in Normal TCP/IP Network

	

Frdgffents	 L1-0	 Dl-1	 02-0	 03-0	 03-1	 04-0

"', Tr-,

	

1	 2	 3	 4	 5	 6
Nwork

Figure 4.7: Fragnzentc Tracing in Normal TCP/IP Networks

In our thesis, fragments tracing is as follow:

Fragments Tracing in Simulated TCP/IP Network

Fragments	 01-0	 02-0

I	 7.

:t:ij:
6	 U	 -
_	 JT

2

	

	 6
Network Level

L

Figure 4.8: Fragments tracing in our simulated TCP/IP Networks



Chapter 5

Conclusion

The Internet was built by a small community of researchers. In that environment,

it was reasonable to assume that end hosts would cooperate in the management of network

resources. As the Internet has evolved from a research project into a popular consumer

technology, this assumption has lost some of its validity. Everybody has experienced delays

in accessing their favorite web servers, and if you use TELNET or riogin to log in on a

remote server across a long distance, you've almost certainly experienced brief or lengthy

interruptions in service in at least one of the wide area Internet carriers or in one of their

interconnection points [25].

However, many studies have been made to optimize this delay on the Internet and

they lead to remarkable improvement. Some of them, worked on improving the Queueing

Delay by enhancing queueing techniques and algorithms. Others, worked on the

improvement of Transmission Delay by elaborating different algorithms to find the shortest

path. Some other studies, introduces new techniques in packet fragmentation depending on

the network paths and their bandwidth.

In our thesis, we worked on improving the performance of the network by suggesting

techniques that minimize each of the delays that a packet might face during its delivery from

host to destination such as: queueing delay, transmission delay and resequencing delay. We

introduces suggestions to avoid fragmentation as much as possible by selecting the fastest

path with the best MTU. Furthermore, the introduction of resequencing and reassembly

procedure at the routers level showed an improvement in the over all delay. Finally, the

resequencing technique elaborated showed a good management for packets delivery. With

the lastest developments in hardware technology, such as the production of I Gbytes memory

and lGhrz processor, it is no longer difficult to apply or add new function on routing and

queueing. We think we can benefit from these technique to adjust the current methodologies

in the aim of improving the performance of the Internet.



BIBLIOGRAPHY

[11	 Baker, F. "Requirements For IP Version 4 Routers", RFC 1812, Network Working
Group Editor, Cisco Systems, 1995.

[21	 Bolot, Jean-Chrysostome "End-to-End Packet Delay and Loss Behavior in the
Internet", INRIA, France, 1993.

[31 Braden, B. "Recommendations on Queue Management and Congestion Avoidance in
the Internet", RFC 2309, Network Working Group Editor, UCLA, 1998.

[41	 Braden, R.; Postel, J. "Requiremenisfor Internet Gateways", RFC 1009, Network
Working Group, 1987.

[5 1	 "Routing Basics", CISCO System Incorporation, 1995.

[61	 Chinoy, Bilal "Dynamics ofInternet Routing Information", bac@sdsc.ed!!, 1993.

[7]	 Christiansen, Mikkel; Jeffoy, Kevin; Ott, David; Smith. Donelson F. "Turning RED
for Web Traffic", University of North Carolina, Department of Computer Science,
2000.

[81	 Corner, Douglas E. "Internetworking with TCP/IP: Principles, Protocols and
Architecture", Volume 1, P Edition, Prentice Hall, 1995.

[91	 Corner, Douglas; Stevens, David "Iniernetworking with TCP/IP: Design,
Implementation and Internals", Volume II, 2' Edition, Prentice Hall, 1994.

[101 De Cnodder, Stefaan; Elloumi, Omar; Pauwels, Kenny "Effect ofdifferent packet
sizes on RED performance", Traffic and Routing Technologies project, Alcatel
Corporate Research Center.

1111 Firoiu, Victor; Borden, Marty "A Study ofActive Queue Management for Congestion
Control", Nortel Networks.

[121 Jacobson, V. "TCP Extensions for Long-Delay Paths", RFC 1072, Network Working
Group Editor, 1988.

[13] Jacobson, V. "TCP Extensions for High Performance", RFC 1323, Network Working
group, 1992.

[14] Kamouh, Walid "Hop-By-Hop Flow Control with packet aggregation in TCP/IP
Networks", Thesis Study, Notre Dame University, 2000

1151 Kleinrock, L. "Queuing Systems, Volume 2", John Wiley, New York, 1976.



Bibliography	 56

1161 Maalouf, H.W.; "Optimization of the communication network performance of
distributed .systems with resequencing constraints", Communication and Signal
Processing Group, Department of Eiectncal and Electronic Engineering, Imperial
College of Science Technology and Medicine, England, 1998.

[171 Maalouf, H. "Internetworking and Internet Protocols", Lecture Notes, CSC626,
Noire Dame University, 1998.

[181 Mills, D.L. "Internet Delay Experiments", RFC 889, Network Working Group, 1983.

1191 Mills, D.L. "Exterior Gateway Protocol Formal Specification", RFC 904, Network
Working Group, 1984.

120] Mogul, J. "Path MTUDiscovery", RFC 1191, Network Working Group Editor, 1990.

[211 Nagle, J., "Congestion Control in IP'TCP Internetworks", RFC 896, FACC, January
1984.

[221 Network Technical Advisory Group, "Requirements for Internet Gateways",
RFC985, Network Working Group, 1986.

[231 Postel, J. "DARPA Internet Program: Protocol Specification", RFC 791, Information
Science Institute, 1981.

[241 Presti, Lo F.; Duffield, N.G.; Horowitz, J.; Towsley, D. "Muiticast-Based Inference
ofNetwork-Internal Delay Distributions", UMASS CMPSCI Technical Report 99-5 5,
1999.

[251 Quatennan, John "Imminent Death of the Internet?", Matrix News, 1996.

[261 Ravrndran, A; Philips, D.; Solberg, J. "Operations Research: Principles and Practice",
2' edition, Wiley Publication, 1987.

1271 Rosen, Eric C. "Exterior Gateway Protocol (EGP)", RFC 827, Bolt Beranek and
Newman Inc., 1982.

[28] Ross, K.W. "Multiservice Loss Modelsfor Broadband Telecommunication Networks",
Springer, Berlin, 1995.

[291 Savage, Stefan; Anderson, Thomas; Aggarwal, Amit; Becker, David; Cardwell, Neal;
Collins, Andy; Hoffman, Eric; Snell, John; Vandat, Amin; Voelker, Geoff Zahol)an,
John "DETOUR: Informed Internet Routing And Transport", University of
Washington, 1999.

1301 Tanenbaum, Andrew S. "Computer Networks", 2 d 	Prentice Hall of India,
1996.

[311 Turgul, Dayar "Resequencing of messages in a Queueing System with heterodenous
Servers under various scheduling policies", North Carolina State University, 1991.



Bibliography	 57

[321 Vastola, Kenneth S. "Performance Modeling andAnalysis of Computer
communication Networks", Rensselaer Polytechnic Institute, 1996.



Appendix A

Simulation Code

1 — Normal TCP/IP code:

Option Compare Database
Dim Optld As Integer
Dim PackNo As Integer
Dim Network As Integer
Dim Level As Integer
Dim Processid As Integer
Dim Objid As String
Dim r As Single

Function DnrPacket576(Packld As Long, PoisTime As Single, Procid As Integer, Leveild As
Integer, FragNo, psize As Double, Old As String)
On Error GoTo DivPacket err
Dim frag As String
Dim free As DAO.Recordset
Dim db As Database
Dim NbrOfPath As Integer
Dim 

Set db = DBEngine(0)(0)

NbrOfPath = DLookup(uPathNohI, qrySiPathNbrfromSource", WromSource = " & Old & 'wand
Levelld =" & Leveild & 

Un)

frag=""
frag = frag & select tmpSiFragSources.* from tmpSiFragSources;
Set free = dbOpenRecordset(frag, dbOpeuDynaset)
For i = 1 To FragNo
frec.AddNew
frec!Processld = Procid
frec!Packetld Packld
frec!FraglD =
frec!Levelld = Leveild
frec!SeqNum =0
If psize - 576 > 0 Then

frec!fragSize = 576
psize psize - 576

Else
If psize <48 Then

t =48 - psize
frec!LastPSize = psize
frec!fragSize = psize + t

Else
frec!fragSize = psize

End If
End If



Appendix A: Simulation Code	 59

frec!StartTime =0
frecObjectld = Old
frec!ObjectTime PoisTime
frec!ObjectDelay =0
frec!ObjectTl'ime = RoundNum(frcc!ObjectTjme + frec!ObjectDelay, 4)
frec ! pathid = Int((NbrOfPath +1 -1) * Rnd +1)
frec.Update

Next i
Exit Function

DivPacket_err:
MsgBox "DivPacket576"
MsgBox (Error(Err))
Exit Function
End Function

Function PPath(TableNanie As String, Net As integer, Procid As integer, Levelld As Integer,
Old As String)
On Error GoTo PPath err
Dim PrevTime
Dim PrevDelay
Dim db As Database
Dim sql As String
Dim rec As DAORecordset
Dim NbiOfPath As Integer
Dim PathMTU As Long
Dim PathBand As Long
Dim SourceTo As String
Dim initTime As Single
Dim i,j

Set db = DBEngine(00)
NbrOfPath = DLookup("PathNo", "qrySiPathNbrfromSource", "FromSource & Old & "and

Levelid = " & Levetid & ")
For i I To NbrOfPath

PathMTU = DLookup("MTU", "tblSiPaths", "Pathld= & I & and Levelld= "& Levelld & "And
FromSource='" & Old & "")

PathBand = DLookup("Bandwidth", "tblSiPaths", "Pathld & i & "and Levelld= "& Levelid &'
And FromSource= & Old & 

HIH)

SourceTo DLookup("ToSource", "tblSiPaths", HPathJd= " & I & " and Levelld "& Levelld &"
And FromSource=" & Old &

sql =
sql = sql & "SELECT , & TableName & ".Processld, H & TableName & ".Levelld,
sql = sql & TableName & " Pathid, H & TableName & " Objectid, H & TableName &

