Enhancing Component interactivity and
manageability using delegates

By
Fady S. FADDOUL

A thesis
submitted for partial fulfillment
of the requirements for the degree of
Masters in Computer Information System

Department of Computer Science
Faculty of Natural and Applied Sciences
Notre Dame University

N. D. U. LIBRARY
| 22 APR 2004
L

RECEIVED

March 2004

Lt

i X
. vE

F Y ot

Enhancing Component interactivity and
manageability using delegates

By
Fady S. FADDOUL

Approved

A

Khaldoun El-Khaldi: Assistant professor of Computer Science.
Advisor

Qi

Omar Rifi: Assistant professor of Computer Science.
Member of committee.

Ahmad Shahin: Assistant professor of Computer Science.
Member of committee.

gl o L_.o(

d Rached: Assistant professor of Mathematics.
Member of committee.

Date of Thesis Defense: March 24, 2004

Acknowledgements

Conducting a research requires a lot of guidance and supervision from
academic people and experts. Not quite that many helped me with this thesis ,
but | certainly couldn’t have done it alone. If | have inadvertently left someone
out below , | am really sorry and | thank him too.

For his helpful suggestions, attention and precious remarks throughout the
thesis, | would like to give a special thanks to DR Khaldoun Khaldi whose
expertise in component field was the corner stone behind the completion of
this thesis.

A special thanks to my parents who always supplied me and still supplying me
with all the needed resources to pursue my education. Without them |
wouldn’t have been given the opportunity to defend my thesis in front of the

jury.

A special thanks to NDU and USJ for supplying me with the scientific
background necessary to conduct a Masters Degree research. They are
doubtlessly 2 of the best universities in the Middle East.

Abstract

Software components enable practical reuse of software parts and
amortization of investments over multiple applications. Software components
are binary units of independent production, acquisition that are combined
together to form a functioning system

Building solution by combining bought and made components improves
quality and supports rapid development, leading to short time to market. For
these reasons, component technology is expected by many to be the corner
stone of software in the year to come.

Even though component software is a very promising way of building
applications, it is very naive to think that several components can be picked
from a catalog and wired together to form the final product. In real life
adopting a component approach poses several problems and rise several
important challenges. The aim of this thesis is to identify some of these
challenges and problems and to propose an adequate solution to reach a

successful final software.

Table of Contents:

Chapter I:

1.1 Component iNtrodUCHONccomeeeiiiiiiiiiiiiiiiiiiiieiiee e 1
1.2 Problem 0 SOIVEone oot ee e eisnaan oa 13
1.3 Thesis Background:-.:susiesvisesssrssisearssavansassosnsavassonsrossnensrnans 35
1.3.1 Component frameWOrKccoeuemmeeinieiiiiiiiiiiiiiie e 15
1.3.2 The .NET platform introduction...................ccceeeeeueerieeeinceenicniinennn. 15
1.3.3 .NET GSS0MBIIOS. .csuvivicisisvmmsnivonsaremsasnasenmsmuseasnsnanne sosn sassssans ook 20
1.3.4 Assembly Cachec.coueeuniinmiiiiiiiiieeciiiiiiviiiiiineenaeenaes 22
1.3.5 Procedure for creating a strong assembly Key...................c..c.o...... 23
1.3.6 Main differences between COM and .netobjects............................ 24

Chapter li:

2.1 Proposed solution template and implementation................................ 25
2.1.1 Procedure for achieving the thesis goalccccoiiiiinininnnnn. 26
2.1.1.1 Using a unique frameworK..c..ouuuriiuimimninrminnnnraniieciinnes 26
2.1.1.2 Creating a notification SyStem..................c.cooimriniieiiiinninenicennn 26
2.1.1.2.1 Remotely accessing assemblies...................cccoeoveimneriinenenin 30
2.1.1.3 Overcoming language boundary..................ccccoeeuieiimiiniiniincinn 31
2.1.1.4 Overcoming versioning Problem...................ccoocoevimiiiiinaniaanen 31
2.1.2 Implementation €Xample..................coveeiiiiniiiiiniiiiiieiiii e 32
2.1.3 Conclusions and reSulfs.ccoeueeeiiueeimenieeeireinianinaeranaenne 36
DB FULITB WOIK .. ciiivvvissvscivivivesssmanisssosanssnsnsesnronsranoesnssnosaamanancsssse 37
REOFEIEICES........o.eeeeeeeeeeeeeeeeeeeeeeee et esesasamaenna s e e an s aa s b e s s s eaan e 39
Appendix: Fragment of the SoUrce Code...................ccooverevneianamiannnnns 40

List of fiqures:

1 Isolated COMPONENLScoeeeeuemmeeieiiieeeieierrinnaasiaseseeasaaesnaanaees 28
2 Communicating COMPONENES................cuiirmmuiaiiiimimeneiiaineeennennaaeaes 28
3 LiStener MECRANISITveeeeeeeeeeeeeeeee e e s ts e 29
4 .NET searching mechanism for COmponents..................cccoeevemiiieeaen 31

il

Chapter I:

1.1 Component introduction:

Components are for composition:

One thing can be stated with certainty: components are for composition.
Composition enables prefabricated things to be reused by rearranging them in
every new composite. Beyond this trivial observation, much is unclear. Are
most current software abstraction not designed for composition as well? What
about reusable part of designs and architectures? Is reuse not the driving
factor behind most of compositional abstract? Reuse is a very broad term
covering the general concept of reusable asset. To become a reusable asset
it is not enough to start with a monolithic design of a complete solution and
then partition it into fragment. Instead, descriptions have to be generic to allow
for reuse in sufficiently many different contexts. Over generalized has to be
avoided to keep the description nimble for practical reasons. Software
components are binary units of independent production, acquisition and
deployment that interact to form a functional system [1]. Composite systems
composed of software components are called component software. The
requirement of independence and binary form rules out many software
abstractions, such as type declarations, C++ templates. Other abstractions
such as procedures, classes, modules or even entire applications could form
components as long as they remain in a binary form that remains
composable. Indeed, procedural libraries are the oldest example of software
components. Insisting on independence is essential to allow for multiple
independent vendors, for independent development and for robust integration.
What is the motive for producing, distributing buying or using software
components? What are the benefits of component software? The simplest

answer is: components are the way to go because all other engineering
disciplines introduced components as they became mature - and still use
them [1] [5].

The nature of software and deployable entities:

Software components were initially considered to be analogous to hardware
components in general and to integrated circuit in particular. Thus the term
software IC became fashionable. Also popular is the analogy between
software components and components of stereo equipment. More far fetched
are analogies with the field of mechanical and civil engineering: with gears,
nuts and bolts. However, comparison did not stop at engineering discipline
and continued on into areas as extreme as the world of toys, the Lego block
model of objects technology was conceived and marketed. These analogies
helped to sell the idea of software components by referring to other disciplines
and areas in which components technology has been is use for some time
and had begun to fulfill its promises [1] [5]. Software is different from products
in all other disciplines, rather than delivering a final product, delivery of
software means delivering the blue prints for products. Computers can be
seen as fully automatic factories that accept such blueprints and instantiate
them. It is important to distinguish between software and its instances, as it is
to distinguish between blueprints and products. Between plans and building
etc... The corresponding distinction between class and object is frequently
omitted, although there is occasional clarification of something as an ‘object
instance’ or an ‘object class’. The established practice of not distinguishing
between objects and classes leads to a number of some questionable
publications such as ‘The port class has 1024 virtual-circuit classes’. What the
author meant was the port has 1024 virtual circuit objects. In this case a port
should not be seen as a class but as a group and the virtual port not as a
subclass but as set of elements. From a purely formal point of view, there is
nothing that could be done with components that could not be done without

them. The differences are concepts such as reuse, time to market, quality and
viability [1].

