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ABSTRACT

UML is an acronym for Unified Modelling Language. It has
become de facto the standard for the object-oriented software analysis
and design stages in software development. UML is a visual modelling
language, and it consists of a set of diagrams. Static diagrams are used to
depict static structure of a program, whereis dynamic diagrams specify
how the control flow(s) of the program should behave. The examples of
behavioral diagrams are a State diagram, which describes the behavior of
objects of a given class, and a Sequence diagram, which describes inter-
object interactions in a given scenario.

A consistency problem may arise due to the fact that some aspects
of the model may be described by more than one diagram. Hence, the
consistency of the system description should be checked before
implementing the system.

This thesis describes an algorithmic approach to a consistency
check between UIML Sequence and State diagrams. The algorithm we
provide automate the validation process which handles complex state
diagrams, e.g. diagrams that include forks, joins, and concurrent
composite states.
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CHAPTER I

1-UML

Developing a model for an industrial-strength software system prior to its

construction or renovation is as essential as having a blueprint for large building.

Good models are essential for communication among project teams and to assure

architectural soundness. As the complexity of systems increase, so does the

importance of good modeling techniques. There are many additional factors of a

project's success, but having a rigorous modeling language standard is one

essential factor.

Since the Unified Modeling Language (UML) became the standard notation for

software architecture, it has become the topic of many books, discussions, and

seminars.

The Unified Modeling Language (UML) is an important tool for modeling

Enterprise Application Integrations (EAI). The complex interaction among

multiple applications, such as GIS, outage management (OMS), workforce

management, and customer information systems, requires a tool to support many

system development tasks. UML aids in modeling the business processes,

managing EAI requirements, providing test criteria, and building end-user

documentation. The applications that a GIS is required to interface with are

constantly increasing and the applications are not only linked within a company

but are also linked between companies. Traditionally, communication between the

GIS and other applications has been customized, one integration at a time. The

result is a set of complex and unique integration points with redundancy

throughout the system. The EM approach uses a set of tools to share data and



business processes among connected applications and data stores within and,

optionally, between organizations.

1.1- The history of UML

The beginnings of documented object-oriented modeling languages can be traced

back to the mid- 1970's when methodologists were experimenting with different

approaches to object-oriented analysis and design. The number of identifiable

object-oriented modeling languages increased from less than 10 to more than 50

between 1989 and 1994 (0MG, 2001). In the mid-1990's, the primary authors of

the leading modeling languages (Booch, OMT, and OOSE) realized that each of

their models were evolving into very similar models. In late 1995 Grady Booch,

Jim Rumbaugh, and Ivar Jacobson, the primary authors of the leading modeling

languages, joined forces at Rational Software Corporation and began collaborating

on a unified modeling language. In early 1996 the authors released the UML 0.9

and requested feedback from the general community. The feedback they received

was incorporated into the model and the authors then released the UML 0.91

document. During 1996 the Object Management Group (0MG) issued a Request

for Proposals for a definition of a modeling language standard, which proved to be

a catalyst for interested parties and organizations to join forces and provide a

response. The History of the UML Partners consortium, established by Rational,

provided a response to the RFP. The consortium included the "three amigos"

(Booch, Rumbaugh, and Jacobson) and organizations such as Digital Equipment

Corp., HP, IBM, MCI System-house, Microsoft, Oracle, Rational, TI, and Unisys.

The UML Partners focused on improving the UML 0.91 architecture so that it met

the demands of all mainstream methods and ensuring that it was general purpose

in nature. The UML Partners submitted their initial UML proposal (UML 1.0) to

the 0MG in January 1997 and the final proposal to the 0MG in September 1997,

which the 0MG adopted as its object modeling standard.

The 0MG and the UML Partners consortium recognized that the UML was an

evolving language that would need to be reviewed and evolved on a continual



basis. The UML Partners have followed standard software development practices

by planning and following a revision schedule for the UML. In September 2001,

the 0MG released a minor revision, UML 1.4. The first major revision since UML

was adopted by the 0MG in 1997 is scheduled for release in late 2002.

1.2- UML Designation

The Unified Modeling Language (UML) is a simple and extensible modeling

language. The UML is implementation independent in that it can be applied to any

programming language, technology, and domain. The UML is supported by a

number of tools by independent software vendors. The UML is process

independent. It does not dictate nor require that a particular process is followed.

With that said, the authors of the UML do encourage users to follow a use case

driven, architecture-centric, iterative and incremental process that is object

oriented and component based. Many current system design processes build upon

such a framework. The UML is scalable; it can provide benefit and value to

projects ranging from small-business application development to multi-national

enterprise-wide application integration projects.

The UML is not a visual programming language; it is a visual modeling language.

It is not simply a notation but a robust language for capturing knowledge and

expressing knowledge about the system under design. During its short lifetime, the

UML has become the industry-standard language for system modeling.

The UML is not a process; in fact the UML is process independent. A process

should be tailored to the organization, the culture, and the problem domain at

hand. Organizations will benefit from the UML as it provides a common modeling

language but it does not require a common process.



value, desired completion speed, and cost. Then make appropriate judgments

about which processes need to be refined with EAT technologies.

For example, perhaps timecard submissions have high frequency, low value, must

be completed every week, and cost one hour of each employee's time per week.

Automated crew dispatch to a serious SCADA event may occur once a week,

affect hundreds of customers, must be completed as quickly as possible, and can

cost thousands of dollars per minute in lost revenue. The latter may be considered

more meritorious for EAT streamlining that the former. This management level

decision is assisted with simple diagrams that show the differences between as-is

and to-be (or "could-be") business processes.

Comparing as-is to to-be diagrams provides a powerful visual tool that encourages

management support of a project and provides valuable assistance during early

EAT acquisition phases. Top-down management support of EAT initiatives is

imperative, since the owners of a company's data stores are justifiably hesitant to

allow outside influences on their data. UML diagrams help with this support.