".ObjectlTime, H

sql = sql & TableName & ".PacketlD, " TableName & "Fd H & TableName & HSCqNumH
sql = sql & TableName & "Fi H & TableName & "LastPSize & TableName &

HSTime H & TableName & HObjectTime
sql = sql & TableName & H ObjectDelay, H & TableName & "PathTime H & TableName &

HPa*I)Iay, H
sql = sql & TableName & "Paflflfime H & TableName & "LevelTime H & TableName &

"Destin"
sql = sql & "FROM H & TableName &" WHERE (((H & TableName & "Processld)=" & Procid &



Appendix A: Simulation Code	 60

")AND"
sql = sql &"(("&  TableName & Levelld)=" & Levelld & ")AND (('i & TableName &

".Pathld)=" & i & ") AND"
sql = sql & u((H & TableName & ".Objectld)=" & Old & '")) ORDER BY H & TableName &

Processld,
sql = sql & TableName & "Levelid "& TableName & t1 .Pathld," & TableName & "Objd "&

TableName & "ObjectlTime"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec EOF Then

initTime rec!ObjectTrime
PrevTime = rec!ObjectTTime
rec.MoveLast
For  = I To rec.RecordCount

If j = 1 Then
rec.MoveFirst
rec.Edit

Else
rec.Edit
initTime = rec!Objectfl'ime

End If
r = Rnd
While r=O

r = Rnd
Wend
rec! pathTime = RoundNum((-1) * (rec lfragSize I PathBand) * Log(] - r), 4)

If(PrevTime - initTime) <== 0 Then
rec!PathDelay =0

Else
rec!PathDelay = RoundNum(PrevTime - initTime, 4)

End If
rec!pathTfime = rec ! pathTime + rec!PathDelay
rec!LevelTime = RoundNum(rec'ObjectTfime + rec !pathTime + rec!PathDelay, 4)
PrevTime = rec! ObjectTrime + rec!pathTFime
rec!Destin = SourceTo
reciJpdate
recMoveNext

Next j
End If

Next i

Exit Function

PPath err:
result = MsgBox("Paths")
MsgBox (Error(Err))
Exit Function
End Function

Function PDestination()
On Error GoTo PDestination Err

DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiMeanDelayBylamda"



Appendix A: Simulation Code	 61

DoCmd.OpenQueiy "qrySiMeanDelayByMiou"
DoCmdSetWamings Tate

Exit Function

PDestination Err:
Msgflox (Error(Err))
Exit Function
End Function

Function PGateway(Net As Integer, Nd As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo Pgateway err
Dim Gate As Long
Dim gateway As String
Dim k

Gate = DLookup("Gateway 14, 14tblSiOptions14, 14Optionld = "& Optid & 14)

gateway = "GI
GoSub AddGatewayFrags
result = PPath("tmpSiFragGateways", Net, Pid, LvId, gateway)
DoCmd.SetWarnings False
DoCmd.OpenQuery "qzySiAppGateData"
DoCmd.OpenQueiy "qySiDelGateData"
DoCmdSetWarnings True

Exit Function

AddGatewayFrags:

Set db = DBEngine(0)(0)
Set nec = db.OpenRecordset("tmpSiFragGateways", dbOpenDynaset)

k=O
NbrOfPath = DLookup("PathNo", "qrySiPathNbrfromSource", "FromSource ='" & gateway &

and Levelid =" & LvId & 4414)
sql =
sql = sql & "SELECT tblSiFragmentsProcessld, thlSiFragments.PacketlD,"
sql = sql & "tblSiFragments.Fragjd, thlSiFragments.Levelld, tblSiFragments.SeqNum,"
sql = sql & "tblSiFragmentsFragSize, tblSiFragments.LastPSize, tblSiFragments.StartTime,

tblSiFragments.Objectld,"
sql = sql & "tblSiFragments.ObjectTime, tblSiFragments.ObjectDelay,

tblSiFragmentsObjectlTime, H

sql = sql & "tblSiFragmentsPathld, tblSiFragments.PathTime, tblSiFragments.PathDelay,
sql = sql & "tblSiFragments.Pathrfime, tblSiFragments.Destin, tblSiFragments.LevelTime"
sql = sql & "FROM tblSiFragments WHERE (((tblSiFragments.Processld)=" & Pid & ")AND14
sql = sql & "((tblSiFragments.Levelld)=" & (LvJd - 1) & U) AND ((tblSiFragmentsDestin)=" &

gateway & "))"
sql = sql & "ORDER BY tblSiFragmentsProcessld, tblSiFragmentsLevelld,

tblSiFragmentsDestin, tblSiFragments.LevelTime;"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

k=1
rec.MoveFirst
initTime = rec!LevelTime
PrevSTime = reclLevelTime
PrevSDelay =0



Appendix A: Simulation Code 	 62

While Not rec.EOF
If 	 I Then
rec Edit
initTime = reclLevelTime

End If

rrec.AddNew
nec!Processld = Pid
rrec!Packetld = reclPacketld
rrec ! FragID = rec!FragJD
rrecLevelId = LvId
rrec!SeqNum = rec!SeqNurn
rrec!fragSize = rec!fragSize
rrec l LastPSize = rec!LastPSize
rrec!StartTinie = initTime
rrec!Objectld = gateway
r = Rnd
While r=O

r = Rnd
Wend
ServTime = RoundNum((-l) * (1 / 3) * Log(1 - r), 4)
rrecObjectTime = ServTime
lf((PrevSTime + PrevSDelay) - initTime) <=0 Then

necObjedDelay =0
Else

rrec!ObjectDelay RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec'Objecfrfime = RoundNum(rrec!StartTime + rrec!ObjectTime + rrec 1 ObjectDelay, 4)
rrec!pathid = I
PrevSTime = RoundNum(rrec!StartTime + rrec!ObjectTime, 4)
PrevSDelay = rrec!ObjectDelay
rrec.Update
k=O
rec.MoveNext

Wend
End If
rec. Close
rrec.Close

Return

Pgateway_err:
result = MsgBox("Gateway")
MsgBox (Error(Err))
Exit Function
End Function

Function Pllosts(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo Pllosts_Error
Dim HostNo As Integer
Dim db As Database
Dim nec As DAO.Recordset
Dim tmpRec As DAO.Recordset
Dim rec As DAO.Recordset
Dim sql As String
Dim Host As String



Appendix A: Simulation Code 	 63

Dim 1, J, k

GoSub HostDelay
Forj= 1 To 

Host = "H" & j
result PPath("tmpSiFragHosts", Net, Pid, LvId, Host)

Next j
DoCmdSetWamings False
DoCmd.OpenQuery "qrySiAppllostData"
DoCmd.OpenQueiy "qiySiDelHostData"
DoCmd.SetWamings True

Exit Function

HostDelay:
Set db DBEngine(OO)
Set nec = db.OpenRecordset("tmpSiFragHosts", dbOpenDynaset)

For j = I To 2
Host = "H" &
NbrOfPath DLookup("PathNo", "qiySiPathNbrfromSource", "FromSource '" & Host & "'and

Levelid = " & LvId & "")
sl
sql sql & "SELECT tblSiFragmentsProcessld, thlSiFragmentsPacketlD,"
sql = sql & "tblSiFragmentsFragld, tblSiFragments.LevelLd, tblSiFragments.SeqNum,"
sql = sql & "tblSiFragmentsFragSize, tblSiFragments.LastPSize, tblSiFragments.StartTime,

tblSiFragments.Objectld,"
sql = sql & "tblSiFragmentsObjectTime, tblSiFragments.ObjeciDelay,

tblSiFragments.Objectrfime,"
sql = sql & "tblSiFragments.Pathld, tblSiFragments PathTime, tblSiFragments.PathDelay,
sql = sql & "tblSiFragments.PathTI'ime, tblSiFragments.Destin, thiSiFragments LevelTime"
sql = sql & "FROM tblSiFragments WHERE (((tblSiFragments.Processld)=" & Pid & ") AND
sql = sql & "((tblSiFragments.Levelld)=" & (LvId - 1) & ")AND ((tblSiFragments.Destin)=='" &

Host & 0))
sql = sql & "ORDER BY tblSiFragments.Processld, thlSiFragments.Levelld,

tblSiFragmentsDestin, tblSiFragments.LevelTime;"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not recEOF Then

k= 1
rec. MoveFirst
initTime = rec!LevelTime
PrevSTime = reclLevelTime
PrevSDelay =0
While Not rec.EOF
If 	 I Then
rec.Edit
initTime = rec!LevelTime

End If
rrec.AddNew
rrec l Processld = Pid
rrec!Packetld = rec!Packetld
rrec!FraglD = recFraglD
rrec!Levelld = LvId
rrec l SeqNum = rec!SeqNum



Appendix A: Simulation Code	 64

rrec!fragSize = rec!fragSize
rrec 1LastPSize = reclLastPSize
rrec!StartTime = initTime
rrec!Objectld = Host
r = Rnd
While r=O

r = Rnd
Wend
ServTime = RoundNum((-1) * Log(1 - r), 4)
rreclObjectTime = ServTime
If ((PrevSTime + PrevSDelay) - initTime) < 0 Then

rrec!ObjectDelay =0
Else

rreclObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec! ObjectlTime = RoundNum(rrec!StartTime + rrec!ObjectTime + irec !ObjectDelay, 4)
rrec!pathid = Int((NbrOfPath +1 1) * Rnd +1)
PrevSTime = RoundNum(rrec!StartTime ± rrec!ObjectTime, 4)
PrevSDelay = rrec!ObjectDelay
rrec.Update
k=0
rec. MoveNext

Wend
End If
rec.Close

Next i
rrec.Close

Return
PHosts_Error:
result = MsgBox("Host")
MsgBox (Error(Err))
Exit Function
End Function

