
A High Abstraction Level Constraint for Object Localization in Marine Observatories

A Thesis

Presented to

the Faculty of Natural and Applied Sciences

at Notre Dame University - Louaize

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in Computer Science

by

Jad Moussa

January 2021

ii

Notre Dame University - Louaize

Faculty of Natural and Applied Sciences

Department of Computer Science

We hereby approve the thesis of

Jad Moussa

Candidate for the degree of Master of Science in Computer Science

N. H.
Dr. Nazir Hawi Supervisor, Chair

H. M.
Dr. Hoda Maalouf Committee Member

M. S.
Dr. Maya Samaha Rupert Committee Member

iii

Acknowledgments

First and foremost, I am extremely grateful to my supervisor Dr. Nazir Hawi for his

invaluable advice, continuous support, and patience during my Master study. My gratitude

extends to all faculty members at Notre Dame University.

iv

Declaration

 I hereby declare that I am the sole author of this thesis. To the best of my knowledge, this

thesis contains no material previously published by any other person except where due

acknowledgment has been made.

v

Table of Contents

Acknowledgments .. iii
Declaration.. iv
Table of Contents .. v
List of Figures .. vii
List of Abbreviations ... ix
Abstract .. xii

Chapter1: Introduction .. 1

1.1 General Context .. 1

1.2 Sensor Networks ... 2

1.3 Research Question .. 6

Chapter 2: Sensor Networks Development Process ... 7

2.1 Sensor Networks ... 7

2.2 Sensor Networks Systems ... 12

2.3 Fusion Algorithms .. 14

2.4 Properties for Selecting a Data Fusion Architecture ... 15

2.5 Data Fusion Architectures ... 16

2.6 Data Limits and Comparison Among Different Data Fusion Architectures 17

2.7 Requirements for Designing Sensor Networks Systems .. 20

2.8 Limits and Comparison Among Different Approaches of Sensor Networks Design 23

2.9 Discussion ... 25

Chapter 3: Model-Driven Engineering ... 26

3.1 Model-Driven Engineering Fundamentals .. 26

3.2 Model-Driven Engineering Aspects ... 28

3.3 Separation of Concerns in MDE ... 31

3.4 Model-Driven Engineering Standards and Tools ... 33

3.5 Model-Driven Engineering for Sensor Networks ... 34

3.6 Discussion ... 36

Chapter 4: System Architecture Modeling ... 39

vi

4.1 Modeling Context ... 39

4.2 Enterprise Architecture Types .. 39

4.3 Enterprise Architecture Frameworks .. 40

4.4 Domain-Specific Concepts in Enterprise Architecture Frameworks 42

4.5 Enterprise Architecture Modeling Languages and Metamodels ... 43

4.6 Requirements for Selecting the Enterprise Architecture Metamodel 49

4.7 Comparison Among Enterprise Architecture Metamodels ... 49

4.8 Enterprise Architecture Frameworks and Design Tools for Sensor Networks 52

4.9 Discussion ... 52

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks

Design ... 54

5.1 ArchiMO Definition.. 54

5.2 Smart Sensor Specification ... 60

Conclusion ... 65

Answering the Research Questions .. 65

Recommendations and Future Work .. 66

References .. 67

vii

List of Figures

Figure 1: Conceptual Model of Architectural Description (ArchiMate® 2.1 Specification, n.d.) 11

Figure 2: Centralized Fusion Architecture (Aoun et al., 2017) .. 17

Figure 3: Hierarchical Fusion Architecture (Aoun et al., 2017) ... 18

Figure 4: Distributed Fusion Architecture (Aoun et al., 2017) ... 19

Figure 5: Comparison Among SN Design Approaches .. 25

Figure 6: Layered Architecture of MDE (OpenUP - The Best of Two Worlds: Agile, Scrum and

RUP, n.d.) ... 30

Figure 7: Model Transformation ... 32

Figure 8: Enterprise Architecture Viewpoint (ArchiMate® 2.1 Specification, n.d.).................... 34

Figure 9: Architecture Development Method (The Open Group ArchiMate(R), n.d.) 41

Figure 10: ArchiMate Business Layer Metamodel (The Open Group ArchiMate(R), n.d.) 45

Figure 11: ArchiMate Application Layer Metamodel (The Open Group ArchiMate(R), n.d.) 45

Figure 12: ArchiMate Technology Layer Metamodel (The Open Group ArchiMate(R), n.d.).... 46

Figure 13: ArchiMate Business Layer Concrete Syntax Components (The Open Group

ArchiMate(R), n.d.)... 46

Figure 14: ArchiMate Business Layer Concrete Syntax Relationships (The Open Group

ArchiMate(R), n.d.)... 47

Figure 15: ArchiMate Business-Application Alignment (The Open Group ArchiMate(R), n.d.) 47

Figure 16: ArchiMate Application-Technology Alignment (The Open Group ArchiMate(R), n.d.)

... 48

Figure 17: Layers of TOGAF Metamodel (The Open Group ArchiMate(R), n.d.) 48

Figure 18: Comparison Between ArchiMate and Togaf ... 51

viii

Figure 19: Compatibility Between TOGAF ADM and ArchiMate .. 51

Figure 20: ArchiMate Extended Business Layer (Aoun et al., 2015) ... 56

Figure 21: ArchiMate Extended Application Layer (Aoun et al., 2015) 57

Figure 22: Communication Constraint Between Smart Sensor-Data Fusion (Aoun et al., 2015) 58

Figure 23: Business and Application Layers Palette (Aoun et al., 2015) 61

Figure 24: Extended Relationship in Palette (Aoun et al., 2015) ... 62

Figure 25: Association and Assignment Relationships (Aoun et al., 2015) 63

Figure 26: Smart Sensor – Data Fusion Relationship (Aoun et al., 2015).................................... 64

Figure 27: Smart Sensor Frequency (Aoun et al., 2017) .. 64

ix

List of Abbreviations

SN Sensor Network

UW-SN Underwater Sensor Network

UML Unified Modeling Language

EAML Enterprise Architecture Modeling Language

DSML Domain-Specific Modeling Language

SOS System of Systems

DSLC Distributed System Life Cycle

GPS Global Positioning System

NEPTUNE North East Pacific Time-series Undersea Networked Experiments

GLONASS Global Navigation Satellite System

VENUS Victoria Experimental Network Under the Sea

DFA Data Fusion Architecture

CA-PSCF Context-Aware Pervasive Service Creation Framework

DSM Domain-Specific Model

ITSML Intelligent Transportation Systems Modeling Language

MDE Model Driven Engineering

OMG Object Management Group

MT Model Transformation

x

OCL Object Constraint Language

ATL Atlas Transformation Language

MDA Model Driven Architecture

MOF Meta Object Facility

XMI XML Metadata Interchange

CWM Common Warehouse Metamodel

IDE Integrated Development Environment

EMF Eclipse Modeling Framework

EA Enterprise Architecture

TOGAF The Open Group Architecture Framework

FEAF Federal Enterprise Architecture Framework

ADM Architecture Development Method

GSN Global Sensor Marketing

SWE Sensor Web Enablement

SS Smart Sensor

DFS Dara Fusion Server

AS Algorithm Selection

DT Data Transmission

xi

DA Data Acquisition

OLA Object Localization Algorithm

SSS Smart Sensor System

FS Fusion System

MR Manage Resources

IMS IP Multimedia Subsystem

NOAA Natural Oceanic and Atmospheric Administration

xii

Abstract

Marine observatories based on sensor networks provide continuous ocean monitoring. The

design phase of such systems, which is part of the complete development life cycle, is a complex

and challenging task. The design difficulties may induce the designers to make architectural

design errors during the design phase. This study aims to identify the best design approach that

helps sensor networks designers in preventing errors and validating models at an early phase. In

addition, it introduces a new environmental constraint that should be taken into consideration

when building design models.

To determine the best approach, a comparison among several sensor networks design approaches

has been conducted, based on the requirements of sensor networks designers. The results showed

that extending an Enterprise Architecture Modeling Language, by adding new domain

components and constraints, contributes toward satisfying all the designers requirement.

Our contribution is based on a research paper titled “A High Abstraction Level Constraint for

Object Localization in Marine Observatories” (Aoun at al., 2017). In this research paper, we

implemented the proposed constraint in ArchiMO, a design tool that extends ArchiMate

metamodel by adding domain concepts.

This work aims to demonstrate that we can improve the development process of such complex

systems based on the use of Model-Driven Engineering methodology and Domain-Specific

Modeling Languages. The improvement is achieved by providing an early validation step via

models’ validation to consolidate the system design.

 Keywords: sensor networks, marine observatories, enterprise architecture, model-driven
engineering, domain-specific modeling language

Chapter1: Introduction

1

Chapter1: Introduction

1.1 General Context

The internet exploded across the world and has become an essential element of humans'

everyday life. Everyone wanted to connect his computer to the web. Then, the demand increased

for portability. Laptops have become as popular as pocket calculators. That hasn't been enough

until smartphones were invented to get access to the internet from everywhere at any time.

Researchers went beyond connecting just computers to the web. These researches led to the birth

of the Internet of Things. Now, billions of devices are connected to the internet, from simple

sensors to smartphones and wearables, all connecting and sharing data. By integrating these

connected devices with automated systems, it is possible to gather information, analyze it, and

create an action to help someone with a specific task or learn from a process. However, recent

developments in the field of embedded devices have led to smart things becoming increasingly

popular in our daily lives. All of these technologies are related to the Web of Things architecture

and rely mostly on Sensor Networks (SNs).

Sensor networks are the basis of the environmental monitoring systems infrastructure.

According to Yang et al. (2008, pp. 224–236), the environmental monitoring system is based on

an integrated sensors concept that is structured to store important data with signal processing

hardware in a single compact device. These smart sensors are naturally integrated into a

distributed data processing, data storage, and data presentation system. These systems present

various sensor data on web clients, such as pressure, temperature, humidity, smoke, gas, and

sound (Lauterbach et al., 2004, pp. 256-266). These presentations are coupled with data

processing to provide high-level services (e.g., location of moving objects) based on the

Chapter1: Introduction

2

composition of basic functions. This involves configuring multiple devices on the SN, and each

device has specific functions and offers different services.

The design of such systems has therefore become increasingly complex based on the

growing number of functionalities, processing functions, sensors, and incorporation into an

information system. The design phase of these systems, which is part of the complete system life

cycle, is concerned with the complexities and challenges of mapping high-level services and the

collection of functions on the SN architecture. During the design process, these design

difficulties can induce the designers to make architectural design errors which may have

significant implications on the entire system’s functioning and performance.

To avoid the problems of architectural design, the design of such complex systems should

be validated at an early phase. To this end, a new approach should be provided to SN designers

to build accurate models, with minimum margin of errors, in order to reduce the design phase's

complexity.

1.2 Sensor Networks

1.2.1 Sensor Networks Definition

“Sensor Networks are in which sensed data are periodically gathered at a single point, or

sink, for external transmission and processing” (Cuzzocrea, 2009). This definition may be

regarded as a two-phase procedure (Xianwei et al., 2012, pp. 120-131): (1)

observation/measurement, which means the accumulation of the data collected at each sensor

node; and (2) transfer of the data collected to a certain processing center within the SN.

SNs can be used for environmental monitoring, intrusion detection and target tracking,

infrastructure monitoring, precision agriculture, environmental monitoring, etc. Also, they can be

used for marine monitoring since they have a number of advantages such as unmanned

Chapter1: Introduction

3

operation, easy deployment, and real-time monitoring. The focus of this study is the ocean

survey, which provides a continuous way to track and observe objects moving underwater. This

observation includes underwater environmental measurements and the collection of estimated

variable object (Champeau et al., 2009, pp. 1-6). Underwater Sensor Networks (UW-SNs) are

therefore expected to be utilized in this context. The Underwater Sensor Network conducts tasks

like data collection, then transfers data from one system to another for all types of underwater

environmental monitoring (Lee et al., 2008, pp. 322-329).

1.2.2 Sensor Networks Implementation

There are different forms of SN (e.g., wireless and wired) (Ahmed et al., 2006, pp. 1-3).

Series of connected monitoring equipment such as sensors, servers, and communication

infrastructure are needed for the implementation of these networks. Such devices have several

specifications that differ from environmental constraints.

