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Abstract

In this thesis, we will prove a very important theorem in real analysis called The Area
formula for the Hausdorif Measure. This theorem is an extension of the well known theorem

the Change of variables formula for the Lebesgue measure. In this thesis, we will define the
Hausdorif measure and prove some of its properties. We will also define Lipschitz functions
and prove some of its properties also. Then, we continue the thesis by proving all the lemmas
needed to finalize the proof of the Area formula for the Hausdorif measure. Finally, we finish
this thesis by showing three applications of the Area formula.
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Chapter 1

Notations

The 1-dimensional Lebesgue measure
The n-dimensional Lebesgue measure

0	 Positive functions

f rE	 f restricted to the set E
a.e.	 almost everywhere

The Lebesgue outer measure
s-dimensional Hausdorif measure

D,v	 the derivative of v with respect to i
ci	(0,0,... ,1,0,...) with 1 in the ith slot
X = (x 1 ,•• . , x)	 a typical point in R
B (x, r)	 {y e RTh , I x

 - I 
<r} = closed ball with center x, radius r}

a(s)	 (0<s<00)

,y ( + 1 )	 -

a (n)	 volume of the unit ball in R 

XA	 indicator function of the set A
A	 closure of the set A
S. (A)	 Steiner Symmetrization of the set A
f	 an extension of f
Df	 derivative of f
[Df}	 measure of the gradient of f
if	 Jacobian of f
Lip (f)	 Lipschitz constant of f
I' <<	 i-' is absolutely continuous with respect to j
[[L]J	 jacobian of a linear map L

A(m,n)	 I A : {1,... ,n}	 11,... ,m};is increasing }

A°	 interior of A
x.y	 X1Y1++XnYn



Chapter 2

Introduction

In measure theory, the Lebesgue measure, named after the french Mathematicien Henri
Lebesgue is the standard way of assigning a measure to subsets of n-dimensional euclidean
space. For n = 1 , the lebesgue measure coincides with measuring the length; for n = 2 , it
coincides with measuring the area; and for n = 3 , it coincides with measuring the volume
and so on. For instance, the Lebesgue measure of the interval [0, 1] in the real numbers is its
length in the everyday sense of the word, specifically, 1. For the general case, that is in 1R
the Lebesgue measure is called the n-dimensional volume, n-volume, or simply volume. It is
used throughout real analysis, in particular to define Lebesgue integration. Sets that can be
assigned a Lebesgue measure are called Lebesgue measurable. Henri Lebesgue described this
measure in the year 1901, followed the next year by his description of the Lebesgue integral.
Both were published as part of his dissertation in 1902.
Now we will start by defining the Lebesgue outer measure oil 	 set A C 1R, and then the
Lebesgue measure.

Definition 2.0.1. If B 11 x 12	 X 1, where I, = [an , b] are intervals, then the volume
of B is defined to be

V(B) = (b 1 —ai ) x	 x (b —an).

For any subset A of R n , we can define the outer measure of A by

= inf { E V (B); C is a countable collection of boxes whose union cover Al.

BEC

We then define the set A to be Lebesgue measurable, if for every set E E R n we have

A* (E) = )* (A fl E) + A (E n AC).

These Lebesgue measurable sets form a o-algebra, and the Lebesgue measure is defined by
Cn (A) = ) (A) for any Lebesgue measurable set A.

The importance of the Lebesgue measure comes from the fact that we can find the area
between a Lebesgue measurable function and a measurable set, which is also known as the
Lebesgue integral. The Lebesgue integral plays an important role in probability theory, real
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analysis, and many other fields in the mathematical sciences such as differential geometry.
Since manifolds act locally like R , we can find ways to define integration on manifolds
using the Lebesgue measure or an equivalent ( See book [21).
A very important application of the Lebesgue measure is the Change of Variables formula

Theorem 2.0.2. Change of Variables for £.
Let U C V C RTh . U is lebesgue measurable and V is open.
Let T: V -* R be a continuous and one-to-one function on U.

T'(U) exists for all u E  and r Th (T(v—u)) =0.

Then,

ku) fdC=JU (f oT) I JTI d for all fe 0+.

Notice that  = T (U). In other words JX f (x) dx = JU f (Tu) I JT (u) I du for all f E 0.

Where JT is the 3acobian of T.
(1(T(U)) = IJTII(U)).

Its importance come from the fact that it connects the area of a surface to its area under
a certain transformation.
However, the disadvantage of the Lebesgue measure is that it only can measure the n-
dimensional volume of n-dimensional spaces. That is the n-dimensional Lebesgue measure
does not see the difference between lesser dimensional objects. For example £ does not
see the difference between a one dimensional line and a two dimensional plane; both have a
Lebesgue measure zero.
So mathematicians needed to introduce a new measure which is an extension of the Lebesgue
measure , but instead it can give the area of an object according to its dimension even if it
lives in a bigger dimensional space. For example if we have a 2-dimensional surface living in
R5 , we need a measure that gives us the area of this surface even if it is not living in R2.
This new measure is known as the Hausdorff measure and it was introduced in 1918 by the
mathematician Felix Hausdorif. We will see throughout this thesis that the zero dimensional
Hausdorif measure is just the counting measure, that is, the number of points in the set
(if the set is finite) or oc if the set is infinite. The one-dimensional Hausdorif measure of
a simple curve in R is equal to the length of the curve. Likewise, the two dimensional
Hausdorif measure of a measurable subset of R n is proportional to the area of the set.
Thus, the concept of the Hausdorif measure generalizes counting, length, area and volume
like the Lebesgue measure; the only difference is that the Hausdorif measure can measure the
length , area and volume of 1, 2 and 3 dimensional objects that live in a higher dimensional
space.
Now we will give the mathematical definition of the Hausdorff measure.

Definition 2.0.3.	 1. Let A C ', 0 < s < oc, 0 < 6 < oo.
Let us define

(diamCj)s
(A) =	

00

inf{(s)	
2	

;A c UCj ;diam C
j=1	 :1=1
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and where a (s) =	
7r2

2. For AcR and O<s<oo , let usdefine

?tS (A) = urn ? (A) = sup ?-L (A).
6>0

We call 7-t an s-dimensional Hausdorif measure on 1IY1.
In order to show that 7L is well defined, we show that 71 increases as 6 decreases. So

let A C RTh , and 62 < S. Notice that

00	 00

{

And thus,

00	 00

inf { U C, diam C <8 } <inf { U Cj , diam C <82

This implies that< -L 2 . Hence, if 6 decreases, ?-L increases. So lirn 7-( exists and

urn	 = sup 7-(. Notice that the Hausdorif measure is computed in terms of arbitrary coy-
5>0

erings of small diameters whereas the Lebesgue measure is computed in terms of coverings
by cubes.

The purpose of this thesis is to prove a far reaching generalization of the change of vari-
ables formula called the Area formula of the Hausdorif measure. In order to establish this
big theorem, we first need to prove some properties of Hausdorif measure. A very impor-
tant theorem called "The isodiarnetric inequality " will be handled , which states that the
n-dimensional Lebesgue measure is equal to the n- dimensional Hausdorif measure on an
n-dimensional space. This shows that the Hausdorif measure and the Lebesgue measure
coincides on R.

We proceed by defining Lipschitz functions which by themselves are a generelization of
differentiable functions and all its properties as well as linear maps and Jacobians. A very
important theorem will arise in this section: Rademachers theorem. This theorem states
that any locally Lipschitz function f mapping from a lower dimensional space onto a higher
dimensional space is differentiable Cn almost everywhere.
Then, we will build up the math by handling several big Lemmas to get to the Area formula
,which is the same idea as the area formula of the Lebesgue measure but now upgraded to
the Hausdorif measure and we will be integrating against Lipschitz functions. Finally we
will apply the area formula on 3 examples , to finish our thesis.



Chapter 3

Preliminaries

Definition 3.0.1. (see Section 1.6.2 on page 37 in 111.)
Let t and v be radon measures on R'. For each x E IRY , define

lim suprO
 v(B(x,r))

-	 if j (B (x, r)) > 0 Vr> 0
Dv (x) = {+
	

(B(x,r))
if p (B(x,r)) = 0 for some r>0

f liminf	 v(B(x,r)) io ii(B(x,r)) f /L(B(x,r)) >0 Vr >0
v(x) 

=	 00	 if it (B(x,r)) = 0 for some  >0

If DO (x) = D,v (x) < 00 , we say that v is differentiable with respect to i at x and
write

Dv (x) = D,v (x) = Dv (x)

where DO is the derivative of v with respect to t.

Definition 3.0.2. Absolute continuity (see Section 1.6.2 on page 40 in 111.)

The measure ii is absolutely continuous with respect to i , written v << ,a , provided
t (A) = 0 implies that v (A) = 0 for all A C RTh.

Theorem 3.0.3. Every Lipschitz function is absolutely continuous

Proof. Let g : [a, b] -* R be a lipschitz function, then Ig (b) - g (a)	 C I b - al, for some

C G R. Fix c > 0 and let P = { [a, b]} 1 be a partition of [a, b] such that	 Ib - aI <

then	
i=1

Elf (bi)—f(ai)I < CIb—aJ

U

IDI



Theorem 3.0.4. Caratheodory 's Criterion (see Theorem 5 page 9 in [1].)
Let t be a measure on 1R. Suppose that t(A U B) = i(A) + p(B) for all sets A, B in IR'
such that dist(A, B) > 0. Then, jt is a Borel Measure.

Theorem 3.0.5. Fubini's Theorem (see Theorem 2.37 page 67 in [J)
Suppose that (X,M,p)and(Y,J\f,v) are cr -finite measure spaces.
If  e L' (y x v), then f e .C' (ii) for a.e. x E X , f  E £' ( eu) for a.e. y E Y the a.e.defined
functions g(x) = f fx dv and h(x) = f f! dv are in	 £ (ji) and in	 (Ii) respectively and

f f d(p x v) = f [f f (x, y) dv (u)] d (x) = f [f f (x, y) d (x)] dv

Definition 3.0.6. n-dimensional Lebesgue measure on 1R n ( see Section 1.4 page 26 in [11.)

=	 ...	 n times.

Equivalently	 = Jn x 1k for each k E {1,... , 	 n - 1}.

Theorem 3.0.7. Vitali's Covering (see Theorem 1 on page 27 in 11].)
Let .F be a collection of non degenerate closed balls in R Th with sup{diam B, B E F} < oc.
Then there exists a countable family 9 of disjoint balls in .F such that

UBCUE.
BEF	 BET

Theorem 3.0.8. Monotone Convergence Theorem (see book /1J)
Let (X, m, tt) be a measure space.
Let f, fl , f2 ,...E0 such that fi<f2<_<f.

If urn f,, - f pointwise then
Th—oo

u rn fffld/i=ffd[t.n—too

Theorem 3.0.9. Beppo-Levi (see book /4J)
Let (X, ,n7,, /L) be a measure space.
Let {f} be a sequence in 0+ then,

00	 00

fn dp = E' fn

Theorem 3.0.10. Dominated Convergence Theorem (see book [4])
Let (X, m, p,) be a measure space, f, {f,} E OR and 0 E 0+.

f.

1. f -* f , pointwise.
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2. If,, I	 for all n.

8. f O'd < oc, that is 0 E L, (p). Then,

f If. -	 di

and

f fn d	 f f dp, as 
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Chapter 4

Hausdorif Measure

Hausdorif measure
We start this chapter by defining some properties of the Hausdorif Measure.