Function PRouter(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo PRouter_Error
Dim sql As String
Dim rec As DAO.Recordset
Dim db As Database
Dim i, k
Dim RNo As Integer
Dim router As String
Dim mu As Single
Dim PrevSTime As Single
Dim PrevDTime As Single
Dim ServTime As Single
Dim initTime As Single
Dim psize As Long
Dim PathMTU As Long
Dim PathBand As Long
Dim SourceTo As String
Dim FragNo As Integer
Dim FragSeqCount As Integer



Appendix A: Simulation Code	 65

'path in level6
Dim dsql As String
Dim drec As DAO.Recordset
Dim pdest As String

'Resequencing I
Dim sqll As String
Dim reel As DAO.Recordset

mu = DLookup("Myou", "tblSiOptions", "Optionid = "& Optid & ")
RNo = DLookup("RoutNbr", "qrySiRoutersPerNet", "Networkid = & Net & ")
GoSub AddRouterFrags
GoSub ChkRouterFrags
'Add to fragment table and Adjust sequence
GoSub CheckSeq
For i I To RNo

router "R" & i
result = PPath("tmpSiFragRouters", Net, PId, LvId, router)

Next i
DoCmd.SetWarnings False
DoCmd.OpenQueiy "qrySiAppRouterData"
DoCmd.OpenQuery "qrySiDelRouterData
DoCmd.SetWamings True

Exit Function

AddRouterFrags:

Set db DBEngine(0)(0)
Set nec = db.OpenRecordset("tn-ipSiFragRouters", dbOpenDynaset)
FragSeqCount =0

For i = I To RNo
k=0
router = "R" & i
NbrOfPath = DLookup("PathNo", "qrySiPathNbrfromSource", "FromSource = " & router & "and

Leveild = " & LvId & ")
sql =
sql sql & "SELECT tblSiFragments.Processld, tblSiFragments.PacketlD,
sql = sql & "tblSiFragmentsFragld, tblSiFragments.Levelld, tblSiFragments.SeqNum,"
sql = sql & "tblSiFragmentsFragSize, tblSiFragmentsiastPSize, tblSiFragmentsStartTime,

tblSiFragments.Objectld,
sql = sql & "tblSiFragmentsObjectTime, tblSiFragments.ObjectDelay,

tblSiFragments.ObjectTTime,"
sql = sql & "tblSiFragments.Pathld, tblSiFragments PathTime, tblSiFragments.PathDelay,"
sql = sql & "tblSiFragments.PathTFime, tblSiFragments.Destin, tblSiFragments.LevelTime"
sql = sql & "FROM tblSiFragments WHERE (((tblSiFragmentsProcessld)=" & Pid & ")AND"
sql = sql & "((tblSiFragmentsLevelld)" & (LvId - I) & ")ANl) ((tblSiFragments Destin)=" &

router & "')) If

sql = sql & "ORDER BY tblSiFragnients.Processld, thlSiFragments.Levelld,
tblSiFragmentsDestin, tblSiFragmentsLevelTime;

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveLast



Appendix A: Simulation Code 	 66

rec.MoveFirst
k= I
initTime = rec!Levetlime
PrevSTime =0
PrevSDelay 0
While Not rec.EOF

If k<> I Then
rec. Edit
initTime = rec!LevelTime

End If
rrec.AddNew
rrec!Processld = Pid
rrec !Packetld rec!Packetld
rrectFraglD = rec!FragID
rrec tLevelld = LvId
rrec!SeqNum = rec!SeqNum
rrec!SubSeqNum = recSeqNum
rrec!fragSize = rec!fragSize
rrec!LastPSize=rec!LastPSjze
rrec l Objectld = router
rr&StartTime = reclLevelTime
r = Rnd
While r =0

r = Rnd
Wend
ServTime = RoundNum((-l) * (1 I mu) * Log(I - r), 4)
rrec!ObjectTime ServTime
If((PrevSTime + PrevSDelay) - initTime) < 0 Then

rrec!ObjectDelay =0
Else

rrec!ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec!ObjectTFime = RoundNum(rrec!StartTime + rrec ! ObjectTime + rrec!ObjectDelay, 4)
If LvId =6 Then
pdest = DLookup(DestinId", "tblSiPackets", 'Packetld = & rec!Paeketld &
dsql="
dsql = dsql & "SELECT tblSiPackets Packetid, tblSiPaths.Networkld, tblSiPathsLevelld,"
dsql = dsql & "tblSiPaths.Pathld, tblSiPathsFromSource, tblSiPacketsDestinld,"
dsql = dsql & "tblSiPaths.MTU, tblSiPaths.Bandwidth FROM tblSiPackets INNER JOIN"
dsql = dsql & "tblSiPaths ON tblSiPackets Destinld = tblSiPathsToSource Where ("
dsql = dsql & "tblSiPaths.Networkld = " & Net &" And tblSiPackets Packetld = " &

rec!Packetld &""
dsql = dsql & "and tblSiPaths.Levelld = " & LvId & and tblSiPackets.Destinld ='" & pdest

& " and
dsql = dsql & "tblSiPaths.FromSource =` & router &");"
Set drec = db.OpenRecordset(dsql, dbOpenDynaset)

If Not drec.EOF Then
drec.MoveFirst
rrec!pathid = drec!pathid

Else
rrec!pathid = Int((NbrOfPath + 1 - 1) * Rnd + I)

End If
drec.Close

Else
rrec'pathid = Int((NbrOfPath + I - 1) * Rnd + 1)



Appendix A: Simulation Code	 67

End If
PrevSTime = RoundNum(rrec!StartTime + rrec!ObjectTime, 4)
PrevSDelay rrec!ObjectDelay
rrec.Update
k=0
rec. MoveNext

Wend
End If
rec. Close

Next i
rrec.Close

Return

ChkRouterFrags:
Set trnpRec = db.OpenRecordset("tmpSiFragments", dbOpenDynaset)
Set rrec = db.OpenRecordset(tmpSiFragRouters", dbOpenDynaset)
If Not rrec.EOF Then

rrec.MoveFirst
White Not rrec.EOF
PathMTU = DLookup("MTU", "tblSiPaths", PaihId=" & rrec ! pathid & " and Levelld= &

rrec!Levelld & And FrornSource= " & rrec!Objectld & "")
psize = rrec!fragSize
If psize> PathMTU Then

GoSub fragNum
If FragNo <>0 Then
For 1 = I To FragNo
tmpRec.AddNew
tmpRec!Processld = PId
tmpRec!Packetld = rrec!Packetld
tmpRecl FraglD = rrec!FragID
tinpReef Levelld = rrccLevelId
tmpRec ! SeqNum = rrec!SeqNum
tmpRec!SubSeqNum = i - I
If psize - PathMTIJ >= 0 Then

tmpRec!fragSize = PathMTU
psize = psize - PathMTU

Else
If psize <48 Then

t 48 - psize
tmpRec!LastPSize psize
tmpRec!fragSize = psize + t

Else
tmpRec l fragSize = psize

End If
End if
tmpRec!Objectld = rrec!Objectld
tmpRec!StartTime = rrec!StartTime
tmpRec!ObjectTime = rree!ObjectTl'ime
tmpRec!ObjectDelay =0
trnpRec!ObjectTrime = rrec!ObjectTfirne
tmpRec!pathid = rreclpathid
tmpRec.Update

Next i
rrec.Delete
rrec.MoveNext



Appendix A: Simulation Code 	 68

End If
End If
rrec.MoveNext

Wend
End If

DoCmd.SetWarnings False
DoCmd.OpenQueiy "qrySiAppRoutersFrag"
DoCmdOpenQuery "qiySiTmpFragDelete"
DoCmd.SetWarnings True

Return

fragNum:
FragNo = Round(psize I PathMTU, 0)
If FragNo <1 Then

FragNo =0
End If

If FragNo = 1 Then
If(psize Mod PathMTU) <>0 Then

FragNo = FragNo + I
Else

FragNo =0
End If

End If
Return

CheckSeq:

Set db = DBEngine(0)(0)
sql =
sql = sql & "Select qrySiFragNumber.* from qrySiFragNumber;"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec EOF Then

rec.MoveFirst
While Not rec.EOF

FragSeqCount = reclFragNoCount
sqil =lift

sql I = sql 1 & "SELECT tmpSiFragRouters.Processld, tmpSiFragRouters.PaeketlD,"
sqil = sqil & "lmpSiFragRoutersFragld, tmpSiFragRouters.Levelld,"
sqIl = sqIl & "tmpSiFragRouters.SeqNum, tmpSiFragRouters.SubSeqNum FROM

tmpSiFragRouters"
sql I = sql I & "Where (tmpSiFragRouters Fragid = " & rec!FragID & And

tmpSiFragRouters.Packetld = " & rec!Packetld &")"
sqIl = sqil & "ORDER BY tmpSiFragRouters.SeqNum, tmpSiFragRouters.SubSeqNum;
Set reel = db.OpenRecordset(sqll, dbOpenDynaset)
If Not recl.EOF Then

reel .MoveFirst
For i =0 To FragSeqCount - I

recl.Edit
reel !SubSeqNum
reel .Update
reel .MoveNext

Next i
End If



Appendix A: Simulation Code	 69

red .Close
rec.MoveNext

Wend
End If
rec. Close

Return

PRouter Error:
result = MsgBox("Router")
MsgBox (Error(Err))
Exit Function
End Function

Function PSource(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error (loTo PSource_Error
Dim sql As String
Dim rec As DAO.Recordset
Dim db As Database
Dim Objld As String
Dim i, k

Select Case Pid
Case 1, 2

Select Case Net
Case 1

GoSub Neti Source
DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiAppSourceData"
DoCmd.OpenQuery "qiySiDelSourceData"
DoCmd.SetWarnings True

Case 2
GoSub Net2Source
result = PPath("tmpSiFragSources", Network, Processid, Level, Objild)
DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiAppSourceData
DoCmd.OpenQuery "qiySiDelSourceData"
DoCmd.SetWarnings True