The key to supporting business processes is the movement and manipulation of

data within the enterprise. Writers of use case diagrams should keep this goal in

mind for the lowest-level use cases. After the use case diagrams are completed,

additional information is available to help decide on appropriate infusions of EAT

technology. Such technology should facilitate data movement in the service of

important business processes. Eventually, EAI developers will need the use case

diagrams and sequence diagrams to develop and test the pieces that move data

between components.

It's clear from this discussion that UML provides important benefits to a

company's EAT plans. Management needs simple visual tools to help make

important acquisition decisions and decide which business processes deserve EAI



attention. Developers need it to help with implementation and testing. Users need

it to cooperate with developers during early design phases of the project. Everyone

benefits from UML's common, understandable language.

In other words, the benefits of UML can be listed as:

-Since system design comes first, UTvIL enables re-usable code to be easily

identified and coded with the highest efficiency, thus reducing software

development costs

-UIML enables logic 'holes' to be spotted in design drawings so that

software will behave as expected

-The overall system design described in UML will dictate the way the

software is developed so that the right decisions are made early on in the

process. Again, this reduces software development costs by eliminating re-

work in all areas of the life cycle.

-UML provides an enterprise level view of the system and, as a result, more

memory and processor efficient systems can be designed

-UML enables ease of maintenance by providing more effective visual

representations of the system. Consequently, maintenance costs are

reduced.

-UML diagrams assist in providing efficient training to new members of the

development team member

-UML provides a vehicle of communication with both internal and external

stakeholders as it documents the system much more efficiently

Taken and modified from: www.gila.org



Chapter II

This chapter mainly discusses the UML set of diagrams.

Introduction

UML diagrams provide many perspectives of a system during analysis and

development. A complex system can be most effectively understood and therefore

developed by understanding it from many angles. Let's look at a simple analogy to

system modeling: you plan to build the house of your dreams. You meet with an

architect to explain the features that will make this house perfect. The architect

then sketches a drawing of your dream house. And voila, you are now looking at

your perfect home. It is a beautiful house; the outside features include large

windows, a huge red front door, and the yard is full of quaking aspens. You are

looking at the house of your dreams; you write a check and tell the architect to

build it. How realistic is this? What about the floor plan, the wiring plan, the

window and door plan, etc.? Would you write a check at this point? My guess is

you wouldn't.

Developing the many views of a system is as critical to the success of system

development as are the detailed blueprints of a house plan. The UML defines a set

of graphical diagrams that are used for many planning, design and implementation

tasks depending on the angle that you are viewing the system. The major views of

the system that UML supports are:

1) The user view

2) The structural view,

3) The behavioral view, and

4) The implementation view.
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One or more diagrams for each view is defined by the UML and each provide a

unique window into the system. At this point it is important to point out that few

projects will utilize all the available diagrams. The UML diagrams are to be

treated as a set of resources for system modeling and take care to utilize only those

diagrams that provide a useful and beneficial view of your system. As you gain

familiarity with the UML diagrams, it will become apparent that some diagrams

are more critical than others for system modeling depending on the size of your

project. The process your organization follows will determine the order in which

the diagrams are created; however, the general order is: 1) use case diagrams, 2)

structural and behavioral diagrams concurrently, 3) component diagram, and 4)

deployment diagram.

Using a sound modeling language is essential for good communication among

project teams and to provide an architectural reference to be followed through the

life of a project and during future system upgrades. As systems increase in

complexity, visualization and modeling become even more critical. Such is the

case with EAT. An EAT project will often be comprised of specialized teams each

with an expertise in GIS or OMS or CIS or middleware or business processing and

the list goes on. The major benefits of using UML is it provides a common

language between the teams and it provides a central repository for the EAI

analysis, design, development, and implementation project plan.
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The TJML graphical diagrams are grouped according to their view -- user,

structural, behavioral and implementation -- of the system and the diagrams of

each are described in the following sections.

- Static diagrams are used to depict static structure of a program, where is

- Dynamic diagrams specify how the control flow(s) of the program should

behave

1- Static diagrams

Static diagrams are Class diagram, Object diagram, Physical Diagram (Component

diagram and Deployment diagram).

1.1- A Class diagram shows classes and types, their internal structure, and their

interrelationship to other classes or types. Examples of such relationships are

inheritance, association, aggregation, and (template class) instantiation

relationships.

Classes are composed of three things. a name, attributes, and operations. Below

is an example of a class.

	

Class Name
	 Customer

______________
 

Ig?.*name: String

	

Attributes	 address String

	

Operations	 w I 4creditRatingO

Figure 1.1 - Class Diagram



Below is an example of an associative relationship:

Order	 Association
ateRecived : Date
Prepaid : Boolean
umber: String
rice: Money

-	 n

4dispatcho	 4%

4closeO	

I Multiplicity
Many-valued	 Mandator'

Customer

me : String
dress : String

4creditRatingO

Figure 1.2 —Association relationship Diagram

The association relationship is the most common relationship in a class diagram.

The association shows the relationship between instances of classes. For example,

the class Order is associated with the class Customer. The multiplicity of the

association denotes the number of objects that can participate in the relationship.

For example, an Order object can be associated to only one customer, but a

customer can be associated to many orders.

Another common relationship in class diagrams is a generalization. A

generalization is used when two classes are similar having some differences.

Consider the generalization below:

10



Customer
me : String

Idress String

4creditlRatingQ

Generalization

Corprate Customer	 Personal Customer

contactName : String	 creditCard#: Long Integer
•creditRating : String
•creditLimit : Double

4remindO
4billForMonthO

Figure 1.3 - Generalization Diagram

In this example the classes Corporate Customer and Personal Customer have some

similarities such as name and address, but each class has some of its own attributes

and operations. The class Customer is a general form of both the Corporate

Customer and Personal Customer classes. This allows the designer to just use the

Customer class for modules and do not require in-depth representation of each

type of customer.

1.2- An Object diagram shows a snapshot of the detailed state of a system at a

given point of time. This is an instance of a class diagram. Its use is fairly limited,

mainly to exemplify data structures.