Market versus technology:

Components are reusable assets. Compared with specific solutions to specific
problems, components need to be carefully generalized to enable reuse in a
variety of contexts. Solving a general problem rather than a specific one takes
more work. In addition because of the variety of deployment contexts, the
creation of a proper documentation, test suites, tutorial, online help texts, and
so one is more demanding for components than for a specialized solution.
Components are thus viable only if the investment in their creation is returned
as a result of their deployment [1]. If components are developed for in-house
use, such return on investment can be indirect via benefits of using
components rather than monolithic solutions. Such benefits are typically a
reduction in the time to market and increased manageability, maintainability,
configurability, flexibility and so on. Of course, return on investment can also
be sought by selling components. The direct sale of components to deploying
customers is one way, but it is not the only one. Another way is the coupling
of components and services: while the components may be cheap or free,
their effective use may require significant expertise that is offered as a
service. It is important to understand that software components as all
components in all areas need to be understood in a market embedding.
Components will exist only where components vendors and components
clients join forces to reach a critical mass. For the existence of software
components, software component technology needs to meet with proper
market. The technology can't evolve without a sufficiently strong market. Let
us consider a simple example: An engineering company works on a contract
basis for many clients in tuning software for engine control. Its clients have
varied requirements and traditionally each project started from scratch. Then
the company realized that most of its jobs had a lot in common, and so it
decided to extract and generalize a set of generic components [1]. This effort

sat firmly on the experience obtained with the concrete specific projects that it
has run before. Thus the new component set was slim, the efficiency of the
company increased quickly amortizing the initial investment in the component
development. In the meantime the company opened a subsidiary selling the
components to other engineering companies serving different regions. The
story of the above-mentioned company’s success reached a start-up
company; its engineers knew everything about componentware and decided
to start by designing the ultimate component collection before even
| approaching a single client. As first projects came in most of the generic
facilities of the components were not used at all. Also, the solutions it
eventually delivered required excessive amount of processing power and
computing resources. It turned out to be a fatal mistake to generalize before
solving some specific problems These 2 stories describe briefly and clearly
the 2 different sides of Component market ‘coin’. It also shows that
component technology requires experience before it is successfully

implemented on the market. Burning steps can be a fatal mistake [1] [5].

The importance of standards:

For a component to find any reasonable number of clients, it needs to have
requirements that can be expected to be widely supported. It also needs to
provide service can be expected be widely. How wide? The answer depends
on the domain addressed by a component. A component needs to hold a
significant portion of a market specific to its domain. If that market is truly
large, a small portion of it may be enough for economic viability. If the market
is only small, even the market in only small, then even a total monopoly may
not be enough to justify the investment. If a component viably addresses a
market segment covering a small number of clients, the component vendor
may exactly understand the individual clients needs and deployment
environments. The vendor then makes sure that the component will function
as required in these environments [1] [5]. As the number of potential uses and
clients grow, the chance that any component could possibly address all need

while being deployable in all environments decrease rapidly. The unavoidable
middle ground that both client and vendors need to seek is based on
environment standards. It is totally irrelevant whether such a standard has
been approved by a regular standardization body. The most successful
standards have been created where and when needed by those parties who
needed them. For software components, the need for standards was
recognized a long time ago. One approach is to build working markets first,
followed by the formulation and publications of standards. In the software
component world, Microsoft (COM, OLE, ActiveX, and COM+) is one player
following this approach- Another approach is to build standards first then to
build the market; the prime player in this arena is Object Management Group
(OMG). Where markets are created first, working products needs to come
before establishing standards. Products using Adhoc solution may be sold
before fully understanding of all ramifications is reached. To upgrade to better
solutions without losing the established based of customers, products need to
be evolved carefully. Almost all successful standards emerged this way [1].

Component standards:

Who will win the standardization race in component technology? Interestingly,
there is no need for a single winner. As long as market shares remain large
enough, multiple standards can coexist and compete. Even in highly mature
engineering discipline there are a number of alternative standards for a given
situation. With a slowly developing maturity of software components comes a
slow liberation from poor objects [1]. It is too simplistic to assume that
components are simply selected from a catalog, wired together and magic
happens. In reality, the disciplined interplay of component is one of the
hardest problems of software engineering today. Question arise about how
can the abstract interaction of components be described, or how can
performance be guaranteed in an heterogeneous system composed of
different parts coming from different places. A particular powerful approach is
beginning to take shape — that of component frameworks. A component

framework is a set of interfaces and rules of interactions that govern how
components plugged into the framework may interact. Microsoft .Net
component framework is an example of how components interact efficiently
together for an optimum performance [1].

More about components:

The characteristics properties of a component are:

A component is a unit of independent depioyment
A component is a unit of third-party composition
A component has no persistent state [1] [5].

These properties have several implications: For a component to be
independently deployable, the component needs to be very well separated
from its environment and from other components: component software
therefore encapsulates its constituent features. Also it is a unit of deployment;
a component will never be deployed partially. In this context, a third party is
one that cannot be expected to have access to the constructions details of all
the components involved [1]. For a component to be composable with other
components by such a third party, it needs to be sufficiently self-contained.
Also it needs to come with clear specifications of what it requires and what it
provides. In other words a component needs to encapsulate its
implementation and interact with its environment through well-defined
interface. Finally for a component not to have a persistent state, it is required
that the component cannot be distinguished from copies of its own. Possible
exceptions for this rule are attributes not contributing to the component
functionality, such as serial numbers used for accounting. Not having state a
component can be loaded into an activated into a particular system [1] [5]. But
is make very little sense to have multiple copies. In other words, in any given
process, there will be at most one copy of a particular component. In many
current approaches, components are heavy weights units with exactly one

instance in a system. For example, a database server could be a component;
the database server together with the database might be seen as a module
with global state. According to the above definition, this module is not a
component. Instead the database server is and it supports a single instance:
the database object [1].

Objects:

The notion of instantiation leads to the notion of objects. The characteristics

properties of objects are:

An object is a unit of instantiation; it has a unique identity
An object has a state
An object encapsulates its state and behavior [1] [5].

A number of objects properties directly follow. Because an object is a unit of
instantiation, object can’t be partially instantiated. Since an object has an
individual state, it also has a unique identity that identifies the object despite
state changes for its entire lifetime. As objects get instantiate, there needs to
be a plan that describes the initial state and behavior. Such plan may be
explicitly available and it is called class. The newly created object needs to be
set to an initial state. The initial state needs to be valid state of the
constructed object. But it may also depend on parameters specified by the
client asking for a new object. The code required to control object creation

and instantiation can be a static procedure usually called a constructor [1].

Components and objects:

A component is likely to come to life through objects and therefore would
normally consist of one or more classes. However there is no need for a
component to contain classes only, or even to contain classes at all. Instead a
component could contain traditional procedures or even static variables and

declarations. A component may contain multiple classes, but a class is
necessarily confined to be part of a single component. Partial deployment of a
class wouldnt normally make sense. The superclass of a class do not
necessarily need to reside in the same component that the class itself [1].
Where a class has a superclass in another component, the inheritance
relation between these 2 classes crosses components boundaries. Whether
or not inheritance across component is a good thing is the focus of a heated
debate between different schools of thought [1] [5].