End Select

Case 3
End Select

Exit Function

Net 1 Source:
Set db = DBEngine(OO)
sql=to"
sql = sql & "SELECT tblSiPackets.Packetld, tblSiPackets.Size, tblSiPackets.Destinld,"
sql = sql & "tblSiPackets.Poisson FROM tblSiPackets ORDER BY tblSiPackets.Packetld;"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveFirst
While Not rec.EOF

GoSub Frag576



Appendix A: Simulation Code	 70

Objid = " SiTM

result = DivPacket576(rec!Packeticl, rec !Poisson, PId, LvId, FragNo, ree l Size, Objid)
rec.MoveNext

Wend
result PPath("tmpSiFi-agSources", Network, Processid, Level, Objld)

End If
rec.Close

Return

Net2Source:
Set db DBEngine(0)(0)
Set nec = db.OpenRecordset("lmpSiFragSources", dbOpenDynaset)
Objid = "ST'
NbrOfPath = DLookup("PathNo", "qiySiPathNbrfromSource", "FromSource ='" & Objid & "and

Leveild = "& LvLd & ")
k=O
sql =
sql = sql & "SELECT tblSiFragments Processid, tblSiFragments.PacketlD,"
sql sql & "tblSiFragments.Fragld, tblSiFragmentsLevelld, tblSiFragmentsSeqNum,"
sql = sql & "tblSiFragments.FragSize, tblSiFragments.LastPSize, tblSiFragments.StartTime,

tblSiFragmentsObjectld,"
sql = sql & "tblSiFragments.ObjectTime, tblSiFragments.ObjectDelay,

tblSiFragments.ObjectTTime,
sql = sql & "tblSiFragments.Pathld, tblSiFragments.PathTime, tblSiFragments.PathDelay,"
sql = sql & "tblSiFragments.PathTlTime, tblSiFragments.Destin, tblSiFragments.LevelTime"
sql = sql & "FROM tblSiFragments WI{ERE (((tblSiFragments.Processld)=" & Phi & AND
sql = sql & "((tblSiFragments.Levelld)=" & (LvId - 1) &"))"
sql = sql & "ORDER BY tblSiFragments Processid, tblSiFragmentsLevelld,

tblSiFragments.Destin, tblSiFragments.LevelTime;"
Set rec = dtiOpenRecordset(sql, dbOpenDynaset)
If Not recEOF Then

rec.MoveFirst
k= 1
initTime = reclLevelTime
PrevSTime = rec!LevelTime
PrevSDelay =0
While Not rec.EOF

Ifkc' 1 Then
recEdit
initTime = reclLevelTime

End If
rrec.AddNew
rrec!Processld Pid
rrec!Packetld = rec!Packetld
rrec!FragID rec!FragID
rrec ! Levelld = LvId
rrec ! SeqNum = rec!SeqNum
rrec'fragSize = reclfragSize
rrec!LastPSize = rec!LastPSize
rrec!StartTime = initTime
rrec ! Objectld Objid
r = Rnd
While r=0

r Rnd
Wend



Appendix A: Simulation Code	 71

ServTime = RoundNum((-1) * Log(1 - r), 4)
rrec l ObjectTime = ServTime
If ((PrevSTime + PrevSDelay) - initTime) <=0 Then

rrec!ObjectDelay =0
Else

rrecl ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec!ObjectTFirne = RoundNwn(rrec!StartTime + rrec!ObjectTime + rrec!ObjectDelay, 4)
rrec!pathid = Int((NbrOfPath +1 -1) * Rnd +1)
PrevSTirne RoundNum(rrec!StartTjme + rrecObjectTime, 4)
PrevSDelay = rrec!ObjectDelay
rrec.Update
k=O
recMoveNext

Wend
End If
rec. Close
rrec.Close

Return

Frag576:
FragNo = Round(rec!Size I 576, 0)
If FragNo < I Then

FragNo =0
End If

If FragNo = I Then
If(rec ! Size Mod 576) <>0 Then

FragNo FragNo + I
Else

FragNo =0
End If
End If

Return

PSource Error:
result = MsgBox("Source")
MsgBox (Error(Err))

Exit Function
End Function

Function Processl()
On Error GoTo Processl Err

Processid = 1

Network = 1
Level = I
result = PSource(Network, Processid, PackNo, Level) 	 'Source
Level =2
result = PRouter(Network, Processid, PackNo, Level) 	 'Router

Level = 3
result = PHosts(Network, Processid, PackNo, Level) 	 'Host
Level =4
result = PGateway(Network, Processid, PackNo, Level) 	 'Gateway



Appendix A: Simulation Code	 72

Network =2
Level =5
result = PSource(Network, Processid, PackNo, Level) 	 'Source
Level =6
result = PRouter(Network, Processid, PackNo, Level) 	 'Router
Level = 7
result = PDestinationO	 Destination

Exit Function

Process 1_Err:
result = MsgBox("Process i')
MsgBox (Error(Err))

Exit Function
End Function

Private Sub GoClick()
On Error GoTo Go_Click err
Dim NbrOfProcess As Integer
Dim result, i

result = GeneratePackets()
DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiEmptyFragTable"
DoCmd.SetWamings True
Optld = 1
result = Process 10
MsgBox "Simulation Ended"

Exit Sub

Go_Click_err:
result = MsgBox("Go Click")
MsgBox (Error(Err))

Exit Sub
End Sub

'Fill table tblGnPackets
'Generate packet size, source and destination
'Size between 500 and 3500 bytes => Select Randomly
'Destinations between I and 3 => Select Randomly
'Genrate Poisson Timingfor each Packet

Function GeneratePackets()
On Error GoTo GeneratePackets_Err
Dim sql As String
Dim rec As DAO.Recordset
Dim db As Database

'packet Number
Dim i As Integer
Dim Opid As Integer



Appendix A: Simulation Code	 73

'Poisson timing
Dim Gentime As Single
Dim SendTime As Single

Optid = 1
Gentime = DLookup("Lamda", "tblSiOptions", "Optionld= & Optid & ")
PackNo = DLookup("NbrOfPackets", "tblSiOptions", "Optionld=" & Optid & ")

Set db = DBEngine(0)(0)

sql = 
If If

sql = sql & "Select tblSiPackets.* from tblSiPackets;"
Set rec = dbOpenRecordset(sql, dbOpenDynaset)

For i = 1 To PackNo
rec.AddNew
rec!Packetld = i
red Size = Int((3000 - 600 + I) * Rnd + 600)
rec!Destinld = Int((2 - I + 1) * Rnd + 1)
Ifi= lThen

SendTime =0
rec!Poisson = SendTime

Else
r = Rnd
SendTime = SendTime + (r (I / Gentime))
rec!Poisson = RoundNum(SendTime, 2)

End If
rec.Update

Next i
rec.Close

Exit Function

GeneratePackets Err:
result = MsgBox("Generate Packets")
MsgBox (Error(Err))
Exit Function
End Function

Function RouudNum(InVal, Places) As Double
Dim Factor As Double
Dim temp As Double

If IsNull(lnVal) Then InVal =0
If IsNull(Places) Then Exit Function

If Places 0 Then Places

Let Factor 10 "Int(Places)
temp = Abs(InVal) * Factor + 0.5000000001
RoundNum (Int(temp) I Factor) * Sgn(InVal)

End Function



Appendix A: Simulation Code	 74

2— Simulated Code:

Option Compare Database
Dim Optid As Integer
Dim PackNo As Integer
Dim Network As Integer
Dim Level As Integer
Dim Processid As Integer
Dim Objid As String
Dim r As Single

Function DivPacket(Packld As Long, PoisTime As Single, Procid As Integer, Leveild As
Integer, FragNo, psize As Double, Old As String, pathid As Integer, PathSize As Long)
On Error GoTo DivPacket err
Dim frag As String
Dim free As DAO.Recordset
Dim db As Database
Dim NbrOfPath As Integer
Dim 

Set db = DBEngine(OXO)

frag =
frag = frag & select tmpSiFragSources.* from tmpSiFragSources;"
Set free = db.OpenRecordset(ftag, dbOpenDynaset)
If FragNo =0 Or lsNull(FragNo) Then

free. AddNew
frec!Processld = Proeld
free I Packetld = Packid
free!FraglD = 1
free ! Levelld = Leveild
frec!SeqNum =0
frec ! fragSize = psize
frec!LastPSize =0
free ! StartTime =0
ftec!Objectld = Old
frec l ObjeetTime = PoisTime
frec!ObjectDelay =0
frec!ObjectTrime = RoundNum(frec !ObjectTime + frec!ObjectDelay, 4)
ftec!pathid = pathid
free. Update

Else
For i 1 To FragNo
free. AddNew
frec!Proeessld = Procid
free!Packetld = Packid
free ! FragID =
frec!Levelld = Leveild
frec!SeqNum =0
If psize PathSize >= 0 Then

frec!fragSize = PathSize
psize = psize - PathSize

Else
If psize <48 Then



Appendix A: Simulation Code	 75

t = 48 - psize
frec ! LastPSize = psize
frec!fragSize = psize + t

Else
frec!ftagSize psize

End If
End If
frec!StartTime =0
frec!Objectld = Old
frec!ObjectTime = PoisTime
frec!ObjectDelay =0
frecObjectUime = RoundNum(frec !ObjectTime ± frec ! ObjectDelay, 4)
frec ipathid = pathid
frec.Update

Next i
End If

Exit Function

DivPacket err:
MsgBox "DivPacket"
MsgBox (Error(Err))
Exit Function
End Function

Function PPath(TableNaine As String, Net As Integer, Procld As Integer, Levelld As Integer,
Old As String)
On Error GoTo PPath err
Dim PrevTime
Dim PrevDelay
Dim db As Database
Dim sql As String
Dim rec As DAO.Recordset
Dim NbrOfPaih As Integer
Dim PathMTU As Long
Dim PathBand As Long
Dim SourceTo As String
Dim initTime As Single
Dim i,j

Set db = DBEngine(00)
NbrOfPath = DLookup("PathNo", "qrySiPathNbrfromSource", "FromSource ='" & Old & "and

