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Abstract of the Thesis

Unit Root Tests in Finance

by

Rima Jreij

Master of Science

in

Financial Mathematics

Notre Dame University-Louaize,

Zouk Mosbeh,
Lebanon

2020

The knowledge of whether a time series contains a unit root or not

provides guidance to determine whether the series is stationary or

not. This topic is one that covers vast amount of research given

to its importance in the analysis of economic and other time series

data. To understand the behavior, the properties of the series and

the influence of any shock that occur to the series, stationary and

unit root tests were constructed. In this thesis, we first present the

Box and Jenkins ARMA models, discuss the conditions for station-

arity. Then, we display different method to test autocorrelation.



And finally, we examine several unit root tests and discuss their

power.



To my family, I would like to express my special gratitude for your moral

support and encouragement which helped me in the completion of the thesis.
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Chapter 1

Introduction

A gambler’s dispute in 1654 led to the creation of a mathematical theory of

probability by two famous French mathematicians, Blaise Pascal and Pierre

de Fermat. Antoine Gombaud, Chevalier de Méré, a French nobleman with

an interest in gaming and gambling questions, called Pascal’s attention to an

apparent contradiction concerning a popular dice game. The game consisted

in throwing a pair of dice 24 times; the problem was to decide whether or not

to bet even money on the occurrence of at least one ”double six” during the

24 throws. A seemingly well-established gambling rule led de Méré to believe

that betting on a double six in 24 throws would be profitable, but his own

calculations indicated just the opposite. This problem, which was posed by

de Méré, led to an exchange of letters between Pascal and Fermat in which

the fundamental principles of probability theory were formulated for the first

time. Although a few special problems on games of chance had been solved

by some Italian mathematicians in the 15th and 16th centuries [1], no general

theory was developed before this famous correspondence.
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The Dutch scientist Christian Huygens, teacher of Leibniz, learned of this

correspondence and shortly thereafter (in 1657) published the first book on

probability; entitled De Ratiociniis in Ludo Aleae (”On Reasoning in Games

of Chance”), it was a treatise on problems associated with gambling. Because

of the inherent appeal of games of chance, probability theory soon became

popular, and the subject developed rapidly during the 18th century. The

major contributors during this period were Jakob Bernoulli (1654-1705) and

Abraham de Moivre (1667-1754).

In 1827, the Scottish botanist Robert Brown reported the observation of a

very irregular motion displayed by a pollen particle immersed in a fluid. In

1900, Louis Bachelier give a solution to the Brownian motion, but it was re-

fused by his advisor Henri Poincaré. Later, in 1905 and 1906, Einstein and

Smoluchowski discovered the solution. Moreover, Bachelier showed in his the-

sis that the stock and option markets vary in a random manner and therefore

are unpredictable. 60 years later, the Random Walk Theory was found by

Paul Samuelson and Eugene Fama.

The theoretical developments in time series analysis started early with stochas-

tic processes. The first actual application of auto regressive models to data

can be brought back to the work of G. U Yule and J. Walker in the 1920s and

1930s.

During this time the moving average was introduced to remove periodic

fluctuations in the time series, for example fluctuations due to seasonality.

Herman Wold introduced ARMA (AutoRegressive Moving Average) models

for stationary series, but was unable to derive a likelihood function to enable

maximum likelihood (ML) estimation of the parameters.



It took until 1970 before this was accomplished. At that time, the classic

book ”Time Series Analysis” by G. E. P. Box and G. M. Jenkins came out,

containing the full modeling procedure for individual series: specification, es-

timation, diagnostics and forecasting. Nowadays, the so-called Box-Jenkins

models are perhaps the most commonly used and many techniques used for

forecasting and seasonal adjustment can be traced back to these models. The

first generalization was to accept multivariate ARMA models, among which

especially VAR models (Vector AutoRegressive) have become popular. These

techniques, however, are only applicable for stationary time series. However,

especially economic time series often exhibit a rising trend suggesting non-

stationarity, that is, a unit root.

A process is called a unit root process if the characteristic polynomial has

at least a root equal to one. This process in not stationary. However, it is

possible to make these processes stationary by differencing.

Testing for unit root is important in forecasting and many other fields to un-

derstand the behavior of the series and predict the impact of any shocks that

may occur to the series. Unit root tests developed mainly during the 1980’s.

The first unit root test, the Dickey-Fuller test, was developed in 1979. Un-

fortunately, the DF test was only applicable for simple auto-regressive models

(AR(1)). Later on, several tests were developed to accommodate more com-

plicated models.

The aim of this thesis is to give an overview of time series analysis and to

point out on an important issue which is the presence of a unit root in a time

series and the problems accompanying this. The thesis is composed of 5 chap-

ters. Chapter one gives a short history of probability and time series. Chapter



2 presents basic concepts of time series, stochastic processes, Stationary and

non stationary processes and at the end discusses Auto regressive, Moving av-

erage and Auto regressive Moving average models and their Autocorrelation

and Partial Autocorrelation functions (ACF and PACF). Chapter 3 gives an

estimation of the sample autocorrelation functions (SACF)and shows different

methods to construct a confidence interval for the ACF. Chapter 4 defines unit

root processes, integrated and difference processes, then presents the most im-

portant unit root tests and last discusses their power. Finally, chapter 5 is a

conclusion.



Chapter 2

Time Series Concepts

2.1 Introduction

In this chapter we will define some basic concepts in time series analysis and

give a brief overview of some stochastic process that are mentioned frequently

throughout the thesis.

In general, a time series is a sequence of data points indexed in time order.Time

series analysis comprises methods for analyzing time series data in order to

extract meaningful statistics and other characteristics of the data. Time series

forecasting is the use of a model to predict future values based on previously

observed values.

A time series could be modeled using stochastic processes or deterministic

processes. A stochastic process is simply a random process through time. A

good way to think about it, is that a stochastic process is the opposite of a

deterministic process.

In a deterministic process, given the initial conditions and the parameters of

5



the system, we can define the exact ”position” of the system at any time. In a

stochastic process, we don’t know where the process will be, even if we know

the initial conditions and parameters. Stochastic Analysis deals with mod-

els which involve uncertainties or randomness. Uncertainty, complexity and

dynamism have been continuing challenges to our understanding and control

of our physical environment. Everyday we encounter signals which cannot be

modeled exactly by an analytic expression or in a deterministic way. Examples

of such signals are ordinary speech waveforms, biological signals, temperature

histories, communication signals etc. In manufacturing domain no machine is

totally reliable. Every machine fails at some random time. Thus in a typical

manufacturing system which involves a large number of machines, the total

number of machines at any time cannot be determined in a deterministic way.

In a market driven economy, the stock market is volatile, the interest rates

fluctuate in a random fashion. One can give any number of examples from our

daily life events where uncertainty prevails in an essential way. This gives us

the realization that many real life phenomena require the analysis of a system

in a probabilistic setting rather than in a deterministic setting. Thus stochas-

tic models are becoming increasingly important for understanding or making

performance evaluation of complex systems in a broad spectrum of fields.

2.2 Preliminaries

2.2.1 Mean and Variance

Definition:



• Let X be a discrete random variable and pi= P(X=xi), then the ex-

pected value E(X) of X is defined by

E(X) =
∞∑
i=1

xipi

provided that the sum
∑∞

i=1 xipi absolutely converges. i.e,
∑∞

i=1 |xi|pi <∞.

• Let X be a continuous random variable and fX(x) be its probability

density function, then the expected value E(X) of X is defined by

E(X) =

∫ +∞

−∞
xfX(x)dx

provided that the integral
∫ +∞
−∞ |x|fX(x)dx is finite (X is integrable).

• The variance of the random variable X is defined by

V ar(X) = E[(X − E(X))2]

2.2.2 Some important Stochastic Processes

• Gaussian Process: A stochastic process {Xt}∞t=1 is said to be a Gaus-

sian process if and only if for every finite set of indices t1, t2, · · · , tk, the vector

(Xt1 , Xt2 , · · · , Xtk) is a multivariate Gaussian random variable Xt; i.e., ev-

ery linear combination a1Xt1 + a2Xt2 + · · · + akXtk is normally distributed

(∼ N (µ, σ2)).



• Gaussian White Noise: A stochastic process {Xt}∞t=1 is said to be a

Gaussian White Noise (GWN) process if for all t ≤ 1, the random variables

Xt are i.i.d., and normally distributed with mean zero i.e., Xt ∼ N (0, σ2).

• Brownian Motion(Weiner Process) A stochastic process {Xt}∞t=0

is said to be a Brownian motion if it satisfies the following properties:

1. X0 = 0

2. The process has independent increments; i.e., Xt2 − Xt1 and Xt4 − Xt3

are independent for 0 ≤ t1 < t2 ≤ t3 < t4.

3. The process has a Gaussian increments; i.e., for t1 < t2,

Xt2 −Xt1 ∼ N (0, t2 − t1).

4. The process is continuous.

2.2.3 Autocovariance Function and Autocorrelation Func-

tion

Definition: Let {Xt, t = 1, . . . , T} be a time series of T < ∞ observa-

tions, and h ∈ N such that t+ h < T , then

• The Autocovariance function of Xt is defined by:

γ(h) = cov(Xt, Xt + h) = E[(Xt − µt)(Xt+h − µt+h)] (2.2.1)

= E(XtXt+h)− E(Xt)E(Xt+h) (2.2.2)



The autocovariance function measures the direction of the linear depen-

dence between the random variables Xt and Xt+h.

