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Abstract of the Thesis

Introduction to Differential Geometry of
Space Curves and Surfaces

by

Tatiana Nicolakis

Master of Science
n

Mathematics

Notre Dame University-Louaize,

Zouk Mosbeh,
Lebanon

2020

This thesis is an introduction to some of the classical theory and
results of Differential Geometry: The geometry of curves and sur-

faces lying (mostly) in 3-dimensional space.

One of the most important tools used to analyze a curve is the
Frenet frame, a moving frame that provides a coordinate system
at each point of the curve that is adapted to the curve near that
point. Given a curve, one can define two quantities: its curva-

ture and torsion. Both quantities are scalar fields and depend on



some parameter which parametrizes the curve that is in general

the arclength of the curve.

The Fundamental Theorem of Space Curves states that every reg-
ular curve in three-dimensional space, with non-zero curvature,
is completely determined by its curvature and torsion. It means
that from just the curvature and torsion, the vector fields for the
tangent, normal, and binormal vectors can be derived using the
Frenet—Serret formulas. Then, integrating the tangent field yields
the curve. In the first chapter of this thesis, we present the proof of
the Fundamental Theorem of Space Curves using two approaches.
The first proof is the traditional one used in almost all differen-
tial geometry references [Il, 2]. The second approach is a new one
established recently by H. Guerrrero in [3]. It is based on finding
a solution of a nonlinear differential equation of second order. As
applications of the second approach, general slants and helices are

characterized.

The second chapter revolves around defining a parametrized sur-
face in the plane and introducing its first and second fundamen-
tal forms. This will allow to define the notions of curvature: the
Gaussian curvature and the Mean curvature. The Gaussian cur-
vature describes the intrinsic geometry of the surface, whereas the
Mean curvature describes how it bends in space. The Gaussian
curvature of a cone is zero: This is why we can make a cone out

of a flat piece of paper. The Gaussian curvature of a sphere is



strictly positive: This is why planar maps of the earth’s surface
invariably distort distances. The Gauss-Codazzi equations (also
called the Gauss—Codazzi-Mainardi equations) are fundamental
equations which link together the induced scalar product on R?
and the second fundamental form of a surface. The first equation,
often called the Gauss equation was discovered by Carl Friedrich
Gauss. It states that the Gauss curvature of the surface, at any
given point, is encoded by the second fundamental form. The sec-
ond equation, called the Codazzi equation or Codazzi-Mainardi
equation, discovered by Gaspare Mainardi (1856) and Delfino Co-
dazzi (1868-1869) states that the covariant derivative of the second
fundamental form is fully symmetric. It turns out that the Gauss-
Codazzi equations are sufficient to prove the existence of a surface
in R3. This is called the Fundamental Theorem of Surfaces and
it is proved in Chapter 3. In fact, consider a symmetric, positive
definite matrix field of order two and a symmetric matrix field of
order two that satisfy together the Gauss-Codazzi equations in a
connected and simply connected open subset of R2. If the matrix
fields are respectively of class C? and C, the fundamental theorem
of surface theory asserts that there exists a surface immersed in the
three-dimensional Euclidean space with these fields as its first and

second fundamental forms.



To my family.
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Chapter 1

Parametrized Curves in R"

In this first chapter, we introduce the concept of a parametrized curve, its
parametrization by arclength, curvature and torsion. We then prove the Fun-
damental Theorem of Curves in two different methods. The first method is the
traditional one used in almost all differential geometry references (|1, 2, 4 [5]).
The second method is a new one recently established by H. Guerrero in [3].
It is based on finding a solution of a non linear differential equation of second
order. As applications of this second method, general helices and slant helices

are characterized.

1.1 Parametrized Curves

In this section, we define parametrized curves and give some common exam-

ples.



Definition 1.1.1. Let [a,b] be a closed interval in R. A map

F:la,b) CR — R”

t s F(t) = (xl(t),xz(t),..- ,xn(t))

is smooth if all derivatives of its components z; : [a,b] CR — R (1 < j <n)
exist and are continuous for all t € (a,b). In this case, we write F'(t) =

CIOREIORIEACE

Definition 1.1.2. A parametrized curve o in R™ is a smooth map, explicitly

gien by

a:fa, ) CR — R"

t s alt) = <x1(t),m2(t),--- ,xn(t)).

It is called a parametrized reqular curve in R™ if o/(t) # 0 for all t € (a,b).

Example 1.1.3. e Straight line: A parametrization of the straight line

in R? passing through the points (1,2) and (2, —3) can be written as

a:R — R?

t— alt) = (t,—5t+ 7).

This curve is regular since o/ (t) = (1, —5) # (0,0) for all t € R.



22 2
e Ellipse: A parametrization of the ellipse of equation T + v 1 can

9
be written as:

a:[0,2r] — R?

t — «at) = (2cost,3sint).

The curve is reqular since o'(t) = (—2sint,3cost) # (0,0) for all t €
(0,27).

e The graph of a function: If f : [a,b] C R — R is a smooth function,

then a parametrization of its graph can be written as:

a:la, b — R?

v — afz) = (2, f(2)).

The curve is regular since o/ (x) = (1, f'(x)) # (0,0) for all x € (a,b).

Remark A parametrization of a curve is not unique, and regularity of a curve
does not depend on its parametrization. For instance, a(t) = (cost,sint) for
t €10,2n] and B(t) = (cos2t,sin 2t) for t € [0, 7] are two distinct parametriza-
tions that represent the same curve which is the circle of equation 2% +y? = 1
in R?. Considering o or 3, we have that the curve is regular since o/(t) =
(—sint, cost) # (0,0) for all t € (0,27) and S'(t) = (—2sint,2cost) # (0,0)

for all t € (0, ).



Example 1.1.4. Helix: The parametrized curve 6 : R — R3 given by

0(t) = (rcost,rsint, at),

with v > 0 and a € R*, has its image the circle helix having radius r and
pitch a. The curve is reqular since 0'(t) = (—rsint,rcost,a) # (0,0,0) for all
teR.

Example 1.1.5. Twisted cubic: The parametrized curve 6 : R — R3 given

by
0(t) = (t, 1%, %)

represents a twisted cubic.

twisted cubic (1,12,13)

yity=t B wit)=t

The curve is reqular because 0'(t) = (1,2t,3t*) # (0,0,0) for all t € R.



Definition 1.1.6. For a parametrized curve « : [a,b] — R™, the map
o (a,b) — R

1s called the tangent of a. From now on, it will be denoted by T.

1.2 Arclength of Regular Curves

Definition 1.2.1. The arclength of a reqular parametrized curve

a:la,b] — R

s all) = (xl(t),xg(t),...,xn(t)>

from the point ty € (a,b) is given by

0 = [ o)

for all t € (a,b), where |o'(t)|| = \/<(x’1(t))2 + (@ ()2 + o+ (x;(t))Q.

Remark Clearly, the arclength function s(t) is one-to-one. In fact, if s(t) =

s(t'), we have

t

o/ () dx = / o ()

to to

t/
— / |/ (x)||dz =0
t

= ¢=1', since ||/ (t)]| > 0.



Definition 1.2.2. A parametrized reqular curve « : [a,b] — R™ is said to be

parametrized by arclength if ||o/(t)|| = 1 for all t € (a,b).

Remark A regular curve can always be parametrized by arclength. In fact,
assume « : [a,b] — R" is a parametrized regular curve with s : (a,b) — RT
being its arclength function. Denoting the inverse function of s by t = ¢(s), one
can check that the map 3(s) = a(¢(s)) is a regular curve and it is parametrized

by arclength, because

1B ) =Nl (t(s)) ¥ (s)]

Example 1.2.3. o Straight Line: From Ezample[1.1.5, we have o/(t) =

(1,=5). The arclength function starting from tq = 0 is given by

s(t) = /tt |l (x)]|dz = /tt V124 (=5)%dx = /tt V1 + 25dx = /26t

So, the inverse function of s is t(s) = Then,

D

S

B(s) = a(t(s)) = a(\/%> = (\/82_6, ;2_2%—7)

1s the arclength parametrization of c.

e Circle: Let (C) be the circle of center (1,—1) and radius 2. A parametriza-



tion of this circle is given by: a(t) = (1 + 2cost,—1 + 2sint) for
t € [0,27]. We have o/(t) = (—2sint,2cost) and the arclength func-

tion starting from ty = 0 is given by:

t t
s(t) = / V4sin? z + 4 cos? zdx = / 2dx = 2t
0 0

Then, t(s) = g and the arclength parametrization of « is given by

B(s) = a(t(s)) = a(%) = (1 + 2 cos (%)’ —1+ 2sin (g))

e Helix: From Ezample we have o/ (t) = (—rsint,rcost,a) for all

t € R. The arclength function starting from ty = 0 is then given by
t
s(t) = / V1?2 + a’dr = tvVr? + a?
0

s
Then, t(s) = ———= and the arclength parametrization of « is given

Bls) = altls) = a(ﬁ)

S . S as
_ <mos(_ﬂw),rsm(WW),WM?).

e Twisted Cubic: From Ezample we have 0'(t) = (1,2t,3t?) for

all t € R. The arclength function starting from ty = 0:

t
s(t) :/ V1 + 422 + 9zdz.
0



The arclength parametrization of 0 is: f(s) = a(t(s)) where t = t(s) is

the inverse function of s(t).

1.3 Curvature and Torsion

In this section, we define the curvature and torsion of a regular curve «

parametrized by arclength.

Definition 1.3.1. Let « : [a,b] — R™ be a regular curve parametrized by

arclength. For s € (a,b), the number k(s) defined by
k(s) = ll” (s)ll = 1T (s)l

15 called the curvature of o at s. In this case, the radius of curvature of a at

the point s is r(s) = % for k(s) # 0.

Remark If a : [a,b] — R™ is a regular curve parametrized by arclength, we

say that « is biregular if its curvature k(s) # 0 for all s € (a,b).

Example 1.3.2. Consider the following parametrization of a straight line in

R3:

a:R — R?

t — a(t):(at+a0,bt+bo,ct+co).

A parametrization by arclength starting with to = 0 is given by:

B(s) as + ag bs + by cs + ¢
s) = , , )
Va2 + b+ Vat+ b0+ Va+ b+ 32




We calculate 5'(s) and get

B(s) a b c
S) = Y Y *
Va2 + 02+ Va2 + 02+ Va2 + 0+ 3

Hence, "(s) = (0,0,0) and ||5"(s)|| = 0. This shows that the curvature of a

straight line in R? is 0.

Example 1.3.3. Let (C) be a circle of center (zo,v0) and radius r > 0. A

parametrization o of this circle is given by

a:[027] — R?

t — at) = (xo+rcost,y+rsint).

The arclength function starting from to = 0 is given by

s(t) = / o/ () |z

t
= / \/r2 sin® x + r2 cos? xdx
0

¢
= / rdxz = rt.
0

and B(s) = a(t(s)) = (mo + 7 cos <;>,y0 + rsin <§)> One can
s) and ["(s) to get

v = (con()on(2).
36) = (=yeos () =y (7)):

Hence, t =

S|l w»

—~

calculate '



The curvature k(s) is then given by

k(s) = 18"(s)]

\/1 Nt 1 . 57/s
= — COs <—> + — sin (—)
72 r r2 r

which is a constant. So, (C') has a constant curvature and a radius of curvature
r. This is the reason why the reciprocal of the curvature is called

the radius of curvature.

Example 1.3.4. From Ezample[1.2.3, the arclength parametrization of a helix

15 given by:

B(s) = (rcos (ﬁ),rsin(\/ﬂi a2>7 \/rfj— a2>'

One can calculate B'(s) and 5"(s) to get

B(s) = ( — i sin ( i >, ! cos ( i ), a ),
Vr? + a? V2 +a/ Vr? 4 a? V2 +a) Vr? 4 a?
76 = (- e () mras (7))
5) = [ — — in ( ——— .
r?2 +a? V24 a2/ r?+a? Vit a2/’

The curvature k(s) is then given by:

k(s) = 116"(s)ll

72 s r2 .5 s |7
= \|7T3 o 220082( >—|— 5 22sm( >: TR
(1?2 + a?) Vr? 4 a2 (r?2 + a?) V2 + a? 2 +a
|

r2 4+ a2’

Hence, a helix has a constant curvature of



Remark Assume that o : [a,b] — R? is a curve in R? parametrized by

arclength. Since o/(t) is a unit vector, we can write

o(t) = <COS 6(t), sin G(t)),

where 0 is the angle between the positive z-axis and the tangent vector /()
(measured counterclockwise). Thus, we can say that 6(t) is the direction of the

curve a at «(t). So, the curvature of « is also defined to be the instantaneous

%
0s’

rate of change of § with respect to the arclength. It means, k =

Proposition 1.3.5. Let a be a regular curve parametrized by arclength and

defined by:

Proof. We know that o/(t) = (2/(¢),7'(t)). From the above remark, since «

"(t
is parametrized by arclength, we can conclude that 0(t) = tan™! (y’gt;)’ and
T

hence

00 06 ot

ds Ot s



Y (0 ()= (D' (t)
_ (@) 1
( L+ (55 )—
y”a:’ o x"y’ 1
12 + y/2 ‘8/(t)
y//x/ o x”y’
a? +y? /()]
y”:c’ o a:”y’
22 + g2 \/W
y”a:’ o l’”y/

(22 + ya)% ’

]

Example 1.3.6. If we go back to Example we can see that we can

recalculate the curvature using Proposition[1.3.5. In fact, we have

y”:z:’ _ x//y/

(@2 )

o
|
lwo

sin(2)sin(2) 4+ £ cos(2) cos(2)  Lsin*(2) + L cos?(2)
= 3 = 3
3 E

(sinQ(f) + Cos2(§)> ’

1
m

Theorem 1.3.7. Let o : [a,b] — R"™ be any regular parametrized curve.

Then, the curvature k : [a,b] — R of « is given by:

. VPl — [(a”, o)

N lo'[|?

Y

where |(.,.)| is the Euclidean scalar product in R™.

Proof. Only in this proof, we shall denote g—a by & and Ga_c;z by o/. Let s :
s

(a,b) — R be the arclength of o measured starting from any point. We have



that

o) = 22(1) = 22 (s(0)). 2(0) = T2 (s(0)) o ()] = (1))

&) = 1T (1.3.1)

We derive now &(s(t)) with respect to ¢t and get

Ocv Odv 0s ofe" ,
08 500 = 2200 2 1) = 23 (s(0)). ()

Thus, we have

96, oy _ 94 1 1 9/d
2.0 = 3 O ~ e aon) 422
But, we have that

9 a0\ _ @)’ 0)] — (-0

i (o) lae )P | (1.3:3)

and we also know that ||/ (2)||* = («/(t),a/(t)). Deriving both sides of the last

identity with respect to t, we get 2||a/(¢)||(||e/(¢)]]) = 2{c/(t), &"(t)), which is

r_ ((B),a”"(2))

(e’ @)1 o (8)]]

(1.3.4)



Hence, inserting ({1.3.4)) in ((1.3.3]), we obtain,

9 ( o/(t) ) () _o(t)  {o(t), (1))
NI l’@®l '@ e’ @)l
1

_ (a,,@ _ (a®),a"(0) .O/@) |

\

—~
~

=

@@ @I

Therefore,
oa il = |t (e @2
i ||a'<t>>||2< K PO R “)>H

1

@ (0).0(0)
TwrE|*

[ @ ‘O"“)H'

But we have,

N ORI
RN PO P

@O a0
- < N | A P70 (”>

g ey Ly @B o @0, 0)
= (@ (0),0"(0) = (" (). 55 S @ (0) = ("0, 5 e e (6)
+<<a'<t>,cw<t>>

o @)
@ @ (“>

||O//(t)||2 o <O/(t)7 Oé”(t)>< ”(t) O/(t)) _ <Ck,<t), CK"(t)) (Oz”(t), O/(t»

N @ o’ ()]

+|<05 ﬁg;(i‘)n(i)ﬂ <o/(t),o/(t)>
i ol R | (0.0 O (). ()
= O =2 T e e
B R O I DR O T
= O =2 e T e e

e @)
= ) = S




Finally, we can calculate k£ and get

1 L @ @.a )P
S P H2\/H N NI

__ 1 ¢m~|Wa>w—mwwme
[l (#)]1? [l (#)]]?
=|VBWVW”NWWUW—WW)M@W
VIOl ()] — e/ (2), (1))
[l () '

O

r
Example 1.3.8. (Helix) Its curvature is equal to I
r? + a?

. Let’s apply Theo-
rem[1.3.7 to find the curvature again. We use the parametrization o given in

Example[1.1.], We have

a/(t) = (—rsint,rcost,a),

a’(t) = (—rcost,—rsint,0).

Thus ||/ (1)||> = r* + a® and ||”(t)||*> = r?. Moreover, one can calculate

(/(t),a"(t)) = r’*costsint — r’sintcost = 0,

3
2

so [{a/(t), " ()] = 0. Since, ||/ (t)||> = (r* + a?)2, we get:
22+ a?) =0 (P +ad)r |
(P 4a®): (P42 1P +a?

which s the desired result.



Definition 1.3.9. Let a(s) be any regular curve parametrized by arclength
with ||a”(s)|| # 0 for all s € (a,b). The unit vector N(s) = k(s)"'T"(s) is

called the normal vector along the curve.

Remark Note that: N(s) and T'(s) are orthogonal for all s € (a,b), and N(s)
and T"(s) are collinear or all s € (a,b). In fact, since a(s) is parametrized
by arclength, then ||o/(s)|| = 1 and so (¢/,a’) = 1. Deriving both sides with
respect to s, we get

(/") = 0.

Since T'= o/ and T" = ", hence (T, T") = 0. As a result, we have that N(s)

and T'(s) are orthogonal.

Definition 1.3.10. Let «(s) be any reqular curve parametrized by arclength.
Assume that k(s) # 0 for all s. The unit vector B(s) = T(s) x N(s) is called
the binomial along the curve, where X denotes the cross product of vectors. The

orthonormal system (T(s), N(s), B(s)) is called the Frenet-Serret Frame.

Definition 1.3.11. Let «(s) be any reqular curve parametrized by arclength.
Assume that k(s) # 0 for all s. The scalar function 7(s) = —(B'(s), N(s)) is

called the torsion of the curve a.

Theorem 1.3.12. (The Frenet Serret-Equations) Let a(s) be a reqular
curve parametrized by arclength with k(s) # 0. The following equations are

satisfied:

T'(s) = k(s)N(s) and k(s)=(T"(s),N(s)), (1.3.5)



N'(s) = —k(s)T'(s) + 7(s)B(s), (1.3.6)

B'(s) = —7(s)N(s). (1.3.7)

Proof. We know from Definition that N(s) = k~1(s)T"(s), so we have
T'(s) = k(s)N(s). Moreover,

(T"(s), N(s))

I
—~
e
—~
»
S~—
2
»
~—
2
»
~—
S~
I
e
—~
»
S~—
—
=
V2]
SN—
=
VA
SN—
S~
I
7
—~
»
SN—
—
=
oo
oo
SN—

which proves (1.3.5). Since T'(s) and N(s) are orthogonal, we have that

(T'(s),N(s)) = 0. Deriving both sides with respect to s, we get

(T'(s), N(s)) + {T(s), N'(s)) = 0
k(s) + (T(s), N'(s)) = 0

= —k(s) = (T'(s), N'(s)).

Since B(s) and N(s) are orthogonal, we also have (B(s), N(s)) = 0. Deriving

both sides with respect to s, we get

(B'(s), N(s)) + (B(s). N'(s)) = 0
— —r(s) + (B(s), N'(s)) = 0

— 7(s) = (B(s), N'(s)).

In the Frenet- Serret frame, each vector v can be written as:



v = (v, B(s))B(s) + (v, N()) N(s) + (v, T(s)) T (s).