Theorem 4.0.1. 7I'is a borel regular measure.(0 s < oo).

Proof. We begin by showing ?-1 is a measure, V c5 > 0. Fix 5> 0.

1. Since ç and diam = 0, then	 () a (s) (diarn
)S 

= 0. This implies that

2. Select sets {Ak}21 C RTh and suppose that each Ak is covered by sets with

diam Cjk < J. Then, U Ak is covered by {C} 1 . Now, using the definition of the

Hausdorif measure, we get

(

/	 00 / 00	 rn Ck

u Ak	 a (s) 7dia 
2	 )	

(4.0.1)
'\k=1	 I	 k=1 j=1

Since (4.0.1) holds for all Cs such that Ak c U Cjk ,then by taking the infimum over

those Cr's, we get

U"O )

	 cc (
	

00	 (diamC\8'\
<	 {infa(s)

2
k=1	 k=1	 3=1 

	
) )

cc

=

k=1

and hence Ws is a measure.
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Next we show that R' a measure.

1. Since ?-L (q) = 0 for all S > 0 , then taking the supremum over 5, we get that

sup ?-L () = W () = 0.
5>0

2. Fix S > 0, and as before, select sets {Ak } l C R. Then, since 9- is a measure

(U Ak) c

flS(A)

00	 00

Letting S	 0 we get, W (u Ak) <	 (Ak), finishing the proof that S is a

measure.

We proceed by showing that ?-1 is a borel measure. To see this, choose sets A , B C R
such that the distance between A and B is bigger than 0; choose 0 < S < 1 dist (A, B) , and
suppose that A U B is covered by sets { C3 }'° such that diam C3 S. Let us define

A={C;CflA74q}
and
B={C;CflB}.

Notice that, Ac U C3 ,Bc U C3 and CflC=qif CEAandCEB.Thus,
C3 cA	 C3E13

00	 /diamCj\S

2 )

(diarn C3
^	 a(s)	

2	

)S

C3 cA

> ?-1(A)+?(B).

(diamCj\S

2
C3 eB	 )

This is true for all such Cs chosen above, hence

AuB)7(A)+7(B)

provided that the distance between A and B is bigger than 46 and strictly positive. Now
letting S —* 0 we get

S(AuB) ^: 7S(A)+7S(B)

for all A, B in RTh such that dist(A, B) > 0. The fact that ?ts (A U B) ?t (A) + V (B)
comes from countable subadditivity since we proved that ?-L is a measure. Thus we have
that

(A U B) — 'H 5 (A) + V (B)

14



Using Caratheodory's criteria ( see theorem (3.0.4)) we get 70 is a borel measure.

We finish the proof by showing that 9S is a borel regular measure.
Let's start by noting that diam C = diam C for all C C R". Hence, we can define ?- as

00	

(diamcj)s	

00

A)=inf{c(s)	
2	

;Ac UCj;diamCj;Cj are closed.
j=1	 j=1

Now, choose A C Rn such that 71s (A) <oc. Hence ?L (A) <oc V s> 0. By the definition of
00	

1
infimum, for each k > 1 ,there exist {C} 1 , such that A C U C, C closed, diam C

and,

diamC'8	 00	 (diamC.\s
(S) (2	 ) } +

	 (4.0.2)
2 

3) < inf{a(s)

which means

(4.0.2)	
1

(A) + -
k

Let Ak =	 Cjk and B = fl A. Notice that B is borel since the Cs are closed. Also since

A c Ak for each k we have that A c B. Furthermore, since B = fl A, then B C Ak for

every k, and hence

'7-LB)	 W(Ak)

= 19, (UC)
00

W(C)

00	 Cjk

;	 a(s)(	
2	 )

where the last step comes from (4.0.2). Now if we let k —+ oc, we get -L (B) V (A). The

fact that A C B gives us the other inequality and hence 9-t a (A) = Ws (B).

Next, we prove some elementary properties of the Hausdorif measure.

Theorem 4.0.2.	 1. H.° is a counting measure.

15



.	 1 = 1:1 on R1.

8. -L=OonT1Vs>n.

. ?L s ( .\A) = ,\S7js(A) VA>0; Ac R.

5 S (L (A)) = s (A) for each affine isometry L: R  —* R'2 ; A c R.

Proof.	 1. In order to prove that ?t0 is a counting measure, we start by proving that
7°({a})	 1.

• Let 6> 0. By definition of Hausdorif measure, we have

00	 .	 ,-	 0fdzam\ {
a } c U cj,diamCj<S}inf{ck(0) (	 2	 ) '	 1

00	

00= inf{(diamCj)°, {a} c U Cj, diamCj 6}.
j=1	 j=1

Now let Ci := B (a, 6). Then {a} C C and we get that

WO ({a}) < (diarnCi )° = 1.

To see that 1 <	 ({a}), take any cover {C} 1 such that {a} C U Cj and

diam G <S. Then, E (diam c)° > 1. Taking the infimum over such C, we get

00	 00

inf{(diamCj)° ;{a}cUCj;diamCj6}>1

and hence, 710 ({a}) > 1.Thus 7-L ({a}) = 1 for all S. Letting S - 0 we get that
9. °({a})	 1.

• Next, let us consider countable sets. If A = {a} 1 , then by countable additivity

O ({a1 ," ,a}) =	 ({a}) = n.

• If A = {a}'i 1 , then also by countable additivity we get

0({a}00) =

16



• Finally, if A is uncountable, then there exist {a} 1 c A such that a	 aj Vi j,
and, by countable subadditivity we get

oo = O ({a} 1 )	 74 0 (A).

Thus 71° is a counting measure.

2. Choose A C R and S> 0, then

00	 00

1'(A) = inf{diamCj; AcUC3}

00	 00

< inf { E diam C3 ; A C (J C; diam C3 <}

=

For the other inequality, let Ci 's be any cover for A so, A ç U C. Set 'k = [ks, (k + 1) ]

,wecan
k=—co 

for k E Z. Notice that diam (C fl 1k) <5. Using the fact that

see that {c n ik I	 form a cover for A , since
j=1,k=—oo

00	 00

Ac U C = UCjnR
j=1	 j=1

00"0

= UCjn
3=1	 k==—oo
00/00

= U  (CnI)
j=1 k=-00

= Jk--00 
(C fl 1k).

Also, notice that

00	 00

= diam(U(Cifllk))

= diam (C n	 1k)

k=—oo

= diam(CflIR)

= diamCj . (4.0.3)
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Thus, we have

00

<	
2xdiam(CflIk)

2j=1,k=—oo
00,100

=	 diam(Cifllk))
j=1 k=—oo

00

=	 diamC	 (4.0.4)
j=1

where the last step is from (4.0.3). Recall that (4.0.4) holds for any cover {C} 1 of
A , then taking the infirnum in (4.0.4) over these covers, we get

(A) < inf {
00	 00

 
diarn C, A c U c}

=
Thus, 71 (A) = £' (A) for any 8 > 0. Taking the limit as 8 goes to 0, we get that

3. We fix an integer rn > 1, and decompose the unit cube Q c Il into rn'2 cubes with
1

sides - and diameter	 . Let j; then
rn	 rn	 rn

M

m'	 / '- ' S

j=1	
\rnJ

m' fl2
= a(s)

rn5
i= 1

= a (s) rn5n

= a (s) nrn'2.

Let rn —* x, we get 7-t' (Q) = 0 and so by countable additivity V (IR'2 ) = 0 for s > n.

4. Select sets Ci 's such that AC U Cj . For any A > 0, notice that

00	 00

Ac U CAA c
j=i	 j=1

18



Thus, there exists a 1-to-1 correspondance between covers of A and AA. Hence,

00	

(diam(Cj))s	
00?-L (AA) = inf { j a (s)	

2	
, AA c U ACjj

j=1	 j=1
00	

00= inf{a(s) As 
(dzamCi) ; AcUC}

= Asinf{a(s) (diamCj) AcUCj}

= A-' -H-' (A).

5. Select sets Ci 's such that A cU C. Notice that for any affine isometry L : R	 ,' RTh

Ac U Ci L(A)cL (u
 c) =

U L (C).

Thus, there exists a i-to-I correspondance between covers of A and L (A) , and hence

	

00	 (diam(L )
= inf	 a(s)

	

1	 2	

)S; 

L(A)cUL(C)}{ 

	

00	

(diamcj 

S	 00

= inf{a(s)	
2 ) ;ACUCj}

j=1
=

4.1 Isodiametric inequality

Throughout this section we will be proving that '1-L a = on R'. This cannot be seen
easily since by definition, the Lebesgue measure L n (A) is computed using arbitrary coverings
of A , whereas the Hausdorff measure -L' (A) is computed in terms of arbitrary coverings of
small diameter.

Lemma 4.1.1. Let f : R n --> 	 be L n measurable. Then the set

A = {(x,y);x E R',y E R;O <y f(x)}

which represents the region under the graph of f , is £n+ 1 measurable.

19



Proof Let B = {x E RTh ;f(x) = oo} and C = {x E RTh ;O < f(x) < oo}. In addition we
define

Cjk={xEC;f(x)<3',jeN,keN*}

	

Dk = U(Cikxo)uBxo	 ,jEN,kEN*

and

Ek 
= Q 

(CjkX[O, j+l ])U(Bx[O,00l) ,j e N, k E N*

Since C3 k and B are C measurable in R, and since [0,j-]  and [0, oc] are	 measur-

able, then Ek and Dk are +1 measurable. Moreover, Dk C A C Ek. Let us define D =Dk

and E = fl Ek. Then D c A C E with D and E both £' measurable.Now, since Dk C D

and E c Ek ,then

E\D=EnDC cEknD=Ek\Dk.

Denoting B' (0, R) = BTh (0, R) x [0, oc], we get

c' ((E \ D) n B' (0, R))	 f' ((Ek \ DO n B' (0, R))

(j0=00

	

Th+1C	
i+h]nBn+1(oR)

k

00	

i7i 
j+1

)=	 UCjk) nBTh(0,R)	
k 1)

Now as K —* oc , the last term goes to zero and hence £' ((E \ D) fl B' (0, R)) = 0
which implies that

= £+'((E\D)flR')

= £'(E \ D) n
(Q1 

13n+1 (, n)))

= rn+l (UE\D8m+'0m)

£n+1 ((E \ D) n B' (0, n))

0.

20



Hence, £' ((A \ D)) = 0. A \ D is fl+1 measurable (See Remark on page 2 in [1].) Since
as noted earlier D is £n+1 measurable, then A = (A \ D) u D is £n+1 measurable.

Notation Fix a,b E RTh ,	 = 1. Let us define

La
b = {b + ta; t E R} , the line through b in the direction of a

and Pa = {x E	 x.a 01 , the plane through the origin perpendicular to a.

Definition 4.1.2. Let a e R, such that jal = 1, and let A C RTh . We define the Steiner
Symmetrization of A with respect to the plane Pa to be the set

Sa(A)	 U	 {b+ta;Itl <'7.1(AflLa)}
bEP,AnL540

In the next lemma, we prove some properties of Steiner Symmetrization.

Lemma 4.1.3. Let A c R be a closed set.

1. diamSa (A) <diamA.