It’s clear that the autocovariance at lag 0 of a variable Xt is equivalent

to the variance:

γ(0) = cov(Xt, Xt) = E[(Xt − µt)2] = var(Xt)

• The Autocorrelation function (ACF) of xt is defined by:

ρ(h) = corr(Xt, Xt+h) =
cov(Xt, Xt+h)√

var(Xt)
√
var(Xt+h)

=
γ(h)

γ(0)
. (2.2.3)

The autocorrelation function ofXt measures the direction and the strength

of the linear dependence between Xt and Xt+h.

It’s clear that the autocorrelation at lag 0 of a variable Xt is equal to 1:

ρ(0) = γ(0)
γ(0)

= 1.

2.3 Stationary and non-Stationary Processes

A process {xt}∞t=1 is said to be:

• Stationary process: if the joint distribution of the random variables

is time invariant.

• Weakly Stationary process:

a- E(xt) = µ does not depend on t.

b- var(xt) = σ2



c- γ(h) = cov(xt, xt+h) exists, finite and does not depend on t.

• Stationary increments: if the distribution of the increments xt+h−xt

are independent of t.

2.4 Time Series Processes

In time series analysis, the moving-average model (MA model), also known as

moving-average process, is a common approach for modeling univariate time

series. The moving-average model specifies that the output variable depends

linearly on the current and various past values of a stochastic (imperfectly

predictable) term. The autoregressive model (AR model) specifies that the

output variable depends linearly on its own previous values and on a stochas-

tic term (an imperfectly predictable term); thus the model is in the form of a

stochastic difference equation. Together with the autoregressive (AR) model,

the moving-average model is a special case and key component of the more

general ARMA and ARIMA models of time series, which have a more compli-

cated stochastic structure.

2.4.1 Moving Average Process MA(q)

A q-order moving average process, denoted MA(q) takes the form

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q (this process can also be expressed as:

Yt = Xt − µ = εt + θ1εt−1 + · · ·+ θqεt−q ).

The value of X at time t+1 is a linear function of past errors. We assume that

the error terms are independently distributed with a normal distribution with



mean zero and a constant variance σ2. Thus,

εt ∼ N (0, σ2) and cov(εi, εj) = 0 if i 6= j.

• Property 1: The mean of an MA(q) process is µ.

Proof: E(Xt) = µ+ E(εt) + θ1E(εt−1) + ...+ θqE(εt−q)

= µ+ 0 + θ1 · 0 + · · ·+ θq · 0 = µ.

• Property 2: The variance of an MA(q) process is

var(Xt) = σ2(1 + θ2
1 + · · ·+ θ2

q).

Proof: var(Xt) = 0 + var(εt) + θ2
1var(εt−1) + · · ·+ θ2

qvar(εt−q)

= σ2 + θ2
1σ

2 + · · ·+ θ2
qσ

2 = σ2(1 + θ2
1 + · · ·+ θ2

q).

• Property 3: The autocorrelation function of an MA(1) process is

ρk =


θ1

1+θ21
if k = 1

0 if k ≥ 2

Proof: An MA(1) process takes the form

Xt = εt + θ1εt−1

γ(0) = cov(Xt, Xt) = var(Xt) = σ2(1 + θ2
1) (property 2).

γ(1) = cov(Xt, Xt+1) = cov(εt + θ1εt−1, εt+1 + θ1εt)

= cov(εt, θ1εt) = θ1cov(εt, εt) = θ1σ
2.

γ(2) = cov(Xt, Xt+2) = cov(εt + θ1εt−1, εt+2 + θ1εt+1) = 0.

(cov(εi, εj) = 0 for i 6= j)

γ(k) = cov(Xt, Xt+k) = cov(εt + θ1εt−1, εt+k + θ1εt+k−1) = 0 for k > 3.



Thus, ρ1 = γ(1)
γ(0)

= θ1σ2

(1+θ21)σ2 = θ1
1+θ21

and ρk = γ(k)
γ(0)

= 0 for k ≥ 2.

• Property 4: The autocorrelation function of an MA(2) process is

ρk =



θ1+θ1θ2
1+θ21+θ22

if k = 1

θ2
1+θ21+θ22

if k = 2

0 if k ≥ 3

Proof: An MA(2) process takes the form

Xt = εt + θ1εt−1 + θ2εt−2

γ(0) = cov(Xt, Xt) = var(Xt) = σ2(1 + θ2
1 + θ2

2) (property 2).

γ(1) = cov(Xt, Xt+1) = cov(εt + θ1εt−1 + θ2εt−2, εt+1 + θ1εt + θ2εt−1)

= θ1cov(εt, εt) + θ1θ2cov(εt−1, εt−1) = θ1σ
2 + θ1θ2σ

2 = (θ1 + θ1θ2)σ2.

γ(2) = cov(Xt, Xt+2) = cov(εt + θ1εt−1 + θ2εt−2, εt+2 + θ1εt+1 + θ2εt)

= θ2cov(εt, εt) = θ2σ
2.

γ(k) = cov(Xt, Xt+k) = cov(εt + θ1εt−1 + θ2εt−2, εt+k + θ1εt+k−1 +

θ2εt+k−2) = 0 for k ≥ 3.

Thus,

ρ1 = γ(1)
γ(0)

= (θ1+θ1θ2)σ2

(1+θ21θ
2
2)+σ2 = θ1+θ1θ2

1+θ21+θ22
.

ρ2 = γ(2)
γ(0)

= θ2σ2

(1+θ21+θ22)σ2 = θ2
1+θ21+θ22

.

ρk = γ(k)
γ(0)

= 0 for k ≥ 3.

• Property 5: The autocorrelation function of an MA(q) process is

ρh =


θh+

∑q−h
j=1 θjθj+h

1+
∑q
j=1 θ

2
j

, if h ≤ q

0, if h > q

Proof: As in the case of MA(1) and MA(2),



we first calculate γ(1), γ(2), · · · , γ(q), · · ·

γ(1) = cov(Xt, Xt+1)

= cov(εt + θ1εt−1 + · · ·+ θqεt−q, εt+1 + θ1εt + · · ·+ θqεt−q+1)

= (θ1 + θ1θ2 + · · ·+ θqθq+1)σ2

γ(2) = cov(Xt, Xt+2)

= cov(εt + θ1εt−1 + · · ·+ θqεt−q, εt+2 + θ1εt+1 + · · ·+ θqεt−q+2

= (θ2 + θ2θ4 + · · ·+ θq−2θq)σ
2

...

γ(q) = cov(Xt, Xt+q)

= cov(εt + θ1εt−1 + · · ·+ θqεt−q, εt+q + θ1εt+q−1 + · · ·+ θqεt)

= θqσ
2

Now, γq+h = cov(Xt, Xt+q+h)

= cov(εt + θ1εt−1 + · · ·+ θqεt−q, εt+q+h + θ1εt+q+h−1 + · · ·+ θqεt+h) = 0

Thus, γ(h) = cov(Xt, Xt+h) =


(θh +

∑q−h
j=1 θjθj+h)σ

2, if h ≤ q

0, if h > q

Note that, γ(0) = cov(Xt, Xt) = var(Xt) = (1 + θ2
1 + · · ·+ θ2

q)σ
2

Consequently, ρh =


θh+

∑q−h
j=1 θjθj+h

1+
∑q
j=1 θ

2
j

, if h ≤ q

0, if h > q

• Property 6: A finite MA(q) process is stationary.

Proof: Let Xt = εt + θ1εt−11 + · · ·+ θqεt−q

In this case, E(Xt) = 0 and var(Xt) = (1 + θ2
1 + · · · + θ2

q)σ
2 do not

depend on t.



γ(h) = cov(Xt, Xt+h) =


(θh +

∑q−h
j=1 θjθj+h)σ

2, if h ≤ q

0, if h > q

is finite and

does not depend on t. Thus, the process is stationary.

Definition: A process Xt is said to be invertible if the random disturbance

at time t can be expressed as a convergent sum of present and past values of

Xt in the form :

εt =
∑∞

j=0 θjXt−j where
∑
|θj| <∞ .

We now define the lag function:

BiXt = Xt−i; for example, BXt = Xt−1 and B2Xt = Xt−2.

For a moving average model of orders q, the equation can be re-written using

the backshift operator B:

Xt = εt + θ1εt−1 + · · ·+ θqεt−q

Then, Xt = (1 + θ1B + · · ·+ θqB
q)εt

A process is invertible if and only if all the roots of

β0 + β1B + β2B
2 + · · ·+ βqB

q = 0 all lie outside the unit circle.

Example: Let Xt = εt + θεt−1

= (1 + θB)εt

1 + θB = 0↔ B = −1
θ

Thus, this process is invertible iff |B| > 1↔ |−1
θ
| > 1↔ |θ| < 1.

2.4.2 Auto Regressive Process AR(p)

A p-order auto regressive process, denoted AR(p) takes the form

Yt = α0 + α1Yt−1 + · · ·+ αpYt−p + εt ;

The value of Y at time t is a linear function of Y at earlier times plus a fixed



constant and a random error term.