In particular and for v = N'(s), we get

N'(s) = (N'(s), B(5)) B(s) + (N'(s), N(s)) N (s) + (N'(5), T(s))T (s).

Since N(s) and N'(s) are orthogonal, we obtain N'(s) = 7(s)B(s) — k(s)T'(s),
which proves (1.3.6). Now, deriving both sides with respect to s of (T'(s), B(s)) =
0, we get

(T"(s), B(s)) + (T(s), B'(s)) = 0.

We have (T"(s), B(s)) = k(s){N(s), B(s)) = k(s).0 =0, hence (T'(s), B'(s)) =

0. The vector B’(s) can be written as:

B'(s) = (B'(s),B(s))B(s) + (B'(s), N(s))N(s) + (B'(s), T(s)) T (s)-

which proves ([1.3.7)). O

Remark The geometric meaning of curvature is the amount by which a curve
deviates from being a straight line (curvature of a straight line is 0). The tor-
sion measures the turnaround of the binormal vector. The larger the torsion
is, the faster the binormal vector rotates around the axis given by the tangent

vector.



Example 1.3.13. (Helix) We recall the arclength parametrization of the he-

liz:

B(s) = (rcos (ﬁ),rsin(\/ﬁi a2>’ \/rfj— a2>'

One can easily calculate T(s),T"(s), N(s), B(s) and B'(s)

T(s) = Bls) = (ﬁ sin (\/r28+ a2>’ \/7"2:— @ <\/r28+ a2>7 \/7"2a+ a2>’

, o —r s —-r s
T'(s) = ﬁ(3)—<T2+a2(:os<m),r2+a28m<m>,0>,

1 r? + a? —-r S T S
- - () i ()
N(s) k(s) (5) r <r2 a2\ +a2/ r?+a? Ve + a? ’

= (—cos <—ﬁ),—sm (ﬁ)ﬁ);

i J k
B(S) = T(S) X N(S) - \/r_-:(ﬂ sin <\/7’28+a2> \/7"7:hz2 cos <\/T2S+“2> \/TiGQ
—eos () sin(GEm) O

a , s > —a ( s > r
= sin , cos , ,
(\/7‘+a2 <\/7“2 +a?2/) rta? Vr2 +a? \/r+a2)

, B a s a . s
B'(s) = <_r+a2 Ccos < g a2>’ gz Sin <——r2 = a2> : 0).
We conclude that

B . —a 9 5 a . 4 5 . —a
0= FOND = o () e (Gera) =

Example 1.3.14. (Circle) Let (C) be a circle of center (xo,y0) and radius r



whose arclength parametrization is given by:

S

a(s) = (xo + 7 cos <;),yo + rsin <;>,0>

Then,

T(s) = d(s)= ( — sin (;),cos (;) : O),

T'(s) = a'(s)= <_—1 cos <§>, -1 sin <§>,0>,

N(s) = %T’(s):r<_71008(;>,_71s1n<;),0),
N(s) = <—cos(;>,—sin<;),0),

B(S) = T(S) X N(S) = —Szn(§) 005(5) O = 0z —f-O] + 1]{3,
0

r

—cos(2) —sin(?)

B'(s) = (0,0,0).

Hence 7(s) = (—B'(s), N(s)) = 0.

Proposition 1.3.15. If the curvature of a curve a(t) not necessarily parametrized

by arclength is non-zero, then the curvature and torsion are given by

la” x o]
/ 1 "
() = (o x o, a") (1.3.10)

Ha/ % a//HZ ’



0
Proof. In this proof, let o/ denote 8—?. Then:

, Oa Os

?.?7 0 0 /0s\ 0
o = 55 ) a tala) e
0 0Os (004) 0s Oa 0%s

= asa\as) o " as o
= DGy Doy, o T
~ 0s\0s/ 0t s Ot?
Ay (L e
052\ 0t s o2’
/
The unit tangent vector is 2o 8_a. So, using o' = a—a.@, we conclude
ll|| 0s O0s Ot
/
that o' = ||Z’||8_i and so, ||/| = % Hence,
o Fode) da 9%s
r_ 2% / d n_ == 1112 - -
o = o-llo] and o = = ||+ o=
Now, we calculate o/ x o’ and get
da o, e Oad?s
oo = (Golll) x (Gl + 5 5)

oo, . Pa, ., oo, ,. Oa 0%s
= (Gl x S5 1el?) + (Follelll < 552 )
oo O«
. m3f-= it
el <as % 852)'

Using the definition of k(s),7(s), and N(s), we have:

da o Qo
T(s) = s and 7'(s) = o k(s)N(s).



Hence,

o/ x o = o[*(T(s) x k(s)N(s))

= [[IPk(s)(T(s) x N(s)) = [|o/|*k(5) B(s)-

Thus, ||’ x || = ||o/[]Pk(s)||B(s)|| = ||&/||*k(s) and we conclude that
[l x o]
k(s) = ———.
[lo/][?
As for the torsion, we recall that
e _ou s
ot 0s ot

where s(t) is the arclength parameter. Hence,

" 0 /0« a d 0Os ds  0%*s Oa
= La(a))a () =5 (5 + oo
_ Pa 0s 0s 823 da 82oz ( s>2 9?s da
T 9ol o s 2" ds
, . a(t) Oa , , o Os
The unit tangent vector is ; or — = a'(s), so we get: o = 7——.—.
ol ™ s~ ol a1
Hence, ||o/|| = 2 and so o/ = 22||c/||. We now calculate
v || 12 + 9?s da
“ o ds’
/ "o aa / / 2 o s
o xa” = (Golal) x (_”0‘ I+ 5 7))
, s (O 82 , aa da 0%s 3 (O 82
axa = [oIF(G x 55) + 1l (5 % 55 ) = IoIP (5 x 53

o)



I d 10%a7 /0s 0 (0s\20% day\ 0*s 0 10%s\ /0«
“ = a[@} (a) 5(%) 252 © (as) w+a(w>(£)
0 /0s 0%« 0 /0s O 82 d3s Oa 0s 0 /0s\ 0%«
= 5 5o (—> t o o) 5e * omas 2o o ar) e
Do 0s\ 0?%s 835 Oa 0s 0%s 0«
= 3333( ) _(a_> o2 ;9153 25 :2'%@'@
P a 0%s 0°s Ja
- as3< ) (352 ( )(82&2) o3 s 833” o[
0*a 9%s oo 03s

/ —
T3 aar at2‘ N+ 55 am

The scalar product (o x o, ") is then given by

<O/ X a// Oé,//>

oz f0a  DPay Pa, 4 Pa 9%*s, ,,  Oa Ps
- <|| (5 % 5 ) 5 01 +3.55 5z ||+$.%>

_ || <6a Pa Pa > 3] <8a Do &s >+Ha,||3<3a P*a da 83s>

2 322’333 057 017 s 92’ Bs O
= lll? < S 85(;’ (953>
Now, by definition, we have fl—cj — T(s) and ‘% — T'(s) = k(s)N(s). Hence,
— (o' xa",a") = | <T x kN, g (k:N)> - k|a’|6<T % N, %N %jsvk>
— k;|o/|6<B, %N> + ko |6<B, %—]Zk> — k:|o/|6<B, kN’(s)>

= k:2|o/|6<B, —k;T+7'B> = k;2|0/|6<B,7'B> = k*r|d/|°®

2
la” x o]
S

which gives the desired result. O

Definition 1.3.16. A map f : R® — R" is called a rigid motion if there ex-



ists an orthogonal matriz A (a matriz with determinant 1 and whose columns
are orthonormal vectors) with det(A) = 1 and a constant vector b € R"™ such

that f(X) = AX +0b for all X € R™.

Remark The reason we require det(A) = 1 in Definition is to preserve
the orientation of R™ in rigid motions. Given a constant angle p, and b € R?,
f(X)=R,X + b is a rigid motion of R? where R, is the rotation by an angle
p and b is a translation. So, a rigid motion is a combination of a rotation and

a translation.

Proposition 1.3.17. Suppose « is a curve in R® parametrized by arclength
such that o # 0 and f(X) = AX + b is a rigid motion in R®. Then, the
curve 3(s) = f(a(s)) has the same curvature and torsion as o. Moreover, if
(T'(s), N(s), B(s)) is the Frenet-Serret frame along o, then (AT (s), AN(s), AB(s))

is the Frenet-Serret frame along [3.

Proof. The curve [ is given by

and hence §'(s) = Ad/(s). So, ||8'(s)|| = ||Ad/(s)]| = ||/ (s)|| = 1. Therefore,
[ is paramterized by arclength. We denote the curvature and the torsion of 3

by k(s) and 7(s). We have 3"(s) = Aa”(s) and so

k(s) = 18"(s)ll = | Aa” ()| = [l (s)| = k(s).

Thus, B(s) and a(s) have the same curvature. Now, let (T(s), N(s), B(s))

be the Frenet-Serret frame of 3. since T'(s) = /(s) and T(s) = ['(s), we



obviously have T'(s) = AT(s). Now,

N(s) = —T'(s) = ﬁ.AT’(s) — A

7(s) = —(B(s),N(s)) = —(AB'(s), AN(s))

Therefore, a(s) and [(s) have the same torsion 7(s) and
(T(s) — AT(s),N(s) = AN(s), B(s) = AB(s))

is the Frenet-Serret frame for 5(s). O

1.4 The Fundamental Theorem of Curves in
RB

In this section, we recall the Fundamental Theorem of Curves in R? and give
its traditional proof written in almost all Differential Geometry books and
references [1), 2, 14, [5]. We start by stating the local existence and uniqueness

Theorem of Ordinary Differential Equations, needed to prove the Fundamental



Theorem of Curves in R3.

Theorem 1.4.1. [6/ (The Local Existence and Uniqueness Theorem
of Ordinary Differential Equations). Let U C R" be any open set of R"
and F : (a,b) x U — R", a C* map, where C' is the class of all continuously
differentiable functions. Fix co € (a,b). Then, given any point py € U, there
exists € > 0 and a unique solution « : (co — €,¢9 + &) — U of the following
tmatial value problem:

X R,

a(cy) = po-
Proposition 1.4.2. Let Msy.3 be the space of all square matrices of size 3.
Suppose that the map A : [a,b] — Msy3 is smooth, A(t) is skew-symmetric
for allt € [a,b] (i.e. A{t)T = —A(t)), co € (a,b), and C is a 3x 3 orthogonal
matriz. If g : [a,b] —> Msy3 is a smooth solution to the following initial value
problem

Y~ o(0).A),

9(co) = ¢,
then, g(t) is orthogonal for all t € [a,b].

Proof. Let y(t) = g(t)Tg(t). By the product chain rule, we have

y(t) = g1 g(t) +9(t) g (t) = (9()A)".g(t) + g(t)" (9(t)A)

= ATg(t)"g(t) + g(t)"g(t)A = ATy(t) + y(t) A.



Also, by the product rule and since C' is orthogonal, we have

y(co) = Q(CO)TQ(CO) =C".C = I3,

where I3 denotes the identity matrix of size 3. So, y(t) satisfies the following

initial value problem:

a_a = AT+ A = F(t7 a(t)),
= (1.4.1)
a(cg) =15,

However, the function z(t) = I3 also satisfies (|1.4.1]) because z(¢) = I3, 2/(t) =
0 and
AT 4 2A=AT I3+ 5, A=AT + A=0,

since A is skew-symmetric. Hence, by the existence and uniqueness theorem
of ODE, Theorem [1.4.1, we have y(t) = z(¢). This implies that g(¢)Tg(t) = I5.

Therefore, g(t) is orthogonal. O

Proposition 1.4.3. Let pg,qo € R® and {uy,us,us} and {vy,ve,v3} be or-
thonormal bases of R® such that det(uy,uy,u3) = det(vy,ve,v3) = 1. Then,
there exists a unique rigid motion f(x) = Az + b such that f(po) = qo and
Au; = v; for 1 <i < 3, where A is an orthogonal 3 x 3 matriz with det(A) = 1

and be R3.

Proof. Let U = (uy,ug,u3) and V' = (vy,v9,v3) be the 3 x 3 matrices with u;
and v; as their i columns respectively (1 < i < 3). Since {uy,us, u3} and
{v1,v9,v3} are orthonormal, we have that U and V' are orthogonal matrices.

Consider the rigid motion f(x) = Ax + b where A is the matrix given by



A = VU™t = VUT and b the vector given by b = gy — Apy. Of course we
have Au; = v; for 1 < i < 3, and Apy + b = ¢o. We still need to prove the
uniqueness of the rigid motion. Let g(x) = Bz + ¢ be another rigid motion

such that Bu; = v; and g(po) = qo. Then BU =V and hence

B=VvU'=vUT = 4,

and since gy = Bpg + ¢, we get ¢ = qo — Bpy = qo — Apg = b. Finally, we get
that Ax + b = Bx + ¢, which means that f(z) = g(z) and the rigid motion is

unique. ]

Now, we are ready to state and prove the Fundamental Theorem of Curves

in R3.

Theorem 1.4.4. (Fundamental Theorem of Curves in R?)

Given two smooth functions k, 7 : (a,b) — R such that k(t) > 0.

1. Let tg € (a,b), po € R3, and (uy,us,u3) be a fived orthonormal basis
of R3, then there exists & > 0 and a unique curve o : (tg — 0,tg +
§) — R3 parametrized by arclength whose curvature and torsion are
given respectively by k and T, such that «(0) = po and (uy,us, us) is the

Frenet-Serret frame of a at t = t.

2. Suppose a, & : [a,b] — R3 are curves parametrized by arclength and
a, @ have the same curvature function k and torsion function 7. Then,

there ezists a rigid motion f so that & = f(«).



Proof. 1. Consider the function F' given by

F:(a,b) x R*xR*xR* — R*xR*xR?

(tLX,Y,Z) — F(t,X.Y,Z) = k)Y, k()X +7()Z, -1 ()Y).

F is clearly C'. Thus, by the existence and uniqueness Theorem of
ODE, Theorem [[.4.1] there exists § > 0 and a unique solution say g :

(to — 0,10 + ) — R? x R3 x R3 of the initial value problem

g'(t) = F(t,g(t)) = g(t) A1),

g(t()) = (u1> U2, Ug),

where

0 —k(t) 0
Aty = k@) 0 —7()
0 7(t) 0

Now, {uy,us, us} is an orthonormal basis of R?, so g(to) = (uy, ua, usz) is
an orthogonal 3 x 3 matrix. Also, A is smooth and since AT = — A, we get
that A is skew-symmetric and g is smooth. By Proposition[1.4.2] we have
that g(t) is orthogonal for all ¢ € (tg —0,to+9) and e;(t), e2(t), and e3(t)
are the columns of g(t). Hence, {e;(t),ea(t),es3(t)} is an orthonormal

basis of R? for all t € (ty — d,ty + ). Define the curve a by

a(t) =po + /t e1(s)ds.

to



We have o/(t) = e1(t) and ||o/(t)]| = |le1(t)|| = 1. It means that a(t) is
parametrized by arclength. Now, g(t) = (e1(t), ea(t), e3(t)) and ¢'(t) =
g(t)A(t). Hence

0 —k(t) 0
(€1(t),ex(t), €5(t)) = (ex(t),ea(t),es(t)) [ k(t) 0  —7(t)
0 7(t) 0

This gives that

(e1(to), ea(to), es(to)) = (u1, ug, uz).

\

Thus, k£ and 7 are respectively the curvature and the torsion of the curve
a(t) and {ey,eq,e3} is the Frenet-Serret frame of a, which proves the

first statement of the theorem.

2. Consider ty € (a,b) fixed and {e;(t), ea(t), e3(t)} the Frenet-Serret frame
of a. Let {€1(t),€1(t),€5(t)} be the Frenet-Serret frame of &. We have
a(to) € R? and a(ty) € R3. Also, {e1(t), ea(t), e3(t)} and {€1(t), €x(t), €3(t) }
are orthonormal bases. By Proposition [1.4.3] there exists a unique rigid
motion f(x) = Az + b such that f(a(ty)) = a(ty) and Ae;(to) = €(to),
for 1 < ¢ < 3. Consider the curve § = f o a. By Proposition [1.3.17]



£ and « has the same curvature k and same torsion 7 and the Frenet

frame of 5 is {Ae;(t), Aes(t), Aes(t)}. Now, it is easy to check that

(d7 6~17 é?a 63), = (5/7 élly 6~2/7 GNS/) - (éla ke~27 _kél + 7—6~37 _TéQ)a

and

(B, Aeq, Aey, A€3), = (5’» (Ael)/v (Aez)/7 (A€3)I)

= (A@l, k’Aeg, —kAel + TA€3, —TAeg).

Moreover, at ty, we have

Bto) = flalts)) = alto),

A@i(to) = éz(t()) fOT' 1 < 1 < 3.

Thus, both {&, €1, €, €3} and {3, Aeq, Aey, Aes} satisfy the same differ-

ential equation given by

(X, 1, y2,93) = (1, ky2, —ky1 + Tys, —Ty2).

Therefore, by the existence and uniqueness Theorem of ODE, Theroem

1.4.1] we get that 5(t) = a(t) forall ¢e€ (a,b), and B(t) = f(a(t)).
So, f(a(t)) = a(t) which proves the second statement of the theorem.
0



1.5 A New Proof of the Fundamental Theo-
rem of Curves in R?

In this section, we will give another proof of the Fundamental Theorem of
Curves in R3. This new proof, established by H. F. Guerrero in [3], is based
on finding solutions of a non-linear differential equation of second order. First,

we restate the Fundamental Theorem of Curves in R3.

Theorem 1.5.1. (The Fundamental Theorem of Curves in R?). Given
a differentiable function k(s) > 0 and a continuous function 7(s) where s €
(a,b), there exists a regular curve o parametrized by arclength o @ J —>
R3 such that s is the arclength, k(s) is its curvature, and 7(s) its torsion.
Moreover, any other curve a satisfying the same conditions, differs from «
by a rigid motion. i.e, there exists an orthogonal matrix A of size 3 with

det(A) > 0, and a vector b such that & = Aa + b.

Remark We point out here that in Theorem [1.4.4] 7(s) was given differen-
tiable. However, in Theorem [1.5.1], 7(s) is only continuous.

Before proving Theorem [1.5.1} we need to establish two lemmas.

Lemma 1.5.2. Let k : [c,d] — R be a positive function of class C* and

7 [e,d] — R a function of class C°. The 2™ order differential equation

A5 =i GR) sy




with intial value

w(sy) = wy,

w'(s1) = vy,

where

(
s1 € (¢,d),

\kfo = min{k(s), s € [¢,d]},

(wy,v) € {(w,v) € R?/w? + ];)—22 < 1},

has a unique solution w : J C (¢,d) — R on some open interval J C (c,d)

containing Si.

Proof. By the Chain rule, we get

2(1%0)

Then, Equation [1.5.1) can be written as:

—K 1,

k? k

Thus, we have

1
w4+ - = —kw—l—r\/l—'uﬂ—ﬁw’z.

/
" k

w" = Ew' — K*w +T\/k2(1 —w?) —w?.

(1.5.2)



Letting v = w’, Equation ((1.5.2)) can be written as:

k,/
Vo= ?v—k2w+7\/k2(1—w2)—v2.

Thus,

/

(w,v) = (w',0') = (v, %v — k2w + Tk (1 — w?) — v2>.

Consider the function F' defined by

F(s,w,v) = (Fi(s,w,v), Fy(s,w,v))

<v, IZ((S))U — kK2(s)w + T/k2(s)(1 — w?) — 02>,

for (s,w,v) € L = (¢, d) x {(w,v) € RQ/wQ—l—I:O—Z2 < 1}. First, F' is well defined

since

v? v?
Wt —H5<l = 1-w'—-—5>0
ko kO

— k*(1 —w?®) —v? > 0= k*(1 —w?) —v* > 0.