According to our field of study, we are engaged in aquatic environmental constraints. To

this end, attention should be given to many underwater environmental restrictions during the

implementation of the UW-SNs. We cannot disregard the existence of underwater

communication constraints that should be taken into consideration during the implementation of

UW-SNs, such as the type of cable used to connect a sensor to a server, which is a physical

constraint, or even the length of the cable being used, which is a logical constraint. Otherwise,

this will adversely impact the underwater communication efficiency and activities, such as the

delay in transmitting data between sensors and servers (Reed, 2015). Therefore, many

specifications are required to deploy the UW-SNs with the appropriate equipment (Heidemann et

al., 2005): acoustic communication, such as marine cables between sensors (hydrophones) and

Chapter1: Introduction

4

workstations (fusion servers); network configuration (e.g., sensor configuration and fusion

servers); application (e.g., trilateration algorithm).

1.2.3 Adopted Definition of Sensor Networks

Relying on Erol et al (2007, pp. 44-54) and Moradi et al (2012, pp. 4352-4380), and

based on our context, we define Underwater Sensor Networks as follows: “An Underwater

Sensor Network is a group of anchored sensors with an infrastructure for underwater

communication designed to get, share, monitor, and combine data between different nodes.

Then, processing and passing information to provide high-level services such as tracking or

finding an underwater moving object”.

1.2.4 Complexity and Challenges of Sensor Networks

The implementation of SN is necessary to attain the observation and monitoring missions

of a given area. SN is based on a series of sophisticated sensors with a communication network

for monitoring and recording data at different locations. It consists of components

(software/hardware) with different levels of computational and communication capabilities with

specific protocols for interaction. As such, SN is considered as a complex distributed system in

(Champeau et al., 2011).

We distinguish three sources of life-cycle difficulty: the complexity of the system itself

relates to the services and the number of functions rendered; the development and design

activities; and the implementation of the system (Cuzzocrea, 2009) (Bejar el al., 2005, pp. 117-

147).

 According to Srivastava (2010), there are two main challenges when it comes to SN

deployment: (1) The system architecture, because there is no single framework and networking

architecture to construct different applications at the top; (2) Hardware prices, as the current cost

Chapter1: Introduction

5

of a single sensor unit is very high. Therefore, the installation of the collection of underwater

sensors (hydrophones) is a costly process, as we are interested in the underwater environment.

This is also due to the appropriate equipment, such as unique boats, marine cables, and diving

experts, etc. Also, we cannot neglect the risky deployment process, and the location of the

underwater sensors and servers should be in the right place.

Many stakeholders engage in the implementation of SN and are part of the life cycle. “A

stakeholder is a person, group, or entity with an interest in concerns about the realization of the

architecture” (Rozanski & Woods, 2005).

The SN life cycle design process is divided into two key levels: behavioral (logical

analysis) and architectural networking. Each level needs a designer that is different from the

other and that is for a system's better implementation of network technologies. The design

process needs various stakeholders as per their domains. In this document, we're concentrating

on SN designers among these stakeholders.

To face the complexities and challenges of developing such distributed system

architecture, SN designers should be provided with support at the design level to cover,

elaborate, and evaluate all aspects of a SN.

The goal of the design process is to provide the physical network infrastructure with an

architecture that includes all the aspects of the service architecture concept. One of the important

approaches to achieving that aim is to provide abstractions of the final structure to concentrate on

the architectural intent.

In this context, the use of a modeling language is sufficient to concentrate on our intent,

given that the modeling language contains adequate abstractions. Several modeling languages are

candidates for the modeling phase, ranging from general-purpose languages such as UML to

Chapter1: Introduction

6

more network-based languages such as the Enterprise Architecture Modeling Language (EAML)

or the Domain-Specific Modeling Language (DSML).

An effective modeling approach trade-off is the reuse of current or common modeling

language with a specialization in our SN context. In this case, to get early validation on the

architectural hypothesis, the models must be effective. In our context, a network infrastructure

simulation that supports our application's high-level services can achieve the validation process.

These phases of modeling and simulation may be iterative to strengthen the mapping of services

on the network infrastructure. To this end, a strong tooling is needed to ease the phases of

modeling and simulation.

1.3 Research Question

 The research problem that drives this thesis deals with preventing losses in the

deployment phase while performing the design phase of SNs.

The research questions are as follow:

1- How to prevent errors at design time by adding a new environmental constraint?

2- How to implement the proposed constraint in an existing design tool?

Chapter 2: Sensor Networks Development Process

7

Chapter 2: Sensor Networks Development Process

2.1 Sensor Networks

Sensor Networks (SN) are composed of heterogeneous sensors with capabilities in

communication and heterogeneous components dedicated to one or more application domains.

These systems position themselves on a wide spectrum of domains, such as environmental

monitoring, ocean monitoring, transportation monitoring, etc.

To provide a generic definition of these systems, we rely on Jamshidi’s (2017) Systems

of Systems (SoS) definition, SoS is: “large-scale integrated systems which are heterogeneous and

interdependently operable on their own but are networked together for a common goal”.

2.1.1 Sensor Networks Life Cycle

One of the crucial phases of the SoS life cycle is the logical and physical allocation of

functional architecture to the SoS architecture. This phase includes an exploration of the

architecture to target SoS requirements. Also, Jamshidi (2017) defines SoS as: “large-scale

concurrent and distributed systems that are comprised of complex systems”, so the associated life

cycle is considered as a distributed systems life cycle (DSLC) to take into account the

geographic, operational, and managerial independence and the different temporal evolutions.

To define a DSLC life cycle, two main types of phases should be taken into account: (1)

for development purposes such as the phases of design and analysis; (2) for implementation

purposes such as the phase of deployment. Accordingly, we differentiate several DSLC

definitions. Gordon (2010) defines a typical development process with seven phases:

1- Set Up Development Environment: preparing the needed frameworks and the tools to

apply the designed models.

Chapter 2: Sensor Networks Development Process

8

2- Connect Hardware: preparing the hardware platforms, the connection between the

concerned devices such as the SN.

3- Prepare Interfaces/Libraries: preparing the libraries and the operating systems that are

compatible with sensor nodes hardware versions.

4- Compile Code: use the compilers of the programming languages in order to build the

executable code.

5- Implement Code to Hardware: deploy the executable code on devices/nodes.

6- Evaluate Effects: testing the functionalities of each node and node networks.

7- Repeat from the Fourth Phase: continuing by iteration from the phase 4 till the end while

errors are detected in order to fit the application requirements.

More to identify the preferred life cycle for our SN context, we would like to highlight

some suggestions that Gordon (2010) insists on:

1- The need for several distinct forms of testing during the design phase. So, a designer can

apply within the same model different assumptions, architectures and parameters.

2- The focus on the deployment evaluation, avoiding the mistakes and complexity in

deployment phase and including an evaluation phase at the end of the life cycle to check

how successful the deployment actually is.

3- The importance of iteration: errors are detected during testing or deployment re- quires to

re-implement modules of the system, an iteration can continue until application

requirements are satisfied. There are different possibilities of iteration between the

different phases. For example, in case the detected errors are related to the architecture

defined in the design phase, they can be reconsidered rapidly by iterating.

Chapter 2: Sensor Networks Development Process

9

The suggestions presented above elaborate on the problems that can occur during the life

cycle of the SN design and deployment phases. They also elaborate that the errors that may occur

in the deployment phase can be prevented by detecting them in the design phase by adopting the

iteration approach. This reflects the need for effective support for the tasks to be carried out

during the design phase to reduce the complexity of performing these tasks. This support can be

provided by emphasizing the allocation of functional software components to the physical

architecture with minimum architectural errors. Then, having a validation tool for the defined

physical architecture. To this end, in the next section, we focus on the design phase among the

various phases of the SN life cycle.

2.1.2 Design Phase of the Sensor Network Life Cycle

The allocation of the software functional components on the physical architecture is

considered as a complex task to be performed. This due to the different concerns (viewpoints)

that are involved to perform this task. Relying on IEEE Standard 1471-2011, a viewpoint

"codifies a way of addressing some architectural concerns in terms of notations, kinds of models

or other forms". And, it is defined as: "a collection of patterns, templates, and conventions for

constructing one type of view". A view is specified by a viewpoint, which prescribes the

concepts, models, analysis techniques, and visualizations that are provided by the view. A view

is conformed to the definition of a viewpoint, as can be seen in Figure 1. In general, a system

architecture description is defined in a view that addresses a set of related concerns related to

stakeholders.

An architecture concern is "a requirement, an objective, an intention, or an aspiration a

stakeholder has for that architecture" (Rozanski & Woods, 2005). According to Katara and Katz

(2007, pp. 247-265), architectural concerns are "groups aspect designs and can be seen as a

Chapter 2: Sensor Networks Development Process

10

software architecture view-point". Thus, we need different experts in software architecture who

have different domains of experience in order to address the different viewpoints. And also

relying on Rozanski and Woods (2005), we consider that a software architecture is related to

several stakeholders that have different roles in the life-cycle related to their domains of

experience. If the separation of concern is efficient to model software architectures, one of the

drawbacks is to ensure consistency between these viewpoints, for example to allow the mapping

between the logical and physical components.

2.1.3 Roles in the Sensor Network Life Cycle

As we have just described, different stakeholders are involved in the life-cycles and their

roles are closely related to the viewpoint definition. To refine the SN life-cycle definitions, we

identify the stakeholders and their roles that are particularly involved during the design phase,

which remains a critical phase of those systems.

Zuniga and Dini (2013) identified clearly the main contributors in this phase with the

following stakeholders:

1- Domain Expert: provide the technical specific events, actions and services that are related

to the domain, to be used by all applications in the domain.

2- Software Designer: define an architecture of the sensor network applications by

specifying software components, distribution of actions, events, services such as a service

includes functions and procedures, and relationships between components.

3- Network Designer: design the required network and deploy it on hardware components

on the whole system. We cannot ignore the possibility of generating binary codes and

configurations of the hardware components.

Chapter 2: Sensor Networks Development Process

11

All these stakeholders with their own expertise, contribute to the design of the SN

system. However, to improve the definition of their roles and tasks, we will look for the use of

several SN systems in SoS.

Figure 1

Conceptual Model of Architectural Description

Note. Adapted from ArchiMate® 2.1 Specification. (n.d.). Retrieved December 20, 2020, from

https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

Chapter 2: Sensor Networks Development Process

12

2.2 Sensor Networks Systems

In order to consider the use of SN systems, we try to know how to use the sensor data to

provide a higher-level customer-based service. NEPTUNE Canada, American Global Positioning

System (GPS), and European GALILEO System, and Russian GLONASS System are the

systems or SoS that deliver continuous customer services. Such systems provide important

information on the properties and behavior of complex systems (Vossough & Getta, 2009, pp.

75-90). High-level services, such as continuous observations and weather parameter processing,

or continuous observations of moving objects, and many others (Vossough & Getta, 2009, pp.

75-90), are based on a wide range of functions (Mills, 207, pp. 823-834), including data

acquisition, tracking, routing, fusion, distribution, storage, and querying. The resulting

information may be considered as an unlimited sequence of complex data items from the sensor

nodes and ready for analysis and storage (Mills, 207, pp. 823-834) (Vossough & Getta, 2009, pp.

75-90).

For example, NEPTUNE Canada (North East Pacific Time-series Undersea Networked

Experiments) allows for real-time study of tectonic plates, fluid movement on the ocean floor,

and the effects of climate change on marine ecosystems; It will also help to locate earthquakes

accurately and observe the resulting seismic stress. Additionally, it measures salinity, carbon

dioxide, and even organism movement in sediments. The multitude of data collected will then be

transmitted via optical fiber to Vancouver Island's Port Alberni station, connecting them via a

broadband internet connection at Victoria University. NEPTUNE's data archiving and

management system also collects information from VENUS (Victoria Experimental Network

Under the Sea), a coastal network of underwater observatories that are linked by cables.

NEPTUNE Canada deploys a set of connected nodes and instruments that must be anchored to

Chapter 2: Sensor Networks Development Process

13

optical cables on a SN to provide these services. These nodes and instruments could be

hydrophones, seismometers, video cameras, and cameras with high resolution. Several other sub-

systems, such as database, database replication, and web server, are also deployed and connected

to the SN. To fuse the sequence data items that come from different sensors, a Database is

deployed. A replication of the database is deployed to have a copy of all the data collected and

analyzed. A web server for the diffusion and display of data on the web is deployed.

Such systems are therefore not just a simple SN; they are systems equivalent to

enterprises with high-level services delivered by a high number of interconnected heterogeneous

components (Mills, 207, pp. 823-834). For example, the Neptune system is not just an SN, it can

be considered as an enterprise system because it requires multiple heterogeneous components

(software and hardware) with communication constraints to be deployed on the SN to deliver

services similar to the above.