We assume that the error terms are independently distributed based on a nor-

mal distribution with zero mean and a constant variance σ2 and that the error

terms are independent of the Y values (i.e εt ∼ N (0, σ2), cov(εi, εj) = 0 for

i 6= j and cov(εi, Yj) = 0 for all i, j ).

A first-order auto regressive process, denoted AR(1), takes the form

yt = α0 + α1Yt−1 + εt.

We see that the value of Y at time t+ 1 is a linear function of Y at time t plus

a fixed constant and a random error term.

Figure 2.1: Autoregressive Process with differing values of φ(0, 0.8, 1).

• Property:

An AR(1) process is stationary if |α1| < 1.

Proof: AR(1): Yt = α0 + α1Yt−1 + εt



We can rewrite AR(1) as : Yt − α0 = α1Yt−1 + εt

Yt − α0 = α1(α1Yt−2 + εt−1) + εt

= α2
1(α1Yt−3 + εt−2) + α1εt−1 + εt

= α3
1(α1Yt−4 + εt−3) + α2

1εt−2 + α1εt−1 + εt

= εt + α1εt−1 + α2
1εt−2 + α3

1εt−3 + · · ·

E(Yt−α0) = E(Yt)−α0 = E(εt) +α1E(εt−1) +α2
1E(εt−2) +α3

1E(εt−3) +

· · · = 0

Therefore, E(Yt) = α0.

γ(0) = var(Yt − α0) = var(Yt) = cov(Yt − α0, Yt − α0)

= cov(εt+α1εt−1+α2
1εt−2+α3

1εt−3+· · · , εt+α1εt−1+α2
1εt−2+α3

1εt−3+· · · )

= σ2 + α2
1σ

2 + α4
1σ

2 + · · · = (1 + α2
1 + α4

1 + · · · )σ2

= σ2

1−α2
1

First note that for any constant a, cov(a+ x, a+ y) = cov(x, y)

Then, γ(1) = cov(Yt, Yt+1) = cov(Yt − α0, Yt+1 − α0)

= cov(εt+α1εt−1+α2
1εt−2+α3

1εt−3+· · · , εt+1+α1εt+α
2
1εt−1+α3

1εt−2+· · · )

= α1σ
2 + α3

1σ
2 + α5

1σ
2 + · · ·

= (α1 + α3
1 + α5

1 + · · · )σ2

= α1σ2

1−α2
1

...

γ(k) =
αk1σ

2

1−α2
1

(by induction on k).

Then, ρk = γ(k)
γ(0)

= αk1 for k = 0, 1, 2, · · ·

when |α1| < 1, the autocovariance do not explode as k increases.

Thus, the process is stationary if |α1| < 1.

Note that if |α1| = 1, we have a random walk.



• Property: The mean of the Yt in a stationary AR(p) process is

µ = α0

1−
∑p
j=1 αj

Proof: Since the process is stationary, for any k, E[Yt] = E[Yt−k], a

value which we will denote µ. Since E[εt] = 0, E[α0] = α0 and

Yt = α0 + α1Yt−1 + · · ·+ αpYt−p + εt

It follows that

µ = E[Yt] = E[α0] + α1E[Yt−1] + · · ·+ αpE[Yt−p] + E[εt]

= α0 + α1µ+ · · ·+ αpµ

µ = α0 + µ(α1 + · · ·+ αp)

µ(1−
∑p

j=1 αj) = α0

Thus, µ = α0

1−
∑p
j=1 αj

.

• Property: For any stationary AR(p) process. The autocovariance at

lag k > 0 can be calculated as

γk = α1γk−1 + α2γk−2 + · · ·+ αpγk−p

Similarly the autocorrelation at lag k > 0 can be calculated as

ρk = α1ρk−1 + α2ρk−2 + · · ·+ αpρk−p

Here we assume that γh = γ−h and ρh = ρ−h if h < 0, and ρ0 = 1. These

are known as the Yule-Walker equations.

• Property: The Yule-Walker equations also hold where k = 0 provided

we add a σ2 term to the sum. This is equivalent to

γ0 = α1γ1 + α2γ2 + · · ·+ αpγp + σ2

For example, is the case of AR(1): ρ0 = 1; ρ1 = α1ρ0 = α1;

ρ2 = α1ρ1 = α1α1 = α2
1; · · · ; ρk = α1ρk−1 = αk1.

And, γ0 = α1γ1 + σ2 = α1ρ1γ0 + σ2 = α2
1γ0 + σ2



Then, (1− α2
1)γ0 = σ2 and γ0 = σ2

1−α2
1

Now, in the AR(2) case, we have:

ρ0 = 1

ρ1 = α1ρ0 + α2ρ1 ↔ (1− α2)ρ1 = α1 ↔ ρ1 = α1

1−α2

ρ2 = α1ρ1 + α2ρ0 = α1
α1

1−α2
+ α2 =

α2
1

1−α2
+ α2

now for the variance, γ0 = α1γ1 + α2γ2 + σ2 = α1ρ1γ0 + α2ρ2γ0 + σ2

Then, (1−α1ρ1−α2ρ2)γ0 = σ2↔ γ0 = σ2

1−
α21

1−α2
−(

α2α
2
1

1−α2
+α2

2)
= (1−α2)σ2

(1−α2)−α2
1−α2α2

1−(1−α2)α2
2
.

2.4.3 Auto Regressive Moving Average Process ARMA(p,q)

An autoregressive moving average (ARMA) process consists of both autore-

gressive and moving average terms. If the process has terms from both an

AR(p) and MA(q) process, then the process is called ARMA(p, q) and can be

expressed as

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

where εt ∼ N (0, σ2).

We can define an ARMA(p, q) process with zero mean by removing the con-

stant term (i.e. φ0) and saying that X1, X2, · · · , Xn has an ARMA(p, q)

process with mean µ if the time series z1, . . . , zn has an ARMA(p, q) process

with zero mean where zi = Xi–µ.

If we include the constant term, then as in the AR(p) case, for a stationary

ARMA(p, q) process

µ = φ0
1−
∑p
j=1 φj

.

An equivalent expression for an ARMA(p, q) process with zero mean is

Xt −
∑p

j=1 φjXt−j = εt +
∑q

j=1 θjεt−j



Or φ(B)Xt = θ(B)εt.

It must be noted that in this representation, both the polynomial AR and

the polynomial MA should not have any common factors. This will ensure

that there is no parameter redundancy. Should a common factors exist, it will

introduce wrong representations of time dependency. The following example

will show how parameter redundancy can occur:

Assume a simple model,

Xt = εt

0.5Xt−1 = 0.5εt−1

with a simple subtraction manipulation, we obtain the following:

Xt = 0.5Xt−1 + εt − 0.5εt−1

which seems to indicate ARMA(1,1) model, but in actual fact it is falsely mis-

represented. Thus, one should eliminate any common factors between the AR

and MA polynomials to establish the correct time dependency representation.

• A linear process {Xt} is causal if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∑∞

j=0 |ψj| <∞ and Xt = ψ(B)εt

And it is invertible if there is a

π(B) = π0 + π1B + π2B
2 + · · ·

with
∑∞

j=0 |πj| <∞ and εt = π(B)Xt .

Theorem 2.4.1. If φ and θ have no common factors,a (unique) stationary

solution to φ(B)Xt = θ(B)εt exists if and only if the roots of φ(z) avoid the



unit circle: |z| = 1→ φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp 6= 0.

This process is causal if and only if the roots of φ(z) are outside the unit circle:

|z| ≤ 1→ φ(z) = 1− φ1z − φ2z
2 − · · · − φpzp 6= 0.

It is invertible if and only if the roots of θ(z) are outside the unit circle:

|z| ≤ 1→ θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q 6= 0.

Example 1 : Let xt = αxt−1 + εt + βεt−1

a- Identify the process.

b- Under what condition(s) the process is stationary? is invertible?

Solution:

a- The process is an ARMA(1,1);

xt − αxt−1 = εt + βεt−1.

(1− αB)xt = (1 + βB)εt.

b- The process is stationary :

if the roots of (1− αB) = 0 lie outside the unit circle

equivalent to |B| = | 1
α
| > 1 ↔ |α| < 1.

The process is invertible :

if the roots of 1 + βB = 0 all lie outside the unit circle

equivalent to |B| = |−1
β
| > 1↔ |β| < 1.

Example 2 : Let xt = 1
3
xt−1 + 2

9
xt−2 + εt ; Is this process station-

ary?



Solution: (1− 1
3
B − 2

9
B2)xt = εt

(1− 1
3
B − 2

9
B2) = 0

B1 = 3
2

and B2 = 3 , then |B1| > 1 and |B2| > 1 Thus, the process is

stationary.

Partial Autocorrelation Function (PACF)

We have seen earlier that the autocorrelation function of MA(q) models

is zero for all lags greater than q as these are q-correlated processes.

Hence, the ACF is a good indication of the order of the process. How-

ever AR(p) and ARMA(p,q) processes are “ fully ” correlated, their ACF

tails off and never becomes zero, though it may be very close to zero. In

such cases it is difficult to identify the process on the ACF basis only. In

this section we will consider another correlation function, which together

with the ACF will help to identify the models. The function is called

Partial Autocorrelation Function (PACF). Before introducing a formal

definition of PACF we motivate the idea for AR(1).

