
Introduction to Differential Geometry

of Space Curves and Surfaces

A Thesis Presented

by

Tatiana Nicolakis

to

The Faculty of Natural and Applied Sciences

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Mathematics

Notre Dame University-Louaize

Zouk Mosbeh, Lebanon

September 2020



Copyright by

Tatiana Nicolakis

2020





Abstract of the Thesis

Introduction to Differential Geometry of
Space Curves and Surfaces

by

Tatiana Nicolakis

Master of Science

in

Mathematics

Notre Dame University-Louaize,

Zouk Mosbeh,
Lebanon

2020

This thesis is an introduction to some of the classical theory and

results of Differential Geometry: The geometry of curves and sur-

faces lying (mostly) in 3-dimensional space.

One of the most important tools used to analyze a curve is the

Frenet frame, a moving frame that provides a coordinate system

at each point of the curve that is adapted to the curve near that

point. Given a curve, one can define two quantities: its curva-

ture and torsion. Both quantities are scalar fields and depend on



some parameter which parametrizes the curve that is in general

the arclength of the curve.

The Fundamental Theorem of Space Curves states that every reg-

ular curve in three-dimensional space, with non-zero curvature,

is completely determined by its curvature and torsion. It means

that from just the curvature and torsion, the vector fields for the

tangent, normal, and binormal vectors can be derived using the

Frenet–Serret formulas. Then, integrating the tangent field yields

the curve. In the first chapter of this thesis, we present the proof of

the Fundamental Theorem of Space Curves using two approaches.

The first proof is the traditional one used in almost all differen-

tial geometry references [1, 2]. The second approach is a new one

established recently by H. Guerrrero in [3]. It is based on finding

a solution of a nonlinear differential equation of second order. As

applications of the second approach, general slants and helices are

characterized.

The second chapter revolves around defining a parametrized sur-

face in the plane and introducing its first and second fundamen-

tal forms. This will allow to define the notions of curvature: the

Gaussian curvature and the Mean curvature. The Gaussian cur-

vature describes the intrinsic geometry of the surface, whereas the

Mean curvature describes how it bends in space. The Gaussian

curvature of a cone is zero: This is why we can make a cone out

of a flat piece of paper. The Gaussian curvature of a sphere is



strictly positive: This is why planar maps of the earth’s surface

invariably distort distances. The Gauss-Codazzi equations (also

called the Gauss–Codazzi–Mainardi equations) are fundamental

equations which link together the induced scalar product on R3

and the second fundamental form of a surface. The first equation,

often called the Gauss equation was discovered by Carl Friedrich

Gauss. It states that the Gauss curvature of the surface, at any

given point, is encoded by the second fundamental form. The sec-

ond equation, called the Codazzi equation or Codazzi-Mainardi

equation, discovered by Gaspare Mainardi (1856) and Delfino Co-

dazzi (1868–1869) states that the covariant derivative of the second

fundamental form is fully symmetric. It turns out that the Gauss-

Codazzi equations are sufficient to prove the existence of a surface

in R3. This is called the Fundamental Theorem of Surfaces and

it is proved in Chapter 3. In fact, consider a symmetric, positive

definite matrix field of order two and a symmetric matrix field of

order two that satisfy together the Gauss-Codazzi equations in a

connected and simply connected open subset of R2. If the matrix

fields are respectively of class C2 and C1, the fundamental theorem

of surface theory asserts that there exists a surface immersed in the

three-dimensional Euclidean space with these fields as its first and

second fundamental forms.



To my family.
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Chapter 1

Parametrized Curves in Rn

In this first chapter, we introduce the concept of a parametrized curve, its

parametrization by arclength, curvature and torsion. We then prove the Fun-

damental Theorem of Curves in two different methods. The first method is the

traditional one used in almost all differential geometry references ([1, 2, 4, 5]).

The second method is a new one recently established by H. Guerrero in [3].

It is based on finding a solution of a non linear differential equation of second

order. As applications of this second method, general helices and slant helices

are characterized.

1.1 Parametrized Curves

In this section, we define parametrized curves and give some common exam-

ples.

1



Definition 1.1.1. Let [a, b] be a closed interval in R. A map

F : [a, b] ⊆ R −→ Rn

t −→ F (t) =
(
x1(t), x2(t), · · · , xn(t)

)

is smooth if all derivatives of its components xj : [a, b] ⊆ R −→ R (1 ≤ j ≤ n)

exist and are continuous for all t ∈ (a, b). In this case, we write F ′(t) =(
x′1(t), x

′
2(t), · · · , x′n(t)

)
.

Definition 1.1.2. A parametrized curve α in Rn is a smooth map, explicitly

given by

α : [a, b] ⊆ R −→ Rn

t −→ α(t) =
(
x1(t), x2(t), · · · , xn(t)

)
.

It is called a parametrized regular curve in Rn if α′(t) 6= 0 for all t ∈ (a, b).

Example 1.1.3. � Straight line: A parametrization of the straight line

in R2 passing through the points (1, 2) and (2,−3) can be written as

α : R −→ R2

t −→ α(t) = (t,−5t+ 7).

This curve is regular since α′(t) = (1,−5) 6= (0, 0) for all t ∈ R.



� Ellipse: A parametrization of the ellipse of equation
x2

4
+
y2

9
= 1 can

be written as:

α : [0, 2π] −→ R2

t −→ α(t) = (2 cos t, 3 sin t).

The curve is regular since α′(t) = (−2 sin t, 3 cos t) 6= (0, 0) for all t ∈

(0, 2π).

� The graph of a function: If f : [a, b] ⊆ R −→ R is a smooth function,

then a parametrization of its graph can be written as:

α : [a, b] −→ R2

x −→ α(x) = (x, f(x)).

The curve is regular since α′(x) = (1, f ′(x)) 6= (0, 0) for all x ∈ (a, b).

Remark A parametrization of a curve is not unique, and regularity of a curve

does not depend on its parametrization. For instance, α(t) = (cos t, sin t) for

t ∈ [0, 2π] and β(t) = (cos 2t, sin 2t) for t ∈ [0, π] are two distinct parametriza-

tions that represent the same curve which is the circle of equation x2 + y2 = 1

in R2. Considering α or β, we have that the curve is regular since α′(t) =

(− sin t, cos t) 6= (0, 0) for all t ∈ (0, 2π) and β′(t) = (−2 sin t, 2 cos t) 6= (0, 0)

for all t ∈ (0, π).



Example 1.1.4. Helix: The parametrized curve θ : R −→ R3 given by

θ(t) = (r cos t, r sin t, at),

with r > 0 and a ∈ R∗, has its image the circle helix having radius r and

pitch a. The curve is regular since θ′(t) = (−r sin t, r cos t, a) 6= (0, 0, 0) for all

t ∈ R.

Example 1.1.5. Twisted cubic: The parametrized curve θ : R −→ R3 given

by

θ(t) = (t, t2, t3)

represents a twisted cubic.

The curve is regular because θ′(t) = (1, 2t, 3t2) 6= (0, 0, 0) for all t ∈ R.



Definition 1.1.6. For a parametrized curve α : [a, b] −→ Rn, the map

α′ : (a, b) −→ Rn

is called the tangent of α. From now on, it will be denoted by T .

1.2 Arclength of Regular Curves

Definition 1.2.1. The arclength of a regular parametrized curve

α : [a, b] −→ Rn

t −→ α(t) =
(
x1(t), x2(t), ..., xn(t)

)

from the point t0 ∈ (a, b) is given by

s(t) =

∫ t

t0

‖α′(r)‖dr,

for all t ∈ (a, b), where ‖α′(t)‖ =

√(
(x′1(t))

2 + (x′2(t))
2 + ....+ (x′n(t)

)2
.

Remark Clearly, the arclength function s(t) is one-to-one. In fact, if s(t) =

s(t′), we have

∫ t

t0

‖α′(x)‖dx =

∫ t′

t0

‖α′(x)‖dx

=⇒
∫ t′

t

‖α′(x)‖dx = 0

=⇒ t = t′, since ‖α′(t)‖ > 0.



Definition 1.2.2. A parametrized regular curve α : [a, b] −→ Rn is said to be

parametrized by arclength if ‖α′(t)‖ = 1 for all t ∈ (a, b).

Remark A regular curve can always be parametrized by arclength. In fact,

assume α : [a, b] −→ Rn is a parametrized regular curve with s : (a, b) −→ R+

being its arclength function. Denoting the inverse function of s by t = t(s), one

can check that the map β(s) = α
(
t(s)
)

is a regular curve and it is parametrized

by arclength, because

‖β′(s)‖ = ‖α′
(
t(s)
)
t′(s)‖

= |t′(s)|‖α′
(
t(s)
)
‖

=
1

|s′(t(s))|
‖α′
(
t(s)
)
‖

=
1

‖α′
(
t(s)
)
‖
.‖α′

(
t(s)
)
‖ = 1.

Example 1.2.3. � Straight Line: From Example 1.1.3, we have α′(t) =

(1,−5). The arclength function starting from t0 = 0 is given by

s(t) =

∫ t

t0

‖α′(x)‖dx =

∫ t

t0

√
12 + (−5)2dx =

∫ t

t0

√
1 + 25dx =

√
26t.

So, the inverse function of s is t(s) =
s√
26

. Then,

β(s) = α
(
t(s)
)

= α
( s√

26

)
=
( s√

26
,
−5s√

26
+ 7
)

is the arclength parametrization of α.

� Circle: Let (C) be the circle of center (1,−1) and radius 2. A parametriza-



tion of this circle is given by: α(t) = (1 + 2 cos t,−1 + 2 sin t) for

t ∈ [0, 2π]. We have α′(t) = (−2 sin t, 2 cos t) and the arclength func-

tion starting from t0 = 0 is given by:

s(t) =

∫ t

0

√
4 sin2 x+ 4 cos2 xdx =

∫ t

0

2dx = 2t

Then, t(s) =
s

2
and the arclength parametrization of α is given by

β(s) = α
(
t(s)
)

= α
(s

2

)
=

(
1 + 2 cos

(s
2

)
,−1 + 2 sin

(s
2

))
.

� Helix: From Example 1.1.4, we have α′(t) = (−r sin t, r cos t, a) for all

t ∈ R. The arclength function starting from t0 = 0 is then given by

s(t) =

∫ t

0

√
r2 + a2dx = t

√
r2 + a2

Then, t(s) =
s√

r2 + a2
and the arclength parametrization of α is given

by

β(s) = α
(
t(s)
)

= α
( s√

r2 + a2

)
=

(
r cos

( s√
r2 + a2

)
, r sin

( s√
r2 + a2

)
,

as√
r2 + a2

)
.

� Twisted Cubic: From Example 1.1.5, we have θ′(t) = (1, 2t, 3t2) for

all t ∈ R. The arclength function starting from t0 = 0:

s(t) =

∫ t

0

√
1 + 4x2 + 9x4dx.



The arclength parametrization of θ is: β(s) = α(t(s)) where t = t(s) is

the inverse function of s(t).

1.3 Curvature and Torsion

In this section, we define the curvature and torsion of a regular curve α

parametrized by arclength.

Definition 1.3.1. Let α : [a, b] −→ Rn be a regular curve parametrized by

arclength. For s ∈ (a, b), the number k(s) defined by

k(s) = ‖α′′(s)‖ = ‖T ′(s)‖

is called the curvature of α at s. In this case, the radius of curvature of α at

the point s is r(s) =
1

k(s)
for k(s) 6= 0.

Remark If α : [a, b] −→ Rn is a regular curve parametrized by arclength, we

say that α is biregular if its curvature k(s) 6= 0 for all s ∈ (a, b).

Example 1.3.2. Consider the following parametrization of a straight line in

R3:

α : R −→ R3

t −→ α(t) = (at+ a0, bt+ b0, ct+ c0).

A parametrization by arclength starting with t0 = 0 is given by:

β(s) =

(
as+ a0√
a2 + b2 + c2

,
bs+ b0√
a2 + b2 + c2

,
cs+ c0√
a2 + b2 + c2

)
.



We calculate β′(s) and get

β′(s) =

(
a√

a2 + b2 + c2
,

b√
a2 + b2 + c2

,
c√

a2 + b2 + c2

)
.

Hence, β′′(s) = (0, 0, 0) and ‖β′′(s)‖ = 0. This shows that the curvature of a

straight line in R3 is 0.

Example 1.3.3. Let (C) be a circle of center (x0, y0) and radius r > 0. A

parametrization α of this circle is given by

α : [0.2π] −→ R2

t −→ α(t) = (x0 + r cos t, y0 + r sin t).

The arclength function starting from t0 = 0 is given by

s(t) =

∫ t

0

‖α′(x)‖dx

=

∫ t

0

√
r2 sin2 x+ r2 cos2 xdx

=

∫ t

0

rdx = rt.

Hence, t =
s

r
and β(s) = α(t(s)) =

(
x0 + r cos

(s
r

)
, y0 + r sin

(s
r

))
. One can

calculate β′(s) and β′′(s) to get

β′(s) =
(
− sin

(s
r

)
, cos

(s
r

))
,

β′′(s) =
(
− 1

r
cos
(s
r

)
,−1

r
sin
(s
r

))
.



The curvature k(s) is then given by

k(s) = ‖β′′(s)‖

=

√
1

r2
cos2

(s
r

)
+

1

r2
sin2

(s
r

)
=

1

r
,

which is a constant. So, (C) has a constant curvature and a radius of curvature

r. This is the reason why the reciprocal of the curvature is called

the radius of curvature.

Example 1.3.4. From Example 1.2.3, the arclength parametrization of a helix

is given by:

β(s) =
(
r cos

( s√
r2 + a2

)
, r sin

( s√
r2 + a2

)
,

as√
r2 + a2

)
.

One can calculate β′(s) and β′′(s) to get

β′(s) =
(
− r√

r2 + a2
sin
( s√

r2 + a2

)
,

r√
r2 + a2

cos
( s√

r2 + a2

)
,

a√
r2 + a2

)
,

β′′(s) =
(
− r

r2 + a2
cos
( s√

r2 + a2

)
,− r

r2 + a2
sin
( s√

r2 + a2

)
, 0
)
.

The curvature k(s) is then given by:

k(s) = ‖β′′(s)‖

=

√
r2

(r2 + a2)2
cos2

( s√
r2 + a2

)
+

r2

(r2 + a2)2
sin2

( s√
r2 + a2

)
=

|r|
r2 + a2

.

Hence, a helix has a constant curvature of
|r|

r2 + a2
.



Remark Assume that α : [a, b] −→ R2 is a curve in R2 parametrized by

arclength. Since α′(t) is a unit vector, we can write

α′(t) =
(

cos θ(t), sin θ(t)
)
,

where θ is the angle between the positive x-axis and the tangent vector α′(t)

(measured counterclockwise). Thus, we can say that θ(t) is the direction of the

curve α at α(t). So, the curvature of α is also defined to be the instantaneous

rate of change of θ with respect to the arclength. It means, k =
∂θ

∂s
.

Proposition 1.3.5. Let α be a regular curve parametrized by arclength and

defined by:

α : [a, b] −→ R2

t −→ α(t) =
(
x(t), y(t)

)
.

Then, its curvature is given by

k =
y′′x′ − x′′y′[

(x′)2 + (y′)2
] 3

2

.

Proof. We know that α′(t) = (x′(t), y′(t)). From the above remark, since α

is parametrized by arclength, we can conclude that θ(t) = tan−1
(y′(t)
x′(t)

)
, and

hence

∂θ

∂s
=

∂θ

∂t
.
∂t

∂s



=

( y′′(t)x′(t)−x′′(t)y′(t)
(x′(t))2

1 + ( y
′(t)
x′(t)

)2

)
.

1
∂s
∂t

=
y′′x′ − x′′y′

x′2 + y′2
.

1

s′(t)

=
y′′x′ − x′′y′

x′2 + y′2
.

1

‖α′(t)‖

=
y′′x′ − x′′y′

x′2 + y′2
.

1√
x′2 + y′2

=
y′′x′ − x′′y′

(x′2 + y′2)
3
2

.

Example 1.3.6. If we go back to Example 1.3.3, we can see that we can

recalculate the curvature using Proposition 1.3.5. In fact, we have

k =
y′′x′ − x′′y′[

(x′)2 + (y′)2
] 3

2

=
1
r

sin( s
r
) sin( s

r
) + 1

r
cos( s

r
) cos( s

r
)(

sin2( s
r
) + cos2( s

r
)
) 3

2

=
1
r

sin2( s
r
) + 1

r
cos2( s

r
)

1
3
2

=
1

r
.

Theorem 1.3.7. Let α : [a, b] −→ Rn be any regular parametrized curve.

Then, the curvature k : [a, b] −→ R+ of α is given by:

k =

√
‖α′‖2‖α′′‖2 − |〈α′′, α′〉|2

‖α′‖2
,

where |〈., .〉| is the Euclidean scalar product in Rn.

Proof. Only in this proof, we shall denote
∂α

∂s
by α̇ and

∂α

∂t
by α′. Let s :

(a, b) −→ R be the arclength of α measured starting from any point. We have



that

α′(t) =
∂α

∂t
(t) =

∂α

∂s
(s(t)).

∂s

∂t
(t) =

∂α

∂s
(s(t)).‖α′(t)‖ = α̇(s(t)).‖α′(t)‖.

Hence

α̇(s(t)) =
α′(t)

‖α′(t)‖
. (1.3.1)

We derive now α̇(s(t)) with respect to t and get

∂α̇

∂t
(s(t)) =

∂α̇

∂s
(s(t)).

∂s

∂t
(t) =

∂α̇

∂s
(s(t)).‖α′(t)‖.

Thus, we have

∂α̇

∂s
(s(t)) =

∂α̇

∂t
(s(t)).

1

‖α′(t)‖
=

1

‖α′(t)‖
.
∂

∂t

( α′(t)

‖α′(t)‖

)
. (1.3.2)

But, we have that

∂

∂t

( α′(t)

‖α′(t)‖

)
=
α′′(t).‖α′(t)‖ − (‖α′(t)‖)′.α′(t)

‖α′(t)‖2
. (1.3.3)

and we also know that ‖α′(t)‖2 = 〈α′(t), α′(t)〉. Deriving both sides of the last

identity with respect to t, we get 2‖α′(t)‖(‖α′(t)‖)′ = 2〈α′(t), α′′(t)〉, which is

(‖α′(t)‖)′ = 〈α
′(t), α′′(t)〉
‖α′(t)‖

. (1.3.4)



Hence, inserting (1.3.4) in (1.3.3), we obtain,

∂

∂t

( α′(t)

‖α′(t)‖

)
=

α′′(t)

‖α′(t)‖
− α′(t)

‖α′(t)‖2
.
〈α′(t), α′′(t)〉
‖α′(t)‖

=
1

‖α′(t)‖

(
α′′(t)− 〈α

′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)

)
.

Therefore,

k =

∥∥∥∥∥∂α̇∂s (s(t))

∥∥∥∥∥ =

∥∥∥∥∥ 1

‖α′(t))‖2

(
α′′(t)− 〈α

′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)

)∥∥∥∥∥
=

1

‖α′(t)‖2

∥∥∥∥∥α′′(t)− 〈α′(t), α′′(t)〉‖α′(t)‖2
.α′(t)

∥∥∥∥∥.
But we have,∥∥∥∥∥α′′(t)− 〈α′(t), α′′(t)〉‖α′(t)‖2

.α′(t)

∥∥∥∥∥
2

=

〈
α′′(t)− 〈α

′(t), α′′(t)〉
‖α′(t)‖2

.α′(t), α′′(t)− 〈α
′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)

〉

= 〈α′′(t), α′′(t)〉 −
〈
α′′(t),

〈α′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)
〉
−
〈
α′′(t),

〈α′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)
〉

+

〈
〈α′(t), α′′(t)〉
‖α′(t)‖2

.α′(t),
〈α′(t), α′′(t)〉
‖α′(t)‖2

.α′(t)

〉

= ‖α′′(t)‖2 − 〈α
′(t), α′′(t)〉
‖α′(t)‖2

〈α′′(t), α′(t)〉 − 〈α
′(t), α′′(t)〉
‖α′(t)‖2

〈α′′(t), α′(t)〉

+
|〈α′(t), α′′(t)〉|2

‖α′(t)‖4
〈α′(t), α′(t)〉

= ‖α′′(t)‖2 − 2
|〈α′(t), α′′(t)〉|2

‖α′(t)‖2
+
|〈α′(t), α′′(t)〉|2

‖α′(t)‖2
.
|〈α′(t), α′′(t)〉|2

‖α′(t)‖2

= ‖α′′(t)‖2 − 2
|〈α′(t), α′′(t)〉|2

‖α′(t)‖2
+
|〈α′(t), α′′(t)〉|2

‖α′(t)‖2
.
‖α′(t)‖2

‖α′(t)‖2

= ‖α′′(t)‖2 − |〈α
′(t), α′′(t)〉|2

‖α′(t)‖2
.



Finally, we can calculate k and get

k =
1

‖α′(t)‖2

√
‖α′′(t)‖2 − |〈α

′(t), α′′(t)〉|2
‖α′(t)‖2

=
1

‖α′(t)‖2

√
‖α′′(t)‖2.‖α′(t)‖2 − |〈α′(t), α′′(t)〉|2

‖α′(t)‖2

=
1

‖α′(t)‖3
√
‖α′′(t)‖2.‖α′(t)‖2 − |〈α′(t), α′′(t)〉|2

=

√
‖α′′(t)‖2.‖α′(t)‖2 − |〈α′(t), α′′(t)〉|2

‖α′(t)‖3
.

Example 1.3.8. (Helix) Its curvature is equal to
|r|

r2 + a2
. Let’s apply Theo-

rem 1.3.7 to find the curvature again. We use the parametrization α given in

Example 1.1.4. We have

α′(t) = (−r sin t, r cos t, a),

α′′(t) = (−r cos t,−r sin t, 0).

Thus ‖α′(t)‖2 = r2 + a2 and ‖α′′(t)‖2 = r2. Moreover, one can calculate

〈α′(t), α′′(t)〉 = r2 cos t sin t− r2 sin t cos t = 0,

so |〈α′(t), α′′(t)〉|2 = 0. Since, ‖α′(t)‖3 = (r2 + a2)
3
2 , we get:

k =

√
r2(r2 + a2)− 0

(r2 + a2)
3
2

=
|r|.(r2 + a2)

1
2

(r2 + a2)
3
2

=
|r|

r2 + a2
,

which is the desired result.



Definition 1.3.9. Let α(s) be any regular curve parametrized by arclength

with ‖α′′(s)‖ 6= 0 for all s ∈ (a, b). The unit vector N(s) = k(s)−1T ′(s) is

called the normal vector along the curve.

Remark Note that: N(s) and T (s) are orthogonal for all s ∈ (a, b), and N(s)

and T ′(s) are collinear or all s ∈ (a, b). In fact, since α(s) is parametrized

by arclength, then ‖α′(s)‖ = 1 and so 〈α′, α′〉 = 1. Deriving both sides with

respect to s, we get

〈α′, α′′〉 = 0.

Since T = α′ and T ′ = α′′, hence 〈T, T ′〉 = 0. As a result, we have that N(s)

and T (s) are orthogonal.

Definition 1.3.10. Let α(s) be any regular curve parametrized by arclength.

Assume that k(s) 6= 0 for all s. The unit vector B(s) = T (s)×N(s) is called

the binomial along the curve, where × denotes the cross product of vectors. The

orthonormal system
(
T (s), N(s), B(s)

)
is called the Frenet-Serret Frame.

Definition 1.3.11. Let α(s) be any regular curve parametrized by arclength.

Assume that k(s) 6= 0 for all s. The scalar function τ(s) = −〈B′(s), N(s)〉 is

called the torsion of the curve α.

Theorem 1.3.12. (The Frenet Serret-Equations) Let α(s) be a regular

curve parametrized by arclength with k(s) 6= 0. The following equations are

satisfied:

T ′(s) = k(s)N(s) and k(s) = 〈T ′(s), N(s)〉, (1.3.5)



N ′(s) = −k(s)T (s) + τ(s)B(s), (1.3.6)

B′(s) = −τ(s)N(s). (1.3.7)

Proof. We know from Definition 1.3.9 that N(s) = k−1(s)T ′(s), so we have

T ′(s) = k(s)N(s). Moreover,

〈T ′(s), N(s)〉 = 〈k(s)N(s), N(s)〉 = k(s)〈N(s), N(s)〉 = k(s), (1.3.8)

which proves (1.3.5). Since T (s) and N(s) are orthogonal, we have that

〈T (s), N(s)〉 = 0. Deriving both sides with respect to s, we get

〈T ′(s), N(s)〉+ 〈T (s), N ′(s)〉 = 0

(1.3.8)
=⇒ k(s) + 〈T (s), N ′(s)〉 = 0

=⇒ −k(s) = 〈T (s), N ′(s)〉.