2. Sa (A) is C1 measurable and C' (Sa (A)) = L (A).

Proof.	 1. If diam A = oc then statement (1) is trivial, so we will assume that diam A <
oc. Fix e> 0 and by definition of supremum, select x, y E Sa (A) such that

diam Sa (A)	 lx - l + E.	 (4.1.1)

Let

b x - (x.a) .a and c = y - (y.a) .a.

Moreover, b E Pa since

b.a	 (x - (x.a) .a) .a

= (x—x.1a12).a
= (x—x).a

= 0.	 (4.1.2)

Similarly, c E Pa.
Note that by definition of Sa , we have

x.al >	 (A n L)	 (4.1.3)
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and

y.a >	 (A fl L).	 (4.1.4)

Now set

r = inf{t; b+taA}

s = sup{ t; b+ta e Al

u = inf{t; c+taA}

V = sup{ t; c+taA}

Assume that v—r > s — u. Then 1 (v -r) 	 . (s - u). Using the fact that . (v - r) =
(v—r)—(v—r); we get

(v—r)—(v—r) >	 (s—u).	 (4.1.5)

Adding (v - r) on both sides of (4.1.5) we get

11
(v — r) >	 (v—r)+(s—u)

1	 1
=	 (s—r)+(v—u).	 (4.1.6)

However,

S - r = sup{t; b + ta e Al - inf{t; b + ta E Al > -1' (A fl L)

and

V - u = sup{t; c + ta e Al - inf{t; c + ta E Al > L' (A n L).

Thus, plugging in (4.1.6), we get

v—r 	 ' (An L)+'(AflL)

> I.aI + l y.al

^! Ix.a— y.aj, (4.1.7)

where we used (4.1.3) and (4.1.4) in the step before the last. Now, recall by (4.1.1)

that

diamSa - €	 Ix - y,	 (4.1.8)

and by definition of b and c that x = b + (x. a) .a and y = c + (y. a) .a. This means that

x — y = b— c+((x.a) - (y.a)). 	 (4.1.9)
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Notice that (b - c) is perpendicular to (x - y) since their dot product gives 0. Hence,
by squaring both sides of the equation (4.1.9) and using pythagorian rule we get

	

Ix - y 1 2 = lb - c12 + I ((x.a) - (y.a)) .a12.	 (4.1.10)

Therefore, combining (4.1.8) , (4.1.10) and (4.1.7), we get

(diam Sa -
2 

< Ix—yl2

= lb- c12 + I ((x.a) - (y.a)) 12	

(4.1.11)lb— c12+l(v—r)l2

However note that,using (4.1.2) we have

I (b + ra) - (c + va) 1 2 = lb + ra - c - val2
= I (b — c) + (r — v).a 12

= lb— cI2+I(r—v).aI2+2(b—c)(r—v).a
= lb— c 1 2 +l r — v 1 2 + 2b (r — v ) a-2c(r—v).a
= lb— c12+l(v—r)12.	 (4.1.12)

So plugging (4.1.12) in (4.1.11) we get

(dicim Sa - )
2	

I (b + ra) - (c + va) 12.

Since A is closed , and v = sup{t; c+ta e A}, then c+va E A. Similarly, b+ra e A.
Thus (4.1.11) becomes

(diam Sa - E)
2 <(diam A) 2

and hence,

diam Sa - c < diamA.

2. Let A C RTh be a closed set.We start by studying L Th (A). Since L is rotation invariant
then without loss of generality take a = e,, = (0,0,... , 1), making Pa	 = R'.

Knowing that 9L' =	 on JR' and L' =	 x n-1 then we get

(A) = fxAdc

= fR	 XA(x,Y) dC(x,y)
-1 xR

=

fR_1 f XA (x, y) dr' (y) d'' (x) (4.1.13)
 ]R

where in thelast step we used Fubini's theorem (see theorem 3.0.5) . Notice that

{ 1; (x,y)A
XA(X,Y) 

= 0; (x, y) A.

23



	

11;yeAx	{1;(x)eA
Now let A = {y E R; (x, y) E Al. Then XA	 = o; y A	 = 0; (x, y) 0 A
XA (X I Y)
Since the inner integral of (4.1.13) is independent of x ,(4.1.13) becomes

C (A) = f (f XA (y) d' (u)) d' (x)
-'	 R

= fRn-1 
L'(A) d 1 (x).

Let the map f R' —f R defined by f (b) = 71' (A fl Li') be n-1 measurable. Since
£1 is translation invariant, then

£ (A) = JR £' (An L) d' (b)

= f
' (An L) d' (b)

R1

=
fR-1 f(b) db.	 (4.1.14)

On the other hand,

S. (A) =	 U	 {b + ta; ti <?-1' (A fl L) }
bIR' ,AnL54

= (b, y); _1(AnL)<y<1(AnL)}\{(b,0); AflL=}

{ (b, )	
f (b)	 < L	 } \ { (b, 0); A fl L = c}=

2

= (b, y); bERn ' , yER,0y<	
U{(b,y); beR'' ,yeR,—	 y0}

- 2 1	 \{(b,0); AnL=}.

Using lemma (4.1.1), we get that the first part of the union is L measurable. But the
second part of the union is nothing but the reflection with respect to R' of the first

part, and hence is L measurable also. Moreover, to see that B := { (b, 0); AflL =

is measurable; notice that

{ (b,0); AflL=}=BcR'

That is

{ 
(b, 0); A fl L	 = Be = pr-i (A).

Hence, BC = R' \ B, which is measurable. Thus, Sa (A) is L measurable.To see this
,let B = {b E R'; AflL	 }. Then BC = {b E 1R'; AflL = q } . Soifb E B
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then f (b) is f (b) and if b E BC then f (b) = 0. Hence,

f(Sa(A)) =

= £B	
Rb)f(b)1)
2 '2]

= fXBx[_LILi](bY)
2'2

=
 I

XB (b) •X1j (Y) .	 (4.1.15)
R'' xlii

Using Fubini's theorem (see theorem 3.0.5), we get

(Sa (A)) 
= fR-^ XB (b) fR

(x i 1(1) (y) d' (y) d' (b)
 [	 2	 2 1

= I XB (b) I (b) d' (b)

= I	 (XB (b) f (b) + XB C (b) f (b)) d' (b)

= I (XB + XBC) f (b) d' (b)

= I x-if (b) d' (b)

= /	 f(b) d'(b)

=	 Th(A).

.

Theorem 4.1.4. Isodiametric Inequality

For all sets Ac R n , L (A) <a(n) (di
amA n

Proof. If diamA = 00 then it is trivial. Let us assume that diamA < oo. Let {e 1 ,... )e}
be the standard basis for 1R, define A 1 = Se, (A), A2	Se2 (A 1 ), ... , A. = Se, (An-1)
and write A* = An-

1 . Claim # 1: A* is symmetric with respect to the origin.
Proof of Claim # 1: We show this by induction. By definition of the Steiner
symmetrization, A 1 is symmetric with respect to P1. Now let 1 k < n and assume

that Ak is symmetric with respect to P1, J2 2 ,... , P. We prove Ak+1 is symmetric

with respect to Psi , Pe2 ,	 ,P1k11. By definition, Ak+1 = Sek+l (Ak) is symmetric with

respect to Pek+l Fix 1 j	 k and let Si : IR" —f Rn to be the reflection through

Pe3 . Fix b E Pek+l. Since Ak is symmetric with respect to P , then S (A,) = Ak and
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we get -1' (Ak fl L') = ' (Akn L7'). Since Ak+1 = Sek+l (Ak) , by definition ofSb

Sek ,the latter equality implies that {t; b+tek+l e Ak+ 1 } = { t; Sb+tek+ l E Ak+1}

that is, S (Ak+1 ) = Ak+1 . So, Ak+1 is symmetric with respect to P , thus A* = A is
symmetric with respect to Pei , Pe2,	 , Pe. and hence with respect to the origin.

2. Claim # 2	 (A*) <a(n) (diarnA*)fl

Proof of Claim # 2: Let x E A* then by Claim # 1, we get that —x E A*.

Thus, diamA* > 21xl that is lxi 
diam A*

2 
This implies that A* C B (0, dia7A*).

Therefore,

(A*) < n (B (
0, diarn A*)) = a(n) (diarnA*)fl	

(4.1.16)

3. Claim # 3 C (A) <a (n) (diarnA)n

Proof of claim # 3:q is Ln measurable since it is closed, and thus by applying
lemma 4.1.3 ii times on A we get,

£Th(A)Ln(Sei(A))rn(Al)rTh(Se2(Al))(A2)(An)LTh(A)*.

Moreover by applying lemma 4.1.3 ii times, we get

diam (A)* diam (A)	 (4.1.17)

and hence

2(A)	 C(A)
=

< a(n) (diam(A)*)fl	
(4.1.18)

where the last equality comes from Claim #2 used on A. Using (4.1.17) on (4.1.18)

we get

(diam A
Ln (A) < a(n)	

2 

)fl

(diam A)fl
= a(n)(\ 

2
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Theorem 4.1.5. ?-I' = 	 on R7

Proof. Let A C RTh.
Claim # 1: L (A) <7-1'(A).
Proof of claim # 1 :Fix S > 0. Choose sets {C} 1 that cover A and such that diam C3 <
S. By countable subadditivity we get

and hence using the isodiametric inequality we get

1J2(A)
(diarnCi)

Taking the infimum over all such sets {C}1 1 we get

ITh(A) <	
( diam

= 7in

Thus,

Before moving to Claim # 2, recall that C' is the product of L' xL' x ... x r' (n times).
(See theorem 3.0.6). Moreover we know by the definition of Lebesgue measure that for all
A c Rn and 5> 0

00	 00

= inf{r 72 (Qi ); Qi are cubes ;A C LJQ ,diamQ

Claim # 2:7-ta is absolutely continuous with respect to C2.
Proof of claim # 2: For each cube Q C R n of side s we have,

L(Q) = s"
= (NnS)n

VIn
- (diamQV

VIn

Let Cn = (n) 
()fl. 

Then,

	

CC2(Q) = a(n) (diarnQ)n
	 (4.1.19)
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Moreover, notice that the set of all covers of A C RTh by cubes Q3 of diam Q3 <S is subset
to the set of all covers C of A such that diam C3 S. Hence,

00	 /	 \
, dzarn Q,

fl

1- (A) < inf {
	

a (n)	
2	 )	

Q.	

00

 cubes A c J Q , diam Q

	

00

	 00

Cn inf{C(Qi); Q i are cubes ;AcUQj ,diamQ <s}

= CL(A)

where we used (4.1.19) in the step before the last. Let S —+ 0 , we get

?-I Th (A) CThLTh(A).

Claim #33-c (A) <L n (A) for all A C R.
Proof of claim # 3: Fix 5, € > 0. By the definition of inflinum, choose cubes {Q}1

such that A c U Q , diam Q <S and

£' (Q) < Ln (A) + €.	 (4.1.20)

Using Vitali's covering (see theorem 3.0.7) we get that for each i e N there exist disjoint
closed balls {BL}1 contained in	 , the interior of Q , such that diam B < S and

00

	

rn(Q	

00

\UB) = rm(Q\UB)=o.

Using Claim #2 we get m 
(Q\U B)	 = 0. Also Q = (Q\UB) u(UB).