These information systems are categorized according to two main types: wireless

outdoors and sub water (Wang, 2008). Such systems may be divided into non-acoustic and

acoustic types (Iniewski, 2012). A localization and tracking service for moving objects is

available in both types, through a set of sensors and appropriate algorithms. These systems adopt

two main approaches (Wang, 2008) (Iniewski, 2012):

1- Identifying the cell (circle or sphere) in which the mobile object is located. The position

is calculated relying on one sensor.

2- Identifying the area of the moving object which is deduced by the intersection of a

minimum of three cells. The position is calculated relying on two or more source

(receivers) independently of the sensor technology (Caiti et al., 2005, pp. 140-152).

Chapter 2: Sensor Networks Development Process

14

Based on these approaches, high-level services like a series of moving object localization

can be provided by elementary services gathering. Mainly these services include data fusion

approaches that require a set of receivers (sensors) (Choi & Lee, 2010, pp. 1457–1465). This

approach is used in many applications (e.g., localization systems) where a large amount of data

must be combined or fused to obtain relevant information (Loicq et al., 2017, p. 105632L).

Data fusion algorithms are differentiated and categorized according to the number of

receivers (Boukerche et al. 2008, pp. 2838–2849) (Wang, 2008). Relying on Kaplan and Hegarty

(2005), mobile object position accuracy increases with the number of receivers. The localization

service's efficiency is highly correlated with the increasing number of sensors. There are several

types of fusion algorithms for this purpose, which are differentiated by the number of sensors in

the network.

We also focused our interest on the fusion algorithms and related services, as they are

quite representative services included in the SN and the extended systems. They provide a high-

level service in many SNs and are based on an undetermined number of sensors and there are

several deployments of elementary algorithm nodes.

2.3 Fusion Algorithms

 A Fusion algorithm act as a representative service in a SN to provide a relevant example

of a high-level service for the SN. This type of algorithm is necessarily highly distributed by

nature based on heterogeneous components (sensor nodes and fusion nodes) and several

architectures may be deployed on selected network infrastructure.

 There are several fusion algorithms such as: trilateration, triangulation, Bounding-Box,

set-membership, and Dive’N’Rise (Caiti et al., 2005, pp. 140-152) (Han et al., 2012, pp. 2026-

2061).

Chapter 2: Sensor Networks Development Process

15

Since it is possible to extend the trilateration to more than three sources, it can be adopted

while providing the moving objects localization service. It also gives the possibility to increase

the precision of a moving object's determined position. To this end, the trilateration algorithm is

used by the world's most relevant positioning system, such as the GPS (Wang, 2008). This

algorithm combines and integrates information from various sources (sensors), using a data

fusion approach architecture (Castanedo, 2013).

However, it is possible to use several Data Fusion Architectures (DFA) while performing

the fusion algorithm. This diversity of DFA types creates the possibility to create different

models according to each type by SN designers, with difficulty choosing the most convenient

one. This designer should select the architecture appropriate for the components required to

perform this algorithm. Thus, this designer's decision is completely oriented towards selecting

the appropriate architecture for data fusion among several. The properties that can fit with those

architectures should be identified to select the appropriate one. Then, to select the most satisfying

architecture, the SN designer checks the availability of each property in the different data fusion

architectures. We present these properties for this purpose, in the next section.

2.4 Properties for Selecting a Data Fusion Architecture

The SN designer faces several challenges in adopting the data fusion approach and its

logical architecture, and the corresponding mapping of the distributed network infrastructure.

The following challenges and difficulties are discerned:

1- Various heterogeneous components should be deployed in the SN by adopting a data

fusion architecture. Multiple functions are assigned to each component in the SN (Mitrou

et al., 2004). This requires a communication infrastructure with varying levels of

computational and communication capabilities based on each communication protocol.

Chapter 2: Sensor Networks Development Process

16

2- The number of sensors should increase with the required degree of accuracy in locating

objects. This may cause the need to increase the number of other components, such as

fusion servers. As a result, the number of heterogeneous components on the SN is

dynamic and can be increased at any time without any component constraints.

3- The effects on the network by the sensor failures should be minimized.

Accordingly, to select the appropriate data fusion architecture, the properties required by

the SN designer should be detailed. This should offer the ability to add a large number of sensors

and fusion servers to SN. This capability increases the accuracy of locating a moving object, or

extends the observed area covered. Additionally, relying on Kaplan and Hegarty (2005), it is

necessary to deploy more sensors and fusion nodes on the SN to perform and optimize the fusion

service. The SN designer therefore requires an architecture that has sufficient flexibility to cover

the need to add or remove components with less impact on the application. These modifications

must be carried out on the application architecture without calling into question the system

architecture and are inevitable over a long-life cycle of the system.

2.5 Data Fusion Architectures

In the SN domain, the information sources are sensors, and the fusion algorithm is often

performed in a fusion center that collects this information (El Zoghby, 2014) (Mitchell, 2007)

(Liggins et al. 2017), but it can also be decentralized (El Zoghby, 2014). The main possibilities

for the categories of architecture are centralized, hierarchical, and distributed (André, 2013).

There is a single fusion node within a centralized architecture (Loicq et al., 2017, p. 105632L),

as can be seen in Figure 2 (Aoun et al., 2017, pp. 605-6011). Sensors acquire data and then

transfer it directly to a single central fusion node. In the hierarchical architecture, as can be seen

in figure Figure 3 (Aoun et al., 2017, pp. 605-6011), fusion nodes are classified in a hierarchy

Chapter 2: Sensor Networks Development Process

17

with higher-level nodes processing results from lower-level nodes and may provide some

feedback (Loicq et al., 2017, p. 105632L). In a fully distributed architecture, as can be seen in

Figure 4 (Aoun et al., 2017, pp. 605-6011), there are several fusion nodes. Each node sends

information to the other nodes (Khosla et al., 2017) (Chong & Mori, 2005). There is no

predetermined hierarchical relationship so that each fusion node can communicate with any other

node.

Figure 2

Centralized Fusion Architecture

Note. Adapted from Aoun, C. G., Lagadec, L., Champeau, J., Moussa, J., & Hanna, E. (2017). A

High Abstraction Level Constraint for Object Localization in Marine Observatories. 2017

International Conference on Computational Science and Computational Intelligence

(CSCI), 605–611.

2.6 Data Limits and Comparison Among Different Data Fusion Architectures

The number of sensors and fusion nodes deployed on the network can be changed as

required in a fully distributed architecture (André, 2013). The accuracy of the position of moving

objects increases when more sensors are added. Consequently, the distributed fusion architecture

Chapter 2: Sensor Networks Development Process

18

allows sensors and fusion nodes to be added to SN as much as is required to enhance the results

of the services provided, such as moving object localization.

Figure 3

Hierarchical Fusion Architecture

Note. Adapted from Aoun, C. G., Lagadec, L., Champeau, J., Moussa, J., & Hanna, E. (2017). A

High Abstraction Level Constraint for Object Localization in Marine Observatories. 2017

International Conference on Computational Science and Computational Intelligence

(CSCI), 605–611.

The number of sensors and fusion nodes that are deployed on the network cannot be

changed in a centralized architecture as required. This is due to the centralized architecture

structure since one single fusion node can be deployed on the SN. Thus, this architecture cannot

contribute by increasing the accuracy of object localization.

We can add more sensors and fusion nodes in a hierarchical architecture but that is a

complex task. This is due to the required feedback scenario (communication constraint), which

should be executed between the fusion node of the sender and the fusion node of the receiver

Chapter 2: Sensor Networks Development Process

19

(Loicq et al., 2017, p. 105632L). As a result, communication constraints increase in parallel with

the number of added sensors and fusion nodes.

Figure 4

Distributed Fusion Architecture

Note. Adapted from Aoun, C. G., Lagadec, L., Champeau, J., Moussa, J., & Hanna, E. (2017). A

High Abstraction Level Constraint for Object Localization in Marine Observatories. 2017

International Conference on Computational Science and Computational Intelligence (CSCI),

605–611.

Consequently, the property of adding several components to the SN is available in

hierarchical and distributed fusion architectures. In the distributed architecture, the fusion nodes

can be added at any location on the SN without any hierarchical level of execution. This means

that all the nodes can communicate together without any kind of causal execution. As a result,

the distributed architecture provides a more flexible approach when taking into account the long

time period of the system life cycle.

Chapter 2: Sensor Networks Development Process

20

Based on the analysis and comparison discussed above, the SN designer should take into

account the distributed fusion architecture to perform the trilateration fusion algorithm. Thus, the

Distributed Architecture is the most generic one associated with our requirements.

In addition, the architecture selected should be compatible with the trilateration fusion

algorithm (Liggins et al., 1997, pp. 95-107). According to Alriksson and Lantzer (2007, pp.

5499–5504), this algorithm adopts and uses a distributed fusion architecture.

Making a SN durable in case of individual sensor failures is another major advantage of

selecting a distributed architecture. The loss of one sensor in a distributed environment does not

affect the entire SN (Khosla et al., 2017) (Chong & Mori, 2005). Thus, there is no component

that constitutes a weak point that paralyzes the system (André, 2013).

For the purposes set out above, the distributed fusion architecture is the preferred one

among the others. This is also due to the advantages provided by this architecture, such as

reliability and energy efficiency (Liggins et al., 1997, pp. 95-107) (Khosla et al., 2017) (Chong

& Mori, 2005).

2.7 Requirements for Designing Sensor Networks Systems

Most SN systems adopt distributed fusion architecture. In order to perform the design

phase of such systems, the SN designers face a number of challenges. A model should be defined

to describe and analyze how to map the service provided (e.g., localization of moving objects) on

a SN. This requires the intervention of different SN designers who are experts in different fields

of experience. The service provided must be described in a model by a SN designer who is an

expert in the business process of that service. In order to perform such a service, a model

containing the corresponding software components and relationships must be defined by another

SN designer who is an expert in the application process. In order to implement these software

Chapter 2: Sensor Networks Development Process

21

components and relationships, a model that includes an appropriate technology platform is

required to be defined by a network infrastructure expert. In addition, as SN designers define

models in a complex context, architectural design errors may occur (Li et al., 2010, pp. 386-399).

Developed models must therefore support the analysis of architectural constraints that must help

designers and avoid errors that would be detected during the next phase of process development.

For this purpose, SN designer should consider two parts when designing such systems:

(1) services related to the business domain, such as the location of moving objects; and (2)

information systems to support the deployment of these services and provide sufficient flexibility

to take into account the long-life cycles of these systems.

To design such information systems, suitable tooling (Hoffmann et al., 2002) has to

support the SN designer. According to Rowe et al. (2010), graphical modeling languages could

support the design approaches. These approaches and their related tools help in the design and

deployment of SN applications (Rowe et al., 2010). These tools provide the SN Designer with

the ability to analyze and model complex systems like NEPTUNE Canada (Zheng et al., 2011,

pp. 372-387). Thus, SN designer's requirements can be coupled with this tool's requirements.

These requirements are identified as:

1- Requirement 1 Improving Architectural Design: Possibility of preventing architectural

errors that may be made by the designer of the SN. These errors can occur when defining

the services provided that the adopted SN architecture performs in relation to the

communication constraints. For example, architectural errors can be prevented by

avoiding the connection of two sensors or the connection between a sensor and a database

server without any processing node.

Chapter 2: Sensor Networks Development Process

22

2- Requirement 2 Multiple Viewpoints: Providing each designer with the ability to work

independently from a viewpoint, in order to have their proper model in accordance with

their field of experience. The different designers involved collaborate to share the design

of the same system. And in order to have a consistent model, these different viewpoints

need to correlate. For example, in their independent viewpoints, the domain expert,

software designer, and network designer create their models, so they cooperate with each

other by interrelating their models to obtain a consistent model. This interrelation can be

established through the use of specific relationships to ensure consistency of this unique

model.

3- Requirement 3 Extensibility: Ability to add new elements, constraints, and relationships

specific to SN within the design tool. The absence of such components while defining the

scenario of the services provided adversely affects the design phase, by increasing the

number of components required, communication constraints, and relationships that the

SN designer should perform manually. For example, by using an added specific SN

component or a relationship to a design tool in a viewpoint, the SN designer can

automatically obtain corresponding related components and relationships from another

viewpoint. These generated components and relationships can be built-in or added to the

design tool to help the designer deal with the complexity of the resulting information

system.

4- Requirement 4 Heterogeneity Supported: Ability to have different types of components

and communication types in the same defined SN model. Since the SN is an information

system that consists of heterogeneous devices and communication protocols, it is

necessary to have this capability while defining the scenario of the services provided. For

Chapter 2: Sensor Networks Development Process

23

example, the communication protocol between sensors and fusion servers is different

than the one between a fusion server and a database server.