11



1.3- Physical Diagrams are two types: deployment diagrams and component

diagrams. Many times the deployment and component diagrams are combined

into one physical diagram. A combined deployment and component diagram

combines the features of both diagrams into one diagram.

a- Component diagram shows the dependencies among software

components. This usually means showing compilation dependencies

between different binary code files, and the mapping between the source

code files and the binary code files.

b- Deployment diagram shows the configuration of run-time processing

elements and the software components, processors, and objects that execute

on them. Software component instances represent run-time manifestation of

software code units.

The combined deployment and component diagram below gives a high level

physical description of the completed system. The diagram shows two nodes

which represent two machines communicating through TCP/IP. Component2 is

dependant on componenti, so changes to component 2 could affect componentl.

The diagram also depicts component3 interfacing with componenti. This diagram

gives the reader a quick overall view of the entire system.

12



node2
component3

Interface

ConnectionL x1
Nodes

nodel

componenti

componenQ

Components

Figure 1.4 - Deployment Diagram
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2- Dynamic diagrams

Dynamic diagrams are Use case diagram, Activity diagram, State diagram and

Interaction diagrams (Sequence and Collaboration Diagrams).

2.1- A Use case diagram is a set of scenarios that describes an interaction

between a user and a system. A use case diagram displays the relationship among

actors and use cases. The two main components of a use case diagram are use

cases and actors.

Actor	 Use Case

Figure 21 - Use case diagram

An actor represents a user or another system that will interact with the system we

are modeling. A use case is an external view of the system that represents some

action the user might perform in order to complete a task.

2.2- An Activity diagram describes the workflow behavior of a system. Activity

diagrams are similar to state diagrams because activities are the state of doing

something. The diagrams describe the state of activities by showing the sequence

of activities performed. Activity diagrams can show activities that are conditional

or parallel.

14



Start

Fork

(acovuzJ c:

Branch

Tac) (;;')

Merge L
Join

acliVitV6

End	 W

Figure 2.2— Activity diagram

Activity Diagrams are read from top to bottom and have branches and forks to

describe conditions and parallel activities. A fork is used when multiple activities

are occurring at the same time. The diagram below shows a fork after activity 1.

This indicates that both activity2 and activity3 are occurring at the same time.

After activity2 there is a branch. The branch describes what activities will take

place based on a set of conditions. All branches at some point are followed by a

merge to indicate the end of the conditional behavior started by that branch. After

the merge all of the parallel activities must be combined by a join before

transitioning into the final activity state.

15



2.3- A State diagram is used to describe the behavior of a system. State diagrams

describe all of the possible states of an object as events occur. Each diagram

usually represents objects of a single class and tracks the different states of its

objects through the system.

State diagrams have very few elements. The basic elements are rounded boxes

representing the state of the object and arrows indicating the transition to the next

state. The activity section of the state symbol depicts what activities the object

will be doing while it is in that state.

All state diagrams being with an initial state of the object. This is the state of the

object when it is created. After the initial state the object begins changing states.

Conditions based on the activities can determine what the next state the object

transitions to.

Initial State

- Státel. [Condition]	 tat€

Dcti::1L
Transitions

State2

Figure 2.3 - State diagram
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2.4- Interaction diagrams Interaction diagrams model the behavior of use cases

by describing the way groups of objects interact to complete the task. The two

kinds of interaction diagrams are sequence and collaboration diagrams.

Sequence diagrams, collaboration diagrams, or both can be used to demonstrate

the interaction of objects in a use case. Sequence diagrams generally show the

sequence of events that occur. Collaboration diagrams demonstrate how objects

are statically connected. Both diagrams are relatively simple to draw and contain

similar elements.

a- The Sequence diagram Sequence diagrams demonstrate the behavior of

objects in a use case by describing the objects and the messages they pass.

The diagrams are read left to right and descending. The example below

shows an object of class 1 start a behavior by sending a message to an

object of class 2. Messages pass between the different objects until the

object of class 1 receives the final message.

Object: Classi	 Object: Ciass2	 Object: CIass3

Figure 2.4— Sequence diagram

17



b- Collaboration diagrams are also relatively easy to draw. They show

the relationship between objects and the order of messages passed between

them. The objects are listed as icons and arrows indicate the messages

being passed between them. The numbers next to the messages are called

sequence numbers. As the name suggests, they show the sequence of the

messages as they are passed between the objects.

The example below shows a simple collaboration diagram for placing an

order use case.

:Order Entry Window

Passive

1 PrepareO

:Order 1[ InStock ] l.1_: NewO	 [:Delivery Item

Figure 2.5— Collaboration diagram

Taken from: www.omg.org
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Chapter III

Chapter III mainly discuss the following Topics: the Problem Description,

then gives an Simple Example of this Problem, general Definitions

to make the solution easier to be understood, Solution

Description, a Run Example, the Run Results and finally Conclusions.

1- Problem Description

As the complexity of systems -- whether new or refurbished -- increases in scope

and scale, so does the importance of good modeling techniques are needed. The

UML meets the modeling needs of such complex systems but when these systems

become more and more complicated, the integrity of a software system design

become very difficult to be discovered. Further more, because UML itself is a very

expressive and rich language, sometimes the model gives behaviors not expected

by the designers and those behaviors could cause serious bugs for the system. For

this reason, I discuss below a problem which may occurre in complex systems

modeled in UML.

UML provides several kinds of diagrams to model the behavior and structure of

a system under development. As mentioned before, a consistency problem may

arise due to the fact that some aspects of the model may be described by more

than one diagram. Hence, the consistency of the system description should be

checked before implementing the system. E.g. consistencies check between

UML Sequence and State Diagrams.

19



Let me describe more complex inconsistencies. Take, for example, some object in

Sequence diagram. The outgoing legs usually occur due to some incoming leg,

such as a function call or a constructor call. The State diagram for the object's

class describes the object behavior. The incoming leg to the object in the

Sequence diagram serves as a trigger of the associated State diagram

transition. If there is no transition for such a Trigger in the State diagram,

obviously either the object behavior definition in the State Diagram is wrong

or incomplete, or the Sequence diagram is incorrect. Either way, it is an

inconsistency between the diagrams.