Clearly, F' is continuous. Also, the partial derivatives of F' given by

ory 0F, 5 Tk*w

- =0 5 S=-=-k- ;
ow ow VE2(L — w?) — o2
R _ ., R K w

o vk R —w?) —o?

are all continuous. Then, F is continuously differentiable, so F is C! with

respect to (w,v) in a neighborhood D of (s1,w;,v;) € L. By the uniqueness



and existence theorem of ODE, Theorem the initial value problem

(1 = i) = (s o e r )

(w,v)(s) = (w(s1),v(s1)) = (wi,w'(s1)) = (w1, v1)
has a unique solution on some open interval J C (¢, d) such that s; € J. O

Lemma 1.5.3. For any curve « : [a,b] — R3 parametrized by arclength and
having curvature k and torsion T, there exists an orthogonal linear function
0 of R®, with det® > 0 such that the binormal vector b of 0 o o satisfies
(b, (0,0,1)) > 0 in a neighborhood of s € (a,b),where s is the arclength function

knowing that k and T are invariant under a rigid motion.

Proof. Consider the map 6 given by

0:R> — Msys
(T,e1) (T,es) (T, es)
(T,N,B) — | (N,e;) (N,es) (N,es) |-
(B,e1) (B,es) (B, e3)

where TN, and B are the Frenet-Serret frame of « and {ej, e, e3} the or-
thonormal basis of R?. Now, 6 is linear and orthogonal since its columns are
orthonormal vectors, so det(f) = 1 > 0. If we take 6 o, we know from Propo-
sition 1.3.18 that # o « has the same curvature and torsion as a and that the

Frenet-Serret frame of 6 o « is (7,0N,0B). Let’s calculate §B. We have



<T, 61> <T, 62> <T, 63> <B, €1>
0B = | (N,e;) (N,es) (N, es) (B, e3)
<B,€1> <B,€2> <B,€3> <B,€3>

<T, 61>.<B,€1> + <T, 62>.<B, 62> + <T, €3>.<B,63> 0
= <N,€1>.<B,€1>+<N,€2>.<B,62>+<N,€3><B,63> = 0
(B, e1)? + (B, e2)” + (B, e3)° 1B]1*
Thus, (0B, (0,0,1)) = ||B]|* > 0. O

Now, we are ready to prove Theorem [1.5.1]

Proof of Theorem |1.5.1. We need to find a curve «a parametrized by arclength,
such that its curvature k, is equal to k, and its torsion 7, is equal to 7. Let us
write the tangent vector T'(s) in spherical coordinates (p, ¢, 0) where p =1, ¢

the angle between T'(s) and the z-axis, and 6 the rotation angle. We have

T(s) = (psingcost,psingsinb, pcosp) = (sin ¢ cosb,sin ¢sin b, cos ¢),

T'(s) = (¢ cosgcosh — 0 singsinb, ¢ cospsiné + 0’ sin ¢ cos b, —¢' sin ¢),
1, @' cospcos — 0 sinpsinf ¢ cospsind + ¢ sinpcos —¢' sin ¢
N(s) = ~T'(s) =
() = 77'() = ( - , . =R,
B(s) = T(s) x N(s)
(—ng’ sin @ sin? ¢ — ¢’ sin 6 cos? ¢ — ' sin ¢ cos ¢ cos §

k
B —¢' cosfsin® ¢ — ¢ cos @ cos® ¢ + 0’ sin ¢ sin O cos ¢
]{: J
+¢’ sin ¢ cos @ cos ¢ sin 6 + @ sin? ¢ cos®  — ¢’ sin ¢ sin 6 cos ¢ cos O + & sin? ¢ sin? 9)
k

B <_¢’Sin¢_¢’0089sin2¢ _gb’cos€+9/sir19$in2gb 9’sin2¢>
B k 2k ’ k 2k A



We know that the Frenet-Serret trihedron (T(s),N (s),B (s)) forms an or-

thonormal basis for R? and satisfies:

4
oT
— =kN
0s ’
oN =—kT'+ 718,
0s
0B
— = —7N.
\ Os T

Therefore, for w = (T, u), where wu is a fixed unit vector, we have:

86—1;] = <g—f,u> + <T, %> = <aa—€,u> = (kN,u) = k(N,u).

1 /0w
Hence, E(E) = (N, u), and so
0 (10w ON ou ON
oo} = (S (NS = (5w = (KT + 7B, u)
= (—=kT,u) + (1B,u) = —k(T,u) + 7(B, u). (1.5.3)

Also, since u = (u, T)T + (u, N)N + (u, B) B, we get that

<u’ u) = <uv T>2 + <u7 N>2 + <uv B>27

and hence we have (u, T')?+ (u, N)? + (u, B)? = 1. Then, Equation (1.5.3)) can

be written as

2(%%—?) = —k(T,u) £ 71— (u,T)? - (u,N)?

0s
= —kw+ 7'\/1 —w? — <%g—1§)2




By Lemma [1.5.3] we can always choose « such that (B, (0,0,1)) > 0. Let

u = (0,0,1) and thus, (B, (0,0,1)) = (B,u) = +/1 — (N,u)2 — (T,u)2. So,

we can consider the initial value problem:

R =i (5 sy

with w(sg) = (T'(so),u) = (T'(s0), (0,0,1)) = wy. We have

Now, we calculate

(T,(0,0,1)) =cos¢ and (b,(0,0,1)) =

Thus, we have

¢ = cos ({T,(0,0,1))) = cos "¢, (1.5.5)

and

/ Wi-e- Gork . (15.6)



By replacing ((1.5.5)) and (1.5.6)) in the expression of the tangent vector, we get

T(s)

= <\/1—cos2<z§cos@ v/1 —cos?¢sinb, cosq§)
k)1 — £2 l_f ka1 — €2 l_ﬁ
= <\/1—§2COS</ \/ 5 s (i ds),\/1—§28in</ \/ 15_52 > ds>,§>

Hence, we find a curve a given by a(s) = (z(s),y(s), z(s)), where

g2 (1982
x(s) = mcos (/k\/l 15_ €2<kas> dS)]dSa

y(s) = V1 —€sin (/ k\/l _15_2 & %8_5 ds)]ds,

Ao = [ eas

Now, the curve « is parametrized by arclength because

/()| = 1T (s)|| = \/(1 — cos2 ¢) cos? 0 + (1 — cos? ¢) sin® § + cos? ¢

= 1 —cos2¢+cos2p=v1=1.

Let’s calculate the curvature and the torsion of the curve . We have:



Thus, we have :

ST 5 (S0 R Gt 0 L Gt e G3)Y | ena
ko = ||T<>||—\/1_§2+ (L + (&)

_ g2 RO=€ =G5 s

N \/1—52+ —e @

_ \/52(6/)24_1{52_k2£2(§/)2+(6/)2_§2(§/)2

1—¢2
_ (B8 s
= e =V = k| =k

<a/ X Oé”,Oé”/>

o/ x a2 so let’s calculate

Now, using Lemma |1.3.15, we know that T}, =

" "
o,a ,a and o x o”. We have

o' = (sin¢cosb,sin@sinb, cos @),

" = (¢ cospcosh — @ sinfsin g, ¢ cospsin + 6 cos b sin g, —¢' sin @),



= (—¢'sin® psinf — ¢ cos® ¢sinf — §' cos O sin ¢ cos ¢, ¢’ sin® ¢ cos  + ¢’ cos® ¢ cos O
—0' sin 0sin ¢ cos ¢, ¢’ sin ¢ sin O cos ¢ cos O + @' cos® @ sin® ¢ — ¢ cos ¢ cos @ sin ¢ sin §
+6' sin? f sin” ¢)

= (=¢'sinf — 0 cosOsin ¢ cos ¢, ¢’ cos  — 0’ sin O'sin ¢ cos @, ¢’ sin? ¢).
~~ ~~ N——

B B> B3

Thus, we have

||O/ X 01/,||2
= (¢)?*sin? 0 + (#')? cos® Osin” ¢ cos® ¢ + 2¢'6 sin ¢ sin 6 cos ¢ cos O
+(¢")? cos® 0 + (#')? sin? O sin” ¢ cos? ¢ — 2¢'0' cos O cos ¢ sin ¢ sin § + (#')? sin* ¢

= (¢)+ (0)sin’ pcos’ ¢ + (¢')*sin" 6.

Using that

;

¢ =cos 1¢

¢ =

1—¢2

e [ ) _—2¢¢’
QS// _ £ 1 §2+§ 2 17§2 _ 5”(1_52)_6(5/)2 _ _5//_,’_62&-//_5(&-/)2
1=¢ (1-2)y/1-¢2 (1-€)y/1-¢2
—e2_ (L

6= [ VL g . (15.7)
g _ WEGER

1—¢2
sing = /1 — &2
\cosqﬁ =¢




we obtain

Ha/ % O//H2
() KO- 5E?) 0 b FO-€-5E)?)
et a-ep TOTTTaog U9

(€)% + k26% — k26" — (&) + (K — k2) (1 — & — 5 (£)?)

(5/)2 + k2£2 _ k2£4 _ 52(€/>2 + /{2 _ k2£2 _ (f/)Q _ k2€2 + k‘2€4 +£2<5/)2

1-¢

_ 1.2
=7 = k2.

We calculate now

<O/ X Oé//, Cl/”/> = ClBl + CQBQ + Cng,

where C1, Cy and C3 denote the three components of o given by

i

Cs

(¢" cos ¢ — (¢')*sin ¢) cos O — ¢’ sin cos ¢
— [(9” sin @ + (0)% cos 0) sin ¢ + ¢'6’ sin 6 cos ¢
¢" cos pcos ) — (¢')*sin ¢ cos @ — ¢'0 sin 6 cos ¢ — §” sinOsin ¢ — (§')? cos O sin ¢

—¢'80' sin 0 cos o,

(¢" cos ¢ — (¢')*sin @) sinf + 6'¢' cos g cos @ + (6" cos ) — (6')? sin ) sin ¢
+0' ¢ cos O cos ¢
¢" cos psinf — (¢')*sin @sin @ + 0'¢’ cos p cos @ + 0" cos fsin ¢ — (6')* sin O sin ¢

+¢'0 cos 0 cos ¢,



Cy = —¢"sing — (¢/)cos ¢

First, we will calculate B;C; for i = 1,2,3. We have

C1B;

= (¢"cospcost — (¢/)?singcosf — ¢’ sinf cos p — 0" sinfsin ¢ — (6')* cos O sin ¢
—¢'0'sinf cos ¢) X (—¢'sin@ — 6’ cos O sin ¢ cos @)

= ¢'¢"sinfcospcost — '@ cos® §sin ¢ cos® ¢ + (¢')? sin ¢ cos § sin 6
+6'(¢")? sin® ¢ cos® 0 cos ¢ + (¢')?0 sin? 0 cos ¢ + (6')?¢ cos O sin ¢ cos® ¢ sin O
+¢'0" sin? @ sin ¢ + 0”6 cos O sin® ¢ cos psin @ + (#')*¢' sin 6 cos O sin ¢

+(0')? cos? O sin® ¢ cos ¢ + (¢')%0' sin?  cos ¢ + (0)*¢' cos O sin ¢ cos® ¢ sin b,

CyBy

= (¢"cospsind — (¢/)?sinpsinf + 6'¢ cos ¢ cos O + 0" cos @ sin ¢ — (#')* sin 0 sin ¢
+¢'0" cos 0 cos @) x (¢ cos — 6’ sin O sin ¢ cos @)

= ¢'¢" cosOcos psinf — ¢ sin §sin ¢ cos® ¢ — (¢')* sin ¢ sin  cos 6
+0'(¢')? sin® psin? 0 cos ¢ + 0'(¢')? cos® § cos ¢ — (0')?¢ cos® ¢ cos O sin O sin ¢
+¢'0" cos* O sin ¢ — 0”0 cos O sin® psin @ cos ¢ — ¢'(#')* sin § sin ¢ cos O

+(#')? sin? @ sin? ¢ cos ¢ + (¢')?0' cos® O cos ¢ — (0')*¢' sin § sin ¢ cos® ¢ cos b,

C3Bs

= (—¢"sing — (¢')*cos @) x §'sin* ¢ = —0'¢" sin® ¢ — &' (¢')* cos ¢ sin? ¢.



So, we get

C1B1 + OBy + C3Bs

= —0'¢"singcos® ¢+ 0'(¢')?sin® pcos ¢ + 0'(¢')? cos ¢
+¢'0" sin ¢ + (0')* sin® ¢ cos ¢ + 0'(¢')? cos ¢ — 0@ sin® ¢
—0'(¢')? cos ¢ sin® ¢

= 0'¢"sinpcos® ¢+ 20'(¢')* cos ¢ + ¢’ sin ¢ + (0)% sin® ¢ cos ¢
—0'¢ sin® ¢

= 0'¢" sin ¢(cos® ¢ + sin® @) + 20/ (¢')* cos ¢ + ¢'0" sin ¢ + (')? sin? ¢ cos ¢

= —0'¢"sing+20'(¢))*cosp+ ¢'0" sin g+ (0')sin* g cos ¢.
~ ~\~ - ~ ~" - S— ~ -~ -

q1 q2 q3 q4

Using again ([1.5.7]), we get

R Ve D A R ()
¢ = —0¢" sing = e .(1_§2>\/1_7€2\/1—§
k1= 8 = (P =€ +€¢))

e s
Qk\/l — &2 — (%)2 (€2

o= WG eoso= e =

g ki J1— e — (£
G = ¢'9"sin¢: é /1_§2< 5 (k)>

1— 1—¢&2

(e f1-e - (£)

(1-¢%) ’

i

k/

-

(1-¢%)

/N

2 1_ot (k—k'¢ 2
e (¥ —268 25— ) 112 <£>
1-g— () +k | ey i-e - (8

- ¢ (1-¢2)?




(12 (1))

(- [k'(l -6 (59 — kee' — (459

= ¢
1—&2— (5)2(1 €2
L @)W KR - (€)% — kg — CEERED) 1 ok2eg — 2k2%¢ - 2£()°
VL= k2 — (€)2(1 - €2)?
(1 — &)(kK — kK'E — K2¢ — £¢") + 268 (K — K2 — (£)?)
VL= )k — (€)2(1 - €2)?2
_ 0@k — k(L =€) + € — 260 (k21— &) — (€)7)
(1—€2)2/(1 - @)k — (¢)?
_ ¢ EEK” — kK + kK& + ¢ — ¢k + R — kK¢ — £¢"¢7
(1—€2)2/(1 - k2 — (&)
—266'K? + 283¢K + 26(¢)°
(1—€2)2/(1 - @)% — (&)
¢ —EEK7 — kK + 28%kE + €7 - K — kK¢ — €66 1 2¢(¢)?
(1—€2)2/(1 - )22 — (&)?
k30<—§2—-<%>%§

= ¢

b

3

(1= )k - (€))%

@ = (#)sin®pcosp = iy (1—-&)¢= L
Finally,
ClBl + CQBQ + CSB3
= Q1+ @+tqt+aq
_ VRPO-@) - (@2 - +E€)) | 26€VR0 =) - ()
(1—¢2)? (1- 62)

_’_€153k2§/ - k2§§’ + 25(5/)3 _ k?k?l o k‘k‘/f4 + 6/5” + 252]{3/{3/ _ 525/51/
(1 -2k (1-¢) - (&)

(1 =€) — (€)*)

(1-¢2)?

+



(K — k6% — (€)*)(§" — 6" + 5(5 )?) +26(8)° ( — k2 — (£)?) + §(k* — k¢ — (£)%)?

—EPVRA ) = (¢
+€3k‘2(€/)2 — k(&) + 26(5’) — kK¢’ — kK'¢ 54 + 5”( )P+ 28 kK — £2¢"(€)?
(1-epyR1-) - (€

k2£// _ 626//k2 + 5(5/)2]{2 _ k’2f”§2 + k2€4€// _ ]{5263(6 )2

(1-€)2Vk2(1—-¢) — (&)
| 2KIE(E)? — 2K — 26(€)" +E(K' K" 4 (€)' — W16 — AN 4 AKE(E)?)

(1—-€)2/k2(1-¢2) — (&)
+f3k2(€,)2 _ k2£(f/)2 + 25(6 ) k‘k’fl kk!£4£/ 5,/(5,)2 + 2525,]{]{/ _ 525//(5/)2
—EPVR( ) — (¢

kQé-// _ §2£//k2 + €(£I)2k2 k2£”£2 + k2§4f” k2§3(£) €N<€/)2 + 5251/(51)2 _ §<€/)4

(1 =€)k (1 - ¢2) — (&)
+2k2§(£’)2 — 2K283(€')? — 26(&)" + &R + K1 + ()" — 2k1E% — 2k2¢(€)* + 2k°E°(€')°

(1-€)2V/k(1—€2) — (&)
+£3k2(£’)2 — k2¢(¢)? + 2£(£ ) — kK'E — kk’f“i’ + (&) + 282 kK — £2¢"(€)?
—EPVR(1 =€) = ()
]{226” . 2/{;2525// + ]{32§4§N k4§ + /{Z4£5 /{3453 /{ZI§/ /{ZI§/§4 + 2§2£II€]{2/
(1-€)2/k*(1—€2) — (¢)?
]{Z(l{f” o 2]{3525” + ]{3545” + k:3§ + ]{?355 _ 2]{3353 _ k/ér/ o k/§4§/ + 2k/§2§/)
(1—€)2/k*(1—€2) — (¢')?
ekt 1+ ¢t - 252> — K1+t - 2£2> +hE"(1— 26 + ¢
—EPVR(1 =) = (&)
k(1 —2€% + 54)(€k3 KE + k&”) _ (§k3 KE + ke")
(1-ePVR1-&) - (2  VR1-8)- ()7

(&) +¢"(€)% — (&)

Thus,

<Od X O/l O///>

Ta = //“2

o x «
_ (£k3 _ klfl + kf")
BRI =) — ()




(§F° — K&+ k")
e (5)
gk_ . l];?_;é‘/ + %5//

Ja-e- ()

&k + SR

Ja-e- ()

1.6 Observations and Applications

In this section, we will discuss some applications of the new proof of the Fun-
damental Theorem of Curves. In particular, we will characterize general and
slant helices. First, let’s restate the Fundamental Theorem of Curves which

was proved in the previous section.

Let k : [a,b] — R be a function always positive of class C' and let

7 : [a,b] — R be a function of class C°. If £ = £(s) is a solution of:



slig) = e ()
w(sg) = wo

with

w'(s9) = o

2
where s € (a + €,b — €), we have (wp, vg) € {(w,v) € R*/w? + % < 1}
0

where kg = mm{k(s)/s € [a+eb— e]} for some € > 0. Then, a(s) =

(x(s),y(s), z(s)) where:

x(s) = /\/1—752008 (/ \/(1_52)k2_(§/)2d5>ds

1— ¢
o) = [V [
Ao = [ eds

is a curve parametrized by arclength s where k = k(s) is the curvature and

T = 7(s) is the torsion of a.

Reciprocally, let o : I — R? be a curve parametrized by arclength s, where
k = k(s) is the curvature and 7 = 7(s) is the torsion of «, and let Ty, Ny, By
be the Frenet frame of o at s = sy € I. Also, consider the canonical basis
{e1,e9,e3} of R3. Then, there exists an orthogonal linear map o of R? with
positive determinant such that the components (Ts(s),e1), (Tp(s),es), and
(Tg(s),e3) of the tangent vector Tp of the curve § = o o « satisfy the intial

value problem:



0 (10w 1 0w\ 2

D Nt QR a2 (22

5’5{k85} kw+7\/l v (k(?s)
w(sg) = (ooTy,e) for i=1,2,3

w/(So) = <]€(80)O' o) N067;> fOT 1= 1,2,3
in some neighborhoods I; of sq € I for i = 1,2, 3 respectively.