Let Xt = φXt−1 + εt be a causal AR(1) process. Then

γ(2) = cov(Xt, Xt−2)

= cov(φXt−1 + εt, Xt−2)

= cov(φ(φXt−2 + εt−1) + εt, Xt−2) = cov(φ2Xt−2 + φεt−1 + εt, Xt−2)

= φ2cov(Xt−2, Xt−2) = φ2γ(0)

The autocorrelation is not zero because Xt depends on Xt−2 through

Xt−1. Due to the iterative kind of AR models there is a chain of depen-



dence. We can break this dependence by removing the influence of Xt−1

from both Xt and Xt−2 to obtain:

Xt − φXt−1 and Xt−2 − φXt−1 for which the covariance is zero, i.e.,

cov(Xt − φXt−1, Xt−2 − φXt−1) = cov(εt, Xt−2 − φXt−1) = 0.

Similarly, we obtain zero covariance for Xt and Xt−3 after breaking the

chain of dependence, i.e. removing the dependence of the two variables

on Xt−1 and Xt−2, i.e. for Xt − f(Xt−1, Xt−2) and Xt−3 − f(Xt−1, Xt−2)

for some function f. Continuing this we would obtain zero covariances for

variablesXt−f(Xt−1, Xt−2, · · · , Xt−τ+1) andXt−τ−f(Xt−1, Xt−2, · · · , Xt−τ+1)

then the only nonzero covariance is for Xt and Xt−1. These covariances

with an appropriate function f divided by the variance of the process are

the partial autocorrelation. Hence, for a causal AR(1) process we

would have the PACF at lag 1 equal to ρ(1) and at lags > 1 equal to 0.

In other words, to calculate φkk, let:

Xt+k = φk1Xt+k−1 + φk2Xt+k−2 + · · ·+ φkkXt + εt+k

then, multiplying Xt+k by Xt+k−i for i = 1, · · · , k and taking expecta-

tions we obtain:

E[Xt+kXt+k−i] = φk1E[Xt+k−1Xt+k−i]+φk2E[Xt+k−2Xt+k−i]+· · ·+φkkE[XtXt+k−i]+

E[εt+kXt+k−i]

Then, γi = φk1γi−1 + φk2γi−2 + · · ·+ φkkγi−k

Therefore, ρi = φk1ρi−1 + φk2ρi−2 + · · ·+ φkkρi−k for i = 1, · · · , k

Now, for k = 1 we have ρ1 = φ11ρ0 = φ11

For k = 2, we have:

for i = 1, ρ1 = φ21ρ0 + φ22ρ1

for i = 2, ρ2 = φ21ρ1 + φ22ρ0



Therefore, φ22 =

∣∣∣∣∣∣∣∣∣∣
ρ0 ρ1

ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ρ0 ρ1

ρ1 ρ0

∣∣∣∣∣∣∣∣∣∣

=
ρ2−ρ21
1−ρ21

For k = 3, we have:

For i = 1, ρ1 = φ31ρ0 + φ32ρ1 + φ33ρ2

For i = 2, ρ2 = φ31ρ1 + φ32ρ0 + φ33ρ1

For i = 3, ρ3 = φ31ρ1 + φ32ρ0 + φ33ρ0

φ33 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the same way, we calculate φkk for all k.

Example: The PACF of AR(1)

Consider the AR(1) process

Xt = αXt−1 + εt Where εt ∼ N (0, σ2)

Where |α| < 1, i.e., a causal AR(1). We have seen before that ρk = αk;

then, φ11 = ρ1 = α

φ22 =
ρ2−ρ21
1−ρ21

= α2−α2

1−α2 = 0



φ33 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α α

α 1 α2

α2 α α3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α α2

α 1 α

α2 α 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Thus, φkk =


α, if k = 1

0, if k ≥ 2

Example: The PACF of AR(2)

Consider the AR(2) process

Xt = α1Xt−1 + α2Xt−2 + εt Where εt ∼ N (0, σ2)

We know that ρ0 = 1; ρ1 = α1

1−α2
; ρ2 = α1ρ1 + α2ρ0

Then,

φ11 = ρ1 = α1

1−α2

φ22 =
ρ2−ρ21
1−ρ21

=
α1

α1
1−α2

+α2−(
α1

1−α2
)2

1−(
α1

1−α2
)2

=
α2
1(1−α2)+α2(1−α2)2−α2

1

(1−α2)2−α2
1

=
−α2

1α2+α2(1−α2)2

(1−α2)2−α2
1

φkk = 0 for k ≥ 3

Now for MA(q),

the ACF of an MA(1) is given by

ρk =


θ

1+θ2
, if k = 1

0, if k ≥ 2

Using ρk = 0 for k > 1 we can show that the PACF of MA(1) is

φkk = θk(1−θ2)

1−θ2(k+1) for k > 1

Contrary to its ACF, which cuts off after lag 1, the PACF of an MA(1)

model decays exponentially.



For a general MA(q) process, the ACF “ cuts down ” to zero after lag q

and the PACF will have exponential behavior depending on the charac-

teristic roots of

Θ(B) = (1 + θ1B + θ2B
2 + · · ·+ θqB

q) = 0

The PACf of ARMA(p,q) model:

An invertible ARMA model has an infinite AR representation, hence the

PACF will not cut off. The following table summarizes the behavior of

the PACF of the causal and invertible ARMA models

AR(p) MA(q) ARMA(p,q)

ACF Decays exponentially after

lag p

cuts off after lag q exponential decay starts

after max(p,q)

PACF cuts off after lag p decays exponentially after lag q exponential decay starts

after max (p,q)



Chapter 3

Estimation of the

Auto-Correlation Function

3.1 Introduction

In chapter 2, we have seen that the basic characterization of an ARMA (p,q)

process is in its ACF and PACF functions.

Here, we consider the estimation of both quantities by their sample counter-

part. Mainly, we will investigate the probability distribution of the sample

correlation and hence a confidence interval for a function of the ACF will be

constructed. We conclude with a strategy for ARMA (p,q) identification.

3.2 Point Estimation:

The sample auto correlation coefficient, SACF, based on a realization of n

measurements from the process {Xt}, X = (X1, · · · , Xn)′, is defined as the

26



following:

rk =

∑n−k
t=1 (Xt − X̄)(Xt+k − X̄)∑n−k

t=1 (Xt+k − X̄)2
(3.2.1)

and the kth-lag SPACF, φ̂kk, is given by

φ̂1 = r1 and

φ̂kk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 · · · rk

r1 1 · · · rk−1

...
...

...
...

rk−1 rk−2 · · · r1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 · · · rk−1

r1 1 · · · rk−2

...
...

...
...

rk−1 rk−2 · · · r1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.2.2)

rk is the sample auto correlation coefficient of the random variables Xt and

Xt+k. This may be considered as a direct application to the estimation of

the population correlation coefficient in bivariate normal random variables. In

this context, let {(xi, yi), i = 1, · · · , n} be a random sample from a bivariate

normal distribution with the joint probability function

f(x, y) =
1

2πσxσy
√

1− ρ2
exp

−1

2(1− ρ2)
{(x− µx

σx
)2−2ρ(

x− µx
σx

)(
y − µy
σy

)+(
y − µy
σy

)2}

(3.2.3)

where µx = E(x), µy = E(y), σx =
√
var(x), σy =

√
var(y) and ρ is the pop-

ulation correlation coefficient.

It is in common to estimate ρ by the sample correlation which is known as



Pearson’s product moment:

ρ̂ =
1

n− 1

n−1∑
i=1

(
xi − x̄
Sx

)(
yi − ȳ
Sy

) (3.2.4)

where x̄ =
∑n

i=1 xi/n, ȳ =
∑n

i=1 yi/n, S2
x =

∑n
i=1(xi − x̄)2/n− 1 and

S2
y =

∑n
i=1(yi − ȳ)2/n− 1.

Fisher(1915) obtained the following representation of the exact density func-

tion of ρ̂ given in equation (3.2.4)

fρ(x) =
2n−3

π(n− 3)!
(1−ρ2)(n−1)/2(1−x2)(n−2)/4

∞∑
i=0

Γ2(
n− i+ 1

2
)
(2ρx)i

i!
(3.2.5)

Where −1 < x < 1. The series representation in equation (3.2.5) converges

very slowly. Moreover, the normal distribution approximation of ρ̂ is markedly

skewed when n is small and |ρ| is large. Winterbottom (1979) showed that

normal approximation of the distribution of ρ̂ requires large sample size n and

the variance of ρ̂ changes with the mean E(ρ̂). We shall survey the population

most useful methods to construct a (1− α)% confidence interval for ρ.

3.3 Fisher’s z-Transformation:

Fisher’s z-transformation also known as variance stabilizing transformation.

It’s given by z = 1
2
log(1+r

1−r ) = tanh−1. Fisher(1915) has shown that z has an

asymptotic distribution with mean ζ = 1
2
log 1+ρ

1−ρ and variance 1
n−3

. Therefore,

a (1− α)% confidence interval for z is given by

(
tanh(z −

zα/2√
n− 3

), tanh(z +
zα/2√
n− 3

)

)
(3.3.1)



where zγ is the γth upper quantile of a standard normal distribution.

