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Abstract

In this thesis, we will prove a very important theorem in real analysis called The Area
formula for the Hausdorff Measure. This theorem is an extension of the well known theorem
: the Change of variables formula for the Lebesgue measure. In this thesis, we will define the
Hausdorff measure and prove some of its properties. We will also define Lipschitz functions
and prove some of its properties also. Then, we continue the thesis by proving all the lemmas
needed to finalize the proof of the Area formula for the Hausdorff measure. Finally, we finish
this thesis by showing three applications of the Area formula.
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Chapter 1

Notations
£t The 1-dimensional Lebesgue measure
Lr The n-dimensional Lebesgue measure
O, Positive functions
flE f restricted to the set E
a.e. almost everywhere
A The Lebesgue outer measure
H? s-dimensional Hausdorff measure
D,v the derivative of v with respect to u
€ (0,0,---,1,0,---) with 1 in the ith slot
= (21, ,Tn) a typical point in R™
B(z,r) {y € R?, |z — y| < r} = closed ball with center x, radius r}
a(s) S (0 <s < 00)
y(3+1) T
a(n) volume of the unit ball in R”
XA indicator function of the set A
A closure of the set A
Sa (A) Steiner Symmetrization of the set A
f an extension of f
Df derivative of f
[Df] measure of the gradient of f
Jf Jacobian of f
Lip(f) Lipschitz constant of f
v p v is absolutely continuous with respect to u
[[L]] jacobian of a linear map L
A (m,n) {)\ {1, ,n} = {1, ,m};)\isincreasing}
A® interior of A
z.y Ty + -+ Taln



Chapter 2

Introduction

In measure theory, the Lebesgue measure, named after the french Mathematicien Henri
Lebesgue is the standard way of assigning a measure to subsets of n-dimensional euclidean
space. For n = 1 , the lebesgue measure coincides with measuring the length; for n = 2 , it
coincides with measuring the area; and for n = 3 | it coincides with measuring the volume
and so on. For instance, the Lebesgue measure of the interval [0, 1] in the real numbers is its
length in the everyday sense of the word, specifically, 1. For the general case, that is in R"
the Lebesgue measure is called the n-dimensional volume, n-volume, or simply volume. It is
used throughout real analysis, in particular to define Lebesgue integration. Sets that can be
assigned a Lebesgue measure are called Lebesgue measurable. Henri Lebesgue described this
measure in the year 1901, followed the next year by his description of the Lebesgue integral.
Both were published as part of his dissertation in 1902.

Now we will start by defining the Lebesgue outer measure on any set A C R", and then the
Lebesgue measure.

Definition 2.0.1. If B = I, x I3 x - - - x I, where I, = [an, b,] are intervals, then the volume
of B is defined to be :

V(B)=(b1—a1) x - % (b —an).
For any subset A of R™ , we can define the outer measure of A by

A* =inf { Z V (B); C is a countable collection of boxes whose union cover A}.
BeC

We then define the set A to be Lebesgue measurable, if for every set E € R™ we have
XN(E)=X(ANE)+ X (ENA°).

These Lebesgue measurable sets form a o-algebra, and the Lebesgue measure is defined by
L™ (A) = X* (A) for any Lebesgue measurable set A.

The importance of the Lebesgue measure comes from the fact that we can find the area

between a Lebesgue measurable function and a measurable set, which is also known as the
Lebesgue integral. The Lebesgue integral plays an important role in probability theory, real
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analysis, and many other fields in the mathematical sciences such as differential geometry.
Since manifolds act locally like R™ , we can find ways to define integration on manifolds
using the Lebesgue measure or an equivalent ( See book [2]).

A very important application of the Lebesgue measure is the Change of Variables formula, .

Theorem 2.0.2. Change of Variables for L™.
Let UCV CR™ U is lebesque measurable and V is open.
Let T:V — R™ be a continuous and one-to-one function on U.

T'(U) exists for allu € U and L™ (T (v —u)) = 0.
Then,

de":/(foT)|JT|d£" forall f € Oy
T(U) U

Notice that X =T (U) . In other words / f(z) dz = / f(Tu) |Jr (uw) | du for all f € O.
X U

Where Jr is the jacobian of T'.
(L(T(U)) = Jr|L(U)).