WhiteBox versus blackbox:

Blackbox and whitebox abstraction refer to the visibility of an implementation
behind its interface. In an ideal blackbox abstraction, no details beyond the
interface are known by the client. In a whitebox abstraction, the interface may
still enforce encapsulation and limit what clients can do, however the
implementation of a whitebox is fully available and can be studied by the
client. Grayboxes are those that reveal a controlled part of their
implementation [1]. Blackbox reuse refers to the concept of reusing
implementation without relying on anything but their interfaces. In contrast,
whitebox reuse refers to using a software fragment while relying on the
understanding gained from studying the actual implementation. Most class
libraries and frameworks and delivered in source form, and applications
developers study the classes implementation to understand what a subclass
can or has to do [1].

Interfaces:

An interface may be defined as a component access point. It allows the client
to access the service provided by the component. Normally a component will
have multiple interfaces corresponding to different access points. Each
access point may provide a different service, catering for a different client
needs. While designing an interface the economy of scale has to be kept in

mind. A component can have multiple interfaces, each representing a service
that the component offers. Some of the offered services may be less popular
than others, but if none is popular and the particular combination of offered
service is not popular either, the component has no market [5].

Explicit content dependencies:

Beside the specification of provided interfaces, the above definition of
components also requires components to specify their needs. In other words,
the definition requires specifications of what the deployment environment will
need to provide the functionality of the component. These needs are called
context dependencies. In reality there are several component words that
partially coexist and partially compete: For example today there are 3 majors’
component worlds emerging: OMG’s CORBA, Sun’s Java, and Microsoft's
Com and recently the .NET framework. Just as the markets have so far
tolerated a surprising multitude of operating systems, there will be room for
multiple component words. CORBA and Java component are system
independent; they can run of various operating systems. Microsoft COM and
COM+ can only run in a window environment. . NET components require
.NET framework to be installed as part of their dependency system [1].

Horizontal versus vertical markets:

When aiming for the formation of standards that covers all areas that
represents sufficiently large markets it is useful to distinguish standards for
horizontal and vertical markets. A horizontal market sector cuts through all or
many of different market domains. ; It affects all or most clients and providers.
A vertical market sector is specific to a particular domain and thus addresses
a much smaller number of clients and providers [1]. For example, the Internet
and World Wide Web standards are both addressing horizontal market
sectors. In contrast, standards for the medical radiology sector address a

narrow horizontal vertical market. Standardization is hard in horizontal market

sectors. If a service is relevant to almost everyone, the length of the wish list
tends to be excessive. Surprisingly, standardization in vertical sectors is just
as difficult as it is in horizontal market sectors, but for different reasons. To
justify the investment the majority of the vertical market should purchase the
component [1] [5].

Interfaces as contracts:

A useful way to view interface is a contracts between a client of an interface
and the provider of the interface. The contract states what the client needs to
do to use the interface. It also states what the provider has to implement to
meet the service promised by the interface. The 2 sides of the contract can be
captured by specifying pre and post conditions for the operation, the client has
to establish the pre condition before calling the operation and the provider can
rely on the precondition being met whenever the operation is called. The
provider has to establish the postcondition before returning to the client and
the client can rely on the postcondition being met whenever the call to the
operation returns [1].

Contracts and non-functional requirements:

As long as an implementation respects its contracts, revisions pass unnoticed
by clients. It is worth noting that typical contemporary contracts often exclude
precise performance requirements. However, even for simple procedural
libraries a new release adhering to the original contract but changing
performance can break clients. Consider a math library that is used by an
animation package. Next, the math library is improved to deliver more
accurate results, but at lower average speed. This improvement turns out to
break the animation package, which now fails to deliver the required number
of frames per second [1]. Take an example from the current practice that
Swiss banks use when subcontracting a component to a third party. The
contractual specifications consist of the functional aspects: input — output

10

parameters, pre and post conditions — but also a so-called service level. The
service level covers guarantees regarding availability, mean time between
failures, mean time to repair, throughput latency etc... Failure to treat the
service level is treated on the same grounds as wrong results: the component
broke its contract. It can be expected that this practice of including non-
functional specifications into a contract and monitoring them strictly will
become more widely popular in the future [1].

Component usefulness:

A component may be viewed as:

Unit of abstraction: Abstraction is a very powerful tool available to a
software engineer. Abstraction aims at reducing details making the thing that
has been subjected to abstraction simpler to handle. The main benefit of an
abstraction is the design expertise embodied in it, ready for reuse. However
from a software point of view, the hardest design problem is how abstractions
such as objects should interact [1].

Unit of accounting: In large systems, as are typical for enterprise solutions,
the actual cost incurred by individual parts of a system and their use may
need to be monitored. It thus becomes important to partition a system into
units of accounting. As components are units of deployment, it makes sense
to also make them units of accounting. In this way it becomes possible to link
costs and benefits to acquired components [1].

Unit of compilation: compilation is a quite fundamental aspect in computing.
Incremental compilation can speed up the edit — compile — link — run cycle
considerably. In a component software world, complete application no longer
exist and thus the application as a unit of compilation is not feasible. To
enable global optimizations, compilation units should be as large as practically
feasible; components are the best upper limit [1].

11

Unit of delivery: Today, applications and sometimes components are the
typical units of delivery. Individual objects are rarely worth the administrative
effort and cost of delivery. Individual classes are also rarely sufficiently self-
contained to allow for separate deployment. In a system in which classes are
the only structuring facilities, it becomes very difficult to extract and package a
suitable subset of classes; component packaging seems to be a better option

[11.

Units of dispute: If a system composed of several components fails,
component vendors tend to blame each other for the problem. To minimize
this undesirable effect, it is vital that error remains contained in an individual
component. This means that they should not endanger the system as a whole
(bug containment). Languages either prevent errors or allow the component
that caused the error that occurred to be pinpointed exactly. In a system
composed of independently developed, these help clients to find out which
vendor's software has failed. If a component identity could not be clearly
determined, it would become very difficult if not impossible to find out which

vendor’s software is culprit [1].

Unit of extension: A component may not provide completely new
functionality, but instead extend existing functionality, the coupling between
the objects forming an extension is tighter that between extending and
extended components [1].

12

1.2 Problem to Solve:

Components are a very hot topic in today’s business computer. They are
important in both technical and management fields since they promise to cut
expenses, distribute the right piece of work to the right people and
considerably increase the success rate of a product. This is the bright side of
the story because in reality implementing a component approach poses
several problems and challenges. The purpose of this thesis is to discuss
some of these problems and to find a satisfying implementation to solve them.
My proposed solution can be used as a template to build component oriented
application in various fields.

Components are units of code written and compiled by several third parties
and assembled in the main product. It is obvious that from such fact will derive
coordination problems especially in a multi thread environment such as
Windows, UNIX, LINUX etc. To solve this problem a technique should be
found to enable the component to periodically send information from the
component side to the client side.

The relation between the component and its container is dynamic and
therefore can’t be determined during the design phase of the components. For
a component builder, it is impossible to determine when the container will
require a service in advance, or a modification of the internal status of his
object. Such information can only be known during runtime mode. To solve
this problem a technique should be found to enable the client to dynamically
interfere with the contained object and to change its internal status on

demand.