5- Requirement 5 Validation Tools Supported: Ability to validate the SN model in order to

detect architectural errors during the design phase and to validate the created model

earlier in the development life cycle. For example, using a network simulation tool to

evaluate the mapping of service on an SN infrastructure.

2.8 Limits and Comparison Among Different Approaches of Sensor Networks Design

In order to select the appropriate approaches to design and then implement an SN system,

we will discuss a comparison of the different approaches to the requirements, previously

identified. Our comparison is based on the most relevant approaches regarding our context:

SimStudio (Touraille et al., 2011, pp. 229-237), CA-PSCF (Context-Aware Pervasive Service

Creation Framework) (Achilleos et al., 2010, pp. 281-296), DSM (Domain-Specific Model)

(Vujović et al.), ITSML (Intelligent Transportation Systems Modeling Language) (Alberto

Fernández-Isabel & Rubén Fuentes-Fernández, 2015, pp. 14116-14141), and SysWeaver (Rowe

et al., 2010). The results are summarized in Figure 5 and discussed in the next sections.

2.8.1 Approaches of Architectural Design Improvement

All the approaches illustrated above provide tools for modeling and validating high-level

services, they offer SN concepts. But they did not propose constraints on the concepts

themselves nor on the communication between them. Using a design tool that offers such

constraints may help the designer to prevent architectural design errors which lead to the

improvement of the architectural design.

Chapter 2: Sensor Networks Development Process

24

Consequently, all the discussed approaches help the designer to design SN by using

specific components in this context. Adding domain-specific constraints may further help the

designer detecting errors at early design phases.

2.8.2 Approaches of Providing Multiple Viewpoints

SysWeaver is the only approach that offers multiple viewpoints while designing an SN

model. Different designers, with different domains of experience, are involved in building the

model. A disadvantage is that it does not contain advanced and complex network components.

Consequently, SysWeaver cannot be used in our context unless it is extended furthermore

in order to include different layers.

2.8.3 Approaches of Offering Concepts Extensibility

All the discussed approaches offer built-in components in order to design an SN. They

are all extendable to add new concepts and relationships but doing this will not respect the

semantics of newly added concepts and relationships.

2.8.4 Approaches of Supporting Heterogeneity

Components' heterogeneity is supported by all approaches. Each component used to build

an SN has a different function and offers different services.

2.8.5 Approaches of Supporting Validation Tools

SimStudio, ITSML, and SysWeaver are the only approaches that support model

validation. They enable the SN designer to simulate the created model and detect architectural

error prior to the implementation phase.

Chapter 2: Sensor Networks Development Process

25

Figure 5

Comparison Among SN Design Approaches

2.9 Discussion

After discussing SN approaches in the previous section, the following can be concluded:

1- Improvements of SN architectural design is possible in all of the approaches presented. In

particular, the frameworks are focused on the interpretation of domain concepts that

provide efficient support for the designer. We notice, though, that these approaches lack

the domain constraints relative to the concepts and relationships of the domain. In the

next section, we will look for the relevance of the Model-Driven Engineering approach

relative to our context to improve the lack in the actual tooling and to keep the domain

concept definition.

2- Multiple Viewpoints are addressed by a single approach of all the approaches presented,

the SysWeaver. It provides separate viewpoints with the ability to interrelate these

viewpoints according to each domain of experience, in order to have one unique model.

Chapter 3: Model-Driven Engineering

26

However, this approach focuses mainly on the design of small-scale SN and does not

fulfill the necessity to develop complex information systems like NEPTUINE. This is

why we study and analyze the Enterprise Architecture frameworks to try to identify a

system approach including SN and the necessarily associated IT infrastructure.

3- Extensibility of all the solutions discussed is feasible even though the related tooling is

still difficult to extend. In addition, we find that some tools are based on a meta-modeling

approach that offers a simple language description to facilitate language extensibility.

However, these approaches may be extendable to a certain level. We will apply a Model-

Driven Engineering approach in order to meet the requirements.

4- All the discussed approaches support heterogeneity. However, the design tool must also

support domain constraints.

5- Not all the approaches include the validation step. Simulators are required in order to

simulate created models.

Chapter 3: Model-Driven Engineering

3.1 Model-Driven Engineering Fundamentals

This chapter represents how Model-Driven Engineering can help improve the design of

the SN and the associated information system. Based on Parreiras (2012) and Van Den Brand

(2008, pp. 8-15), the fundamental concepts of Model-Driven Engineering (MDE) are model,

metamodel, and model transformation.

A model is a simplified view of a system. A model's purpose is to explain and enhance

the understanding of the system, often at many levels of abstraction. A model selects interesting

concepts on viewpoints for a given context and provides a representation of the reality for a

dedicated purpose.

Chapter 3: Model-Driven Engineering

27

As we have previously mentioned, SN designers need to use modeling languages to

construct models. Therefore, in the upcoming sections, we will elaborate on the key current

modeling languages. Semantics, abstract syntax, and concrete syntax characterize the modeling

language. There are several methods of formally defining abstract language syntax (Krahn et al.,

2007, pp. 286-300). Metamodels are used in the modeling context to define the abstract syntax of

modeling languages.

A metamodel is: "a model that defines the language for expressing a model" (Gašević et

al., 2007, pp. 91-105) (Object Management Group). Metamodeling is a common approach that

defines the Domain-Specific Modeling Language (DSML) abstract syntax, so the designer can

map the classes of a domain analysis directly to the classes of the metamodel. Associations and

inheritance of domain classes are also mapped to the language definition. For this purpose, to

define Modeling Languages such as UML or DSML, the metamodeling method can be adopted.

A metamodel is not a model of a model and is not a language in itself; it is a model that

defines a language, an explicit and concrete description of a language, to describe models.

In the four-layer approach advocated by the OMG standard organization (Model0,

Model1, Model2, Model3 in Figure 6), each layer conforms to the upper layer.

Model Transformation (MT) is a set of rules that apply to the elements of a metamodel

(Van Den Brand, 2009, pp. 8-15). To construct a target model that conforms to the target

metamodel, the transformation engine reads the source model that must conform to the source

metamodel, and applies the rules specified in the transformation model.

There are two key types of transformations: Endogenous, where the source and target

models conform to the same metamodel such as a UML Model to another UML model;

Exogenous, where the source and target models are expressed using different languages.

Chapter 3: Model-Driven Engineering

28

3.2 Model-Driven Engineering Aspects

Van Der Straeten et al. (2008, pp. 35-47) have identified major aspects in MDE which

are:

1- Requirements Modeling: transferring the specified business requirements to functional

requirements that describe the functionality of the system (each role/function), using

modeling languages. The created models may contain different types of elements and

relationships, such as functions, data, actors, association relations and triggers.

2- Modeling Languages: necessary needed languages, methods and principles to design

specified metamodels in order to build Domain-Specific Modeling Language (DSML),

and to provide specific concepts for designing complex systems.

3- Model Heterogeneity and Quality: developing models by different stakeholders in a

distributed architecture, using multiple viewpoints that utilize possibly heterogeneous

modeling languages. In other words, models could be built using a variety of Domain-

Specific Modeling Languages (France & Rumpe, 2007, pp. 37-54). Also, ensuring a

correspondence between inconsistent quality aspects in and between viewpoints.

4- Model Validation: verifying and testing the models and the code generated from those

models.

5- Model Transformation: converting models from one type to another, from one extension

to another.

6- Run-time Models: executing models during analysis, design, implementation, and

deployment phases of the development life cycle.

In the coming sections, we will concentrate on three aspects relevant to SN design: Modeling

Languages, Heterogeneity and Quality Model, and Model Transformation.

Chapter 3: Model-Driven Engineering

29

3.2.1 Modeling Languages

There are two types of modeling languages: those that can be adopted in any domain for

general purpose, such as UML; and Domain-Specific Modeling Languages that are used in

specific domains. It is difficult to create, using a general-purpose modeling language, a model for

a specific domain system due to the complexity of describing the precise meaning of domain

concepts and their relations. As a result, general purpose modeling languages, such as UML, are

not well suited to cover some of the specifications of the SN designer. However, the Domain-

Specific Modeling Language (DSML) is specifically developed for a technical or business

domain, typically containing a limited number of concepts, and is used by a limited number of

professional and expert users (Van Deursen et al., 2000, pp. 26-36).

There is a large number of DSMLs with very different abstraction levels. Various studies,

including two reported in (Kieburtz et al., 1996, pp. 542-552) and (Gray & Karsay, 2003), ensure

that specific languages enable specialists and experts to improve productivity and efficiency in

solving problems over the use of General-Purpose Languages. Also, DSML makes it possible to

provide unique domain components in abstract syntax, concrete syntax, and modeling language

semantics. These components could be ready for use during the design process. DSML supports

the work of domain specialists such as designers.

The definition of a language includes several activities that are complementary to each

other: (1) defining the abstract syntax of a language, and the corresponding graphical

representation of that abstract syntax, which is the concrete syntax; and (2) defining the meaning

of a language, the semantics (Krahn et al., 2007, pp. 286-300) (Harel & Rumpe, 2004, pp. 64-

72). The description of abstract syntax consists of describing the concepts used in the modeling

language. Defining a concrete syntax consists of defining the use of abstract syntax concepts.

Chapter 3: Model-Driven Engineering

30

In order to define the constraints relative to the metamodel concepts and relationships, the

Object Constraint Language (OCL) (Cabot & Teniente, 2007, pp. 179-195) is used to express the

constraints in declarative formulas. These OCL constraints are the relevant support to encode

specific domain constraints associated with the concepts of the DSML.

Figure 6

Layered Architecture of MDE

Note. Adapted from OpenUP - The Best of Two Worlds: Agile, Scrum and RUP. (n.d.). Retrieved

December 21, 2020, from http://www.methodsandtools.com/archive/archive.php?id=69p3

http://www.methodsandtools.com/archive/archive.php?id=69p3

Chapter 3: Model-Driven Engineering

31

3.2.2 Model Heterogeneity and Quality

The use of viewpoint models in the process of building a complex software design phase

becomes a standard fact. The problem is to deal with heterogeneous models and the need for

integration at the model level, to get an integrated and coherent model. Thereby, at the system

level, it is well accepted and understood that during the development of a complex software

system such as SN, integration in and between the created models is required. The components

of complex (software and physical components) systems interact together once the integration is

applied. Some components are bought, some are taken over from older systems, and some are

newly developed. The components (physical and logical) are configured and implemented with

different languages.

3.2.3 Model Transformation

Model Transformation (MT) is a set of rules that defines and controls the transformation

process of a single model into a target language, as can be seen in Figure 7. Atlas Transformation

Language (ATL) is a model transformation tool that is part of the Eclipse Modeling project

(Kurtev et al., 2006, pp. 602-616); it provides ways to produce a set of target models from a set

of source models.

3.3 Separation of Concerns in MDE

As we discussed in the previous section, the system architecture description is based on

several concerns and viewpoints. One of the main features of the MDE approach is to provide

languages and tooling which defines viewpoints and views on the system. To provide a modeling

approach based on the separation of concerns, the modeling framework must take into

consideration this definition.

Chapter 3: Model-Driven Engineering

32

The separation of concerns appears at various points of the system life cycle, and

therefore takes on several forms. It can deal with the time separation of each phase, from design

to implementation, of the development process. Also, many viewpoints are required to explain

different design concerns for each phase of the process.

Figure 7

Model Transformation

Several viewpoints and stakeholders need to be identified to achieve the separation of

concern process. The top half of Figure 8 shows the designing, deciding, and informing

viewpoints relating to the design, analysis, and dissemination of enterprise architecture. The

stakeholders are identified relative to the viewpoint’s definition. The main stakeholder is the

designer based on our context.

The different levels of abstractions, from details to overview, are illustrated in the bottom

half of Figure 8. The integrity and consistency of the system model are maintained by the

coherence between the abstraction levels. To define models of each viewpoint, several modeling

Chapter 3: Model-Driven Engineering

33

languages can be used. However, the use of generic languages such as UML does not provide

domain-specific constraints in the design phase unless they are extended.

Due to the complexity of the design of SN, many unique constraints should be respected

by SN designers during the design process to prevent architectural errors. These constraints

could be implemented into DSML for various levels of abstraction to enhance the consistency of

architectural design during the design process. Furthermore, the generated models can be

effective at different levels of abstractions by implementing the use of DSMLs during the design

process (Van Deursen et al., 2000, pp. 26-36). The use of Domain-Specific Modeling Language

(DSML) has advantages for our context to apply separation of concerns and to ensure

consistency of the model through domain constraints.