Thus by countable additivity , we get

00 

B'Th (Q)= (u) 
+n ( 

00

UBL)

which gives us that

n 
(Q) = 

n 

(Q BL).	 (4.1.21)
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Now, by (4.1.21) and countable subadditivity, we have

00

9L (A)	 71 (Q)
i=1

	

00	 '00	 \

=

	

i=1	 \k=1	 I
00 00

lin

i=1 k=1
00 00	

1diamB\
(fl)(\	

2	 )i=1 k=1
00 00

=

i=1 k=1

	

00

	 (k0=01

= UB
i=1 	 I
00

=

i=1

Where we used (4.1.20) in the last step. Let € - 0 , we get 1-L (A) L n (A). Let 6 --+ 0
we get Hn (A) L n (A) and we are done.

4.2 Hausdorif measure and Lipschitz mappings

Definition 4.2.1. A function f ]RTh —+ Rm is called a Lipschitz function if there exists a
constant C such that If (x) - f (y ) I <Clx - l for all x and y in W.

Definition 4.2.2. Let f be a Lipschitz function. Define Lip (f) = sup { If 
(x) f	 x, y e
Ix - yl

R n ,x y}. We call Lip (f) the Lipschitz constant of the function f.

Theorem 4.2.3. Let f : R' 	 Rm be a Lipschitz function, A C R , 0 s < 00. Then,

Rs (f (A)) < ( Lip (f))S 71" (A).

	

Proof. Fix 6 > 0. Choose sets {C} 1 C	 such that diam C < 6 and A C U C. Let

x, y E Ci then,

diam C = sup {I x — y, x, y E C}

and

diamf(C) = sup {If(x)—f()l x,yeC}.
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Notice that

If (x) - f()I

	

f(x)—f(y)j =	 Ix - yl
Ix -

If(x) —f(y)
sup Ix-yI.

Ix - yl

Taking the supremum on both sides, we get

suplf(x)—f(y)I	 sup (If(x)_f(Y)I sup (IX_YI).
Ix - y I	 )

This shows that

diam f (Ci) Lip (f) diam C Lip (f) 6.

Now,

( i0=01

\00

f(A)cfuci) cUf(c).j=1

Thus, If (C)} 1 are a cover for f (A) with diamf (Ci) Lip  J. Hence,

Ws	 (f (A))

00	
(diamf(Ci))

Lip)	 (s)
2

00	 /\
(Lip (f))a(s)( diamCjS

2	 )

Taking the infimum over all such sets Ci we get

	

'HL (f) (f (A))	 (Lip 
(f))S 9 (A).

Letting 6 —* 0 we get
?S (f (A))	 (Lip 

(f))S	 (A).

Corollary 4.2.4. Suppose n > k. Let P : 1R	 1Rc be the usual projection. Let A C
Rn , 0<s<oo , then 7(s(P(A))<_15(A).

Proof. The projection function is a Lipschitz function with Lip (P) = 1. To see that, take

x, y E RTh . Since the projection function is linear, with norm 1 then, I P (x) — P (y) I =

IP(x - y)I < Ix - y I . 
Hence IP(x) P(y)l 	 1 which implies that Lip (P) < 1. To see

that Lip (P) = 1 take x E R  = (x 1 ,... ) X k ,O,•• ,0) and  E IRTh = (y,... ,Yk, O , ••• ,0)

then P (x) = x and P (y) = y. Thus IP (x) — P ()I = Jx — yJ that is, P W I P(y)I = 1.
Ix

Using theorem 4.1.5 we get that

S (P(A)) < Lip(P)W(A)

= Us (A)

;
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Chapter 5

Lipschitz functions , Rademacher's
Theorem

Rademacher's Theorem states that Lipschitz functions f : R -# R"1 are differentiable
a.e. To be able to state Radernacher's Theorem, we need to define what it means for a

function to be Lipschitz and to define differentiability from ' to 1ktm.
We start by defining Lipschitz functions and locally Lipschitz functions.

Definition 5.0.1.	 1. A function f : RTh -* Rtm (n < m) is said to be Lipschitz if

f(x ) — f(y ) I 	 Cx - y
	 (5.0.1)

for some constant C and for all x and y in R. Define

Lip (f)=sup { 1 ;VxYE Rn,xy};

Note that Lip (f) is the smallest constant C such that (5.0. 1) holds for all x and y.

2. A function f: A -* Rm (A C R7 ) is said to be locally Lipschitz if, for each compact
set K C A ,there exists a constant Ck such that

f(x)—f(y) Ck x—yIVx,yE K.

Theorem 5.0.2. Extension of Lipschitz functions
Suppose f: A	 lk is a Lipschitz function where A C R , then there exists a Lipschitz
function f 1k tm -+ Rm such that:

1. f=fonA.

2. Lip (f)	 \/:j Lip (f).
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Proof Let us prove the theorem first for the case if f : A —* R.

We start by showing that f is Lipschitz. Define J(x) = inf {f(a) + Lip(f)lx - a l} . Let
aEA

x, y e RTh then

J(x) < inf{f(a)+ Lip (f)(ly—al+lx—YD}
aEA

= J(y)+Lip(f)lx—yl

and similarly

J(y) < J(x)+Lip(f)lx—yl

To show (1), let b E A. Notice that J(b) = inf {f(a) + Lip (f)fb - a l} . However, b e A
aEA

since J(b) <f (b) + Lip (f) lb - bl = f (b) and hence J(b) f (b).
Conversely, for all a in A we have If (b) — f (a)	 Lip (f) lb — a l . This implies that

—Lip (f) lb — al	 f (b) — f (a)	 Lip (f) lb - al.

Hence, f(b) f (a)+Lip(f) lb—al. But J(b) = inf {f(a)+Lip(f) lb—al}. Thus, f(b)
aEA

J(b).

To show_(2), Let f : A —+ R, such that A C JR. Then for all x, y e R we have

If (x) — f (ii) I	 Lip (f) Ix — y l . This implies

lJ(x)—J(y)l < Lip (f)

Ix — yl
= \/Lip (f) (since m is equal to 1 in this case.)

Hence,

Lip(j) = sup lf(x)—J(y)
x,YER1	 Ix -
1/Lip(f).

For the general case, let f : A
x —* f (x) = (f (x),... , fm (x)) be a Lipschitz function.

Notice that each f : A —* JR
X —* f (x) is Lipschitz with Lip (f)	 Lip (f), since lf (x) — f (y) I

lf(x)_f(y)l< Lip (f)lx—yl for all x,yER.

Thus, by our discussion above, we can extend fi to ji : R	 ,' JR such that	
on A

Lip (1j) <Lp(f)
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Then, we have

=

(Lip f)2 IX Y12

= m (Lip f)21x—y12

which implies IJ(x)—J(y)12	 m (Lip f)2.
Ix - y 12

Thus,	 -	 <Lip(f) for a1lx,y e R,whichimp1iesthat sup If (x) - J()l <

ix - YI	 XNERn	 I X -	 -

\/ Lip (f). Consequently, Lip (fl </ Lip (f).
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Next we define differentiability for functions f : RTh —+ Rm

Definition 5.0.3. A function f :	 Jm is differentiable at x E RTh , if there exists a
linear mapping L:	 m such that

• if(y)—f(x)—L(x—y)ihm	 = 0.	 (5.0.2)
y-x	 ix-yi

Remark 5.0.4. Let us prove that if such a linear map exists, it is unique and we write Df (x)

for L. We call Df (x) is the derivative of f at x.

Proof. Suppose there exists 2 linear functions L 1 and L2 such that L 1 , L2 : R' —* R", and
that satisfy the equation above (5.0.2). Fix x and v such that I i = 1. Let y = x+tv. Then,
ly - xl = itvl = Itl then, x - y = —tv. Hence,

lim f 
(x + tv) - f (x) - L1 (—tv) 

=
t-* o	 iti

and

jf(x+tv)-f(x)-L2(-tv)I
limi	 = 0.
tol	 iti

This implies that urn f (x + tv) - f
Iti	

(x) + Li(tv) = 
urn f 

(x + tv) - f (x) + L2(tv) . 
Then,

	

I
Itl	

^	

t-^o 
^	 iti	 iti	 ^

limi
I L (tv) L2 (tv) 

= 0 and consequently urn 
t[Liv - L2vJ 

= 0. This in return gives
t-+o	 tI	 lti	 t-o 

^	 iti

urn j Ljv - L2vI = 0. Thus, Liv - L2vi = 0. Hence,
t-*O

L1 (v)	 L2 (v)
	

(5.0.3)

for all v E R such that I v	 1. In general, Let x E	 , write x = —f--.
x	

x then using
il

linearity of L 1 and L2 and (5.0.3) for v 
=	

, we get

L1 (x) = 
L1 (. 

ix I)

= ixILi()ixl
I

	

= lx	
x

iL2(\ixl
Ix

= L2(.ixl
\ixI

= L2 (X)
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Theorem 5.0.5. Rademacher's theorem
Let f : W' —* Rm be a locally Lipschitz function, then f is differentiable L a.e.

Proof. Case 1: Assume m = 1 since differentiability is a local property, we may assume
that f is Lipschitz. Fix any v e Il such that lvi = 1. For x e RTh define

f(x+tv)—f(x)
Df (x) = lim

t—*O	 t

if this limit exists. ( This is the directional derivative of f at x with the direction of v ).
Claim # 1 : Df (x) exists for Cn a. e. x.
Proof of Claim # 1 : Since f is a continuous function then,

f(x+tv)—f(x)
Df (x) = lim sup

t-o	 t
urn sup f(x+tv)—f(x)

= 
k-+00 0<i t i< 1	 t

is Borel measurable and

(x) = lim inf 
f(x+tv)—f(x)

t-+o	 t

is also Borel measurable. To see this, given that f is a lipschitz function then it is continu-

ous. Fix t > 0, v e ]l ,then f (x + tv) is also continuous by translation and 
f(x+tv) 

is

also continuous by dilation. So g (x) 
= f(x+tv)—f(x) is 

continuous which implies that g

is borel; because (g' (open set) is an open set which is borel) . Hence lirn t o g (x) is borel
and the same goes for iIrn- g (x). Thus we get that
A, 	 {x E R' such that Df (x) does not exist}

= {x E R n such that Df (x) <Df (x)} is Borel measurable.

Now for each x, v E R n , with I v I = 1 , define	 : R —+ R by ço (t) = f (x + tv)
where t E R. Let us show that is Lipschitz, and absolutely continuous, thus making it
differentiable	 a.e.

is Lispchitz: (a) — V (b) = f (x + av) — f (x + by); but f is Lipschitz then

lf(x + av)—f(x + bv ) Cix + av — x — bvi

C l ay — bvl

C l v (a — b)l
C I v Il a — bl
C l a — bI.

•	 is absolutely continuous: Since is a Lipschitz function then it is absolutely
continous (see Theorem 3.0.3). Since 	 is absolutely continuous then ' exists L1 a.e

35



that is f is differentiable	 a.e on any line L parrallel to v. Consequently,

Av fl L = x E R such that f is not differentiable at x n L
= {x e L such that f is not differentiable at x}.

Which implies that L' (Av fl L) = 0 ; hence, 7-i' (A1, fl L) = 0 for all L. Then,

= fxAd
=
 I

XA(X,Y)dr(X,Y)
R'-' xR

=fRn-1 UR XA (x, y) d' (u)) d' (x)

for inner integral x is fixed and hence XA,. (x, y) = 1 if (x, y) E A and XA,. (x, y) = 0

if (x, y) A. Now let (A1,) = {y e R; (x, y) E A1,} then, X(A

then XA (x, y) = X(A (y). This implies that

(An) 
= fR (fR X(A (y) d' (u)) d' (x)

= f	 ' ((A) d 1 (x).