Since B(s) and N(s) are orthogonal, we also have 〈B(s), N(s)〉 = 0. Deriving

both sides with respect to s, we get

〈B′(s), N(s)〉+ 〈B(s), N ′(s)〉 = 0

=⇒ −τ(s) + 〈B(s), N ′(s)〉 = 0

=⇒ τ(s) = 〈B(s), N ′(s)〉.

In the Frenet- Serret frame, each vector v can be written as:



v = 〈v,B(s)〉B(s) + 〈v,N(s)〉N(s) + 〈v, T (s)〉T (s).

In particular and for v = N ′(s), we get

N ′(s) = 〈N ′(s), B(s)〉B(s) + 〈N ′(s), N(s)〉N(s) + 〈N ′(s), T (s)〉T (s).

Since N(s) and N ′(s) are orthogonal, we obtain N ′(s) = τ(s)B(s)− k(s)T (s),

which proves (1.3.6). Now, deriving both sides with respect to s of 〈T (s), B(s)〉 =

0, we get

〈T ′(s), B(s)〉+ 〈T (s), B′(s)〉 = 0.

We have 〈T ′(s), B(s)〉 = k(s)〈N(s), B(s)〉 = k(s).0 = 0, hence 〈T (s), B′(s)〉 =

0. The vector B′(s) can be written as:

B′(s) = 〈B′(s), B(s)〉B(s) + 〈B′(s), N(s)〉N(s) + 〈B′(s), T (s)〉T (s).

= 〈B′(s), N(s)〉N(s)

= −τ(s)N(s),

which proves (1.3.7).

Remark The geometric meaning of curvature is the amount by which a curve

deviates from being a straight line (curvature of a straight line is 0). The tor-

sion measures the turnaround of the binormal vector. The larger the torsion

is, the faster the binormal vector rotates around the axis given by the tangent

vector.



Example 1.3.13. (Helix) We recall the arclength parametrization of the he-

lix:

β(s) =

(
r cos

( s√
r2 + a2

)
, r sin

( s√
r2 + a2

)
,

as√
r2 + a2

)
.

One can easily calculate T (s), T ′(s), N(s), B(s) and B′(s)

T (s) = β′(s) =

(
−r√
r2 + a2

sin
( s√

r2 + a2

)
,

r√
r2 + a2

cos
( s√

r2 + a2

)
,

a√
r2 + a2

)
,

T ′(s) = β′′(s) =

(
−r

r2 + a2
cos
( s√

r2 + a2

)
,
−r

r2 + a2
sin
( s√

r2 + a2

)
, 0

)
,

N(s) =
1

k(s)
T ′(s) =

r2 + a2

r

(
−r

r2 + a2
cos
( s√

r2 + a2

)
,
−r

r2 + a2
sin
( s√

r2 + a2

)
, 0

)

=

(
− cos

( s√
r2 + a2

)
,− sin

( s√
r2 + a2

)
, 0

)
,

B(s) = T (s)×N(s) =

∣∣∣∣∣∣∣∣∣∣
i j k

−r√
r+a2

sin
(

s√
r2+a2

)
r√
r+a2

cos
(

s√
r2+a2

)
a√
r+a2

− cos
(

s√
r2+a2

)
− sin

(
s√

r2+a2

)
0

∣∣∣∣∣∣∣∣∣∣
=

(
a√
r+a2

sin
( s√

r2 + a2

)
,
−a√
r+a2

cos
( s√

r2 + a2

)
,

r√
r+a2

)
,

B′(s) =
( a

r+a2
cos
( s√

r2 + a2

)
,
a

r+a2
sin
( s√

r2 + a2

)
, 0
)
.

We conclude that

τ(s) = 〈−B′(s), N(s)〉 =
−a
r+a2

cos2
( s√

r2 + a2

)
− a

r+a2
sin2

( s√
r2 + a2

)
=
−a

r2 + a2

Example 1.3.14. (Circle) Let (C) be a circle of center (x0, y0) and radius r



whose arclength parametrization is given by:

α(s) =
(
x0 + r cos

(s
r

)
, y0 + r sin

(s
r

)
, 0
)
.

Then,

T (s) = α′(s) =
(
− sin

(s
r

)
, cos

(s
r

)
, 0
)
,

T ′(s) = α′′(s) =
(−1

r
cos
(s
r

)
,
−1

r
sin
(s
r

)
, 0
)
,

N(s) =
1

k(s)
T ′(s) = r

(−1

r
cos
(s
r

)
,
−1

r
sin
(s
r

)
, 0
)
,

N(s) =
(
− cos

(s
r

)
,− sin

(s
r

)
, 0
)
,

B(s) = T (s)×N(s) =

∣∣∣∣∣∣∣∣∣∣
i j k

−sin( s
r
) cos( s

r
) 0

−cos( s
r
) −sin( s

r
) 0

∣∣∣∣∣∣∣∣∣∣
= 0i+ 0j + 1k,

B′(s) = (0, 0, 0).

Hence τ(s) = 〈−B′(s), N(s)〉 = 0.

Proposition 1.3.15. If the curvature of a curve α(t) not necessarily parametrized

by arclength is non-zero, then the curvature and torsion are given by

k(t) =
‖α′ × α′′‖
‖α′‖3

, (1.3.9)

τ(t) =
〈α′ × α′′, α′′′〉
‖α′ × α′′‖2

. (1.3.10)



Proof. In this proof, let α′ denote
∂α

∂t
. Then:

α′ =
∂α

∂s
.
∂s

∂t
,

α′′ =
∂

∂t

(∂α
∂s

)
.
∂s

∂t
+
∂

∂t

(∂s
∂t

)
.
∂α

∂s

=
∂

∂s
.
∂s

∂t

(∂α
∂s

)
.
∂s

∂t
+
∂α

∂s
.
∂2s

∂t2

=
∂

∂s

(∂α
∂s

)
(
∂s

∂t
)2 +

∂α

∂s
.
∂2s

∂t2

=
∂2α

∂s2
.
(∂s
∂t

)2
+
∂α

∂s
.
∂2s

∂t2
.

The unit tangent vector is
α′

‖α′‖
or

∂α

∂s
. So, using α′ =

∂α

∂s
.
∂s

∂t
, we conclude

that α′ =
α′

‖α′‖
.
∂s

∂t
and so, ‖α′‖ =

∂s

∂t
. Hence,

α′ =
∂α

∂s
‖α′‖ and α′′ =

∂2α

∂s2
‖α′‖2 +

∂α

∂s
.
∂2s

∂t2
.

Now, we calculate α′ × α′′ and get

α′ × α′′ =
(∂α
∂s
‖α′‖

)
×
(∂2α
∂s2
‖α′‖2 +

∂α

∂s

∂2s

∂t2

)
=

(∂α
∂s
‖α′‖ × ∂2α

∂s2
‖α′‖2

)
+
(∂α
∂s
‖α′‖ × ∂α

∂s
.
∂2s

∂t2

)
= ‖α′‖3

(∂α
∂s
× ∂2α

∂s2

)
.

Using the definition of k(s), τ(s), and N(s), we have:

τ(s) =
∂α

∂s
and τ ′(s) =

∂2α

∂s2
= k(s)N(s).



Hence,

α′ × α′′ = ‖α′‖3(T (s)× k(s)N(s))

= ‖α′‖3k(s)(T (s)×N(s)) = ‖α′‖3k(s)B(s).

Thus, ‖α′ × α′′‖ = ‖α′‖3k(s)‖B(s)‖ = ‖α′‖3k(s) and we conclude that

k(s) =
‖α′ × α′′‖
‖α′‖3

.

As for the torsion, we recall that

α′ =
∂α

∂t
=
∂α

∂s
.
∂s

∂t
,

where s(t) is the arclength parameter. Hence,

α′′ =
[ ∂
∂t

(∂α
∂s

)]
.
∂s

∂t
+
[ ∂
∂t

(∂s
∂t

)](∂α
∂s

)
=

∂

∂s
.
∂s

∂t

(∂α
∂s

)
.
∂s

∂t
+
∂2s

∂t2
.
∂α

∂s

=
∂2α

∂s2
.
∂s

∂t
.
∂s

∂t
+
∂2s

∂t2
.
∂α

∂s
=
∂2α

∂s2
.
(∂s
∂t

)2
+
∂2s

∂t2
.
∂α

∂s

The unit tangent vector is
α′(t)

‖α′(t)‖
or

∂α

∂s
= α′(s), so we get: α′ =

α′

‖α′‖
.
∂s

∂t
.

Hence, ‖α′‖ = ∂s
∂t

and so α′ = ∂α
∂s
‖α′‖. We now calculate

α′′ =
∂2α

∂s2
‖α′‖2 +

∂2s

∂t2
.
∂α

∂s
,

α′ × α′′ =
(∂α
∂s
‖α′‖

)
×
(∂2α
∂s2
‖α′‖2 +

∂α

∂s
.
∂2s

∂t2

)
,

α× α′ = ‖α′‖3
(∂α
∂s
× ∂2α

∂s2

)
+ ‖α′‖

(∂α
∂s
× ∂α

∂s
.
∂2s

∂t2

)
= ‖α′‖3

(∂α
∂s
× ∂2α

∂s2

)
,



α′′′ =
∂

∂t

[∂2α
∂s2

](∂s
∂t

)2
+
∂

∂t

(∂s
∂t

)2∂2α
∂s2

+
∂

∂t

(∂α
∂s

)
.
∂2s

∂t2
+
∂

∂t

(∂2s
∂t2

)(∂α
∂s

)
=

∂

∂s
.
(∂s
∂t
.
∂2α

∂s2

)(∂s
∂t

)2
+

∂

∂s

(∂s
∂t
.
∂α

∂s

)
.
∂2s

∂t2
+
∂3s

∂t3
.
∂α

∂s
+ 2.

∂s

∂t
.
∂

∂t

(∂s
∂t

)
.
∂2α

∂s2

=
∂3α

∂s3

(∂s
∂t

)3
+
∂2α

∂s2

(∂s
∂t

)∂2s
∂t2

+
∂3s

∂t3
.
∂α

∂s
+ 2.

∂s

∂t
.
∂2s

∂t2
.
∂2α

∂s2

=
∂3α

∂s3

(∂s
∂t

)3
+ 3
(∂2α
∂s2

)(∂s
∂t

)(∂2s
∂t2

)
+
∂3s

∂t3
.
∂α

∂s
=
∂3α

∂s3
‖α′‖3

+3.
∂2α

∂s2
.
∂2s

∂t2
‖α′‖+

∂α

∂s
.
∂3s

∂t3
.

The scalar product 〈α′ × α′′, α′′′〉 is then given by

〈α′ × α′′, α′′′〉

=

〈
‖α′‖3

(∂α
∂s
× ∂2α

∂s2

)
,
∂3α

∂s3
‖α′‖3 + 3.

∂2α

∂s2
.
∂2s

∂t2
‖α′‖+

∂α

∂s
.
∂3s

∂t3

〉

= ‖α′‖6
〈∂α
∂s
× ∂2α

∂s2
,
∂3α

∂s3

〉
+ 3‖α′‖4

〈∂α
∂s
× ∂2α

∂s2
∂2s

∂t2

〉
+ ‖α′‖3

〈∂α
∂s
× ∂2α

∂s2
,
∂α

∂s
.
∂3s

∂t3

〉
= ‖α′‖6

〈∂α
∂s
× ∂2α

∂s2
,
∂3α

∂s3

〉

Now, by definition, we have
dα

ds
= T (s) and

d2α

ds2
= T ′(s) = k(s)N(s). Hence,

=⇒ 〈α′ × α′′, α′′′〉 = |α′|6
〈
T × kN, ∂

∂s
(kN)

〉
= k|α′|6

〈
T ×N, ∂k

∂s
N +

∂N

∂s
k
〉

= k|α′|6
〈
B,

∂k

∂s
N
〉

+ k|α′|6
〈
B,

∂N

∂s
k
〉

= k|α′|6
〈
B, kN ′(s)

〉
= k2|α′|6

〈
B,−kT + τB

〉
= k2|α′|6

〈
B, τB

〉
= k2τ |α′|6

=

(
‖α′ × α′′‖
|α′|3

)2

τ |α′|6,

which gives the desired result.

Definition 1.3.16. A map f : Rn −→ Rn is called a rigid motion if there ex-



ists an orthogonal matrix A (a matrix with determinant ±1 and whose columns

are orthonormal vectors) with det(A) = 1 and a constant vector b ∈ Rn such

that f(X) = AX + b for all X ∈ Rn.

Remark The reason we require det(A) = 1 in Definition 1.3.16 is to preserve

the orientation of Rn in rigid motions. Given a constant angle ρ, and b ∈ R2,

f(X) = RρX + b is a rigid motion of R2 where Rρ is the rotation by an angle

ρ and b is a translation. So, a rigid motion is a combination of a rotation and

a translation.

Proposition 1.3.17. Suppose α is a curve in R3 parametrized by arclength

such that α′′ 6= 0 and f(X) = AX + b is a rigid motion in R3. Then, the

curve β(s) = f(α(s)) has the same curvature and torsion as α. Moreover, if

(T (s), N(s), B(s)) is the Frenet-Serret frame along α, then (AT (s), AN(s), AB(s))

is the Frenet-Serret frame along β.

Proof. The curve β is given by

β(s) = f(α(s)) = A(α(s)) + b,

and hence β′(s) = Aα′(s). So, ‖β′(s)‖ = ‖Aα′(s)‖ = ‖α′(s)‖ = 1. Therefore,

β is paramterized by arclength. We denote the curvature and the torsion of β

by k(s) and τ(s). We have β′′(s) = Aα′′(s) and so

k(s) = ‖β′′(s)‖ = ‖Aα′′(s)‖ = ‖α′′(s)‖ = k(s).

Thus, β(s) and α(s) have the same curvature. Now, let (T (s), N(s), B(s))

be the Frenet-Serret frame of β. since T (s) = α′(s) and T (s) = β′(s), we



obviously have T (s) = AT (s). Now,

N(s) =
1

k(s)
T
′
(s) =

1

k(s)
.AT ′(s) = A.

1

k(s)
.T ′(s) = A.N(s).

Also,

B(s) = T (s)×N(s) = AT (s)× AN(s) = A(T (s)×N(s)) = AB(s).

Finally, the torsion τ(s) of β(s) is given by

τ(s) = −〈B′(s), N(s)〉 = −〈AB′(s), AN(s)〉

= −〈B′(s), N(s)〉 = τ(s).

Therefore, α(s) and β(s) have the same torsion τ(s) and

(
T (s) = AT (s), N(s) = AN(s), B(s) = AB(s)

)

is the Frenet-Serret frame for β(s).

1.4 The Fundamental Theorem of Curves in

R3

In this section, we recall the Fundamental Theorem of Curves in R3 and give

its traditional proof written in almost all Differential Geometry books and

references [1, 2, 4, 5]. We start by stating the local existence and uniqueness

Theorem of Ordinary Differential Equations, needed to prove the Fundamental



Theorem of Curves in R3.

Theorem 1.4.1. [6] (The Local Existence and Uniqueness Theorem

of Ordinary Differential Equations). Let U ⊂ Rn be any open set of Rn

and F : (a, b)×U −→ Rn, a C1 map, where C1 is the class of all continuously

differentiable functions. Fix c0 ∈ (a, b). Then, given any point p0 ∈ U , there

exists ε > 0 and a unique solution α : (c0 − ε, c0 + ε) −→ U of the following

initial value problem:


∂α

∂t
= F (t, α(t)),

α(c0) = p0.

Proposition 1.4.2. Let M3×3 be the space of all square matrices of size 3.

Suppose that the map A : [a, b] −→ M3×3 is smooth, A(t) is skew-symmetric

for all t ∈ [a, b] (i.e. A(t)T = −A(t)), c0 ∈ (a, b), and C is a 3×3 orthogonal

matrix. If g : [a, b] −→M3×3 is a smooth solution to the following initial value

problem


dg

dt
= g(t).A(t),

g(c0) = c,

then, g(t) is orthogonal for all t ∈ [a, b].

Proof. Let y(t) = g(t)Tg(t). By the product chain rule, we have

y′(t) = g′(t)Tg(t) + g(t)Tg′(t) = (g(t)A)T .g(t) + g(t)T (g(t)A)

= ATg(t)Tg(t) + g(t)Tg(t)A = ATy(t) + y(t)A.



Also, by the product rule and since C is orthogonal, we have

y(c0) = g(c0)
Tg(c0) = CT .C = I3,

where I3 denotes the identity matrix of size 3. So, y(t) satisfies the following

initial value problem:


∂α

∂t
= ATα + αA = F (t, α(t)),

α(c0) = I3,

(1.4.1)

However, the function z(t) = I3 also satisfies (1.4.1) because z(c0) = I3, z
′(t) =

0 and

AT z + zA = AT .I3 + I3.A = AT + A = 0,

since A is skew-symmetric. Hence, by the existence and uniqueness theorem

of ODE, Theorem 1.4.1, we have y(t) = z(t). This implies that g(t)Tg(t) = I3.

Therefore, g(t) is orthogonal.

Proposition 1.4.3. Let p0, q0 ∈ R3 and {u1, u2, u3} and {v1, v2, v3} be or-

thonormal bases of R3 such that det(u1, u1, u3) = det(v1, v2, v3) = 1. Then,

there exists a unique rigid motion f(x) = Ax + b such that f(p0) = q0 and

Aui = vi for 1 ≤ i ≤ 3, where A is an orthogonal 3×3 matrix with det(A) = 1

and b∈ R3.

Proof. Let U = (u1, u2, u3) and V = (v1, v2, v3) be the 3× 3 matrices with ui

and vi as their ith columns respectively (1 ≤ i ≤ 3). Since {u1, u2, u3} and

{v1, v2, v3} are orthonormal, we have that U and V are orthogonal matrices.

Consider the rigid motion f(x) = Ax + b where A is the matrix given by



A = V U−1 = V UT and b the vector given by b = q0 − Ap0. Of course we

have Aui = vi for 1 ≤ i ≤ 3, and Ap0 + b = q0. We still need to prove the

uniqueness of the rigid motion. Let g(x) = Bx + c be another rigid motion

such that Bui = vi and g(p0) = q0. Then BU = V and hence

B = V U−1 = V UT = A,

and since q0 = Bp0 + c, we get c = q0 − Bp0 = q0 − Ap0 = b. Finally, we get

that Ax+ b = Bx+ c, which means that f(x) = g(x) and the rigid motion is

unique.

Now, we are ready to state and prove the Fundamental Theorem of Curves

in R3.

Theorem 1.4.4. (Fundamental Theorem of Curves in R3)

Given two smooth functions k, τ : (a, b) −→ R such that k(t) > 0.

1. Let t0 ∈ (a, b), p0 ∈ R3, and (u1, u2, u3) be a fixed orthonormal basis

of R3, then there exists δ > 0 and a unique curve α : (t0 − δ, t0 +

δ) −→ R3 parametrized by arclength whose curvature and torsion are

given respectively by k and τ , such that α(0) = p0 and (u1, u2, u3) is the

Frenet-Serret frame of α at t = t0.

2. Suppose α, α̃ : [a, b] −→ R3 are curves parametrized by arclength and

α, α̃ have the same curvature function k and torsion function τ . Then,

there exists a rigid motion f so that α̃ = f(α).



Proof. 1. Consider the function F given by

F : (a, b)× R3 × R3 × R3 −→ R3 × R3 × R3

(t,X, Y, Z) −→ F (t,X, Y, Z) = (k(t)Y,−k(t)X + τ(t)Z,−τ(t)Y ).

F is clearly C1. Thus, by the existence and uniqueness Theorem of

ODE, Theorem 1.4.1, there exists δ > 0 and a unique solution say g :

(t0 − δ, t0 + δ) −→ R3 × R3 × R3 of the initial value problem


g′(t) = F (t, g(t)) = g(t)A(t),

g(t0) = (u1, u2, u3),

where

A(t) =


0 −k(t) 0

k(t) 0 −τ(t)

0 τ(t) 0

 .

Now, {u1, u2, u3} is an orthonormal basis of R3, so g(t0) = (u1, u2, u3) is

an orthogonal 3×3 matrix. Also, A is smooth and since AT = −A, we get

that A is skew-symmetric and g is smooth. By Proposition 1.4.2, we have

that g(t) is orthogonal for all t ∈ (t0− δ, t0 + δ) and e1(t), e2(t), and e3(t)

are the columns of g(t). Hence, {e1(t), e2(t), e3(t)} is an orthonormal

basis of R3 for all t ∈ (t0 − δ, t0 + δ). Define the curve α by

α(t) = p0 +

∫ t

t0

e1(s)ds.



We have α′(t) = e1(t) and ‖α′(t)‖ = ‖e1(t)‖ = 1. It means that α(t) is

parametrized by arclength. Now, g(t) = (e1(t), e2(t), e3(t)) and g′(t) =

g(t)A(t). Hence

(e′1(t), e
′
2(t), e

′
3(t)) = (e1(t), e2(t), e3(t))


0 −k(t) 0

k(t) 0 −τ(t)

0 τ(t) 0


= (k(t)e2(t),−k(t)e1(t) + τ(t)e3(t),−τ(t)e2(t)).

This gives that



e′1(t) = k(t)e2(t),

e′2(t) = −k(t)e1(t) + τ(t)e3(t),

e′3(t) = −τ(t)e2(t),

(e1(t0), e2(t0), e3(t0)) = (u1, u2, u3).

Thus, k and τ are respectively the curvature and the torsion of the curve

α(t) and {e1, e2, e3} is the Frenet-Serret frame of α, which proves the

first statement of the theorem.

2. Consider t0 ∈ (a, b) fixed and {e1(t), e2(t), e3(t)} the Frenet-Serret frame

of α. Let {ẽ1(t), ẽ1(t), ẽ3(t)} be the Frenet-Serret frame of α̃. We have

α(t0) ∈ R3 and α̃(t0) ∈ R3. Also, {e1(t), e2(t), e3(t)} and {ẽ1(t), ẽ2(t), ẽ3(t)}

are orthonormal bases. By Proposition 1.4.3, there exists a unique rigid

motion f(x) = Ax + b such that f(α(t0)) = α̃(t0) and Aei(t0) = ẽi(t0),

for 1 ≤ i ≤ 3. Consider the curve β = f ◦ α. By Proposition 1.3.17,



β and α has the same curvature k and same torsion τ and the Frenet

frame of β is {Ae1(t), Ae2(t), Ae3(t)}. Now, it is easy to check that

(α̃, ẽ1, ẽ2, ẽ3)
′ = (α̃′, ẽ1

′, ẽ2
′, ẽ3

′) = (ẽ1, kẽ2,−kẽ1 + τ ẽ3,−τ ẽ2),

and

(β,Ae1, Ae2, Ae3)
′ = (β′, (Ae1)

′, (Ae2)
′, (Ae3)

′)

= (Ae1, kAe2,−kAe1 + τAe3,−τAe2).

Moreover, at t0, we have

β(t0) = f(α(t0)) = α̃(t0),

Aei(t0) = ẽi(t0) for 1 ≤ i ≤ 3.

Thus, both {α̃, ẽ1, ẽ2, ẽ3} and {β,Ae1, Ae2, Ae3} satisfy the same differ-

ential equation given by

(X, y1, y2, y3)
′ = (y1, ky2,−ky1 + τy3,−τy2).

Therefore, by the existence and uniqueness Theorem of ODE, Theroem

1.4.1, we get that β(t) = α̃(t) for all t ∈ (a, b), and β(t) = f(α(t)).

So, f(α(t)) = α̃(t) which proves the second statement of the theorem.



1.5 A New Proof of the Fundamental Theo-

rem of Curves in R3

In this section, we will give another proof of the Fundamental Theorem of

Curves in R3. This new proof, established by H. F. Guerrero in [3], is based

on finding solutions of a non-linear differential equation of second order. First,

we restate the Fundamental Theorem of Curves in R3.

Theorem 1.5.1. (The Fundamental Theorem of Curves in R3). Given

a differentiable function k(s) > 0 and a continuous function τ(s) where s ∈

(a, b), there exists a regular curve α parametrized by arclength α : J −→

R3 such that s is the arclength, k(s) is its curvature, and τ(s) its torsion.

Moreover, any other curve α̃ satisfying the same conditions, differs from α

by a rigid motion. i.e, there exists an orthogonal matrix A of size 3 with

det(A) > 0, and a vector b such that α̃ = Aα + b.

Remark We point out here that in Theorem 1.4.4, τ(s) was given differen-

tiable. However, in Theorem 1.5.1, τ(s) is only continuous.

Before proving Theorem 1.5.1, we need to establish two lemmas.