3.4 Model-Driven Engineering Standards and Tools

Model-Driven Architecture (MDA) is an approach to software design, development, and

implementation led by the Object Management Group (OMG). It provides guidelines for

structuring software specifications using a model-centric approach. MDA separates business and

application logic from underlying platform technology. MDA is supported by the Unified

Modeling Language (UML), the Meta Object Facility (MOF), XML Metadata Interchange

(XMI), and the Common Warehouse Metamodel (CWM).

The Meta-Object Facility (MOF) is a standard of the Object Management Group (OMG)

for model-driven engineering for describing, defining, and manipulating metamodels

(MetaObject Facility | Object Management Group, n.d). There is a range of tools that could be

adopted for MDE with various target users' concerns. Based on surveys for MDE tools

conducted in (Hussey et al., 2010) and (Pérez-Medina & Dupuy-Chessa, 2007, pp. 84-97), we

may consider that Eclipse IDE provides a powerful environment that encourages

Chapter 3: Model-Driven Engineering

34

modeling/metamodeling activities. The Eclipse Modeling Framework (EMF), which is part of

the Eclipse IDE, is a framework developed by the Eclipse Foundation as the foundation of the

Modeling Project (The Eclipse Foundation). The framework is a code generation facility for

building tools and other applications based on a structured data model.

Figure 8

Enterprise Architecture Viewpoint

Note. Adapted from ArchiMate® 2.1 Specification. (n.d.). Retrieved December 20, 2020, from

https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

3.5 Model-Driven Engineering for Sensor Networks

Mostly, SN system development methods concentrate on implementation problems and

rarely rely on software engineering methodology that supports the entire life cycle of

development. However, several recent research approaches to SN development in (Romer et al.,

2002, pp. 59-61) (Masri & Mammeri, 2007, pp. 349-356) (Boonma & Suzuki, 2008, pp. 360-

https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

Chapter 3: Model-Driven Engineering

35

367) tackle this problem, and most of these approaches focus on modeling applications at

different abstraction levels with subsequent code generation as in MDE. MDE can contribute to

the SN context by reducing the complexity of the design by enabling designers to model their

systems at various levels of abstraction. It also provides designers with automated model

transformations to turn abstract models such as XMI files into concrete models such as C++ or

Java (Losilla et al., 2007, p. 179-194) (Schmidt, 2006).

For this reason, Losilla et al. (2007) and Schmidt (2006) demonstrated the use of MDE to

model the SN life cycle. The model-driven performance engineering framework is also discussed

in (Boonma & Suzuki, 2010, pp. 1674-1690). It is also useful for SN designers to use and

implement the Model-Driven Engineering (MDE) to model SN.

Based on the discussed MDE concepts, model transformation, and the definition of

DSML using the meta-model approach, an existing design tool can be extended by adding new

SN concepts and relationships. The extension can be achieved by adding new components and

constraints to the initial metamodels, then generating a new design tool that contains the concrete

syntax. This concrete syntax includes elements and relationships to be used by SN designers

during design time.

MDE offers many advantages when used in the SN development process. Since MDE

focuses on creating domain models, Losilla et al. (2007) propose a SN application development

technique by building a model for the targeted system using the SN DSML. The metamodel of

the modeling language contains all the necessary concepts to build SN applications; this is a

benefit since SN designers can use domain-specific concepts and relationships during the design

phase of the SN development life cycle. Another advantage offered is a new graphical modeling

Chapter 3: Model-Driven Engineering

36

editor that enables SN domain experts to graphically explain the structure and behavior of their

systems that are built based on the SN metamodel (Losilla et al., 2007, p. 179-194).

The advantages provided by MDE to SN are:

1- Ability to have DSML with specific SN concepts and relationships by adopting the

metamodeling approach. Thus, to facilitate the modeling task of the SN designer, these

components and relationships can be added into the targeted framework.

2- Diversity of SN elements and connections within the same model from different

viewpoints and DSML by adopting the model heterogeneity aspect. This benefit makes it

possible to provide a cohesive model that involves interrelationships between the various

viewpoints according to concerned stakeholders.

3- Having generated code as output by adopting the model transformation aspect and

entering as input the created SN models. Code, usable by a simulator, could be generated

automatically using a code generator to verify the created models.

In conclusion, MDE helps in facilitating the modeling task for SN designers while

building separate models according to each viewpoint, and also while building a consistent

model from the different separately built models. In addition, MDE provides early validation

support of the created models, thanks to the static model checking and simulation code

generation via model transformation.

3.6 Discussion

MDE is required to contribute to meeting the following requirements, previously

discussed in section “Requirements for Designing Sensor Networks Systems”, based on

presented MDE benefits:

Chapter 3: Model-Driven Engineering

37

1- Improving Architectural Design (Requirement 1): Specific concepts in the IT domain are

required to develop an SN model. This domain is too wide and involves a large number

of complex concepts. It includes various types of devices for exchanging data between

these devices, with different operating systems and communication protocols. For this

reason, by following a certain approach that enables the SN designer to reuse some

existing specific IT concepts, we can avoid developing such complex concepts. Existing

metamodels can be expanded with new SN definitions, relationships, and constraints

through the metamodeling approach to the language definition, to describe the syntax of a

particular SN DSML. Through invoking the implementation of the constraints, the

architectural design mistakes that might be made by the SN designer can be avoided.

2- Extensibility (Requirement 3): The SN designer needs a specific design tool that includes

the current specific IT concepts and the new extended SN concepts, relationships, and

constraints to model an SN model. Implementing these new SN principles in a design

tool is a difficult task. For this reason, to facilitate the implementation of new SN

concepts, we can follow a certain approach. The extensibility of the concepts appears via

the model transformation method by generating a new design tool automatically. It

enables the creation of a new design tool containing the new elements, relationships, and

constraints that have been introduced.

3- Heterogeneity Supported (Requirement 4): Through the metamodeling strategy for

language definition, we can have various components and types of relationships linked to

different contexts and activities. These extended components could be software and

hardware.

Chapter 3: Model-Driven Engineering

38

In conclusion, the implementation of new extended concepts and constraints strengthens

architectural design and enforces constraints. This prevents SN designers from making errors.

Therefore, the metamodeling approach for language definition deals with the first requirement

(Improving Architectural Design). Using the model transformation approach, the new specific

extended concepts and relationships are generated automatically in a new design tool. It allows

the SN designer to use these specific SN concepts while designing SN models. It also allows the

creation of models from heterogeneous concepts and relationships, and also the creation of a

model from several heterogeneous models (different viewpoints). This is to ensure the ability for

the SN designer to model complex systems and satisfy the third and fourth requirements

(Extensibility and Heterogeneity Supported).

Choosing the correct Modeling Language specific to our SN domain is one of the key

options for implementing the MDE approach. As far as the application domain is concerned,

general-purpose languages are too far away from our specific concepts. Thus, a DSML with the

appropriate concepts and its associated tools may be the most relevant language. However, to

cover all the functions of SN systems, DSML development, and its tooling is a huge challenge.

Therefore, to optimize the development life cycle, we try to find a DSML that is close to

our context. To conform to our SN domain with precision, we may apply a metamodel

specialization. The next chapter introduces modeling languages and their tooling relevant to

information systems based on the network infrastructure to overcome this constraint.

Chapter 4: System Architecture Modeling

39

Chapter 4: System Architecture Modeling

4.1 Modeling Context

Different experts should be involved in the modeling process to cover the sensor

integration in the IT system when designing a SN system. In such systems, the sensors are linked

to dedicated algorithms and IT infrastructure to provide users of SN with high-level services.

Experts with different domains of experience, such as business or technical, are required

to address different viewpoints when designing an SN distributed system. The problem of the

modeling process is, therefore, to generate the appropriate models according to the necessary

points of view for distributed network infrastructure applications. Therefore, it is essential to

model many perspectives to identify and select the mapping of the software application on given

network architecture.

Designers need a collection of standardized and domain-specific concepts, provided

mainly by frameworks, to construct viewpoints. They also need design tools that can define a

model using various viewpoints to handle the second requirement (Multiple Viewpoints), as

previously mentioned in section “Requirements for Designing Sensor Networks Systems”. This

can be provided by Enterprise Architecture (EA) frameworks that are based on domain-specific

concerns. Each viewpoint is defined by its concepts and then aggregated by a framework in a

modeling language. To this end, to choose the most suitable one, we are interested in presenting

and researching the current EA frameworks.

4.2 Enterprise Architecture Types

Enterprise Architecture is: "The organizing logic for business and IT infrastructure

reflecting the integration and standardization requirements of the firm’s operating model" (Ross,

2006). The EA model, therefore, is about splitting a model into many interrelated models, such

Chapter 4: System Architecture Modeling

40

as business and IT models. Each model is a set of related elements and describes the activities

and actions of a specific domain of experience.

According to ISO 15704, there are two types of EA: (1) EA dealing with the design of a

system, called System Architecture; and (2) EA dealing with the organization of the development

and implementation of a project, called Enterprise-Reference Projects. System Architecture

describes the structure and the behavior of a system, such as the information system of an

enterprise. Enterprise-Reference Projects are frameworks that target at structuring the required

concepts and tasks to design and build complex systems such as SN. According to a survey of

EA in (Chen et al., 2008, pp. 647-659), Enterprise-Reference Projects are the most adopted and

used to build such systems. For this purpose, we present some of the Enterprise Architecture

Frameworks in the next section.

4.3 Enterprise Architecture Frameworks

An Enterprise Architecture (EA) Framework is a set of models, principles, and methods

that are used for the implementation and use of EA (Cameron & McMillan, 2013, pp. 60-71).

The framework is built to support the communication between the different stakeholders with

different domains of experience, within the same model, by providing specific relations

(Cameron & McMillan, 2013, pp. 60-71). This framework also enables a wide range of domains

to be represented, it suits the problem of our SN modeling process by (Chiprianov, 2012): (1)

generating relevant models according to the different fields of experience that are divided into

different viewpoints; and (2) providing the ability to connect these models using specific

relationships. The Five major EA Frameworks that can provide the features listed above are the

Zachman Framework, the Open Group Architecture Framework (TOGAF), the Federal

Chapter 4: System Architecture Modeling

41

Enterprise Architecture Framework (FEAF), the Department of Defense Architecture

Framework, and Gartner Framework (Cameron & McMillan, 2013, pp. 60-71).

Therefore, based on previous studies in (Chiprianov, 2012) (Cameron & McMillan, 2013,

pp. 60-71) (Fatolahi & Shams, 2006, pp. 133-143), TOGAF is the most useful framework for (1)

building a model from various viewpoints; (2) interrelating business and technical viewpoints;

and (3) detailing the technical viewpoint as it is necessary to build complex systems.

The Open Group Architecture Framework (TOGAF) describes a method called the

Architecture Development Method (ADM) to design an enterprise architecture as part of its core.

Figure 9 illustrates all the phases of ADM in sequential order from planning to implementation.

Also, as can be seen in Figure 9, ADM is an iterative process, which satisfies the first

requirement of the SN Design (Improving Architectural Design) for detecting and minimizing

architectural design errors during the design phase.

Figure 9

Architecture Development Method

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Chapter 4: System Architecture Modeling

42

4.4 Domain-Specific Concepts in Enterprise Architecture Frameworks

Designers need modeling languages to construct models. UML and SysML are existing

modeling languages to design efficient general-purpose applications without offering domain-

specific concepts. Therefore, to create domain-specific models, designers should use modeling

languages that contain specific components related to this domain.

We are interested in defining models for a specific domain, which is the SN, according to

our context. Therefore, designers need dedicated SN modeling languages to define such models

when using adopted frameworks such as TOGAF. This is due to the complexities of having

unique SN concepts in the general-purpose modeling languages. Such concepts are the initial

step of Domain-Specific Modeling Language development. Also, the adopted framework

recommends the use of DSML to fulfill the requirements of the modeling task in a particular

domain.

An SN DSML should be defined accordingly, based on our SN context. This definition

should take the needs of the SN designer into account. These needs are concepts, relationships,

and constraints in the SN domain. The designer also needs to define a SN model from different

viewpoints according to different layers. Thus, building such models is a challenging task.

Therefore, existing metamodels can be extended by adding new concepts. This extension enables

SN designers to reuse these concepts in the modeling task.

A key question can therefore be asked here: What are the existing metamodels that can be

extended to define an SN DSML that meets the above requirements? The ideal answer to this

question is to find an existing metamodel that incorporates concepts of IT and SN that allows the

designer to create a model of SN from various viewpoints.