Notice that £' is translation invariant; thus,

	

f
' ((As) d' (x) 

= fR	 ' (A fl L) d 1 (x)

	

= f	 ' (A n L) d' (x)

=0.

Finally we get,

r (An ) = 0.

This finishes the proof of Claim 1

Claim # 2: gradient f (x) = (-^J- (x) ,.•• , - (x)) exists for L a.e x.

Proof of Claim # 2 : Applying Claim 1 for v = e = (0,.. , 1,• .. ) we get that Deif
exists a. e; and hence for all i = {1,. .. , n} there exists Ej such that bL (Efl = 0, that is D6f

exists on E. Let E =	 E then p (E) = 0. Moreover, for (x1 ,... , x) E Ec , we have

Deif(Xi," ,x) = lim f(i," ,x)+ hv) - f(xi ,... ,x)
h

= hm f((xi,... ,xi + h, x+1, • ,x) + hv) - f(xi ,... ,x)

h-*O	 h
Of=	 —(x 1 ,... ,x).	 (5.0.4)
axi
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Claim #3: Df (x) = v.grad f (x) for L ax x.
Proof of Claim # 3 : Let ( E C°° (Rn) and let T: R' -* R

x -f x + tv.
	/1 0	 0

010••
Notice that T is one-to-one , then IJTI =	 . .	 =

Define g(x) = f(x)((x — tv) Then by theorem 2.0.2 we get,

kg (x) dL = JR. f(x) (x – tv)

JR ^ 
go T(x) I JT I dC

fR ^ 
g (x + tv) dC

L
f (x + tv) (x)

And so, f	 - tv)	

= f f (x + tv) (x) dL. 
This implies that,

t	 JR'I f(x)((x_tv)dflf f(x) ((x) dL	 f 
f(x+tv) (x)dflf 1(x) ((x)dfl

t	 t	 t	 t

Hence,
fR-

x	
–((x) f(x) dTh	

f(x+tv) – f(x) (x) d, 
which gives

t

f

(x)–((x–tv)f(x) drm=f f(x+tv)_f(x)(() dL
Th .

	

	 (5.0.5)
. 

Now, applying theorem 3.0. 10 on 5.0.5 and using the fact that DeiC (x1,... , x) = 	(xi,... ,
Dxi

and by 5.0.4 that Def(xi,•• ,x)= 
Df
—(x i ,.• . ,x) ,we get
Dxi

/ Dv((x)f(x)dCf
1R'

for all v. In fact for v = ej we get

I
-fdL=J

R
 -(dC.

R'	 '

But since ((x) is C°° (R n) , we know that

(5.0.6)

(5.0.7)

D( =
	 (5.0.8)
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where v = viej. Using 5.0.6, 5.0.7 and 5.0.8 we get

fR ^ 
D,f (x) ( (x) d	 = f

go-

Egg

hence D f = v. grad f C a. e.

Dv( (x) f (x)

fRn	
vjcfdC2

>vi f --fdJ
j=1	 1 axi

>vf -dL
i=1

JRn	
Vi 

axi 
dL n

fRn 
v.gradf (x) (x)

Now choose {vk} 0 l to be a countable , dense subset of DB (0, 1). Set

Ak = { X E R n , Dvk f and grad  (x) exist and DV k f (x) = v.gradf (x) I for k E N.

Define A = fl A. Notice by Claim # 2 that C (A) = 0, hence ( \ A) = 0 for all

kEN.

= L n R 
n 

n Ak

 k0=0 I

= £ (m n (nAk)c)

=	 A
ck

= n (U Rn \ Ac)
)

=
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By countable subaddivity we get,

(k0=0

	 00

0.

Thus, L n (1W \ A) = 0.
Claim #4 : f is differentiable at each point x E A.

Proof of Claim #4 : Fix an x E A. Choose v E OB (0, 1), t E R, t 0. Write

f(x+tv)—f(x)
Q(x,v,t) 

=
—v.gradf(x).

Then if v' E DB (0, 1), we get

f(x+tv)—f(x)	 f(x+tv')—f(x)

	

Q(x,v,t) - Q (x,v',t)I = 	 - v.gradf(x)	 + v'.gradf(x)
t	 t

- f (x + tv) - f (x + tv') + grad 
f (x) (v' - v)

	

-	 t

f(x+tv) 
t
—f(x+tv')I

	+ Igradf (x) (v' - v)l	 (5.0.9)

But

Lip (f	
f(x+tv)—f(x+tv')	 If(x+tv)—f(x+tv')l	 (5.0.10)

(x+tv)—(x+tv)	 lt(v-v')l

Hence, replacing 5.0.10 in 5.0.9 we get

Q (x,v,t) - Q (x,v',t) 	 Lip(f) lv - v'I + Igradf (x) li v - v'I.	 (5.0.11)

Let us show that

l grad f (x)	 \/Lip (f) .	 (5.0.12)

Let grad f(x)	 Notice that

Of - f (x i , . . . ,x + t,	 . . , x) - f (x i , . . . ,x, . x)	
Lip  (x)

Oxi	 t

Hence,

	

hmi 
f (x 1 , . . . ,x + t,	 . . , x) - f (x 1) . . . ,x,	 x) 

< Lip f (x)
t-*O	 t	 -

Thus,

Of 
< Lip f.

OXj ^

K1]



Then,

grad f12 -	 I_	 I 2I2+.+
- Ox1

< n (Lip f)2.

Hence, Igradfi	 .... /n— Lip f, this proves 5.0.12. Replacing 5.0.12 in 5.0.11 we get

IQ(x,v,t)—Q(x,v',t)i < (\/+l)Lip(f)iv—v'I (5.0.13)

Now fix € > 0 and choose N so large so that if v e OB (0, 1) then there exists k E {1,... , N}

and Vk such that

C

1vvk1	 2(+1) Lip (f)	
(5.0.14)

jf(y)—f(x)—gradf(x).(x—y)
We want to show that urn	 = 0. Replacing 5.0.14 in

y-4x	 ix—yl
5.0.13 for v' = Vk , we get

Q(x,v,t)—Q(x,vk,t)i < . (5.0.15)

Now by definition of 'Vk we have Jim Q (x, Vk, t) = 0. This implies that for the chosen € there

exists S such that if It I <S then 1Q(x , vk, t)i < . Hence

Q (x,v,t)i	 IQ (x,v,t) - Q (x,vk,t)I + IQ (x,vk,t)I	 +	 = €.	 (5.0.16)

Fix S> 0 and choose yeR;yx and iy—xI <S. Write v=

	

	 and hence
iy — xj

t = ix - y <S. Thus, using 5.0.16 we get

f (y) - f (x) - grad f (x) . (x - y)

ix — y

= If(x+tv) —f(x)— grad f(x).tv

t

- f(x+tv)-f(x)
- grad f(x).vI

-	 t
= 1Q(x,v,t)I

< C.

Hence, f is differentiable at x with Df (x) = grad f (x).

We need to prove the theorem for the general case.
Let f : R n	 , m

X -* (f' (x),... , fm (x)) be a Lipschitz function. Then, each
R1 R
x -* f (x) ; is also Lipschitz since

if(x)—f(y)i	 If(x)—f(y)I

< Lipflx—yi.
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Hence,

Ifi(x)-f(x)I < Lipf
x - yI

C.

Thus, fi is Lipschitz and by Case 1 we get that fi is differentiable a.e , which implies that
f is differentiable a.e.
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Chapter 6

Linear maps and Jacobians

Definition 6.0.1.

1. A linear map 0 R	 JRtm is orthogonal if (Ox) . (Oy) = x.y for all x, y E JR.

2. A linear map S: 1R -* Rm is symmetric if x. (Sy) = (Sx) .y for all x, y e R.

3. A linear map D : R  --4 JRtm is diagonal if there exists d1 ,•	 d1. E JR such that
D. = (dix i ,... ,	 for all x E 1R.

4. Let A : JRTh -+ Rm be linear. The adjoint of A is the linear map A* : RI -f R
defined by x. (A*y) = (Ax) .y for all x E R  y E Rm.

Theorem 6.0.2. Properties of Linear maps

1. A** = A.

2. (A0B)*=B*oA*.

3. 0* = 0-1 , if 0: R  -f JR tm is orthogonal.

. S = S if S: lR -f R n is symmetric.

5. IfO :IRTh —lR" is orthogonal then 	 m and 0*00=1 onRTh and 000* =1 on
0(Rtm).

Theorem 6.0.3. Polar decomposition.
Let L: JR Th -* Rtm be a linear map.

1. If n < m , then there exist a symmetric map S R  -* R n and an orthogonal map

0: ' - Rtm such that L = 0  S.

2. If m < n , then there exist a symmetric map S : R' 	 Rtm and an orthogonal map

0: JRtm -p JRTh such that L = So 0*.
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Proof.	 1. Consider C = L* o L : 1R' —+ RTh . Then, by the definition of the adjoint

(Cx).y = ((L*oL)x).y

= (Lx).(Ly)
= x.Cy.

Also (Cx) .x = Lx.Lx > 0 , hence C is symmetric, non negative definite. Then there
exist 1u,•• ,	 > 0 and an orthogonal basis {xk} i of 1R'such that

Cxk = btk xk (k=1,... ,n).

Write [tk	 'k ;Ak ^! 0 (k = 1,... ,n).
Claim: There exists an orthonormal set {zk} i in R such that Lxk = ) k Zk for k =
{1,... ,n}.

Proof of Claim: Case 1:If k 0, define Zk = Lxk . Then, if Ak, A 0 we get
Ak

Zk .Zl =

HE

1
-:;--- LXkLXI
Ak Al

1
TE (Cxk ) .x1
Ak Al

1	 2
Ak xk.xl

AkAj

Ak -
— àkl

{ hf k = 1
where 41 

= 0 if k	
. Thus the set {Zk .A	 01 is orthonormal.

Case 2 : If ) k = 0 then ) k = 0; this implies that Pk = 0. but, Cxk = Ilkxk then,

Cxk = 0. So L* o L (xk ) = 0 , hence (L* o L (xk )) .Xk = 0. And by the definition of the
adjoint we get L (Xk) .L (xk ) = 0 which implies I L (xk) 1 2 = 0 thus, L (xk ) = 0. Define
S:R'—*llbySxk=)kxk(k1,",n)
and
0: Wn —* R by Oxk = Zk . Then,

OOSXk = Okxk)

= ,\kOXk

= )\kZk

= Lxk.

Hence, L = 0 o S. Rest to show that S is symmetric and 0 is orthogonal.

. S is symmetric. To see this , let x, y E R where x 
=

akxk and y 
=

pixi
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Then,

x.S () 
= (

akxk) .s (t /3x)

= >kXk. (iS(xi))

=	 kfi1k•S (x1)
k,1=1

= 	 akS(Xk).Xi
k,l=1

=	 akS(xk),I3lS(xl)

= ( 
akxk)

= S(x).y.

0 is orthogonal. To see this , let

°Xk°Xt = Zk.Z1

= 8k1

= Xk.X1.