1.6.1 General Helices

In this subsection, we define and characterize general helices.

Definition 1.6.1. A curve a, with k(s) # 0, is called a general heliz if the

principal tangent lines of a make a constant angle with a fixed direction.

Theorem 1.6.2. Let o be a unit speed curve in R (i.e. ||| = 1) with

curvature k = k(s) # 0 and torsion T = 7(s). The following statements are

equivalent

1. « 1s a general helix.

T .
%(s) is a constant.

3. The curve a is given by a(s) = (x(s),y(s), z(s)), where

(

x(s) = ﬁ [ cos <\/1 +m2fk:ds>ds,
y(s) = \/ﬁ [ sin (\/1 + m? fkds)ds,

ms

|2(5) = A




Proof. 1=—>2: Assume that « is a general helix with a Frenet frame (7, N, B).
Then, the principal tangent lines of o form a constant angle with a fixed
direction. So, there exists a fixed unit vector U such that (T, U) = § where §
is a constant. From the proof of Theorem , we know that if w = (T, D)

where D is any unit vector, we have

%{%%} :—kwir\/1—w2— (%%})2' (1.6.1)

By taking D = U, we get

0 (10w 10w\ ?
—S—— 0t =—kw=+ l—w?—(-——) . 1.6.2
as{kas} v T\/ v (k;as) (162)
Since ¢ is a constant, we have 88_10 = ? = 0, and so Equation (|1.6.2)) becomes
S S

0 = —kéd£7V1-62-0.

T )
Thus, - = +——

EOVIR
2 — 3: Assume E(S> = m, where m is a constant. Now, replace 7 = km in

the Equation to get:

, which means that 7 is a constant.

e (O

Now, let’s find a solution of the form £(s) = ¢ where ¢ is a constant and

1 — 6% > 0 to match the definition of a general helix. £(s) = 4 is a solution of



the Equation: but £(s) = ¢ is a constant

— 0= —kdE£kmV1—5 =6 =m?*(1-5)

= & =m?—m* = (1 +m?)

m2
2

1+m

e 52:

V1+m?

m

= £(s)

is a solution of the differential equation. Now using the proof of the funda-

mental theorem of curves, we know that any curve a(s)

where

(x(s), y(s), 2(s))

o(s) = /ﬁ(/
o) = [ ﬂ(
2(s) = / ¢ds.

k\/1—52d

/

1 1
kds = ————
\/1—52/ / m? /
1_1+m2

/k:d3:\/1+m2/kds

B 1

1—¢ 1-0°
o V1i+m?
14+ m2—m?
m2 1+m2—m?2
VI—02 = 41— -
\/ 1+ m? \/ 14+ m?

V14 m?

kds



So, 3. is satisfied.
3 = 1: Assume that the statement 3 holds. Then, its tangent vector T, has

the following components

1
'(s) = cos <\/1+m2/kd8),
1+ m?
/ 1 .
y'(s) = 1+m231n(v1+m2/kds>,
, B m
Z'(s) = o

Then, (T,,(0,0,1)) =

mn hich i tant. So. the principal t t
— winicn 1S a constant. O7 (] pr1n01pa angen
V1 4+ m?

lines of @ make a constant angle with the fixed direction U = (0,0, 1). Hence,

« is a general helix.

1.6.2 Slant Helices

In this subsection, we define and characterize slant helices.

Definition 1.6.3. A curve a with k(s) # 0 is called a slant heliz if the

principal normal lines of o make a constant angle with a fized direction.

Theorem 1.6.4. Let « be a unit speed curve in R with curvature k = k(s) # 0

and torsion T = 7(s). Then the following are equivalent



1. « is a slant heliz.

k? \/
2. The function o(s) = m(g) (s) is constant.

3. The curve « is given by a(s) = (z(s),y(s), z(s)) where

(

m

V1I+m2sin~'(m [ kds)] k(s)ds) "

o ks (=

m

VI+m2sin'(m [; de)] k(S)dS> v

-k (o

\z(s) = \/% (/OS kds)ds.

Proof. 1 = 2: Assume « is a slant helix with a Frenet frame (T, N, B) . Then
the principal normal lines of o make a constant angle with a fixed direction.
So, there exists a fixed unit vector U such that (N,U) = §, where § is a
constant. From the proof of Theorem , we know that if w = (T, D)

where D is any unit vector, then

R )

Now taking D = U we have:

T
e T

55~ \as



1
Because 0 is constant, we get Q{Eaa—w} = 2(5) = 0 and hence we have,
s

0s 0s

—kw+7vV1—w262 =0.

Thus,
kw = +7v1 — w? — §2
2 2 _ 52
o Tl —w®— %)
— W = 12
— w® =71° - 7w — 7262
B WO
s V1 — 62
Now, dw _ ké —= w = (5/ kds. Also, we have w = (Z)— Thus,
88 0 k \/1_"(%)2

deriving with respect to s, we get:

ok _ GO+ G- ()
V=@ 1+ ()
LW e
VI= k(14 (2)2): K
. KAL) 5
(k2 r2)f  VI—e

/{32 T\/
#3 is a constant and hence the statement 2 is satisfied.

We get that
(k2 -+ 72)3



k? N/ _
—) = m, where m is a constant. We have

2 — 3: Suppose m(k

—~

=19
~—
<

CkEGEE
:>/0 (14_<§%)2)§d8 = /Ok:mds
:/0 (1+<§%)2)gds = m/o keds

2
Now, we calculate the integral I = / a —ds. Consider the change of
0

variable u = % We get

s d
z:/ _m e
o (1+u2)?

Now we consider the trigonometric substitution v = tan . We have

sec 0

_[ pu—
/0 sec30
= / cos §df = [sin 6],

0

- {\/T}

Thus, we have

and finally



where A is the integration constant. Hence, we have

o= (o [ ) (14 (7))
— ;—z: (m/oskds+A>2+(%>2<m/oskds+/l>2
— T(1= ([ was+4)") = ([ s+ a)
~ -l

(m [ kds + A)? '\’
— 1=k 0 .
! (1 ~(m [ kds + A)?

Now, using the differential equation and replacing 7 by the quantity

above, we get

[V

2{1aw}:—kw+k( (m [, kds + A)? ) \/1_w2_<%g_%:>2(1.6.4)

ds Lk s 1—(m [ kds + A)?
. ® .. 10e .
We need to find a solution of the form € = § kds with =98 = 4 where 9§ is
1 2
a constant and e satisfies 1 — €? — (E%) > (. Replacing in the differential
s

equation above, we get:

s S kds + A N
o:-ka/ keds + k [m Jy kds + 4] \/1—(5/ k:ds) _ 82,
0 \/1 — (m [ kds + A)2 0

If m > 0, we have § = and A = 0 (for simplicity of calculation) so

m
V1+m?

we get:



m s Im [ kds| m?2 s 2 m?
kds + k 0 l1- —— /kd - —
V1+m? /0 ’ /1—(fosk;ds)2 1—|—m2< 0 S) 1 +m?
_ k( m /skds—i—k im [ kds| \/1—(mfosl;:ds)2
V1 +m?2 0 1_<f08kd8)2 14+m
m
V1+m?

s Skd 1—<fskd8)2
/kds+k: m )y kds 0 — 0
0

1— (f kds)? V14 m?

If m < 0, we have § = - 0 and similarly, we get
1+ m?

s Skd s 2
e N
0 0

\/1 — (m [ kds)?

It means that € = kds (for m > 0) is a solution of the differential

m S
\/1+m2/0

equation:

0 (10w (m [ kds) ) ow\ 2
e =y

and € = ———= [ kds (for m < 0) is a solution of the differential equation:

0 (10w (m Oskds) ) ow\ 2
_{1_} kw—i—k\/l(‘;fOSkds)Q\/lw — (%E> )



We need to calculate the coordinates of o using the following:

2

() _/ 1—§2c0s</ \/115252 (%) ds)]ds,

2

ys) = / f( / \/15252 (%) ds)]d&
os) = / éds.

Let’s consider the case m < 0:

\/1—52 1L k)1 — 225 ([2 kds)? — 122,
We have J = / ds / \/ 1+m fo 1+m ds
1—52 1—1+ 2fokds
k;\/1—m2fkds
\/1—1- / 1— s 2f kds)?

ds

Let u = m/ kds, du = mkds and ds = %. Then,
0

7 /\/1—u2 B \/1+ / V1 —u? du
mv1+m T2 1 —+ m2) .
Let u = sin#, so du = cos 6df and
7 _ \/1 +m cos?
B sin? @ — (1 + mQ)
/1 2 1
= i sec’ do.

m (tan? 6 + 1)(m2 + 1 + m? tan?0)



For w = tan ), dw = sec? §df and

J

dw.

 V14m? 1
n m /(w2+1)(

m? + 1+ m2w?)

Using the decomposition into partial fractions, we have

1
(w? 4 1)(m? 4+ 1 + m2w?)
_ AuH—B+ Cw+D  (Aw+ B)(m*w®+m?+ 1)+ (Cw+ D)(w* +1)
w1l mPwldm?l (w? +1)(m? + 1 + m2w?)

Am*w® + Am*w + Aw + Bm*w? + Bm? + B + Cw® + Cw + Dw? + D
(w? +1)(m2 + 1 + m2w?)

w3(Am? + C) + w?(D + Bm?) + w(Am? + A+ C) + (Bm? + B + D)
(w? 4+ 1)(m? + 1 + m?w?)

;

Am? +C =0

D+ Bm? =0
Hence, <

Am?*+1)+C =0

B(m*+1)+ D=1
This means that A =0, B=1, C =0, and D = —m?. So, we get:

J = \/1+m2/( I m? )dw
N m w2+1 m2+1+m2w?
T2 m2(—1
_ vitm® (tan_lw—/—(m2+1) dw)

m? 2
m L+ Ttmz W

V1+m? . m? 1 . m
= —| tan" " w — 2+1X tan (—w)
m
=

m



m u )
VI+m?2 V1—u?

(
I ° . 2 I3 kds
e )

Now, we calculate z(s). We have

IR Y IR I

x(s)
_ /\/1_1:7’2 (/Oskds>2
T

m2
v/ 2 s 2 kd
X COS (i sin™! (m/ kds) — tan~ ( m = f i ))
m 0 V1i+m \/1 mfo ds)?

AT - 5 B m2 fOSk;dS

X <cos <T sin (m/o kds)) CoS (tan (\/1 n mQ'\/l —(m fos k:ds)2>)
(VTER o w Jo Feds

+<T (] k‘“))m(tan <V1+m2'¢1<mf§kds>2>)>

_ \/1 _ m? </Os kds>2cos (_, /1_|_7n28m_1 ( /s kd8>> v1+ 2\/1 — mfos kds)?

m? + 1 m V1 m? = (m [} kds)?
2 s 9 / 2
+4/1— m (/ kds) sin ﬂsin’1 (m/ kds)
m2+1\J, m 0
2f0 kds 1

Vi \/1 I kds)?

2+1



/ \/ 1 - k:ds> cos (@m—l (m /O S k:ds))

/\/T/ kdssm(Wsin_l <m/oskds>)

The derivative of :

o , . _
\/1 — m2 / kds cos ﬂsin_1 (m/ kds)
0

0

m
m’ (/0 k:ds sin leJ2Sin_1 (m /08 kds)

1+m?2

is given by
2m?k( [ kds)
2\/1 — (m [} kds)?
S 2 / 2
— \/1—<m/ kds) Ltm mh sin
0 m \/1 — (m [ kds)?

1%7,12 sin™! (m /08 kds)]
m w — (m [ kds)?

V1+m2sin~'(m [ kds)]

+

m

Hence,

o = k(=

m

VI+m?sin'(m 5 de)] k(S)dS) "



Similarly, we have

V1+m2sin~'(m [ kds)] k‘(s)ds) s

m

=t [ (o
z(s):/fds:/\/%/o kds:\/%//kds.

3 = 1: For the cases m < 0 or m > 0, the components of T'(s) are given by:

( V1+m?2cos™ (m [ kds) "

1
:U’SZ—/sin s)ds,
W= e m Q
1 V1+m?cos™ (m [ kd
VY (s) = —/cos o eos” (m Jy kds) k(s)ds,
V1+m? m
: m| ’
= ——— [ kds.
= e Jy
Therefore, the components of 7"(s) are given by:
( — S
1 V1 2 L kd
2"(s) = sin 2 cos™ (m Jy kds) k(s),
1+m? m
1 V1+m2cos™H(m [ kd
y'(s) = ——= cos i cos(m Jp kds) k(s),
1+ m? m
ey Im]
( (®) 1+m?

1 . | V1I+m2cos™H(m [ kds)

Sin

Virm? m
N(s) = 1 cos 14+ m2cos™'(m [, kds)
Vit m
m|

1+ m?2



Thus, (N(s),(0,0,1)) = \/%, which is constant, so the principal normal

lines of a form a constant angle with a fixed direction u = (0,0, 1), and hence

« 1s a slant helix.



Chapter 2

Principal, GGaussian, and Mean
Curvatures of Parametrized

Surfaces

In this chapter, we first give a quick review on quadratic forms and linear
operators. Then, we define a parametrized surface, its tangent planes and
normal vectors. Finally, we introduce the first and second fundamental forms
of a surface in order to define the principal, Gaussian, and mean curvatures.

See [11, 2, [].

2.1 Review on Linear Algebra

In this section, we recall basic facts on linear operators, bilinear and quadratic

forms.
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2.1.1 Bilinear and Quadratic Forms

A bilinear form on a vector space V isamap b: V x V — R such that:

b(crvy 4 cova,v) = ¢1b(v1,v) + cab(va, v),

b(v, crvy + cavg) = e1b(v, v1) + cob(v, vs),

for all vy, v, v € V and ¢y, co € R. The bilinear form b is called symmetric if

b(u,v) = b(v,u) for all u,v € V.

Definition 2.1.1. A real-valued function ) on a vector space V is called
a quadratic form if it can be written in the form Q(v) = b(v,v) for some
symmetric bilinear form b on V. It is then called the quadratic form associated

to b.

Remark Let b be a bilinear symmetric form on V' and @) the quadratic form

associated to b. We have

b(v+w,w+v) = blv,w)+bv,v)+ blw,w)+ blw,v)

= b(v,v) + 2b(v,w) + b(w, w).
Hence, Q(v + w) = Q(v) + 2b(v, w) + Q(w) and thus

b(v,w) = b(v, w) = = Qv +w) = Qv) = Q(w)).

N —

It means that we can recover b from the below formula.

Example 2.1.2. Let A be n x n matriz, R™ be the space of n x 1 real matrices



and b(X,Y) = XTAY for all X,Y € R™. Then, b is a bilinear form since

b(Cle + C2X2, Y) = (01X1 + CQXQ)TAY = (CleT + CQXZT)AY
= o XTAY + X7 AY = c1b(X1,Y) + eab(Xy,Y)
b(Y, 01X1 + Cng) = YTA(Cle + Cng) = YTAchl + YTACQXQ

= o YTAX] + 6 YTAXy = e1b(Y, X1) + cob(Y, X3)

If X = (21,72, s 20), Y = (Y1, Y2, ....yn) T and A = (ay;), then:

@11 Qa2 .. .. Qip n
a1 .. e .. Yo
b(X,)Y) = (x1,29,....,2,)
a1n .. e Qpp Yn
n
Y2

n n
= (E $1CL7;1,---,E Inaz‘n>
i=1 i=1

Yn
j=1 i=1 ij=1
Let {vy,v9,...,...,u,} be a basis for V' and b be a bilinear form on V with

b;j = b(v;,v;) for 1 < 4,5 < mn. The matrix B = (b;;) is called the coefficient
matrix of b with respect to {v1,va, ...,..., v, }. If wy = (xq,29,...,...,2,) and

Wo = (Y1, Y2, ey e Yn), then blwr, wa) = Z bijwiy;.

ij=1



If b is symmetric, then b;; = bj; and b(wy,wr) = Q(w) = Z bijxix;.
ij=1

2.1.2 Linear Operators

Let V be a vector space with basis {vy,vs,...,..,v,} and T be a linear map
T :V — V. Then for all 1 < j < n, T(v;) can be written as a linear

n
combination of vy,vs, -+ ,v,. In other words, T'(v;) = Zaijvi. We denote

=1
n

by A = (a;;) the matrix associated to the linear map 7. If v = Z%‘Uz‘ and
i=1
T(v) = Z Y;v;, then we have

i=1

Y = AX,

where Y = (y1, %2, .o o, Yn)? and X = (21,29, ..., ..., x,)7. In fact, we have

T) = T<zj:93ﬂ)z> = isz(”LW
=S g, = Z (Z)

,j=1 Jj=

Since T'(v) = Zijj, we get, y; = inaji and Y = AX.

=1 i=1

Proposition 2.1.3. Let T : V — V be a linear map and A, B be the matrices
of T associated to bases {vy,..,..,..,v,} and {us, ..,..,u,} respectively. If u; =
chivj for 1 <i<mn, then, B=C"YAC where C = (c;;) is a matriz of size

j=1
nxXn.



Proof. On one hand, we have:
) =S b =30 S e = 3 ( bm) o
k=1 k=1 =1 m=1 \ k=1
On the other hand, we have

T(UZ) =T ( Z Cjﬂ)j) = Z CjiT<Uj> = Z Cji Z AmjUm = Z (Z cjiamj) Um,-
j=1 j=1 j=1 =1 m j=1

=1

But T'(u;) can be uniquely written as a linear combination of vy, va, ...., vy,.

Then:

n n
E briCmpk = E CjiQmj
k=1 j=1

So, we have that the (mi)™ entry of C'B equals to the (mi)™ entry of AC.

Hence, CB = AC and B = C~1AC. O

Suppose A = (a;;) and B = (b;;) are the matrices associated to the linear
maps S :V — Vand T : V — V with respect to the basis {vy,vs, ..., v, }.

In other words:

S(Uj) = Zaijvi and T(Uj) = Zbijvi for 1< j <n.
i=1 i=1

We denote by SoT : V — V the composition of S and T

Proposition 2.1.4. IF A = (a;;) aand B = (b;;) are the matrices associated
to the linear maps S : V. — V and T : V. — V with respect to the basis

{v1,v9, ..., .., vn}. Then, AB is the matriz associated to S o T with respect to



the basis {vy, v, ..., vn}.

Proof. Suppose C' = (¢;;) is the matrix associated to S o T. We have

SoT(v;) =5(T(vy)) = Zcijvi-

Also, we have

S(T(vy)) = S(Z bz‘j%) = Z bi; S (v;)
— Z bij Z iV, = Z(Z bij Qi) Vk-

=1 k=1 =1

Hence, ¢;; = Z ap;b;j and C' = AB. O

i=1

Definition 2.1.5. Let (.,.) be an inner product on V. A linear operator
T7:V—V

is self adjoint if (Tv,w) = (v,Tw) for all v,w € V.

Proposition 2.1.6. Let T : V. — V be a linear map and A = (a;;) the
matriz associated to T with respect to an orthonormal basis {vy, vy, ..., v, }.
Then, a;; = (T(vj),v;) for all 1 < 4,5 < n. If T is self adjoint, then A is

symmetric.



Proof. We have T'(v;) = Zaijvi. Then,
i=1

n

<T(Uj), Ui> = <Z Q;5Uy, Ui> = <a1j’01 + ...+ Q5 + ..+ Clnj’Un7Ui>

Now, if T is self adjoint, then
aig = (T(v;), vi) = (v, T(v3)) = aj;.