Levelid = & Levelid & "")
For i = I To NbiOfPath

PathM11J = DLookup("MTU", "tblSiPaths", "Pathld= & i & and Levelld= "& Leveild &"
And FromSource'" & Old & "'")

PathBand = DLookup("Bandwidth", "thlSiPaths", "Pathld= "& I & and Levelld= " & Levelld
& "And FromSource='" & Old & "")

SourceTo = DLookup("ToSource", "tblSiPaths", "Pathld= " & i & "and Levelld=" & Levelid &
And FromSource'" & Old &

sql = 91 If

sql = sql & "SELECT "& TableName & ".Processld, "& TableName & "levelid,"
sql = sql & TableName & ".Pathld, "& TableName & " Objectid, "& TableName &

".ObjectTTime,"
sql = sql & TableName & "PacketlD, "& TableName & ".Fragld, "& TableName & ".SeqNum,"



Appendix A: Simulation Code	 76

sql = sql & TableName & ".FragSize, "& TableName & ".LastPSize, " & TableName &
".StartTime, "& TableName & ".ObjectTime,

sql = sql & TableName & "ObjectDelay," & TableName & ".PathTime, "& TableName &
".PathDelay,"

sql = sql & TableName & "PathTFime, "& TableName & ".LevelTime, & TableName &
".Destin"

sql = sql & "FROM & TableName & "WHERE (((" & TableName & ".Proeessld)=" & Procid &
") AND"

sql = sql & "((" & TableName & " Levelld)=" & Leveild & ")AND (("& TableName &
".Pathld)=" & i & ")ANT)"

sql = sql & "((" & TableName & "Objectld)=" & Old & "')) ORDER BY" & TableName &
"Processid,"

sql = sql & TableName & ".Levelld, "& TableName & ".Pathld, "& TableName & ".ObjectLd, "&
TableName & " ObjectTrime;"

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

initTime = rec!ObjecflTime
PrevTime = rec!ObjectTrime
rec.MoveLast
For j = I To rec.RecordCount

If j = 1 Then
rec.MoveFirst
rec.Edit

Else
rec.Edit
initTime = rec!ObjectTFime

End If
r = Rnd
While rO

r = Rnd
Wend
rec!pathTime = RoundlNum((-l) * (rec!fragSize / PathBand) * Log(1 - r), 4)

If (PrevTime - initTime) <=0 Then
rec!PathDelay =0

Else
rec!PathDelay = RoundNum(PrevTime - initTime, 4)

End If
rec!pathTFime = rec!pathTime ± reclPathDelay
rec tLevelTime = RoundNum(rec!ObjectlTime + recpathTime + rec'PathDelay, 4)
PrevTime = rec!ObjectTFime ± rec!pathTfime
rec i Destin = SourceTo

rec.Update
rec.MoveNext

Next j
End If

Next i
Exit Function

PPatb_err:
result = MsgBox("Paths")
MsgBox (Error(Err))
Exit Function
End Function



Appendix A: Simulation Code	 77

Function PDestination()
On Error GoTo PDestination Err

DoCmd.SetWamings False
DoCmdOpenQuery "qrySiMeanDelayBylamda"
DoCmd.OpenQuery "qrySiMeanDelayByMiou"
DoCmd.SetWamings True

Exit Function

PDestination Err:
MsgBox (Error(Err))
Exit Function
End Function

Function PGateway(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo Pgateway_err
Dim Gate As Long
Dim gateway As String
Dim 

Gate = DLookup("Gateway", "tblSiOptions", "Optionid = "& Optid & ")
gateway = "01"
GoSub GatewayResembPack
GoSub AddGatewayFrags
result = PPath("tmpSiFragGateways", Net, Pid, LvId, gateway)
DoCmd.SetWarnings False
DoCmd.OpenQuery "qrySiAppGateData"
DoCmd.OpenQuery "qrySiDelGateData"
DoCmd.SetWarnings True

Exit Function

GatewayResembPack:
Set db = DBEngine(OO)
Set nec = dbOpenRecordset("tmpS2FragGatewayReasm&', dbOpenDynaset)
sql =
sql = sql & "SELECT tblSiFragments.Processld, tblSiFragments.PacketlD,"
sql sql & "Sum(tblSiFragments.FragSize) AS [Size], Max(tblSiFragments.LevelTime) AS

DestTime"
sql = sql & "FROM tblSiFragments WHERE (((tblSiFragments.Levelld) =" & (LvId - 1) & ") And
sql = sql & "((tblSiFragments.Destin) = " & gateway & "))"
sql = sql & "GROUP BY tblSiFragments.Processld, tblSiFragmentsPacketlD"
sql = sql & "ORDER BY tblSiFragments.Processld, tblSiFragrnents.PacketlD,

Max(tblSiFragments.LevelTime);"

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not recEOF Then

While Not recEOF
rrec.AddNew
rrec ! Processld = reclProcessld
rrec!Packetld = rec!Packetld
rrec!FragID = 1
nec!Levelld = LvId
rrec!SeqNum =0



Appendix A: Simulation Code 	 78

rrec!SubSeqNum =0
rrec!fragSize = rec!Size
rrec!LastPSize =0
rrec!Objectld = gateway
rrec!StartTime = rec!DestTime
rrec!ObjectTime =0
rrec!ObjectDelay =0
rrec ! ObjectTfime = RoundNum(i-rec!StartTime + rrec!ObjectTime + rrec!ObjectDelay, 4)
rrec!pathid=0
rrec.Update
rec.MoveNext

Wend
End If
rec.Close
rrec.Close

Return

AddGatewayFrags:

Set db = DBEngine(00)
Set rrec = db.OpenRecordset("tmpSiFragGateways", dbOpenDynaset)
k=0
NbrOfPath = DLookup("PathNo", "qrySiPathNbrftomSource", "FromSource =` & gateway &

and Levelid = "& LvId & "")
sql =
sql = sql & "SELECT lnipS2FragGatewayReasmb.Processld, tmpS2FragGatewayReasmb.PackeiJD,'
sql sql & "tmpS2FragGatewayReasmbFragld, tmpS2FragGatewayReasmbievelld,

tmpS2FragGatewayReasmb.SeqNum,"
sql = sql & "tmpS2FragGatewayReasmb.FragSize, tmpS2FragGatewayReasmb.LastpSize,

tmpS2FragGatewayReasmbStartTime, tmpS2FragGatewayReasmb.Objecfld,
sql = sql & "tmpS2FragGatewayReasmb.ObjectTime, trnpS2FragGatewayReasmb.ObjectDelay,

tmpS2FragGatewayReasmb.Objectrrime,"
sql = sql & "tmpS2FragGatewayReasmb.Pathld, tmpS2Fragt3atewayReasmb.PathTime,

tmpS2FragGatewayReasmbPathDelay,
sql = sql & "tmpS2FragGatewayReasmb.PathTrime, tmpS2FragGatewayReasmbDestin,

tmpS2FragQatewayReasmb.LevelTime"
sql = sql & "FROM tmpS2FragGatewayReasmb WHERE ((tmpS2FragGatewayReasmb.Processld)="

& Pid & ")AND"
sql sql & "((pS2Frag ewayRasmbLevelld)=" & (LvId) & ")AND

((tmpS2FragGatewayReasmb.Objectld ) ='" & gateway &"))"
sql = sql & "ORDER BY tmpS2FragGatewayReasmbProcessld,

tmpS2FragGatewayReasmb.Levelld, trnpS2FragGatewayReasmb.Destrn,
tmpS2FragGatewayReasmb.LevelTime; I'

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

k=1
rec.MoveFirst
initTime = rec!LevelTime
PrevSTime = reciLevelTime
PrevSDelay = 0
While Not recEOF

Ifkc' 1 Then
rec.Edit
initTime = rec!LevelTime



Appendix A: Simulation Code	 79

End If

tree. AddNew
rrec!Processld PId
rrec ! Packetld = rec!Packetld
rrec'FragID = rec'FragID
rrec!Levelld = LvId
rrec!SeqNum = rec!SeqNum
rrec ! fragSize = rec!fragSize
rrec!LastPSize = tee ILastPSize
rrec!StartTime rec!StartTime
rrec!Objectld = gateway
r = Rnd
While I =0

r = Rnd
Wend
ServTime = RoundNum((-1) * (1 / 3) * Log(1 - r), 4)
rrec!ObjectTime ServTime
If((PrevSTime + PrevSDelay) - initTime) <=0 Then

rrec ! ObjectDeiay 0
Else

rrec!ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec!ObjectTFime = RoundNum(rrec!StartTime + rrec ! ObjectTime + rrec ! ObjectDelay, 4)
rrec!pathid = I
PrevSTime = RoundNum(rrec!StartTime + rrec!ObjectTime, 4)
PrevSDelay rrec!ObjectDelay
rrec.Update
k=0
rec.MoveNext

Wend
End If
rec.Close
tree. Close

Return

Pgateway_err:
result = MsgBox(Gateway")
MsgBox (Error(Err))
Exit Function
End Function

Function Pllosts(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo PHosts_Error
Dim HostNo As Integer
Dim db As Database
Dim nec As DAO.Recordset
Dim tmpRec As DAO.Recordset
Dim tee As DAO.Recordset
Dim sql As String
Dim Host As String
Dim i, j, k

GoSub HostReassembly
GoSub HostDelay



Appendix A: Simulation Code 	 80

Forj = I To 
Host= "H" &j
result = PPath("tmpSiFragHosts", Net PId, LvId, Host)

Next j
DoCmd.SetWamings False
DoCmd.OpenQuery "qiySiAppHostData"
DoCmd.OpenQuery "qrySiDelHostData"
DoCmd.SetWarnings True

Exit Function

HostReassembly:
Set db = DBEngine(0)(0)
For j = I To 2
Host= "Ht & i

Set nec = dbOpenRecordset("tmpS2FragHostReasm&, dbOpenDynaset)
sql = It if

sql = sql & "SELECT thlSiFragments.Processld, tblSiFragmentsPacketlD,
sql = sql & "tblSiFragmentsFragld, Sum(tblSiFragments.FragSize) AS [Size],