For any x, y e	 , let x 
=

akxk and y =
	

jXj. Then,

ox.oy = o (E akxk) .o (Eixi)
=	 a'k(xk),I310(x1)

=	 ak/310(Xk)0(X1)

=	 ak/3l(xk)(xi)

=

	 k=1 akxk). (t')
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Rm —* IR. But L* = 0 0S2. For the case where ii > m, let L : lR —+ R, then L*
such that 0 is orthogonal and S is symmetric, then

L = (L*)*

= (OoS)*

= S a 0*
= SoO*.

Definition 6.0.4. Let L :	 flm be a linear map. If n m , write L = 0 o S and define
the Jacobian of L to be [[U] = IdetSi.
Note that [[L]] = [[L*]].

Theorem 6.0.5. For n < m ; [[L]] 2 = det (L* a L).

Proof. Write L=OoS and L*=S*oO*=SoO*. Then,

L*oL = SoO*000S
= S2 (0*00)

Hence,

det(L*oL) = det (52)

det (S.S)
(det 5)2
[[L]]2.

Definition 6.0.6. 	 1. For  < m; define A(m,m) = {A: {1,... ,n}	 11,... ,ml; is increasing}.

2. For each ) E A(m,n);define PA :I1 m —*RTh by P,\ 	 ,Xm)	 (XA(1),	 ,XA()).

Remark 6.0.7. For each ). E A (m, n), there exists an n-dimensional subspace S A =

eA(n)} e Rm such that PA is the projection of J m onto SA

Theorem 6.0.8. Binet- Cauchy Formula
Let n < m , L: R n —* ]Rm be a linear map. Then,

[[L]] 2 = E (det(PAoL))2.
AEA(m,n)

Notice that PA 0 U: R n —* Rm —* R n and

PA 0 L = (det (PA, 0 L)) 2 + (det (P)12 0 L)) 2 +

Remark 6.0.9. : In order to calculate [[U] 2 , we compute the sums of the squares of the
determinants of each (n x n) submatrix of the (rn x n) matrix representing L.
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Chapter 7

The Area Formula

In this section, we will show that if f : R	 flm is a Lipschitz function such that n M.

Then for each Ln measurable set A C R

fA 
JfdC=f ° (An f'{y})

Notice that the left hand side of this equation gives the area of A C R.

Lemma 7.0.1. If L : RTh —+ Rm is a linear map such that n m , then

W' (L (A)) = [[L]]C (A); VA C RTh.

Proof.	 1. Let L = Go S , then [[U] = IdetSI.
Case 1: If [[L]] = 0. Since L = 0 o S and S : W —* R n is a linear symmetry,
then n = dim Ker S + dim Im S. But [[L]] = 0 , thus Idet S I = 0 and hence S is
not invertible. It follows that S is not one-to-one , thus Ker S {0} ,implying that
dim Ker 5> 1. Finally we get dim Im S n — i. Hence dim 5(R tm ) n — i and hence
dim L (Rn) < n — 1. Using the fact that dim L (Rn) < n — 1 we get 7-ta (L (R n)) = 0.
Case 2: If [[L]] > 0. Notice that

7-L i' (L (B (x, r)))
£(B(x,r))

— L (O* oL(B(x,r)))
—	 r(B(x,r))
— rtm(0*000S(B(x,r))

—
— Ln (S(B(x,r)))
— Ln(B(x,r))

- £(5(B(0,i)))
c(n)

(7.0.1)

But using the change of variables formula for .0 (see theorem 2.0.2) we get

r(S(B(0,i)))
a (n)

= IdetSI = [[L]]. (7.0.2)
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Plugging 7.0.2 in 7.0.1 we get

7-t'2(L(B(x,r)))	
(7.0.3)

Notice that the Jacobian of S is equal to the determinant of S which is a number.

2. Define v (A) = 7(n (L (A)) for all A c W'. We will prove that v is a radon measure
and is absolutely continuous with respect to L. First let us prove that v is a measure.
a) v(q)=7-t'(L(çb))=0.
b)

() 

=	 (L(UAfl))

= n(u(L(A)))

v(A).

Hence, v is a measure.
Next we will prove that v is borel regular.
Let A c JR n then L (A) c L (IR'). ?V is borel regular then there exists a borel set C
such that L (A) C C and such that

?-t 7 (L (A)) = 7-1' (C).	 (7.0.4)

Also since 7-ta is borel regular then there exists a borel set B such that '1(fl (A) =
7-ta (B). Notice that since A c B then L (A) c L (B) c L (RTh). Take C fl L (B) and
let D := C fl L (B) c L (1R') . Since L is bijective then there exists a set E such that
L (E) = D that is E = L 1 (D). C fl L (B) C C and L (A) C C fl L (B) then

Hence,

7-1 
n (L (A)) = 7-t' (C n L (B)) = 7-t' (L (E)).

Thus,

v (A) = v (E),

and v is a radon measure.
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Next we will prove that v << C1.
Let A C 1R such that C (A) = 0. We want to prove that v (A) = 0. But, C1 (A) =
7-ta (A) = 0 , hence R' (A)) = 0. This implies that v (A) = 0.
Now recalling the definition of Vv (see theorem 3.0.1) , we have

DL v(x) 
= lim v(B(x,r))

t—o L (B (x, r))

=lim	
(L (B (x, r)))

t-40 C1(B(x,r))
= [[L]].

Where last step comes from 7.0.3. Hence for all borel sets B C R we have

v(B) = 'l-t(L(B))

= IVv(B)dC1

= I[[L]]dC1

= [[L]]C1(B).

Thus,

W1 (L (B)) = [[L]]C1 (B).	 (7.0.5)

We still need to show that

H (L (A)) = [[L]]C1 (A) ; for any set A C ll'.

To see that, let A C 1R. Since v is borel then there exists a set B1 such that A c B1
and v(A)=v(Bi)=v(B).
Also since ' is borel then there exists a set B2 such that A c B2 and C' (A) =
C' (B2 ) = C' (B). Notice that B = B1 fl B2 then A c B c B1 and hence we get

v(A)<v(B)<v(Bi)=v(A).

On the other hand A c B c B2 then

C'(A) <C'(B) <C'(B2)=C'(A).

Thus,

v (A) = v (B) = [[L]] C2 (B) = [[L]]C' (A).

Lemma 7.0.2. Let f : R n -f Rm be a Lipschitz function. If A C R' is C' measurable then

1. f (A) is  hn measurable.
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2. The multiplicity function from y to fl° (A fl f'{y}) is 7(n measurable on Rm.

3.f	 O (An f'{y}) d Th < (Lip f) C (A).

Proof.	 1. Assume A is bounded , then for all i E N there exists compact sets Ki C A

such that (K) ^ C (A) - . And hence, C (A) - (K) <. But £C	 (A \ K) =

£ (A) - C (K) and thus, C (A \ K) < . Notice

C(A\UK) =0.	 (7.0.6)

Moreover, since f is a continuous function then f (K) is compact and thus Wn mea-
00

surable. So, f (u K) = 

00

f (K) is jin measurable. Let us show that

Oc'(f (A) - f (U Kg)) <	 (f (A \ K)).

	

00	 00

To see this, we have that f (A) - 
f ( 

K) = f (A) n f (u K) ; but

f(A)nf (U- Kj) ' C f (An (UU K ) 0) =f (A\UK).

This implies that

	

Rn (f (A) - f (U K))	 (f (A \U K)).	 (7.0.7)

	

00	 00

Notice that by Theorem 4.2.3, lin (f (A \U K, 	 f)fl £ (A \U K) and

hence replacing in 7.0.7 and using 7.0.6, we get

(f (A) -f (U K )) < (Lipf)ThTh (A\UK
) )

Which implies that f (A) is ?-C' measurable.

	

2. Fix  eN. Let Bk = {Q) Q = (ai ,bi )x ... x(a,b); a =	
= c± 

1'
	
,c are integers, i =

1,	 , n}. Notice that R' = U Q . Let 9k =	 Xf(AnQ) , then g is Rn mea-
QEBk	 QEBk

surable, since A n Q is measurable. Notice that gj. (y) is equal to the number of
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cubes Q E Bk such that f -I f y} fl (A fl Q)	 ; let us show that g (y) converges

to ?-t° (A n f -
I
f y}) as k —+ oo for each y E Rm . Since, let g = E Xf(AnQ) , then

QEBk

urn g,, = urn E Xf(AnQ)k-*c'o	 k-*oo
QEBk

E=	 Xf(AnQ)•

QEU 1 Bk

Then,

	

lim g (y) =	 Xf(AflQ) (y)
QeW

	

=	 Xf(AnQ)

xEf'{y}

	

=	 O (A n f'{y}).	 (7.0.8)

So g: y —* P7-1° (An f'{y}) is Wn measurable.

3. Using the Monotone convergence theorem (see Theorem 3.0.8) and 7.0.8 we get,

dW = i1mfwgkd

=	 Xf(AnQ) dW2
k-*oo JRm EQEBk

=lim	 Xf(AnQ) d
k-+oo E fRQEBk

=	 7in
k-*oo

QEBk

< lim E (Lip f) Th L (A fl Q)k-oo
QEBk

= (Lip f)C(A).

Lemma 7.0.3. Let f : R --4R'. Let t> 1 and B = {x Df (x) exists, Jf (x) > o}. Then

there exists a countable collection {Ek} 1 of borel subsets of R such that:

1. B=UEk

. I IEk is one-to-one for k E N
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3. For each k e N, there exists a symmetric automorphism Tk R -* R such that

• Lip ((f rEk ) OT ') <t

• Lip (Tk ° (f rEk))	 t

• tdetT,	 Jf rEk t"ldetTkl.

Proof.	 1. Fix > 0 so that + c < 1 <t - c. Let B C RTh . Since R is separable, let C

be a countable dense subset of B. Since any set of symmetric automorphism on R'

isomorphic to	 we have a countable dense subset S of symmetric automorphism

T on R n , with operator norm 11 Th = sup 
IT (x) I Note that for all T: R	 ,'

xER',x^40	 lxi
a symmetric automorphism T is Lipschitz.To see that notice that T is a linear function

hence continous. Thus since all norms are equivalent in a finite dimensional space
continuity is equivalent to boundedness. And we have

T(x) —T (y) 1 = T (x y)
1 < 11Thx — y	 x — y

so, IT (x) - T(y) I < 11 Th Ix - y I . Thus,

LipT	 11 T h . 	(7.0.9)

Define E (c, T, i), where c E C , T E S and i E N, to be the set of all b E B fl B (c, )

that satisfies

(+ E ITvl < lDf (b) vh < (t - ) hTvi for all y E RTh	 (7.0.10)

and

f (a) - f (b) - Df (b) (a - b) I <c I T (a - b) I for all a E B (b, ).
	

(7.0.11)

Notice that E (c, T, i) is a borel set since Df is borel measurable. Letting v = a - b
we get

hT(a — b) I	 If (a) — f(b) I t I T (a — b) I for b E E(c,T,i) ,a E 
B( b,0

Claim: If b E E (c, T, i) then

(+c) Th IdetTI Jf(b) <(t—€)IdetT

51



Proof of Claim: Write Df (b) = L = 0 o S. Then,

Jf(b) = [[Df(b)}] = IdetSi.	 (7.0.13)

Moreover for all v' E ]R we have

	

Df(b) v 'l = I0oS(v')I = S(v")I	 (7.0.14)

Replacing 7.0.14 in 7.0.10 for v' = T' (v) , we get,

( + E I (v) I < I s o T' (v) I <(t - €) M for all v E R.	 (7.0.15)

Thus, (S0T_ 1 )(B (0,1))CB(0,tc).This gives Th((SoT_1) (B (0,1)))<	 (B (0,t_€)).