Therefore, A is symmetric. m

Proposition 2.1.7. Let (V,(.,.)) be an inner product space with {vy,vs, ..., v, }
as a basis for V.. Let T : V. — V be a self adjoint linear operator. We denote
by A = (a;j) the matriz associated to T with respect to the basis {vq,va, ..., s }.
Let bij = (T'(vi),v)), gij = (vi,v5), B = (bij), G = (gi5), and G~' = (g") be
the inverse of G. Then:

1. B=ATG@

2. A=G'BT =G 'B

det B - i g
- — - i
3. det A e and tr(A) izla“ Z bi;g

7,7=1




Proof. 1. We have

by = (T(v:),05) = (Y arivn, vy)
k=1
= a1i<'U1,'Uj> + a2i<'U2,'Uj> + oo+ @i (v, v5) F o+ pi(Un, V)

= @1;91j T a2;925 + ... + QniGnj

n
= E QkiGkj-
k=1

So, B = ATG.

2. From Proposition 2.1.6] B is symmetric, and G is symmetric since g;; =
(vi,v5) = (vj,v;) = gji. Thus, BT = B, GT = G, (GH)T = G, and
(B~H)T = B~!. Now, we have B = ATG and so

A" =BG
Taking the transpose of both sides, we get (AT)T = (BG™!)T and so
A= (G H'B"=G"'B.

3. We have

_ -1 _ -1 _
det A=det(GB) = det(G ).detB—detG.detB.
det B
Hence, det A = NYeh

]

Proposition 2.1.8. Let (.,.) be an inner product on V and S : V — V a



self adjoint linear operator. Define b° : V x V. — R by b%(v,w) = (S(v), w).
Then:

1. b° is a symmetric bilinear form.
2. The coefficient matriz of b° is (si;) given by si; = (S(vi),v;).

Proof. 1. We have:

b9 (crvy + cavg,w) = (S(civicavs), w) = (1S (v1) + 25 (2), w)
= 1 (S(v1),w) + c2(S(v2), w) = c1b° (v, w) + c2b® (vy, w)
Vi (w, crvr + cavs) = (S(w), crvy + covs) = (S(w), crv1) + (S(w), cava)

= ci(S(w),v1) + ca(S(w), va) = c1b% (w, v1) + cob® (w, vy).

So, b° is a bilinear form. Moreover,

So, b° is symmetric.

2. Trivial
O]

Proposition 2.1.9. Let (.,.) be an inner product on 'V and b be a symmetric
bilinear form on V. Then, there exists a self adjoint operator S :' V. — V

such that b = b°.

Proof. Let {vy,v,...,v,} br an orthonormal basis for V', b;; = b(v;,v;) and

S(v;) = Z b;jv;. Now, b(v;,v;) = b;;, and since b symmetric and the basis is
j=1



orthonormal, we have
b5 (vi, v5) = (S(vi),v3) = O by, vy) = O bijvy, v5) = by
j=1 j=1
Thus, b = b°. O

2.1.3 Eigenvalues and Eigenvectors

Let V' be a vector space and S : V — V be a linear map. A non-zero vector
u € V is an eigenvector of S with eigenvalue A if S(u) = Au. Note that if A is

a real n X n matrix, then a number )\ € R is called an eigenvalue of A if
Ju € R"/Au = Agu.

In this case, u is the eigenvector of A. If S : R® — R" is a linear map defined
by S(u) = Au, then eigenvalues and eigenvectors of A are the same as that of

the linear operator S.

Proposition 2.1.10. Let A be the matriz associated to the linear operator

SV — V and denote by {vy,vs,...,v,} a basis of V.
1. Xp € R is an eigenvalue of S <= det(A — \oId) = 0.

2. If Au = \u, then v = uvy + ugvy + ... + u,v, is an eigenvector of S
T
where u = (U1 Uy <o e Un) .

Proof. 1. \p is an eigenvalue of S
<= Jv # 0 € V such that S(v) = Agv

— Av= ) v <= Av— v =0



— (A= Xld)v=0
<= det(A — \ld) = 0 (since v # 0).

2. we have Au = A\gu. Now,

n
S(’UZ) = ay;v1 + agiUa + ... + ApiUy = E a;;V;
Jj=1

S(U) = S(ulvl + U + ... + unvn) = S(Uﬂ]l) + S<u2v2> +

= wS(v1) + uS(v2) + ... +upS(vy) = g Zaﬂvj +

j=1
n n
= E E CLjiUin.

i=1 j=1

But Zaﬁui is the j1"* entry of Au which is Agu. So,
i—1

ai; a2 .. .. Qip U1l U1l
Uz

a1 Qj2 .. .. Gjn . = Au = )\Ou = )‘0 Uj

Ap1 Ap2 .. .. Qpp Unp Unp

Thus Y, aju; = Au; and

S(’U) = S(Z U]”Uj) = )\0 ZU]'U]'.
i=1 j=1

n

Hence v = E u;v; is an eigenvector of S with eigenvalue ).
i=1



a b
Proposition 2.1.11. Let A = be a 2 x 2 real symmetric matriz.

c d
Then,

1. A has 2 real eigenvalues A1 and .
2. /\1/\2 = det(A) and )\1 -+ )\2 = tI‘(A)

3. There exists an orthonormal basis {vy,v2} of R? such that v; is an eigen-

vector with eigenvalue \; where 1 =1, 2.

We call {vy,v2} an orthonormal eigenbase of A.

Proof. 1. We have det(A — Ald) = 0. Thus,

Hence (a — \)(c — A) — b* = 0, which implies that

ac—b* — (a+c)A+A* = 0. (2.1.1)

We now calculate the discriminant of the last equation and get

A = (a+c)* —4(ac—b*) = a® + 2ac+ c* —dac+4b* = (a—c)* +4b> > 0.

C Sla— o A N
So,)\lz(a+0) (2a c)? + and)\Q:(a+C)+ (2a c)? + ‘



2. From Proposition 2.1.1] we get:

Ay = 22 — det(A)

/\1 ‘I—)\Q = aT—H: = tI’(A)

3. If A =0, then (a — ¢)* +4b*> =0 and so a = c and b = 0. Hence,

a 0 1 0
0 a 01
1 0
The vectors and are the orthonormal basis for A where
0 1 0
0
and are the eigenvectors.
1

If A >0, then Av; = A\jv; and we have

a b T x4 azry + bxy = \ay
e )\1 —
b ¢ T2 T2 b.f(]l —+ cxry = /\1[L'2
Al — b Al — b
So, x9 = ( lb a)wl and z9 = 3 Cxl. But, lb ¢ _ o since
1— 1—

(A1 — a)(A\; — ¢) — b* = 0. Therefore, for z; = —b,

at+c—n/(a—c)?+40 a—c+/(a—c)*+4b?
2 B 2

To = a— AN —a—



and
—b

a—c++/ (a—c)2+4b2
2

V1 =

—b
Similarly, vy = . Thus, v; and v, are eigenvectors of
a—c—+/ (a—c)2+4b2

2
A with eigenvalues \; and Ay respectively, and

(a—c)? = ((a—c)* + 4b?)

1 =0

<U1, Ug) = b2 +

. U1 V2
Consider u; = —— and uy = ——

. We have that {u;,us} is the
o vl

eigenbase for A.

]

Theorem 2.1.12. [7] (Spectral Theorem). Let (., .) be an inner product
on V with dim(V) = n and S : V. — V be a linear self adjoint operator.
Then,

1. S has n real eigenvalues \i, o, ..., \y,.

2. There exists an orthonormal basis {vy,vs, ...,v,} of V' such that

S(v;) = N fori=1,2,...,n.

Proposition 2.1.13. Let { , ) be an inner product on V with dim(V) = n
and S 1 V. — V a linear self adjoint operator. Denote by {vi, vy, ..., v,}
an orthonormal eigenbase of S and S(v;) = \v; fori = 1,2,...,n. Let b° :

V xV — R be the symmetric bilinear form associated to S. In other words,



b5 (u,v) = (S(u),v). Then,

”nhi_nl b (v, v) = A\ = b5 (vy),

ﬁﬁ—}i b (v,v) = Ap = 0% (vy).

Proof. Let {vy,v,...,v,} be an orthonormal eigenbase of S with eigenvalues

A1, A9y eeny Ay Tespectively. Then, for v € V, v = invi and
i=1

vi(v,v) = bs<izlxivi,izlxivi> = <S<Zzlxzvz>,zzlxzvz>

= Xn: 2:S(vy), Zn: Tiv;) = <zn: T, Zn: )
p — P P
A\ [
= ) ) :A1x§+...+/\nxi:i:Aixf
i
Tadn ) \

n
Now, ”H|1|in1 v (v,v) = Hrr‘l‘in (Z A\ix?). But, since |[v]| = 1, we have Y 22 =1
v||= v||=1
i=1

and so

HH\llin b2 (v,v) = ”nhin (A2? + .+ Az?) =\
v||=1 v||=1

and |Tnnax = A\,. Also,
v||=1

b5 (v1) = 0% (v, v1) = (S(v1),v1) = M\or,v1) = A (1, 01) = M Jor]|? = A,

b (vn) = b%(Un, v0) = (S(Vn), Un) = AaUn, V) = Ay



2.2 Parametrized Surfaces in R?

In this section, we define parametrized surfaces in R? and give various exam-
ples. We then define the tangent plane and the unit normal vector at a given

point of the parametrized surface.

Definition 2.2.1. Let O be an open subset of R?. A smooth map f

f: O — R?

(wv) — ) = (filwv), folu,v), folu,v))

is called a parametrized surface in R3 if %(u,v) and %(u,v) are linearly

independent for all (u,v) € O.
Example 2.2.2. (The graph of a smooth function). Consider a function

h: O — R and the map f given by

fi. 0 — R

(u,v) — f(u,v) = (u,v,h(u,v)).

We have

of of of

2 (u,0) = (1,0,%(%1})) and g—fj(u,v) = (1,07%(%“))-



Thus,

of of B oh B oh oh
%(U,U) X %(U,’U) =11 0 %(U,U) - (—%(U,U),%(U,U),l) #(0,0,0)
01 %(u,v)
, oh oh , . :
This means that a—(u,v) and a—(u,v) are linearly independent, and f is a
u v

parametrized surface in R3.

Example 2.2.3. (Surface of Revolution). Let h : R — R be a smooth
function and (C') a curve in the plane given by z = h(y) and O be an open
subset of R2. We denote by M the surface obtained by rotating (C) along the

y-axis. It can be parametrized by

f: O — R?

(y,0) — f(y,Q):(h(y)cos@,y,h(y)siné’).

We calculate

of
ay
0f
Eg

(y,0) = (h’(y) cosf, 1, h (y) sin 6)

(y,0) = ( — h(y)sin®,0, h(y) cos 9)



and

i i k
of  of

oy < 90 h'(y)cos@ 1 h'(y)sind

—h(y)sin® 0 h(y)cosb
- (h(y) cos 0, —h(y)' (y) cos? 6 — h(y)h'(y) sin® 8, h(y) sin 8)

- (h(y) cos 6, —h(y)h'(y), h(y) sin 9) .

Clearly, it is O for h(y) = 0, so f is not a parametrized surface unless h(y) # 0
for all y € R.

0
From now on, we denote —f by fu, == by fu, Ju

af 0 (0f
ou ov (

%) by fuw, etc...

Definition 2.2.4. Let f : O — R? be a parametrized surface and (ug,vo) €

O. Suppose that, for some € > 0, the map

c:  (—€,+e) — O

t — ct) = (u(t),v(t)),

is smooth and ¢(0) = (u(0),v(0)) = (ug,vo). We call the vector (f oc)'(0) a

tangent vector of f at (ug,v).

By the Chain rule, we have

(f0¢)(0) = fuluo, vo)u'(0) + fu(ug, vo)v'(0).

If ¢(t) = (up+t,vp), then (foc)(0) = fu(ug,vo) and if ¢(t) = (ug, vo +1), then

(foc)(0) = f,(ug,vp). Thus, the space of all tangent vectors of f at (ug,vo)



is a two-dimensional linear subspace of R?® with { fulug, vo), fv(uo,vo)} as a
basis. The space T, of all tangent vectors of f at P = (ug,vp) is called the

tangent plane of f at P. The vector

- fu(to, vo) X fo(ug, vo)
N o, v) = [ ao, w0) x (o, o0)]

is a unit normal vector to f at (ug,v) (perpendicular to the Ty,). Hence, we
now have a basis {f,, f,, N} for the parametrized surface f : O — R3. The
vectors fuu, fous Nu, fou, fou, and N, can all be written as linear combinations

of fu, fu, and N. Moreover,

(fua me)u - (fuua fvuaNu)

= (pufu+p2afo+paN,piafu + Do fo + 32N, pr3fu + Dosfo + p3sN)
P11 P12 P13

= (fwfva) P21 P22 P23

P31 P32 D33
= (fwfva)P

and

(fmfvaN)v = (fuv;fvvan)
qi1 412 13

= (fuvaaN> g21 422 G23

431 432 Q33

= (fuv Jos N)Q,



where P and () are 3 x 3 matrices P, () : O —> M;y3. Since f,, = fou, the

first column of () and the second column of P are the same.

2.3 The First Fundamental Form

We are now ready to define the first fundamental form of a parametrized

surface.

Definition 2.3.1. Suppose that f : O — R3 is a parametrized surface in R3.
A quadratic form @ on f is a function Q) : p — Q, that assigns to each p in
O a quadratic form Q, on the tangent plane Ty, of [ at p. In other words, at

each p in O, Q, : Ty, x Ty, — R is a quadratic form.

Remark The quadratic form @) on f is described by the symmetric 2 x
2 matrix of real valued functions: @, : O — R defined by Q..(p) =
Q(fu(p), fuo(p)). Qi are the coefficients of the quadratic form (). Now, Qq1,
Q12 = 21, and Q92 determine the quadratic form @ on f uniquely. In fact, If

w € T}, then w = afy(p) + Bfu(p), and

Qp(w) = Qp(w,w) = Qplafulp) + Bfup), afulp) + Bfu(p))
= Qplafu(p), afulp)) + Qplafu(p), Bfu(p)) + @p(Bfo(p), afulp))
+Qp(B1o(p), Bfu(p))
= a’Qu(p) +208Qua(p) + Q-

Because of that, it is convenient to have a simple way of referring to the

quadratic form @ on a surface having the three coefficients A, B, and C'. The



classical notation is as follows:

Q = A(u,v)du® + 2B(u,v)dudv + C(u,v)dv?.

To better understand this, consider a curve defined as a(t) = f(u(t),v(t)). We

have

o (t) = fu(t) + for' (1) = fuluw, 0)u'(t) + fo(u, 0)0'()

and

Q(t)) = Qa'(t),o/(1))
= QUfulu, ) () + folu, v)V'(t), fulu, v)u'(t) + folu, v)0' (1))
= Qfur L)W' () +2Q(fu, f)u )V (1) + Q(fur o) (V'(1))?

= A(u,v)(u)* + Blu,v)u'v' + C(u,v)(v")>

This explains the classical notation of the first fundamental form.

Definition 2.3.2. (The First Fundamental Form of a Surface f) Let
I, : Ty, x Ty, — R denote the inner product Ip(u,v) = (u,v) where u,v € T}, .

I is the first fundamental form on f.

The coefficient matrix for I with respect to the basis {f,, f,} is (gi;) where:



(

g = Lp(fus fu) = (fus fu)
912 = Lp(fus fo) = (fus fo)
g2 = Lp(fo, fu) = {for fu) = (fus fo)
| 922 = Lp(fu, fo) = {fos fo)-

So, from the previous notation:
I = gi1(u,v)du® + 2g12(u, v)dudv + gog(u, v)dv?.

Now, if u; and us are tangent vectors at pg = (ug, vg), then u; and uy can be

written as:

Uy = alfu(pO) + a2fv(p0)7
Uy = blfu(pO) + beU(p0)7

where ay, as, by, by € R). We then have

(ur,uz) = (a1 fu(po) + azfu(po), b1 fulpo) + bafu(po))
= a1bi{(fu(po); fu(po)) + arbz(fu(po), fo(po))
+azbi{(fu(Po); fu(po)) + azba{fu(po), fu(po))

= gu1(po)aiby + g12(po)(a1ba + asby) + ga2(po)asbs.

So, we can compute the inner product between two vectors in T}, from (g;;)

and deduce the length and the angle between them.



Definition 2.3.3. (The Arclength of a Curve on a Surface) Let f :
O — R? be a parametrized surface and let o : t — (u(t),v(t)) be a paramet-

ric curve in R? where t € [a,b]. The length of the curve « is given by:

b b
I— / o/ ()| dt = / I T 2grau vl + gm(0)2dt.

Definition 2.3.4. (The Angle Between Two Curves) Let f : O — R3
be a parametrized surface. Fort € [a,b], we define c1(t) = (z1(t), x2(t)) and
ca(t) = (y1(t), y2(t)) two smooth curves in R? such that c1(0) = c2(0) = py =
(ug,v). The angle 6 between oy = f ocy and ag = f o ¢y is defined to be the

angle between o/ (0) and a4(0). We have

la (O)]-[las )] [l (0)]]- [l (0}

2

Z Gij (po)x;(O)y;(O)

ij=1

\l > gij(po)xQ(O)w}(O)J > 9ii(po)i(0)y;(0)

i,j=1 i,j=1

g 0050 {fatf(0) + £ra5(0)). (4 (0) + Futh(0)
' |

2.4 The Shape Operator and the Second Fun-
damental Form

Assume that f: O — R3 is a parametrized surface and N : O — R3 is the

unit normal vector to f. Since (N, N) = 1, we have 2 (N, N) = 0. Thus,

(Nu, N + (N, N,) = 0.



It means that 2(N, N,) = 0 and hence N is perpendicular to N,. Similarly,

(N,N,) =0 and N is perpendicular to N,. Thus, N, and N, are tangent to
f.

Definition 2.4.1. The shape operator S, at the pointp € O of the parametrized

surface f : O — R? is the linear map given by

Sp:Tfp — Tfp
fulp) — Sp(fulp)) = —Nu(p)

folp) — S(fu(p)) = —Nu(p)

For any vector w € Ty,, we have w = ¢ fu(p) + c2fu(p) for some ci,c2 € R.

Hence,

Sp(w) = e1Sp(fulp)) + c2Sp(fu(p)) = —c1Nu(p) — caNu(p).

Proposition 2.4.2. The shape operator S, is self adjoint.

Proof. Let p € O and w and z be two vectors in T,. We have

w = leu<p) + chv(p)

z = alfu(p) + a2fv(p)



where ¢y, c9, a1, as are real constants. We have

<Sp<w)7z> = <_ClNu_62Nv7a1fu+a2fv>
= —ClCLl(Nu, fu> - Cla2<Nua fv> - C2a1<Nv7 fu) - C2CL2<Nv7 f'u>
<U),Sp<2)> = <leU+C2fv7_a1Nu - a2Nv>

- _Cla1<fuaNu> - Cla2<fu7 Nv> - 02a1<fv7 Nu> - 02a2<fv7Nv>-

But (N, f,) = (N, fu) = 0 so we get

<Nu7 fv) + <N7 f’uu> =0,

<Nv7fu> + <N7 fuv> — 0

Because f is smooth, we have f,, = f,,. Thus,

(Nu, fo) = (N fu)-

Finally, we get (S,(w), z) = (w, Sp(z)). Therefore, S, is self adjoint. O

At p € O, let 11, denote the symmetric bilinear form on 7Y, associated to

the self adjoint operator S,. We have

I]pITfp ><Tyfp — R

(w,0) — (S(u),v)

The entries of the coefficient matrix (l;;) of 11, with respect to the basis



{fu, fo} of Ty, are:

p

lll - IIp(fuafv) = <Sp<fu)afu> = <_Nu7fu> = <N7 fuu>a
lie =ln = ]Ip(fu,fv) = <Sp(fU)7fv> = <_Nu7fv> = <N7 fuv>7
\122 = IIp(fva.fv) = <Sp(fv)afv> = <_Nvafv> = <N7 fvv)-

For any w, we have,

I[(U)) = II(U),U)) = [[(&1fu +a2fv>blfu +b2fv) = <Sp(a1fu +a2fv)7b1fu +b2fv>

== bla1<Sp(fu)a fu> + b2a1 <Sp<fu)a fv> + b1a2<Sp(fv)> fu> + a22b2<sp<fv)a fv>

Hence, 11 = ly1du? + 2l1odudv + lyodv? and it is called the second fundamental

form of f.