First(thlSiFragments.SeqNum) AS NumSeq,"
sql = sql & "Max(tblSiFragments.LevelTime) AS DestTime FROM tblSiFragments
sql = sql & "WHERE (((tblSiFragmentsievelld) = "& (LvId - I) & ")and tblSiFragmentsDestin =

W& Host &"I"
sql = sql & "GROUP BY tblSiFragments.Processld, tblSiFragments.PacketlD,"
sql = sql & "tblSiFragmentsFragLd ORDER BY tblSiFragments.Processld,"
sql = sql & "tblSiFragments.PacketlD, Max(tblSiFragments.LevelTime);"
Set rec dliOpenRecordset(sql, dbOpenDynaset)
If Not recEOF Then

rec.MoveFirst
While Not recEOF

rrecAddNew
nec!Processld = rec!Processld
rrec!Packetld = rec!Packetld
rrec!FragID rec!FragID
nedLevelld = LvId
rrec!SeqNum = rec!NurnSeq
rredSubSeqNum = rec!NumSeq
rrec!fragSize rec!Size
rrec!LastPSize =0
rrec!Objectld = Host
rrec!StartTirne = rec!DestTime
rrec ! ObjectTirne =0
rrec l ObjectDelay =0
rrec!ObjectTrime = RoundNum(nec!StartTime + rrec!ObjectTime + rrec ! ObjectDelay, 4)
nec!pathid = 0
rrecUpdate
rec.MoveNext

Wend
End If
rec.Close

Next i
rrec.Close

Return



Appendix A: Simulation Code 	 81

HostDelay:
Set db = DBEngine(Q)(0)
Set rrec = db.OpenRecordset("ttnpSiFragHosts", dbOpenDynaset)

For i 1 To 2
Host = "H" &
sql =
sql = sql & "SELECT tmpS2FragllostReasmbProcess1d, tmpS2FragHostReasmb.PacketlD,"
sql = sql & " npS2FragHostReasmbFragld, tmpS2FragHostReasmbievelld,

lmpS2FragHostReasmbSeqNum,"
sql = sql & "tmpS2FragHostReasmb.FragS1ze, tmpS2FragHostReasmb.LastPS1ze,
sql = sql & "tmpS2FragHostReasmb.Object1d, tmpS2FragllostReasmbObjectTime,

tmpS2FragHostReasmb.ObjectDelay,"
sql = sql & "tmpS2FragHostReasmb.ObjectlTime, lmpS2FragFlostReasmb.Path1d,

tmpS2FragllostReasmbPathT1me,"
sql = sql & "tmpS2FragllostReasmb.PathDelay, tmpS2FragHostReasmb.PathTTime,

tmpS2FragllostReasmb.Destin, tmpS2FragHostReasmb.StartTime,"
sql = sql & "tmpS2FragHostReasmbLevelT1me FROM tmpS2FragHostReasmb WHERE

(((tmpS2FragHostReasmb.Processld)=" & Pid & M) AND
sql = sql & "((tmpS2FragHostReasmb.Levelld)=" & LvId & ")AND

((tmpS2FragHostReasmbObjectId) & Host & `))"
sql = sql & "ORDER BY tmpS2FragHostReasmbProcessld, tmpS2FragHostReasmb.Levelld,

tmpS2FragHostReasmb.Destin, tmpS2FragHostReasmb.StartTime;'
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

k= I
recMoveFirst
initTime = rec!StartTime
PrevSTime = rec!StartTime
PrevSDelay =0
While Not rec.EOF

IfkO I Then
rec.Edit
initTime rec!StartTime

End If
rrec.AddNew
rrec!Processld = PId
rrec!Packetld = rec!Packetld
rrec!FragID = rec!FragID
rrec!Levelld = LvId
rrec!SeqNum = rec!SeqNum
rrec!fragSize rec!fragSize
rrec l LastPSize = rec!LastPSize
rrec!StartTime = initTime
rrec!Objectld = Host
r = Rnd
While r=0

r = Rnd
Wend
ServTime = RoundNum((-l) * Log(1 - r), 4)
rrec tObjectTime ServTime
If ((PrevSTime + PrevSDelay) - initTime) <=0 Then

rrec!ObjectDelay 0
Else

rrec!ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)



Appendix A: Simulation Code 	 82

End If
rrec!ObjectTFime = RoundNum(rrec!StartTime + rrec!ObjectTime + rrec!ObjectDelay, 4)
rrec!pathid I
PrevSTime RoundNum(rrec l StartTime + rrec! ObjectTime, 4)
PrevSDelay = rredObjectDelay
rrec.Update
k=O
rec.MoveNext

Wend
End If
rec Close

Next i
rrec. Close

Return

PHosts Error:

result = MsgBox("Host")
MsgBox (Error(Err))
Exit Function
End Function

Function PRouter(Net As Integer, PId As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo PRouter Error
Dim sql As String
Dim rec As DAORecordset
Dim db As Database
Dim i, k
Dim RNo As Integer
Dim router As String
Dim mu As Single
Dim PrevSTime As Single
Dim PrevDTime As Single
Dim ServTime As Single
Dim initTime As Single
Dim psize As Long
Dim PathMTU As Long
Dim PathBand As Long
Dim SourceTo As String
Dim FragNo As Integer
Dim FragSeqCount As Integer

'path in leve16
Dim dsql As String
Dim drec As DAO.Recordset
Dim pdest As String

'Resequencing 1
Dim sql 1 As String
Dim reel As DAORecordset
Dim frag

frag = False
mu = DLookup("Myou", "tblSiOption?, "Optionid "& Optid & "")
RNo = DLookup(RoutNbr", qrySiRoutersPerNet, "Networkid " & Net & "")



Appendix A: Simulation Code 	 83

GoSub RouteResembFrag
GoSub RouteResenjbpack
GoSub AddRouterFrags
If frag = True Then

GoSub ChkRouterFrags
GoSub CheckSeq

End If
For i = I To RNo

router = "R" & i
result = PPath("tmpSiFragRouters", Net, PId, LvId, router)

Next i
DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiAppRouterData"
DoCmd.OpenQuery "qrySiDelRouterData"
DoCmd.SetWamings True

Exit Function

RouteResembFrag:
Set db = DBEngine(0)(0)
For i = 1 To RNo
router = "R" & -
Set rrec = dbOpenRecordset("tmpS2FragRoutersReasmb", dbOpenDynaset)
sql
sql = sql & "SELECT tblSiFragments Processld, tblSiFragmentsPacketlD,"
sql = sql & "tblSiFragmentsFragld, Sum(tblSiFragments.FragSize) AS [Size],

First(tblSiFragmentsSeqNum) AS NumSeq,"
sql sql & "Max(tblSiFragments.LevelTime) AS DestTime FROM tblSiFragments"
sql = sql & "WHERE (((tblSiFragments.Levelld) = " & (LvId - 1) & ") and tblSiFragmentsDestin =

"& router & "'and tblSiFragmentsSeqnum <>0)"
sql = sql & "GROUP BY tblSiFragments.Processld, tblSiFragments.PacketlD,"
sql = sql & "tblSiFragments.Fragld ORDER BY tblSiFragmentsProcessld,"
sql = sql & "tblSiFragments.PacketlD, Max(thlSiFragments.LevelTime); 11

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveFirst
While Not recEOF

rrec.AddNew
rrec!Processld = rec!Processld
rrec!Packetld = rec!Packetld
rrec!FragID rec!FragID
rrec ! Levelld = LvId
rrec!SeqNum =0
rrec!SubSeqNum =0
rrec!fragSize = rec!Size
rrec! LastPSize =0
rrec'Objectld = router
rrec!StartTime = rec!DestTime
rrec! ObjectTime =0
rrec! ObjectDelay =0
rrec!ObjectThme = RoundNum(rrec!StartTime + rrec l ObjectTime + rrec!ObjectDelay, 4)
rrec'pathid =0
rreciJpdate
recMoveNext

Wend



Appendix A: Simulation Code	 84

End If
rec.Close

Next i
rrec.Close

Return

RouteResembPack:
Set db = DBEngine(0)(0)
For i = I To RNo
router = "R" &
Set nec = db.OpenRecordset("tmpS2FragRoutersReasmb", dbOpenDynaset)
sql =
sql = sql & "SELECT tblSiFragments.Processld, tblSiFragments.PacketlD,
sql = sql & "Sum(tblSiFragments.FragSize) AS [Size], Max(tblSiFragmentsLevelTime) AS

DestTime"
sql = sql & "FROM tblSiFragments WHERE (((tblSiFragmentsLevelld) =" & (LvId - 1) & ")And"
sql = sql & "((tblSiFragmentsDestin) 	 & router & "') And ((tblSiFragments SeqNum) = 0))"
sql = sql & "GROUP BY tblSiFragments.Processld, tblSiFragmentsPacketlD"
sql = sql & "ORDER BY tblSiFragments.Processld, thlSiFragments.PacketlD,

Max(tblSiFragrnentsLevelTime);"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)

If Not rec.EOF Then
While Not rec.EOF

rrec.AddNew
rrec ! Processld = rec!Processld
rrec ! Packetld rec!Packetld
rrec!FragID = I
rrec ! Levelld = LvId
rrec f SeqNurn =0
rrec! SubSeqNum =0
rrec!fragSize = rec!Size
rrec!LastPSize=0
nec!Objectld = router
rrec!StartTime = rec!DestTirne
rrec 1 ObjectTime =0
rrec!ObjectDelay =0
rrec!ObjectUime = RoundNum(rrec!StartTime + rrec!ObjectTinie + rrec!ObjectDelay, 4)
rrec!pathid = 0
rrec.Update
recMoveNext

Wend
End If
recClose

Next i
rrec.Close

Return

AddRouterFrags:

Set db = DBEngine(0)(0)
Set nec = db.OpenRecordset("trnpSiFragRouters", dbOpenDynaset)
FragSeqCount =0