The Seq uence transition must match at least one State transition that

emanates from a current object state. Otherwise the diagrams are

inconsistent.

The problem of finding such inconsistencies becomes very complex in many

cases. For example, the current object state may consist of many simple states

due to transitions into concurrent composite. These simple (non-composite

persistent) states may be in different levels of State diagram hierarchy. States

that change the control behavior, such as choice states and history states, make it

harder to locate the current object state after a given transition. Many additional

elements, such as transition guards (conditions), on entry on exit actions, transi-

tions that pass hierarchical levels in the State diagram, etc, were not mentioned

in this introduction.

20



2- A Simple Example of the Problem

The example describes the interaction between the components of a cellular phone, and

the phone user. One use case of the cellular system is dialing a number. In one of the

scenarios of this use case the user has entered a phone number. Just before he presses

the send button, there is an incoming call. The cellular phone allows the user to answer

an incoming call even after he has entered several digits. When the button, this means

that the Dialer object either has to make a call or to receive an incoming call. The

decision is made according to the Dialer state, whether there was an incoming call or

not.

The inconsistent Sequence and State diagrams for the Dialer are specified in Figures 1

and 2, respectively. The Sequence diagram designer intended to make a call, even

though the pressing of the Send button should- according to the State diagram of the

Dialer- answer an incoming call. The run of the Dialer will detect the inconsistency at

the first send message (message#6 in the Sequence diagram).

DItBImohIA(jarer	 SendFkfltonAdalller 	 Dialer	 CellulerRadlo	 FUngeir

I	 I

1 Digit

_IIl
2' Ring

3 , Digit 

4: [Digit 

5: Incomingc'aII

: send 

Li	 TII 7: connect
I

I	
II g:sencl

__ I

I
9: disconnect

I
HiI 1tJsend

L_I	 ii a newer

I 12 send	 Li	 TI1

LI	 -u	 I

I	 13: disconnect
I	 I

I	
Hi

I	 I

I	 I	 I

I	 I	 I

I	 I	 I

Figure 2.1 - Dialer Sequence Diagram
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Figure2.2 —Dialer Stale Diagram
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3- Definitions

In this section we define the terms that are used through the entire text. Some of

the definitions are identical to the standard UML definitions. We also rephrased

some UML definitions for easier understanding. Some definitions are non-UML

ones.

3.1 Basic Behavior definitions

Event: Either a signal emission (in real-time environments) or a function call.

Defined in UML as "The specification of noteworthy occurrence that has a

location in time and space".

Action: An outgoing event, i.e. an event that is triggered by the associated

transition.

Trigger: A trigger is an event that initiates an associated transition. We use the

same term both in the Sequence diagram and in the State diagram. In the standard

UML

State diagram it is named trigger as well, whilst in the standard UML Sequence

diagram it is called stimulus.

Guard: A condition that must be satisfied in order to enable the associated

transition to be performed.

Leg: A basic component of a Sequence diagram or a State diagram, depicted in

UML as an arrow with an optional guard and an optional action. In UML, a Leg is

called a simple transition in a State diagram, whereas in a Sequence diagram it is

called a message.

23



Transition: Consists of a trigger and a nonnegative number of legs.

Step: An execution of transition actions, when the trigger occurs and the guards

are satisfied.

Run. The Sequence of steps that are executed from the initial step to the last one.

24



3.2- Sequence Diagram definitions

Object: An instance that is instantiated from a class.

Sequence (diagram) transition: A transition in a Sequence diagram that consists of

an incoming leg (message) and all the outgoing legs (messages), if any, triggered

by it.

Joe Robson. Aiager I	 I Bill Dom:Owmer 	 I	 I Guy Sth: Sa1eein

Trigger (for Joe))	 çBirsdLpatch action

.kction

FiodBer()

Guard

if

ru

These 4 legs conosea iraastion for Joe) 	
A Leg

Figure 3.2 - Sequence Diagram Definitions Example
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3.3- State Diagram definitions

State: A situation during the life of an object during which it satisfies some

condition or waits for some event.

Pseudo state: An abstraction that encompasses different types of transient vertices

in the same state machine graph.

Persistent state: A state where a thread of control stops till the end of one step.

Transient state: A state that is not a persistent state. This is equivalent to Pseudo

State.

Persistent-state leg: A leg that emanates from a persistent state. It always includes

a trigger.

Transient-state leg: A leg that emanates from a transient state.

Substate: A state which is composed in some composite state.

Simple state: A persistent state that does not have substates.

Fork State: A transient state that serves to split the incoming leg into two or more

legs terminating on orthogonal target vertices, which are substates in the same

object state.

Join state: A transient state that serves to merge several legs emanating from

source vertices in different orthogonal vertices.
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Shallow history: A shorthand notation for a transient state, which represents the

most recent active configuration of a composite state that directly contains this

shallow history

state.

Final State: A special kind of persistent state signifying that the enclosing

composite state is completed. Defined as a transient state in UML.

Choice state: A state which, when reached, result in dynamic evaluation of guards

on its outgoing legs.

Initial State: A transient state, which is a source for a single leg emanating

towards the default substate of a composite state.

State (diagram) transition: A transition in a State diagram that includes the trigger

and all the legs on the path between two persistent states, with no persistent states

in between.

Composite State: A state that consists of concurrent (orthogonal) substates or of

sequential (disjoint) substates.

Concurrent Composite State: A state that consists of concurrent (orthogonal)

substates.

Exception: A leg from some state, which is located in a concurrent state, to some

other state outside that concurrent state.

Saturateable state: A state that holds a count of the number of control flows that

reached it. This count is called a saturateable count. Fork, Composite and

Concurrent composite states are saturateable states. The count is used later by the
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algorithm to know whether the execution should proceed beyond the saturateable

state or not.