Chapter 4: System Architecture Modeling

43

We distinguish several SN metamodels such as SensorML (Chandrasekaran et al., 2014),

ThingML (Fleurey, 2011, pp. 349-363), Deep-Sea Observatory metamodel (Champeau et al.,

2009, pp. 1-6), Heterogeneous Sensor Web Node MetaModel (Chen et al., 2014, pp. 222-237),

Wearable Markup Language (Fortino et al., 2014), SUM MetaModel (Burger, 2014), and

GINPEX Sensor MetaModel (Hauck, 2014). These SN metamodels are already defined in

previous researches and experiences. None of them contain structural, behavioral, and

informational SN concepts. Also, they do not contain predefined IT concepts, and they are not

useful to define a model from different viewpoints. However, the EA metamodels such as

TOGAF and ArchiMate rely on EA. Therefore, we elaborate on TOGAF and ArchiMate, in the

next sections.

4.5 Enterprise Architecture Modeling Languages and Metamodels

EA metamodels are the abstract syntax of EA modeling languages. Therefore, the use of

the EA Modeling Language is needed to model a complex system by adopting the EA

Framework. EA Modeling Language is a conceptual or logical representation of EA with a high

abstraction level.

ArchiMate and TOGAF are EA Modeling Languages based on concepts identified by EA

Frameworks such as TOGAF (Noran, 2003, pp. 163-183). These EA Modeling Languages are

defined by EA metamodels that define the concepts, relationships, and constraints necessary to

construct models.

4.5.1 ArchiMate

ArchiMate breaks down the system design into three layers: business layer, application

layer, and technology layer. It ensures interoperability between these layers. These layers are

described as follow:

Chapter 4: System Architecture Modeling

44

1- Business layer: defines the actions, functions, and the exchange between these two.

2- Application layer: defines the way of performing the actions and functions provided in

the upper layer.

3- Technology layer: specifies the hardware components and communication protocols that

are required to perform the defined actions and functions in the application layer.

A metamodel defines each layer of ArchiMate. According to (Pérez-Medina & Dupuy-

Chessa, 2007, pp. 84-97), a metamodel defines a language for describing a specific domain of

interest. Specific relationships interrelate the three different metamodels (The Open Group

ArchiMate(R)). Figures 10, 11, and 12 represent respectively the business, application, and

technology layers of ArchiMate. These metamodels are the abstract syntax of ArchiMate.

A textual or graphical user interface represents the concrete syntax of ArchiMate. Figures

13 and 14 represent the graphical interface related to the abstract concepts of the business layer

of ArchiMate. For example, the Business Object entity in the concrete syntax, as can be seen in

Figure 13, represents the Business Object in the abstract syntax, as can be seen in Figure 10. The

semantics describes the meaning of each concept in the concrete syntax.

ArchiMate determines functioning relationships between two contiguous layers (Noran, 2003,

pp. 163-183) (Quartel et al., 2009, pp. 3-13). Figure 15 represents the relationship between the

business and application layers. Figure 16 represents the relationship between the application and

technology layers. According to our previously presented modeling context, relevant models can

be created by relying on ArchiMate metamodel. The interoperability between ArchiMate layers

allows communication between different created models by exchanging information.

Chapter 4: System Architecture Modeling

45

Figure 10

ArchiMate Business Layer Metamodel

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Figure 11

ArchiMate Application Layer Metamodel

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/
https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Chapter 4: System Architecture Modeling

46

Figure 12

ArchiMate Technology Layer Metamodel

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Figure 13

ArchiMate Business Layer Concrete Syntax Components

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/
https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Chapter 4: System Architecture Modeling

47

Figure 14

ArchiMate Business Layer Concrete Syntax Relationships

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Figure 15

ArchiMate Business-Application Alignment

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

4.5.2 Togaf

TOGAF, as illustrated in Figure 17, decomposes the system design into three layers: the business

architecture layer, the information system layer, and the technology architecture layer. It ensures

interoperability between different layers (The Open Group ArchiMate(R)). The layers of

TOGAF are defined by a metamodel, where the latter defines by itself, a language for describing

https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/
https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Chapter 4: System Architecture Modeling

48

a specific domain of interest (Pérez-Medina & Dupuy-Chessa, 2007, pp. 84-97). The metamodels

are interrelated by specific relationships (The Open Group ArchiMate(R)).

Figure 16

ArchiMate Application-Technology Alignment

Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Figure 17

Layers of TOGAF Metamodel

 Note. Adapted from The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved

December 22, 2020, from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/
https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Chapter 4: System Architecture Modeling

49

4.6 Requirements for Selecting the Enterprise Architecture Metamodel

To define an SN DSML, we have to expand the metamodel of one of the previously

discussed EA modeling languages, ArchiMate and TOGAF. For this reason, we are interested in

identifying the requirements to select the appropriate metamodel:

1- Requirement 1 Several Viewpoints: Each designer should be able to work

independently on a model according to his area of experience to address different

viewpoints.

2- Requirement 2 Separate Logical and Physical Views: Software designers should be able

to define logical models in a separate view to describe logical components. Network

designers should be able to define physical models in another view to describe physical

components. Several designers, with different domains of experience, should work on

different views.

3- Requirement 3 Consistency Supported: Each created model should be able to

interoperate with other models. The modeling language should provide communication

between different layers to generate one consistent model from different viewpoints.

4- Requirement 4 Specific IT Components: A network designer should be able to use built-

in IT components from the generated design tool. For example, the designer can use

devices such as clients or servers, components, and relationships to connect devices using

specific relationships such as communication path.

4.7 Comparison Among Enterprise Architecture Metamodels

We discuss the comparison between ArchiMate and TOGAF based on the requirements

discussed in the previous section:

Chapter 4: System Architecture Modeling

50

1- Requirement 1: Both metamodels take into consideration several viewpoints when

creating multiple models according to different domains of experience.

2- Requirement 2: ArchiMate deals with the separation of logical and physical views

within the same viewpoint; this is due to the three separate layers that are provided by

ArchiMate: business, application, and technology. The application layer contains only

logical components, while the technology layer only contains physical components.

However, in TOGAF, both application architecture and technology architecture contain

logical and physical application components at the same time.

3- Requirement 3: ArchiMate and TOGAF allow the interoperation between different

models. They provide the ability to have one consistent model that contains components

and relationships from different viewpoints at different layers.

4- Requirement 4 Specific IT Components are available in both TOGAF and ArchiMate

metamodels.

Figure 18 illustrates the result of the comparison between ArchiMate and TOGAF. Also,

both metamodels are almost similar. Thus, ArchiMate and TOGAF share similar concepts so

they can be used together, as can be seen in Figure 19. Furthermore, ArchiMate provides a

concrete syntax with a graphical user interface. For this purpose, ArchiMate metamodel can be

extended by adding new SN concepts, relationships, and constraints.

Accordingly, to build SN, the designers can adopt TOGAF as a framework and

ArchiMate as a modeling language that relies on EA. However, we distinguish several

frameworks and design tools that are dedicated to building SN. Therefore, to make the final

decision concerning the framework and the modeling language that should be used, we must

Chapter 4: System Architecture Modeling

51

discuss the existing SN frameworks and design tools. For this purpose, these latter are elaborated

in the next section.

Figure 18

Comparison Between ArchiMate and TOGAF

Figure 19

Compatibility Between TOGAF ADM and ArchiMate

Chapter 4: System Architecture Modeling

52

4.8 Enterprise Architecture Frameworks and Design Tools for Sensor Networks

A framework is a set of functions and libraries to model applications from different

domains. Several frameworks provide design tools. Design tools enable the designers to create

analysis and design models of the system to be built and ensure consistency between models. We

differentiate design tools by their provided features. Thus, the choice of the design framework is

a difficult task.

Some studies and recent researches have focused on SN frameworks. These frameworks

provide graphical interfaces for heterogeneous sensors and actuators and ease their deployment

and management (Grabis & Kirikiva, 2011). Examples of these frameworks are Global Sensor

Networks (GSN), Sensor Web Enablement (SWE) (Funk et al., 2011), SENSEI (recent European

research project) (Luo, 2013). The mentioned frameworks are not useful for our context since the

designer requires to adopt a framework and design tool that includes a DSML that contains IT

and SN concepts that enable the designer to build an SN model from different viewpoints.

Several frameworks are proposed to support the management of enterprise IT by

describing the systems from the IT domain, using an EA modeling language (Meyer et al., 2011,

pp. 167-177) such as the Enterprise Architecture Framework, TOGAF. These IT frameworks

address a wide range of domains and technologies as they allow different stakeholders to

describe a system according to different domains of experience. Thus, each stakeholder creates

his proper model according to his viewpoint. Therefore, TOGAF and ArchiMate can be adopted

by the designers to build SN.

4.9 Discussion

With regard to the previously presented EA features for SN, the advantages of ArchiMate, and

the need to incorporate new SN concepts into the EA Framework, the extension of ArchiMate is

Chapter 4: System Architecture Modeling

53

a suitable contribution to defining the Domain-Specific Modeling Language (DSML) for SN.

The DSML should contain new SN concepts and constraints that are inherited from the original

ArchiMate metamodel.

EA provides the below advantages for SN:

1- Achieving the right balance between IT efficiency and activities at a high abstract level.

It helps SN designers to build their models, such as any data fusion architecture or

network topology, as it ensures the needs of the models generated for an integrated IT

strategy. SN designers are capable of modeling any complex system without thinking

about the availability of IT components.

2- Reducing the deployment uncertainty of the SN model. This is due to the existence of

various layers and stakeholders, where each stakeholder is an expert in his area. And

because of the interoperability between different layers to provide a single consistent

model.

Relying on the identified EA advantages, EA is expected to contribute toward satisfying

the second requirement (Multiple Viewpoints). EA provides the ability for the SN designers to

create several models according to their viewpoints and domain of experience. Also, it provides

the ability to interrelate different models to have one overall and consistent model.

In conclusion, we investigated the use of MDE approach for sensor networks with an

Enterprise Architecture Framework to address all the requirements for designing SNs systems.

To improve the development life cycle of SN, we state that we need to extend an existing

modeling language by adding new concepts.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

54

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks

Design

5.1 ArchiMO Definition

Some of the existing ArchiMate concepts and relationships can be used while

constructing a SN model for MO. These concepts are not domain-specific to meet the Marine

Observatory (MO) requirements in the design process. This is because not all ArchiMate

components can be used to construct models for specific domains, such as MO. For this purpose,

researchers in the discipline of computing have extended ArchiMate metamodel to generate a

new design tool, ArchiMO, while taking into consideration specific Marine Observatory

components (Aoun et al., 2015). Like any other DSML, ArchiMO involves an abstract syntax, a

concrete syntax, and semantics (Cho et al., 2012, pp. 22-28).

5.1.1 Selected ArchiMate Concepts and Relationships

To build a consistent model that reflects a real description of detecting underwater objects, MO

designers require software and hardware concepts to be used in the design phase. These concepts

are elaborated below according to the ArchiMate business and application layers.

5.1.1.1 Business Layer. To define a MO model in the ArchiMate business layer, the

domain expert requires behavioral concepts, structural concepts, and relationships. The role of

structural concepts is to perform behavioral concepts by using structural and dynamic

relationships while taking into consideration MO constraints. The structural concepts are Smart

Sensors (SS) and Data Fusion Servers (DFS). The behavioral concepts are Algorithm Selection

(AS), Data Transmission (DT), Data Acquisition (DA), and Object Localization Algorithm

(OLA). The structural relationships are Assignment, Association, and Used By. The dynamic

relationship is triggering (Aoun et al., 2015).

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

55

Since MO constraints should be applied when defining models, the predefined ArchiMate

concepts and relationships are not enough. Some predefined structural and behavioral concepts

can be used, such as business actors and business functions. However, these concepts do not

have the required MO constraints that should be applied when defining the model. For this

reason, the business actor and business function are extended to include MO constraints (Aoun et

al., 2015).

5.1.1.2 Application Layer. To define a MO model in the ArchiMate application layer,

the software designers require behavioral concepts, structural concepts, and relationships. The

structural concepts are Smart Sensor Systems (SSS), and Fusion Systems (FS) that are mapped to

the Smart Sensors (SS) and Data Fusion Servers (DFS) from the business layer respectively. The

behavioral concepts are Manage Resources (MR), Coordinates Storage Handling (CSH),

Compute Coordinates (CC), Transmit Localization Data (TCD), Inform Server (IS), Voice

Streaming, and Video Streaming.

The discussed concepts are not available in ArchiMate application layer. Some

predefined concepts can be used, such as the application component. However, these concepts do

not have the required MO constraints that should be applied when defining the model. For this

reason, the application component and application function are extended to include MO

constraints (Aoun et al., 2015).