But	 ((5 o T- ') (B (0, 1)) ) = detS o T ' I a (n) (see Theorem

detlS o T ' I a (n)	 C' (B (0, t -

=

That is,

IdetSI < (t - )fl Idet TI.	 (7.0.16)

Plugging 7.0.13 in 7.0.16, we get Jf (b)	 (t - )fl detTl. This proves the right hand
side of our Claim. Now in order to prove the other inequality we notice that by 7.0.15

we have that 
B( 

0, + f c (So T') (B (0, 1)). Hence,

L n (B(O, ' +E)) < C'((SoT') (B (0,1)))

= detISoT'I(a(n)).

This implies that

a (n) G 
+ )fl 

detlS 0 T' I (a (n))	 (7.0.17)

but,

	

detISoT'I = IdetSI detT'	
1

= IdetSI.	 (7.0.18)
Idet5I

Thus replacing 7.0.18 in 7.0.17 we get

71	 \Th

IdetSI ^	 +	 IdetTi.	 (7.0.19)
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Plugging 7.0.13 back in 7.0.19, we get the inequality we want, and the claim is proved.

Let {Ek} l = {E(c,T,i) ; c E C ,T E  i E N}. Fix bE B. First, we will show that

there exists T e S such that

(1	 -'
Lip (T o S')	 +	 (7.0.20)G

and

Lip (So T)	 t - c.	 (7.0.21)

Since S is symmetric automorphism , then for any E > 0 there exists T E S such that
IT - S ll < c'. This implies that

I(T0S' —Id) oSIj <€'.

IThus, for all x E R	
(To S' —Id)oS(x)

we have	 < €/. But since S is bijective,
lxI

for all y e 11 there exists an x e R  such that x = S (y). Hence,

I (T o 5' - Id) o S (S_i (n)) I 
<E'

I S' (y)I

that is,

(To S' - Id) (y) I < ' l S ' () I <€'lISlIlyl.

If we divide both sides by ll we get,

(To S' - Id)

I I	
<f'IIS'llfor all y e R.

So, lI T oS' - Idil < E' ll S 'll , which implies JIT OS i ll <1 + ' II S 'II . Thus,

Lip (To s')	 1 + ll S ' II . 	( 7.0.22)

We want

1 + 11 S_1 

11 = ( +
E 
	

(7.0.23)

that is we want , 1 + €' II S' = 1
	

This means,

(+€)
 (1+6'11S-u) =1.

Hence,

1	 ,IIS_ill
+ f +

t
€lISiIl=1;

53



which implies

	

/ (
11 8 	 1— 1€	 +E -	 =---€

t	 t

Thus, for

i-1—€

+ €11S' 

we have 7.0.23. Replacing 7.0.23 in 7.0.22, we get 7.0.20. similiar work gives us 7.0.21.

Next, let us show b E E (c, T, i). First we show that b satisfies 7.0.11. Since

• If(a)—f(b)—Df(b)(a—b)llim	 =0.
a—*b	 la — bi

Then for	
€	

there exits ó, such that if la - bI < 5 we have
Lip (T-1)

If(a)—f(b)I€	 ( 7.0.24)
Lip (T')

Choose i such that <6 , then for all a e B (b, ) we get

E

	

If(a)—f(b)—Df(b)(a—b)l <	 la — bI
- Lip (T-1)

IT (T (a)) —T-'(T(b))
- Lip (T-1)

	

<	 €Lip (T') IT (a) — T (b)
— Lip (T-1)

= €IT(a—b)l.

Choosing c E C such that lb — cj we can because C is dense in B). This shows

that b satisfies 7.0.11. Rest to show that b satisfies 7.0.12. Since Df (b) = L = 0 o S

then, for all v

IDf(b)(v)I = IOoS(v)I
= IS(v)I

IS0T'OT(v)I

= JSoT'(T(v))I

= SoT' (T (v)) — SoT' (T(0))

• LipISoT1lITvI

• t—€IT(v)I.
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where the last inequality comes from 7.0.21. Also,

IT (v) I = IT o S' a S (v) I
= IT0S'(S(v))I

= IT0S'(S(v)) — ToS' (S (0)1
< Lip (ToS') IS(v)I.

This implies that

171
Df(b)(v )H S (v)I > 	 IT(v)I^ (j+€)IT(v)- Lip (ToS1)

Where the last inequality comes from 7.0.20. This shows that b satisfies 7.0.12. So,

IS(v)I = IDf(b)(v)I

(1	 \\

^	 +€)IT(v)I.

As this conclusion holds for all b e B then B =	 Ek.

2. Choose any set Ek which is of the form E(c,T,i) for some eEC ,T E S,i EN. Let
Tk = T. Using (7.0.12) we get

ITk (a — b) I 	 If (a) - f(b) I <tITk (a - b) I for all a,b E Ek.	 (7.0.25)

Let us show that f	 is one-to-one.If f (a) = f (b) ,then let ITk (a - b) I	 0

hence ITk (a - b) I = 0 , which implies that Tk (a - b) = 0 , and hence a =

b (because T is a symmetric automorphism).
Let T,' (x) = a and T' (y) = b, then using 7.0.25, we get that

ITk (T' (x) - Tk ' (a)) I	 I f rE (T' (x) - f 1E T' (Y) I < l tTkT ' (x) - Tk ' (n))

and hence,

Ix — y l	 If aT '(x)—f oT '(y)I	 t I x — yI.

Thus,

< IfoT'(x)—faT'(y)I <.
t —	Ix—yI	 -

Taking the supremum on both sides we get

Lip ((f rEk ) o Tk )	 t
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and

Lip (Tk o(f rEk))	 t.

Finally, notice that the Claim gives us the estimate

t I detTk 	 Jf FEk tIdetTkI.

Theorem 7.0.4. The Area Formula
Let f : R --> IR00 be a Lipschitz function such that n m. Then for each Ln measurable
set A C R 

JA 

Jf dTh = fR O 

(An f'{y}) dTh
m

Proof. Using Rademacher's theorem (see Theorem 5.0.5), we may assume that Df (x) and
Jf (x) exist for all A c R and Cn (A) <cxi There are 2 cases to be considered
Case 1: Ac {Jf(x) > 01.
Fix k > 0 and t> 1. Choose borel sets {E} 1 as in Lemma 7.0.12 assuming that they are
disjoint. Define

c	 c+1
Bk = { Q; Q = (ai , b1 ) x (a2 , b2 ) x ... x (an , b) , a	 , bi

	 k	
,

 c
i integers , i = 1,2 ... ,

Set	 = E3 U Qi U A; (Qi E Bk,j EN) ,then the sets	 are disjoint and A = U Fl. To
i,j=1

see this, let

00	 00

UFI = UEjUQiUA
i,j=1	 i,j=1

= An(UEUQ)

(jo;i

00
=AflEUUi j=1

= An({Jf>0}nR)

= An{Jf>0}

=A.

Claim # 1: lim	 W (f (n)) 
=	

O (A n f'{y}) dW (y).
k—*oo

00

Proof of Claim	 1: Let g =	 Xf(F) 
so that g (y) is the number of the sets Fl
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such that Fl fl f'{y} q. Then, by proof of Lemma 7.0.2, g (y) 	 7O (A n f 1 {y}) as
k —* oo, and

	

urn JR g (y) d (y) = f	 O (A fl f ' {y}) d (y).
k—*oo tm 	 tm

Hence, using Theorem 3.0.9 we get

00	 00

urn JR- i1 Xf(P	
k—*oo

) dW (y) = urn	 f(F) Mn (y)
k—*oo

i,j=1

00

= lim L_	 (f(;)).
k—+oo i,j=1

Note that

f	 () = f (E fl F3) = f (F;).

Then,

Wn (f (n)) =
	

(f	 OT, ° ( (n)))

< (Lip (f 
rE, OT))

	-t (1 (F;)).	 (7.0.26)

Where T is as in Lemma 7.0.12. Using lemma 7.0.12 we get

	

Rn (f (Ffl) <t	 (T (F;)).

But since T : R —+ RTh then, 7(Th (T (F')) =	 (T (Ffl). Hence, we conclude that

'ii (1 (Ffl)	 tmrm (T (Fl)).	 (7.0.27)

Also by Lemma 7.0.2 we have,

=

= w (Tj 0 (f [Ed) ° f(Ffl)

• (Lip (Tj o (f tEi)) °	 (f (Fl)))• tw (f (Fl)).	 (7.0.28)

Thus, using 7.0.27, 7.0.28 and 2.0.2, and the fact that by Lemma 7.0.3 we have tIdetTjI
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Jf rE t IdetII we get,

t 2 w (f (.Efl) < t-c (T
j (Fl))

= tTh I detTjIC (Fj)

= tIdetIfdC

=	 IdetTj

fJf1Ejdr

= fJfd

tIdetTjIC(Ffl
= tr(TJ3.(Ffl)

< t2'w (f (Pg)).

Now summing on i and j we get

t2
cc	 00

 (f (Ffl) <f Jf (x) d <t2	(f (F')).
i,j=1	 A

Let k —* oc and recall Claim # 1 to get

	

JR-
O (A fl f'{y}) d Th (y)<Jf (x) dC1 <t2 f	

° (A fl f'{y}) dW (y)
 A

Finally, send t —+ 1 to get the equality

JA Jf (x) dTh = IR- NO (A fl f	 W'{y}) d

and we are done.

Case 2: A C {Jf (x) = 01. Then fA	 WJf (x) dTh = 0. We will show that 
	

° (A fl f'{y}) d

0. Fix >0. Let f=pog ,where
g : R n —* R n x R"

X —f (f (x) , €x) for x E RTh.
And,
p: Rm x

(y, z) —+y for yER,zEIITh.
Then, p o g: R n —# R'

X	 pog(x) =p(f (x), EX) = f(x).

Claim # 2: There exists a constant C such that 0 < Jg (x) C€; for x E A.
Proof of Claim # 2: Write g =	 fm,	 ,... , €x). Then,

58



Dg (x) = (Df(x))
CI	 (n+rn) xn

Since (Jf (x)) 2 is the sum of the squares of (n x n) subdeterminants of Df (x) according
to the Binet-Cauchy formula ( see Theorem 6.0.8), then (Jg (x)) 2 is the sum of the squares
of (n x n) subdeterminants of Dg (x). Let us show that Jg (x) > 2n 

> 0, to see this let
((Df (x))

Dg(x)=	
mxn (El)

flXfl (n+m)xn

Then, det (€1) =	 , which implies that det2 ((I)	 2n Hence, (Jg (x))2	 2n > 0. Fur-
thermore, since IDf I <Lip f < cx , and we may use the Binet-Cauchy formula to compute
the following equation (Jg (x)) 2	(Jf (x)) 2 + { sum of squares of terms each involving at
least one €} <CE2 ; for each x E A. In order to prove this inequality let

(anj	

\a11	 a12	 aln
a11	 a12	

\Df(x) IThen, Dg(x)
 I
	

an 	 a_12 	 a_i,a_ 1 ,2 	a_i,/	 0	 •..	 0
and Jg (x)I = c ID! (x)I = CE. Then

(Jg (x)) 2 (e1 € + C2€ +	 + c€) 2 = €2 (Cl + c2 +	 + c) 2 = €2C.