Current object state: The conjunction of all the active states in a State diagram,

that defines the behavior of the object for any incoming event. At the beginning of

the object lifetime, its current object state includes only all the initial State

diagram states. The current object state is updated with each state transition. It can

include multiple simple states, if the diagram contains concurrent composite or

fork states.

Persistent State

Wait for SeliCar Trigger

SellCart

ZX
Check Cars

c
[We have

(TransiitStattState

('C"On̂vinceHim
guard]

lirelevant. state
NextState

Persistent State

Figure 3.3 - State Diagram Definitions Example

Note that:

SeilCar / FindBuyer are Persistent-State Legs. These legs always include triggers.

ConvinceThem is a Transient-State Leg

NextState is afinal State and a Persistent (Composite) state
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4- Solution Description

This Part describes the inputs, outputs, and the way of operation of the Algorithm

below.

4.1- Inputs

This section describes the algorithm that we used. The inputs to the algorithm are:

• The name of the Sequence diagram to be checked.

• The name of the object in the Sequence diagram one would like to check.

Each run of the Algorithm validates the consistency on a specific object in a

Sequence diagram. The Algorithm should be activated several times for different

objects of the same Sequence diagram. This way one can ensure that some

interactions between objects in the Sequence diagram are possible, according to

the corresponding state diagrams of the objects, whereas other interactions are not.

It is especially vital when one wants to ensure that some action always happens

before another.

4.2- The main idea of the solution

One can visualize the Algorithm as a hybrid Sequence-state diagram. From the

input we know which State diagram we want to check and which object in the

Sequence diagram we are about to check. Given a message in the Sequence

diagram, it is interpreted in one of two ways in the State diagram:

• It should be a leg leaving persistent state, if the message is an incoming

message to the checked object in the Sequence diagram.
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It is a leg leaving any state, if the message is an outgoing message from

the checked object in the Sequence diagram. Usually this leg will emanate

from a transient state (see State diagram definition P13)

A message can change the current object state of the state diagram. Notice that the

current object state changes according to the previous transitions.

A simple example of a coffee machine, where only a trigger changes the current

object state, is shown in Figure 3.

Coffee mathtoe

Triggec = Corn IN

Cucteat Object State

OFF)	 [Milk o] [Coffee on] [Stwar oss] [Seteotlion SLACK

Itostae	 5,ftbe ON]

I	 go to state 4water ON 
J

I go to state	 ON
Action = Start Tuner

TsiggEr Timer Signal IN

Cnnen: Ob;ect State

[w] [ oj [Coffee ON]	 [susar ON ] [SelectiiOa BLACK]

Figure 4.2 —Hybrid Sequence-State diagram fragment

Note that:
Current Object State 1 (Water OFF, Milk OFF, Coffee OFF ...) is a Persistent State

Current Object State 2 (Water ON, Milk OFF, Coffee ON...) is a Transient State
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The algorithm iterates over the Sequence diagram transitions of a given object.

Each Sequence transition is compared with the set of state transitions that start

from the current object state.
In order to find whether a Sequence diagram and a State diagram of an object obji,

which is included in the Sequence diagram, are consistent, the following steps are

taken.

The Sequence diagram transitions are traversed by the algorithm. For each

transition, it checks whether there is any suitable state diagram transition, i.e.

a transition that has the same trigger, same actions with identical guards,

same action ordering as in the Sequence diagram transition. The suitable

state transitions are searched from the current object state. If there is a

suitable state transition, the iteration continues; otherwise an error message

is issued. This process of iteration and comparison is called a run of Sequence

diagram over the State diagram. This run can be done for each object in a

Sequence diagram. The State diagram that is a part of the run is the State

diagram associated with the class of the object.
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4.3- The algorithm

For a given object in the Sequence diagram, the algorithm iterates over the

Sequence transitions. Each Sequence transition is checked for a suitable State

transition, which is looked for from the current object state. The current object

state is updated upon successful lookup.

The lookup starts by finding all legs emanating from a persistent state that are

suitable for the incoming leg of the Sequence diagram. If the leg comparison

succeeds, the algorithm looks for a suitable state transition that starts with this

edge. Following is a description of the lookup algorithm:

Input: a persistent state and a Sequence transition being checked.

Output: a suitable State transition or a failure status.

We chose to implement a step in a hierarchical way. State machine top (means to

top), which is the uppermost state in every UML State diagram, is the first state in

a run. For each composite (or concurrent composite) state we must know its

current configuration, i.e., its active (sub) states - the inner states in which the

thread of control is currently located. Each state in the current configuration

might itself be a composite state and holds a configuration of its own. Thus, a

hierarchy of states is created. The conjunction of all the leaf states in this hierarchy

is the /it current object state. Each composite state recursively activates the step on

its active sub state (see CompositeState::step (Sequence transition)).

One of the main reasons we chose this method of implementation was to support

State diagram exceptions. An exception is a leg emanating from some state

located inside a concurrent state, to some other state outside that concurrent

state. E.g., when an exception is received, the algorithm has to cause every thread

of control inside of the concurrent state and its descendants to exit the state. Keep

in mind that there might be some composite inner states inside the concurrent

state. Control must leave them as well. In short, with the hierarchical approach the

implementation of State diagram exception support is much easier.
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Note that:

- A history state is a transient one, implemented as a state with outgoing legs

targeted toward the last remembered configuration. In this way, when the

history state is entered, the flow of control is directed to the last

remembered inner states.

- An enclosing state of a final state is a persistent (composite) one. The

execution of the Sequence diagram transition should come to an end, and

the algorithm is terminated. One has to know that all the final states have

been reached. A saturateable state holds a counter of the control threads that

enter it. This count is updated upon each state entry. A final state also

notifies its parent when a transition enters it.
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P- Current states include only persistent states.

Composite State is a PersistentState. *1

CompositeState: :step(SequenceTransition transition) {

II suitable for concurrent composite state as well

foreach state in the 'current object state' of this state Diagram

PersistentState:step(SequenceTransition)

if results have no successful entry then

return 'none—found'

else

return the transition stored in the successful entry.