5.1.2 ArchiMO Metamodel

As previously discussed, ArchiMate is composed of business, application, and

technology layers. As per our scope, we are interested in extending the business and application

layers only. The technology layer of ArchiMate is extended by (Chiprianov, 2012) to define a

DSML for IP Multimedia Subsystems (IMS) in the telecommunication domain. This DSML can

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

56

be used for different types of applications within various domains including the MO (Alloush,

2016). For example, IMS allows the exchange of messages between terminals such as smart

sensors. Therefore, IMS metamodel can be used to model the deployment of our application on

technical infrastructure.

Figures 20 and 21 (Aoun et al., 2015) represent part of the ArchiMate business layer and

application layer metamodels. The concepts in white are those predefined by ArchiMate, while

the concepts in green are those related to the MO domain. Figure 22 (Aoun et al., 2015)

illustrates the communication constraint between two sensors because two sensors cannot

communicate together.

Figure 20

ArchiMate Extended Business Layer

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

57

Figure 21

ArchiMate Extended Application Layer

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

5.1.2.1 Concepts. ArchiMO is composed of business and applications layers. The

metamodels of these layers are described as follow (Aoun et al., 2015):

1- Business Layer (Figure 20): The Business Actor of ArchiMate is extended with two new

concepts, Smart Sensor and Data Fusion. The Smart Sensor is responsible for Data

Acquisition. The Data Fusion is responsible for: (1) Algorithm Selection, to select the

proper algorithm in case there are several algorithms with different functions; (2) Data

Transmission, to transmit data between different Data Fusion components; and (3) Object

Localization, to call the localization algorithm.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

58

Figure 22

Communication Constraint Between Smart Sensor-Data Fusion

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

2- Application Layer (Figure 21): The Application Component of ArchiMate is extended

with two new concepts, Smart Sensor System and Data Fusion System. The Smart Sensor

System is responsible for: (1) Inform Server, to inform the fusion server about the

detection of an object; (2) Voice Streaming, in case the Smart Sensors are hydrophones;

and (3) Video Streaming, in case the Smart Sensors are underwater cameras. The Data

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

59

Fusion System is responsible for: (1) Manage Resources, to manage the resources needed

for the algorithm execution; (2) Coordinates Storage Handling, to store the coordinates

correlated with time. The DFS handles the storage of the coordinates received by each

Smart Sensor; (3) Compute Coordinates, to compute the position by using the stored

coordinates received by each Smart Sensor; and (4) Transmit Localization Data, to

exchange information between different fusion servers.

5.1.2.2 Relationships. There are various types of relationships provided by ArchiMate, such

as association and assignment. Assignment relationships are used to connect structural and

functional elements. For example, function1 should be performed by node1 in case function1 is

assigned to node1.

ArchiMate predefined relationships cannot satisfy the MO domain since they do not

impose relevant constraints. For this reason, Aoun et al. (2015) extended ArchiMate

relationships by adding new constraints. A new constraint is imposed on the association

relationship for the smart sensor. For example, a smart sensor can only be associated to a data

fusion, and two smart sensors cannot be associated to each other, as can be seen in Figure 22

(Aoun et al., 2015). Also, the assignment relationship is also extended. For example, a smart

sensor can only be assigned to data acquisition, and a data fusion can only be assigned to

algorithm selection, data transmission, and object localization functions. In addition, Aoun et al.

(2015) introduced a new logical relationship to connect a smart sensor to a data fusion.

5.1.3 ArchiMO Design Tool

5.1.3.1 ArchiMO Concrete Syntax. A concrete syntax should be defined for every new

concept defined in the abstract syntax. ArchiMO design tool contains the concrete syntax

associated with the extended concepts and relationships. The right part of Figure 23 (Aoun et al.,

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

60

2015) illustrates the business concrete syntax of ArchiMO, and the left part illustrates the

application concrete syntax. In addition, the relation between a smart sensor and data fusion is

illustrated is Figure 24 (Aoun et al., 2015).

5.1.3.2 Constraints Implementation. As illustrated in Figure 25 (Aoun et al., 2015), all

the extended constraints are checked while designing the model. Moreover, the relationship

constraint between the smart sensor and data fusion is also checked, as can be seen in Figure 26

(Aoun et al., 2015). This relationship reflects the marine cable. The designer should enter a valid

length for the cable.

The design of the application layer is automatically generated from the design of business

layer. For example, when a smart sensor is connected to a data fusion in the business layer, the

corresponding elements such as smart sensor system and inform server function are

automatically reflected in the application layer.

5.2 Smart Sensor Specification

In terms of the specifications of the components, it should be noted that each underwater moving

object generates its frequency tag. In fact, according to the National Oceanic and Atmospheric

Administration (NOAA), aquatic acoustics are comprised of a wide range of frequencies with

variations between and within species (Bittle & Duncan, 2013). Since MO projects are intended

to monitor different underwater objects, this constraint should be taken into account when using

and installing smart sensors in such projects (Nielsen et al., 2019). Failure to do so results in

monitoring the incorrect object which could lead to substantial costs in both time and resources.

To prevent these losses in the deployment phase, we propose to extend ArchiMO

business layer metamodel by adding a new constraint to the minimum and maximum frequencies

at which a smart sensor operates.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

61

5.2.1 Smart Sensor Constraint Implementation

 We extend ArchiMO metamodel by adding the frequency range constraint as a property

of the smart sensor component, which answers our second research question. Therefore, as

illustrated in Figure 27, a range of frequencies should be specified whenever the designer add a

smart sensor component while building the model. Different smart sensors can operate at

different ranges of frequencies. Figure 27 illustrates an example of the required frequencies to

detect a dolphin; the smart sensor should be configured to receive frequencies between 0.2 and

170 KHz.

Accordingly, the proposed constraint reduces the possibility of deploying an

inappropriate smart sensor.

Figure 23

Business and Application Layers Palette

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

62

Figure 24

Extended Relationship in Palette

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

63

Figure 25

Association and Assignment Relationships

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

Chapter 5: Domain Specific Modeling Languages and Design Tools for Sensor Networks Design

64

Figure 26

Smart Sensor – Data Fusion Relationship

Note. Adopted from Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K.

(2015). A modeling approach for marine observatory. Sensors & Transducers, 185(2), 129.

Figure 27

Smart Sensor Frequency

Note. Adapted from Aoun, C. G., Lagadec, L., Champeau, J., Moussa, J., & Hanna, E. (2017). A

High Abstraction Level Constraint for Object Localization in Marine Observatories. 2017

International Conference on Computational Science and Computational Intelligence

(CSCI), 605–611.

Conclusion

65

Conclusion

Answering the Research Questions

Underwater sensor networks are complex systems that aggregates different types of

software and hardware components. Multiple tasks are assigned to each component and different

communication protocols are used. To face these challenges, we focus on the designer activities

to improve the sensor network development and deployment phases.

We have defined ArchiMO, a design tool introduced by researchers, which is used to

build sensor networks models for MO. This tool is a Domain-Specific Modeling Language that

extends ArchiMate, an Enterprise Architecture Modeling Language. ArchiMO extends the

business and application layers of ArchiMate. It helps the designers to prevent architectural

design errors that can be made during design time.

The research questions were as below:

1- How to prevent errors at design time by adding a new environmental constraint?

2- How to implement the proposed constraint in an existing design tool?

To answer the first research question, we proposed a new domain-specific constraint that

deals with the minimum and maximum frequencies at which a smart sensor operates. And to

answer the second research question, we implemented this constraint in an existing metamodel

that suits our context. At each time the designer uses a smart sensor from ArchiMO, he should

specify its frequency. By extending a Domain-Specific Modeling Language for MO, designers

are able to prevent architectural design errors that can be made during design time.

By using a Domain-Specific Modeling Language, with specific domain constraint such as

the sensor frequency, designers are able to prevent architectural design errors that can be made

during the design phase. It also supports designers to build models from different viewpoints. In

Conclusion

66

addition, it ensures consistency between different models since all ArchiMate layers are

interrelated.

By extending ArchiMO design tool with a new environmental constraint, the designers

are able to build more consistent models using the extended constraint by specifying the

frequency supported by each sensor.

Recommendations and Future Work

Enterprise Architecture Modeling Languages offer many advantages when designing

sensor networks. In our case, it was used to design models related to the marine observatory sub-

domain. But it can also be used in other sub-domains under the sensor network domain or even

to design other complex systems related to other domains. The metamodel of these modeling

languages can be extended and new design tools can be generated since they are based on the

Model-Driven Engineering methodology.

We are looking forward to add new environmental constraints, by the help of domain

experts, to the design tool. All these constraints should be taken into consideration while

designing a sensor network for MO. Design constraints can support designers and facilitate the

validation process. Also, we will try to generalize the extended concepts and constraints to cover

more domains.

 67

67

References

Achilleos, A., Yang, K., & Georgalas, N. (2010). Context modelling and a context-aware
framework for pervasive service creation: A model-driven approach. Pervasive and
Mobile Computing, 6(2), 281–296.

Ahmed, A., Ali, J., Raza, A., & Abbas, G. (2006). Wired vs wireless deployment support for
wireless sensor networks. TENCON 2006-2006 IEEE Region 10 Conference, 1–3.

Alloush, I. (2016). A design and verification framework for telecommunication services [PhD
Thesis].

Alriksson, P., & Rantzer, A. (2007). Experimental evaluation of a distributed Kalman filter
algorithm. 2007 46th IEEE Conference on Decision and Control, 5499–5504.

André, C. (2013). Approche crédibiliste pour la fusion multi capteurs décentralisée [PhD
Thesis]. Paris 11.

Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K. (2015). A modeling
approach for marine observatory. Sensors & Transducers, 185(2), 129.

Aoun, C. G., Lagadec, L., Champeau, J., Moussa, J., & Hanna, E. (2017). A High Abstraction
Level Constraint for Object Localization in Marine Observatories. 2017 International
Conference on Computational Science and Computational Intelligence (CSCI), 605–611.

ArchiMate® 2.1 Specification. (n.d.). Retrieved December 20, 2020, from
https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., & Valls, M.
(2005). Sensor networks and distributed CSP: Communication, computation and
complexity. Artificial Intelligence, 161(1–2), 117–147.

Bittle, M., & Duncan, A. (2013). A review of current marine mammal detection and
classification algorithms for use in automated passive acoustic monitoring. Proceedings
of Acoustics, 2013.

Boonma, P., & Suzuki, J. (2010). Moppet: A model-driven performance engineering framework
for wireless sensor networks. The Computer Journal, 53(10), 1674–1690.

Boonma, P., & Suzuki, J. (2008). Middleware support for pluggable non-functional properties in
wireless sensor networks. 2008 IEEE Congress on Services-Part I, 360–367.

Boukerche, A., Oliveira, H. A., Nakamura, E. F., & Loureiro, A. A. (2008). Vehicular ad hoc
networks: A new challenge for localization-based systems. Computer Communications,
31(12), 2838–2849.

Burger, E. (2014). Flexible views for view-based model-driven development (Vol. 15). KIT
Scientific Publishing.

Cabot, J., & Teniente, E. (2007). Transformation techniques for OCL constraints. Science of
Computer Programming, 68(3), 179–195.

Caiti, A., Garulli, A., Livide, F., & Prattichizzo, D. (2005). Localization of autonomous
underwater vehicles by floating acoustic buoys: A set-membership approach. IEEE
Journal of Oceanic Engineering, 30(1), 140–152.

Cameron, B. H., & McMillan, E. (2013). Analyzing the current trends in enterprise architecture
frameworks. Journal of Enterprise Architecture, 9(1), 60–71.

Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal, 2013.
Chandrasekaran, S., Choi, E., Abawajy, J. H., & Natarajan, R. (2014). Sensor Grid Middleware

Metamodeling and Analysis. International Journal of Distributed Sensor Networks,
10(4), 805708.

https://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

 68

68

Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and
interoperability: Past, present and future. Computers in Industry, 59(7), 647–659.

Chen, N., Wang, K., Xiao, C., & Gong, J. (2014). A heterogeneous sensor web node meta-model
for the management of a flood monitoring system. Environmental Modelling & Software,
54, 222–237.

Chiprianov, V. (2012). Collaborative construction of telecommunications services. An enterprise
architecture and model driven engineering method [PhD Thesis].

Cho, H., Gray, J., & Syriani, E. (2012). Creating visual domain-specific modeling languages
from end-user demonstration. 2012 4th International Workshop on Modeling in Software
Engineering (MISE), 22–28.

Choi, B.-S., & Lee, J.-J. (2010). Sensor network-based localization algorithm using fusion
sensor-agent for indoor service robot. IEEE Transactions on Consumer Electronics,
56(3), 1457–1465.

Chong, C.-Y., & Mori, S. (2005). Distributed fusion and communication management for target
identification. 2005 7th International Conference on Information Fusion, 2, 8-pp.