Lemma 1.5.2. Let k : [c, d] −→ R be a positive function of class C1 and

τ : [c, d] −→ R a function of class C0. The 2nd order differential equation

∂

∂s

(1

k

∂w

∂s

)
= −kw + τ

√
1− w2 −

(1

k

∂w

∂s

)2
(1.5.1)



with intial value 
w(s1) = w1,

w′(s1) = v1,

where 
s1 ∈ (c, d),

(w1, v1) ∈
{

(w, v) ∈ R2/w2 + v2

k0
2 < 1

}
,

k0 = min{k(s), s ∈ [c, d]},

has a unique solution w : J ⊆ (c, d) → R on some open interval J ⊆ (c, d)

containing s1.

Proof. By the Chain rule, we get

∂

∂s

(1

k

∂w

∂s

)
=
−k′

k2
w′ +

1

k
w′′.

Then, Equation 1.5.1 can be written as:

−k′

k2
w′ +

1

k
w′′ = −kw + τ

√
1− w2 − 1

k2
w′2.

Thus, we have

w′′ =
k′

k
w′ − k2w + τ

√
k2(1− w2)− w′2. (1.5.2)



Letting v = w′, Equation (1.5.2) can be written as:

v′ =
k′

k
v − k2w + τ

√
k2(1− w2)− v2.

Thus,

(w, v)′ = (w′, v′) =
(
v,
k′

k
v − k2w + τ

√
k2(1− w2)− v2

)
.

Consider the function F defined by

F (s, w, v) = (F1(s, w, v), F2(s, w, v))

=
(
v,
k′(s)

k(s)
v − k2(s)w + τ

√
k2(s)(1− w2)− v2

)
,

for (s, w, v) ∈ L = (c, d)×
{

(w, v) ∈ R2/w2 + v2

k0
2 < 1

}
. First, F is well defined

since

w2 +
v2

k0
2 < 1 =⇒ 1− w2 − v2

k0
2 > 0

=⇒ k0
2(1− w2)− v2 > 0 =⇒ k2(1− w2)− v2 > 0.

Clearly, F is continuous. Also, the partial derivatives of F given by

∂F1

∂w
= 0 ;

∂F2

∂w
= −k2 − τk2w√

k2(1− w2)− v2
,

∂F1

∂v
= 0 ;

∂F2

∂v
=
k′

k
− vτ√

k2(1− w2)− v2
,

are all continuous. Then, F is continuously differentiable, so F is C1 with

respect to (w, v) in a neighborhood D of (s1, w1, v1) ∈ L. By the uniqueness



and existence theorem of ODE, Theorem 1.4.1, the initial value problem


(w, v)′ = F (s, w, v) =

(
v, k

′

k
v − k2w + τ

√
k2(1− w2)− v2

)
(w, v)(s) = (w(s1), v(s1)) = (w1, w

′(s1)) = (w1, v1)

has a unique solution on some open interval J ⊆ (c, d) such that s1 ∈ J .

Lemma 1.5.3. For any curve α : [a, b] −→ R3 parametrized by arclength and

having curvature k and torsion τ , there exists an orthogonal linear function

θ of R3, with det θ > 0 such that the binormal vector b of θ ◦ α satisfies

〈b, (0, 0, 1)〉 > 0 in a neighborhood of s ∈ (a, b),where s is the arclength function

knowing that k and τ are invariant under a rigid motion.

Proof. Consider the map θ given by

θ : R3 −→ M3×3

(T,N,B) −→


〈T, e1〉 〈T, e2〉 〈T, e3〉

〈N, e1〉 〈N, e2〉 〈N, e3〉

〈B, e1〉 〈B, e2〉 〈B, e3〉

 ,

where T ,N , and B are the Frenet-Serret frame of α and {e1, e2, e3} the or-

thonormal basis of R3. Now, θ is linear and orthogonal since its columns are

orthonormal vectors, so det(θ) = 1 > 0. If we take θ ◦α, we know from Propo-

sition 1.3.18 that θ ◦ α has the same curvature and torsion as α and that the

Frenet-Serret frame of θ ◦ α is (θT, θN, θB). Let’s calculate θB. We have



θB =


〈T, e1〉 〈T, e2〉 〈T, e3〉

〈N, e1〉 〈N, e2〉 〈N, e3〉

〈B, e1〉 〈B, e2〉 〈B, e3〉



〈B, e1〉

〈B, e2〉

〈B, e3〉



=


〈T, e1〉.〈B, e1〉+ 〈T, e2〉.〈B, e2〉+ 〈T, e3〉.〈B, e3〉

〈N, e1〉.〈B, e1〉+ 〈N, e2〉.〈B, e2〉+ 〈N, e3〉〈B, e3〉

〈B, e1〉2 + 〈B, e2〉2 + 〈B, e3〉2

 =


0

0

‖B‖2

 .

Thus, 〈θB, (0, 0, 1)〉 = ‖B‖2 > 0.

Now, we are ready to prove Theorem 1.5.1.

Proof of Theorem 1.5.1. We need to find a curve α parametrized by arclength,

such that its curvature kα is equal to k, and its torsion τα is equal to τ . Let us

write the tangent vector T (s) in spherical coordinates (ρ, φ, θ) where ρ = 1, φ

the angle between T (s) and the z-axis, and θ the rotation angle. We have

T (s) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) = (sinφ cos θ, sinφ sin θ, cosφ),

T ′(s) = (φ′ cosφ cos θ − θ′ sinφ sin θ, φ′ cosφ sin θ + θ′ sinφ cos θ,−φ′ sinφ),

N(s) =
1

k
T ′(s) =

(φ′ cosφ cos θ − θ′ sinφ sin θ

k
,
φ′ cosφ sin θ + θ′ sinφ cos θ

k
,
−φ′ sinφ

k

)
,

B(s) = T (s)×N(s)

=
(−φ′ sin θ sin2 φ− φ′ sin θ cos2 φ− θ′ sinφ cosφ cos θ

k
,

−−φ
′ cos θ sin2 φ− φ′ cos θ cos2 φ+ θ′ sinφ sin θ cosφ

k
,

+
φ′ sinφ cos θ cosφ sin θ + θ′ sin2 φ cos2 θ − φ′ sinφ sin θ cosφ cos θ + θ′ sin2 φ sin2 θ

k

)
=

(
− φ′ sinφ

k
− φ′ cos θ sin 2φ

2k
,−φ

′ cos θ

k
+
θ′ sin θ sin 2φ

2k
,
θ′ sin2 φ

k

)
.



We know that the Frenet-Serret trihedron
(
T (s), N(s), B(s)

)
forms an or-

thonormal basis for R3 and satisfies:

∂T

∂s
= kN,

∂N

∂s
= −kT + τB,

∂B

∂s
= −τN.

Therefore, for w = 〈T, u〉, where u is a fixed unit vector, we have:

∂w

∂s
=

〈∂T
∂s
, u
〉

+
〈
T,
∂u

∂s

〉
=
〈∂T
∂s
, u
〉

= 〈kN, u〉 = k〈N, u〉.

Hence,
1

k

(∂w
∂s

)
= 〈N, u〉, and so

∂

∂s

{1

k

∂w

∂s

}
= 〈∂N

∂s
, u〉+ 〈N, ∂u

∂s
〉 = 〈∂N

∂s
, u〉 = 〈−kT + τB, u〉

= 〈−kT, u〉+ 〈τB, u〉 = −k〈T, u〉+ τ〈B, u〉. (1.5.3)

Also, since u = 〈u, T 〉T + 〈u,N〉N + 〈u,B〉B, we get that

〈u, u〉 = 〈u, T 〉2 + 〈u,N〉2 + 〈u,B〉2,

and hence we have 〈u, T 〉2 + 〈u,N〉2 + 〈u,B〉2 = 1. Then, Equation (1.5.3) can

be written as

∂

∂s

(1

k
.
∂w

∂s

)
= −k〈T, u〉 ± τ

√
1− 〈u, T 〉2 − 〈u,N〉2

= −kw ± τ
√

1− w2 −
(1

k
.
∂w

∂s

)2
.



By Lemma 1.5.3, we can always choose α such that 〈B, (0, 0, 1)〉 > 0. Let

u = (0, 0, 1) and thus, 〈B, (0, 0, 1)〉 = 〈B, u〉 = +
√

1− 〈N, u〉2 − 〈T, u〉2. So,

we can consider the initial value problem:

∂

∂s

(1

k
.
∂w

∂s

)
= −kw + τ

√
1− w2 −

(1

k
.
∂w

∂s

)2
(1.5.4)

with w(s0) = 〈T (s0), u〉 = 〈T (s0), (0, 0, 1)〉 = w0. We have

1

k

∂w

∂s
(s0) = 〈N, u〉 =⇒ w′(s0) = k〈N(s0), (0, 0, 1)〉 = v0.

Now, we calculate

〈T, (0, 0, 1)〉 = cosφ and 〈b, (0, 0, 1)〉 =
θ′ sin2 φ

k
.

Thus, we have

φ = cos−1(〈T, (0, 0, 1)〉) = cos−1 ξ, (1.5.5)

and

θ =

∫
k

sin2 φ
〈b, (0, 0, 1)〉ds

=

∫
k

sin2 φ

√
1− 〈T, (0, 0, 1)〉2 − 〈N, (0, 0, 1)〉2ds

=

∫
k

sin2 φ

√
1− ξ2 −

(1

k

∂ξ

∂s

)2
ds

=

∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds. (1.5.6)



By replacing (1.5.5) and (1.5.6) in the expression of the tangent vector, we get

T (s)

=
(√

1− cos2 φ cos θ,
√

1− cos2 φ sin θ, cosφ
)

=

(√
1− ξ2 cos

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)
,
√

1− ξ2 sin

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)
, ξ

)

Hence, we find a curve α given by α(s) = (x(s), y(s), z(s)), where

x(s) =

∫ [√
1− ξ2 cos

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)]
ds,

y(s) =

∫ [√
1− ξ2 sin

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)]
ds,

z(s) =

∫
ξds.

Now, the curve α is parametrized by arclength because

‖α′(s)‖ = ‖T (s)‖ =
√

(1− cos2 φ) cos2 θ + (1− cos2 φ) sin2 θ + cos2 φ

=
√

1− cos2 φ+ cos2 φ =
√

1 = 1.

Let’s calculate the curvature and the torsion of the curve α. We have:



T ′(s)

=

(
− ξξ′√

1− ξ2
cos

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)
−
√

1− ξ2
k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2

× sin

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)
,− ξξ′√

1− ξ2
sin

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)

+
√

1− ξ2
k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
cos

(∫ k
√

1− ξ2 − ( 1
k
∂ξ
∂s

)2

1− ξ2
ds

)
, ξ′

)

Thus, we have :

kα = ‖T ′(s)‖ =

√
ξ2(ξ′)2

1− ξ2
+

(1− ξ2)k2(1− ξ2 − ( 1
k
∂ξ
∂s

)2)

(1− ξ2)2
+ (ξ′)2

=

√
ξ2(ξ′)2

1− ξ2
+
k2(1− ξ2 − ( 1

k
∂ξ
∂s

)2)

1− ξ2
+ (ξ′)2

=

√
ξ2(ξ′)2 + k2 − k2ξ2(ξ′)2 + (ξ′)2 − ξ2(ξ′)2

1− ξ2

=

√
k2(1− ξ2)

1− ξ2
=
√
k2 = |k| = k

Now, using Lemma 1.3.15, we know that Tα =
〈α′ × α′′, α′′′〉
‖α′ × α′′‖2

, so let’s calculate

α′, α
′′
, α

′′′
and α′ × α′′. We have

α′ = (sinφ cos θ, sinφ sin θ, cosφ),

α′′ = (φ′ cosφ cos θ − θ′ sin θ sinφ, φ′ cosφ sin θ + θ′ cos θ sinφ,−φ′ sinφ),



α′ × α′′

= (−φ′ sin2 φ sin θ − φ′ cos2 φ sin θ − θ′ cos θ sinφ cosφ, φ′ sin2 φ cos θ + φ′ cos2 φ cos θ

−θ′ sin θ sinφ cosφ, φ′ sinφ sin θ cosφ cos θ + θ′ cos2 θ sin2 φ− φ′ cosφ cos θ sinφ sin θ

+θ′ sin2 θ sin2 φ)

= (−φ′ sin θ − θ′ cos θ sinφ cosφ︸ ︷︷ ︸
B1

, φ′ cos θ − θ′ sin θ sinφ cosφ︸ ︷︷ ︸
B2

, θ′ sin2 φ︸ ︷︷ ︸
B3

).

Thus, we have

‖α′ × α′′‖2

= (φ′)2 sin2 θ + (θ′)2 cos2 θ sin2 φ cos2 φ+ 2φ′θ′ sinφ sin θ cosφ cos θ

+(φ′)2 cos2 θ + (θ′)2 sin2 θ sin2 φ cos2 φ− 2φ′θ′ cos θ cosφ sinφ sin θ + (θ′)2 sin4 φ

= (φ′)2 + (θ′)2 sin2 φ cos2 φ+ (θ′)2 sin4 φ.

Using that



φ = cos−1 ξ

φ′ = −ξ√
1−ξ2

φ′′ =
−ξ′′
√

1−ξ2+ξ′ −2ξξ′

2
√

1−ξ2

1−ξ2 = ξ′′(1−ξ2)−ξ(ξ′)2

(1−ξ2)
√

1−ξ2
= −ξ′′+ξ2ξ′′−ξ(ξ′)2

(1−ξ2)
√

1−ξ2

θ =
∫ k
√

1−ξ2−( 1
k
ξ′)2

1−ξ2 ds

θ′ =
k
√

1−ξ2−( 1
k
ξ′)2

1−ξ2

sinφ =
√

1− ξ2

cosφ = ξ

, (1.5.7)



we obtain

‖α′ × α′′‖2

=
(ξ′)2

1− ξ2
+
k2(1− ξ2 − 1

k2
(ξ′)2)

(1− ξ2)2
(1− ξ2)ξ2 +

k2(1− ξ2 − 1
k2

(ξ′)2)

(1− ξ2)
(1− ξ2)

=
(ξ′)2 + k2ξ2 − k2ξ4 − ξ2(ξ′)2 + (k2 − k2ξ2)(1− ξ2 − 1

k2
(ξ′)2)

1− ξ2

=
(ξ′)2 + k2ξ2 − k2ξ4 − ξ2(ξ′)2 + k2 − k2ξ2 − (ξ′)2 − k2ξ2 + k2ξ4 + ξ2(ξ′)2

1− ξ2
= k2.

We calculate now

〈α′ × α′′, α′′′〉 = C1B1 + C2B2 + C3B3,

where C1, C2 and C3 denote the three components of α′′′ given by

C1 = (φ′′ cosφ− (φ′)2 sinφ) cos θ − φ′θ′ sin θ cosφ

−
[
(θ′′ sin θ + (θ′)2 cos θ) sinφ+ φ′θ′ sin θ cosφ

]
= φ′′ cosφ cos θ − (φ′)2 sinφ cos θ − φ′θ′ sin θ cosφ− θ′′ sin θ sinφ− (θ′)2 cos θ sinφ

−φ′θ′ sin θ cosφ,

C2 = (φ′′ cosφ− (φ′)2 sinφ) sin θ + θ′φ′ cosφ cos θ + (θ′′ cos θ − (θ′)2 sin θ) sinφ

+θ′φ′ cos θ cosφ

= φ′′ cosφ sin θ − (φ′)2 sinφ sin θ + θ′φ′ cosφ cos θ + θ′′ cos θ sinφ− (θ′)2 sin θ sinφ

+φ′θ′ cos θ cosφ,



C3 = −φ′′ sinφ− (φ′)2 cosφ

First, we will calculate BiCi for i = 1, 2, 3. We have

C1B1

= (φ′′ cosφ cos θ − (φ′)2 sinφ cos θ − φ′θ′ sin θ cosφ− θ′′ sin θ sinφ− (θ′)2 cos θ sinφ

−φ′θ′ sin θ cosφ)× (−φ′ sin θ − θ′ cos θ sinφ cosφ)

= φ′φ′′ sin θ cosφ cos θ − θ′φ′′ cos2 θ sinφ cos2 φ+ (φ′)3 sinφ cos θ sin θ

+θ′(φ′)2 sin2 φ cos2 θ cosφ+ (φ′)2θ′ sin2 θ cosφ+ (θ′)2φ′ cos θ sinφ cos2 φ sin θ

+φ′θ′′ sin2 θ sinφ+ θ′′θ′ cos θ sin2 φ cosφ sin θ + (θ′)2φ′ sin θ cos θ sinφ

+(θ′)3 cos2 θ sin2 φ cosφ+ (φ′)2θ′ sin2 θ cosφ+ (θ′)2φ′ cos θ sinφ cos2 φ sin θ,

C2B2

= (φ′′ cosφ sin θ − (φ′)2 sinφ sin θ + θ′φ′ cosφ cos θ + θ′′ cos θ sinφ− (θ′)2 sin θ sinφ

+φ′θ′ cos θ cosφ)× (φ′ cos θ − θ′ sin θ sinφ cosφ)

= φ′φ′′ cos θ cosφ sin θ − θ′φ′′ sin2 θ sinφ cos2 φ− (φ′)3 sinφ sin θ cos θ

+θ′(φ′)2 sin2 φ sin2 θ cosφ+ θ′(φ′)2 cos2 θ cosφ− (θ′)2φ′ cos2 φ cos θ sin θ sinφ

+φ′θ′′ cos2 θ sinφ− θ′′θ′ cos θ sin2 φ sin θ cosφ− φ′(θ′)2 sin θ sinφ cos θ

+(θ′)3 sin2 θ sin2 φ cosφ+ (φ′)2θ′ cos2 θ cosφ− (θ′)2φ′ sin θ sinφ cos2 φ cos θ,

C3B3

= (−φ′′ sinφ− (φ′)2 cosφ)× θ′ sin2 φ = −θ′φ′′ sin3 φ− θ′(φ′)2 cosφ sin2 φ.



So, we get

C1B1 + C2B2 + C3B3

= −θ′φ′′ sinφ cos2 φ+ θ′(φ′)2 sin2 φ cosφ+ θ′(φ′)2 cosφ

+φ′θ′′ sinφ+ (θ′)3 sin2 φ cosφ+ θ′(φ′)2 cosφ− θ′φ′′ sin3 φ

−θ′(φ′)2 cosφ sin2 φ

= θ′φ′′ sinφ cos2 φ+ 2θ′(φ′)2 cosφ+ φ′θ′′ sinφ+ (θ′)3 sin2 φ cosφ

−θ′φ′′ sin3 φ

= θ′φ′′ sinφ(cos2 φ+ sin2 φ) + 2θ′(φ′)2 cosφ+ φ′θ′′ sinφ+ (θ′)3 sin2 φ cosφ

= −θ′φ′′ sinφ︸ ︷︷ ︸
q1

+ 2θ′(φ′)2 cosφ︸ ︷︷ ︸
q2

+φ′θ′′ sinφ︸ ︷︷ ︸
q3

+ (θ′)3 sin2 φ cosφ︸ ︷︷ ︸
q4

.

Using again (1.5.7), we get

q1 = −θ′φ′′ sinφ =
k
√

1− ξ2 − ( ξ
′

k
)2

1− ξ2
.
ξ′′ − ξ2ξ′′ + ξ(ξ′)2

(1− ξ2)
√

1− ξ2
√

1− ξ2

=
k
√

1− ξ2 − ( ξ
′

k
)2(ξ′′ − ξ2ξ′′ + ξ(ξ′)2)

(1− ξ2)2
,

q2 = 2θ′(φ′)2 cosφ =
2k

√
1− ξ2 −

(
ξ′

k

)2
1− ξ2

(ξ′)2

1− ξ2
ξ =

2ξ(ξ′)2k

√
1− ξ2 −

(
ξ′

k

)2
(1− ξ2)

,

q3 = φ′θ′′ sinφ =
−ξ′√
1− ξ2

√
1− ξ2

(
k
√

1− ξ2 − ( ξ
′

k
)2

1− ξ2

)′

= −ξ′
(1− ξ2)

(
k′
√

1− ξ2 −
(
ξ′

k

)2
+ k

−2ξξ′−2 ξ
′
k
( ξ
′′k−k′ξ′

k2
)

2

√
1−ξ2−( ξ′

k
)2

)
+ 2kξξ′

√
1− ξ2 −

(
ξ′

k

)2
(1− ξ2)2



= −ξ′
(1− ξ2)

[
k′(1− ξ2 − ( ξ

′

k
)2)− kξξ′ − ξ′

(
ξ′′k−k′ξ′

k2

)]
+ 2kξξ′

(
1− ξ2 −

(
ξ′

k

)2)
√

1− ξ2 − ( ξ
′

k
)2(1− ξ2)2

= −ξ′
(1− ξ2)(k′k − k′kξ2 − (ξ′)2 k

′

k
− k2ξξ′ − ξ′ξ′′k−k′(ξ′)2

k
) + 2k2ξξ′ − 2k2ξ3ξ′ − 2ξ(ξ′)3√

(1− ξ2)k2 − (ξ′)2(1− ξ2)2

= −ξ′ (1− ξ
2)(kk′ − kk′ξ2 − k2ξξ′ − ξ′ξ′′) + 2ξξ′(k2 − k2ξ2 − (ξ′)2)√

(1− ξ2)k2 − (ξ′)2(1− ξ2)2

= ξ′
(1− ξ2)(ξξ′k2 − kk′(1− ξ2) + ξ′ξ′′)− 2ξξ′(k2(1− ξ2)− (ξ′)2)

(1− ξ2)2
√

(1− ξ2)k2 − (ξ′)2

= ξ′
ξξ′k2 − kk′ + kk′ξ2 + ξ′ξ′′ − ξ3ξ′k2 + ξ2kk′ − kk′ξ4 − ξ′ξ′′ξ2

(1− ξ2)2
√

(1− ξ2)k2 − (ξ′)2

−2ξξ′k2 + 2ξ3ξ′k2 + 2ξ(ξ′)3

(1− ξ2)2
√

(1− ξ2)k2 − (ξ′)2

= ξ′
−ξξ′k2 − kk′ + 2ξ2kk′ + ξ′ξ′′ + ξ3ξ′k2 − kk′ξ4 − ξ′ξ′′ξ2 + 2ξ(ξ′)3

(1− ξ2)2
√

(1− ξ2)2k2 − (ξ′)2
,

q4 = (θ′)3 sin2 φ cosφ =
k3(1− ξ2 −

(
ξ′

k

)2
)
3
2

(1− ξ2)3
.(1− ξ2)ξ =

((1− ξ2)k2 − (ξ′)2)
3
2 ξ

(1− ξ2)2
.

Finally,

C1B1 + C2B2 + C3B3

= q1 + q2 + q3 + q4

=

√
k2(1− ξ2)− (ξ′)2(ξ′′ − ξ2ξ′′ + ξ(ξ′)2)

(1− ξ2)2
+

2ξ(ξ′)2
√
k2(1− ξ2)− (ξ′)2

(1− ξ2)2

+ξ′
ξ3k2ξ′ − k2ξξ′ + 2ξ(ξ′)3 − kk′ − kk′ξ4 + ξ′ξ′′ + 2ξ2kk′ − ξ2ξ′ξ′′

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
ξ(k2(1− ξ2)− (ξ′)2)

3
2

(1− ξ2)2



=
(k2 − k2ξ2 − (ξ′)2)(ξ′′ − ξ2ξ′′ + ξ(ξ′)2) + 2ξ(ξ′)2(k2 − k2ξ2 − (ξ′)2) + ξ(k2 − k2ξ2 − (ξ′)2)2

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
ξ3k2(ξ′)2 − k2ξ(ξ′)2 + 2ξ(ξ′)4 − kk′ξ′ − kk′ξ′ξ4 + ξ′′(ξ′)2 + 2ξ2ξ′kk′ − ξ2ξ′′(ξ′)2

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k2ξ′′ − ξ2ξ′′k2 + ξ(ξ′)2k2 − k2ξ′′ξ2 + k2ξ4ξ′′ − k2ξ3(ξ′)2 − ξ′′(ξ′)2 + ξ′′(ξ′)2ξ2 − ξ(ξ′)4

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
2k2ξ(ξ′)2 − 2k2ξ3(ξ′)2 − 2ξ(ξ′)4 + ξ(k4 + k4ξ4 + (ξ′)4 − 2k4ξ2 − 2k2(ξ′)2 + 2k2ξ2(ξ′)2)

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
ξ3k2(ξ′)2 − k2ξ(ξ′)2 + 2ξ(ξ′)4 − kk′ξ′ − kk′ξ4ξ′ + ξ′′(ξ′)2 + 2ξ2ξ′kk′ − ξ2ξ′′(ξ′)2

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k2ξ′′ − ξ2ξ′′k2 + ξ(ξ′)2k2 − k2ξ′′ξ2 + k2ξ4ξ′′ − k2ξ3(ξ′)2 − ξ′′(ξ′)2 + ξ2ξ′′(ξ′)2 − ξ(ξ′)4

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
2k2ξ(ξ′)2 − 2k2ξ3(ξ′)2 − 2ξ(ξ′)4 + ξk4 + k4ξ5 + ξ(ξ′)4 − 2k4ξ3 − 2k2ξ(ξ′)2 + 2k2ξ3(ξ′)2

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

+
ξ3k2(ξ′)2 − k2ξ(ξ′)2 + 2ξ(ξ′)4 − kk′ξ′ − kk′ξ4ξ′ + ξ′′(ξ′)2 + 2ξ2ξ′kk′ − ξ2ξ′′(ξ′)2

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k2ξ′′ − 2k2ξ2ξ′′ + k2ξ4ξ′′ + k4ξ + k4ξ5 − 2k4ξ3 − kk′ξ′ − kk′ξ′ξ4 + 2ξ2ξ′kk′

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k(kξ′′ − 2kξ2ξ′′ + kξ4ξ′′ + k3ξ + k3ξ5 − 2k3ξ3 − k′ξ′ − k′ξ4ξ′ + 2k′ξ2ξ′)

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k
[
ξk3(1 + ξ4 − 2ξ2)− k′ξ′(1 + ξ4 − 2ξ2) + kξ′′(1− 2ξ2 + ξ4)

]
(1− ξ2)2

√
k2(1− ξ2)− (ξ′)2

=
k(1− 2ξ2 + ξ4)(ξk3 − k′ξ′ + kξ′′)

(1− ξ2)2
√
k2(1− ξ2)− (ξ′)2

=
k(ξk3 − k′ξ′ + kξ′′)√
k2(1− ξ2)− (ξ′)2

.