For i = I To RNo
k=0



Appendix A: Simulation Code	 85

router =	 & i
sql
sql = sql & "SELECT tmpS2FragRoutersReasmb.Processld, tmpS2FragRoutersReasmbPacketjD,"
sql = sql & "tmpS2FragRoutersReasmb.Fragld, tmpS2FragRoutersReasmb.Levelld,

tmpS2FragRoutersReasmbSeqNum,"
sql = sql & "tmpS2FragRoutersReasmbFragSize, tmpS2FragRoutersReasmb.LastPSize,

tmpS2FragRoutersReasmbStaiiTime,"
sql = sql & "tmpS2FragRoutersReasmb.Objectld, tmpS2FragRoutersReasmb.ObjectTime,

tmpS2FragRoutersReasmbObjectDelay,"
sql = sql & "tmpS2FragRoutersReasmb.Objectrrime, tmpS2FragRoutersReasmb.Pathld,

tmpS2FragRoutersReasmb.PathTime,"
sql = sql & "tmpS2FragRoutersReasmbPathDelay, tmpS2FragRoutersReasmb.Pathrrime,

tmpS2FragRoutersReasmb.Destin,"
sql = sql & "tinpS2FragRoutersReasmb.LevelTjme FROM tmpS2FragRoutersReasmb WHERE

(((tmpS2FragRoutersReasrnbProcessld)=" & PIA & ")AND
sql = sql & "((tmpS2FragRoutersReasmb.Levelld)=" & LvId & ) AND

((tmpS2FragRoutersReasmbObjectld)=!u & router &"'))"
sql = sql & "ORDER BY tmpS2FragRoutersReasmbProeessId, tmpS2FragRoutersReasmb.Levelld,

tmpS2FragRoutersReasmbDestin, tmpS2FragRoutersReasmb.StartTime;
Set rec = db.OpenRecordset(sql, dbOpenDynaset)

If Not rec EOF Then
recMoveFirst
k= I
initlime = rec!StartTime
PrevSTime =0
PrevSDelay =0
While Not recEOF

Ifkc I Then
rec.Edt
initTime = reclStartTime

End If
rrec.AddNew
rrec!Processld = PId
rrec!Packetld = ree f Packetid
rrec!FragID = rec!FragID
rrec ! Levelld = LvId
rrec ! SeqNum = rec!SeqNum
rrec!SubSeqNum = rec!SeqNum
nec!fragSize = rec!fragSize
rrec!LastPSize = rec!LastPSize
rrec!Objectld router
rrec!StartTime = rec!StartTime
r = Rnd
While r = 0

r = Rnd
Wend
ServTime = RoundNum((-l) * (I I mu) * Log( 1 - r), 4)
rrec!ObjectTime = ServTime
If((PrevSTime ± PrevSDelay) - initTime) < 0 Then

rrec!ObjectDelay =0
Else

rrec!ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If
rrec!ObjectTl'ime = RoundNum(rrec!StartTime + rrec ! ObjectTime + rrec l ObjectDelay, 4)
GoSub SelectPath



Appendix A: Simulation Code 	 86

rrec!pathid = PathNo
PrevSTirne = RoundNum(rrec!StartTime + rrec !ObjectTime, 4)
PrevSDelay = rrec!ObjectDelay
rrec.Update
k=0
rec. MoveNext

Wend
End If
rec.Close

Next i
rrec.Close

Return

ChkRouterFrags:
Set tmpRec = db.OpenRecordset("tmpSiFragments", dbOpenDynaset)
Set rrec = dbOpenRecordset( tmpSiFragRoutersH, dbOpenDynaset)
If Not rrec.EOF Then

nec. MoveFirst
While Not rrec.EOF
psize = rrec!fragSize
If psize> PathMTU Then

GoSub fragNum
If FragNo <>0 Then
For i = 1 To FragNo
tmpRec.AddNew
tmpRec lProcessld Pid
tmpRec!Packetld = neciPacketid
tmpRec ! FragID = i 'rrec!FragID
tmpRec!Levelld = rrec!Levelld
tmpRec ! SeqNum = rrec!SeqNum
trnpRec ! SubSeqNum = i
If psize - PathMTU >= 0 Then

tmpRec ! fragSize = PathMTU
psize = psize - PathMllJ

Else
If psize <48 Then

t =48 - psize
tmpRec!LastPSize = psize
tmpRec ! fragSize = psize + t

Else
trnpRec!fragSize = psize

End If
End If
tmpRec!Objectld rrec!Objectld
tmpRec!StartTime = rrec!StartTime
tmpRec l ObjectTime = rrec'ObjectTfime
tmpRec!ObjectDelay =0
tmpReclObjectThme = rrec!ObjectTI'ime
trnpRec!pathid = rrec!pathid
tmpRec.Update

Next i
rrec.Delete

End If
End If



Appendix A: Simulation Code 	 87

rrec.MoveNext
Wend

End If

DoCmdSetWarnings False
DoCmdOpenQuery "qrySiAppRoutersFrag"
DoCmd.OpenQueiy "qiySiTmpFragDelete"
DoCmd.SetWarnings True

Return

SelectPath:

Set db = DBEngine(0)(0)
If LvId <>6 Then
path =
path = path & "SELECT tblSiPathsPathld, tblSiPaths.MTU, tblSiPaths Bandwidth AS MaxBand"
path = path & "FROM tblSiPaths WHERE (((tblSiPaths.Networkld) = "& Net & H) And"
path = path & "((tblSiPaths.Levelld) = " & LvId & ") And ((thlSiPaths.FromSource) = " & router &

III)) (

path = path & "ORDER BY tblSiPaths.Bandwidth DESC;"
Set prec = dbOpenRecordset(path, dbOpenDynaset)
If Not prec EOF Then

'set path id equal to this path
prec.MoveFirst
PathNo prec!pathid
PathMTU = prec!MTU
If rec!fragSize> PathMTtJ Then

frag= True
Else

frag = False
End If
prec.Close

Else
'set path equal to highest path available
PathNo = DLookup("Pathld", °qryS2LargePathMTU", "Networkid " & Net & " and Leveild

"& LvId & " and FromSource= " & router & ( H)

PathMTU = DLookup("MaxSize", "qryS2LargePathMTU", "Networkid = " & Net & "and
Leveild = "& LvId & "and FromSource=" & router & HH)

frag = True
prec. Close

End If

Else
pdest = DLookup("Destinld", "tblSiPackets" "Packetld = "& rec!Packetld &" ")
dsql = 

If If

dsql = dsql & "SELECT tblSiPackets Packetid, thlSiPaths.Networkld, tblSiPathsLevelld, H

dsql = dsql & "tblSiPaths.Pathld, tblSiPaths.FromSource, tblSiPackets.Destinld,"
dsql = dsql & "tblSiPaths.MTU, tblSiPaths.Bandwidth FROM tblSiPackets INNER JOIN"
dsql = dsql & '1tblSiPaths ON tblSiPackets Destinld = tblSiPaths.ToSource Where (
dsql = dsql & "tblSiPathsNetworkld = " & Net & " And tblSiPackets.Packetld = " &

rec!Packetld &""
dsql = dsql & "and tblSiPaths.Levelld = " & LvId & "and tblSiPackets.Destinld = " & pdest &

and"
dsql = dsql & "tblSiPaths.FromSource ="' & router &");"
Set drec = db.OpenRecordset(dsql, dbOpenDynaset)



Appendix A: Simulation Code 	 88

If Not drec.EOF Then
drec.MoveFirst
rrec!pathid = drec!pathid

Else
PathNo DLookupPathId", "qryS2Lai-gePathMTU", "Networkld = "& Net & " and Leveild

"& LvId & " and FromSource= lU 
& router & 11111)

PathMTU = DLookup("MaxSize", "qryS2LargePathMTU", "Networkld = "& Net & "and
Levelid = " & LvId & "and FromSource='" & router & "")

End If
drec. Close

End If

Return

fragNum:
FragNo = Round(psize I PaIhMTU, 0)
If FragNo < I Then

FragNo 0
End If

If FragNo= 1 Then
If(psize Mod PathMTU) <>0 Then

FragNo FragNo + 1
Else

FragNo =0
End If
End If

Return

CheckSeq

Set db = DBEngine(0)(0)
sql =ffit

sql = sql & "Select qrySiFragNumber.* from qrySiFragNumber;"
Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveFirst
While Not rec.EOF

FragSeqCount = rec'FragNoCount
sqil =
sql 1 sql 1 & "SELECT tmpSiFragRouters.Processld, tmpSiFragRouters.PacketlD,"
sqil = sqil & "tmpSiFragRouters.Fragld, tmpSiFragRouters Leveild,"
sql! = sqIl & "tmpSiFragRouters.SeqNum, tmpSiFragRouters.SubSeqNum FROM

tmpSiFragRouters
sqil = sqll & "Where (tmpSiFragRouters.Fragld = "& rec ! FraglD & " And

trnpSiFragRoutersPacketld = "& rec lPacketld &")"
sqil = sql! & "ORDER BY tmpSiFragRouters.SeqNum, tmpSiFragRouters.SubSeqNum;
Set reel = db.OpenRecordset(sqlI, dbOpenDynaset)
If Not reel .EOF Then

reel .MoveFirst
For i 0 To FragSeqCount - 1

rec 1 .Edit
reel ! SubSeqNum =
reel .Update



Appendix A: Simulation Code 	 89

red .MoveNext
Next i

End If
red Close
rec.MoveNext

Wend
End If
rec.Close

Return

PRouter Error:
result = MsgBox("Router")
MsgBox (Error(Err))
Exit Function
End Function

Function P2Source(Net As Integer, Pid As Integer, PackNo As Integer, LvId As Integer)
On Error GoTo P2Source Error
Dim sql As String
Dim rec As DAO.Recordset
Dim db As Database
Dim Objid As String
Dim i, k
Dim PathNo As Integer
Dim PathSize As Long
Dim path As String
Dim prec As DAO.Recordset