Its importance come from the fact that it connects the area of a surface to its area under
a certain transformation.
However, the disadvantage of the Lebesgue measure is that it only can measure the n-
dimensional volume of n-dimensional spaces. That is the n-dimensional Lebesgue measure
does not see the difference between lesser dimensional objects. For example £2 does not
see the difference between a one dimensional line and a two dimensional plane; both have a
Lebesgue measure zero.
So mathematicians needed to introduce a new measure which is an extension of the Lebesgue
measure , but instead it can give the area of an object according to its dimension even if it
lives in a bigger dimensional space. For example if we have a 2-dimensional surface living in
R’ , we need a measure that gives us the area of this surface even if it is not living in R2
This new measure is known as the Hausdorff measure and it was introduced in 1918 by the
mathematician Felix Hausdorff. We will see throughout this thesis that the zero dimensional
Hausdorff measure is just the counting measure, that is, the number of points in the set
(if the set is finite) or oo if the set is infinite. The one-dimensional Hausdorff measure of
a simple curve in R™ is equal to the length of the curve. Likewise, the two dimensional
Hausdorff measure of a measurable subset of R™ is proportional to the area of the set.
Thus, the concept of the Hausdorff measure generalizes counting, length, area and volume
like the Lebesgue measure; the only difference is that the Hausdorff measure can measure the
length , area and volume of 1,2 and 3 dimensional objects that live in a higher dimensional

space.
Now we will give the mathematical definition of the Hausdorff measure.

Definition 2.0.3. 1. Let ACR™, 0<s<>, 0<4§<o00.
Let us define

3 (A) =inf{ia(s) (ﬂﬂ’;_cﬂ> AC ch diam C; < ¢}

Jj=1 j=1



3
(NI

and where o (8) = ———.
TR

2. For ACR™ and 0 < s < o0 , let us define

H?(A) = lim Hj (A) =sup Hj (A).
3d—0 5>0
We call H® an s-dimensional Hausdorfl measure on R™.

In order to show that H*® is well defined, we show that Hj3 increases as § decreases. So
let A C R, and é5 < §;. Notice that

{{c,-};‘;l ;Ac|JC;sdiam C; < 52} C {{Cj};;l A C D C; ;diam C; < 51}.

J=1 j=1

And thus,
inf{ GCf ,diam C; < 51} < inf{ GC]- ,diam C; < 52}.
j=1 j=1

This implies that Hj < H;,. Hence, if 6 decreases, Hj increases. So (lsiné H; exists and
_..)

(lsir% H; = sup H;. Notice that the Hausdorff measure is computed in terms of arbitrary cov-
- §>0
erings of small diameters whereas the Lebesgue measure is computed in terms of coverings

by cubes.

The purpose of this thesis is to prove a far reaching generalization of the change of vari-
ables formula called the Area formula of the Hausdorff measure. In order to establish this
big theorem, we first need to prove some properties of Hausdorff measure. A very impor-
tant theorem called ” The isodiametric inequality ” will be handled , which states that the
n-dimensional Lebesgue measure is equal to the n- dimensional Hausdorff measure on an
n-dimensional space. This shows that the Hausdorff measure and the Lebesgue measure
coincides on R™.

We proceed by defining Lipschitz functions which by themselves are a generelization of
differentiable functions and all its properties as well as linear maps and Jacobians. A very
important theorem will arise in this section: Rademachers theorem. This theorem states
that any locally Lipschitz function f mapping from a lower dimensional space onto a higher
dimensional space is differentiable £™ almost everywhere.

Then, we will build up the math by handling several big Lemmas to get to the Area formula
, which is the same idea as the area formula of the Lebesgue measure but now upgraded to
the Hausdorff measure and we will be integrating against Lipschitz functions. Finally we
will apply the area formula on 3 examples , to finish our thesis.



Chapter 3

Preliminaries

Definition 3.0.1. (see Section 1.6.2 on page 37 in [1].)
Let p and v be radon measures on R™. For each x € R™ | define

B lim sup,._,q Zggg:;; if p(B(z,7))>0Vr>0
+00 if p(B(z,r)) =0 for somer >0

D.w(z) = lim inf, g Zéggfc:;; if p(B(z,r))>0Vr>0
- +oo if w(B(z,7)) =0 forsomer >0

If Dyv(z) = D,v(z) < oo , we say that v is differentiable with respect to y at z and
write

Dy (z) =Dy (z) = D,v(z)
where D, v is the derivative of v with respect to .