3.4 Hotelling’s Approximations:

Hotelling gave four modification of Fisher’s z-transformation:

z1 = z − 7z+r
8(n−1)

, ζ1 = ζ − 7ζ+ρ
8(n−1)

z2 = z − 7z+r
8(n−1)

− 119z+57r+3r2

384(n−1)2
, ζ2 = ζ − 7ζ+ρ

8(n−1)
− 119ζ+57ρ+3ρ2

384(n−1)2

z3 = z − 3z+r
4(n−1)

, ζ3 = ζ − 3ζ+ρ
4(n−1)

z4 = z − 3z+r
4(n−1)

− 23z+33r−5r2

96(n−1)2
, ζ4 = ζ − 3ζ+ρ

4(n−1)
− 23ζ+33ρ−ρ2

96(n−1)2

and showed that the zi ∼ N (ζi,
1

n−1
) for i = 1 · · · 4. Consequently, we can

construct four confidence intervals for ρ based on these approximations. How-

ever, there is no closed form for each of these confidence intervals, and they

are obtained numerically.

3.5 Ruben’s Approximation:

Ruben (1996) shows that for large n,

zhr =
( 2n−5

2
)
1
2 r̄−( 2n−3

2
)
1
2 ρ̄

(1+ 1
2

(r̄2+ρ̄2))1/2
where r̄ = r√

(1−r2)
and ρ̄ = ρ√

(1−ρ2)
is asymptotically

distributed as a standard normal distribution. Therefore, we can construct a

confidence interval for ρ numerically based on this approximation.



3.6 Muddapur’s Method:

Muddapur(1988) considered the test statistic:

f = (1+r)(1−ρ)
(1−r)(1+ρ)

,

He showed that it has an approximate F distribution with n-2 and n-2 degrees

of freedom. Note that f is related to Fisher’s z-transform through:

log(f) = 2(z − ζ),

Therefore, a 100(1− α)% confidence interval for ρ is(
(1+Fα/2)r+(1−Fα/2)

(1+Fα/2)+(1−Fα/2)r
,

(1+Fα/2)r−(1−Fα/2)

(1+Fα/2)−(1−Fα/2)r

)
where Fγ is the γth upper quantile of the F distribution with n-2 and n-2

degrees of freedom.

3.7 Haddad and Provost’s Method:

Let D+ =
∑n

i=1(X∗i1 + X∗i2)2 and D− =
∑n

i=1(X∗i1 − X∗i2)2, where X∗ij =

Xij−X̄i
Si

, i = 1, 2, j = 1, · · · , n are the standard values. Haddad and Provost’s

(2011) proposed an approximately 100(1 − α)% confidence interval for ρ as(
D+−D−F ∗

α/2

D++D−F ∗
α/2
,
D+−D−F ∗

1−α/2
D++D−F ∗

1−α/2

)
where F ∗γ is the γth upper quantile of the F distri-

bution with n-1 and n-1 degrees of freedom.

In conclusion, a basic and important concern in science is to test the hy-

pothesis of uncorrelation versus significant correlation between two quantita-

tive variables. That is the hypothesis of H0 : ρ = 0 vs. Ha : ρ 6= 0. Although

transform methods seem to stabilize the probability distribution of the sample



correlation coefficient, there is a good deal of interest in the probability dis-

tribution of the sample correlation coefficient. The methods that have been

considered in this chapter show powerful tests for the uncorrelation hypoth-

esis even when n is small as show in the article of Kazemi and Jafari [2].

Unfortunately, these methods fall short of answering the hypothesis of linear

dependence, that is, H0 : ρ = 1. However, there is a model that is capable of

testing both hypothesis is the autoregressive process model. Thus if one con-

siders the AR(1) model: Xt = φXt−1 + wt, then the hypothesis of φ = 0 can

be easily answered through the methods of this chapter, while the hypothesis

of φ = 1 will be dealt with in the next chapter.



Chapter 4

Unit Root Tests

4.1 Introduction:

A unit root process is a linear stochastic process that has a unit root, i.e.

the process characteristic equation has a root equal to one. Such process is

non-stationary.

In probability theory and statistics, this may cause problems in statistical

inference involving time series models: for non-stationary series, it’s impossible

to predict the behavior of the series.

It’s important to distinguish between a trend stationary process and a unit

root process. Note that, both processes are non-stationary. However, the

impact of a shock on both series are different: in the case of a trend stationary

process, the time series will converge again towards the growing mean, while

in the case of a unit root process, the impact of a shock will be permanent. If

a root of the process’s characteristic equation is larger than 1, then it is called

an explosive process.
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The presence of a unit root can be tested using a unit root test.

This chapter is organized as follows. In the section 4.2, we are going to

define the difference and integrated processes. The sections 4.3 till 4.7 describe

some popular unit root tests. Section 4.8 discusses some problems associated

with traditional unit root and stationarity tests and at the end section 4.9 will

talk in brief on the importance of unit root tests in finance.

Figure 4.1: Random Walk Processes with and without drift.

Remark: As it is mentioned in the introduction it’s important to differentiate

between two important cases:

• A non stationary process with a deterministic trend where Yt is a function of

time. Yt = α+ βt+ εt (β is a parameter, εt ∼ WN (0, σ2), and α a constant).

Such process become stationary by detrending i.e. subtract Yt and Yt−1 to

obtain ∆Yt = β + (εt − εt−1) which is stationary.

• A process with a stochastic trend i.e. Yt is a function of the past value. Let’s

consider an AR(1) process



Yt = c+ Yt−1 + εt Where c is a constant and εt ∼ WN (0, σ2)

As long as, |φ| < 1, the process is stationary (chapter 2). In this chapter we

will discuss the case where |φ| = 1.

Figure 4.2: A Deterministic Trend Process.

4.2 Difference and Integrated Processes

In the Box-Jenkins approach to analyzing time series, a key question is whether

to difference the data , i.e., to replace the raw data {Xt} by the differenced

series {Xt −Xt−1}, or not. Experience indicates that most economic time se-

ries tend to wander and are not stationary, but that differencing often yields a

stationary result. A key example, which often provides a fairly good descrip-

tion of actual data, is the random walk, Xt = Xt−1 + εt, where εt is white

noise, assumed here to be independent, each having the same distribution.

The random walk is said to have a unit root.



To understand more what this means, let’s recall the condition of stationarity

of an AR(p) model. We said in Chapter 2 that an AR(p) process of the form

xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p is stationary if the roots of

(1− α1z − α2z
2 − · · · − αpzp) = 0 lie outside the unit circle.

In the case of a Random Walk which is an AR(1): Xt = αXt−1 + εt with

α = 1. Indeed, for an AR(1) to be stationary, it is necessary that all the roots

of the equation 1− αz = 0 lie outside the unit circle. We see that the AR(1)

is stationary if and only if −1 < α < 1. For the Random Walk, we have a

unit root, that is, a root equal to one. The first difference of a random walk

is Stationary since Xt −Xt−1 = εt a white noise process.

Figure 4.3: A White Noise Process.

4.2.1 Integrated process

Definition:

The series is Integrated of order d, denoted by I(d), where d is an integer



with d ≥ 1, if the series and all its differences up to the (d − 1)th are non

stationary, but the dth difference is stationary.

A series is said to be integrated of order zero, denoted by I(0), if the series is

both stationary and invertible.

if the series {Xt} is I(d) with d ≥ 1, then {Xt −Xt−1} is I(d-1).

Example: Consider an AR(2) process

Xt = 2Xt−1 −Xt−2 + εt;

Then, the process is stationary if all the roots of the equation (1− 2z + z2) =

(z − 1)2 = 0 lie outside the unit circle. In this example, the process has

two unit roots, thus the process is not stationary. Also, the first difference

is not stationary : Xt − Xt−1 = 2Xt−1 − Xt−2 + εt − 2Xt−2 + Xt−3 − εt−1 =

2Xt−1− 3Xt−2 +Xt−3 + εt− εt−1. The roots of the equation 2z− 3z2 + z3 = 0

are z1 = −3−
√

17
2

, z2 = 0, z3 = −3+
√

17
2

. |z2| < 1 and |z3| < 1 do not lie outside

the unit circle. Consequently, the first difference is not stationary.

Now, the second difference is (Xt−Xt−1)− (Xt−1−Xt−2) = Xt−2Xt−1 +Xt−2

which is equal to εt by definition of the given AR(2). Thus the second difference

is stationary. Consequently, {xt} is I(2).

4.3 Dickey-Fuller and Augmented Dickey-Fuller(ADF)

Tests

Named for American statisticians David Dickey and Wayne Fuller, who devel-

oped the test in 1979, the Dickey-Fuller test is used to determine whether a

unit root is present in an autoregressive model. It is the simplest approach to



test for a unit root, but most economic and financial times series have a more

complicated and dynamic structure than what can be captured by a simple

autoregressive model, which is where the augmented Dickey-Fuller test comes

into play.

With a basic understanding of that underlying concept of the Dickey-Fuller

test, it is not difficult to jump to the conclusion that an augmented Dickey-

Fuller test (ADF) is just that: an augmented version of the original Dickey-

Fuller test. In 1984, the very same statisticians expanded their basic autore-

gressive unit root test (the Dickey-Fuller test) to accommodate more complex

models with unknown orders (the augmented Dickey-Fuller test).

Similar to the original Dickey-Fuller test, the augmented Dickey-Fuller test

is one that tests for a unit root in a time series sample. The test is used

in statistical research and econometric, or the application of mathematics,

statistics, and computer science to economic data.