Extending a component requires that the language used to build the original
component be the same that the language that will be used for extending it.

13

This handicap reduces considerably software flexibility and binds the
component to a single language. By using the cross platform technique
recently introduced to the market a solution to this problem can be found.

Introducing a new version of a Com component sometimes causes confusion
because applications relying on the previous version will fails to access the
new version. This problem can be solved by using the features of the global
assembly cache recently introduced to the market. It allows several versions

of the same components to coexist with no conflict at all.

14

1.3 Thesis Background:

1.3.1 Component framework:

Component frameworks are the most important step to lift component
software off the ground. Most current emphasis has been on the construction
of individual components and on the basic of wiring support of component. It
is thus highly unlikely that componehts developed independently under such
conditions are able to cooperate usefully. The primary goal of components
technology, independent deployment and assembly of component is not
achieved [2]. A component framework is a software entity that supports
components conforming to certain standards and allows instances of these
components to be plugged into the component framework. The component
framework establishes environmental conditions for the component instance
and regulates the interaction between component instances. Component
frameworks can come alone, or they can cooperate with other components or
component frameworks. In essence Microsoft .NET framework is a collection
of classes and types that encapsulates and extend Win32 API in an object
oriented context. This hierarchy is defined by inheritance: Simple reusable
classes such as components are provided and then used as a base from
which more sophisticated classes is derived. The following table gives an
overview about the core classes of Microsoft .NET [2] [4].

1.3.2 The .NET platform introduction:

The .NET platform is the foundation upon which the next generation of
software will be built. Microsoft has invested a lot of capital in its
development, and it putting considerable weight behind its adaptation as a
new standard. The .NET platform is more than a new language, software

development kit (SDK) or even an operating system. It offers powerful new

15

services: a new processor independent binary format, new managed
language, extension to existing languages, and the list goes on. The percept
behind the .NET platform is that the world of computing is changing from on of
PC’s connected to servers through networks such as the Internet, to one
where all manners of smart devices, computers and services work together to
provide a richer user experience. Looking at the overall architecture, .NET
consists of three primary components [2] [4].

The .NET framework: A completely new application development platform. It
can be divided into 3 parts: the CLR responsible of the ekecution environment
such as memory allocation, error trapping and interacting with the operating
system; The base class library an extensive collection of programming
components and application program interfaces and finally 2 top-level
development targets: one for web application (ASP.NET) and another for
regular windows applications [2] [4].

Several .NET products: Various applications from Microsoft based on the
.NET framework, including new version of exchange and SQL Server, which
are extensible markup language (XML) enabled and integrated into the .NET
platform. The advantages offered by the .NET framework include shorter
development cycle (code reuse, fewer programming surprises, support for
multiple programming languages), easier deployment and a garbage collector.
The .NET platform is the next generation of what was called windows DNA.
Windows DNA was a technical specification that focused on building software
based on Microsoft server products utilizing numerous technology and
languages (ASP, HTML, JavaScript, COM and so on). The following diagram
shows the .NET platform architecture. Essentially the .NET family of
languages [2] [4].

16

VB.NET C++ C# J# Other

tools

Common Language Specifications (CLS)

Web Services

Web Forms Windows Forms Visual
Studio
.NET -
Data and XML
Base Class library

Common language runtime

Features of the .NET platform:

Multilanguage development: Because many languages target the .NET
Common language runtime, it is now much easier to implement portions of the
application using the language that's best suited for it. The .NET platform
allows languages to be integrated with one another through the use of MSIL.
Although it contains instructions that appear similar to assembly code such as
pushing and popping values, moving variables in and out of registers, it also
contains instructions for managing objects and invoking their methods,

17

manipulating arrays and raising and catching exceptions [2] [4]. The Microsoft
Common Language Specifications describes what other development tools
must do in order for their compilers to output IL code that will allow them to
integrate well with each other. Cross language inheritance is another feature
made possible with by the use of IL. Per example it is possible to create a
class in C++ that derives from a class implemented in VB.NET. One of the
great challenges for developing application under the Windows DNA
specifications was in debugging applications developed in a variety of
languages. Thanks to the unified development environment of Visual
Studio.NET and the use of IL as output of all .NET languages, cross-language
debugging is possible without resorting to assembly language. The .NET
common language runtime fully supports debugging applications that cross
language boundaries. The runtime also provides built-in stack walking
facilities, making it much easier to locate bugs and errors [2] [4].

Platform and processor_independence: Once written and built, a NET

application can execute on any platform that supports the .NET Common
language Runtime. Although at the time of this writing, .NET applications run
only on windows platforms, on June 27" 2001, Microsoft announced that it
had reached an agreement with Corel to develop a version of a C# compiler
and the .NET framework version for UNIX [2] [4].

Automatic memory management: Developers coming from visual basic or

COM backgrounds are familiar with the reference counting technique. This
technique recovers the memory used by an object when no other object has a
reference to it. Essentially when it is no longer needed. Although this sounds
perfect in theory, in practice it has a few problems [2] [4]. One of the most
common is a circular reference problem where on object contains a reference
to another object which itself contains a reference back to the first object.
When the memory manager looks for objects that are not in use, these
objects will always have a reference count greater than zero, so unless they
are implicitly deconstructed, their memory will never be recovered [2] [4].

18

Versioning support: In COM technology when a customer installs a software

package that uses one of the same DLLs as an installed application. However
this application used version 1.0 of this DLL, and the new software replaces it
with version 1.1. The new DLL makes the application exhibit some strange
problems or perhaps stop working. The .NET architecture guarantees that if
the application runs after application it is going always to run, regardless the
version of any coming version in the future [2] [4].

Support of open standards: In today's world, not every device necessary

works under Microsoft OS or using Intel CPU. Realizing this, the architecture
of .NET is relying on XML. In fact the entire .NET framework in build around
XML [2] [4].

Interoperability with unmanaged code: Unmanaged code is code that isn't

managed by the .NET CLR. However, this code is still running in the CLR
environment, it just can’t get the advantages that it offers such as automatic
memory management. COM component interoperate today with the .NET
framework component through a layer that handles all the work required when
translating messages that pass back and forward between the managed the

managed runtime and the COM component operating as unmanaged code

[2] [4].

Performance and scalability: The .NET framework gives a tool to make it
easier to design better performing software. One big gain for web

development will come from ASP.NET’s improved support for keeping code,
data and presentation separate. The .NET base class library has an
enormous set of functionality, which means that less basic code is required
giving the programmer a much more margin to refine his application. New
version of Microsoft software rotating around .NET offer improved
performance over earlier versions. SQL Server.NET offers quite an

19

enhancement over earlier versions of the database engine and other server
products offer enhanced scalability as well [2] [4].

Garbage collection: Memory management is one of those housekeeping

duties that take a lot of programming time away from developing new code
while tracking down memory status. . NET hopes to do away with all of that
within the managed environment with the garbage collection system. Garbage
collection works when an application is apparently out of free memory. When
an application requests more memory and the memory allocator reports that
there is no more memory on the managed heap, garbage collection is called.
It starts by assuming everything in memory is trash that can be freed. It then
walks through the application’'s memory, building a graph of all referenced
memory. One completed it compact the heap by removing all the memory in
use together at the start of the free memory heap [2] [4]. After this is
complete, it moves the pointer that the memory allocator uses to determine
where to start allocating memory. It also updates all of the application’s
references to point to their new locations in memory. This approach is known
as mark and sweep implementation. As one can see, the garbage collection
involves a lot of work and it does take some time. A number of performance
optimization involved in the .NET garbage collection mechanism makes it
much more than the simple collection given here. Normally programmers just
let the CLR take care of running garbage collection when it is required.
However at a given time the garbage collection may be forced to run by just
calling GC.Collect () [2] [4].