Definition 3.0.2. Absolute continuity (see Section 1.6.2 on page 40 in [1].)
The measure v is absolutely continuous with respect to p , written v < p , provided
p(A) = 0 implies that v (A4) = 0 for all A C R™.

Theorem 3.0.3. Every Lipschitz function is absolutely continuous .
Proof. Let g : [a,b] — R be a lipschitz function, then |g (b) — g (a)| < C|b — al, for some
u €

C € R” Fix ¢ > 0 and let P = {[a;, b;]}; be a partition of [a, b] such that Zlb’ —a < -

=1

, then
SIf) = fla)l < CY_|bi—ail
=1 =1

€
s

IA

= €.
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Theorem 3.0.4. Caratheodory’s Criterion (see Theorem 5 page 9 in [1].)
Let p be a measure on R™. Suppose that p(AU B) = u(A) + p(B) for all sets A, B in R™
such that dist(A, B) > 0. Then, u is a Borel Measure.

Theorem 3.0.5. Fubini’s Theorem (see Theorem 2.37 page 67 in [4])

Suppose that (X, M, p)and(Y,N,v) are o -finite measure spaces.

Iffel? (u >< V), then fo € LY (V) fora.e.z € X, fY € LY (u) fora.e.y €Y ,the a.e.defined
functions g(z) = [ fodv and h(z) = [ f¥dv are in L (1) and in L (v) respectively and

/&duxu [ [r@v vw]aw-[|[iecnwo] v

Definition 3.0.6. n-dimensional Lebesgue measure on R™ ( see Section 1.4 page 26 in [1].)

Lr=L""tx LV x L x -+ x L1 n times.
Equivalently £ = £L** x £* for each k € {1,--- ,n — 1}.

Theorem 3.0.7. Vitali’s Covering (see Theorem 1 on page 27 in [1].)
Let F be a collection of non degenerate closed balls in R™ with sup{diam B,B € F} < co.
Then there exists a countable family G of disjoint balls in F such that

U BcC U B.
BeF BeF

Theorem 3.0.8. Monotone Convergence Theorem ( see book [4])
Let (X, m, p) be a measure space.

Let f, f1, fa, - € Oy such that fy < fo < - < f.

If T}LI{.IO fn — [ pointwise then

li_)m frndp = /fd,u.
Theorem 3.0.9. Beppo-Levi ( see book [4])

Let (X, m, ) be a measure space.
Let {f,} be a sequence in Oy then,

[ ot =3 fudu
Y n=1 n=1

Theorem 3.0.10. Dominated Convergence Theorem ( see book [4])
Let (X, m, ) be a measure space, f,{fn} € Or and ¢ € O,.

If:

1. f, — f , pointwise.

11



2. |ful < ¢ for all n.
3. /¢’du<oo , that is ¢ € Ly (u). Then,

and

/fnd,u—>/fd/u,asn—>oo.

12



Chapter 4

Hausdorff Measure

Hausdorff measure
We start this chapter by defining some properties of the Hausdorff Measure.

Theorem 4.0.1. H* is a borel reqular measure.(0 < s < 00).

Proof. We begin by showing H3 is a measure, V 6 > 0. Fix 4 > 0.

dza;n ¢> = 0. This implies that

1. Since ¢ C ¢ and diam ¢ = 0, then H; (¢) < a(s) (
H;(¢) = 0.

2. Select sets {Ak};ozl C R™ and suppose that each Ay is covered by sets {Cak};; with
diam C’J’-c < ¢. Then, U Ay, is covered by {C’Jk }1;“;1 Now, using the definition of the

k=1
Hausdorff measure, we get

Since (4.0.1) holds for all C]’?s such that A, C U CJ’-c ,then by taking the infimum over
j=1
those CF’s, we get

and hence Hj is a measure.

13



Next we show that H°® is a measure.

1. Since H;(¢) = 0 for all 6 > 0 , then taking the supremum over §, we get that
sup H; (¢) =H°(¢) = 0.
>

2. Fix 0 > 0, and as before, select sets {Ag}re; C R™. Then, since Hj is a measure ,

Hs (GM) < iHS(Ak)
k-1

IA

[M]8
BN
=

Letting 6 — 0 we get, H® <U Ak> < Z *(Ay), finishing the proof that H® is a

k=1
measure.