Example 2.4.3. (The Graph of a function) Let g : O — R be a smooth

function and f : O — R3 be the graph of g given by f(u,v) = (u, v, g(u,v)).

We have
,
fu = (1707.9“)7
fU = (07 1791])7
<
fuv - (OaOuguv)u
N L 1)
R _gu7 _g’U7 *
\ V14 g2+ g2



Let’s calculate the first fundamental form. We have

gn = (fufo) =1+4g,
J12 = <fmfv>:gugvv

922 = <fvva> =1 +g12;

Hence,
I = gridu® 4 2g1adudv + goodv® = (1 + g2)du® + 2g,g,dudv + (1 + g*)dv*.

Now, we can also calculate

Guu

VIt @+

Guv

VIt @+

Gov

V1+gi+9;

lll - <N7fuu>:
l12 - <N7fuv>:

l22 - <Nafvv>:

Hence,

II = lnduz + 2[12dudv + lggd’UQ
[ 2 uv VU
_ g d 2 g v+ g d 2.

ue + dud v
V1I+g2+ g2 V14 g2+ g2 V14 g2+ g2

The area of the surface f(D) is

D D
= // 1+ g2 + g2dudv
D




Definition 2.4.4. Fiz py = (up,v) € O and fix § € Ty, . Let o denote the
intersection between the surface f(O) and the plane E spanned by & and N (py).

Then, o is a curve belonging to E. We will call it the plane section of f at po
defined by .

Theorem 2.4.5. (Meusnier’s Theorem). The curvature of a plane section
of a parametrized surface f : O — R? at py defined by a unit tangent vector

§ in Ty, is equal to 11, (&,§).

Proof. Assume that there exists c:

T(s)=0'(s) = fuu'(s) + fuv'(s),

T'(s) = 0"(s) = fuulu'())* + fou(V'(5)) + 2funtt (s)0'(5).

Now, the curvature of o at pg is given by

k(0) = T'(0)- N(po)
= Fuu(Po)t'(0)* - N(po) + fuo(po)v'(0)* - N (po) + 2/fuv(po)u'(0)v(0) - N(po)
= lll(po)u'(0)2 + 2[12’(/(0)?}/(0) + ZQQU,(O)Q

= ]IPO (57 6)



]

Example 2.4.6. Let f(x,y) = (x,y,0) (also known as the xy-plane). Then,
we have

;

fx:(17070) ) f:rx:<03070)7
fy:(OaLO) ) fyy:(07070)7

N=1(0,0,1) , fuy =1(0,0,0).

\

Then, the unit normal vector is N = (0,0, 1) and any plane section is a straight
line.

.

lll = <N7fxx> =0

lio = (N, fay) =0

\122 = <N7fyy> =0

Hence, I1(£,€) = ly1dx? + 2liodady + loedy® = 0 for any py € O.
Example 2.4.7. For the cylinder of equation z* + y* = 1, we have f(z,y) =
(cosz,sinx,y). Then,

(
fe = (—sinz, cosx,0),

y fy=1(0,0,1),

N = (cosz,sinz,0).

\

For the top of the cylinder, the plane section defined by £ = f, = (0,0,1) is a

straight line, so k =0 and I1,,(§,€) = 0. For the lateral part of the cylinder,



the plane section of f defined byn = f, = (—sinz, cosx,0) is a circle of radius

1, so0 k=1 and I1,,(n,n) = 1.

Example 2.4.8. Let O = {(z,y)/2*+y* < 1} and f(x,y) = (x,y, /1 — 22 — y?).
Every plane section is a circle of radius 1, so k =1 and 11,,(£,£) =1 for all

§eTy,.

Example 2.4.9. Let O = {(z1,22) /21 € (0,27), 29 € R} and define f : O —
R3 and h: O — R? by

f(@1,29) = (21, 72,0),

h(z1,x9) = (cosxy,sinzy, xg),

For f, we have:

/

fI1 = (17070) ) f11$1 = <O7O7O>7

fa:z = (07 1a0> ) f$2502 = (070’0)7

lexz = (0707 0) s N = (07071>
\

So, g11 =1, g2 = 1, and g12 = 0. Thus,
[ = da3 + da3.

Also, l11 =0, log =0, and l1o = 0. Thus, II = 0. For h, we have



(

hyy = (—sinxy,coszy,0) , hy, = (0,0,1),
hayyey = (—cosxy, —sinxy,0) | hgye, = (0,0,0),

N = (coszy,sinxy,0) , hge, = (0,0,0).

\

So, gi11 = 1, goo = 1, and g1 = 0. Hence, I = dx? + dz3. Also, ;1 = —1,
loo =0, and l15 = 0. So, IT = —dx?. Note that f and h have the same first

fundamental form, but different second fundamental forms.

2.5 Principal, Gaussian, and Mean Curvatures

In this section, we will introduce Principal, Gaussian, and Mean curvatures
which are linked to the shape operator S. Since the shape operator S of a
parametrized surface f : O — R? is a self adjoint operator on Ty,, we have

as a consequence of the Spectral Theorem, Theorem [2.1.12, we have

Proposition 2.5.1. The shape operator of a parametrized surface f : O —

R3 at f(p) has two real eigenvalues and an orthonormal eigenbase.

The eigenvalues k; and ko of the shape operator S of the parametrized
surface f : O — R3 at p are called the principal curvatures. The Gaussian
curvature of f is defined by K = k1ky. The Mean curvature of f is defined by
H = ki +ks. Finally, the principal directions of f at p are the unit eigenvectors
v; and vy of S.

We have already shown in Proposition that the matrix associated to S

is given by A = G™'L where G = (g;;), L = (l;;) and g;; (vesp. l;;) are the



coefficients of the first (resp. second) fundamental form I (resp. II). Note

a b a d —b
that if B = , then B™! =
¢ d ad — bc ¢ a

we have that K = kiko = det(A) and H = ky + ky = tr(A), so,

. By Proposition [2.1.11},

111122 - l%g

k= det(A) = det(G™ 1) det(L) = .det(L) = ——,
(4) (G™) det(L) det(G) (L) G11922 — G
and we also have
A—cl — 1 i 922 —Y12 la i
g9z =912 \ —g, gy Lig oo
B 1 922l11 - 912l12 922l12 - 912l22
= — 9
911922 = 912 —ligiz + guliz —gi2li2 + grila
1
Thus, H = ————(g22l11 — 291212 + g11l22).
911922 — 912

If follows that
1. The principal curvatures k; and ky are eigenvalues of A = G~1L.

T1 T2
2. If and are unit eigenvectors of A with eigenvalue k; and ko,

S1 59

then v1 = r1 f, + s1f, and v9 = rof, + Sof, are its principal directions.

Example 2.5.2. For the cylinder f(xy,z5) = (cosxy,sinzy, xy), we have

(

fxl = (—Sinxl,COSIhO) , fo = (07071)7

foyzy = (—cosxy, —sinzy,0) | fre, = (0,0,0),

N = (coszy,sinz1,0) |,  frz, = (0,0,0).

\



So,

( (

911:<f117f361>:1 l11:<Nafx1x1>:_1

g22 = <fa:27fa:2> =1 and l12 - <N, fx1x2> =0

\912:<fx17f362>20 \l22:<N7f932fE2>:0
Hence,
-1 0 -1 0
A: ﬁ e
N 0 0 0 0

Thus, ky = —1 and ko = 0. Moreover,

—1—|—1 0 T 0 0 0 T 0
0 0+1 To 0 01 To 0

t
We have x1 =t and xo = 0, then =t

Therefore, v1 = f,, s an eigenvector corresponding to ki. Similarly, vo = [,
is an eigenvector corresponding to ko. Thus, f,, and f,, are the principal

directions (unit vectors with (fu,, fz,) =0).

Example 2.5.3. Let f(x1,x2) = (21,22, \/R? — 22 — 23) be the sphere of ra-
dius R. We have



x - 0717 Y
Ja ( R? — 2% — 23
T To /R?— 2?2 — 23 1
Vo (m )iy
\ R R R Rf

-1 -1
Then, S(fy;) = —Ny, = ff:cz fori=1,2 and S = Eld where 1d denotes

the corresponding identity matriz. We have

-1 1 0

&) = (SO = (&) = F(En) = 1d =

o =L

=1
R

-1 —1 —2
So, ky = T and ko = = are eigenvalues of S. Then, H = = and K = ok

Example 2.5.4. For f(z,y) = (z,y, 2> +4?), we have

f:c = (1,0,21’) 5 fl‘x = (Oa072)7

fy - (07 172y> 9 yy - (OJ 072) bl Ty - (0707()))
—2x —2y 1
N = ( , , ),
V1422 + 492 /1 +4a? + 4y /1 + da? + dy?

g1 = <fa:afx> =1 +4x27
gi12 = <f:l‘7 fy> - 4l‘y,

\922 = <fyafy> =1 +4y27




(

lll = <Na fmx> == 2

V14 422 + 42

ll2 = <N, fxy> = 07

iy = (N, f,) = ’

\ V14422 + 42

Thus, we get

K = klkg = det(A)

det(L)

det(G)

Liilog — l%g

d11922 — 9%2
4 __ 0
1+422+4y2

(1 +422)(1 + 4y?) — 1622y>

4

1+4a2+4y2
1+ 422 + 492 4+ 1622y? — 1622y?
4
(1 + 422 + 442)%’

and

H = tr(A)
= ;((1—%4@2) : — 0+ (1 +42?) 2 )

1+ 4x? + 4y? 1+ 4a? + 42 V1t 422 1 42
1 2+ 8y? + 2 + 822

1+4x2+4y2< 1+ 4 + 42 )

4(1 + 2y? + 22?%)

(1+ 422 +492)2




Chapter 3

Fundamental Theorem of

Surfaces in R’

In this chapter, We state and prove the Frobenius Theorem, and we also define
line of curvature coordinates. Then, we derive the Gauss-Codazzi Equations
and state the Fundamental Theorem of Surfaces and the Gauss Theorem in
line of curvature coordinates. Finally, we write the Gauss-Codazzi Equations

in local and orthogonal coordinates. [T}, 2, 4]

3.1 The Frobenius Theorem

We start by stating some results needed to prove the Frobenius Theorem.

Theorem 3.1.1. Let O be an open subset of R?. Consider f,g: O — R be

smooth maps with (xg,yo) € O and ¢y € R. The Initial Value Problem for the

99



partial differential equations system, with u : O — R), given by

Ou

o f(z,y),
ou
< _— =
9 g(x,y),
\u<$07y0) = Co,

has a smooth solution defined in some disk centered at (xo,yo) fo any given
af _ g

(x0,%0) € O if and only if [ and g satisfy the compatibility relation 90 = 92
Y x

mn O.

Moreover, one can use integration to find the solution as follows: Suppose
u(z,y) is a solution, then using the Fundamental Theorem of Calculus, we

have

ou

o o * g /
= fa) = ey = [ Sass vy,

for some v(y) such that v(yg) = co, but

du  [TOf o [T0g, .., _
= ) ayds+v(y)—/xoadeJrv(y)—v(y)Jrg(fray) 9(0,y)

and g—z = g(z,y) so v'(y) = g(xo,y) and

v(y) = /yg(xo, t)dt + c.

Yo



v
Since v(yo) = co, we have v(y) = ¢y + / g(xg,t)dt and hence,

Yo

u(z,y) = /x f(s,y)ds + /yg(azo,t)dt + ¢o.

Yo

Given smooth maps A, B : O x R — R, we now consider the first order PDE

system for u : O — R:

— = A(x,y,u(x,y)),
5 = Ay ul@,y) (511)

a_y = B(ac,y,u(x,y)).

The system (3.1.1)) has a smooth solution v when wu,, = wu,,. We calculate

Ugy = (A(I, Y, U(SL’, y)))y = Aa:xy + Ayyy + Auuy = Ay + A, B,

Uyz = (B(l‘, Y, U(JJ, y))):)c = B,x, + Byym + Byu, = B, + B, A.
Then, the system (3.1.1)) has a smooth solution v when A and B satisfy
A, +A,B =B, + B,A.

Theorem 3.1.2. (Frobenius Theorem). (for u : O C R*> — R") Let
U, C R? and Uy C R? be two open subsets. Consider A = (Ay, As, ...., A,) and

B = (B4, By, ..., B,) two smooth maps given by A, B : Uy x Uy — R™ with



(x0,Y0) € Uy and py € Us. The the following first order system

(Ou

9u _ 4

oy = Ay, ul@,y)),
\U(Z’o,y0> = Po,

has a smooth solution for u in a neighborhood of (o, yo) for all possible (xq, yo) €

U, C R? and p, € Uy C R" if and only if

(4), + %B:(Bi) Ly 9B

v J @ o
= Ou, = Ou,;

Aj, (3.1.3)

fori=1,2,....n.

Now, the system (3.1.2)) written in coordinates gives the following

p
8ui
Oz = Az('xa y,ul(:lz',y),uQ(a:,y), ...,Un<£li',y)),
8ui
ay = Bi(m,y,ul(x,y),m(x,y), ...,Un(ZL‘,y>),
\Ui($073/0> = Do,

for i = 1,2,..,n, where py = (po,, Poys ----, Do, ). We call Equation (3.1.3]) the

compatibility condition for the system (3.1.2). To prove the Frobenius Theo-
rem, we need to solve a family of Ordinary Differential Equations depending
smoothly on a parameter, and we need to know whether the solutions de-
pend smoothly on the initial data and the parameter. This is answered in the

following theorem.

Theorem 3.1.3. [§/ Let O be an open subset of R™, ty € (ag, bo) and a smooth



map [ : lag,bo] X O X [ay,b1] —> R"™. Suppose it is given that p € O and

r € a1, b1]. Let yP" denotes the solution of

W fle(e). )
y(to) = p,

and u(t,p,r) = yP"(t). Then, u is smooth in t, p, and r.

Proof of The Frobenius Theorem, Theorem[3.1.3 If u = (u1,ug,...,u,) is a

smooth solution for the system (3.1.2)) then,

0 /0u; 0
8_y<0m) - a_yAi(x7y7u1(x7y)u“'7un<x7y)>
04 @ 0A,; @ 0A; Ouy — %8%
(9x oy Oy dy Ou dy  Ou, Oy
Z au] ay oy * — Ou, Bi,
and
0 /0u; 0
%<8y> - %Bi<x,y,u1(x,y),...,un(x,y))
n 3x Or Oy Or Oup 0x Ou, Ox
B 0B; Gu] 0B, 0B;
n Z Ou, or Oz + 8u A

Then, (Az-)y—i-z %Bj = (B; —|— gf A;. Conversely, assume that (4;),+

Z auj B z Z 8uj A To solve the system (3.1.2) we proceed as

follows The existence and uniqueness theorem of ODE, Theorem [1.4.1] states



that there exists § > 0 and a: (xg — §, 29 + §) — U, satisfying the following

Ox
5 = Ay, a(@)), (3.1.4)
a(xg) = po.

Now, fix x € (z9—0d, x9+9) and let 5*(y) be the unique solution of the following
ODE in y:

oJox x
5 = B(z,y,5°(y)), (3.1.5)

B (yo) = af).

Let u(z,y) = B*(y). We have that the system is a family of ordinary
differential equations in y depending on the parameter  and B is smooth, then
by Theorem [3.1.3] w is smooth in x and y. By construction, u satisfies the
second equation of the system . We will prove that u satisfies the first
equation of the system for n = 1. The proof for general n is similar.

Let z(x,y) = up — A(z,y,u(x,y)). We have

2y = (up — Az, y,u(z,y))),
= Uy — Ay — Ayuy
= Uy — A, —ADB
= Uy — (A, +A,B)
= wuy, — (A, +A,DB)

- Bx(x,y,u(x,y)) - (Ay + AuB)



= B, + Byu, — (A, + A,B)
= B, + Byu, — (B, + B,A)
= By(u, — A)

= Bu(z,y,u(z,y)) - 2.

For each z, h*(y) = z(z,y) is a solution for the differential equation

Ooh

5 = B, (x,%u(x,y)) h. (3.1.6)

Now,

h$<y0> = Z(C(],yo) = uw(l‘7y0) - A(ZL’,yO,U(ZL‘,yo)) = Oé,(CL’) - A(l’,yo,a(l‘)) =0.

Then, h” is a solution of Equation (3.1.6) with initial condition h*(y,) = 0.
But 0 is also a solution of Equation ({3.1.6) with 0(yy) = 0. So, by the existence
and uniqueness Theorem of ODE, Theorem [I.4.1], we get

2z, y) = h*(y) =0
Thus,
UI(ZL‘, yO) = A([L’, Yo, U(l‘, yO))
So, u satisfies the first equation of the system ((3.1.2)). ]

Let Gl(n) denotes the space of all real n x n matrices. For P,Q € Gl(n),



we denote by [P, Q] the commutator of P and ) defined by

[P.Q] = PQ — QP.

Proposition 3.1.4. Let U be an open subset of R? with (zg,vo) € U C R
C € Gl(n) and P,Q : U — Gl(n) are smooth maps. Then, the following

initial value problem for u: U — Gl(n)

(

Uy = u(a:,y)P(x,y),
< Uy = U(IL‘,y)Q(I’,y),

U(ZIJ’(], yO) =,

\

has a unique solution u defined on a disk centered at (xq,yo) for all (xg,yo) € U

and C € Gl(n) if and only if

Py_Qa::[PaQ]'

Proof. This proposition follows from Frobenius Theorem, Theorem where
A = uP and B = u(@). The initial value problem has a smooth solution u if

and only if 4, = uy,. Now, we calculate

Upy = (Uy)y = (UP)y = u, P +uP, = (uQ)P + uP, = u(QP + P,),

Uye = (UQ)z = U, Q + uQ, = (UP)Q +uQy = U(PQ + Qx)



Thus,

1117

Uyy = Ugy

w( QP + P)) = u(PQ + Q)
QP+ P, = PQ +Q,

Py—Q.=PQ—-QP

Py_Qz

=[P,.Q].

]

Remark The equation QP+FP, = PQ+Q), is called the compatibility relation.

Remark Given 3 x 3 smooth matrices P and () such that

equivalent to say that we have

U1

U21

U3zl

U171

U271

U3y

U2

U22

U32

Uy2

U2

LED)

U3

U23

U3z

U13

U23

u3s

Ui

- U21

U31

U11

U21

U3y

U2

U22

U3z

Uy2

U2

L&Y

U3

U23

U33

U13

U23

Uss

P11

D21

P31

q11

g21

d31

P12

P22

P32

qd12

q22

q32

P13

D23

D33

q13

q23

q33

This is the type of equation we need for the Fundamental Theorem of Surfaces

in R3. Now, if P and Q are skew symmetric (i.e: PT

P and Q" = ~Q).



then,

(PQ—-QP)"

(PQ)" — (QP)" =Q"P" = PTQ" = (-Q)(~P) — (=P)(-Q)
QP — PQ=—(PQ-QF)=—[P,d]

It means that [P, Q] is skew symmetric. For PT = —P, we get

Thus, the system

P11 P21 P31 —P11 —Pi12 —Pi3

P12 P22 P32 | = | —P21 —DP22 —DP23

P13 P23 P33 —P31 —P32 —P33
Uy, = uP

becomes a system of three first order partial

Uy = u@

differential equations involving six functions pis, P13, P23, Gi2, ¢i3, and @93

where pi11 = pa2 = P33 = qu1 = 22 = q33 = 0.