Since p: IR"2 x R'2 —* 1R is a projection, we can compute using Case 1,

= 7I tm (pog(A))
9LTh(p(g(A)))

	

(Lipp) W (g (A)). 	 (7.0.29)

Notice that Lipp < 1 thus we get,

?in (f(A)) i 1- (g (A))
1-C(g(A))

fg(A)
r

< /	
O (A fl g' (y, z)) d7-t (y, z)

JR+m

fA 
Jg (x)

< XL n (A).

Let € —* 0 , to get W (f (A)) = 0. Since the support of W O (A fl f{y}) C f (A) then,

f O (A n f'{y}) d

<

= JsptRO(Anf-Ify}) 

O (A n f'{y}) d	 (y)

 I
O 

(A fl f'{y}) d (y).
(A)
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But	 (f (A)) = 0 , this implies that 
if	

° (A fl f'{y}) d (y) = 0. This concludes
(A)

Case 2.

Now for the general case let A = A 1 U A2 where, A 1 C {Jf > 01, A 1 C {Jf = 01. Here

we can apply both cases to get, fA4 
Jf (x) dTh 

= f 	 ° (A fl f'{y}) dW (y). Hence,

L^ Jf>o} 

Jf (x) d + fAn jif 

Jf (x)

 =O}

where the second part of the summand is equal to zero. Thus,

fAn{Jf>O}	 JRm
Jf (x) 	

= 	
O (A n f'{y}) dW



Chapter 8

Change of Variables formula for 7(1

Let f IR' —+ Rm be a Lipschitz function (n < m) , then for each L - summable function
g : 1R n—* R we have

I
g (x) Jf (x) dTh = g [	 g (x)1 d	 (y).
fl 

[xef-'{y}	 j

Remark 8.0.1. Note that using the area formula (see theorem 7.0.4) we notice that f (y)
is at most countable for Wn a.e y e R. To see this, we have for all 1 E N

fR- O 

(B (0,1) fl f' (y)) d Th (y)

	

JB(O'l)

Lip fjfl £ ( B (0,1))

(Lip f) fl an In

00.

Since the integral over f is finite hence f is finite jin a.e ,which implies that

O (B (0,1) n f' (Il)) <00 ?-L Th a.e.

Notice that B (0, 1) fl f (y) is a finite set except on E1 where Wn (E1 ) = 0. Let E =	 E1

then

W(E1) =0.

Let y E EC then y E fl E which implies that y E El , V 1. Hence, B (0,1) fl f' (y) is
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finite V 1. On the other hand,

f_ 1 (y) = Rflf'(y)

= (u B (0l)) n f' (y)

=	 (B(0,1))nf'(y)

which is a countable union of finite sets, hence a countable set, thus f (y) is at most
countable for 7-Ct a.e y e R.

Proof. 2 cases are to be considered for this proof.

Case 1: If g > 0 then there exist C measurable sets {Ak } _ 1 in R such that g = XAk•

Then, by the Monotone convergence theorem (see theorem 3.0.8) and by the area fomula
(see theorem 7.0.4 we have

	

JRn

g Jf d =
	

XA Jf

	

=	 fXAkJfd
k=i

	

= 	 I JfdC
k=i kk

	

=	 I	 ° (A n f'{y}) dfl (y).	 (8.0.1)

k=i 
k'1R

Moreover,

00	 00

° (A	 f{y}) d7-t (y) =	 XAk (x) dW (y)	 (8.0.2)
k R-	 E 1 JR E

because, ?-L° (Ak fl f'{y}) =	 XAk (x). Replacing 8.0.2 in 8.0.1 and interchanging
xEf 1 {y}

the sum since our functions are positive we get

fRg Jfd	 =	 fm	
XAk(X) dW(y)

Ef 1 {y}

= fR- E Ek
xEf'{y}	

XAk (x) d Th (y)

=xEf'{y}	

(x) d	 (y).
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Case 2: If g is any L - summable function, then g can be written as the sum of two positive
functions, let g = g - g. Now applying case 1 on g+ and g we get

f g Jf (x) d = f E g (x) dW
Jm

xEf {y}

and

f g Jf (x) d	 f g (x) dTh
xEf'{y}

f (g—g ) Jf dLn

/ g (x) Jf (x) d - f g (x) Jf (x)
II'

hence,

f g (x) Jf (x) d	 =

the last equality comes from the fact that g and g are Ln summable on W1 . And hence,

f g (x) Jf (x) d - fR g (x) Jf (x) dC =

RR

fR- 
xEf'{y} 

g (x) d Th (y) -	
g (x) dflm

xEf1{y}

fR- xEf1{y} 

(g - 9-) (x) d

fm xEf'{y} 

g (x) dW



Chapter 9

Applications of the Area Formula

A- Length of a curve: (n = 1; m > 1)).
Consider any injective Lipschitz function f : IR —* IR , and consider the curve
C = f([a,b]) C Rtm , where — oo <a < b < 00. Using the area formula, we show that the

b
length of the curve C is '(C) = fa 

Jfd, where Jf = jDf I.

Proof. By the area formula, we have

fb
JfdC = f	

O ([a, b] fl f' ({y})) d'(y)
 

fRmnf([a,b]) O
([a,b]flf'({y}))d'(y)+

f 	
O ([a, b] fl f' ({y}))

 m\f([a,bj)

Notice that the second part of the summand in (9.0.1) is zero, since for y E Rm \f ([a, b]),
[a, b] fl f ({y}) = 0, and thus 7-1° ([a, b] fl f ({y})) 0. As for the first part of the
summand, we recall that f is injective, and thus for y e f ([a, b]), there exists a unique
X e [a, b] such that f(x) = y. Hence, in this case, we get that 7-1° ([a, b] fl f ({y})) = 1.
Therefore, plugging in equation (9.0.1), we get

ph

	 fR-nf
JfdCTh =ld'1-1'(y)=7-t'(f([a,b]))=7-1'(C)

([a,b])

B- Surface area of a graph: (n 1; m = n + 1).
Let g : Rn —* R be any Lipschitz function. For U C R n open set define the graph of g over
Utobe G={(x,g(x)) ,XEU}.Then,

n+1 (C) := Surface area of G

f
(Jf2) d n.
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0	 o\\2

 (det/01 	 0 11 +( 0
JI

dx2 dx3/ / 	 \dx1

1	 0\\2

0	 111+
dx2 dx3

	

Proof Let f : 1R' —f	 be defined as f (x) = (x, g (x)) Notice that f is Lipschitz since

If(x)—f(y)I = I(x,g(x))—(y,g(y))I

(x—y,g(x) —g(y))I

(l+Lipg)Ix—y.

1	 0	 ...	 0

Moreover, note that Df =
00 ...	 1
dg	 dg	 dg

dx 1 dx 2 	dx,-	 (n+1)xn

Now, we need to prove that (Jf) 2 = 1 + IDg 1 2 . To simplify our calculations , let
us take a small example : Suppose g : 1R3 —+ IR and define f : R3 —+ R4 , then

Df=(

dg	 dg	 dg
dx 1 dx2 dx3 4x3

and by definition (JF) 2 = sum of squares of 3 x 3 subdeterminants so that

/	 /1 0 
o\\2 (det

(dxl

1
(JF) 2 = (detjo 1 01 	 + 	 0

'\	 \ooi))
/1	 0	 0\\2

(det( 0	 0	 1
k dg	 dg	 dg

\	 \dx1 dx 2 dx3

=12+ (2 (fl2 (d 2
\dx3 J	 \dx i J	 dx2

= I+ jDg2.

Now for the general case; if we have an (n+ 1) x n matrix, then by taking the sum of squares
 2	 )

of all n x n subdeterminants we will end up by getting (Jf)2 = 1 + () + +	
2

which is nothing but I+ IDg2.

Using the area formula we have that Ju Jfd = f 	° (Un f1(y)) dW(y).

but f Jf dL = j(1+IDgI2) dC

= JR-+In(uxg(u)) 

O (Un f'(y)) d(y) +
 fRn+I	

O (Un f'(y)) d)
 \(Uxg(U))
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Notice that the second part of the summand in (9.0.2) is zero, since if there exists x E
Uflf'(y) then ,f(x) = y = (x,g(x)) and x e  implies that y E  x g(U) which is a
contradiction. As for the first summand, notice that f is one-to-one:
Suppose f(x i ) = f(x2 ) then (x i ,g(x 1 )) = (x 2 ,9(x2 )) this implies x 1 = x 2 and g(x i ) =
g (x2 ). Hence f is one-to-one which implies that 7-L° (U fl f'(y)) = 1. Thus,

L+In(UXg(U)) O 
(U n f1(y)) d(y) = L+1n(Uxg(u))

gig fuxg(u) 
	 (9.0.3)

But U x g (U) is f (U) hence, replacing 9.0.3 in 9.0.2, we get

fu Jf (x) dL n =
 fu x g(u)	 1

d(y) = f W) dW(y) = W (f (U)) W (C).

C- surface area of a Parametric hypersurface (rt> 1, m = n + 1).
	Consider any one-to-one Lipschitz function f : R	

jn+l• Let U c 1R n be an open set
and S= f(U) C flh1+1• Then,

W (S) =f [(Jf)2] d; where (Jf) 2	 sum of square of n x n

(
ffl+l)1	 fk_1 fk+1 .

subdeterminants of the (n + 1) x n matrix =
K=1	

(xi,]2.

Proof. Write f = (f',... , fT1) where each fi : W1 —+ R is a Lipschitz function.Let us
calculate (Jf)2.

/ 3f	 01'
( Ox,	 8x,

Note that Df=

\ ax,	 3x	 (n+1)xri
First, let us take a small example on how to derive the formula of the Jacobian. For the
simplicity of calculations, suppose n=2, then f : R2 —* R

/31 1 Of'
lOx, Ox

Df=I ap L
I Ox i Ox3[3 of
\Ox, 0x3 3x2

of,\\2	 /	 /	
\\2

	 (detthen (Jf)2=(det(l 	)) +(det(	 i)) +(
Oxi 0x2J I	 \	 \Ox, 0x2/ J 	\0x2 Ox2

	which is equivalent to 
a(f1 ,f2 )1 2	[a(f'f3) 2

	 [3(f2f3)]2

	

1(xi,x2)j + [a(x i x 2 )	 19 (X1,



For the general case we have that for the (n + 1) x n matrix , the formula of the Ja-
cobian means,that for each K , the (ii x n) subdeterminant is the determinant of the
partial derivatives of f ; that is the partial derivatives of (fl ,. .. , fn+i) with respect to
(x 1 ,... , x,) except for the kth one.

Now coming back to the application of the area formula we get that

JU 
Jf dLn =

fRn+1 
WO (U n f'(y))

fRn	
O (U fl f'(y)) d Th (y) +

+ 'flf(U) JRn+1  \f(U) 
°(Unf'(y))

The second part of the summand in (9.0.4) is zero, since if x c U fl f (y) then x E U and
f (x) = y , thus y E f (U) which is a contradiction. And since f is one to one then

O (U fl f'(y)) dH(y) = 1.

Hence the first part of the summand implies that

IRn+l nf(U) 

	

ff (U)

9-1T(f(U))
7-Ct (S).
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