Thus,

τα =
〈α′ × α′′, α′′′〉
‖α′ × α′′‖2

=
(ξk3 − k′ξ′ + kξ′′)

k
√
k2(1− ξ2)− (ξ′)2



=
(ξk3 − k′ξ′ + kξ′′)

k2
√

(1− ξ2)−
(
ξ′

k

)2
=

ξk − k′

k2
ξ′ + k

k2
ξ′′√

(1− ξ2)−
(
ξ′

k

)2
=

ξk + ξ′′k−ξ′k′
k2√

(1− ξ2)−
(
ξ′

k

)2
=

ξk +
(
ξ′

k

)′
√

(1− ξ2)−
(
ξ′

k

)2
=

ξk + ∂
∂s

{
1
k
∂ξ
∂s

}
√

(1− ξ2)−
(

1
k
∂ξ
∂s

)2 = τ

1.6 Observations and Applications

In this section, we will discuss some applications of the new proof of the Fun-

damental Theorem of Curves. In particular, we will characterize general and

slant helices. First, let’s restate the Fundamental Theorem of Curves which

was proved in the previous section.

Let k : [a, b] −→ R be a function always positive of class C1 and let

τ : [a, b] −→ R be a function of class C0. If ξ = ξ(s) is a solution of:



∂

∂s

{1

k

∂w

∂s

}
= −kw + τ

√
1− w2 −

(1

k

∂w

∂s

)2
with


w(s0) = w0

w′(s0) = v0

where s0 ∈ (a+ ε, b− ε), we have (w0, v0) ∈
{

(w, v) ∈ R2/w2 +
v2

k20
< 1
}

where k0 = min
{
k(s)/s ∈ [a + ε, b − ε]

}
for some ε > 0. Then, α(s) =

(x(s), y(s), z(s)) where:

x(s) =

∫ √
1− ξ2 cos

(∫ √
(1− ξ2)k2 − (ξ′)2

1− ξ2
ds

)
ds

y(s) =

∫ √
1− ξ2 sin

(∫ √
(1− ξ2)k2 − (ξ′)2

1− ξ2
ds

)
ds

z(s) =

∫
ξds

is a curve parametrized by arclength s where k = k(s) is the curvature and

τ = τ(s) is the torsion of α.

Reciprocally, let α : I −→ R3 be a curve parametrized by arclength s, where

k = k(s) is the curvature and τ = τ(s) is the torsion of α, and let T0, N0, B0

be the Frenet frame of α at s = s0 ∈ I. Also, consider the canonical basis

{e1, e2, e3} of R3. Then, there exists an orthogonal linear map σ of R3 with

positive determinant such that the components 〈TB(s), e1〉, 〈TB(s), e2〉, and

〈TB(s), e3〉 of the tangent vector TB of the curve β = σ ◦ α satisfy the intial

value problem:



∂

∂s

{1

k

∂w

∂s

}
= −kw + τ

√
1− w2 −

(1

k

∂w

∂s

)2
w(s0) = 〈σ ◦ T0, ei〉 for i = 1, 2, 3

w′(s0) = 〈k(s0)σ ◦N0ei〉 for i = 1, 2, 3

in some neighborhoods Ii of s0 ∈ I for i = 1, 2, 3 respectively.

1.6.1 General Helices

In this subsection, we define and characterize general helices.

Definition 1.6.1. A curve α, with k(s) 6= 0, is called a general helix if the

principal tangent lines of α make a constant angle with a fixed direction.

Theorem 1.6.2. Let α be a unit speed curve in R3 (i.e. ‖α′‖ = 1) with

curvature k = k(s) 6= 0 and torsion τ = τ(s). The following statements are

equivalent

1. α is a general helix.

2.
τ

k
(s) is a constant.

3. The curve α is given by α(s) = (x(s), y(s), z(s)), where


x(s) = 1√

1+m2

∫
cos
(√

1 +m2
∫
kds
)
ds,

y(s) = 1√
1+m2

∫
sin
(√

1 +m2
∫
kds
)
ds,

z(s) = ms√
1+m2 .



Proof. 1=⇒2: Assume that α is a general helix with a Frenet frame (T,N,B).

Then, the principal tangent lines of α form a constant angle with a fixed

direction. So, there exists a fixed unit vector U such that 〈T, U〉 = δ where δ

is a constant. From the proof of Theorem 1.5.1), we know that if w = 〈T,D〉

where D is any unit vector, we have

∂

∂s

{1

k

∂w

∂s

}
= −kw ± τ

√
1− w2 −

(1

k

∂w

∂s

)2
. (1.6.1)

By taking D = U , we get

∂

∂s

{1

k

∂w

∂s

}
= −kw ± τ

√
1− w2 −

(1

k

∂w

∂s

)2
. (1.6.2)

Since δ is a constant, we have
∂w

∂s
=
∂δ

∂s
= 0, and so Equation (1.6.2) becomes

0 = −kδ ± τ
√

1− δ2 − 0.

Thus,
τ

k
= ± δ√

1− δ2
, which means that τ

k
is a constant.

2 =⇒ 3: Assume
τ

k
(s) = m, where m is a constant. Now, replace τ = km in

the Equation 1.6.1 to get:

∂

∂s

{1

k

∂w

∂s

}
= −kw ±+km

√
1− w2 −

(1

k

∂w

∂s

)2
. (1.6.3)

Now, let’s find a solution of the form ξ(s) = δ where δ is a constant and

1− δ2 > 0 to match the definition of a general helix. ξ(s) = δ is a solution of



the Equation: 1.6.3 but ξ(s) = δ is a constant

=⇒ 0 = −kδ ± km
√

1− δ2 =⇒ δ2 = m2(1− δ2)

=⇒ δ2 = m2 − δ2m2 =⇒ δ2(1 +m2)

=⇒ δ2 =
m2

1 +m2
=⇒ δ =

m√
1 +m2

= ξ(s)

is a solution of the differential equation. Now using the proof of the funda-

mental theorem of curves, we know that any curve α(s) = (x(s), y(s), z(s))

where

x(s) =

∫ [√
1− ξ2 cos

(∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds

)]
ds,

y(s) =

∫ [√
1− ξ2 sin

(∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds

)]
ds,

z(s) =

∫
ξds.

We know that:

∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds =

∫
k
√

1− δ2
1− δ2

ds =
1√

1− δ2

∫
kds =

1√
1− m2

1+m2

∫
kds

=

√
1 +m2

1 +m2 −m2

∫
kds =

√
1 +m2

∫
kds

√
1− δ2 =

√
1− m2

1 +m2
=

√
1 +m2 −m2

1 +m2
=

1√
1 +m2



=⇒



x(s) =
1√

1 +m2

∫
cos
(√

1 +m2

∫
kds
)
ds,

y(s) =
1√

1 +m2

∫
sin
(√

1 +m2

∫
kds
)
ds,

z(s) =
ms√

1 +m2
.

So, 3. is satisfied.

3 =⇒ 1: Assume that the statement 3 holds. Then, its tangent vector Tα has

the following components

x′(s) =
1√

1 +m2
cos
(√

1 +m2

∫
kds
)
,

y′(s) =
1√

1 +m2
sin
(√

1 +m2

∫
kds
)
,

z′(s) =
m√

1 +m2
.

Then, 〈Tα, (0, 0, 1)〉 =
m√

1 +m2
, which is a constant. So, the principal tangent

lines of α make a constant angle with the fixed direction U = (0, 0, 1). Hence,

α is a general helix.

1.6.2 Slant Helices

In this subsection, we define and characterize slant helices.

Definition 1.6.3. A curve α with k(s) 6= 0 is called a slant helix if the

principal normal lines of α make a constant angle with a fixed direction.

Theorem 1.6.4. Let α be a unit speed curve in R3 with curvature k = k(s) 6= 0

and torsion τ = τ(s).Then the following are equivalent



1. α is a slant helix.

2. The function σ(s) =

(
k2

(k2 + τ 2)
3
2

(τ
k

)′)
(s) is constant.

3. The curve α is given by α(s) = (x(s), y(s), z(s)) where



x(s) =
1√

1 +m2

∫ (∫
sin

[√
1 +m2 sin−1(m

∫ s
0
kds)

m

]
k(s)ds

)
ds,

y(s) =
1√

1 +m2

∫ (∫
cos

[√
1 +m2 sin−1(m

∫ s
0
kds)

m

]
k(s)ds

)
ds,

z(s) =
|m|√

1 +m2

∫ (∫ s

0

kds
)
ds.

Proof. 1 =⇒ 2: Assume α is a slant helix with a Frenet frame
(
T,N,B

)
. Then

the principal normal lines of α make a constant angle with a fixed direction.

So, there exists a fixed unit vector U such that 〈N,U〉 = δ, where δ is a

constant. From the proof of Theorem 1.5.1), we know that if w = 〈T,D〉

where D is any unit vector, then

∂

∂s

{1

k

∂w

∂s

}
= −kw ± τ

√
1− w2 −

(1

k

∂w

∂s

)2
Now taking D = U we have:

∂w

∂s
= 〈∂T

∂s
, U〉+ 〈T, ∂U

∂s
〉 = 〈k(s).N(s), U〉 = k〈N,U〉 = kδ.



Because δ is constant, we get
∂

∂s

{1

k

∂w

∂s

}
=

∂

∂s
(δ) = 0 and hence we have,

−kw ± τ
√

1− w2δ2 = 0.

Thus,

kw = ±τ
√

1− w2 − δ2

=⇒ w2 =
τ 2(1− w2 − δ2)

k2

=⇒ k2w2 = τ 2 − τ 2w2 − τ 2δ2

=⇒ w2 =
τ 2 − τ 2δ2

k2 + τ 2
=
τ 2(1− δ2)
k2(1 + τ2

k2
)

=
(τ
k

)2 1− δ2

1 + ( τ
k
)2
.

Now,
∂w

∂s
= kδ =⇒ w = δ

∫ s

0

kds. Also, we have w = (
τ

k
)

√
1− δ2√

1 + ( τ
k
)2

. Thus,

deriving with respect to s, we get:

δk√
1− δ2

=
( τ
k
)′
√

1 + ( τ
k
)2 − ( τ

k
)

( τ
k
)′( τ

k
)′√

1+( τ
k
)2

1 + ( τ
k
)2

=⇒ δk√
1− δ2

=
( τ
k
)′(1 + ( τ

k
)2 − ( τ

k
)2)

(1 + ( τ
k
)2)

3
2

=⇒ δ√
1− δ2

=
( τ
k
)′

k(1 + ( τ
k
)2)

3
2

× k3

k3

=⇒
k2( τ

k
)′

(k2 + τ 2)
3
2

=
δ√

1− δ2
.

We get that
k2( τ

k
)′

(k2 + τ 2)
3
2

is a constant and hence the statement 2 is satisfied.



2 =⇒ 3: Suppose
k2

(k2 + τ 2)
3
2

(τ
k

)′
= m, where m is a constant. We have

( τ
k
)′

k(1 + ( τ
k
)2)

3
2

= m

=⇒
∫ s

0

( τ
k
)′

(1 + ( τ
k
)2)

3
2

ds =

∫ s

0

kmds

=⇒
∫ s

0

( τ
k
)′

(1 + ( τ
k
)2)

3
2

ds = m

∫ s

0

kds

Now, we calculate the integral I =

∫ 2

0

( τ
k
)′

(1 + ( τ
k
)2)

3
2

ds. Consider the change of

variable u =
τ

k
. We get

I =

∫ s

0

du

(1 + u2)
3
2

ds.

Now we consider the trigonometric substitution u = tan θ. We have

I =

∫ 2

0

sec2 θ

sec3 θ
dθ

=

∫ s

0

cos θdθ = [sin θ]s0

=

[
u√

1 + u2

]s
0

=

[
τ
k

(1 + ( τ
k
)2)

1
2

]s
0

Thus, we have [
τ
k

(1 + ( τ
k
)2)

1
2

]s
0

= m

∫ s

0

kds,

and finally
τ
k

(1 + ( τ
k
)2)

1
2

= m

∫ s

0

kds+ A,



where A is the integration constant. Hence, we have

τ 2

k2
=
(
m

∫ s

0

kds+ A
)2(

1 +
(τ
k

)2)
=⇒ τ 2

k2
=
(
m

∫ s

0

kds+ A
)2

+
(τ
k

)2(
m

∫ s

0

kds+ A
)2

=⇒ τ 2

k2

(
1−

(
m

∫ s

0

kds+ A
)2)

=
(
m

∫ s

0

kds+ A
)2

=⇒ τ 2

k2
=

(m
∫ s
0
kds+ A)2

1− (m
∫ s
0
kds+ A)2

=⇒ τ = k

(
(m
∫ s
0
kds+ A)2

1− (m
∫ s
0
kds+ A)2

) 1
2

.

Now, using the differential equation 1.6.1 and replacing τ by the quantity

above, we get

∂

∂s

{1

k

∂w

∂s

}
= −kw + k

(
(m
∫ s
0
kds+ A)2

1− (m
∫ s
0
kds+ A)2

) 1
2
√

1− w2 −
(1

k

∂w

∂s

)2
(1.6.4)

We need to find a solution of the form ε = δ

∫ s

0

kds with
1

k

∂ε

∂s
= δ where δ is

a constant and ε satisfies 1 − ε2 −
(1

k

∂ε

∂s

)2
> 0. Replacing in the differential

equation above, we get:

0 = −kδ
∫ s

0

kds+ k
|m
∫ s
0
kds+ A|√

1− (m
∫ s
0
kds+ A)2

√
1−

(
δ

∫ s

0

kds
)2
− δ2.

If m > 0, we have δ =
m√

1 +m2
and A = 0 (for simplicity of calculation) so

we get:



− k

(
m√

1 +m2

)∫ s

0

kds+ k
|m
∫ s
0
kds|√

1− (
∫ s
0
kds)2

√
1− m2

1 +m2

(∫ s

0

kds
)2
− m2

1 +m2

= − k

(
m√

1 +m2

)∫ s

0

kds+ k
|m
∫ s
0
kds|√

1− (
∫ s
0
kds)2

√
1− (m

∫ s
0
kds)2

1 +m2

= − k

(
m√

1 +m2

)∫ s

0

kds+ k
m
∫ s
0
kds√

1− (
∫ s
0
kds)2

√
1− (

∫ s
0
kds)2

√
1 +m2

= 0

If m < 0, we have δ =
−m√
1 +m2

. A = 0 and similarly, we get

−kδ
∫ s

0

kds+ k
|m
∫ s
0
kds|√

1− (m
∫ s
0
kds)2

√
1−

(
δ

∫ s

0

kds
)2
− δ2 = 0.

It means that ε =
m√

1 +m2

∫ s

0

kds (for m > 0) is a solution of the differential

equation:

∂

∂s

{1

k

∂w

∂s

}
= −kw + k

(m
∫ s
0
kds)√

1− (m
∫ s
0
kds)2

√
1− w2 −

(1

k

∂w

∂s

)2

and ε =
−m√
1 +m2

∫ s

0

kds (for m < 0) is a solution of the differential equation:

∂

∂s

{1

k

∂w

∂s

}
= −kw + k

(m
∫ s
0
kds)√

1− (m
∫ s
0
kds)2

√
1− w2 −

(1

k

∂w

∂s

)2
.



We need to calculate the coordinates of α using the following:

x(s) =

∫ [√
1− ξ2 cos

(∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds

)]
ds,

y(s) =

∫ [√
1− ξ2 sin

(∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds

)]
ds,

z(s) =

∫
ξds.

Let’s consider the case m < 0:

We have J =

∫ k

√
1− ξ2 −

(
1
k
∂ξ
∂s

)2
1− ξ2

ds =

∫ k
√

1− m2

1+m2 (
∫ s
0
kds)2 − m2

1+m2

1− m2

1+m2 (
∫ s
0
kds)2

ds

=
1√

1 +m2

∫ k
√

1−m2(
∫ s
0
kds)2

1− m2

1+m2 (
∫ s
0
kds)2

ds

Let u = m

∫ s

0

kds, du = mkds and ds = du
mk

. Then,

J =
1

m
√

1 +m2

∫ √
1− u2

1− u2

1+m2

du = −
√

1 +m2

m

∫ √
1− u2

u2 − (1 +m2)
du.

Let u = sin θ, so du = cos θdθ and

J =
−
√

1 +m2

m

∫
cos2 θ

sin2 θ − (1 +m2)
dθ

=
−
√

1 +m2

m

∫
sec2 θ

−1

(tan2 θ + 1)(m2 + 1 +m2 tan2 θ)
dθ.



For w = tan θ, dw = sec2 θdθ and

J =

√
1 +m2

m

∫
1

(w2 + 1)(m2 + 1 +m2w2)
dw.

Using the decomposition into partial fractions, we have

1

(w2 + 1)(m2 + 1 +m2w2)

=
Aw +B

w2 + 1
+

Cw +D

m2w2 +m2 + 1
=

(Aw +B)(m2w2 +m2 + 1) + (Cw +D)(w2 + 1)

(w2 + 1)(m2 + 1 +m2w2)

=
Am2w3 + Am2w + Aw +Bm2w2 +Bm2 +B + Cw3 + Cw +Dw2 +D

(w2 + 1)(m2 + 1 +m2w2)

=
w3(Am2 + C) + w2(D +Bm2) + w(Am2 + A+ C) + (Bm2 +B +D)

(w2 + 1)(m2 + 1 +m2w2)

Hence,



Am2 + C = 0

D +Bm2 = 0

A(m2 + 1) + C = 0

B(m2 + 1) +D = 1

.

This means that A = 0, B = 1, C = 0, and D = −m2. So, we get:

J =

√
1 +m2

m

∫ ( 1

w2 + 1
− m2

m2 + 1 +m2w2

)
dw

=

√
1 +m2

m

(
tan−1w −

∫
m2( 1

m2+1
)

1 + m2

1+m2w2
dw

)

=

√
1 +m2

m

(
tan−1w − m2

m2 + 1
× 1

m√
1+m2

tan−1
( m√

1 +m2
w
))



=

√
1 +m2

m

(
tan−1w − m√

1 +m2
tan−1

( m√
1 +m2

w
))

=

√
1 +m2

m

(
θ − m√

1 +m2
tan−1

( m√
1 +m2

tan θ
))

=

√
1 +m2

m

(
sin−1 u− m√

1 +m2
tan−1

( m√
1 +m2

.
u√

1− u2
))

=

√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)
− tan−1

(
m2

√
1 +m2

.

∫ s
0
kds√

1−m2(
∫ s
0
kds)2

)
.

Now, we calculate x(s). We have

x(s)

=

∫ √
1− m2

1 +m2

(∫ s

0

kds
)2

× cos

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)
− tan−1

(
m2

√
1 +m2

.

∫ s
0
kds√

1− (m
∫ s
0
ds)2

))

=

√
1− m2

m2 + 1

(∫ s

0

kds
)2

×

(
cos

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

cos

(
tan−1

(
m2

√
1 +m2

.

∫ s
0
kds√

1− (m
∫ s
0
kds)2

))

+ sin

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

sin

(
tan−1

(
m2

√
1 +m2

.

∫ s
0
kds√

1− (m
∫ s
0
kds)2

)))

=

√
1− m2

m2 + 1

(∫ s

0

kds
)2

cos

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

.

√
1 +m2

√
1− (m

∫ s
0
kds)2√

1 +m2 − (m
∫ s
0
kds)2

+

√
1− m2

m2 + 1

(∫ s

0

kds
)2

sin

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

×
m2
∫ s
0
kds

√
1 +m2

.
1√

1− m2

m2+1
(
∫ s
0
kds)2



=

∫ √
1−

(
m

∫ s

0

kds
)2

cos

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

+

∫
m2

√
1 +m2

∫ s

0

kds sin

(√
1 +m2

m
sin−1

(
m

∫ s

0

kds
))

The derivative of :√
1−m2

(∫ s

0

kds
)2

cos

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

+
m2

√
1 +m2

(∫ s

0

kds
)

sin

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

is given by

−
2m2k(

∫ s
0
kds)

2
√

1− (m
∫ s
0
kds)2

cos

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

−

√
1−

(
m

∫ s

0

kds
)2√1 +m2

m

mk√
1− (m

∫ s
0
kds)2

sin

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

+
m2

√
1 +m2

k sin

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

+
m2

√
1 +m2

(∫ s

0

kds
)√1 +m2

m

mk√
1− (m

∫ s
0
kds)2

cos

[√
1 +m2

m
sin−1

(
m

∫ s

0

kds
)]

=
−1√

1 +m2
k(s) sin

[√
1 +m2 sin−1(m

∫ s
0
kds)

m

]

Hence,

x(s) =
−1√

1 +m2

∫ ∫ (
sin

[√
1 +m2 sin−1(m

∫ s
0
kds)

m

]
k(s)ds

)
ds



Similarly, we have


y(s) =

−1√
1 +m2

∫ ∫ (
cos

[√
1 +m2 sin−1(m

∫ s
0
kds)

m

]
k(s)ds

)
ds,

z(s) =

∫
ξds =

∫
m√

1 +m2

∫ s

0

kds =
m√

1 +m2

∫ ∫
kds.

3 =⇒ 1: For the cases m < 0 or m > 0, the components of T (s) are given by:



x′(s) =
1√

1 +m2

∫
sin

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
k(s)ds,

y′(s) =
1√

1 +m2

∫
cos

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
k(s)ds,

z′(s) =
|m|√

1 +m2

∫ s

0

kds.

Therefore, the components of T ′(s) are given by:



x′′(s) =
1√

1 +m2
sin

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
k(s),

y′′(s) =
1√

1 +m2
cos

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
k(s),

z′′(s) =
|m|√

1 +m2
k.

Now, we have: N(s) =
1

k
T ′(s), so

N(s) =



1√
1 +m2

sin

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
1√

1 +m2
cos

[√
1 +m2 cos−1(m

∫ s
0
kds)

m

]
|m|√

1 +m2


.



Thus, 〈N(s), (0, 0, 1)〉 =
|m|√

1 +m2
, which is constant, so the principal normal

lines of α form a constant angle with a fixed direction u = (0, 0, 1), and hence

α is a slant helix.



Chapter 2

Principal, Gaussian, and Mean

Curvatures of Parametrized

Surfaces

In this chapter, we first give a quick review on quadratic forms and linear

operators. Then, we define a parametrized surface, its tangent planes and

normal vectors. Finally, we introduce the first and second fundamental forms

of a surface in order to define the principal, Gaussian, and mean curvatures.

See [1, 2, 4].

2.1 Review on Linear Algebra

In this section, we recall basic facts on linear operators, bilinear and quadratic

forms.
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2.1.1 Bilinear and Quadratic Forms

A bilinear form on a vector space V is a map b : V × V −→ R such that:


b(c1v1 + c2v2, v) = c1b(v1, v) + c2b(v2, v),

b(v, c1v1 + c2v2) = c1b(v, v1) + c2b(v, v2),

for all v1, v2, v ∈ V and c1, c2 ∈ R. The bilinear form b is called symmetric if

b(u, v) = b(v, u) for all u, v ∈ V .

Definition 2.1.1. A real-valued function Q on a vector space V is called

a quadratic form if it can be written in the form Q(v) = b(v, v) for some

symmetric bilinear form b on V . It is then called the quadratic form associated

to b.

Remark Let b be a bilinear symmetric form on V and Q the quadratic form

associated to b. We have

b(v + w,w + v) = b(v, w) + b(v, v) + b(w,w) + b(w, v)

= b(v, v) + 2b(v, w) + b(w,w).