Proposition 3.1.5. Let O be an open subset of R? and P,Q : O — Gl(n) be

smooth maps such that P and Q) are skew symmetric. Suppose P and Q) satisfy

the compatibility relation QP + P, = PQ + Q, and C is the initial data where

C' is an orthogonal matriz. Let Og C O. If u: Oy — Gl(n) is a solution of

;

Uy = u(x,y)P(x,y),
uy = u(r,y)Q(z,y),

U(IU) ?JO) = Ca

\

then u(x,y) is an orthogonal matrixz for all (z,y) € Oy



Proof. Let &(x,y) = u(z,y)Tu(z,y). Since the initial data is an orthogonal

matrix, we have

&(z0,y0) = u(wo, yo) u(wo, yo) = 1d.

Now,

& = (up)Tu+ulu, = (uP) u+ vl (uP) = PTuTu +uTuP = PTE +€P,
& = (uy)"u+uluy = (uQ) v+ u' (uQ) = QTulu+u'u@ = QT+ Q.
S(o, ¢ satisfies
fz = PT& + §P7
& = Q¢ +€Q,

\f(fojyo) =1d

We also know that Id is a solution of the above system since Id, = 0 and
P'ld+1dP=P"+P=—-P+P=0.

Thus Id, = P7Id + IdP. Similarly, Q"1d 4+ IdQ = —Q + Q = 0 = Id, and
Id(xg,yo) = Id. So, by the uniqueness of solutions of the Frobenius Theorem,
Theorem , we get that € = Id, so uTu = Id and u is orthogonal for all
(x,y) € Oy. O



Example 3.1.6. Given cq > 0, consider the following PDE system

(
Uy = 2sinu,

— 1
u, = 5 sinu,

u(0,0) = co.

\

This is System from the Frobenius Theorem where A = 2sinu, B =

%sin u, and cg = po. Let’s check the compatibility relation. We have

. 1, .
A, +AB = cosusmu+2<:osu><581nu:2cosusmu7

. 1 . .
B,+B,A = cosusinu -+ §cosu X 2sinu = 2 coswusin u.

Hence, Ay + A,B = B, + B,A. Thus, by the Frobenius Theorem, Theorem
this system has a smooth solution. Now, let’s solve the system using

methods in Frobenius theorem’s proof. First, let’s solve the ODE

o .
% = 2sin«
a(0) = ¢

The equation o, = 2sinx is a separable ODE. Hence,

d
/ _a :/2d:c
sin o«

— —lIn|cesca+cotal =2z+c¢
1
csc o + cot o

. 622+c



1 sin o 2sin(§) cos(5)
e T S0 = = =
+ 1+ cosa 2cos(5)

sin « sin «

— tan(%) = €2x+c — % = tan_1(62x+0)

= tan(%)

— a(z) = 2tan" ().
But a(0) = ¢g, so 2tan~te¢ = ¢y and ¢ = In <tan %’) Finally, we have

a(z) = 2 tan™! <e2x+ln(tan %0)>_

Also, solving the separable ODE , we get

du 1
/sinu N /idy

— u(z,y) = 2tan"!(eth)
— u(z,0) = a(z)=2tan ()
— 2tan '(¢F) = 2tan"!(e*T)

= k =2z +c

¢
Hence, u(z,y) = 2tan~! <e%+2””+c) , where ¢ = In(tan 50) Since u is a solution

of , then

Uzy = (Uy)y = (2sinu), = 2u, cosu = 2 cos u(§ sinu) = cos usin u.



Thus, u satisfies the sine Gordon wave equation (SGE):
Ugy = SIN U COS U.

The previous example is a special case of the following theorem:

Theorem 3.1.7. (Theorem of Backlund) Given a smooth function q :
R?2 — R and r € R such that r # 0. The following system of PDE:

us = —qs + rsin(u — q),

up = q + *sin(u + q),

has a solution for u : R? — R if and only if q satisfies the sine Gordon wave
equation (SGE),

(st = SInqcosgq.
Moreover, the solution u is also a solution of the SGE.

Proof. Suppose that the system has a smooth solution v € C?, where C? is
the set of all functions which are twice differentiable and having all partial
derivatives continuous. Then, we have uy = u;s. Let’s calculate ug and wuy,.

We have

usg = (ug) = (—qs +rsin(u—q));
= —qs +1r(ug — q) cos(u — q)

= —qu+ r(% sin(u + q)) cos(u — q), (3.1.7)



1.
Uts = ('th>s = (qt + ; Sln(u + q))s
1
= (s + ;(us + QS) COS(U' + Q)

= Qs+ %(r sin(u — q)) cos(u + q). (3.1.8)
Now, ug = uys gives that
—qst + sin(u + q) cos(u — q) = qus + sin(u — q) cos(u + q).
Thus,

2¢ss = sin(u+ q)cos(u — q) — sin(u — q) cos(u + q)

= sin(u+q —u+ q) = sin(2¢q) = 2singcosq.

Finally, g5 = sinqcosq which means that ¢ satisfies the SGE. Now, adding
Equation (3.1.7) to Equation (3.1.8)) gives that

Ugs + ug = sin(u + q) cos(u — ¢) + sin(u — ¢) cos(u + q)
= 2wy, = sin(u+ ¢+ u — q) = sin(2u) = 2sinucosu

—> U = SIN U COS U.

So u satisfies also the SGE. O

The above theorem states that if we know one solution ¢ of the SGE, we
can solve the previous PDE system to get a family of solutions of the SGE
(one for each r). Now, ¢ = 0 is a trivial solution of the SGE. Theorem [3.1.7]



states that the PDE system can be solved for u with ¢ = 0.

Ug = TSinu

1

up = - sinu

This is solved exactly like example where r = 2 = u(s, ) = 2tan"(e"*+7).

u are also solutions of the SGE.

3.2 Line of Curvature Coordinates

In this section, we will introduce line of curvature coordinates. We will also
show how this type of coordinates helps in facilitating the calculation of the

first and second fundamental forms of a parametrized surface.

Definition 3.2.1. A parametrized surface f : O — R3 is said to be parametrized
by line of curvature coordinates if and only if g1 = lio = 0. It means that
it is parametrized by line of curvature coordinates if and only if the first and
second fundamental forms are in diagonal form, i.e, I = g1dax? + goodx3 and

I = llldx% + lggdflf%.

For surfaces parametrized by line of curvature coordinates, we have that

d—goipo Lo e 0 [ 0} e O [l 0 G
g1g22 | g1 0 Iy 0 g% 0 Iy 0l
inci : lll lgg

Then the principal curvatures are given by k; = — and ky = —. The

g11 922

Linlao
911922

Gaussian curvature is given by K = kiky = and the mean curvature by



1
H=k +hy=—+2

g11 922.

Example 3.2.2. Let u : [a,b] — R be a smooth function and consider the
surface given by

f(y,0) = (u(y)sinh, 1,u'(y) cos ).

We have

fy = (W (y)sind, 1,4/ (y) cos ),

fo = (u(y) cos 0,0, —u(y) sinf),

N = fyXxfo :( —sin6 u’ —cos f )
||fy><f9H \/1+(u’)27 \/1+(u’)2’ \/l—l—(u’)Q )

Fuy = (u"(y) sin B, 0,u"(y) cos ),

foo = (—u(y) sin 6,0, —u(y) cos b),
fyo = (u/(y) cos 0,0, —u'(y) sin 0),
g = (fy, fy) = (W'(¥))* + 1,

922 = (fo. fo) = (u())*,

g12 = (fy, fo) =0,

i = (N, fyy> = Iqi/((ii)/)f
lay = (N, foo) = %,

\l12 - <Na fy9> =0

Then, f(y,0) is parametrized by line of curvature coordinates since lyy = g12 =

0.

Proposition 3.2.3. For a surface, assume that the principal curvatures ki(po) #



ka(po) for some py € O. Then, 35 > 0 such that B(po,d) C O where B(po,0)

is an open ball of center py and radius § and ky(p) # k2(p) for all p € B(po,9).

Proof. The Gaussian and mean curvatures H and K are smooth maps where

H =k + ky and K = kiky. Then, k; and ks, are solutions of the equation

> — Hr+ K =0.

H+\/H2—4Kandk  H-VH?—4K
2 27 2

are two distinct roots if and only if H* — 4K = u > 0. Now, since ki(py) #

We calulate A = H?—4K. Then, k; =

ka(po), we get u(po) > 0. Also, u is continuous at py since H and K are

smooth, then

Ve> 0,36 >0/|lp—poll <6 = |u(p) —u(po)| <e.

Take € = u(go), then @ <u(p) < M' But u(po) > 0, then u(p) > 0
for all p € B(py,d). Therefore, ki(p) # ko(p) for all p € B(py, 6). H

Remark A smooth map V : O — R? is called a tangent vector field of the

parametrized surface f: O — R? if v(p) € T}, for all p € O.

Proposition 3.2.4. Let f : O — R? be a parametrized surface. Assume
that ky(p) # ka(p) for all p € O. There exists smooth orthonormal tangent
vector fields ey, ey of f. Moreover, e1(p) and ex(p) are eigenvectors for the

shape operator S, for allp € O.

Remark We call f(pg) an umbilic point of the parametrized surface f : O —

R? if k1(po) = ka(po).



3.3 The Gauss-Codazzi Equations in Line of
Curvature Coordinates

Suppose f : O — R? is a surface parametrized by line of curvature co-
ordinates, then gi1o = (fuy, fo,) = 0 and lis = (fr,2,, N) = 0. We define

Ay, Ay, 11,19 as follows:

( (

911 = (far, for) = A A= /911

922 = (fays fo) = A% Ap = vV 922

g

b = (farz, N) = 1A rL = 2—1

\l22:<fx212’N>:r2A2 \7"2:2_2
Set e = %, €y = %, and e = N. The frame {ey, 5, €3} is an orthonormal
1 2

moving frame on f. Then, any vector v € R3 can be written as a linear

combination of eq, ey, and es.

v = aje; + ages + ages = (v,e1)e; + (v, ea)ex + (v, e3)es.

Now, since (€1)z,, (€1)es, (€2)a1> (€2)y, (€3)z,, and (e3),, belong to R, we can

write them as a linear combination of eq, ey, and es.

(

(€1)z; = P11€1 + P21€2 + psies,

9 (€2)s; = P12€1 + P22 + Dazes,

(€3)e; = P13€1 + pases + pPsses,

\



.

(€1)zs = qr1€1 + @212 + g31€3,

(€2)z, = qr2€1 + q22€2 + ¢32€3,

\ (€3)zs = q13€1 + Q23€2 + q3ses,

where p;; = ((€j)z,,€) and ¢;; = ((€j)ay,€i). The matrices P = (p;;) and

Q = (g;j) are skew symmetric since

pij + 0ji = ((€j)ar, €:) + ((€i)ar, €5) = (&), €i)a; = 0.

Similarly, ¢;; = —g;;. Thus, we have
0 P12 D13 0 d12 13
P=1|-po 0 po and Q=1—q2 0 g
—p13 —p23 O —qi3 —q3 0
Now,

P2 = {(€2)z,,€1) = <<&> &> _ <fw2:r1  fea(A2)ay &>

A2 a:17 Al A2 A% 7 Al
<fa:2x1af331> . (A2)961 <f f > _ %<fﬂ717f902>9&2 _ %(Al)ig _ Al(A1>.Z‘2
A A, AZA VR A A, A A, A A,
Hence,
(Al)m




P = @) = (52), ) = (B - B w)

<f$15617 N> (Al)m TlAl

= — T 7N g = s

Al A% <f 1 > Al Tl

fxz fa: x f:c (AQ)z
- T19 - _z7N>:< 21— - 17N>
pr = (e es) = () i
<f:cza:1v N) (A2)J:1
— 2o, NY = 0.
) )
Ag)e
Similarly, g1 = —( j) L, q31 = 0, and g3p = 79, hence
1
0 W= 0 —Ya g
P = —% 0 0 and Q = (Aj)lﬂq 0 —ry

T 0 0 0 79 0
.
(e1)ey = —22e; + ries
(€2)ay = Lz2ey
(63):1:1 —Trex

Thus,
A2)a,

(e1)ay = 2%y
(€2)a, = —%61 + ra€3
(63)x2 = —T9€9.

\

In matrix form we have,

(617 €2, 63)1‘1 - (ela €2, 63)P

(61762, e3)$2 = (61; 62&3)@



From Proposition |3.1.4) we have that PQ — QP = P,, — Q.,. Set p =

(A1>ZE2

Ay
Ag)y
and ¢ = —%, we get
0 p —n 0 ¢ 0 0 q 0 0 p —nm
PQ-QP = | —p 0 0 —q 0 —ry| = |—q¢ 0 —mr -p 0 O
T1 0 0 0 T2 0 0 T2 0 T1 0 0
—pq —Tir2 —Tap —pq 0 0 —rmry —7rop
= 0  —pg 0O | = | —mr2 —pg riq rreg 0 —rig
0 r1q 0 —T9p 0 0 rop 714 0
and
0 Pz, (_Tl)wz 0 qzy 0
P1‘2 - Ql”l = (_p>x2 0 0 - (_q)$1 0 (_TQ)Il
(7“1)$2 0 0 O (T2)x1 0
0 pl’z - qx1 (_Tl)xg
- Pz, + qzq 0 (r2)$1
(rl)IQ <_r2)x1 0
Since PQ — QQ = P,, — Q.,, we get
4
Doy = Gy = —T172, (r)ar = pra = (Y2)r,
A1 T A2 Tq . _
(B2, + (B2, =i, = (g = (1),
—pra = —(r1)e, (r2)ar = —qr1 = (U220
\ \




4

(%)@ + (%)I1 = —r179, (Gauss Equation)

== (1), = ((Aj‘);Q )ra, (Codazzi Equation)

(12)e, = ((Aj)l””l )r1.(Codazzi Equation)

\

This system is called the Gauss-Codazzi Equations. We have proved the fol-

lowing theorem:

Theorem 3.3.1. Let f : O — R? be a surface parametrized by line of cur-

[ l -
vature coordinates. Set Ay = \/g11, As = \/g22,71 = Aoy =2 ¢ = L’
A Ay A
ey = %, and es = N. Then Ay, As, 1, and ry satisfy the Gauss-Codazzi
2

equations and we have

( Ay 0 (Aj‘);” ol
(f.e1,e2,€3)0, = (e1,€2,€3) [ 0 —% 0 0
0 1 0 0
(3.3.1)
0 0 -“u o
(f,e1,€2,€3)z, = (€1,€2,€3) As % 0 —79
0 0 T9 0




3.4 Fundamental Theorem of Surfaces in Line
of Curvature Coordinates

The converse of Theorem B.3.1 is also true. It is known as the fundamental

theorem of surfaces in R? with respect to line of curvature coordinates.

Theorem 3.4.1. Suppose Ay, As, 11, and ry are smooth functions from O C
R? — R satisfying the Gauss-Codazzi equations with A; > 0 and Ay > 0.
Given py € O, yo € R3, and {vy,ve,v3} an orthonormal basis of R3, there

exists Oy C O such that pg € Oy, and there exists a unique solution

(f,e1,e2,e3): Og — (R3)4

of Equation satisfying the initial condition

(f, 61762763)(]90) = (y0>Ul,U2,U3)-

Also, f is a parametrized surface with

I = Aldx}+ Aidrs,

II = riAida? + roAydas.

Proof. From Proposition [3.1.4) Ay, Ay, r1, and ry satisfy the Gauss-Codazzi
equation if and only if we have the compatibility relation PQ—QP = P,,—Q.,.
From Frobenius Theorem, Theorem [3.1.2] this is equivalent to say that the



following system

(617 €2, 63)11 = (€1> €2, 63)P

(ela €2, 63)382 - (617 €2, 63)Q

is solvable. Let (ey, ez, e3) be the solution with initial data (eq,es, e3)(py) =
(v1,v9,v3). Since the initial data (vy,vs,v3) is orthogonal, O C R? and P,Q
are smooth maps such that PT = —P, QT = —Q and PQ — QP = P,, — Q.,,
then by Proposition [3.1.5)), the solution (eq, €2, e3)(p) of the above system is

an orthogonal matrix for all p € O. Now, to construct f, we need to solve

f:c1 = A1€1
(3.4.1)

f:EQ = A2€2

First, let us check that the System [3.1.5|is solvable. We have

frree = (Ar€1)zy = (A1)ze1 + Ai(€1)a,

A2)uy
= (Al)acgel + AI%QQ = (A1>:C261 + (A2)$1€2
1

frors = (A2€2)z, = (A2)s, €2 + As(€a)s,

A1)y
= (AQ)QCleQ + AQ%el == (Ag)xleg + (A1>w261
2

Thus, fe,2, = frsz, and the System (3.4.1)) is solvable. We can solve the System
by integration. From Theorem [3.3.1] it follows that (f, e1, €2, €3) is a solu-

tion of the System ({3.3.1)) with initial data (yo, v1, ve, v3), where (f, e1, ea, €3)(po) =

(Yo, v1,v2,v3). We need to check that f is a parametrized surface (In other



words, f;, and f,, are linearly independent). We have that f,, = Aje; and
fzy = Asgeg, then f,, and f,, are linearly independent. So, f is a parametrized
surface. From Theorem [3.3.1] e3 = N and hence g1 = A? and gg9 = A3 (since

Ay = /g1 and Ay = \/g22). Also, g12 = go1 = 0 (because f is parametrized

by line of curvature). Thus,
I = Aldx? + Ajdas.
We also have

b = (farzrr€3) = ((far)ers €3) = (A1) €1 + Ar(€1)ay, €3)

—(A -
= <A1(€1)x1,€3> = <A1 <<A—1)€2 +T1€3),€3> = <A17“1€3,€3> = Air.
2

Similarly, lo9 = Asrs.Moreover,

loy, = lip= <fx1x2a 63) = <(A1)96261 + (Az)xle% €3> = 0.

Finally, we get
II = Al’l“ldl'% + AQTde%.

[]

Proposition 3.4.2. Suppose f,g : O — R? are two surfaces parametrized

by line of curvature coordinates. Assume that f and g have the same first and



second fundamental forms given by

I = Aldx} + Aidrs,

IT = Ayrida? + Agrodas.

Then, there exists a rigid motion ¢ of R such that g = ¢ o f.

fﬂm f$2 fz1 X f362 gl“l
ey = ey = ——— G = ——, {& ==, and
Ay ? Ay ’ fol X szH 2 Ay &2 Ay

Fix py € O and let ¢(x) = Tz + b be the rigid motion such

Proof. Let e; = — Im

53 — gxl X giEQ
1921 X G
that ¢(po) = g(po) and T'(e;(po)) = &(po) for 1 <4 < 3. Then:

1. ¢o f and f have the same [ and I1.
2. The orthonormal frame for ¢ o f is (T'ey, Teq, Tes).

Therefore, (¢ o f,Tey,Tes, Tes) and (g, &1, s, &) are solutions of (3.3.1)) with

initial condition (g(po),&1(po),&2(po),&s(po)). But, by Frobenius Theorem,
Theorem [3.1.2] the solution is unique. Hence,

(¢ o fa T€1,T€2,T€3) = (g7£1a§2a§3)7

since T'ey = &1, Tes = &, and Tes = £3. This gives that ¢ o f = g. ]

3.5 The Gauss Theorem in Line of Curvature
Coordinates

Usually, we know that the Gaussian curvature K depends on both [ and I1.

The Gauss Theorem states that K can be calculated from I alone. This will



be shown first for surfaces parametrized by line of curvature coordinates.