Cuzzocrea, A. (2009). Intelligent techniques for warehousing and mining sensor network data.
IGI Global.

El Zoghby, N. (2014). Fusion distribuée de données échangées dans un réseau de véhicules
[PhD Thesis]. Université de Technologie de Compiègne.

Erol, M., Vieira, L. F. M., & Gerla, M. (2007). AUV-aided localization for underwater sensor
networks. International Conference on Wireless Algorithms, Systems and Applications
(WASA 2007), 44–54.

Fatolahi, A., & Shams, F. (2006). An investigation into applying UML to the Zachman
framework. Information Systems Frontiers, 8(2), 133–143.

Fernández-Isabel, A., & Fuentes-Fernández, R. (2015). Analysis of intelligent transportation
systems using model-driven simulations. Sensors, 15(6), 14116–14141.

Fleurey, F., Morin, B., Solberg, A., & Barais, O. (2011). MDE to manage communications with
and between resource-constrained systems. International Conference on Model Driven
Engineering Languages and Systems, 349–363.

Fortino, G., Di Fatta, G., Li, W., Ochoa, S. F., Cuzzocrea, A., & Pathan, M. (2014). Internet and
Distributed Computing Systems: 7th International Conference, IDCS 2014, Calabria,
Italy, September 22-24, 2014, Proceedings (Vol. 8729). Springer.

France, R., & Rumpe, B. (2007). Model-driven development of complex software: A research
roadmap. Future of Software Engineering (FOSE’07), 37–54.

Funk, A., Busemann, C., Kuka, C., Boll, S., & Nicklas, D. (2011). Open sensor platforms: The
sensor web enablement framework and beyond. MMS 2011: Mobile Und Ubiquitäre
Informationssysteme-Proceedings Zur 6. Konferenz Mobile Und Ubiquitäre
Informationssysteme (MMS 2011).

Gašević, D., Kaviani, N., & Hatala, M. (2007). On metamodeling in megamodels. International
Conference on Model Driven Engineering Languages and Systems, 91–105.

Gordon, D., Beigl, M., & Neumann, M. A. (2010). dinam: A wireless sensor network concept
and platform for rapid development. 2010 Seventh International Conference on
Networked Sensing Systems (INSS), 57–60.

Grabis, J., & Kirikova, M. (2011). Perspectives in business informatics research. 10th
International Conference, BIR 2011.

 69

69

Gray, J., & Karsai, G. (2003). An examination of DSLs for concisely representing model
traversals and transformations. 36th Annual Hawaii International Conference on System
Sciences, 2003. Proceedings of The, 10-pp.

Gronback, R. (n.d.). Eclipse Modeling Project | The Eclipse Foundation. Retrieved December
21, 2020, from http://www.eclipse.org/modeling/emf/

Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater
wireless sensor networks: A survey. Sensors, 12(2), 2026–2061.

Harel, D., & Rumpe, B. (2004). Meaningful modeling: What’s the semantics of" semantics"?
Computer, 37(10), 64–72.

Hauck, M. (2014). Automated Experiments for Deriving Performance-relevant Properties of
Software Execution Environments (Vol. 13). KIT Scientific Publishing.

Heidemann, J., Li, Y., Syed, A., Wills, J., & Ye, W. (2005). Underwater sensor networking:
Research challenges and potential applications. Proceedings of the Technical Report ISI-
TR-2005-603, USC/Information Sciences Institute.

Hoffmann, A., Meyr, H., & Leupers, R. (2002). Architecture exploration for embedded
processors with LISA. Springer.

https://themeforest.net/user/dan_fisher. (n.d.). OMG | Object Management Group. Retrieved
December 21, 2020, from https://www.omg.org/

Hussey, K., Selic, B., & McClean, T. (2010). An extended survey of open source model-based
engineering tools. Revision E.

Iniewski, K. (2012). Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies. CRC
Press.

Jamshidi, M. (2017). Systems of systems engineering: Principles and applications. CRC press.
Kaplan, E., & Hegarty, C. (2005). Understanding GPS: Principles and applications. Artech

house.
Katara, M., & Katz, S. (2007). A concern architecture view for aspect-oriented software design.

Software & Systems Modeling, 6(3), 247–265.
Khosla, D., Guillochon, J., & Choe, H. (2017). Distributed Fusion and Tracking in Multi-Sensor

Systems.
Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis, J., Oliva, D. P., Sheard,

T., Smith, I., & Walton, L. (1996). A software engineering experiment in software
component generation. Proceedings of IEEE 18th International Conference on Software
Engineering, 542–552.

Krahn, H., Rumpe, B., & Völkel, S. (2007). Integrated definition of abstract and concrete syntax
for textual languages. International Conference on Model Driven Engineering Languages
and Systems, 286–300.

Kurtev, I., Bézivin, J., Jouault, F., & Valduriez, P. (2006). Model-based DSL frameworks.
Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications, 602–616.

Lauterbach, C., Glaser, R., Savio, D., Schnell, M., Weber, W., Kornely, S., & Stöhr, A. (2004).
A self-organizing and fault-tolerant wired peer-to-peer sensor network for textile
applications. International Workshop on Engineering Self-Organising Applications, 256–
266.

Lee, J., Kim, J., & Serpedin, E. (2008). Clock offset estimation in wireless sensor networks using
bootstrap bias correction. International Conference on Wireless Algorithms, Systems, and
Applications, 322–329.

http://www.eclipse.org/modeling/emf/
https://themeforest.net/user/dan_fisher
https://www.omg.org/

 70

70

Li, X.-Y., Wang, Y., & Wang, Y. (2010). Complexity of data collection, aggregation, and
selection for wireless sensor networks. IEEE Transactions on Computers, 60(3), 386–
399.

Liggins II, M., Hall, D., & Llinas, J. (2017). Handbook of multisensor data fusion: Theory and
practice. CRC press.

Liggins, M. E., Chong, C.-Y., Kadar, I., Alford, M. G., Vannicola, V., & Thomopoulos, S.
(1997). Distributed fusion architectures and algorithms for target tracking. Proceedings of
the IEEE, 85(1), 95–107.

Loicq, J., Clermont, L., Dierckx, W., Van Achteren, T., & Stockman, Y. (2017). A 100-m
ground resolution global daily coverage earth observation mission. International
Conference on Space Optics—ICSO 2014, 10563, 105632L.

Losilla, F., Vicente-Chicote, C., Álvarez, B., Iborra, A., & Sánchez, P. (2007). Wireless sensor
network application development: An architecture-centric mde approach. European
Conference on Software Architecture, 179–194.

Luo, Z. (2013). Technological solutions for modern logistics and supply chain management. IGI
Global.

Masri, W., & Mammeri, Z. (2007). Middleware for wireless sensor networks: A comparative
analysis. 2007 IFIP International Conference on Network and Parallel Computing
Workshops (NPC 2007), 349–356.

MetaObject Facility | Object Management Group. (n.d.). Retrieved December 21, 2020, from
https://www.omg.org/mof/

Meyer, M., Helfert, M., & O’Brien, C. (2011). An analysis of enterprise architecture maturity
frameworks. International Conference on Business Informatics Research, 167–177.

Mills, K. L. (2007). A brief survey of self-organization in wireless sensor networks. Wireless
Communications and Mobile Computing, 7(7), 823–834.

Mitchell, H. B. (2007). Multi-sensor data fusion: An introduction. Springer Science & Business
Media.

Mitrou, N., Kontovasilis, K., Rouskas, G., Iliadis, I., & Merakos, L. (2004). Networking 2004:
Networking Technologies, Services, and Protocols; Performance of Computer and
Communications Networks; Mobile and Wireless Communications; Third International
IFIP-TC6 Networking Conference, Athens, Greece, May 9-14, 2004; Proceedings (Vol.
3042). Springer Science & Business Media.

Moradi, M., Rezazadeh, J., & Ismail, A. S. (2012). A reverse localization scheme for underwater
acoustic sensor networks. Sensors, 12(4), 4352–4380.

Nielsen, J. L., Arrizabalaga, H., Fragoso, N., Hobday, A., Lutcavage, M., & Sibert, J. (2009).
Tagging and tracking of marine animals with electronic devices (Vol. 9). Springer
Science & Business Media.

Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the
GERAM perspective. Annual Reviews in Control, 27(2), 163–183.

OpenUP - The Best of Two Worlds: Agile, Scrum and RUP. (n.d.). Retrieved December 21,
2020, from http://www.methodsandtools.com/archive/archive.php?id=69p3

Parreiras, F. S. (2012). Semantic Web and model-driven engineering. John Wiley & Sons.
Pérez-Medina, J.-L., & Dupuy-Chessa, S. (2007). A survey of model driven engineering tools for

user interface design. International Workshop on Task Models and Diagrams for User
Interface Design, 84–97.

https://www.omg.org/mof/
http://www.methodsandtools.com/archive/archive.php?id=69p3

 71

71

Quartel, D., Engelsman, W., Jonkers, H., & Van Sinderen, M. (2009). A goal-oriented
requirement modelling language for enterprise architecture. 2009 IEEE International
Enterprise Distributed Object Computing Conference, 3–13.

Reed, B. L.-K. (2015). Controller design for underwater vehicle systems with communication
constraints [PhD Thesis]. Massachusetts Institute of Technology.

Römer, K., Kasten, O., & Mattern, F. (2002). Middleware challenges for wireless sensor
networks. ACM SIGMOBILE Mobile Computing and Communications Review, 6(4), 59–
61.

Ross, J. (2006). Enterprise Architecture: Driving Business Benefits from IT. SSRN Electronic
Journal. https://doi.org/10.2139/ssrn.920666

Rowe, A. G., Bhatia, G., & Rajkumar, R. (2010). A model-based design approach for wireless
sensor-actuator networks.

Rozanski, N., & Woods, E. (2005). Applying viewpoints and views to software architecture.
Open University White Paper.

Schmidt, D. C. (2006). Model-driven engineering. Computer-IEEE Computer Society-, 39(2), 25.
Schneider, J.-P., Champeau, J., & Kerjean, D. (2011). Domain-specific modelling applied to

inteegration of smart sensors into an information system.
Srivastava, N. (2010). Challenges of next-generation wireless sensor networks and its impact on

society. ArXiv Preprint ArXiv:1002.4680.
Sun, X., Huang, S. C.-H., & Li, M. (2012). Lower bounds on data collection time in sensor

networks. International Conference on Wireless Algorithms, Systems, and Applications,
120–131.

The Open Group ArchiMate(R) 1.0 Technical Standard. (n.d.). Retrieved December 22, 2020,
from https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

Touraille, L., Traoré, M. K., & Hill, D. R. (2011). A model-driven software environment for
modeling, simulation and analysis of complex systems. SpringSim (TMS-DEVS), 229–
237.

van den Brand, M. G. J. (2008). Model-driven engineering meets generic language technology.
International Conference on Software Language Engineering, 8–15.

Van Der Straeten, R., Mens, T., & Van Baelen, S. (2008). Challenges in model-driven software
engineering. International Conference on Model Driven Engineering Languages and
Systems, 35–47.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, 35(6), 26–36.

Vossough, E., & Getta, J. R. (2009). Micro implementation of join operation at clustering nodes
of heterogenous sensor networks. International United Information Systems Conference,
75–90.

Vujović, V., Maksimović, M., & Perišić, B. (n.d.). A DSM for a Modeling RESTful Sensor Web
Network.

Wang, C. (2008). Localization and its applications in self-configurable wireless networks.
University of Louisiana at Lafayette.

Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., & Acevedo, M. (2008). An environmental
monitoring system with integrated wired and wireless sensors. International Conference
on Wireless Algorithms, Systems, and Applications, 224–236.

Zein, O. K., Champeau, J., Kerjean, D., & Auffret, Y. (2009a). Smart sensor metamodel for deep
sea observatory. OCEANS 2009-EUROPE, 1–6.

https://doi.org/10.2139/ssrn.920666
https://pubs.opengroup.org/architecture/archimate-doc/ts_archimate/

 72

72

Zein, O. K., Champeau, J., Kerjean, D., & Auffret, Y. (2009b). Smart sensor metamodel for deep
sea observatory. OCEANS 2009-EUROPE, 1–6.

Zheng, M., Sun, J., Liu, Y., Dong, J. S., & Gu, Y. (2011). Towards a model checker for nesc and
wireless sensor networks. International Conference on Formal Engineering Methods,
372–387.

Zuniga, M., & Dini, G. (2013). Sensor Systems and Software: 4th International ICST
Conference, S-Cube 2013, Lucca, Italy, June 11-12, 2013, Revised Selected Papers (Vol.
122). Springer.