4.3.1 Dickey-Fuller Test:

The early work on testing for a unit root in time series was done by Dickey and

Fuller (Dickey and Fuller 1979, Fuller 1976). The basic objective of the test

is to test the null hypothesis that φ = 1 in Yt = φYt−1 + εt (εt ∼ WN (0, σ2))

against the one-sided alternative φ < 1. The hypotheses of interest are:

H0 : φ = 1 (unit root in φ(z) = 0)⇒ Yt ∼ I(1)

H1 : |φ| < 1⇒ Yt ∼ I(0)

Subtracting Yt−1 from both sides, we can rewrite the AR(1) model as:

∆(Yt) = Yt − Yt−1 = (φ− 1)yt−1 + εt = δYt−1 + εt.



Now a test of φ = 1 is a simple t-test of whether the parameter on the lagged

level of y is equal to zero.

H0 : δ = 0⇒ Yt ∼ I(1)

H1 : |δ| < 0⇒ Yt ∼ I(0)

There are three versions of the Dickey-Fuller unit root test:

1- Test for a unit root without drift (constant) and without trend:

∆(Xt) = δXt−1 + εt

2- Test for a unit root with drift only: ∆Xt = a0 + δXt−1 + εt

3- Test for a unit root with drift and deterministic time trend:

∆Xt = a0 + a1t+ δXt−1 + εt

The test statistic is: tφ=1 = φ̂−1

SE(φ̂)
= δ̂

SE(δ̂)

where φ̂ is the least squares estimate and SE(φ̂) is the usual standard error

estimate.

If {Yt} is stationary (|φ| < 1) then it can be shown (c.f Hamilton (1994) pg.

216)
√
T (φ̂− φ)

d−→ N (0, (1− φ2)) 1. Then, φ̂
A∼ N (φ, 1

T
(1− φ2))

And it follows that tφ=1
A∼ N (0, 1). However, under the null hypothesis of

non-stationarity the above result gives φ̂
A∼ N (1, 0)

which clearly does not make any sense. The problem is that under the unit

root null, {Yt} is not stationary and ergodic , and the usual sample moments

do not converge to fixed constants. Instead, Phillips (1987) showed that the

sample moments of {Yt} converge to random functions of Brownian and that

under the null hypothesis H0 : φ = 1:

T (φ̂− 1)
d−→
∫ 1
0 W (r)dW (r)∫ 1
0 W (r)2dr

and then, tφ=1
d−→

∫ 1
0 W (r)dW (r)

(
∫ 1
0 W (r)2dr)1/2

1the sign
d−→ means converges in distribution



Figure 4.4: The Dickey-Fuller Distributions.

Consequently, φ̂ is not asymptotically normally distributed and tφ=1 is not

asymptotically standard normal.

The limiting distribution of tφ=1 is called the Dickey-Fuller(DF) distribu-

tion and does not have a closed form representation. Critical values are derived

from Monte Carlo experiments in, for example, Fuller (1976).

The null hypothesis of a unit root is rejected in favor of the stationary

alternative in each case if the test statistic is smaller than the critical value.

Probability to the Right of Critical Value:

Sample size 0.99 0.975 0.95 0.99 0.10 0.05 0.025 0.01
25 -2.66 -2.26 -1.95 -1.60 0.92 1.33 1.70 2.16
50 -2.62 -2.25 -1.95 -1.61 0.91 1.31 1.66 2.08
100 -2.60 -2.24 -1.95 -1.61 0.90 1.29 1.64 2.03
250 -2.58 -2.23 -1.95 -1.62 0.89 1.29 1.63 2.01
500 -2.58 -2.23 -1.95 -1.62 0.89 1.28 1.62 2.00
∞ -2.58 -2.23 -1.95 -1.62 0.89 1.28 1.62 2.00

Table 4.1: Testing ρ = 1 in Yt = ρYt−1 + εt



Sample size 0.99 0.975 0.95 0.99 0.10 0.05 0.025 0.01
25 -3.75 -3.33 -3.00 -2.62 -0.37 0.00 0.34 0.72
50 -3.58 -3.22 -2.93 -2.60 -0.40 -0.03 0.29 0.66
100 -3.51 -3.17 -2.89 -2.58 -0.42 -0.05 0.26 0.63
250 -3.46 -3.14 -2.88 -2.57 -0.42 -0.06 0.24 0.62
500 -3.44 -3.13 -2.87 -2.57 -0.43 -0.07 0.24 0.61
∞ -3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60

Table 4.2: Testing ρ = 1 in Yt = α + ρYt−1 + εt

Sample size 0.99 0.975 0.95 0.99 0.10 0.05 0.025 0.01
25 -4.38 -3.95 -3.60 -3.24 -1.14 -0.80 -0.50 -0.15
50 -4.15 -3.80 -3.50 -3.18 -1.19 -0.87 -0.58 -0.24
100 -4.04 -3.73 -3.45 -3.15 -1.22 -0.90 -0.62 -0.28
250 -3.99 -3.69 -3.43 -3.13 -1.23 -0.92 -0.64 -031
500 -3.98 -3.68 -3.42 -3.13 -1.24 -0.93 -0.65 -0.32
∞ -3.96 -3.66 -3.41 -3.12 -1.25 -0.94 -0.66 -0.33

Table 4.3: Testing ρ = 1 in Yt = α + βt+ ρYt−1 + εt

4.3.2 Augmented Dickey-Fuller Test(ADF):

The Dickey-Fuller test described above is only used for an AR(1) process with

white noise errors. However, many time series have a more complicated struc-

ture. Said and Dickey (1984) augment the basic autoregressive unit root test

to accommodate general ARMA(p,q) models with unknown orders and this

test is called Augmented Dickey-Fuller(ADF).

The testing procedure for the ADF test is the same as for the Dickey–Fuller

test : the hypothesis that a time series Yt is I(1) against the alternative that

it is I(0) assuming that Yt is an ARMA process. To test for a unit root using

the ADF test, one estimates the following model:

Yt = α + βt+ φYt−1 +
∑p

i=1 δi∆Yt−i + εt; (Appendix A)

An alternative formulation of the ADF test regression is

∆Yt = α + βt+ πYt−1 +
∑p

i=1 δi∆Yt−i + εt where π = φ− 1;



where α is a constant,β the coefficient on a time trend and the p lagged differ-

ence terms, ∆Yt−i, are used to approximate the ARMA structure of the errors,

and the value of p is set so that the error εt is serially uncorrelated. The error

term is also assumed to be homoskedastic. 2 the ADF t-statistic is given by:

ADFt = tφ=1 = φ̂−1

SE(φ̂)
= π̂

SE(π̂)
.

Under the null hypothesis, ∆Yt is I(0) which implies that π = 0. The ADF

t-statistic is then the usual t-statistic for testing π = 0.

The selection of n is made such that the residual term in the model is ap-

proximately white noise (e.g. has a mean of zero, a finite variance, and is not

serially correlated). The choice of lag length is important. If too few lags are

included, there will be remaining auto correlation and size distortion, but if

too many lags are included then the power of the test will suffer. In practice,

there are several approaches to determining maximum lag length.

Ng. and Perron (1995) suggested to set an upper bound pmax for p (in prac-

tice often equal to Schwert’s rule of thumb) and then estimate the ADF test

regression with p = pmax. If |tπ(p)| > 1.6, set p = pmax and perform the ADF

test. Otherwise, reduce the lag length by one and repeat the process.

Schwert’s (1989) rule of thumb for determining pmax is

pmax =
[
12( T

100
)1/4
]

( pmax is the integer part).

In general, a p-value of less than 5% means you can reject the null hypothesis

that there is a unit root. You can also compare the calculated ADFt statistic

with a tabulated critical value. If the ADFt statistic is more negative than

the table value, reject the null hypothesis of a unit root.

2Homoskedastic refers to a condition in which the variance of the error term in a regres-
sion model is constant.



Note that, the more negative the ADF test statistic, the stronger the evidence

for rejecting the null hypothesis of a unit root.

4.4 Phillips-Perron Unit Root Tests:

The Phillips-Perron (PP) unit root tests differ from the ADF tests mainly

in how they deal with serial correlation and heteroskedasticity 3 in the er-

rors. The ADF test seeks to approximate the ARMA structure of the errors

in the test regression. The PP tests correct for any serial correlation and

heteroskedasticity in the errors non-parametrically by modifying the Dickey

Fuller test statistics.

The test regression: ∆Yt = α + βt + πYt−1 + ut where ut is I(0) and may be

heteroskedastic. The modified statistics denoted Zt and Zπ are given by:

Zt =
(
σ̂2

λ̂2

) 1
2
.tπ=0 − 1

2

(
λ̂2−σ̂2

λ̂2

)
.
(
T.SE(π̂)

σ̂2

)
;

Zπ = Tπ̂ − 1
2
.T

2.SE(π̂)
σ̂2 (λ̂2 − σ̂2) ;

The terms σ̂2 and λ̂2 are consistent estimates of the variance parameters:

σ2 = lim
T→ ∞

T−1

T∑
t=1

E
[
u2
t

]

λ2 = lim
T→∞

T∑
t=1

E
[
T−1S2

T

]

3Heteroskedastic refers to a condition in which the variance of the residual term, or error
term, in a regression model varies widely.



where ST =
∑T

t=1 ut. Under H0 : π = 0, the PP Zt and Zπ statistics have

the same asymptotic distributions as the DF t-statistic and normalized bias

statistics. One advantage of the PP tests over the ADF tests is that the PP

tests are robust to general forms of heteroskedasticity in the error term ut.