Hence, Q(v + w) = Q(v) + 2b(v, w) +Q(w) and thus

b(v, w) = b(v, w) =
1

2

[
Q(v + w)−Q(v)−Q(w)

]
.

It means that we can recover b from the below formula.

Example 2.1.2. Let A be n×n matrix, Rn be the space of n×1 real matrices



and b(X, Y ) = XTAY for all X, Y ∈ Rn. Then, b is a bilinear form since

b(c1X1 + c2X2, Y ) = (c1X1 + c2X2)
TAY = (c1X

T
1 + c2X

T
2 )AY

= c1X
T
1 AY + c2X

T
2 AY = c1b(X1, Y ) + c2b(X2, Y )

b(Y, c1X1 + c2X2) = Y TA(c1X1 + c2X2) = Y TAc1X1 + Y TAc2X2

= c1Y
TAX1 + c2Y

TAX2 = c1b(Y,X1) + c2b(Y,X2)

If X = (x1, x2, ....., xn)T , Y = (y1, y2, .....yn)T and A = (aij), then:

b(X, Y ) = (x1, x2, ...., xn)



a11 a12 .. .. a1n

a21 .. .. .. ..

.. .. .. .. ..

a1n .. .. .. ann





y1

y2

..

yn



=
( n∑
i=1

x1ai1, ...,
n∑
i=1

xnain

)


y1

y2

..

..

yn


=

n∑
j=1

n∑
i=1

xiaijyj =
n∑

i,j=1

aijxiyj.

Let {v1, v2, ..., ..., vn} be a basis for V and b be a bilinear form on V with

bij = b(vi, vj) for 1 ≤ i, j ≤ n. The matrix B = (bij) is called the coefficient

matrix of b with respect to {v1, v2, ..., ..., vn}. If w1 = (x1, x2, ..., ..., xn) and

w2 = (y1, y2, ..., ..., yn), then b(w1, w2) =
n∑

i,j=1

bijxiyj.



If b is symmetric, then bij = bji and b(w1, w1) = Q(w1) =
n∑

i,j=1

bijxixj.

2.1.2 Linear Operators

Let V be a vector space with basis {v1, v2, ..., .., vn} and T be a linear map

T : V −→ V . Then for all 1 ≤ j ≤ n, T (vj) can be written as a linear

combination of v1, v2, · · · , vn. In other words, T (vj) =
n∑
i=1

aijvi. We denote

by A = (aij) the matrix associated to the linear map T . If v =
n∑
i=1

xivi and

T (v) =
n∑
i=1

yivi, then we have

Y = AX,

where Y = (y1, y2, ..., ..., yn)T and X = (x1, x2, ..., ..., xn)T . In fact, we have

T (v) = T
( n∑
i=1

xivi

)
=

n∑
i=1

xiT (vi)

=
n∑

i,j=1

xiajivj =
n∑
j=1

( n∑
i=1

xiaji

)
vj.

Since T (v) =
n∑
j=1

yjvj, we get, yj =
n∑
i=1

xiaji and Y = AX.

Proposition 2.1.3. Let T : V −→ V be a linear map and A,B be the matrices

of T associated to bases {v1, .., .., .., vn} and {u1, .., .., un} respectively. If ui =
n∑
j=1

cjivj for 1 ≤ i ≤ n, then, B = C−1AC where C = (cij) is a matrix of size

n× n.



Proof. On one hand, we have:

T (ui) =
n∑
k=1

bkiuk =
n∑
k=1

bki

n∑
m=1

cmkvm =
n∑

m=1

(
n∑
k=1

bkicmk

)
vm

On the other hand, we have

T (ui) = T

(
n∑
j=1

cjivj

)
=

n∑
j=1

cjiT (vj) =
n∑
j=1

cji

n∑
m=1

amjvm =
n∑

m=1

(
n∑
j=1

cjiamj

)
vm.

But T (ui) can be uniquely written as a linear combination of v1, v2, ...., vn.

Then:

n∑
k=1

bkicmk =
n∑
j=1

cjiamj

So, we have that the (mi)th entry of CB equals to the (mi)th entry of AC.

Hence, CB = AC and B = C−1AC.

Suppose A = (aij) and B = (bij) are the matrices associated to the linear

maps S : V −→ V and T : V −→ V with respect to the basis {v1, v2, ..., vn}.

In other words:

S(vj) =
n∑
i=1

aijvi and T (vj) =
n∑
i=1

bijvi for 1 ≤ j ≤ n.

We denote by S ◦ T : V −→ V the composition of S and T .

Proposition 2.1.4. IF A = (aij) aand B = (bij) are the matrices associated

to the linear maps S : V −→ V and T : V −→ V with respect to the basis

{v1, v2, ..., .., vn}. Then, AB is the matrix associated to S ◦ T with respect to



the basis {v1, v2, ..., vn}.

Proof. Suppose C = (cij) is the matrix associated to S ◦ T . We have

S ◦ T (vj) = S(T (vj)) =
n∑
i=1

cijvi.

Also, we have

S(T (vj)) = S

(
n∑
i=1

bijvi

)
=

n∑
i=1

bijS(vi)

=
n∑
i=1

bij

n∑
k=1

akivk =
n∑
k=1

(
n∑
i=1

bijaki)vk.

Hence, cij =
n∑
i=1

akibij and C = AB.

Definition 2.1.5. Let 〈., .〉 be an inner product on V . A linear operator

T : V −→ V

is self adjoint if 〈Tv, w〉 = 〈v, Tw〉 for all v, w ∈ V .

Proposition 2.1.6. Let T : V −→ V be a linear map and A = (aij) the

matrix associated to T with respect to an orthonormal basis {v1, v2, ..., vn}.

Then, aij = 〈T (vj), vi〉 for all 1 ≤ i, j ≤ n. If T is self adjoint, then A is

symmetric.



Proof. We have T (vj) =
n∑
i=1

aijvi. Then,

〈T (vj), vi〉 = 〈
n∑
i=1

aijvi, vi〉 = 〈a1jv1 + ...+ aijvi + ....+ anjvn, vi〉

= a1j〈v1, vi〉+ .....+ aij〈vi, vi〉+ ....+ anj〈vn, vi〉

= 0 + 0 + ...+ aij.1 + ...+ 0 = aij.

Now, if T is self adjoint, then

aij = 〈T (vj), vi〉 = 〈vj, T (vi)〉 = aji.

Therefore, A is symmetric.

Proposition 2.1.7. Let (V, 〈., .〉) be an inner product space with {v1, v2, ..., vn}

as a basis for V . Let T : V −→ V be a self adjoint linear operator. We denote

by A = (aij) the matrix associated to T with respect to the basis {v1, v2, ..., vn}.

Let bij = 〈T (vi), vj〉, gij = 〈vi, vj〉, B = (bij), G = (gij), and G−1 = (gij) be

the inverse of G. Then:

1. B = ATG

2. A = G−1BT = G−1B

3. detA =
detB

detG
and tr(A) =

n∑
i=1

aii =
n∑

i,j=1

bijg
ij



Proof. 1. We have

bij = 〈T (vi), vj〉 = 〈
n∑
k=1

akivk, vj〉

= a1i

〈
v1, vj〉+ a2i〈v2, vj

〉
+ ....+ aji〈vj, vj〉+ ...+ ani〈vn, vj〉

= a1ig1j + a2ig2j + ....+ anignj

=
n∑
k=1

akigkj.

So, B = ATG.

2. From Proposition 2.1.6, B is symmetric, and G is symmetric since gij =

〈vi, vj〉 = 〈vj, vi〉 = gji. Thus, BT = B, GT = G, (G−1)T = G−1, and

(B−1)T = B−1. Now, we have B = ATG and so

AT = BG−1.

Taking the transpose of both sides, we get (AT )T = (BG−1)T and so

A = (G−1)TBT = G−1B.

3. We have

detA = det(G−1B) = det(G−1). detB =
1

detG
. detB.

Hence, detA =
detB

detG
.

Proposition 2.1.8. Let 〈., .〉 be an inner product on V and S : V −→ V a



self adjoint linear operator. Define bS : V × V −→ R by bS(v, w) = 〈S(v), w〉.

Then:

1. bS is a symmetric bilinear form.

2. The coefficient matrix of bS is (sij) given by sij = 〈S(vi), vj〉.

Proof. 1. We have:

bS(c1v1 + c2v2, w) = 〈S(c1v1c2v2), w〉 = 〈c1S(v1) + c2S(v2), w〉

= c1〈S(v1), w〉+ c2〈S(v2), w〉 = c1b
S(v1, w) + c2b

S(v2, w)

bS(w, c1v1 + c2v2) = 〈S(w), c1v1 + c2v2〉 = 〈S(w), c1v1〉+ 〈S(w), c2v2〉

= c1〈S(w), v1〉+ c2〈S(w), v2〉 = c1b
S(w, v1) + c2b

S(w, v2).

So, bS is a bilinear form. Moreover,

bS(v, w) = 〈S(v), w〉 = 〈v, S(w)〉 = 〈S(w), v〉 = bS(w, v)

So, bS is symmetric.

2. Trivial

Proposition 2.1.9. Let 〈., .〉 be an inner product on V and b be a symmetric

bilinear form on V . Then, there exists a self adjoint operator S : V −→ V

such that b = bS.

Proof. Let {v1, v2, ..., vn} br an orthonormal basis for V , bij = b(vi, vj) and

S(vi) =
n∑
j=1

bijvj. Now, b(vi, vj) = bij, and since b symmetric and the basis is



orthonormal, we have

bS(vi, vj) = 〈S(vi), vj〉 = 〈
n∑
j=1

bjivj, vj〉 = 〈
n∑
j=1

bijvj, vj〉 = bij.

Thus, b = bS.

2.1.3 Eigenvalues and Eigenvectors

Let V be a vector space and S : V −→ V be a linear map. A non-zero vector

u ∈ V is an eigenvector of S with eigenvalue λ if S(u) = λu. Note that if A is

a real n× n matrix, then a number λ0 ∈ R is called an eigenvalue of A if

∃u ∈ Rn/Au = λ0u.

In this case, u is the eigenvector of A. If S : Rn −→ Rn is a linear map defined

by S(u) = Au, then eigenvalues and eigenvectors of A are the same as that of

the linear operator S.

Proposition 2.1.10. Let A be the matrix associated to the linear operator

S : V −→ V and denote by {v1, v2, ..., vn} a basis of V .

1. λ0 ∈ R is an eigenvalue of S ⇐⇒ det(A− λ0Id) = 0.

2. If Au = λ0u, then v = u1v1 + u2v2 + ... + unvn is an eigenvector of S

where u =

(
u1 u2 · · · · · · un

)T
.

Proof. 1. λ0 is an eigenvalue of S

⇐⇒ ∃v 6= 0 ∈ V such that S(v) = λ0v

⇐⇒ Av = λ0v ⇐⇒ Av − λ0v = 0



⇐⇒ (A− λ0Id)v = 0

⇐⇒ det(A− λ0Id) = 0 (since v 6= 0).

2. we have Au = λ0u. Now,

S(vi) = a1iv1 + a2iv2 + ...+ anivn =
n∑
j=1

ajivj

S(v) = S(u1v1 + u2v2 + ...+ unvn) = S(u1v1) + S(u2v2) + ...+ S(unvn)

= u1S(v1) + u2S(v2) + ...+ unS(vn) = u1

n∑
j=1

aj1vj + .....+ un

n∑
j=1

ajnvj

=
n∑
i=1

n∑
j=1

ajiuivj.

But
n∑
i=1

ajiui is the j1th entry of Au which is λ0u. So,



a11 a12 .. .. a1n

.. .. .. .. ..

aj1 aj2 .. .. ajn

.. .. .. .. ..

an1 an2 .. .. ann





u1

u2

..

..

un


= Au = λ0u = λ0



u1

..

uj

..

un


Thus

∑n
i=1 ajiui = λ0uj and

S(v) = S(
n∑
j=1

ujvj) = λ0

n∑
j=1

ujvj.

Hence v =
n∑
i=1

uivi is an eigenvector of S with eigenvalue λ0.



Proposition 2.1.11. Let A =

a b

c d

 be a 2 × 2 real symmetric matrix.

Then,

1. A has 2 real eigenvalues λ1 and λ2.

2. λ1λ2 = det(A) and λ1 + λ2 = tr(A).

3. There exists an orthonormal basis {v1, v2} of R2 such that vi is an eigen-

vector with eigenvalue λi where i = 1, 2.

We call {v1, v2} an orthonormal eigenbase of A.

Proof. 1. We have det(A− λId) = 0. Thus,

∣∣∣∣∣∣∣
q − λ b

b c− λ

∣∣∣∣∣∣∣ = 0.

Hence (a− λ)(c− λ)− b2 = 0, which implies that

ac− b2 − (a+ c)λ+ λ2 = 0. (2.1.1)

We now calculate the discriminant of the last equation and get

∆ = (a+ c)2−4(ac− b2) = a2 + 2ac+ c2−4ac+ 4b2 = (a− c)2 + 4b2 ≥ 0.

So, λ1 =
(a+ c)−

√
(a− c)2 + 4b2

2
and λ2 =

(a+ c) +
√

(a− c)2 + 4b2

2
.



2. From Proposition 2.1.1, we get:


λ1λ2 = ac−b2

1
= det(A)

λ1 + λ2 = a+c
1

= tr(A)

3. If ∆ = 0, then (a− c)2 + 4b2 = 0 and so a = c and b = 0. Hence,

A =

a 0

0 a

 = a

1 0

0 1

 = aI.

The vectors

1

0

 and

0

1

 are the orthonormal basis for A where

1

0


and

0

1

 are the eigenvectors.

If ∆ > 0, then Av1 = λ1v1 and we have

a b

b c


x1
x2

 = λ1

x1
x2

 =⇒


ax1 + bx2 = λ1x1

bx1 + cx2 = λ1x2

So, x2 =
(λ1 − a)

b
x1 and x2 =

b

λ1 − c
x1. But,

λ1 − a
b

=
b

λ1 − c
since

(λ1 − a)(λ1 − c)− b2 = 0. Therefore, for x1 = −b,

x2 = a− λ1 = a−
a+ c−

√
(a− c)2 + 4b2

2
=
a− c+

√
(a− c)2 + 4b2

2



and

v1 =

 −b
a−c+
√

(a−c)2+4b2

2

 .

Similarly, v2 =

 −b
a−c−
√

(a−c)2+4b2

2

. Thus, v1 and v2 are eigenvectors of

A with eigenvalues λ1 and λ2 respectively, and

〈v1, v2〉 = b2 +
(a− c)2 − ((a− c)2 + 4b2)

4
= 0

Consider u1 =
v1
‖v1‖

and u2 =
v2
‖v2‖

. We have that {u1, u2} is the

eigenbase for A.

Theorem 2.1.12. [7] (Spectral Theorem). Let 〈. , .〉 be an inner product

on V with dim(V ) = n and S : V −→ V be a linear self adjoint operator.

Then,

1. S has n real eigenvalues λ1, λ2, ..., λn.

2. There exists an orthonormal basis {v1, v2, ..., vn} of V such that

S(vi) = λivi for i = 1, 2, ..., n.

Proposition 2.1.13. Let 〈 , 〉 be an inner product on V with dim(V ) = n

and S : V −→ V a linear self adjoint operator. Denote by {v1, v2, ..., vn}

an orthonormal eigenbase of S and S(vi) = λivi for i = 1, 2, ..., n. Let bS :

V × V −→ R be the symmetric bilinear form associated to S. In other words,



bS(u, v) = 〈S(u), v〉. Then,


min
‖v‖=1

bS(v, v) = λ1 = bS(v1),

max
‖v‖=1

bS(v, v) = λn = bS(vn).

Proof. Let {v1, v2, ..., vn} be an orthonormal eigenbase of S with eigenvalues

λ1, λ2, ..., λn respectively. Then, for v ∈ V , v =
n∑
i=1

xivi and

bS(v, v) = bS
( n∑
i=1

xivi,
n∑
i=1

xivi

)
=
〈
S
( n∑
i=1

xivi

)
,

n∑
i=1

xivi

〉
=

〈 n∑
i=1

xiS(vi),
n∑
i=1

xivi

〉
= 〈

n∑
i=1

xiλivi,
n∑
i=1

xivi〉

=



x1λ1

..

..

xnλn





x1

..

..

xn


= λ1x

2
1 + ...+ λnx

2
n =

n∑
i=1

λix
2
i

Now, min
‖v‖=1

bS(v, v) = min
‖v‖=1

(
n∑
i=1

λix
2
i ). But, since ‖v‖ = 1, we have

∑n
i=1 x

2
i = 1

and so

min
‖v‖=1

bS(v, v) = min
‖v‖=1

(λ1x
2
1 + ...+ λnx

2
n) = λ1

and max
‖v‖=1

= λn. Also,


bS(v1) = bS(v1, v1) = 〈S(v1), v1〉 = 〈λ1v1, v1〉 = λ1〈v1, v1〉 = λ1‖v1‖2 = λ1,

bS(vn) = bS(vn, vn) = 〈S(vn), vn〉 = 〈λnvn, vn〉 = λn.



2.2 Parametrized Surfaces in R3

In this section, we define parametrized surfaces in R3 and give various exam-

ples. We then define the tangent plane and the unit normal vector at a given

point of the parametrized surface.

Definition 2.2.1. Let O be an open subset of R2. A smooth map f

f : O −→ R3

(u, v) −→ f(u, v) =
(
f1(u, v), f2(u, v), f3(u, v)

)

is called a parametrized surface in R3 if
∂f

∂u
(u, v) and

∂f

∂v
(u, v) are linearly

independent for all (u, v) ∈ O.

Example 2.2.2. (The graph of a smooth function). Consider a function

h : O −→ R and the map f given by

f : O −→ R3

(u, v) −→ f(u, v) =
(
u, v, h(u, v)

)
.

We have

∂f

∂u
(u, v) =

(
1, 0,

∂f

∂u
(u, v)

)
and

∂f

∂v
(u, v) =

(
1, 0,

∂f

∂v
(u, v)

)
.



Thus,

∂f

∂u
(u, v)× ∂f

∂v
(u, v) =

∣∣∣∣∣∣∣∣∣∣
~i ~j ~k

1 0 ∂h
∂u

(u, v)

0 1 ∂h
∂v

(u, v)

∣∣∣∣∣∣∣∣∣∣
=
(
− ∂h

∂u
(u, v),

∂h

∂v
(u, v), 1

)
6= (0, 0, 0).

This means that
∂h

∂u
(u, v) and

∂h

∂v
(u, v) are linearly independent, and f is a

parametrized surface in R3.

Example 2.2.3. (Surface of Revolution). Let h : R −→ R be a smooth

function and (C) a curve in the plane given by z = h(y) and O be an open

subset of R2. We denote by M the surface obtained by rotating (C) along the

y-axis. It can be parametrized by

f : O −→ R3

(y, θ) −→ f(y, θ) =
(
h(y) cos θ, y, h(y) sin θ

)
.

We calculate 
∂f

∂y
(y, θ) =

(
h′(y) cos θ, 1, h′(y) sin θ

)
∂f

∂θ
(y, θ) =

(
− h(y) sin θ, 0, h(y) cos θ

)



and

∂f

∂y
× ∂f

∂θ
=

∣∣∣∣∣∣∣∣∣∣
~i ~j ~k

h′(y) cos θ 1 h′(y) sin θ

−h(y) sin θ 0 h(y) cos θ

∣∣∣∣∣∣∣∣∣∣
=

(
h(y) cos θ,−h(y)h′(y) cos2 θ − h(y)h′(y) sin2 θ, h(y) sin θ

)
=

(
h(y) cos θ,−h(y)h′(y), h(y) sin θ

)
.

Clearly, it is 0 for h(y) = 0, so f is not a parametrized surface unless h(y) 6= 0

for all y ∈ R.

From now on, we denote
∂f

∂u
by fu,

∂f

∂v
by fv,

∂

∂u

(∂f
∂v

)
by fuv, etc...

Definition 2.2.4. Let f : O −→ R3 be a parametrized surface and (u0, v0) ∈

O. Suppose that, for some ε > 0, the map

c : (−ε,+ε) −→ O

t −→ c(t) = (u(t), v(t)),

is smooth and c(0) = (u(0), v(0)) = (u0, v0). We call the vector (f ◦ c)′(0) a

tangent vector of f at (u0, v0).

By the Chain rule, we have

(f ◦ c)′(0) = fu(u0, v0)u
′(0) + fv(u0, v0)v

′(0).

If c(t) = (u0 + t, v0), then (f ◦ c)′(0) = fu(u0, v0) and if c(t) = (u0, v0 + t), then

(f ◦ c)′(0) = fv(u0, v0). Thus, the space of all tangent vectors of f at (u0, v0)



is a two-dimensional linear subspace of R3 with
{
fu(u0, v0), fv(u0, v0)

}
as a

basis. The space Tfp of all tangent vectors of f at P = (u0, v0) is called the

tangent plane of f at P. The vector

N(u0, v0) =
fu(u0, v0)× fv(u0, v0)
‖fu(u0, v0)× fv(u0, v0)‖

is a unit normal vector to f at (u0, v0) (perpendicular to the Tfp). Hence, we

now have a basis {fu, fv, N} for the parametrized surface f : O −→ R3. The

vectors fuu, fvu, Nu, fvu, fvv, and Nv can all be written as linear combinations

of fu, fv, and N . Moreover,

(fu, fv, N)u = (fuu, fvu, Nu)

= (p11fu + p21fv + p31N, p12fu + p22fv + p32N, p13fu + p23fv + p33N)

= (fu, fv, N)


p11 p12 p13

p21 p22 p23

p31 p32 p33


= (fu, fv, N)P

and

(fu, fv, N)v = (fuv, fvv, Nv)

= (fu, fv, N)


q11 q12 q13

q21 q22 q23

q31 q32 q33


= (fu, fv, N)Q,



where P and Q are 3 × 3 matrices P,Q : O −→ M3×3. Since fuv = fvu, the

first column of Q and the second column of P are the same.

2.3 The First Fundamental Form

We are now ready to define the first fundamental form of a parametrized

surface.

Definition 2.3.1. Suppose that f : O −→ R3 is a parametrized surface in R3.

A quadratic form Q on f is a function Q : p −→ Qp that assigns to each p in

O a quadratic form Qp on the tangent plane Tfp of f at p. In other words, at

each p in O, Qp : Tfp × Tfp −→ R is a quadratic form.

Remark The quadratic form Q on f is described by the symmetric 2 ×

2 matrix of real valued functions: Quv : O −→ R defined by Quv(p) =

Q(fu(p), fv(p)). Qij are the coefficients of the quadratic form Q. Now, Q11,

Q12 = Q21, and Q22 determine the quadratic form Q on f uniquely. In fact, If

w ∈ Tfp , then w = αfu(p) + βfv(p), and

Qp(w) = Qp(w,w) = Qp(αfu(p) + βfv(p), αfu(p) + βfv(p))

= Qp(αfu(p), αfu(p)) +Qp(αfu(p), βfv(p)) +Qp(βfv(p), αfu(p))

+Qp(βfv(p), βfv(p))

= α2Q11(p) + 2αβQ12(p) + β2Q22.

Because of that, it is convenient to have a simple way of referring to the

quadratic form Q on a surface having the three coefficients A, B, and C. The



classical notation is as follows:

Q = A(u, v)du2 + 2B(u, v)dudv + C(u, v)dv2.

To better understand this, consider a curve defined as α(t) = f(u(t), v(t)). We

have

α′(t) = fuu
′(t) + fvv

′(t) = fu(u, v)u′(t) + fv(u, v)v′(t)

and

Q(α′(t)) = Q(α′(t), α′(t))

= Q(fu(u, v)u′(t) + fv(u, v)v′(t), fu(u, v)u′(t) + fv(u, v)v′(t))

= Q(fu, fu)(u
′(t))2 + 2Q(fu, fv)u

′(t)v′(t) +Q(fv, fv)(v
′(t))2

= A(u, v)(u′)2 +B(u, v)u′v′ + C(u, v)(v′)2.

This explains the classical notation of the first fundamental form.

Definition 2.3.2. (The First Fundamental Form of a Surface f) Let

Ip : Tfp×Tfp −→ R denote the inner product Ip(u, v) = 〈u, v〉 where u, v ∈ Tfp.

I is the first fundamental form on f .

The coefficient matrix for I with respect to the basis {fu, fv} is (gij) where:





g11 = Ip(fu, fu) = 〈fu, fu〉

g12 = Ip(fu, fv) = 〈fu, fv〉

g21 = Ip(fv, fu) = 〈fv, fu〉 = 〈fu, fv〉

g22 = Ip(fv, fv) = 〈fv, fv〉.

So, from the previous notation:

I = g11(u, v)du2 + 2g12(u, v)dudv + g22(u, v)dv2.