We will have to know to which subset of the inner states the execution has reached.

/* The PersistentState:step(SequenceTransition) which is single persistent state S, is
described next. */
PersistentState: :step(SequenceTransition transition) {

PersistentState: :gatherResults(SequenceTransition transition)
if any state answer encountered means that multiple options (possibilities)
were encountered during the transition search, return it.
count the legal results count, and if more than one,
return multiple options.
if no correct results were encountered, return
PersistentState: :stepO for the parent state. P No consistent states *1
else return the single correct result.

P Gather Consistent states for each leg in the sequence transition *1
Collection PersistentState: :gatherResults(
SequenceTransition transition){
II All legs emanating from a persistent state should have a trigger,
II apart from a leg that starts a completion transition.

for each emanating leg in Sequencelransition transition
PersistentStateLeg: :step(transition, this _state);
collect the results (Consistent States) into a collection and return them.

P seqTrans contains all legs of the Sequence diagram Transition *1
PersistentStateLeg: :step(SequenceTransition seqTrans,
PerstistentState S){

compare the trigger, guard of this leg
for conformance to the incoming leg of the seqTrans;
3 possible actions - the exit action of the original
state, the leg action, and the entry action are also
checked.
if OK then {

return call ConsistentStateSearch(next state of this leg,
outgoing legs of the Sequence transition).
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P from State is the next state of the Persistent State
OrderedCol/ection legs are all legs of the Sequence diagram Transition *1
PersistentStateLeg: :ConsistentStateSearch(StatefromState S, OrderedCollection

legs)
{
I/initially, includes only fromState parameter.

if (state S is a JoinState) then {
continue.

}
if (state S is a FinalState) then {

continue.
}
II traverse legs.
if (S is a fork state) then {

compare all legs emanating from S with the
upcoming legs in the OrderedCollection legs
if (not all equal) {

continue.
}
else {

remove all the compared legs (L') from OrderedCollection legs.
insert the target state
of each leg L into consistent—states.

}
else {

foreach outgoing leg L that has no trigger {
compare L with the current
Sequence transition leg L'.
ifL=L' then {

remove L' from OrderedCollection legs
//the function parameter.
insert the target state of L into consistent—states.

}
else

continue.

}
if ((consistent—states include only persistent states) and

(OrderedCollection legs are empty)) then
return consistent—states with status 'executed'.

else if ((OrderedCollection legs are not empty) and
(consistent _states include only persistent states)) then
return status 'Inconsistency'
.P all State Legs are different from Sequence Legs 'OrderedCollection
legs', No consistent states found */

else if ((leg (L) is NULL) ) and (S was not a history state)) then
return status 'State Diagram Finished'

35



5- A Run Example

5.1- Run Example A

In this Example the Algorithm Traverses the Sequence and State Diagram found

on Pages 18 and 21 respectively.

CompositeState: :step(SequenceTransition transition) {
foreach state in the 'current object state' of this state Diagram (Wait For SeilCar Trigger)

PersistentState:step(SequenceTransition)
(Sequence Transition = SeilCar, FindBuver, ConvinceHim)

if results have no successful entry then
return 'none found'

else
return the transition stored in the successful entry.

PersistentState: :step(SequenceTransition transition) {
PersistentState: : gatherResults(SequenceTransition)
if any state answer encountered means that multiple options (possibilities)
were encountered during the transition search, return it.
count the legal results count, and if more than one,
return multiple options.
if no correct results were encountered, return
PersistentState::step() for the parent state.
else return the single correct result.

}
Leg SeIICar()

Collection PersistentState: :gatherResults(SequenceTransition SeqTrans){
for each emanating leg in SeqTrans (SeliCar)

PersistentStateLeg: :step(SeqTras, WaitForSeilCar);
collect the results (Consistent States) into a collection and return them.

Lext Leg

PersistentStateLeg: :step(SequenceTransition seqTrans,
PerstistentState S){

compare the trigger, guard of this leg
for conformance to the incoming leg of the seqlrans;
3 possible actions - the exit action of the original
state, the leg action, and the entry action are also
checked.
if OK then {

return call ConsistentStateSearch (CheckCars , ConvinceHimO).

PersistentStateLeg : :ConsistentStateSearch (StateFromState S, OutgoingLegs
OrderedCollectionLegs)
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Let L be a Leg emenating from S , L' be a Leg in OrderedCollectionLegs

(L = ConvinceHimO . L '=convinceHimO)

if (state S is a JoinState) then {
continue.

}
if (state S is a FinaiState) then {

continue.

if (S is a fork state) then {
compare all legs L with the Legs L'

if (not all equal) {
continue.

I
else {
remove all the compared legs (L') from OrderedCollection legs
and insert the target state of each leg L into consistent—states.

I
else {
ForEach outgoing leg L that has no trigger (L = ConvinceHimO)

compare L with the current leg V.

if L == L' then { (TRUE)
remove L' from OrderedCollection legs and insert the
target state of L (NextState) into consistent—states.

}
else

continue.
}
Next 

}
if ((consistent_states include only persistent states) and (True:NextState)

(OrderedCollection legs are empty)) then (TRUE)
return consistent—states with status 'executed'.

else if ((OrderedCollection legs are not empty) and
(consistent—states include only persistent states)) then
return status 'Inconsistency'

else if ((leg (L) is NULL) ) and (S was not a history state)) then
return status 'State Diagram Finished'
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Leg FindBuyer()

Collection PersistentState::gatherResults(SequenceTransition SeqTrans){
for each emanating leg in SeqTrans (FifldBUyer)

PersistentStateLeg: :step(SeqTras, WaitForSeliCar);
collect the results (Consistent States) into a collection and return them.

Lext Leg

PersistentStateLeg::step(SequenceTransition seqTrans,
PerstistentState S){

compare the trigger, guard of this leg
for conformance to the incoming leg of the seqTrans;
3 possible actions - the exit action of the original
state, the leg action, and the entry action are also
checked.
if OK then {

return call ConsistentStateSearch(CheckCars, ConvinceHimO).