1.3.3 .NET assemblies:

Application in the .NET always consists of one or more assemblies. An

assembly is:

A functional unit of sharing, versioning in the .NET framework can be shared
across .NET applications.

20

In the simplest case, an application can consist of one assembly that contains
one module with all the code and resources for the application. In most
scenario however, an application has multiple assemblies and each assembly

may have multiple files. There are 2 kinds of .NET assemblies [2] [4].

Private assemblies: a private assembly is deployed with and used

exclusively by a single application. It is referenced by its simple name. When
the application is installed, the private assembly is also installed in the same
root directory of the application. That appears under the root directory of the
application [2] [4].

Strong name assembly: the .NET framework uses strong name to provide a

way to identify assembly uniquely, allowing applications to run with the
versions of the strong named assemblies. Strong-named assemblies consist
of the assembly identity, which is:

The simple text name of the assembly
The version number of the assembly
The culture information (optional)

A public key for the client.

Strong name guarantees name uniqueness by relying on unique key. Strong

name assemblies can reside in:

The application folder

Any folder on the local computer
Any folder on a remote computer
A URL

The global assembly cache.

21

Assemblies shared by multiple applications should be installed in the global
assembly cache. . NET client can access the same copy of the assembly,
which is signed and installed in the global assembly cache. If an assembly is
not going to be shared, then the assembly should be installed in the
application directory. Once a strong named assembly has been installed on
the global assembly cache, it is referred to as a shared assembly. The
following table lists the main differences between strong name assemblies
and private assemblies [2] [4].

Private assemblies ~ | Public assemblies. .

-Can only be installed in ah - Can. be ins-télléd' in a number of
application’s directory structure different locations.

-Are reference only by their simple | - Are referenced by their simple name
name culture, version and public key.

-Can have version information, but |- Contain version information that the
the runtime does not use it runtime checks when loading the
-Are not installed in the global | assembly.

assembly cache and therefore the | - Can be installed in the global
runtime will not look in the global | assembly cache and therefore the
assembly cache when probing for the | runtime will look in the global

private assembly assembly cache as part of the
process.

- Can have multiple versions
deployed in a side-by-side manner in

the global assembly cache.

1.3.4 .Assembly Cache:

The assembly cache is a directory normally found in the \WinNT\assembly
directory. When an assembly is installed of the machine, it can be merged into
the assembly cache. The assembly cache has 2 separate caches: a global
assembly cache and a transient assembly cache. When assemblies are

22

downloaded to the local machine using Intemet explorer, the assembly is
automatically installed in the transient assembly cache [2] [4]. Keeping these
assemblies separated prevent a downloaded component from impacting the
operation of an installed application. What might be a great feature of the
assembly cache is its capability to hold multiple versions of an assembly. As
an example, we'll say we have installed versions 1.0 and 1.1 of
MyComponents.dil on a system. If an application was built and tested using
version 1.0 of MyComponent.dll, even though a later version a later version of
an assembly exists in the cash. The application will continue to work normally
because the code that is executing is the same code that it is executing is the
same code that was built and tested with. Once registered .NET takes a copy
from the component and places it inside the global cash assembly to make it

available to various different applications running on the machine [2] [4].

1.3.5 Procedure for creating a strong assembly key:

The command line strong name tool (sn.exe) that comes with the NET
framework is used to build strong name key files. For example the following
command will build a strong-name key file named CalcKey.snk: sn — k. Inthe
assembly file of the application 2 directives must be added [assembly:
AssemblyKeyFile (<FileName>)], [assemblyVersion (<version number>)] (C#
syntax) before the application is recompiled to produce the strong named
assembly [4]. Once an assembly is strong named, it is ready to be installed in
the global assembly cache to be shared among different .NET application
running on the machine. Gacutil.exe is a command line utility that allows
viewing and manipulating the contents of the global assembly cache.
Gacutil.exe options includes:

/i or —i installs a strong-named assembly into the global assembly cache.

/ or ! lists the contents of the global assembly cache.

Ju or —u removes one or more assemblies from the global assembly cache.

23

NB: During development, Gacutil.exe can be used to install the assembly in

the global cache for testing purpose. This tool is available for convenience

only and should be used for production deployment. For production

environments, assemblies should be installed in the global assembly cache by

using windows installer included in .NET platform [4].

1.3.6 Main differences between COM and .net objects:

‘Characteristic

identity

G!obélly .unit‘:u:é idéﬁt'{ﬁers:
(GUID) identifies a specific
unmanaged type

Strong keys are used to
uniquely identifies the
component

Object lifetime

Reference counting. Client of

Garbage collection: The

management | COM objects manage lifetime | CLR runtimes manages the
by means of reference lifetime of objects by means
counting of garbage collection

Registration Are registered in the Stored in the global

mode operating system registry. assembly cache.

Interface - COM interface are Component can evolve

GUID relation | immutable. If the name is retaining the same strong
changed, the GUID should name
also changed

Versioning The registry of the OS can Several Versions of an

only store on unique version
ofa COM

assembly can coexists in

the global assembly cache.

24

Chapter Il:

2.1 Proposed solution template and implementation:

This thesis proposes to build applications by using a component-oriented
approach. The thesis solution will finally lead to an easy-to-update-and deploy
product composed of several parts build by different software houses and
wired together to behave in harmony and coordination as if they were a
unique block of software controlled by a unique runtime. This template can be
used to build component-based applications in fields that usually require the

combination of effort of several software houses such as:

Image processing applications: The component side will be responsible of
pixel blurring. Each time a certain number of pixels are processed a
notification containing the partially processed picture, the number of blurred
pixels and a basic type is sent to the client. The latter can use the returned
data to inform the user about the state of the operation. After receiving a
notification from the component side the client can stop the process by setting
the basic type sent to STOPVALUE.

Directory service applications: A component side will contain a recursive

procedure capable of browsing all the files and directories contained in a
given location, each time a file is read a notification containing the filename
and path is sent to the client. The latter can subject the returned data to any
kind of service: virus scanning, image comparison, grammar spelling and
checking etc This service can be embedded on the client side or inside
another component.

Search Applications: A component side will contain a recursive function

25

capable of searching all the tree nodes. Each time a node is expanded, a
notification containing the node value and a basic type is sent to the client.
The latter send the returned value to another component capable of checking
if it corresponds to the goal value, in case it does the client stop the process
by setting the basic type to STOPVALUE

Security Systems applications: A component side will contain functions
capable of filming what is happening in a bank entrance. Each time a person
enters, a notification containing the picture is sent to another component
capable of accessing a database to check if this client has an image inside the
“WANTED” database table. In case it exists the component alarms the

security team.

2.1.1 Procedure for achieving the thesis goal:

2.1.1.1 Using a unique framework:

Since components in absolute are heterogeneous pieces of software written
and compiled by third parties. The first step toward achieving the interactivity
between the different pieces of a system is to guarantee a high coupling
between different involved parties. Such coupling can only be obtained by
using classes and libraries belonging to the same framework where all the
elements are built using the same technology and can be easily wired
together [1].