Select Case Net
Case 1

Objld = "S I"
GoSub Nell Source
result = PPath("tmpSiFragSources", Network, Processid, Level, Objld)
DoCmdSetWamings False
DoCmd.OpenQuery "qrySiAppSourceData"
DoCmd.OpenQuery "qrySiDelSourceData"
DoCmd.Set Warnings True

Case 2
Objld="S2"
GoSub SourceReassembly
GoSub Net2Source
result = PPath("tmpSiFragSources", Network, Processid, Level, Objid)
DoCmd.SetWamings False
DoCmd.OpenQuery "qrySiAppSourceData"
DoCmd.OpenQuery "qrySiDelSourceData"
DoCmd.SetWarnings True

End Select

Exit Function

Net! Source:
Set db = DBEngine(0)(0)
sql =
sql = sql & "SELECT tblSiPackets Packetid, tblSiPacketsSize, tblSiPacketsDestinld,"
sql = sql & "tblSiPackets.Poisson FROM tblSiPackets ORDER BY tblSiPackets.Packetld;"



Appendix A: Simulation Code 	 90

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveFirst
While Not rec.EOF

GoSub SelectPath
GoSub FragPacket 'add paco 6/5/2001
Objld= "Si"
result = DivPacket(rec!Packetld, rec!Poisson, P14, LvId, FragNo, rec!Size, Objid, PathNo,

PathSize)
rec.MoveNext

Wend
End If
rec.Close

Return

SourceReassembly:
Set db = DBEngine(0)(0)
Set nec = db.OpenRecordset("tmpS2FragSourceReasmb", dbOpenDynaset)
sql =
sql = sql & "SELECT tblSiFragmentsProcessld, tblSiFragmentsPacketlD,"
sql = sql & "tblSiFragments.Fragld, Sum(thlSiFragments.FragSize) AS [Size],

First(tblSiFragments.SeqNum) AS NumSeq,"
sql = sql & "Max(tblSiFragmentsLevelTime) AS DestTirne FROM tblSiFragments
sql = sql & "WHERE (((tblSiFragments.Levelld) = "& (LvId - 1) & ") and tblSiFragments Destin ='"

& Objid &")"
sql = sql & "GROUP BY tblSiFragments.Processld, tblSiFragments.Packet[D,"
sql = sql & "tblSiFragmentsFragld ORDER BY tblSiFragments.Processld, 0

sql = sql & "tblSiFragments.PackeffD, Max(tblSiFragments.LevelTime);"
Set rec = dbOpenRecordset(sql, dbOpenDynaset)

If Not rec.EOF Then
rec.MoveFirst
While Not rec.EOF

rrec.AddNew
rrec!Processld = rec!Processld
nec l Packetld = rec!Packetld
rrec! FragID = rec!FragID
rrec!Levelld = LvId
rrec!SeqNum = rec!NumSeq
rrec!SubSeqNum rec!NumSeq
rrec!fragSize = rec!Size
nec!LastPSize =0
nec lObjectld = Objid
rrec ! StartTime = rec!DestTime
rrec!ObjectTime = 0
rrec!ObjectDelay =0
neclObjectiTirne = RoundNum(rrec l StartTirne + rrec!ObjectTime ± rrec!ObjectDelay, 4)
rrec l pathid =0
nec.Update
rec.MoveNext

Wend
End If
rec.Close
rrec.Close

Return



Appendix A: Simulation Code 	 91

Net2Source:

Set db = DBEngine(0)(0)
Set nec = db.OpenRecordset("tmpSiFragSources", dbOpenDynaset)
sql =
sql = sql & "SELECT tmpS2FragSourceReasmb.Processld, tmpS2FragSourceReasmbPacketlD,"
sql = sql & "tmpS2FragSourceReasmb.Fragld, lmpS2FragSourceReasmb.Leve1ld,

tmpS2FragSourceReasmb.SeqNum,"
sql = sql & "tmpS2FragSourceReasmb.FragSize, tmpS2FragSourceReasmbiastPSize,

tmpS2FragSourceReasmb.StartTime,"
sql = sql & "tmpS2FragSourceReasmbObjectld, tmpS2FragSourceReasmb.ObjectTime,

tmpS2FragSourceReasmb.ObjectDelay,"
sql = sql & "tmpS2FragSourceReasmb.ObjectTrime, tmpS2FragSourceReasmb.Pathld,

tmpS2FragSourceReasmbPathT1me,"
sql = sql & "tnipS2FragSourceReasmbPathDelay, tnipS2FragSourceReasmbPathTlTime,

tmpS2FragSourceReasmbDestin,"
sql sql & "tmpS2FragSourceReasmb.LevelTime FROM tmpS2FragSourceReasmb WHERE

(((tmpS2FragSourceReasmb.Processld)=" & Pid & ") AND
sql = sql & "((tmpS2FragSourceReasmb.Levelld)=" & LvId & ")AND

((tmpS2FragSourceReasmbObjectld)='" & Objid & III)) it

sql = sql & "ORDER BY tnipS2FragSourceReasmbProcessld, tmpS2FragSourceReasmb.Levelld,
unpS2FrSourceReasmbDestin, tmpS2FragSourceReasmbStartTime;"

Set rec = db.OpenRecordset(sql, dbOpenDynaset)
If Not rec.EOF Then

rec.MoveFirst
k=1
initTime = ree f StartTime
PrevSTime = rec!StartTime
PrevSDelay =0
While Not rec.EOF

If 	 I Then
rec.Edit
initTime = rec!StartTime

End If
rrec.AddNew
rrec l Processld = Pid
rrec!Packetld = reciPacketid
rrec!FragID = reclFragiD
rrec!Levelld = LvId
rrec!SeqNum = rec!SeqNum
rrec!fragSize = rec!fragSize
rrec!LastPSize = rec!LastPSize
rrec!Objectld = Objid
rrec ! StartTime = rec!StartTime
r = Rnd
While r = 0

r = Rnd
Wend
ServTime = RoundNum((-l) * Log(l - r), 4)
rrec!ObjectTime = ServTime
If((PrevSTime + PrevSDelay) - initTime) < 0 Then

rrec!ObjectDelay =0
Else

rrec ! ObjectDelay = RoundNum((PrevSTime + PrevSDelay) - initTime, 4)
End If



Appendix A: Simulation Code 	 92

rrec!ObjectTFime = RoundNum(rrec!StartTime + rrec ! ObjectTime + rrec!ObjectDelay, 4)
GoSub SelectPath
rrec!paihid = PathNo
PrevSTirne = RoundNum(rrec!StartTime + rrec!ObjectTime, 4)
PrevSDelay = nec!ObjectDelay
rrec.Update
k=O
rec. MoveNext

Wend
End If
rec.Close
nec. Close

Return

SelectPath:
Set db = DBEngine(0)(0)
path =
path = path & "SELECT tblSiPaths.Pathld, tblSiPaths.MTU, tblSiPaths.Bandwidth AS MaxBand"
path = path & "FROM tblSiPaths WHERE (((tblSiPaths.Networkld) = " & Net & ") And"
path = path & "((tblSiPaths.Levelld) = "& LvId & ") And ((tblSiPaths.FromSource) = " & Objid &

path = path & "ORDER BY tblSiPaths.Bandwidth DESC;"
Set prec = db.OpenRecordset(path, dbOpenDynaset)

If Not prec.EOF Then
'set path id equal to this path
prec. MoveFirst
PathNo prec!palhid
PathSize = prec!MTU
prec.Close

Else
'set path equal to highest path available
PathNo = DLookup("Pathld", "qryS2LargePathMTU", "Networkid = " & Net & " and Levelld =

"& Lvld& ")
PathSize = DLookup("MaxSize", "qryS2LargePathMTU", "Networkid = "& Net & " and

Levelid = " & LvId & ")
GoSub FragPacket 'divide packet according to this path
precCiose

End If

Return

FragPacket:
FragNo = Round(rec!Size / PathSize, 0)
If FragNo < 1 Then

FragNo =0
End If

If FragNo = I Then
If(rec l Size Mod PathSize) <>0 Then

FragNo = FragNo + 1
Else

FragNo =0
End If



Appendix A: Simulation Code 	 93

End If
Return

P2Source Error:

result = MsgBox('Source')
MsgBox (Error(Err))

Exit Function
End Function

Function ProcesslØ
On Error GoTo Process 1_Err

Processid = 2

Network = 1
Level = 1
result = P2Source(Network, Processid, PackNo, Level) 	 'Source
Level =2
result = PRouter(Network, Processid, PackNo, Level) 	 'Router

Level '3
result = PHosts(Network, Processid, PackNo, Level)	 'Host
Level =4
result = PGateway(Network, Processid, PackNo, Level) 	 'Gateway

Network = 2
Level = 5
result = P2Source(Network, Processld, PackNo, Level)	 'Source
Level =6
result = PRouter(Network, Processld, PackNo, Level)	 'Router
Level = 7
result = PDestination() 	 'Destination

Exit Function

Process 1_Err:
result = MsgBox("Process 1")
MsgBox (Error(Err))

Exit Function
End Function

Private Sub Go_Click()
On Error GoTo Go_Click_err
Dim NbrOfProcess As Integer
Dim result, i

result = GeneratePackets()
DoCmd.SetWamings False
DoCmd.OpenQuery "qryS2FragHostReasmbDel"
DoCmd.OpenQuery "qryS2FragSourceReasmbDel"
DoCmd.OpenQuery "qryS2FragRoutersReasmbDel"
DoCmd.SetWarnings True
Optid = 1
result = Process 10



Appendix A: Simulation Code 	 94

MsgBox "Simulation Ended"
Exit Sub

Go-Click-err:
result MsgBox("Go Click")
MsgBox (Error(Err))

Exit Sub
End Sub

Function RoundNum(InVal, Places) As Double
Dim Factor As Double
Dim temp As Double

If IsNull(InVaI) Then InVal = 0
If IsNulI(Places) Then Exit Function

If Places <0 Then Places = 4

Let Factor = 10 A Int(Places)
temp = Abs(InVal) * Factor ± 0.5000000001
RoundNum = (Int(temp) / Factor) * Sgn(InVal)

End Function


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95