PersistentStateLeg: :ConsistentStateSearch (StateFromState S, OutgoingLegs
OrderedCollectionLegs)
{

Let L be a Leg emenating from S , L' be a Leg in OrderedCollectionLegs

(L = ConvinceHim() , L 'ConvinceHimO)

if (state S is a JoinState) then {
continue.

}
if (stateS isaFinalState) then {

continue.

if (S is a fork state) then {
compare all legs L with the Legs L'

if (not all equal) {
continue.

}
else {
remove all the compared legs (L') from OrderedCollection legs
and insert the target state of each leg L into consistent—states.

I
else {
ForEach outgoing leg L that has no trigger (L = ConvinceHimO)

compare L with the current leg L'.

if L == L' then { (TRUE)
remove L' from OrderedCollection legs and insert the
target state of L (NextState) into consistent—states.
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else
continue.

}
Next L

}
if ((consistent—states include only persistent states) and (True.NextState)

(OrderedCollection legs are empty)) then (TRUE)
return consistent—states with status 'executed'.

else if ((OrderedColiection legs are not empty) and
(consistent—states include only persistent states)) then
return status 'Inconsistency

else if ((leg (L) is NULL) ) and (S was not a history state)) then
return status 'State Diagram Finished'

Leg ConvinceHim()

Collection PersistentState: :gatherResults(SequenceTransition SeqTrans){
for each emanating leg in SeqTrans (ConvinceHim)

PersistentStateLeg: :step(SeqTras, WaitForSellCar);
collect the results (Consistent States) into a collection and return them.

Lext Leg

PersistentStateLeg::step(SequenceTransition seqTrans,
PerstistentState S)(

compare the trigger, guard of this leg
for conformance to the incoming leg of the seqTrans;
3 possible actions - the exit action of the original
state, the leg action, and the entry action are also
checked.
if OK then {

return call ConsistentStateSearch(NextState , ConvinceHimO).

PersistentStateLeg: :ConsistentStateSearch (StateFromState S, OutgoingLegs
OrderedCollectionLegs)
{

Let L be a Leg emenating from S , L' be a Leg in OrderedCollectionLegs

(L = NULL, L '=ConvinceHimO)

if (state S is a JoinState) then {
continue.

}
if (state S is a FinalState) then { (TRUE)

continue.

if (S is a fork state) then {
compare all legs L with the Legs L'

if (not all equal) {
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continue.
}
else {
remove all the compared legs (L') from OrderedCollection legs
and insert the target state of each leg L into consistent—states.

}
else {
ForEach outgoing leg L that has no trigger

compare L with the current leg V.

if L == L' then {
remove L' from OrderedCollection legs and insert the
target state of L into consistent—states.

}
else

continue.
}
Next 

}
if ((consistent—states include only persistent states) and

(OrderedCollection legs are empty)) then
return consistent—states with status 'executed'.

else if ((OrderedCollection legs are not empty) and
(consistent—states include only persistent states)) then
return status 'Inconsistency

else if ((leg (L) is NULL) ) and (S was not a history state)) then (TRUE)
return status 'State Diagram Finished'
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5.2- Run Example B

In this Example the Algorithm Traverses the Sequence and State Diagram found

on Pages 15 and 16 respectively.

CompositeState: :step(SequenceTransition transition) {
foreach state in the 'current object state' of this state Diagram (Answer Wait)

PersistentState:step(SequenceTransition)
(SequenceTransition = Answer, disconnect, connect)

if results have no successful entry then
return 'none—found'

else
return the transition stored in the successful entry.

PersistentState::step(SequenceTransition transition) {
PersistentState: gatherResults(Sequencelransition)
if any state answer encountered means that multiple options (possibilities)
were encountered during the transition search, return it.
count the legal results count, and if more than one,
return multiple options.
if no correct results were encountered, return
PersistentState::stepO for the parent state.
else return the single correct result.

Leg Answer()

Collection PersistentState: :gatherResults(SequenceTransition SeqTrans){
for each emanating leg in SeqTrans (Answer)

PersistentStateLeg: :step(SeqTras, OnlineWait);
collect the results (Consistent States) into a collection and return them.

Lext Leg

PersistentStateLeg: :step(SequenceTransition seqTrans,
PerstistentState S){

compare the trigger, guard of this leg
for conformance to the incoming leg of the seqTrans;
3 possible actions - the exit action of the original
state, the leg action, and the entry action are also
checked.
if OK then {

return call ConsistentStateSearch(OnlineWait,
(Disconnect/Answer/Connect)).
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PersistentStateLeg: :ConsistentStateSearch (StateFromState S , OutgoingLegs
OrderedCollectionLegs)
{

Let L be a Leg emenating from S , L' be a Leg in OrderedCollectionLegs

(L =Send/Disconnect. L '= Disconnect/Answer/Connect)

if (state S is a JoinState) then {
continue.

}
if (state S is a FinalState) then {

continue.

if (S is a fork state) then {
compare all legs L with the Legs L'

if (not all equal) {
continue.

}
else {
remove all the compared legs (L') from OrderedCollection legs
and insert the target state of each leg L into consistent states.

}
else{
ForEach outgoing leg L that has no trigger (L =Send)

compare L with the current leg L'.

if L == L' then{ (FALSE)
Leg Send # Leg Disconnect
Leg Send # Leg Answer
Leg Send # Leg Connect
remove L' from OrderedCollection legs and insert the
target state of L into consistent—states.

}
else

continue.
}
Next L

ForEach outgoing leg L that has no trigger (L =Disconnect)

compare L with the current leg L'.

if L == L' then { (TRUE)
Leg Disconnect = Leg Disconnect
remove L' from OrderedCollection legs and insert the
target state of L (Idle) into consistent—states.