Now, if u1 and u2 are tangent vectors at p0 = (u0, v0), then u1 and u2 can be

written as:

u1 = a1fu(p0) + a2fv(p0),

u2 = b1fu(p0) + b2fv(p0),

where a1, a2, b1, b2 ∈ R). We then have

〈u1, u2〉 = 〈a1fu(p0) + a2fv(p0), b1fu(p0) + b2fv(p0)〉

= a1b1〈fu(p0), fu(p0)〉+ a1b2〈fu(p0), fv(p0)〉

+a2b1〈fv(p0), fu(p0)〉+ a2b2〈fv(p0), fv(p0)〉

= g11(p0)a1b1 + g12(p0)(a1b2 + a2b1) + g22(p0)a2b2.

So, we can compute the inner product between two vectors in Tfp from (gij)

and deduce the length and the angle between them.



Definition 2.3.3. (The Arclength of a Curve on a Surface) Let f :

O −→ R3 be a parametrized surface and let α : t −→ (u(t), v(t)) be a paramet-

ric curve in R2 where t ∈ [a, b]. The length of the curve α is given by:

L =

∫ b

a

‖α′(t)‖dt =

∫ b

a

√
g11(u′)2 + 2g12u′v′ + g22(v′)2dt.

Definition 2.3.4. (The Angle Between Two Curves) Let f : O −→ R3

be a parametrized surface. For t ∈ [a, b], we define c1(t) = (x1(t), x2(t)) and

c2(t) = (y1(t), y2(t)) two smooth curves in R2 such that c1(0) = c2(0) = p0 =

(u0, v0). The angle θ between α1 = f ◦ c1 and α2 = f ◦ c2 is defined to be the

angle between α′1(0) and α′2(0). We have

cos θ =
α′(0)α′2(0)

‖α′1(0)‖.‖α′2(0)‖
=
〈fx1x′1(0) + fx2x

′
2(0)〉.〈fy1y′1(0) + fy2y

′
2(0)〉

‖α′1(0)‖.‖α′2(0)‖

=

2∑
i,j=1

gij(p0)x
′
i(0)y′j(0)√√√√ 2∑

i,j=1

gij(p0)x
′
i(0)x′j(0)

√√√√ 2∑
i,j=1

gij(p0)y
′
i(0)y′j(0)

.

2.4 The Shape Operator and the Second Fun-

damental Form

Assume that f : O −→ R3 is a parametrized surface and N : O −→ R3 is the

unit normal vector to f . Since 〈N,N〉 = 1, we have ∂
∂u
〈N,N〉 = 0. Thus,

〈Nu, N〉+ 〈N,Nu〉 = 0.



It means that 2〈N,Nu〉 = 0 and hence N is perpendicular to Nu. Similarly,

〈N,Nv〉 = 0 and N is perpendicular to Nv. Thus, Nu and Nv are tangent to

f .

Definition 2.4.1. The shape operator Sp at the point p ∈ O of the parametrized

surface f : O −→ R3 is the linear map given by

Sp : Tfp −→ Tfp

fu(p) −→ Sp(fu(p)) = −Nu(p)

fv(p) −→ S(fv(p)) = −Nv(p)

For any vector w ∈ Tfp, we have w = c1fu(p) + c2fv(p) for some c1, c2 ∈ R.

Hence,

Sp(w) = c1Sp(fu(p)) + c2Sp(fv(p)) = −c1Nu(p)− c2Nv(p).

Proposition 2.4.2. The shape operator Sp is self adjoint.

Proof. Let p ∈ O and w and z be two vectors in Tfp . We have


w = c1fu(p) + c2fv(p)

z = a1fu(p) + a2fv(p)

,



where c1, c2, a1, a2 are real constants. We have

〈Sp(w), z〉 = 〈−c1Nu − c2Nv, a1fu + a2fv〉

= −c1a1〈Nu, fu〉 − c1a2〈Nu, fv〉 − c2a1〈Nv, fu〉 − c2a2〈Nv, fv〉

〈w, Sp(z)〉 = 〈c1fu + c2fv,−a1Nu − a2Nv〉

= −c1a1〈fu, Nu〉 − c1a2〈fu, Nv〉 − c2a1〈fv, Nu〉 − c2a2〈fv, Nv〉.

But 〈N, fv〉 = 〈N, fu〉 = 0 so we get

〈Nu, fv〉+ 〈N, fvu〉 = 0,

〈Nv, fu〉+ 〈N, fuv〉 = 0.

Because f is smooth, we have fuv = fvu. Thus,

〈Nu, fv〉 = 〈Nv, fu〉.

Finally, we get 〈Sp(w), z〉 = 〈w, Sp(z)〉. Therefore, Sp is self adjoint.

At p ∈ O, let IIp denote the symmetric bilinear form on Tfp associated to

the self adjoint operator Sp. We have

IIp : Tfp × Tfp −→ R

(u, v) −→ 〈S(u), v〉

The entries of the coefficient matrix (lij) of IIp with respect to the basis



{fu, fv} of Tfp are:


l11 = IIp(fu, fv) = 〈Sp(fu), fu〉 = 〈−Nu, fu〉 = 〈N, fuu〉,

l12 = l21 = IIp(fu, fv) = 〈Sp(fu), fv〉 = 〈−Nu, fv〉 = 〈N, fuv〉,

l22 = IIp(fv, fv) = 〈Sp(fv), fv〉 = 〈−Nv, fv〉 = 〈N, fvv〉.

For any w, we have,

II(w) = II(w,w) = II(a1fu + a2fv, b1fu + b2fv) = 〈Sp(a1fu + a2fv), b1fu + b2fv〉

= b1a1〈Sp(fu), fu〉+ b2a1〈Sp(fu), fv〉+ b1a2〈Sp(fv), fu〉+ a22b2〈Sp(fv), fv〉

Hence, II = l11du
2 + 2l12dudv+ l22dv

2 and it is called the second fundamental

form of f .

Example 2.4.3. (The Graph of a function) Let g : O −→ R be a smooth

function and f : O −→ R3 be the graph of g given by f(u, v) = (u, v, g(u, v)).

We have



fu = (1, 0, gu),

fv = (0, 1, gv),

fuv = (0, 0, guv),

N =
1√

1 + g2u + g2v
(−gu,−gv, 1).



Let’s calculate the first fundamental form. We have

g11 = 〈fu, fv〉 = 1 + g2u,

g12 = 〈fu, fv〉 = gugv,

g22 = 〈fv, fv〉 = 1 + g2v .

Hence,

I = g11du
2 + 2g12dudv + g22dv

2 = (1 + g2u)du
2 + 2gugvdudv + (1 + g2v)dv

2.

Now, we can also calculate

l11 = 〈N, fuu〉 =
guu√

1 + g2u + g2v
,

l12 = 〈N, fuv〉 =
guv√

1 + g2u + g2v
,

l22 = 〈N, fvv〉 =
gvv√

1 + g2u + g2v

Hence,

II = l11du
2 + 2l12dudv + l22dv

2

=
guu√

1 + g2u + g2v
du2 +

2guv√
1 + g2u + g2v

dudv +
gvv√

1 + g2u + g2v
dv2.

The area of the surface f(D) is

A =

∫
D

∫ √
g11g22 − g212dudv =

∫
D

∫ √
(1 + g2u)(1 + g2v)− g2ug2vdudv

=

∫
D

∫ √
1 + g2u + g2vdudv



Definition 2.4.4. Fix p0 = (u0, v0) ∈ O and fix ξ ∈ Tfp0 . Let σ denote the

intersection between the surface f(O) and the plane E spanned by ξ and N(p0).

Then, σ is a curve belonging to E. We will call it the plane section of f at p0

defined by ξ.

Theorem 2.4.5. (Meusnier’s Theorem). The curvature of a plane section

of a parametrized surface f : O −→ R3 at p0 defined by a unit tangent vector

ξ in Tfp0 is equal to IIp0(ξ, ξ).

Proof. Assume that there exists c:

c : (−ε, ε) −→ O

s −→ (u(s), v(s)),

such that c(0) = (u0, v0) = p0. We have


σ(s) = f(c(s)) = f(u(s), v(s)),

T (s) = σ′(s) = fuu
′(s) + fvv

′(s),

T ′(s) = σ′′(s) = fuu(u
′(s))2 + fvv(v

′(s))2 + 2fuvu
′(s)v′(s).

Now, the curvature of σ at p0 is given by

k(0) = T ′(0) ·N(p0)

= fuu(p0)u
′(0)2 ·N(p0) + fvv(p0)v

′(0)2 ·N(p0) + 2fuv(p0)u
′(0)v′(0) ·N(p0)

= l11(p0)u
′(0)2 + 2l12u

′(0)v′(0) + l22v
′(0)2

= IIp0(ξ, ξ)



Example 2.4.6. Let f(x, y) = (x, y, 0) (also known as the xy-plane). Then,

we have 
fx = (1, 0, 0) , fxx = (0, 0, 0),

fy = (0, 1, 0) , fyy = (0, 0, 0),

N = (0, 0, 1) , fxy = (0, 0, 0).

Then, the unit normal vector is N = (0, 0, 1) and any plane section is a straight

line. 
l11 = 〈N, fxx〉 = 0

l12 = 〈N, fxy〉 = 0

l22 = 〈N, fyy〉 = 0

Hence, II(ξ, ξ) = l11dx
2 + 2l12dxdy + l22dy

2 = 0 for any p0 ∈ O.

Example 2.4.7. For the cylinder of equation x2 + y2 = 1, we have f(x, y) =

(cosx, sinx, y). Then,


fx = (− sinx, cosx, 0),

fy = (0, 0, 1),

N = (cosx, sinx, 0).

For the top of the cylinder, the plane section defined by ξ = fy = (0, 0, 1) is a

straight line, so k = 0 and IIp0(ξ, ξ) = 0. For the lateral part of the cylinder,



the plane section of f defined by η = fx = (− sinx, cosx, 0) is a circle of radius

1, so k = 1 and IIp0(η, η) = 1.

Example 2.4.8. Let O = {(x, y)/x2+y2 < 1} and f(x, y) = (x, y,
√

1− x2 − y2).

Every plane section is a circle of radius 1, so k = 1 and IIp0(ξ, ξ) = 1 for all

ξ ∈ Tfp0 .

Example 2.4.9. Let O = {(x1, x2)/x1 ∈ (0, 2π), x2 ∈ R} and define f : O −→

R3 and h : O −→ R3 by

f(x1, x2) = (x1, x2, 0),

h(x1, x2) = (cos x1, sinx1, x2),

For f , we have:


fx1 = (1, 0, 0) , fx1x1 = (0, 0, 0),

fx2 = (0, 1, 0) , fx2x2 = (0, 0, 0),

fx1x2 = (0, 0, 0) , N = (0, 0, 1).

So, g11 = 1, g22 = 1, and g12 = 0. Thus,

I = dx21 + dx22.

Also, l11 = 0, l22 = 0, and l12 = 0. Thus, II = 0. For h, we have




hx1 = (− sinx1, cosx1, 0) , hx2 = (0, 0, 1),

hx1x1 = (− cosx1,− sinx1, 0) , hx2x2 = (0, 0, 0),

N = (cosx1, sinx1, 0) , hx1x2 = (0, 0, 0).

So, g11 = 1, g22 = 1, and g12 = 0. Hence, Ĩ = dx21 + dx22. Also, l11 = −1,

l22 = 0, and l12 = 0. So, ĨI = −dx21. Note that f and h have the same first

fundamental form, but different second fundamental forms.

2.5 Principal, Gaussian, and Mean Curvatures

In this section, we will introduce Principal, Gaussian, and Mean curvatures

which are linked to the shape operator S. Since the shape operator S of a

parametrized surface f : O −→ R3 is a self adjoint operator on Tfp , we have

as a consequence of the Spectral Theorem, Theorem 2.1.12, we have

Proposition 2.5.1. The shape operator of a parametrized surface f : O −→

R3 at f(p) has two real eigenvalues and an orthonormal eigenbase.

The eigenvalues k1 and k2 of the shape operator S of the parametrized

surface f : O −→ R3 at p are called the principal curvatures. The Gaussian

curvature of f is defined by K = k1k2. The Mean curvature of f is defined by

H = k1+k2. Finally, the principal directions of f at p are the unit eigenvectors

v1 and v2 of S.

We have already shown in Proposition 2.1.7 that the matrix associated to S

is given by A = G−1L where G = (gij), L = (lij) and gij (resp. lij) are the



coefficients of the first (resp. second) fundamental form I (resp. II). Note

that if B =

a b

c d

, then B−1 =
a

ad− bc

 d −b

−c a

. By Proposition 2.1.11,

we have that K = k1k2 = det(A) and H = k1 + k2 = tr(A), so,

k = det(A) = det(G−1) det(L) =
1

det(G)
. det(L) =

l11l22 − l212
g11g22 − g212

,

and we also have

A = G−1L =
1

g11g22 − g212

 g22 −g12

−g12 g11


l11 l12

l12 l22


=

1

g11g22 − g212

 g22l11 − g12l12 g22l12 − g12l22

−l11g12 + g11l12 −g12l12 + g11l22


Thus, H =

1

g11g22 − g212
(g22l11 − 2g12l12 + g11l22).

If follows that

1. The principal curvatures k1 and k2 are eigenvalues of A = G−1L.

2. If

r1
s1

 and

r2
s2

 are unit eigenvectors of A with eigenvalue k1 and k2,

then v1 = r1fu + s1fv and v2 = r2fu + s2fv are its principal directions.

Example 2.5.2. For the cylinder f(x1, x2) = (cos x1, sinx1, x2), we have


fx1 = (− sinx1, cosx1, 0) , fx2 = (0, 0, 1),

fx1x1 = (− cosx1,− sinx1, 0) , fx2x2 = (0, 0, 0),

N = (cosx1, sinx1, 0) , fx1x2 = (0, 0, 0).



So,


g11 = 〈fx1 , fx1〉 = 1

g22 = 〈fx2 , fx2〉 = 1

g12 = 〈fx1 , fx2〉 = 0

and


l11 = 〈N, fx1x1〉 = −1

l12 = 〈N, fx1x2〉 = 0

l22 = 〈N, fx2x2〉 = 0

Hence,

A =
1

1− 0

−1 0

0 0

 =

−1 0

0 0

 .

Thus, k1 = −1 and k2 = 0. Moreover,

−1 + 1 0

0 0 + 1


x1
x2

 =

0

0

 =⇒

0 0

0 1


x1
x2

 =

0

0

 .

We have x1 = t and x2 = 0, then

t
0

 = t

1

0

.

Therefore, v1 = fx1 is an eigenvector corresponding to k1. Similarly, v2 = fx2

is an eigenvector corresponding to k2. Thus, fx1 and fx2 are the principal

directions (unit vectors with 〈fx1 , fx2〉 = 0).

Example 2.5.3. Let f(x1, x2) = (x1, x2,
√
R2 − x21 − x22) be the sphere of ra-

dius R. We have





fx1 =
(

1, 0,
−x1√

R2 − x21 − x22

)
,

fx2 =
(

0, 1,
−x2√

R2 − x21 − x22

)
,

N =
(x1
R
,
x2
R
,

√
R2 − x21 − x22

R

)
=

1

R
f.

Then, S(fxi) = −Nxi =
−1

R
fxi for i = 1, 2 and S =

−1

R
Id where Id denotes

the corresponding identity matrix. We have

II(ξ, η) = 〈S(ξ), η〉 = 〈−1

R
ξ, η〉 =

−1

R
〈ξ, η〉 =

−1

R
Id =

−1R 0

0 −1
R

 .

So, k1 =
−1

R
and k2 =

−1

R
are eigenvalues of S. Then, H =

−2

R
and K =

1

R2
.

Example 2.5.4. For f(x, y) = (x, y, x2 + y2), we have



fx = (1, 0, 2x) , fxx = (0, 0, 2),

fy = (0, 1, 2y) , fyy = (0, 0, 2) , fxy = (0, 0, 0),

N = (
−2x√

1 + 4x2 + 4y2
,

−2y√
1 + 4x2 + 4y2

,
1√

1 + 4x2 + 4y2
),

g11 = 〈fx, fx〉 = 1 + 4x2,

g12 = 〈fx, fy〉 = 4xy,

g22 = 〈fy, fy〉 = 1 + 4y2,





l11 = 〈N, fxx〉 =
2√

1 + 4x2 + 4y2
,

l12 = 〈N, fxy〉 = 0,

l22 = 〈N, fyy〉 =
2√

1 + 4x2 + 4y2
.

Thus, we get

K = k1k2 = det(A)

=
det(L)

det(G)

=
l11l22 − l212
g11g22 − g212

=

4
1+4x2+4y2

− 0

(1 + 4x2)(1 + 4y2)− 16x2y2

=

4
1+4x2+4y2

1 + 4x2 + 4y2 + 16x2y2 − 16x2y2

=
4

(1 + 4x2 + 4y2)2
,

and

H = tr(A)

=
1

1 + 4x2 + 4y2

(
(1 + 4y2)

2√
1 + 4x2 + 4y2

− 0 + (1 + 4x2)
2√

1 + 4x2 + 4y2

)
=

1

1 + 4x2 + 4y2

(2 + 8y2 + 2 + 8x2√
1 + 4x2 + 4y2

)
=

4(1 + 2y2 + 2x2)

(1 + 4x2 + 4y2)
3
2

.



Chapter 3

Fundamental Theorem of

Surfaces in R3

In this chapter, We state and prove the Frobenius Theorem, and we also define

line of curvature coordinates. Then, we derive the Gauss-Codazzi Equations

and state the Fundamental Theorem of Surfaces and the Gauss Theorem in

line of curvature coordinates. Finally, we write the Gauss-Codazzi Equations

in local and orthogonal coordinates. [1, 2, 4]

3.1 The Frobenius Theorem

We start by stating some results needed to prove the Frobenius Theorem.

Theorem 3.1.1. Let O be an open subset of R2. Consider f, g : O −→ R be

smooth maps with (x0, y0) ∈ O and c0 ∈ R. The Initial Value Problem for the

99



partial differential equations system, with u : O −→ R), given by



∂u

∂x
= f(x, y),

∂u

∂y
= g(x, y),

u(x0, y0) = c0,

has a smooth solution defined in some disk centered at (x0, y0) fo any given

(x0, y0) ∈ O if and only if f and g satisfy the compatibility relation
∂f

∂y
=
∂g

∂x

in O.

Moreover, one can use integration to find the solution as follows: Suppose

u(x, y) is a solution, then using the Fundamental Theorem of Calculus, we

have

∂u

∂x
= f(x, y) =⇒ u(x, y) =

∫ x

x0

∂g

∂s
ds+ v′(y),

for some v(y) such that v(y0) = c0, but

∂u

∂y
=

∫ x

x0

∂f

∂y
ds+ v′(y) =

∫ x

x0

∂g

∂x
ds+ v′(y) = v′(y) + g(x, y)− g(x0, y)

and ∂u
∂y

= g(x, y) so v′(y) = g(x0, y) and

v(y) =

∫ y

y0

g(x0, t)dt+ c.



Since v(y0) = c0, we have v(y) = c0 +

∫ y

y0

g(x0, t)dt and hence,

u(x, y) =

∫ x

x0

f(s, y)ds+

∫ y

y0

g(x0, t)dt+ c0.

Given smooth maps A,B : O×R −→ R, we now consider the first order PDE

system for u : O −→ R:


∂u

∂x
= A(x, y, u(x, y)),

∂u

∂y
= B(x, y, u(x, y)).

(3.1.1)

The system (3.1.1) has a smooth solution u when uxy = uyx. We calculate

uxy = (A(x, y, u(x, y)))y = Axxy + Ayyy + Auuy = Ay + AuB,

uyx = (B(x, y, u(x, y)))x = Bxxx +Byyx +Buux = Bx +BuA.

Then, the system (3.1.1) has a smooth solution u when A and B satisfy

Ay + AuB = Bx +BuA.

Theorem 3.1.2. (Frobenius Theorem). (for u : O ⊂ R2 −→ Rn) Let

U1 ⊂ R2 and U2 ⊂ R2 be two open subsets. Consider A = (A1, A2, ...., An) and

B = (B1, B2, ..., Bn) two smooth maps given by A,B : U1 × U2 −→ Rn with



(x0, y0) ∈ U1 and p0 ∈ U2. The the following first order system



∂u

∂x
= A(x, y, u(x, y)),

∂u

∂y
= B(x, y, u(x, y)),

u(x0, y0) = p0,

(3.1.2)

has a smooth solution for u in a neighborhood of (x0, y0) for all possible (x0, y0) ∈

U1 ⊂ R2 and po ∈ U2 ⊂ Rn if and only if

(Ai)y +
n∑
j=1

∂Ai
∂uj

Bj = (Bi)x +
n∑
j=1

∂Bi

∂uj
Aj, (3.1.3)

for i = 1, 2, ..., n.

Now, the system (3.1.2) written in coordinates gives the following



∂ui
∂x

= Ai(x, y, u1(x, y), u2(x, y), ..., un(x, y)),

∂ui
∂y

= Bi(x, y, u1(x, y), u2(x, y), ..., un(x, y)),

ui(x0, y0) = p0i ,

for i = 1, 2, .., n, where p0 = (p01 , p02 , ...., p0n). We call Equation (3.1.3) the

compatibility condition for the system (3.1.2). To prove the Frobenius Theo-

rem, we need to solve a family of Ordinary Differential Equations depending

smoothly on a parameter, and we need to know whether the solutions de-

pend smoothly on the initial data and the parameter. This is answered in the

following theorem.

Theorem 3.1.3. [8] Let O be an open subset of Rn, t0 ∈ (a0, b0) and a smooth



map f : [a0, b0] × O × [a1, b1] −→ Rn. Suppose it is given that p ∈ O and

r ∈ [a1, b1]. Let yp,r denotes the solution of


∂y

∂t
= f(t, y(t), r),

y(t0) = p,

and u(t, p, r) = yp,r(t). Then, u is smooth in t, p, and r.

Proof of The Frobenius Theorem, Theorem 3.1.2. If u = (u1, u2, ..., un) is a

smooth solution for the system (3.1.2) then,

∂

∂y

(∂ui
∂x

)
=

∂

∂y
Ai

(
x, y, u1(x, y), ..., un(x, y)

)
=

∂Ai
∂x

∂x

∂y
+
∂Ai
∂y

∂y

∂y
+
∂Ai
∂u1

∂u1
∂y

+ ...+
∂Ai
∂un

∂un
∂y

=
∂Ai
∂y

+
n∑
j=1

∂Ai
∂uj

∂uj
∂y

=
∂Ai
∂y

+
n∑
j=1

∂Ai
∂uj

Bj,

and

∂

∂x

(∂ui
∂y

)
=

∂

∂x
Bi

(
x, y, u1(x, y), ..., un(x, y)

)
=

∂Bi

∂x

∂x

∂x
+
∂Bi

∂y

∂y

∂x
+
∂Bi

∂u1

∂u1
∂x

+ ...+
∂Bi

∂un

∂un
∂x

=
∂Bi

∂x
+

n∑
j=1

∂Bi

∂uj

∂uj
∂x

=
∂Bi

∂x
+

n∑
j=1

∂Bi

∂uj
Aj

Then, (Ai)y+
n∑
j=1

∂Ai
∂uj

Bj = (Bi)x+
n∑
j=1

∂Bi

∂uj
Aj. Conversely, assume that (Ai)y+

n∑
j=1

∂Ai
∂uj

Bj = (Bi)x +
n∑
j=1

∂Bi

∂uj
Aj. To solve the system (3.1.2) we proceed as

follows: The existence and uniqueness theorem of ODE, Theorem 1.4.1, states



that there exists δ > 0 and α : (x0 − δ, x0 + δ) −→ U2 satisfying the following


∂α

∂x
= A(x, y0, α(x)),

α(x0) = p0.

(3.1.4)

Now, fix x ∈ (x0−δ, x0+δ) and let βx(y) be the unique solution of the following

ODE in y:


∂βx

∂y
= B(x, y, βx(y)),

βx(y0) = α(x).

(3.1.5)

Let u(x, y) = βx(y). We have that the system (3.1.5) is a family of ordinary

differential equations in y depending on the parameter x and B is smooth, then

by Theorem 3.1.3, u is smooth in x and y. By construction, u satisfies the

second equation of the system (3.1.2). We will prove that u satisfies the first

equation of the system (3.1.2) for n = 1. The proof for general n is similar.

Let z(x, y) = ux − A(x, y, u(x, y)). We have

zy = (ux − A(x, y, u(x, y)))y

= uxy − Ay − Auuy

= uxy − Ay − AuB

= uxy − (Ay + AuB)

= uyx − (Ay + AuB)

= Bx(x, y, u(x, y))− (Ay + AuB)



= Bx +Buux − (Ay + AuB)

= Bx +Buux − (Bx +BuA)

= Bu(ux − A)

= Bu(x, y, u(x, y)) · z.