Also, the PP test does not require one to specify a model and to select the

number of lags.

4.5 Kwiatkowski Phillips Schmidt Shin (KPSS)

Stationarity Test:

Unlike the ADF and PP tests, the KPSS test has the null hypothesis of

stationarity around a deterministic trend and the alternative of a unit root.

Kwiatkowski, Phillips, Schmidt and Shin(1992) assume that the series is de-

composed into the sum of a deterministic trend, a random walk, and a sta-

tionary error:

Yt = ζt+ rt + εt,

rt = rt−1 + ut, ut ∼ N (0, σ2
u)

where rt is a pure random walk and r0 is assumed to be a constant level. Under

the null hypothesis, Yt is assumed to be I(0) so that σ2
u = 0 and rt = r0. The

KPSS test statistic is the Lagrange multiplier (LM) for testing σ2
u = 0 against



the alternative σ2
u > 0, and it’s given by: (for proof see [3])

KPSS =

(
T−2

∑T
t=1 Ŝt

2
)

σ̂ε
2

where Ŝt =
∑t

i=1 ε̂i, ε̂t is the residual of a regression of Yt on the trend t and

σ̂ε
2 is a consistent estimate of the long run variance of the residuals εt using ε̂t.

They showed that this test converges to a function of the standard Brownian

motion depending on the form of t but not on their coefficient ζ:

For t=1,(Yt = ζ + rt + εt), then,

KPSS
d−→
∫ 1

0

W (r)− rW (1)dr

for t ∈ (1, t), then,

KPSS
d−→
∫ 1

0

[
W (r) + r(2− 3r)W (1) + 6r(r2 − 1)

(∫ 1

0

W (s)ds

)]
dr

where W(r) is a standard Brownian motion for r ∈ [0, 1]. Accordingly, critical

values are calculated by a direct simulation in a Monte Carlo experiment.

0.90 0.925 0.950 0.975 0.99
Constant 0.349 0.396 0.446 0.592 0.762

Linear Trend 0.120 0.133 0.149 0.184 0.229

Table 4.4: Quantiles of the distribution of the KPSS statistic.

In order to reject the null hypothesis, the test statistic should be greater

than the provided critical values.



4.6 DF-GLS Test:

The DF-GLS test (ERS test) is a test for a unit root in an economic time

series sample. It was developed by Elliott, Rothenberg and Stock in 1996 as a

modification of the augmented Dickey-Fuller test (ADF). To increase the power

of a unit root test under the null hypothesis of a unit root, ERS proposed a

local to unity detrending of the time series. The assumed generating process

for the series yt is as follows:

yt = β
′
Dt + ut, ut = φut−1 + vt,

where Dt represents a vector of deterministic terms and vt is a stationary

zero-mean process. If φ = 1 the yt is I(1), but if |φ| < 1 then yt is I(0). The

authors developed feasible point-optimal tests, which take serial correlation of

the error term into account. The feasible point-optimal test statistic is defined

as:

Pt =
(S(φ̄)− φ̄S(1))

λ̂2
; φ̄ = 1 + c̄/T ;

where λ̂2 is a consistent estimate of the long run variance of the resid-

uals vt and S(φ) is the sum of squared residuals from a least-squares

regression of yφ on Dφ with

yφ = (y1, y2 − φy1, · · · , yT − φyT−1)′



and

Dφ = (D1, D2 − φD1, · · · , DT − φDT−1)′

and yφ is a T-dimensional vector and Dφ is a (T × q) matrix (T number of

observations).

Sφ is defined as follows:

Sφ = ȳφ
′
ȳφ;

ȳφ = yφ −Dφβ̂φ and β̂φ = (D
′

φDφ)−1D
′

φyφ.

ERS showed that if Dt = 1 (case of a constant) then c̄ = −7, and if Dt = (1, t)

(case of a linear trend) then c̄ = 13.5 ;

Now applying the detrended data , ydt = yt− β̂
′

φ̄
Dt, in the ADF test regression

to get the ADF-GLS test regression:

∆ydt = πydt−1 +

p∑
j=1

ψj∆y
d
t−j + εt;

Then, compute the t-statistic for testing π = 0. The authors showed that

the ADF-GLS test and ADF t-test have the same asymptotic distribution in

the case of Dt = 1. But the first has higher asymptotic power (against local

alternatives). For Dt = (1, t) the asymptotic distribution of the DF-GLS test,

however, is different from the ADF t-test. The critical values for the ADF-

GLS test obtained on the basis of simulation in Elliot, Rothenberg and Stock

(1996) show that for models without constant they are the same as in the case

of the ADF test. For the remaining models, critical values of the ADF-GLS

test are used as indicated in Elliot, Rothenberg and Stock (1996) as well.



4.7 NGP Test

Ng and Perron (1995, 2001) applied the detrended data ∆ydt obtained from

the ADF-GLS test and modified the Phillips-Perron PP test.

The tests are defined as:

MZφ = (T−1∆ydt − λ̂2)

(
2T−2

T∑
t=1

∆ydt−1

)−1

,

MSB =

(
T−2

T∑
t=1

∆ydt−1/λ̂
2

)1/2

,

MZt = MZφ ×MSB,

Where λ̂2 is estimated by Ng and Perron(2001) from the ADF-GLS test re-

gression as: λ̂2 =
[∑T

t=p+1 ε
2
t

] [
(T − p)(1−

∑p
j=1 ψ̂j)

2
]−1

.

4.8 Problems associated with unit root tests

and Power comparison of the unit root

tests mentioned above :

As Fedorová and Arltová (2016) [4] mentioned in their article that all the unit

tests stated above have a common problem that they depend on the length of

analyzed time series as stated in Pesaran(2015) and Zivot(2006). The ADF

and PP tests are known to suffer potentially severe finite sample power and

size problems (PP test is based on an asymptotic theory, i.e. it is designed

to test the unit roots in long time series). Pesaran and Zivot also point out



another problem that the power of these tests is low if the process is stationary

but with a root close to the non-stationary boundary (where the parameter φ

in the AR(1) is close to one).

For example, the test suffer(especially in small sample sizes) to reject the null

of a unit root in the case of stationary process with |φ| = 0.95 < 1.

The authors also stated that according to Caner and Killian (2001), the KPSS

also suffer from similar issues. Moreover, it was proved that the power of these

tests is lower in the case where a linear deterministic trend is included in the

model of test regression. In contrast, the ADF-GLS and NGP tests should

eliminate this problem. Nevertheless, complicated construction and also the

fact that they are practically not represented in statistical and econometric

software make their application difficult.

Power comparison:

The results below were obtained from a simulation study by Fedorová(2016)

where the criteria were the length of time series and value of parameter φ1 in

the autoregressive process AR(1) without drift. The power of the test (1− β)

is the probability of rejecting the null hypothesis when it is false. Note that for

the KPSS test whose hypotheses are defined reversely, the probability (1− α)

is the probability of not rejecting the null when it is true.

All tests were conducted on a chosen 5% significance level. The simulation

study was performed in the statistical software R, R Development Core Team

(2008).

The ADF test:

The power of the test decreases gradually when φ1 increases from 0 to 1 in the

case of T=25 (i.e. in the case of very short time series). The test is unable to



Figure 4.5: Power functions (1 − β) of ADF test for simulated time series of
the length T=25,50,100,500 and number of replications n=3000, α = 0.05.

prove the stationarity even when φ1 is small: the maximum success achieved is

about 70% when φ1 is too small (0 < φ1 < 0.15). For φ1 > 0.3, the test more

probably is not going to reject the null of a unit root despite the stationarity

of time series. As the length of the time series increase, the power of the test

is improved: the sucess of the test reach 1 for φ1 < 0.2 in the case of(T=50),

φ1 < 0.7 when T=100 and for large time series (T=500), the success is almost

100% when φ1 < 0.9.

It seems clear that the power of the test increases along with the growing

length of time series, but even in the case of time series with 500 observations,

which uniquely identifies the test stationarity for φ1 < 0.9, its power function

drops sharply for higher values of parameter .

The PP test: The power of the test remains very low especially for small

time series. For T=25, the power of the test is greater than 0.8 for small value

of φ1 (less than 0.2). The test reach almost 1 when φ1 < 0.4 and φ1 < 0.7 for



Figure 4.6: Power functions(1 − β) of PP test for simulated time series of
lengths T=25,50,100,500 and number of replications n=3000, α = 0.05.

T=50 and T=100 respectively. The power of the test is significantly higher if

the time series is of length 500. But, similarly to the result of the ADF test,

the power decrease rapidly for φ1 close to unity.

The ADF-GLS test:

As the figure below shows, the power of the ADF-GLS remarkably increase

with the size of the time series.In addition, we can directly notice that the

power of this test is very low in comparison with the results of previous tests

for small T and φ1. The power is less than 40% for T=25, similar to the

previous test, the power of ADF-GLS increases with the growing length of the

time series and decreases every time φ1 moves toward 1. It approaches to 70%

for T=50 and it reaches 80% for T=100 and 0.01 < φ1 < 0.7, then it begins

to fall again. For the time series of length T = 500, we can observe greater

ability to reject the null hypothesis of the unit root also for higher values of

the parameter . The power of the test is approaching 1 even for the values



Figure 4.7: Power functions (1−β) of ADF-GLS test for simulated time series
of lengths T=25,50,100,500 and number of replications n=3000, α = 0.05.

around φ1 = 0.9. It, however, declines sharply after this value.