}
else
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continue.
}
Next 

if ((consistent—states include only persistent states) and
(OrderedCollection legs are empty)) then
return consistent—states with status 'executed'.

else if ((OrderedCollection legs are not empty) and (TRUE)
(consistent—states include only persistent states)) then
return status 'Inconsistency'

else if ((leg (L) is NULL) ) and (S was not a history state)) then
return status 'State Diagram Finished'
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6- Run Results

Run example A:

Run example A Contains in its Sequence Diagram Sequence Transition witch has

3 Legs (SeliCar, FindBuyer and ConvinceHim). The Algorithm Iterates the State

Diagram for each Leg in the Sequence Transition.

- The Algorithm starts with the Leg SeilCarO.

The Next State of SeilCarO is CheckCars, a Transient State.

The outgoing Leg from CheckCars State that has no Trigger is ConvinceHirnO.

Since CheckCars is neither a JoinState nor a Final nor a Fork state,

The Algorithm compares each Outgoing Leg from CheckCars that has no Trigger,

L = ConvinceHim() in this case, with the Outgoing Legs from the Sequence

Transition (OrderedCollectionLegs), L' = ConvinceHim() Leg in this case.

The Algorithm finds that the two Legs (L & L') are equal.

Therefore L' is removed from OrderedCollectionLegs and the Target State of L,

NextState in this case, is inserted to Consistent—States.

At last the Algorithm Checks if Consistent —States include only Persistent States

and if OrderedCollectionLegs are Empty. It finds that this is true and returns a

Value 'Executed' (Validation found).
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- The Algorithm continues for the second Leg of the Sequence Transition

FindBuyer 0.

The Next State of FindBuyerO is CheckCars, a Transient State.

The outgoing Leg from CheckCars State that has no Trigger is ConvinceHimØ.

Since CheckCars is neither a JoinState nor a Final nor a Fork state,

The Algorithm compares each Outgoing Leg from CheckCars that has no Trigger,

L = ConvinceHim() in this case, with the Outgoing Legs from the Sequence

Transition (OrderedCollectionLegs), L' = ConvinceHimO Leg in this case.

The Algorithm fmds that the two Legs (L & L') are equal.

Therefore L' is removed from OrderedCollectionLegs and the Target State of L,

NextState in this case, is inserted to Consistent—States.

At last the Algorithm Checks if Consistent —States include only Persistent States

and if OrderedCollectionLegs are Empty. It finds that this is true and returns a

Value 'Executed' (Validation found).

- The Algorithm continues for the Last Leg of the Sequence Transition

ConvinceHim 0.

The Next State of ConvinceHimO is S = NextState, a Persistent State.

The outgoing Leg from NextState State that has no Trigger is nothing.

L = Null

Since NextState is a Final state,

The Algorithm Continues
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At last the Algorithm Checks if L is Null and S is not a History Sate (is a

Persistent State). It finds that this is true and returns 'State Diagram Finished'.

Run example B:

Contains in its Sequence Diagram Sequence Transition witch has 3 Legs (Answer,

Disconnect and Connect). The Algorithm Iterates the State Diagram for each Leg

in the Sequence Transition.

- The Algorithm starts with the Leg AnswerO.

The Next State of Answer() is Online Wait a Transient State.

The outgoing Leg from Online Wait State that has no Trigger is SendO and

DisconnectO.

Since Online Wait is neither a JoinState nor a Final nor a Fork state,

The Algorithm compares each Outgoing Legs from Online Wait that has no

Trigger, ConvinceHimO and Send () in this case, with the Outgoing Legs from the

Sequence Transition (OrderedCollectionLegs), Answer, Disconnect and Connect

Legs in this case.

The Algorithm finds that the Leg Send # Leg Disconnect and Leg Send # Leg

Answer and Leg Send # Leg Connect.

The Algorithm continues for the Second Leg Disconnect and Finds it equal to Leg

Disconnect in the OrderedCollectionLegs.

Therefore Disconnect() is removed from OrderedCollectionLegs and the Target

State of DisconnectO, S = Idle in this case, is inserted to Cons is ten t_States.
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At last the Algorithm Checks OrderedCollectionLegs if they are not empty. It

finds it true since Answer() and Connect() still in OrderedCollectionLegs, and

consistent—states include only persistent states, true since it includes Idle State, so

returns 'Inconsistency'.
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7- Conclusions

7.1- Partial legs ordering in a Sequence diagram

Consider running a Sequence transition. We might not care about the order of

some of the outgoing legs. We thought of some expansion of UML where one can

actually visually set partial ordering of the Sequence diagram legs. Legs among

which the order is not important can emanate from the same spot in the Sequence

diagram. This complicates greatly the running algorithm, but note that it still

remains Consistent. This is not implemented in the project.

7.2- Compound initial transition

The UML standard is somewhat vague about the transition concept, as we

mentioned earlier. We assumed that there is a single empty transition from an

initial state to a persistent state. However, UML also uses the term compound

transition. We might have a transition emanating from the initial state, which

includes several choice states for example (which will make it several transitions,

not the standard). Moreover, it might even end outside the composite state. Note

that in this case it's much harder to locate the flow of control, because it's

cumbersome to make hierarchical running algorithm like this.

One might consider global current states instead of current states per every

composite state, in this case. This makes exception control harder and time-costly,

though one will have to detect exception, and then undo the steps of the states that

were in the same father of the exception receiving step. Note also that the

exception can go up several levels in the hierarchy. Then the steps taken in these

levels will have to be undone. This makes exception much harder to implement.
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7.3- Summary

Our Algorithm provides a simple solution for the UML dynamic diagrams

consistency problem. It is more than a Boolean result consistency checker; it is a

tool that enables fast error detection and recognition.

Its main advantage is that it is straightforward to use and the output is easy to

understand, unlike some other similar tools, and the input is given in a

straightforward form of a Sequence diagram. No first or second order logic

knowledge is needed. Such knowledge is not always present at the client side

(analysts and designers).

Its main disadvantage is that it gives one information about specific runs that are

designed in a Sequence diagram, and not any possible runs. The solution of this

would probably require solid computer science logic background at the client side.
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