For each x, hx(y) = z(x, y) is a solution for the differential equation

∂h

∂y
= Bu

(
x, y, u(x, y)

)
· h. (3.1.6)

Now,

hx(y0) = z(x, y0) = ux(x, y0)− A(x, y0, u(x, y0)) = α′(x)− A(x, y0, α(x)) = 0.

Then, hx is a solution of Equation (3.1.6) with initial condition hx(y0) = 0.

But 0 is also a solution of Equation (3.1.6) with 0(y0) = 0. So, by the existence

and uniqueness Theorem of ODE, Theorem 1.4.1, we get

z(x, y) = hx(y) = 0.

Thus,

ux(x, y0) = A(x, y0, u(x, y0)).

So, u satisfies the first equation of the system (3.1.2).

Let Gl(n) denotes the space of all real n × n matrices. For P,Q ∈ Gl(n),



we denote by [P,Q] the commutator of P and Q defined by

[P,Q] = PQ−QP.

Proposition 3.1.4. Let U be an open subset of R2 with (x0, y0) ∈ U ⊂ R2.

C ∈ Gl(n) and P,Q : U −→ Gl(n) are smooth maps. Then, the following

initial value problem for u : U −→ Gl(n)


ux = u(x, y)P (x, y),

uy = u(x, y)Q(x, y),

u(x0, y0) = c,

has a unique solution u defined on a disk centered at (x0, y0) for all (x0, y0) ∈ U

and C ∈ Gl(n) if and only if

Py −Qx = [P,Q].

Proof. This proposition follows from Frobenius Theorem, Theorem 3.1.2, where

A = uP and B = uQ. The initial value problem has a smooth solution u if

and only if uxy = uyx. Now, we calculate


uxy = (ux)y = (uP )y = uyP + uPy = (uQ)P + uPy = u(QP + Py),

uyx = (uQ)x = uxQ+ uQx = (uP )Q+ uQx = u(PQ+Qx).



Thus,

uyx = uxy

⇐⇒ u(QP + Py) = u(PQ+Qx)

⇐⇒ QP + Py = PQ+Qx

⇐⇒ Py −Qx = PQ−QP

⇐⇒ Py −Qx = [P,Q].

Remark The equationQP+Py = PQ+Qx is called the compatibility relation.

Remark Given 3 × 3 smooth matrices P and Q such that


ux = uP

uy = uQ

is

equivalent to say that we have


u11 u12 u13

u21 u22 u23

u31 u32 u33


x

=


u11 u12 u13

u21 u22 u23

u31 u32 u33



p11 p12 p13

p21 p22 p23

p31 p32 p33



u11 u12 u13

u21 u22 u23

u31 u32 u33


y

=


u11 u12 u13

u21 u22 u23

u31 u32 u33



q11 q12 q13

q21 q22 q23

q31 q32 q33


This is the type of equation we need for the Fundamental Theorem of Surfaces

in R3. Now, if P and Q are skew symmetric (i.e: P T = −P and QT = −Q),



then,

(PQ−QP )T = (PQ)T − (QP )T = QTP T − P TQT = (−Q)(−P )− (−P )(−Q)

= QP − PQ = −(PQ−QP ) = −[P,Q].

It means that [P,Q] is skew symmetric. For P T = −P , we get


p11 p21 p31

p12 p22 p32

p13 p23 p33

 =


−p11 −p12 −p13

−p21 −p22 −p23

−p31 −p32 −p33



Thus, the system


ux = uP

uy = uQ

becomes a system of three first order partial

differential equations involving six functions p12, p13, p23, q12, q13, and q23

where p11 = p22 = p33 = q11 = q22 = q33 = 0.

Proposition 3.1.5. Let O be an open subset of R2 and P,Q : O −→ Gl(n) be

smooth maps such that P and Q are skew symmetric. Suppose P and Q satisfy

the compatibility relation QP +Py = PQ+Qx and C is the initial data where

C is an orthogonal matrix. Let O0 ⊂ O. If u : O0 −→ Gl(n) is a solution of


ux = u(x, y)P (x, y),

uy = u(x, y)Q(x, y),

u(x0, y0) = C,

then u(x, y) is an orthogonal matrix for all (x, y) ∈ O0



Proof. Let ξ(x, y) = u(x, y)Tu(x, y). Since the initial data is an orthogonal

matrix, we have

ξ(x0, y0) = u(x0, y0)
Tu(x0, y0) = Id.

Now,


ξx = (ux)

Tu+ uTux = (uP )Tu+ uT (uP ) = P TuTu+ uTuP = P T ξ + ξP,

ξy = (uy)
Tu+ uTuy = (uQ)Tu+ uT (uQ) = QTuTu+ uTuQ = QT ξ + ξQ.

So, ξ satisfies
ξx = P T ξ + ξP,

ξy = QT ξ + ξQ,

ξ(x0, y0) = Id

.

We also know that Id is a solution of the above system since Idx = 0 and

P T Id + IdP = P T + P = −P + P = 0.

Thus Idx = P T Id + IdP . Similarly, QT Id + IdQ = −Q + Q = 0 = Idy and

Id(x0, y0) = Id. So, by the uniqueness of solutions of the Frobenius Theorem,

Theorem 3.1.2, we get that ξ = Id, so uTu = Id and u is orthogonal for all

(x, y) ∈ O0.



Example 3.1.6. Given c0 > 0, consider the following PDE system


ux = 2 sinu,

uy = 1
2

sinu,

u(0, 0) = c0.

This is System (3.1.2) from the Frobenius Theorem where A = 2 sinu, B =

1
2

sinu, and c0 = p0. Let’s check the compatibility relation. We have

Ay + AuB = cosu sinu+ 2 cosu× 1

2
sinu = 2 cosu sinu,

Bx +BuA = cosu sinu+
1

2
cosu× 2 sinu = 2 cosu sinu.

Hence, Ay + AuB = Bx + BuA. Thus, by the Frobenius Theorem, Theorem

3.1.2, this system has a smooth solution. Now, let’s solve the system using

methods in Frobenius theorem’s proof. First, let’s solve the ODE


∂α

∂x
= 2 sinα

α(0) = c0

.

The equation αx = 2 sin x is a separable ODE. Hence,

∫
dα

sinα
=

∫
2dx

=⇒ − ln | cscα + cotα| = 2x+ c

=⇒ 1

cscα + cotα
= e2x+c



=⇒ 1
1

sinα
+ cosα

sinα

=
sinα

1 + cosα
=

2 sin(α
2
) cos(α

2
)

2 cos(α
2
)

= tan(
α

2
)

=⇒ tan(
α

2
) = e2x+c =⇒ α

2
= tan−1(e2x+c)

=⇒ α(x) = 2 tan−1(e2x+c).

But α(0) = c0, so 2 tan−1 ec = c0 and c = ln
(

tan c0
2

)
. Finally, we have

α(x) = 2 tan−1
(
e2x+ln(tan

c0
2
)
)
.

Also, solving the separable ODE


∂u

∂y
=

1

2
sinu

u(x, 0) = α(x) = 2 tan−1 e2x+c
, we get

∫
du

sinu
=

∫
1

2
dy

=⇒ u(x, y) = 2 tan−1(e
y
2
+k)

=⇒ u(x, 0) = α(x) = 2 tan−1(e2x+c)

=⇒ 2 tan−1(ek) = 2 tan−1(e2x+c)

=⇒ k = 2x+ c.

Hence, u(x, y) = 2 tan−1
(
e
y
2
+2x+c

)
, where c = ln(tan

c0
2

). Since u is a solution

of (3.1.2), then

uxy = (ux)y = (2 sinu)y = 2uy cosu = 2 cosu(
1

2
sinu) = cosu sinu.



Thus, u satisfies the sine Gordon wave equation (SGE):

uxy = sinu cosu.

The previous example is a special case of the following theorem:

Theorem 3.1.7. (Theorem of Backlund) Given a smooth function q :

R2 −→ R and r ∈ R such that r 6= 0. The following system of PDE:


us = −qs + r sin(u− q),

ut = qt + 1
r

sin(u+ q),

has a solution for u : R2 −→ R if and only if q satisfies the sine Gordon wave

equation (SGE),

qst = sin q cos q.

Moreover, the solution u is also a solution of the SGE.

Proof. Suppose that the system has a smooth solution u ∈ C2, where C2 is

the set of all functions which are twice differentiable and having all partial

derivatives continuous. Then, we have ust = uts. Let’s calculate ust and uts.

We have

ust = (us)t = (−qs + r sin(u− q))t

= −qst + r(ut − qt) cos(u− q)

= −qst + r(
1

r
sin(u+ q)) cos(u− q), (3.1.7)



uts = (ut)s = (qt +
1

r
sin(u+ q))s

= qts +
1

r
(us + qs) cos(u+ q)

= qts +
1

r
(r sin(u− q)) cos(u+ q). (3.1.8)

Now, ust = uts gives that

−qst + sin(u+ q) cos(u− q) = qts + sin(u− q) cos(u+ q).

Thus,

2qst = sin(u+ q) cos(u− q)− sin(u− q) cos(u+ q)

= sin(u+ q − u+ q) = sin(2q) = 2 sin q cos q.

Finally, qst = sin q cos q which means that q satisfies the SGE. Now, adding

Equation (3.1.7) to Equation (3.1.8) gives that

uts + ust = sin(u+ q) cos(u− q) + sin(u− q) cos(u+ q)

=⇒ 2uts = sin(u+ q + u− q) = sin(2u) = 2 sinu cosu

=⇒ uts = sinu cosu.

So u satisfies also the SGE.

The above theorem states that if we know one solution q of the SGE, we

can solve the previous PDE system to get a family of solutions of the SGE

(one for each r). Now, q = 0 is a trivial solution of the SGE. Theorem 3.1.7



states that the PDE system can be solved for u with q = 0.


us = r sinu

ut = 1
r

sinu

This is solved exactly like example 3.1.6 where r = 2 =⇒ u(s, t) = 2 tan−1(ers+
t
r ).

u are also solutions of the SGE.

3.2 Line of Curvature Coordinates

In this section, we will introduce line of curvature coordinates. We will also

show how this type of coordinates helps in facilitating the calculation of the

first and second fundamental forms of a parametrized surface.

Definition 3.2.1. A parametrized surface f : O −→ R3 is said to be parametrized

by line of curvature coordinates if and only if g12 = l12 = 0. It means that

it is parametrized by line of curvature coordinates if and only if the first and

second fundamental forms are in diagonal form, i.e, I = g11dx
2
1 + g22dx

2
2 and

II = l11dx
2
1 + l22dx

2
2.

For surfaces parametrized by line of curvature coordinates, we have that

A = G−1L =
1

g11g22

g22 0

0 g11


l11 0

0 l22

 =

 1
g11

0

0 1
g22


l11 0

0 l22

 =

 l11
g11

0

0 l22
g22
.



Then the principal curvatures are given by k1 =
l11
g11

and k2 =
l22
g22

. The

Gaussian curvature is given by K = k1k2 =
l11l22
g11g22

and the mean curvature by



H = k1 + k2 =
l11
g11

+
l22
g22

.

Example 3.2.2. Let u : [a, b] −→ R be a smooth function and consider the

surface given by

f(y, θ) = (u(y) sin θ, 1, u′(y) cos θ).

We have



fy = (u′(y) sin θ, 1, u′(y) cos θ),

fθ = (u(y) cos θ, 0,−u(y) sin θ),

N = fy×fθ
‖fy×fθ‖

= ( − sin θ√
1+(u′)2

, u′√
1+(u′)2

, − cos θ√
1+(u′)2

),

fyy = (u′′(y) sin θ, 0, u′′(y) cos θ),

fθθ = (−u(y) sin θ, 0,−u(y) cos θ),

fyθ = (u′(y) cos θ, 0,−u′(y) sin θ),

g11 = 〈fy, fy〉 = (u′(y))2 + 1,

g22 = 〈fθ, fθ〉 = (u(y))2,

g12 = 〈fy, fθ〉 = 0,

l11 = 〈N, fyy〉 =
−u′′(y)√
1 + (u′)2

,

l22 = 〈N, fθθ〉 =
u(y)√

1 + (u′)2
,

l12 = 〈N, fyθ〉 = 0

Then, f(y, θ) is parametrized by line of curvature coordinates since l12 = g12 =

0.

Proposition 3.2.3. For a surface, assume that the principal curvatures k1(p0) 6=



k2(p0) for some p0 ∈ O. Then, ∃δ > 0 such that B(p0, δ) ⊂ O where B(p0, δ)

is an open ball of center p0 and radius δ and k1(p) 6= k2(p) for all p ∈ B(p0, δ).

Proof. The Gaussian and mean curvatures H and K are smooth maps where

H = k1 + k2 and K = k1k2. Then, k1 and k2 are solutions of the equation

x2 −Hx+K = 0.

We calulate ∆ = H2−4K. Then, k1 =
H +

√
H2 − 4K

2
and k2 =

H −
√
H2 − 4K

2

are two distinct roots if and only if H2 − 4K = u > 0. Now, since k1(p0) 6=

k2(p0), we get u(p0) > 0. Also, u is continuous at p0 since H and K are

smooth, then

∀ε > 0,∃δ > 0/‖p− p0‖ < δ =⇒ |u(p)− u(p0)| < ε.

Take ε =
u(p0)

2
, then

u(p0)

2
< u(p) <

3u(p0)

2
. But u(p0) > 0, then u(p) > 0

for all p ∈ B(p0, δ). Therefore, k1(p) 6= k2(p) for all p ∈ B(p0, δ).

Remark A smooth map V : O −→ R3 is called a tangent vector field of the

parametrized surface f : O −→ R3 if v(p) ∈ Tfp for all p ∈ O.

Proposition 3.2.4. Let f : O −→ R3 be a parametrized surface. Assume

that k1(p) 6= k2(p) for all p ∈ O. There exists smooth orthonormal tangent

vector fields e1, e2 of f . Moreover, e1(p) and e2(p) are eigenvectors for the

shape operator Sp for all p ∈ O.

Remark We call f(p0) an umbilic point of the parametrized surface f : O −→

R3 if k1(p0) = k2(p0).



3.3 The Gauss-Codazzi Equations in Line of

Curvature Coordinates

Suppose f : O −→ R3 is a surface parametrized by line of curvature co-

ordinates, then g12 = 〈fx1 , fx2〉 = 0 and l12 = 〈fx1x2 , N〉 = 0. We define

A1, A2, r1, r2 as follows:



g11 = 〈fx1 , fx1〉 = A2
1

g22 = 〈fx2 , fx2〉 = A2
2

l11 = 〈fx1x1 , N〉 = r1A1

l22 = 〈fx2x2 , N〉 = r2A2

⇐⇒



A1 =
√
g11

A2 =
√
g22

r1 = l11
A1

r2 = l22
A2

Set e1 =
fx1
A1

, e2 =
fx2
A2

, and e3 = N . The frame {e1, e2, e3} is an orthonormal

moving frame on f . Then, any vector v ∈ R3 can be written as a linear

combination of e1, e2, and e3.

v = a1e1 + a2e2 + a3e3 = 〈v, e1〉e1 + 〈v, e2〉e2 + 〈v, e3〉e3.

Now, since (e1)x1 , (e1)x2 , (e2)x1 , (e2)x2 , (e3)x1 , and (e3)x2 belong to R3, we can

write them as a linear combination of e1, e2, and e3.
(e1)x1 = p11e1 + p21e2 + p31e3,

(e2)x1 = p12e1 + p22e2 + p32e3,

(e3)x1 = p13e1 + p23e2 + p33e3,




(e1)x2 = q11e1 + q21e2 + q31e3,

(e2)x2 = q12e1 + q22e2 + q32e3,

(e3)x2 = q13e1 + q23e2 + q33e3,

where pij = 〈(ej)x1 , ei〉 and qij = 〈(ej)x2 , ei〉. The matrices P = (pij) and

Q = (qij) are skew symmetric since

pij + pji = 〈(ej)x1 , ei〉+ 〈(ei)x1 , ej〉 = 〈ej, ei〉x1 = 0.

Similarly, qij = −qji. Thus, we have

P =


0 p12 p13

−p12 0 p23

−p13 −p23 0

 and Q =


0 q12 q13

−q12 0 q23

−q13 −q23 0

 .

Now,

p12 = 〈(e2)x1 , e1〉 =
〈(fx2

A2

)
x1
,
fx1
A1

〉
=
〈fx2x1
A2

− fx2(A2)x1
A2

2

,
fx1
A1

〉
=
〈fx2x1 , fx1〉
A1A2

− (A2)x1
A2

2A1

〈fx2 , fx1〉 =
1
2
〈fx1 , fx2〉x2
A1A2

=
1
2
(A1)

2
x2

A1A2

=
A1(A1)x2
A1A2

Hence,

p12 =
(A1)x2
A2

,



p31 = 〈(e1)x1 , e3〉 =
〈(fx1

A1

)
x1
, N
〉

=
〈fx1x1
A1

− fx1(A1)x1
A2

1

, N
〉

=
〈fx1x1 , N〉

A1

− (A1)x1
A2

2

〈fx1 , N〉 =
r1A1

A1

= r1,

p32 = 〈(e2)x1 , e3〉 =
〈(fx2

A2

)x1 , N
〉

=
〈fx2x1
A2

− fx2(A2)x1
A2

2

, N
〉

=
〈fx2x1 , N〉

A2

− (A2)x1
A2

2

〈fx2 , N〉 = 0.

Similarly, q12 = −(A2)x1
A1

, q31 = 0, and q32 = r2, hence

P =


0

(A1)x2
A2

−r1

− (A1)x2
A2

0 0

r1 0 0

 and Q =


0 − (A2)x1

A1
0

(A2)x1
A1

0 −r2

0 r2 0

 .

Thus,



(e1)x1 = − (A1)x2
A2

e2 + r1e3

(e2)x1 =
(A1)x2
A2

e1

(e3)x1 = −r1e1

(e1)x2 =
(A2)x!
A1

e2

(e2)x2 = − (A2)x1
A1

e1 + r2e3

(e3)x2 = −r2e2.

In matrix form we have,


(e1, e2, e3)x1 = (e1, e2, e3)P

(e1, e2, e3)x2 = (e1, e2, e3)Q

.



From Proposition 3.1.4, we have that PQ−QP = Px2 −Qx1 . Set p =
(A1)x2
A2

and q = −(A2)x1
A1

, we get

PQ−QP =


0 p −r1

−p 0 0

r1 0 0




0 q 0

−q 0 −r2

0 r2 0

−


0 q 0

−q 0 −r2

0 r2 0




0 p −r1

−p 0 0

r1 0 0



=


−pq −r1r2 −r2p

0 −pq 0

0 r1q 0

−

−pq 0 0

−r1r2 −pq r1q

−r2p 0 0

 =


0 −r1r2 −r2p

r1r2 0 −r1q

r2p r1q 0


and

Px2 −Qx1 =


0 px2 (−r1)x2

(−p)x2 0 0

(r1)x2 0 0

−


0 qx1 0

(−q)x1 0 (−r2)x1

0 (r2)x1 0



=


0 px2 − qx1 (−r1)x2

−px2 + qx1 0 (r2)x1

(r1)x2 (−r2)x1 0

 .

Since PQ−QQ = Px2 −Qx1 , we get


px2 − qx1 = −r1r2,

(
(A1)x2
A2

)x2 + (
(A2)x1
A1

)x1 = r1r2,

−pr2 = −(r1)x2

=⇒


(r1)x2 = pr2 = (

(A1)x2
A2

)r1

qr1 = (−r2)x1

(r2)x1 = −qr1 = (
(A2)x1
A1

)r1



=⇒


(
(A1)x2
A2

)x2 + (
(A2)x1
A1

)x1 = −r1r2, (Gauss Equation)

(r1)x2 = (
(A1)x2
A2

)r2, (Codazzi Equation)

(r2)x1 = (
(A2)x1
A1

)r1.(Codazzi Equation)

This system is called the Gauss-Codazzi Equations. We have proved the fol-

lowing theorem:

Theorem 3.3.1. Let f : O −→ R3 be a surface parametrized by line of cur-

vature coordinates. Set A1 =
√
g11, A2 =

√
g22, r1 =

l11
A1

, r2 =
l22
A2

, e1 =
fx1
A1

,

e2 =
fx2
A2

, and e3 = N . Then A1, A2, r1, and r2 satisfy the Gauss-Codazzi

equations and we have



(f, e1, e2, e3)x1 = (e1, e2, e3)


A1 0

(A1)x2
A2

−r1

0 − (A1)x2
A2

0 0

0 r1 0 0



(f, e1, e2, e3)x2 = (e1, e2, e3)


0 0 − (A2)x1

A1
0

A2
(A2)x1
A1

0 −r2

0 0 r2 0



(3.3.1)



3.4 Fundamental Theorem of Surfaces in Line

of Curvature Coordinates

The converse of Theorem 3.3.1 is also true. It is known as the fundamental

theorem of surfaces in R3 with respect to line of curvature coordinates.

Theorem 3.4.1. Suppose A1, A2, r1, and r2 are smooth functions from O ⊂

R2 −→ R satisfying the Gauss-Codazzi equations with A1 > 0 and A2 > 0.

Given p0 ∈ O, y0 ∈ R3, and {v1, v2, v3} an orthonormal basis of R3, there

exists O0 ⊆ O such that p0 ∈ O0, and there exists a unique solution

(f, e1, e2, e3) : O0 −→ (R3)4

of Equation (3.3.1) satisfying the initial condition

(f, e1, e2, e3)(p0) = (y0, v1, v2, v3).

Also, f is a parametrized surface with

I = A2
1dx

2
1 + A2

2dx
2
2,

II = r1A1dx
2
1 + r2A2dx

2
2.

Proof. From Proposition 3.1.4, A1, A2, r1, and r2 satisfy the Gauss-Codazzi

equation if and only if we have the compatibility relation PQ−QP = Px2−Qx1 .

From Frobenius Theorem, Theorem 3.1.2, this is equivalent to say that the



following system


(e1, e2, e3)x1 = (e1, e2, e3)P

(e1, e2, e3)x2 = (e1, e2, e3)Q

is solvable. Let (e1, e2, e3) be the solution with initial data (e1, e2, e3)(p0) =

(v1, v2, v3). Since the initial data (v1, v2, v3) is orthogonal, O ⊂ R2 and P,Q

are smooth maps such that P T = −P , QT = −Q and PQ−QP = Px2 −Qx1 ,

then by Proposition 3.1.5), the solution (e1, e2, e3)(p) of the above system is

an orthogonal matrix for all p ∈ O. Now, to construct f , we need to solve


fx1 = A1e1

fx2 = A2e2

(3.4.1)

First, let us check that the System 3.1.5 is solvable. We have

fx1x2 = (A1e1)x2 = (A1)x2e1 + A1(e1)x2

= (A1)x2e1 + A1
(A2)x1
A1

e2 = (A1)x2e1 + (A2)x1e2

fx2x1 = (A2e2)x1 = (A2)x1e2 + A2(e2)x1

= (A2)x1e2 + A2
(A1)x2
A2

e1 = (A2)x1e2 + (A1)x2e1

Thus, fx1x2 = fx2x1 and the System (3.4.1) is solvable. We can solve the System

3.4.1 by integration. From Theorem 3.3.1, it follows that (f, e1, e2, e3) is a solu-

tion of the System (3.3.1) with initial data (y0, v1, v2, v3), where (f, e1, e2, e3)(p0) =

(y0, v1, v2, v3). We need to check that f is a parametrized surface (In other



words, fx1 and fx2 are linearly independent). We have that fx1 = A1e1 and

fx2 = A2e2, then fx1 and fx2 are linearly independent. So, f is a parametrized

surface. From Theorem 3.3.1, e3 = N and hence g11 = A2
1 and g22 = A2

2 (since

A1 =
√
g11 and A2 =

√
g22). Also, g12 = g21 = 0 (because f is parametrized

by line of curvature). Thus,

I = A2
1dx

2
1 + A2

2dx
2
2.

We also have

l11 = 〈fx1x1 , e3〉 = 〈(fx1)x1 , e3〉 = 〈(A1)x1e1 + A1(e1)x1 , e3〉

= 〈A1(e1)x1 , e3〉 =
〈
A1

(−(A1)x2
A2

e2 + r1e3

)
, e3

〉
= 〈A1r1e3, e3〉 = A1r1.

Similarly, l22 = A2r2.Moreover,

l21 = l12 = 〈fx1x2 , e3〉 = 〈(A1)x2e1 + (A2)x1e2, e3〉 = 0.

Finally, we get

II = A1r1dx
2
1 + A2r2dx

2
2.

Proposition 3.4.2. Suppose f, g : O −→ R3 are two surfaces parametrized

by line of curvature coordinates. Assume that f and g have the same first and



second fundamental forms given by

I = A2
1dx

2
1 + A2

2dx
2
2,

II = A1r1dx
2
1 + A2r2dx

2
2.

Then, there exists a rigid motion φ of R3 such that g = φ ◦ f .