2.1.1.2 Creating a notification system:

Because each component runs in its own thread and acts independently from
the rest of the application the next step towards obtaining homogenous final
software is the creation of a notification system between different involved
parts: the proposed mechanism should be capable of transferring control from

one thread to another and passing information between different components.

26

The thesis solution proposes to create a C# a notification system by
instantiating a delegate having the same signature that the event to be fired

(2] [4].

Creating a delegate in C# is similar to a function pointer in C or C++. Using a
delegate allows to encapsulate a reference to a method inside a delegate
object. The delegate object can then be passed to code, which can call the
referenced method, without having to know at compile time which method will
be invoked. A delegate declaration defines a type that encapsulates a method
with a particular set of arguments and return type. An interesting and useful
property of a delegate is that it does not know or care about the class of the
objects that it references. Any object will do; all that matters is that the
method’s arguments type and return type match the delegate’s. This makes
delegates perfectly suited for anonymous invocation [2] [4].

An event in C# is a way for a class to provide notifications to the clients of that
class when some interesting things happen to an object. Events provide a
generally useful way for objects to signal state changes that might be useful to
client of that object. Events are an important building block for creating
classes that can be reused in a large number of different programs. In C#,

events may be declared by using delegates [2] [4].

27

Isolated Components

Component A Component B
Thread a ; Thread b
| Calls _
‘ Method
Interface
Returns control

Communicating components

Component A Component B
Thread a Thread b
Calls
: Method
Interface Notifies
Notifies i
Returns control

28

Central memory

g Takes

action

Thread A Thread B
» Form v (Creates)
- Object reference ®)
Onlnstantiating to create (F) » - Delegates
- Events

l (Creates) Processing functions

v
(F) Listener Object
Form reference 4 A
(F)
OnConstruct
(Creates)l

Evept h;mdlcrs ~
(Take action)
ﬂ_ -
(Get notification) (Monitors)

29

2.1.1.2.1 Remotely accessing assemblies:

Using private components:

The ExtendedimageProcessing Component that is part of the Image
Processing application that accompanies this thesis has been packaged using
installer 2.0 and setup on a network server. On the other side the client has
been placed on another network location and modified to point the needed
components. After recompiling the client, it has been noticed that the latter
has failed to access and instantiate component’s objects unless a copy of the
component was locally placed inside the current directory of the executable.
The only way to create interaction between the different components was to
place them in the same directory and on the same machine.

Using strong name components:

This experience has been remade but instead of using private components,
strong name components has been created and registered in the assembly
cache using the process described in a previous section of the thesis. It has
been noticed that even though the application is physically distributed on
several computers’ network the interaction between different components took
place successfully as if the whole system was installed on the same machine:
used delegates, events, events listeners successfully cooperated together.

Conclusions:

In case a component is especially built to support a unique application, using
local name assemblies sounds like a good option because when deployed all
components are placed inside the same directory which make them easy to
handle and maintain. In case a component is build to support several
applications and to guarantee location transparency, strong named

assemblies should be used.

30

Component (A)
Requests to instantiate a class (C)

from component (B)
A h
(B) is local SN component ? (B) is local component ?
\ 4
(A) looks for (B) in the current
directory
A b
(B) is a remote? (B) is a remote (B) is a local
component registered in component not component founds in
the assembly cache ? registered in the current directory?
assembly cache 7
A A
1f (B) is found, (C) 1f (B) is not found
instance 15 created instantiation fails
A h 4 A
(C) is instantiated Instantiation (C)is
fails instantiated

2.1.1.3 Overcoming language boundary:

A language boundary is probably one of the most important handicaps faced
when updating a component. The thesis solution proposes to use .NET
platform to overcome the language problem. Any component written by using
NET can be extended by using C#.net, C++.net, VB.net, J#net
Implementing this feature in a software component increases its flexibility and
makes it more ready to evolve and be enhanced.

2.1.1.4 Overcoming versioning problem:
The operation system registry can’t accommodate more than one component

version. In real cases, installing a new version of a component causes that

software relaying on the previous component fails to run. The thesis solution

31

proposes to use strong assembly components registered in the global
assembly cache. The procedure for creating a strong assembly is described in
detailed in a previous part of this document.

2.1.2 Implementation example:

The Image processing application that accompanies this thesis is an
implementation of the proposed solution and can be used as a template to
build interactive-object-oriented application. It has the following

characteristics.

While processing an image, the component send data about the status of the
operation, this information is going to be used by the client to update the
screen and to supply the user with information. Each time 10 pixels are

processed, the component triggers a notification containing:

Parameter Description

TotalNbrPixel A variable containing the total number of pixels contained

inside the picture sent for embossing.

e An instance of ImageServiceArgs. It allows the client to

interact with the component

PixelProcessed | A variable containing the number of processed pixels

Pic The partially processed bitmap object

To following delegate is used as a template that can be instantiated to any
function capable of handling the event. The signature of the delegate and the
instanciated function should have the same parameter type.

public delegate void PixelProcessedDelegate

(int PixelProcessed ,

ImageServiceArgs e , double TotalNbrPixel
, System.Drawing.Bitmap Pic);

The following code is a function compatible (same data type) with the above-
described delegate.

32

public static void EventHandler (int PixelProcessed ,
ImageServiceArgs e , double TotalNbrPixel ,

System.Drawing.Bitmap Pic) {}

The following code instantiates the delegate to create the event.

public event PixelProcessedDelegate
PixelProcessedEvent
= new PixelProcessedDelegate (EventHandler) ;

Each time 10 pixels are processed the event is triggered and the above-
described information are passed to the client, the latter can set the value of e
to true the stop the object.
if (EmbossProgress % 10 == 0)
{

PixelProcessedEvent (EmbossProgress , € ,

this.InitialPicture.Width *
this.InitialPicture.Height ,temp);

After notifying the client the component checks the value of e to take the
corresponding action

if (e.Cancel == true)

{

EndEmbossOperation = DateTime.Now;
return(temp);
} i
In order to make the interaction between the client side and the component

side possible, it is important that a basic type is periodically sent from the
component side to the client side. When the callback is over, the component
checks the value the sent variable, if the value is true the process is aborted, if
not the process continues. Under .Net, parameters are sent by value which
means that changes made on them do not persist. To make the client
modifications persistent, the basic type should be placed inside a class and a
reference of that class sent as parameter.