The NGP test:

Figure 4.8: Power functions (1 − β)of NGP test for simulated time series of
lengths T=25,50,100,500 and number of replications n=3000, α = 0.05.



Similarly, the power of the NGP test is very low in the case of small time

series, it only reaches around 30% maximum for T=25 and around 50% for

T=50, then the power start to decrease slowly when φ1 goes toward 1. The

NGP test is assumed to have high power in the case of φ1 close to 1. For large

sample sizes, the power of the test increase to 80% for T=100 and then start

to decrease after φ1 < 0.8. Now, for T=500, the power reaches 1 for φ1 < 0.95

and falls sharply just before φ1 close to 1.

After analyzing the results of each test according to the length of the time

series and to the parameter values, the authors intend to compare the power

of these tests for each length of the time series.

Very short time series (T = 25):

First, Several tests for time series of length T = 25 will be compared.

In general, it’s clear that the power of these unit root tests is very low for

very short time series (T=25). For φ1 < 0.5, the ADF and PP tests have

more power than the ADF-GLS and NGP tests. Now, for φ1 ∈ [0.5; 1], the

ADF-GLS and the PP tests seems to be more powerful.

Medium-long time series (T = 50):

Similar to the case T=25, the ADF and PP tests seems to be more power-

ful than the ADF-GLS and the PP tests for φ1 < 0.7, the opposite occurs for

φ1 > 0.7.



Figure 4.9: Comparison of power functions of selected tests for time series
length T = 25, α = 0.05.

Figure 4.10: Comparison of power functions of selected tests for time series
length T = 50,α = 0.05.

Long time series (T = 100):

The power of these tests increase as the length of the time series increase. For



Figure 4.11: Comparison of power functions of selected tests for time series
length T = 100,α = 0.05.

the ADF and PP tests, as we have seen before, for small value of φ1, the power

of these two tests reaches the best results. Here, in the case of T=100, the

power is 1 for φ1 < 0.6. However, the other two tests have higher power when

compared to ADF and PP tests for φ1 > 0.8. The advantages of modifications

of classic unit root tests, i.e. NGP and ADF-GLS, can already be observed.

(see figure 4.11)

Very long time series (T = 500):

The results of all tests for time series of length T=500 are very good. The

power functions of the ADF and the PP tests are almost the same. their power

reaches 100% for φ1 < 0.9 and then it drops suddenly. The ADF-GLS test

also increases in power and approaches to 100%, then the power suddenly and



Figure 4.12: Comparison of power functions of selected tests for time series
length T = 500, α = 0.05.

sharply declines for φ1 > 0.8. The NGP shows great results in the case of very

long time series. It reaches 100% for φ1 < 0.95 and its power for φ1 close to 1

is still the highest in comparison with other tests.

The KPSS test:

Unlike the tests mentioned above, the KPSS test is a stationarity test. There-

fore, we modify the power functions (1−β) by (1−α) which is the probability

of not rejecting the null hypothesis when it is true.

For small values of φ1 (φ1 < 0.2), the results of the KPSS test is almost the

same for all selected time series sizes, the probability is around 0.95, then it

sharply declines. Notice that the probability for T=25 is the highest compared

to other sizes for φ1 very close to 1 (φ1 > 0.95).



Figure 4.13: Probability (1 − α) of KPSS test for simulated time series of
lengths T = 25,50,100,500 and number of replications n=3 000, α = 0.05.

As a result, the authors concluded that there is no specified test that could

be generally applied in all cases. Thus, they gave some recommendations of

which of these tests are the most appropriate to use for a specific T and a given

φ1. The results are summarized in the table below by taking into account three

basic aspects: power of the test, it’s validity and ease of use.

φ1 T=25 T=50 T=100 T=500
(0;0.5) PP,ADF,+KPSS PP,ADF,+KPSS ADF,PP ADF,PP,NGP

(0.5;0.7) PP,ADF, +KPSS PP,ADF, +KPSS ADF,PP ADF,PP,NGP
(0.7;0.9) ADF,NGP,PP ADF,NGP,PP ADF,NGP ADF,NGP
(0.9;1) PP,NGP,ADF ADF,NGP ADF,NGP ADF,NGP

Table 4.5: Overview of appropriate tests for different length of time series and
values of parameter φ1, α = 0.05.

The authors recommend to use the KPSS (which is suitable for very small

values of φ1) as complementary test during the unit root testing of shorter

time series.



4.9 Unit Root Tests in Finance:

The importance of unit root tests in macroeconomic time series is to deter-

mine the stationarity of the series: in the absence of a unit root, the series is

characterized as stationary, and therefore exhibits mean reversion in that it

fluctuates around a constant long run mean. Also, in this case, the series has

a finite variance that is time-independent and the effects of shocks dissipate

over time. Alternatively, the existence of unit root indicates that the series

is non-stationary, the process have no tendency to return to a long-run deter-

ministic path. The variance does depend on time and goes to infinity as time

approaches to infinity. This will result serious problems in forecasting. Non

stationary series suffer permanent effects from random shocks.

Nelson and Plosser (1982) gave statistical evidence that supports the hypoth-

esis of a unit root in the autoregressive representations of macroeconomic time

series for the US, including GNP, employment, wages, prices, interest rates,

and stock prices. In the literature of unit root testing, numerous economic se-

ries have been considered: the real exchange rates (in Narayan and Narayan,

2007(Italy) [5] ; Matsuki and Sugimoto, 2013 (Asia) [6] ; El Montasser, Fry

and Apergis, 2016 (US-China) [7]), inflation rate (in Basher and Westerlund,

2008 [8] ; Huang, Lin and Yeh, 2010 (US) [9]), income (in Smyth and Inder,

2004 (China)[10]) and Stock indices ( in Tabak, 2007 (Brazil) [11] ; Narayan,

2008 (G7 countries)[12]), etc.

In brief, the existence of a unit root in macroeconomic time series brings about

important implications, and this helps to understand why this topic has re-

ceived a great amount of theoretical and applied research.



Chapter 5

Conclusion

Since the mid 1980’ s there has been a veritable explosion of research on the

importance of unit roots in the analysis of economic and other time series data.

The reasons for this are diverse, but perhaps the most important motivation

for this work is the fact that the development of the notion of co-integration

by Granger (1981) and Engle and Granger (1987) has stressed the significance

of unit roots and the importance of making valid statistical inference in the

presence of non stationary time series data. In this thesis, the integrated and

difference processes were presented, then several unit root tests were intro-

duced: the Dickey-Fuller and its augmented version the ADF, the Phillips

Peron unit root tests, the ADF-GLS, the NGP tests and finally the KPSS

tests. All the tests discussed so far have the unit root as the null hypothesis,

and (trend) stationarity as the alternative, except the KPSS test which is a

stationary test (i.e. the null hypothesis is I(0) against the alternative which

is I(1) ). In the discussion of the ADF, we have seen that determining the

number of lags is important unlike the PP test which corrects this issue. In
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the case of the ADF-GLS and NGP tests, it was proposed to detrend the time

series before applying the tests. However, frequent criticisms concerning the

power of unit root tests have been exhibited. It was shown that these tests

have low power for small sample size. In addition, these tests suffer when the

process is stationary but with a root close to the non-stationary boundary.
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Appendix A

Formulation of the test
regression of the ADF

Given an AR(3) model:

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + εt,
Then,
yt − yt−1 = (φ1 − 1)yt−1 + φ2yt−2 + φ3yt−3 + εt,
yt − yt−1 = (φ1 − 1)yt−1 + (φ2 + φ3)yt−2 + φ3(yt−3 − yy−2) + εt,
yt−yt−1 = (φ1 +φ2 +φ3−1)yt−1 + (φ2 +φ3)(yt−2−yt−1) +φ3(yt−3−yt−2) + εt,
Thus, yt can be written as a function of just yt−1 and a series of difference lags
terms:

yt − yt−1 = (δ − 1)yt−1 + ρ1∆yt−1 + ρ2∆yt−2 + εt,

yt = δyt−1 + ρ1∆yt−1 + ρ2∆yt−2 + εt,

∆yt = πyt−1 +
∑
i

ρi∆yt−i + εt, i = 1, 2. (A.0.1)

Where,
π = δ − 1,

δ = φ1 + φ2 + φ3,

ρ1 = φ2 + φ3,

ρ2 = φ3,

Note that testing for a unit root in AR(3) model is testing for the existence of
B=1 in the AR polynomial equation: 1− φ1B − φ2B

2 − φ3B
3 = 0.
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Equivalently, testing for φ1 + φ2 + φ3 = 1 i.e. testing for δ = 1(π = 0 in
(A.0.1)).

In the same way, an ARMA(p,q) process (or AR(p) process) could be
written as: ∆Yt = α + βt + πYt−1 +

∑p
i=1 δiYt−i + εt Where α is a constant

and β the coefficient on a time trend. Here, testing for stationarity is testing
for π = 0. And this is called an Augmented Dickey-Fuller test (ADF).
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