Proof. Let e1 =
fx1
A1

, e2 =
fx2
A2

, e3 =
fx1 × fx2
‖fx1 × fx2‖

, ξ1 =
gx1
A1

, ξ2 =
gx2
A2

, and

ξ3 =
gx1 × gx2
‖gx1 × gx2‖

. Fix p0 ∈ O and let φ(x) = Tx+ b be the rigid motion such

that φ(p0) = g(p0) and T (ei(p0)) = ξi(p0) for 1 ≤ i ≤ 3. Then:

1. φ ◦ f and f have the same I and II.

2. The orthonormal frame for φ ◦ f is (Te1, T e2, T e3).

Therefore, (φ ◦ f, Te1, T e2, T e3) and (g, ξ1, ξ2, ξ3) are solutions of (3.3.1) with

initial condition (g(p0), ξ1(p0), ξ2(p0), ξ3(p0)). But, by Frobenius Theorem,

Theorem 3.1.2, the solution is unique. Hence,

(φ ◦ f, Te1, T e2, T e3) = (g, ξ1, ξ2, ξ3),

since Te1 = ξ1, Te2 = ξ2, and Te3 = ξ3. This gives that φ ◦ f = g.

3.5 The Gauss Theorem in Line of Curvature

Coordinates

Usually, we know that the Gaussian curvature K depends on both I and II.

The Gauss Theorem states that K can be calculated from I alone. This will



be shown first for surfaces parametrized by line of curvature coordinates.

Theorem 3.5.1. (Gauss Theorem in Line of Curvature Coordinates).

Let f : O −→ R3 be a surface parametrized by line of curvature coordinates

and

I = A2
1dx

2
1 + A2

2dx
2
2

II = A1r1dx
2
1 + A2r2dx

2
2.

Then,

K = −

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

A1A2

Therefore, K can be computed from I alone.

Proof. We have

K =
det(lij)

det(gij)
=

l11l22
g11g22

=
r1A1r2A2

A2
1A

2
2

=
r1r2
A1A2

.

But from the Gauss-Codazzi equations, we have,

r1r2 = −

[(
(A1)x2
A2

)
x2

+

(
(A2)x1
A1

)
x1

]

Thus,

K = −

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

A1A2

.



3.6 The Gauss-Codazzi Equations in Local Co-

ordinates

In this section, we will find the Gauss-Codazzi equations for any parametrized

surface f : O −→ U ⊂ R3. We use the frame (fx1 , fx2 , N), where N =

fx1 × fx2
‖fx1 × fx2‖

is the unit normal vector. Since (fx1 , fx2 , N) is a basis for R3,

then the derivatives of fx1 , fx2 , and N can be written as a linear combination

of fx1 , fx2 , and N . Thus,


(fx1 , fx2 , N)x1 = (fx1 , fx2 , N)P,

(fx1 , fx2 , N)x2 = (fx1 , fx2 , N)Q,

(3.6.1)

where P = (pij) and Q = (qij) are Gl(3) valued maps. We have



(fx1)x1 = p11fx1 + p21fx2 + p31N,

(fx2)x1 = p12fx1 + p22fx2 + p32N,

Nx1 = p13fx1 + p23fx2 + p33N,

(fx1)x2 = q11fx1 + q21fx2 + q31N,

(fx2)x2 = q12fx1 + q22fx2 + q32N,

Nx2 = q13fx1 + q23fx2 + q33N,



and we know that 

g11 = 〈fx1 , fx1〉,

g21 = g12 = 〈fx1 , fx2〉,

g22 = 〈fx2 , fx2〉,

l11 = 〈fx1x1 , N〉,

l12 = l21 = 〈fx1x2 , N〉,

l22 = 〈fx1x2 , N〉.

The goal is to express P and Q in terms of lij and gij. To do so, we need the

following propositions.

Proposition 3.6.1. Let V be a vector space with an inner product 〈., .〉. Let

{v1, v2, .., vn} be a basis of V and gij = 〈vi, vj〉. Let ξ ∈ V such that ξ =
n∑
i=1

xivi

and ξi = 〈ξ, vi〉. Then,



x1

x2

..

..

xn


= G−1



ξ1

ξ2

..

..

ξn


where G = (gij).

Proof. We have

ξi = 〈ξ, vi〉 =
〈 n∑
j=1

xjvj, vi

〉
=

n∑
j=1

xj〈vj, vi〉 =
n∑
j=1

xjgij =
n∑
j=1

gijxj



Thus,



ξ1

ξ2

..

ξn


= G



x1

x2

..

xn


and



x1

x2

..

xn


= G−1



ξ1

ξ2

..

ξn


.

Proposition 3.6.2. The following statements are true:

1. P = (pij) and Q = (qij) from Proposition 3.6.1 can be written in terms

of lij, gij, and the first partial derivatives of gij.

2. The entries pij and qij, for 1 ≤ i, j ≤ 2, can be calculated from I.

Proof. 1. We know that fx1x1 = p11fx1 + p21fx2 + p31N , where,


p11 = 〈fx1x1 , fx1〉,

p21 = 〈fx1x1 , fx2〉,

p31 = 〈fx1x1 , N〉,

and so on. We claim that 〈fxixj , fxk〉, 〈fxixj , N〉, 〈Nxi , fxj〉, and 〈Nxi , N〉

can be expressed in terms of gij, lij, and first partial derivatives of gij.

To prove this, we proceed as follows:

(gii)xi = 〈fxi , fxi〉xi = 〈fxixi , fxi〉+ 〈fxi , fxixi〉 = 2〈fxixi , fxi〉.

Hence 〈fxixi , fxi〉 = 1
2
(gii)xi . Similarly,

1

2
(gii)xj = 〈fxixj , fxi〉. Now,



〈fxi , fxj〉 = gij, so we have

(gij)xi = 〈fxixi , fxj〉+ 〈fxi , fxjxi〉

=⇒ (gij)xj = 〈fxixj , fxj〉+ 〈fxi , fxjxj〉

Thus, we have

(gij)xi −
1

2
(gii)xj = 〈fxixi , fxj〉+ 〈fxi , fxjxi〉 − 〈fxixi , fxj〉 = 〈fxixi , fxj〉

By definition, 〈fxixj , N〉 = lij and 〈Nxi , fxj〉 = −lij. Also, clearly

〈Nxi , N〉 = 0. So, 〈fxixj , fxk〉, 〈fxixj , N〉, 〈Nxi , fxj〉, and 〈Nxi , N〉 can

be written in terms of gij, lij, and the first partial derivatives of gij.

2. Now, let G =


g11 g12 0

g12 g22 0

0 0 1

.

By Proposition 3.6.1, we have



P =


g11 g12 0

g12 g22 0

0 0 1




1
2
(g11)x1

1
2
(g11)x2 −l11

(g12)x1 − 1
2
(g11)x2

1
2
(g22)x1 −l12

l11 l12 0

 = G−1A1

Q =


g11 g12 0

g12 g22 0

0 0 1




1
2
(g11)x2 (g12)x2 − 1

2
(g22)x1 −l12

1
2
(g22)x1

1
2
(g22)x2 −l12

l12 l22 0

 = G−1A2.

(3.6.2)



This proves the proposition.

The entries of P and Q in terms of gij and lij are related to the so-called

Christofell symbols Γkjk =
1

2
gkm[ij,m], where:

� (gij) is the inverse matrix of (gij).

� [ij, k] = gki,j + gjk,i − gij,k

� gij,k =
∂gij
∂xk

Theorem 3.6.3. For 1 ≤ i, j ≤ 2, we have:


pji = Γji1

gji = Γji2

(3.6.3)

Proof. From Proposition 3.6.2, we have

p11 = g11
(1

2
(g11)x1

)
+ g12

(
(g12)x1 −

1

2
(g11)x2

)
=

1

2
g11g11,1 + g12g12,1 −

1

2
g12g11,2

Γ1
11 =

1

2
g1m[11,m] =

1

2
g11[11, 1] +

1

2
g12[11, 2]

=
1

2
g11g11,1 +

1

2
g12
(
g21,1 + g12,1 − g11,2

)
=

1

2
g11g11,1 + g12g12,1 −

1

2
g12g11,2.



Thus, p11 = Γ1
11. In a similar way,

p12 =
1

2
g11(g11)x2 +

1

2
g12(g22)x1 =

1

2
g11g11,2 +

1

2
g12g22,1

Γ1
21 =

1

2
g11[21, 1] +

1

2
g12[21, 2]

=
1

2
g11(g12,1 + g11,2 − g21,1) +

1

2
g12(g22,1)

=
1

2
g11g11,2 +

1

2
g12g22,1.

Thus, p12 = Γ1
21. Now,

p21 =
1

2
g12g11,1 + g22g12,1 − frac12g22g11,2

Γ2
11 =

1

2
g21[11, 1] +

1

2
g22[11, 2]

=
1

2
g12g11,1 +

1

2
g22(g21,1 + g12,1 − g11,,2)

=
1

2
g12g11,1 + g22g12,1 −

1

2
g22g11,2.

Thus, p21 = Γ2
11. Also,

p22 =
1

2
g12g11,2 +

1

2
g22g22,1

Γ2
21 =

1

2
g21[21, 1] +

1

2
g22[21, 2] =

1

2
g21g11,2 +

1

2
g22g22,1.

Thus, p22 = Γ2
21 and hence pji = Γji1 for 1 ≤ i, j ≤ 2. Moreover,

q11 =
1

2
g11g11,2 +

1

2
g12g22,1

Γ1
12 =

1

2
g11[12, 1] +

1

2
g12g12[12, 2] =

1

2
g11g11,2 +

1

2
g12g22,1.



Thus, q11 = Γ1
12. Also,

q12 = g11g12,2 −
1

2
g11g22,1 +

1

2
g12g22,2

Γ1
22 =

1

2
g11[22, 1] +

1

2
g12[22, 2]

=
1

2
g11(g12,2 + g21,2 − g22,1) +

1

2
g12g22,2

= g11g12,2 −
1

2
g11g22,1 +

1

2
g12g22,2.

Thus, q12 = Γ1
22. Now,

q21 =
1

2
g12g11,2 +

1

2
g22g22,1

Γ2
12 =

1

2
g21[12, 1] +

1

2
g22[12, 2] =

1

2
g12g11,2 +

1

2
g22g22,1.

Thus, q21 = Γ2
12. Also,

q22 = g12g12,2 −
1

2
g12g22,1 +

1

2
g22g22,2

Γ2
22 =

1

2
g21[22, 1] +

1

2
g22[22, 2]

=
1

2
g21(g12,2 + g21,2 − g22,1) +

1

2
g22g22,2

= g12g12,2 −
1

2
g12g22,1 +

1

2
g22g22,2.

Thus, q22 = Γ2
22 and hence qji = Γji2 for 1 ≤ i, j ≤ 2. Note that: q11 = p12 and

q21 = p22.

Theorem 3.6.4. (The Fundamental Theorem of Surfaces in R3).

� Let f : O ⊂ R2 −→ R3 be a parametrized surface with gij and lij being

the coefficients of I and II. Let P and Q be smooth Gl(3)-valued maps



defined in terms of gij and lij as in Proposition 3.6.2. Then, P and Q

satisfy

Px2 −Qx1 = [P,Q] (3.6.4)

(Already proved in Proposition 3.1.4)

� Conversely, let O be open in R2. Let gij, lij : O −→ Gl(2) be smooth

maps such that (gij) is positive definite and (lij) is symmetric. Also,

P,Q : U −→ Gl(3) are the maps defined as in Proposition 3.6.2. Suppose

P and Q satisfy Px2 − Qx1 = [P,Q] = PQ − QP . Let (x01, x
0
2) ∈ O and

p0 ∈ R3 with {u1, u2, u3} a basis for R3 such that 〈ui, uj〉 = gij(x
0
1, x

0
2)

and 〈ui, u3〉 = 0 for 1 ≤ i, j ≤ 2. Then, there exists O0 ⊆ O open of

(x01, x
0
2) and a unique immersion f : O0 −→ R3 such that f maps O0

homeomorphically to f(O0) and

1. I and II of f(O0) are given by (gij) and (lij) respectively.

2. f(x01, x
0
2) = p0 and f(x01, x

0
2) = ui for i = 1, 2.

Proof. Assume Px2−Qx1 = [P,Q]. Then, by the Frobenius Theorem, Theorem

3.1.2, the system:


(v1, v2, v3)x1 = (v1, v2, v3)P

(v1, v2, v3)x2 = (v1, v2, v3)Q

(v1, v2, v3)(x
0
1, x

0
2) = (u1, u2, u3)

(3.6.5)



has a unique local solution. We want to solve


fx1 = v1,

fx2 = v2,

f(x01, x
0
2) = p0.

(3.6.6)

The compatibility relation is fx1x2 = fx2x1 . We have

(v1)x2 = (v2)x1 ,

(v1)x2 =
3∑
j=1

qj1vj = q11v1 + q21v2 + q31v3,

(v2)x1 =
3∑
j=1

pj2vj = p12v1 + p22v2 + p32v3.

From Proposition 3.6.2, q11 = p12, q21 = p22, and q31 = p32. Then, (v1)x2 =

(v2)x1 . Therefore, there exists a unique solution f for the System (3.6.6). We

still need to show that f is an immersion satisfying 1 and 2. We need to show

that v3 ⊥ f , ‖v3‖ = 1, 〈fxi , fxj〉 = gij, and 〈(v3)xi , fxi〉 = −lij. First, let’s show

that the 3×3 matrix φ = (〈vi, vj〉) is equal to the matrix G =


g11 g12 0

g12 g22 0

0 0 1

.



We have

〈vi, vj〉x1 = 〈(vi)x1 , vj〉+ 〈vi, (vj)x1〉

= 〈p1iv1 + p2iv2 + p3iv3, vj〉+ 〈vi, p1jv1 + p2jv2 + p3jv3〉

= p1ig1j + p2ig2j + p3ig3j + p3jgi3 + p2jgi2 + p1jgi1

= (GP )ji + (GP )ij

= (GP + (GP )T )ij.

Now, from Proposition 3.6.2, P = G−1A1, then GP = G(G−1A1) = A1 and

A1 + AT1 =


1
2
(g11)x1

1
2
(g11)x2 −l11

(g12)x1 − 1
2
(g11)x2

1
2
(g22)x1 −l12

l11 l12 0

+


1
2
(g11)x1 (g12)x1 − 1

2
(g11)x2 l11

1
2
(g11)x2

1
2
(g22)x1 l12

−l11 −l12 0



=


(g11)x1 (g12)x1 0

(g12)x1 (g22)x1 0

0 0 0

 = Gx1 .

Thus, GP + (GP )T = Gx1 and so φx1 = Gx1 . Similarly, φx2 = Gx2 , but

φ(x01, x
0
2) = G(x01, x

0
2), so φ = G. In other words, 〈fxi , fxj〉 = gij and 〈fxi , v3〉 =

0. Thus,

1. fx1 and fx2 are linearly independent, and so f is an immersion.

2. v3 is the unit normal to f .

3. The first fundamental form I of f is I =
∑
gijdxidxj.



Now, let’s find the second fundamental form II of f . We have

〈−(v3)x1 , vj〉 = 〈−p13v1 − p23v2 − p33v3, vj〉

= (l11g
11 + l12g

12)〈v1, vj〉+ (l11g
12 + l12g

22)〈v2, vj〉+ 0

= (l11g
11 + l12g

12)g1j + (l11g
12 + l12g

22)g2j

= l11(g
11g1j + g12g2j) + l12(g

12g1j + g22g2j)

= l11δij + l12δ2j,

where δij =


1 for j = i

0 for j 6= i

. Then, 〈−(v3)x1 , v1〉 = l11 and 〈−(v3)x1 , v2〉 =

l12. Similarly, 〈−(v2)x2 , vj〉 = l2j. Therefore, II =
∑
lijdxidxj. The System

(3.6.4) with P and Q defined by (3.6.2) is called the system of Gauss-Codazzi

equations for the surface f(O), which is a second order PDE with 9 equations

for 6 functions gij and lij. Also, from Propositions (3.6.1), (3.6.2), and (3.6.3),

we get the following


fxix1 =

2∑
j=1

pjifxj + li1N =
2∑
j=1

Γji1fxj + li1N,

fxix2 =
2∑
j=1

qjifxj + li2N =
2∑
j=1

Γji2fxj + li2N.

So, we have,

fxixj = Γ1
ijfx1 + Γ2

ijfx2 + lijN (3.6.7)



Proposition 3.6.5. Let f : O −→ R3 be a local coordinate system of an

embedded surface M in R3, and α(t) = f(x1(y), x2(t)). Then, α satisfies the

geodesic Equation (3.6.7) if and only if α′′(t) is normal to M at α(t) for all t.

Proof. Assume α satisfies Equation 3.6.7, then we have

α′ =
2∑
i=1

fxix
′
i,

α′′ =
2∑

i,j=1

fxixjx
′
ix
′
j + fxix

′′
i =

2∑
i,j,k=1

Γkijfxkx
′
ix
′
j + lijN + fxix

′′
i

=
2∑

i,j=1

(Γkijx
′
ix
′
j + x′′k)fxk + lijN = 0 + lijN = lijN

Thus, α′′ and N are collinear ⇐⇒ α′′(t) is normal to M at α(t) for all t.

3.7 The Gauss Theorem

In this section, we will state and prove the Gauss Theorem which revolves

around being able to find the Gaussian curvature using only the First Funda-

mental Form of a surface in R3. We recall that:

� Px2 − Qx1 = PQ − QP is the Gauss Codazzi equation for a surface M

in R3.

� The Gaussian curvature is given by:

K =
l11l22 − l212
g11g22 − g212

=
det(lij)

det(gij)

Theorem 3.7.1. (The Gauss Theorem). The Gaussian curvature of a



surface in R3 can be computed from the first fundamental form.

Proof. Let’s take the 1,2 entry of Px2 −Qx1 and the 1,2 entry of PQ−QP =

Px2 −Qx1 . The 1,2 entry of PQ−QP is

p11q12 + p12q22 + p13q32 − (q11p12 + q12p22 + q13p32) =
3∑
j=1

p1jqj2 −
3∑
j=1

q1jpj2

The 1,2 entry of Px2 −Qx1 is (p12)x2 − (q12)x1 . So we have,

(p12)x2 − (q12)x1 =
3∑
j=1

p1jqj2 −
3∑
j=1

q1j − pj2.

It can be also written as

(p12)x2 − (q12)x1 −
2∑
j=1

(p1jqj2 − q1jpj2) = p13q32 − q13p32.

Now from Proposition 3.6.2, we have



p13 = −g11l11 − g12l12

q13 = −g11l12 − g12l22

p32 = l12

q32 = l22

.



Thus,

(p12)x2 − (q12)x1 −
2∑
j=1

(p1jqj2 − q1j − pj2)

= (−g11l11 − g12l12)l22 + (g11l12 + g12l22)l12

= −g11l11l22 + g11l12l12 = −g11(l11l22 − l212)

= −g11(g11g22 − g212)K,

where K =
l11l22 − l212
g11g22 − g212

. Then, K can be written purely in terms of gij and

its derivatives. In fact,

K =
l11l22 − l212
g11g22 − g212

=
(p12)x2 − (q12)x1 −

∑2
j=1(p1jqj2 − q1jpj2)

−g11(g11g22 − g212)

The equation given by

(p12)x2 − (q12)x1 −
2∑
j=1

(p1jqj2 − q1jpj1) = −g11(g11g22 − g212)K

is called the Gauss equation.

Remark A geometric quantity on an embedded surface M in R3 is called

intrinsic if it only depends on the first fundamental form. Otherwise, it is

called extrinsic (depending on both I and II). The Gaussian curvature and

geodesics are intrinsic, whereas the mean curvature is extrinsic.

Remark If φ : M1 −→ M2 is a diffeomorphism and f(x1, x2) is a local coor-

dinate system on M1, then φ ◦ f(x1, x2) is a local coordinate system on M2.



The diffeomorphism φ is an isometry if the first fundamental forms for M1 and

M2 are the same written in terms of dx1 and dx2. In particular:

1. φ preserves arc length. In other words, the arc length of the curve φ(α)

is the same as that of the curve α.

2. φ preserves angles. In other words, the angle between the curves φ(α)

and φ(β) is the same as the angle between the curves α and β.

3. φ maps geodesics to geodesics.

3.8 The Gauss-Codazzi Equations in Orthog-

onal Coordinates

If the local coordinates x1 and x2 are orthogonal (i.e, g12 = 0), then the

Gauss-Codazzi equations Px2 − Qx1 = [P,Q] becomes much simpler. Instead

of putting g12 = 0 in Px2 −Qx1 = [P,Q], we directly derive the Gauss Codazzi

equation using an orthonormal moving frame. We write: g11 = A2
1, g22 = A2

2,

and g12 = 0. Let e1 =
fx1
A1

, e2 =
fx2
A2

, and e3 = N . Then, (e1, e2, e3) is an

orthogonal moving frame on M . We have


(e1, e2, e3)x1 = (e1, e2, e3)P̃

(e1, e2, e3)x2 = (e1, e2, e3)Q̃

.

Since (e1, e2, e3) is orthogonal, then P̃ and Q̃ are skew symmetric. Also, p̃ij =

〈(ej)x1 , ei〉 and q̃ij = 〈(ej)x2 , ei〉. Now, we need to calculate the coefficients of



P̃ and Q̃:

p21 = 〈(e1)x1 , e2〉 =
〈

(
fx1
A1

)x1 ,
fx2
A2

〉
=
〈fx1x1
A1

,
fx2
A2

〉
=
〈fx1x1 , fx2〉
A1A2

=
〈fx1 , fx2〉x1 − 〈fx1 , fx2x2〉

A1A2

=
0− 1

2
〈fx1 , fx1〉x2
A1A2

=
−(1

2
A2

1)x2
A1A2

= −(A1)x2
A2

Similarly, we get the coefficients p̃ij and q̃ij.

P̃ =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 =


0

(A1)x2
A2

− l11
A1

− (A1)x2
A2

0 − l12
A2

l11
A1

l12
A2

0



Q̃ =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 =


0 − (A2)x1

A1
− l12
A1

(A2)x1
A1

0 − l22
A2

l12
A1

l22
A2

0.


To get the Gauss-Codazzi equations of the surface parametrized by orthogonal

coordinates, we need to compute the 21st, 31st, and 32th entry of

P̃x2 − Q̃x1 = [P̃ , Q̃]

� The 21st entry is given by

−(A1)x2
A2

− (A2)x1
A1

=
−l212 + l11l22

A1A2



� The 31st entry is given by

( l11
A1

)
x2
−
( l12
A1

)
x1

=
l12(A2)x1
A1A2

+
l22(A1)x2

A2
2

� The 32th entry:

( l12
A2

)
x2
−
( l22
A2

)
x1

= − l11(A2)x1
A2

1

− l12(A1)x2
A1A2

The first equation is called the Gauss-Codazzi equation. The Gaussian curva-

ture is given by

K =
l11l22 − l212
(A1A2)2

=
− (A1)x2

A2
− (A2)x1

A1

A1A2

.

Now, we see that the Gauss Codazzi equation becomes much simpler in or-

thogonal coordinates. Can we always find local orthogonal coordinates on a

surface in R3 ? We answer this question by the following theorem which we

state without a proof.

Theorem 3.8.1. Suppose f : O −→ R3 is a surface. Let x0 ∈ O and Y1, Y2 :

O −→ R3 be smooth maps such that Y1(x0) and Y1(x0) are linearly independent

and tangent to M = f(O) at f(x0). Then, there exist open subset O0 of O

such that x0 ∈ O, open subset O1 of R2, and a diffeomorphism h : O1 −→ O0

such that (f ◦ h)y1 and (f ◦ h)y2 are parallel to Y1 ◦ h and Y2 ◦ h respectively.

Remark The above theorem states that if we have two linearly independent

vector fields Y1 and Y2 on a surface, then we can find a local coordinate system

φ(y1, y2) such that φy1 and φy2 are parallel to Y1 and Y2 respectively. Given

any local coordinate system f(x1, x2) on M , we can apply the Gram Schmidt



process to fx1 and fx2 to construct smooth orthonormal vector fields e1 and

e2 where:

e1 =
fx1√
g11

,

e2 =

√
g11(fx2 − g12

g11
fx1)√

g11g22 − g212
.

By Theorem 3.8.1, there exists new local coordinate system f̃(y1, y2) so that

∂f̃

∂x1
and

∂f̃

∂x2
are parallel to e1 and e2. So, the first fundamental form written

in this coordinate system has the form

g̃11dy
2
1 + g̃22dy

2
2.

However, in general we cannot find coordinate system f̃(y1, y2) so that e1 and

e2 are parallel to coordinate vector fields ∂f̃
dy1

and ∂f̃
dy2

because if we can, then

the first fundamental form of the surface is

I = dy21 + dy22,

which implies that the Gaussian curvature of the surface must be 0.
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