Theorem 3.5.1. (Gauss Theorem in Line of Curvature Coordinates).
Let f : O — R? be a surface parametrized by line of curvature coordinates

and

I = Aldx} + Asdrs

11 = Aﬂ”ldl‘? + AQTQd:L‘g.

Then,

(Al):c (AQ)GL
< A22>1‘2+< All)xl

K= —
A1 A

Therefore, K can be computed from I alone.

Proof. We have

o det<l1]> o l11l22 . T1A1T2A2 r1T2

©det(gi)  giigee  AZAZ T AjAy

But from the Gauss-Codazzi equations, we have,

(A1)902 (AQ)wl
() - (45).

(Al)ﬂc (A2)ac
( A22)x2+< All)ajl

A1 A

rmre = -

Thus,

K =—




3.6 The Gauss-Codazzi Equations in Local Co-

ordinates

In this section, we will find the Gauss-Codazzi equations for any parametrized
surface f : O — U C R3. We use the frame (f,,, fs,, N), where N =
fml >< fa?z

—L— " _ is the unit normal vector. Since (fy,, fs,, N) is a basis for R3,
[ fzr X fas |

then the derivatives of f,,, f.,, and N can be written as a linear combination

of fi,, fzy, and N. Thus,

(f:):lafoaN)m = (fofIzaN)P?
(fwlvfﬂCQ?N)wz = (f1?17f$27N)Q7

(3.6.1)

where P = (p;;) and Q) = (g;;) are GI(3) valued maps. We have

(

(fer)zr = P1ufay + parfe, + P2 N,
(fa2)zr = Pr2fay + P22fe, + P32V,
Ny = p13fay + p23fe, + 33NN,

(for)ze = qufay + @21 fer + @ NN,

(fao)ze = Q12 foy + @2fzs + q52 N,

\N(EQ = Q13 fu; + @23 20 + @33N,



and we know that

gi1 = <fﬂc17fx1>a

g21 = J12 = <f:r:1>f:cz>a

g22 = <f:c2’f:£2>a

lll = <f:1:1:617N>7

l12 = l21 = <fac1:v2aN>7

122 - <fx1x27N>'

The goal is to express P and @ in terms of [;; and g;;. To do so, we need the

following propositions.

Proposition 3.6.1. Let V' be a vector space with an inner product (.,.). Let

{v1,v2, .., v} be a basis of V and g;; = (v;,v;). Let& € V such that§ = invi

and & = (&, v;). Then,

Proof. We have

T

X2

& = (6= (D au) -
=1

&1
&

&n

n

n n
E xj(%%‘) = E TiGi; = E [
j=1 j=1

=1

=1

where G = (g,5).



&1 € T &1
T x
Thus, & —a| ™ ana | 77| =g & . O
&n Ty, Ty &n

Proposition 3.6.2. The following statements are true:

1. P = (pij) and Q = (qij) from Proposition can be written in terms

of lij, gij, and the first partial derivatives of g;;.
2. The entries p;; and g;;, for 1 <1,5 <2, can be calculated from I.

Proof. 1. We know that f, ., = p11fe, + P21 fz, + P31 N, where,

(

P = <fr19ﬂ17f231>7
P21 = <fx1x17fx2>7

P31 = <lem17 N>’

and so on. We claim that (fe,2;, for), (faiz;» N)s (Nays fo;), and (N, V)
can be expressed in terms of g;;, l;;, and first partial derivatives of g;;.

To prove this, we proceed as follows:

1
Hence <facla:lafa:l> = %(gu)xl SlmllarIY7 5(9%)307 = <fa;la:];facl> NOWa



<f$i7 fz]> = gij, SO W€ have

(gij)ffi = <fmzwz>fw]>+<fwwf$]xz>
= (glj)fﬂj = <f$iwj7f$j> + <f90¢7f90j:vj>

Thus, we have

(glj)fm - %(gn)% - <f:Bz!Buf:DJ> + <fxwijl"z> - <fwszwij> = <f£z$uf$]>

By definition, (fs..;,N) = lj and (N, fo;) = —l. Also, clearly
<leaN> = 0 SO? <f£l?¢:t?j7f£tk>7 <fxixjaN>7 <NCCi7fSCj>7 a‘nd <NI17N> can

be written in terms of g;;, l;;, and the first partial derivatives of g;;.
guu g1z 0

. NOW, let G = gi12 goo O

0 0 1
By Proposition [3.6.1, we have

p

gt g 0 %(gll)xl %(gll)xz Iy
P = g% ¢2 0 (912)2, — %(911):@ %(922):“ —la | = G4
0 0 1 I l12 0
(3.6.2)
gt g o %(911)12 (912)as — %(922);51 —ly2
Q=192 g2 0| 592 3(922) i
\ 0 0 1 l12 la2 0



This proves the proposition.

O

The entries of P and () in terms of g;; and [;; are related to the so-called

1
Christofell symbols F?k = Egkm [ij, m], where:
e (g”) is the inverse matrix of (g;;).

o [ij, k] = Grij + Gjki — Gijk

(3.6.3)

Proof. From Proposition [3.6.2], we have

1 1
P11 = 911(5(911)x1> + 912<<912)x1 — 5(911)3;2)
1 1

= 5911911,1 + 912912,1 - 5912911,2
1 Ly I I
Iy = g ™[1,m] =g [11,1] + 59 °[11, 2]
2 2 2
1 1
= 5911911,1 + 5912 (921,1 + g12,1 — 911,2)
1 1

= 5911911,1 + 91291271 — 5912911,2



Thus, py; = I'};. In a similar way,

1y L 1 1y L
P12 = 29 (911)2s + 29 (922)2, = 29 gi12 + 29 22,1
1 1
Ty = sg"'121,1]+ -¢"[21,2]
2 2
1 1
= 5911(912,1 + 9112 — 9211) + 5912(922,1)
1y 1 1
= 29 J112 + 29 g22.1-
Thus, p12 = I'};. Now,
1
D1 = 5912911,1 + 922912,1 - fra012922911,2
1 1
I = %', 1]+ -¢™[11,2]
2 2
1 1 1 9
= 59 gi1,1 + 59 (G211 + G121 — 911,2)
1 1
= 5912911,1 + 922912,1 - 5922911,2-

Thus, py; = I'?,. Also,

1 1
D22 = 5912911,2 + 5922922,1
1 1 1 1
F§1 = 5921[217 1] + 5922[217 2] = 5921911,2 + 5922922,1-

Thus, pay = I'3; and hence p;; = ') for 1 < i, < 2. Moreover,

_ 1 11 1 12
Gt = 39 911,2+29 922,1
1 I L 19 19 L LIRE
T = 59 12,1+ 5979 7[12,2] = 597 guz + 59 g1



Thus, q; = I'{,. Also,

1 1

g2 = 911912,2 - 5911922,1 + 5912922,2
1 1
Ly = 5971221+ 597[22,2)
— l 11( _ 1 12
= 29 G122 + 9212 — g221) + 29 9222
1 1
= 911912,2 — 5911922,1 + 5912922,2-
Thus, q12 = I's,. Now,
1y 1 99
g1 = 29 Ji12 + 29 G221
1 1 1 1
I, = =¢®'[12,1] + -¢%[12,2] = -¢9%g112 + 597 922.1-
2 2 2 2
Thus, go; = I'%,. Also,
12 L L o
G2 = G G122 — 59 9221 +§9 22,2
1 1
P§2 = §g21[227 1] + §g22[227 2]
_ 1 21( _ 1 22
= 29 G122 + 212 — g221) + 29 9222
1 1
= 912912,2 - 5912922,1 + 5922922,2-

Thus, gap = ['%, and hence q;; = I, for 1 < i, < 2. Note that: ¢;; = po and

421 = P22- [
Theorem 3.6.4. (The Fundamental Theorem of Surfaces in R?).

o Let f: O CR* — R3 be a parametrized surface with g;; and l;; being

the coefficients of I and I1. Let P and Q) be smooth G1(3)-valued maps



defined in terms of gi; and l;; as in Proposition [3.6.4 Then, P and Q

satisfy

(Already proved in Proposition M)

o Conversely, let O be open in R?. Let g;j,l;; : O — GI(2) be smooth
maps such that (g;;) is positive definite and (l;;) is symmetric. Also,
P,Q : U — GI(3) are the maps defined as in Proposition . Suppose
P and Q satisfy P,, — Q., = [P,Q] = PQ — QP. Let (z9,29) € O and
po € R® with {uy,us,us} a basis for R such that (u;,u;) = g;; (29, 239)
and (u;,uz) = 0 for 1 < i,5 < 2. Then, there exists Oy C O open of

0 .0

(29, 29) and a unique immersion f : Oy — R?® such that f maps Oy

homeomorphically to f(Oy) and
1. I and I1 of f(Oy) are given by (g;;) and (1;;) respectively.
2. f(x(l)>$(2)) = Do and f(l'(l],fo) = U fO’f’i = 1a 2.

Proof. Assume P,,—Q,, = [P, Q]. Then, by the Frobenius Theorem, Theorem
3.1.2 the system:

;

(Uh V2, U3)a71 - (Uly V2, U3)P
(vb V2, /U3)x2 = (Ul, Vg, 'Ug)Q (365)

(Uh Vo, 'U3)(I'(1], xg) - (U’h Usa, u3)

\



has a unique local solution. We want to solve

/

fz1 = 1,

fay = V2, (3.6.6)

f(x(1)7 iEg) = Do-

\

The compatibility relation is f, 2, = fryz,- We have

(U1>l"2 = (U2)1£17
3
(V1)zy = Z qj1V; = q11V1 + q21V2 + q31V3,
j=1
3
(v2)sy, = ijzvj = P12V1 + P22V2 + P320s3.
=1

From Proposition [3.6.2, ¢i1 = pi2, ¢a1 = pa2, and gs1 = psa. Then, (v1),, =
(v2)z,. Therefore, there exists a unique solution f for the System . We
still need to show that f is an immersion satisfying 1 and 2. We need to show
that vs L f, |lvs|| = 1, {fe,, fa;) = Gij> and ((v3)a,, fo;) = —lij. First, let’s show
g G2 0

that the 3 x 3 matrix ¢ = ({v;,v;)) is equal to the matrix G = | g1 gy 0

0 0 1



We have

(Vi v)er = ((Vi)ar, 05) + (Vi, (V5)a,)
= (P1V1 + P2V2 + P33, ;) + (U5, P1;V1 + P2jva + P3;jvs)
= P191j + D292 + P3i93j + D393 + P2;gi2 + D191
= (GP)ji+ (GP)y

= (GP+(GP)");;.

Now, from Proposition [3.6.2, P = G7'A;, then GP = G(G™'A;) = A; and

5(g11)z, 5(g11)e —Inn 5(011)er (912)er — 5(911)ay
A+ AF{ - (912)9:1 - %(911):@ %(922)51:1 =l | T %(911):02 %(922)961
111 l12 0 _lll _ll2

(gll)zl (912)1‘1 0
- (912)371 (922)m1 0 - Gl‘l .
0 0 0

Thus, GP + (GP)T = G,, and so ¢,, = G,,. Similarly, ¢,, = G,,, but
P20, 29) = G(29, 29), so ¢ = G. In other words, (fa,, fz,) = gij and (fa,, v3) =
0. Thus,

1. f., and f,, are linearly independent, and so f is an immersion.
2. wg is the unit normal to f.

3. The first fundamental form I of f is I = ) g;;dx;dz;.



Now, let’s find the second fundamental form I of f. We have

<_<U3)361 ) Uj>

1
where 0;; =

0

l15. Similarly, (—

= (—p13v1 — P23va — P33V3, Vj)

= (111911 + l12912)<7}17?}j> + (111912 + 112922)@2, v;) +0
= (lng" + h2g")g1; + (l1ng" + 11297%) 92

= lu(g"g1; + 9"925) + la(9"2 915 + 97 92)

= 111055 + L1209,

for j=1

for j#1
(V2)ay,v;) = laj. Therefore, I = > l;;dx;dz;. The System

. Then, <—(’U3>I1,Ul> = 111 and <—(03)11,U2> =

(3.6.4) with P and @ defined by (3.6.2)) is called the system of Gauss-Codazzi

equations for the surface f(O), which is a second order PDE with 9 equations

for 6 functions g;; and [;;. Also, from Propositions (3.6.1)), (3.6.2), and (3.6.3)),

we get the following

2 2
Joiw = ijiij +laN = Zl—\gl‘fﬁﬁj + LN,
j=1 j=1

2 2
fmiarz = Z jSfmj + 1N = Z F§2f$]’ +liaN.
j=1 Jj=1

So, we have,

J



Proposition 3.6.5. Let f : O — R® be a local coordinate system of an
embedded surface M in R3, and a(t) = f(x1(y),z2(t)). Then, a satisfies the
geodesic Equation if and only if & (t) is normal to M at «o(t) for all t.

Proof. Assume « satisfies Equation [3.6.7, then we have

2
r 2: /
Q - fﬂﬂixh
i=1
2

2
= Z Foiwg @i + foul = Z Ul fantiay + 1N + fo,af
b=l ij k=1
2
= Z(Tf;m;x; + &) fa, + ;N =0+ 1;;N = 1;;N

i,j=1

Thus, o” and N are collinear <= «”(t) is normal to M at «(t) for all t. O

3.7 The Gauss Theorem

In this section, we will state and prove the Gauss Theorem which revolves
around being able to find the Gaussian curvature using only the First Funda-

mental Form of a surface in R?. We recall that:

o P, — Q. = PQ — QP is the Gauss Codazzi equation for a surface M
in R3.

e The Gaussian curvature is given by:

K- liloy — 1, _ det(l;;)
g11922 — 9o det(gi;)

Theorem 3.7.1. (The Gauss Theorem). The Gaussian curvature of a



surface in R® can be computed from the first fundamental form.

Proof. Let’s take the 1,2 entry of P,, — @Q,, and the 1,2 entry of PQ) — QP =
P,, — Q.. The 1,2 entry of PQ — QP is

P11di2 + P12ga2 + D132 — (quib12 + Q12P22 + qi3ps2) = Zpquj'z - Z q1Dj2

The 1,2 entry of P,, — Q., is (p12)s, — (¢12)z,- So we have,

(P12)2s — (@12)s Zpqujz quy Pia-

It can be also written as

2
(p12) Q12 Z P1jq52 — Q1jpj2) = P13432 — q13P32-
7j=1

Now from Proposition [3.6.2, we have

P13 = —gllln - 912l12
q13 = —gllllz - 912l22
P32 = lia

q32 = lao




Thus,

WE

(pIQ)IEQ - (q12)301 - (p1ij2 —q15 — pj2)

j=1
= (—911111 - 912112)122 + (911112 + 912l22)l12

= —g" il + "M lislis = —gll(llllgg - lfg)

= —911(911922 - 9%2)K>

lilyy — 12
where K = —— 2212 Then, K can be written purely in terms of g;; and
911922 — Ji2

its derivatives. In fact,

2
K liloy — 13, _ (P12)2s — (@12)2n — 22521 (P15952 — Q1pj2)
911922 — 91 —g" (911922 — 97)

The equation given by

2

(Pr12)es — (@12)ay — > (Pr@52 — @1jpjn) = —9" (911922 — 970) K
j=1

is called the Gauss equation.

Remark A geometric quantity on an embedded surface M in R? is called
intrinsic if it only depends on the first fundamental form. Otherwise, it is
called extrinsic (depending on both I and /7). The Gaussian curvature and

geodesics are intrinsic, whereas the mean curvature is extrinsic.

Remark If ¢ : My — M; is a diffeomorphism and f(z1,z9) is a local coor-

dinate system on M, then ¢ o f(z1,x2) is a local coordinate system on M,.



The diffeomorphism ¢ is an isometry if the first fundamental forms for M; and

M, are the same written in terms of dry and dxs. In particular:

1. ¢ preserves arc length. In other words, the arc length of the curve ¢(«)

is the same as that of the curve «.

2. ¢ preserves angles. In other words, the angle between the curves ¢(«)

and ¢(() is the same as the angle between the curves a and .

3. ¢ maps geodesics to geodesics.

3.8 The Gauss-Codazzi Equations in Orthog-
onal Coordinates

If the local coordinates x; and z, are orthogonal (i.e, g2 = 0), then the
Gauss-Codazzi equations P, — Q,, = [P, Q)] becomes much simpler. Instead
of putting g2 = 0 in P,, — Q., = [P, @], we directly derive the Gauss Codazzi
equation using an orthonormal moving frame. We write: g1 = A2, gy = A2,
Jo o
and =0. Let e; = =%, g = =2
g12 1 A, 2 A,

orthogonal moving frame on M. We have

, and e3 = N. Then, (e,es,e3) is an

(617 €2, 63)I1 == (617 €2, 63)ﬁ

(61762763)12 = (61762763)62

Since (ey, ey, €3) is orthogonal, then P and Q are skew symmetric. Also, Dij =

((€j)ar,€:) and Gij = ((€j)xy, €i). Now, we need to calculate the coefficients of



po1 = ((e1)er,€2) = <(%>‘“’%> - <f2fl’%>

<fz1x1>fxz> <fx1afz2>x1 - <fx1>fxz:cz>

A1 Ay A A,
_ 0— %<fx1’f$1>w2 _ _(%A%)zz _ _(Al)ajg
A1 Ay A A A,

Similarly, we get the coefficients p;; and g;;.

P11 P12 P13 0 T —4
P = P21 P22 P3| T | — % 0 — 2_2
P31 P32 D33 % g_i 0
qu Q2 13 0 —% — ﬁ_z;
Q = Q21 Q22 Q23 | — % 0 _ fi—i
431 932 ¢33 ll—f Z—z 0

To get the Gauss-Codazzi equations of the surface parametrized by orthogonal

coordinates, we need to compute the 21%, 31, and 32" entry of

sz_Qm :[ﬁ7Q]

e The 215 entry is given by

(A)zy  (A2)a, - —5%2 + Ll

Ay A AlA




e The 31% entry is given by

(). -, -

e The 32'" entry:

(). (), -l - it

The first equation is called the Gauss-Codazzi equation. The Gaussian curva-

ture is given by ) "
1)zo _ 2)xq

- liilos — 13, A A

(A1Ag)2 Ay Ay

Now, we see that the Gauss Codazzi equation becomes much simpler in or-
thogonal coordinates. Can we always find local orthogonal coordinates on a
surface in R® ? We answer this question by the following theorem which we

state without a proof.

Theorem 3.8.1. Suppose f : O — R? is a surface. Let xy € O and Y1,Ys :
O — R3 be smooth maps such that Yi(zo) and Yi(zo) are linearly independent
and tangent to M = f(O) at f(xo). Then, there exist open subset Oy of O
such that o € O, open subset O; of R?, and a diffeomorphism h : O; — Oy

such that (f o h),, and (f o h),, are parallel to Yy o h and Yy o h respectively.

Remark The above theorem states that if we have two linearly independent
vector fields Y; and Y5 on a surface, then we can find a local coordinate system
®(y1,y2) such that ¢,, and ¢,, are parallel to Y; and Y5 respectively. Given

any local coordinate system f(xy,z5) on M, we can apply the Gram Schmidt



process to f;, and f,, to construct smooth orthonormal vector fields e; and

es where:

fe
€T = —,
V911
6y = \/gll(fm_;%fm)

V 911922 — 9%2

By Theorem , there exists new local coordinate system f(yl, Y2) so that
of f

e and —— are parallel to e; and ey. So, the first fundamental form written
I T

in this coordinate system has the form

gudy; + gaadys;.

However, in general we cannot find coordinate system f(y;,y2) so that e; and
ey are parallel to coordinate vector fields 5—yfl and 57’; because if we can, then

the first fundamental form of the surface is
I = dy? + dy3,

which implies that the Gaussian curvature of the surface must be 0.
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