We proceed by showing that H?® is a borel measure. To see this, choose sets A , B C R”
such that the distance between A and B is bigger than 0; choose 0 < § < i dist (A, B) , and
suppose that A U B is covered by sets {Cj};il such that diam C; < . Let us define

A={C;;C;NA# ¢}
and
B ={C;;C; N B # ¢}.

Notice that, 4 ¢ | J ¢;, Bc | J Cjand C;NCi=¢if C;€ Aand C; € B. Thus,

C;eA C;eB
i diam C; diam Cj diam C}
St (F5E) 2 e (F2) + Law (H52)
j=1 CjeA C;eB

> H;(A)+H;(B).
This is true for all such Cjs chosen above, hence
H; (AU B) > H3 (A) + 3 (B)

provided that the distance between A and B is bigger than 44 and strlctly positive. Now
letting d — 0 we get

H* (AU B) > H* (A) + H* (B)

for all A, B in R" such that dist(A4, B) > 0. The fact that #* (AU B) < H* (A) + H*(B)
comes from countable subadditivity since we proved that H® is a measure. Thus we have

that
H*(AUB)=H’(A)+H*(B).
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Using Caratheodory’s criteria ( see theorem (3.0.4)) we get #H® is a borel measure.

We finish the proof by showing that H® is a borel regular measure.
Let’s start by noting that diam C = diam C for all C C R™. Hence, we can define Hj as

o0 di N\ S oo
Hi(A) = inf{Za(s) < 2617;10]) JAC UC,- ;diam C; < 6; C; are closed.}
j=1

j=1
Now, choose A C R™ such that H* (A) < co. Hence H3 (4) < ooV s > 0. By the definition of

. . 1
infimum, for each & > 1 ,there exist {Cjk 521, such that A C U CJ’?, C’;c closed, diam CJ’-c < o

Jj=1

> diam C*\° ad iam CF\°
Za(s)( : J) < inf{Za(s) (d—z—&) }+% (4.0.2)

and,

which means

(4.02) S HL (A) + 1.

Let A, = U C;“ and B = m Ayg. Notice that B is borel since the C’fs are closed. Also since

j=1 k=1

A C Ay for each k ,we have that A C B. Furthermore, since B = ﬂ Ay, then B C A for
k=1
every k, and hence

H3 (B)

IN
Iim

IN
?r'le;h
Q)

< D el) (——diaz < )

< ML(A)+ 3

where the last step comes from (4.0.2). Now if we let k — oo, we get H®(B) < H°(A). The
fact that A C B gives us the other inequality and hence H* (4) = H*(B). O

Next, we prove some elementary properties of the Hausdorff measure.

Theorem 4.0.2. 1. H° is a counting measure.

15



2. H' = L' on R
S H°=0o0onR"Vs >n.
4. H5(AA) = MH*(A) VA >0; ACR™

5. H(L(A)) = H*(A) for each affine isometry L : R* — R"*; A C R™.

Proof. 1. In order to prove that H° is a counting measure, we start by proving that

H’({a}) = 1.

e Let 6 > 0. By definition of Hausdorff measure, we have

H ({a}) = mf{ia <dzamC> ,{a}gDCj,diaijS5}

=1

= inf{ N dzamC {a}QGC’j,diaijgé}.
j=1

j=1

.

Now let C; := B{(a,d). Then {a} C C; and we get that

HY ({a}) < (diam Cy)° = 1.

To see that 1 < H] ({a}), take any cover {C;}52, such that {a} C U C; and

j=1
o0

diam C; < 6. Then, Z (diam C;)° > 1. Taking the infimum over such C; , we get
j=1

inf{i(diaij)o ;{a} C O C; ;diam C; < 5} >1
=1 =1

and hence, H? ({a}) > 1.Thus HJ ({a}) = 1 for all §. Letting § — 0 we get that
HO ({a}) = 1.

e Next, let us consider countable sets.If A = { ai}:zl, then by countable additivity

° ({al, T aan}) = ZHO ({al}) =n.

o If A={a;}3; , then also by countable additivity we get

Mg

#H ({a:})

HO ({ai}21) =

[l
81
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e Finally, if A is uncountable, then there exist {a;}2, C A such that a; # a; Vi # j,
and, by countable subadditivity we get

0o =H° ({ai}2;) < H"(4).
Thus H° is a counting measure.
. Choose A C R and ¢ > 0, then
L (A) = inf{Zdiam Cj; Ac ch}
j=1 j=1

< inf{i diam C;; A C D Cy;diam C; < 6}
j=1 j=1

= HL(A).