When an image processing is constructed, a listener object is directly created.
+= sign appearing in the code is used to say that the following statement is a

33

handler creator. On the other hand -= can be used to destroy an object event
handler. The segment of code placed within the body of
Srv_pixelSmoothedEvent is triggered whenever the component throws a
notification. At each time the component processes 10 pixels the client uses
the sent information to update some display elements: The title of the form is
always modified to show the process progress and the initial bitmap is always
updated by the intermediary processed bitmap. At any given time the client is
capable of interrupting the component process. We can see in the above
example that whenever the number of processed picture is >= 60000 or
whenever the client choose to explicitly interrupt the component the process is
aborted.

public class ImageProcessingEventListener
{
PictureForm FormInst;
private bool stop = false;
public void Stopl()
{
stop = true;
}
public ImageProcessingEventListener
(PictureForm Inst,
ExtendedImageProcessing.ImageService Srv)

FormInst = Inst;
Srv.PixelProcessedEvent+=
new D11CSharplmageProcessing.
ImageService.PixelProcessedDelegate
(Srv_PixelProcessedEvent);
Srv.PixelSmoothedEvent+=new
ExtendedImageProcessing.ImageService
. PixelSmoothedEventEventHandler (Srv_PixelSmoothedEvent);
}

private void Srv_PixelProcessedEvent // Embessing event handling
{(int PixelProcessed,
pllCSharpImageProcessing.ImageServiceArgs e,
double TotalNbrPixel, Bitmap Pic)
{
FormInst.Text = "Progress:" +
Convert.ToString (PixelProcessed) + "/"
+ Convert.ToString(TotalNbrPixel);
FormInst.pictureBoxl.Image = Pic;
FormInst.pictureBoxl.Refresh():
if (stop == true) e.Cancel = true;
//if (PixelProcessed >= 60000) e.Cancel = true;

}

private void Srv_?ixelSmoothedEvent(int PixelProcessed,
pllCSharpImageProcessing.ImageServiceArgs e,
double TotalNbrPixel,
Bitmap Pic) // Smoothing event handling
{

34

FormInst.Text = "Progress:" +
Convert.ToString (PixelProcessed) + "/"
+ Convert.ToString(TotalNbrPixel);
FormInst.pictureBoxl.Image = Pic;
FormInst.pictureBoxl.Refresh();
if (stop == true) e.Cancel = true;

//1if (PixelProcessed >= 60000) e.Cancel = true;

}

This application also solves to some extend the problem of language
dependency since it can be extended an enriched using any language
supported by the .NET platform. The basic class DlICSharplmageProcessing
is originally written using C#, later it was extended using using VB.NET and
finally the wiring of components takes place inside a C# application.

The involved components are registered in the global assembly cache in order
to create a unique copy available for any application running on the machine.
The process of registering an assembly inside the global cache is explained in
a previous part of this thesis.

Assembly Name. [PublicKey | Version | Used Language

DiiCsharpimageProcessing | 648164a407f915a | 1.0.0.0 | C#

ExtendedimageProcessing | 286c5b671ce09698 | 1.0.0.0 | VB.NET

In case one of these assemblies has been upgraded, the new version is not
going to replace the current one; instead they both are going to coexist in the
cache under the same assembly name and public key but under different
version numbers. This way will be guaranteed that whenever an application
works properly in the development environment it is going to work properly
after deployment. For a full implementation of this solution check the code that

accompanies the thesis.

35

2.1.3 Conclusions and results:

Components oriented applications are by nature client server applications, if
no messaging system is implemented no intermediate result could be shown
on the client side, to obtain information the user should wait till the control is
returned back to him. To stop the process before it reaches its end the user
should use the hard way by forcing the operating system to kill the application.

In the image-processing example, if notifications were not part of the structure
of the application, it would have been impossible to show how the blurring is
progressing. The client side would have to wait till the end of the process to
see the result: this means that the user can only see 2 object states, the initial

one and the final one.

Without implementing a notification system, the image processing application
couldn’t have been build as a component oriented application. The only
means to proceed would have been to implement it as a unique bloc and
sacrificing all the flexibility that object oriented programming offers.

The image processing application has been built using 2 components: a first
one playing the role of the super class and written by a software house
specialized in C# and a second playing the role of the sub class and
developed by a software house specialized in VB.net. This special and unique
feature increases considerably the flexibility of components and is a first step

toward creating a “universal component”
This application would continue to function even if a new version of the

component has been installed on the system. This is doubtlessly a solution to

old dlis versioning problem.

36

2.3 Future Work:

This thesis found some solutions to several common component problems
and proposed a .NET implementation template. But Java is also an important
component standard available on the market: EJB technology is used by a
very important number of software builders due to the flexibility it offers.

Entity java beans overview:

It is permanent: Standard Java objects come into existence when they are
created in a program. When the program terminates, the object is lost. But
an entity bean stays around until it is deleted. A program can create an entity
bean, then the program can be stopped and restarted. The entity bean will
continue to exist. After being restarted, the program can again find the entity

bean it was working with, and continue using the same entity bean [6].

It is network based: Standard Java objects are used only by one program.
But an entity bean can be used by any program on the network. The program
just needs to be able to find the entity bean, in order to use it [6].

It is executed remotely: Methods of an entity bean run on a "server” machine.
When you call an entity bean's method, your program's thread stops
executing and control passes over to the server. When the method returns

from the server, the local thread resumes executing [6].

It is identified by a primary key: Entity Beans must have a primary key. The
primary key is unique — each entity bean is uniquely identified by its primary
key. For example, an "employee” entity bean may have Social Security
numbers as primary keys. You can only use entity beans when your objects
have a unique identifier field, or when you can add such a field [6].

Session beans overview:
Session beans can be used to distribute and isolate processing tasks,

somewhat analogous to the way each Java class can be used to encapsulate

37

a type of related processing. Each session bean can be used to perform a
certain task on behalf of its client. The tasks can be distributed on different
machines [6].

Another way session beans can be thought of, is like how browsers and web-
servers operate. A web-server is located in a particular location, but multiple
browsers can connect to it and get it to perform services (such as delivering
HTML pages) on their behalf. Each server performs a specialized unique task
(for instance, ejbtut.com performs the specialized task of providing EJB tutorial
material!) The clients can connect to any of a number of servers, depending
upon their needs [6].

Finding a way using EJB technology to overcome the above mentioning
problems to reach an easy to manage component-oriented solution constitute
a future extension of this thesis.

38

References:

[1] Component Software Beyond Object-Oriented Programming, Clemens
Szyperski , Addison-Wesley

[2] C#.NET Web Developer's Guide, Adrian Turtchi, Jason Werry, Greg Hack ,
Joseph Albahari , Syngress

[3] Mastering VB.NET Evangelos Petroutsos , Sybex edition.

[4] http://msdn.microsoft.com/library/.

[5] http://www.objs.com/survey/ComponentwareGlossary.htm.

[6] http://www.ejbtut.com/Overview.jsp.

39

Appendix: Fragment of the source code:

DliChsarpimageprocessing component:

namespace DllCSharpImageProcessing
{
public class ImageServiceRrgs //Brgument Class
{
public bool Cancel = false;

}

public class ImageService
{
public override string ToString()
{
return "CSharpImageProcessing” +
"ImageService Class : NDU MS Thesis";
}

protected System.Drawing.Bitmap InitialPicture;

public delegate void PixelProcessedDelegate
(int PixelProcessed ,
ImageServiceArgs e , double TotalNbrPixel
, System.Drawing.Bitmap Pic);

public event PixelProcessedDelegate
PixelProcessedEvent
= new PixelProcessedDelegate (EventHandler);

private DateTime StartEmbossOperation;
private DateTime EndEmbossOperation;

public int GetEmbossOperationTime
{

get

{

TimeSpan dur =
EndEmbossOperation.Subtract
(startEmbossOperation);

return (dur.Milliseconds +
dur.Minutes * (60000)

+ dur.Seconds * 1000},

}

public static void EventHandler (int PixelProcessed ,
ImageServiceArgs e , double TotalNbrPixel
, System.Drawing.Bitmap Pic) {}

public ImageService{System.Drawing.Bitmap img)
{
InitialPicture = img;

}

public System.Drawing.Bitmap Emboss ()
{
System.Drawing.Bitmap temp =
this.InitialPicture;
int EmbossProgress = 0;
ImageServiceArgs e = new ImageServiceArgs():

StartEmbossOperation = DateTime.Now;

for {int y=0 ;y <= this.InitialPicture.Height - 1;y++)
{

for (int x=0;x <= this.InitialPicture.Width -2;x++)
System.Windows.Forms.Application.DoEvents();

int red =
Math.Max
(Math.Min
(this.InitialPicture.GetPixel (x+1,y)-R -
this.InitialPicture.GetPixel
(x,y).R + 128 , 255),0);

int green =
Math.Max (Math.Min(this.InitialPicture
.GetPixel (x+1,y) .G -
this.InitialPicture.GetPixel
(x,y).G + 128 , 255),0);

int blue =
Math.Max (Math.Min(
this.InitialPicture.GetPixel
(x+1,y).B -
this.InitialPicture.GetPixel
(%,y).B + 128
¢ 258),0):

temp.SetPixel(x,y,System.Drawing.Color.Fromnrgb
(red,green,blue));
EmbossProgress++;

if (EmbossProgress % 10 == 0)

{
PixelProcessedEvent (EmbossProgress , € ,
this.InitialPicture.Width *
this.InitialPicture.Height temp):}

if (e.Cancel == true)

{
EndEmbossOperation =
DateTime.Now;return(temp);}

}

PixelProcessedEvent (EmbossProgress , e ,
this.InitialPicture.Width *
this.InitialPicture.Height ,temp):

EndEmbossOperation = DateTime.Now;

return(temp);

ExtendedImageProcessing component:

Public Class ImageService
Inherits DllCSharpImageProcessing.ImageService
Event PixelSmoothedEvent (ByVal PixelProcessed As Integer _
, Byval e As DllCSharpImageProcessing.ImageServiceArgs _
, ByVal TotalWbrPixel As Double, ByVal Pic As Bitmap)
Private StartSmoothingOperation As Date
Private EndSmoothingOperation As Date

Public Sub New(ByVal Img As Bitmap)
MyBase.New(Img)
End Sub

Public ReadOnly Property GetSmoothingOperationTime () As Integer

41

Get
Dim dur As TimeSpan = _
EndSmoothingOperation.Subtract _
(StartSmoothingOperation)
Return (dur.Seconds * 1000 + dur.Minutes * _
60000 + dur.Milliseconds)

End Get
End Property

Public Function Smoothing() As Bitmap

Dim temp As Bitmap = MyBase.InitialPicture
Dim e As New Dl11lCSharpImageProcessing.ImageServiceArgs
startSmoothingOperation = DateTime.Now ()

Dim x As Integer = 0
Dim y As Integer = 0
Dim SmoothingProgess As Integer = 0

For y = 1 To temp.Height - 2
For x = 1 To temp.Width - 2
Application.DoEvents ()
Dim red, green, blue As Integer

red = (CInt(He.Initial?icture.GetPixel(x -1, y - 1}).R) + _
CInt(Me.InitialPicture.GetPixel(x, ¥y ~ 1) .R) + _
cInt (Me.InitialPicture.GetPixel(x + 1, ¥ - 1).R) + _
CInt(Me.InitialPicture.GetPixel(x - 1, y + 1).R) + _
CInt{Me.InitialPicture.GetPixel[x, y + 1).R) + _
CInt(Me.InitialPicture.GetPixel(x + 1, y + 1).R) + _
CInt (Me.InitialPicture.GetPixel(x - 1, y).R) + _
CIint(Me.InitialPicture.GetPixel(x + 1, y).R)) / 8

green = (CInt(Me.InitialPicture.GetPixel(x - 0% = 1).6) #
CInt (Me.InitialPicture.GetPixel(x, y -~ 1).G) + _
CInt(Me.InitialPicture.GetPixel(x + 1, v - 1).G) + _
CInt (Me.InitialPicture.GetPixel(x - 1, y + 1).G}) + _
CInt(Me.InitialPictnre.GetPixel[x, y + 1).6) + _
CInt(Me.InitialPicture.GetPixel(x + 1, y + 1).G) + _
CInt (Me.InitialPicture.GetPixel(x - 1, y).G) + _
CInt(Me.InitialPicture.GetPixel (x + 1, y).6)) / 8

blue = (CInt(Me-InitialPicture.GetPixel{x -1, y - 1).B} + _
CInt(Me.InitialPicture.GetPixeltx. y - 1).B) + _
CInt(Me.InitialPicture.GetPixel(x + 1, y - 1).B) + _
CInt (Me.InitialPicture.GetPixel(x - 1, y + 1).B} + _
CInt (Me.InitialPicture.GetPixel(x, y + 1).B) + _
CInt(Me.InitialPicture.GetPixel(x + 1, y + 1).B) + _
CInt(Me.InitialPicture.GetPixel(x -1, y).B) + _
Cint(Me.InitialPicture.GetPixel(x + i, y).B)) / 8

temp.SetPixel (x, ¥, Color.FromArgb (red, green, blue))
SmoothingProgess = SmoothingProgess + 1
1f (SmoothingProgess Mod 10 = 0) Then

RaiseEvent PixelSmoothedEvent(SmoothingProgess, e, _
Me.InitialPicture.Width * Me.InitialPicture.Height, temp)
End If

If (e.Cancel = True) Then
EndSmoothingOperation = _
DateTime.Now
Return (temp)

End If

Next
Next

EndSmoothingOperation = Now()
Return (temp)

End Function

End Class

Client event listener:

public class ImageProcessingEventListener
{
PictureForm FormInst;
private bool stop = false;
public void Stop()
{
stop = true;
}
public ImageProcessingEventListener
(PictureForm Inst,
ExtendedImageProcessing.ImageService Srv)

FormInst = Inst;

Srv.PixelProcessedEvent+=

new Dl1CSharpImageProcessing.
ImageService.PixelProcessedDelegate
(Srv_PixelProcessedEvent);

Srv.PixelSmoothedEvent+=new
ExtendedImageProcessing.ImageService
.Pixe1SmoothedEventEventHandler{Srv_PixelSmoothedEvent}:
}

private void Srv_PixelProcessedEvent // Embossing event handling
(int PixelProcessed,
Dllcsharplmageprocessing.ImageServiceArgs e,
double TotalNbrPixel, Bitmap Pic)
{
FormInst.Text = "Progress:" +
Convert.ToString (PixelProcessed) + "/"
+ Convert.ToString(TotalNbrPixel);
FormInst.pictureBoxl.Image = Pic;
FormInst.pictureBoxl.Refresh();
if (stop == true) e.Cancel = true;
//if (PixelProcessed >= 60000) e.Cancel = true;
}

private void Srv_PixelSmoothedEvent (int PixelProcessed,

pllCSharpImageProcessing.ImageServiceArgs e,
double TotalNbrPixel,

Bitmap Pic) // Smcothing event handling

{

FormInst.Text = "Progress:" +

Convert.ToString (PixelProcessed) + "/"

+ Convert.ToString(TotalNbrPixel);
FormInst.pictureBox1l.Image = Pic;
FormInst.pictureBoxl.Refresh();

if (stop == true) e.Cancel = true;

//if (pixelProcessed >= 6000C) e.Cancel = true;