For the other inequality, let C;’s be any cover for Aso, A C U C;. Set I, = [ké, (k + 1) 6]
j=1

, for k € Z. Notice that diam (C; N I;) < 4. Using the fact that U I, =R , we can

k=—00
see that {Cj N Ik}oo form a cover for A , since
j=lk=—00
Acle = Uwenr)
=1 j=1

U

(C;n Ik)>

.
Il
—

I I
Cs 1 (3
A/Q\
s 3

G

o,
1
8
Eod
l
|
8

(C;N1I).

o)
I
“b-—‘
kol
1
|
8

I
3

Also, notice that

i diam (C;N1y) = diam( G (Cjﬂfk)>

k=—o0 k=—o

= diam <Cjﬂ U Ik>
k=—0c0

= diam (CJ N ]R)
= diam C;. (4.0.3)

17



Thus, we have

(o <]

Z 2 x diam (C; N I,)
2

IN

H; (4)

j=lk=—00

= j;i < j;i dianm(Cb(W]ﬁ))

=1 \k=—o0

diam C; (4.0.4)

M

1

J

where the last step is from (4.0.3). Recall that (4.0.4) holds for any cover {C;}%2, of
A , then taking the infimum in (4.0.4) over these covers, we get

Hs (4) < inf{idiaij,AgGCj}
Jj=1 j=1
_ £'(A).

Thus, H; (A) = £ (A) for any § > 0. Taking the limit as § goes to 0, we get that
H(A) = L1 (A).

3. We fix an integer m > 1, and decompose the unit cube @ C R™ into m™ cubes with

1 . n
sides — and diameter \/—ﬁ Let 6 = £; then
m m m

=
3

S

A
Ingk

o

=

IN

MS
S
)

= a(s)nzm"”

Let m — 00, we get H° (@) = 0 and so by countable additivity H* (R™) = 0 for s > n.

4. Select sets C;’s such that A C U C;. For any A > 0, notice that
j=1

AC GCJ«@/\A C D)\Cj.
j=1 j=1

18



Thus, there exists a 1-to-1 correspondance between covers of A and AA. Hence,

HE(OA) = inf{z_:a(s) (——di“m;wf))

5. Select sets C;’s such that A C U C;. Notice that for any affine isometry L : R* — R"

=1
b

Thus, there exists a 1-to-1 correspondance between covers of A and L (A) , and hence

wiw) = {3 et (PN LweJLe)

j=1 j=1
= 1nf{Za(s) (dmglcj)s, AC GCJ}

ij=1 7=1
= H;(4)

4.1 Isodiametric inequality

Throughout this section ,we will be proving that H™ = L™ on R™. This cannot be seen
easily since by definition, the Lebesque measure L™ (A) is computed using arbitrary coverings
of A , whereas the Hausdorff measure H"™ (A) is computed in terms of arbitrary coverings of
small diameter.

Lemma 4.1.1. Let f : R® — [0,00] be L™ measurable. Then the set
A={(2.v);2eR yeRD<Y<f(@)
which represents the region under the graph of f , is L™ measurable.

19



Proof. Let B = {z € R*; f(z) = oo} and C = {z € R*;0 < f(z) < oo}. In addition we
define

J j+1 . .
- J <
Cik {xeC,k_f(a:)<——k ,]GN,keN}
D = U( i % [0 l)uwx{o,oo}) JENEEN
J=0 'k
and

(o) . 1
B = | (Cjk x [0,%]) U(Bx[0,00]) ,j€NkeN
Since Cj, and B are L™ measurable in R",and since [0,%t!] and [0,00] are £! measur-

able, then Ej and Dy, are £L*! measurable. Moreover, Dy C A C Ej. Let us define D = U Dy
k=1

and F = ﬁ Ei. Then D C A C E with D and E both £ measurable.Now, since Dy C D
and ¥ C ,Ekl ,then

E\D=END*C Ey,ND; = Ey\ Dy.
Denoting B! (0, R) = B™ (0, R) x [0, oc], we get

L ((E\D)NB™(0,R)) < L™ ((Ex\ Dp) N B (0, R))

— £n+1 <U C]k .17{: .7 ‘l: 1] Bn+1 (0 R))

3=0
_ m( GCjk>ﬂB”(O,R)> xcl(%,j%lo
< %[Z"(B”(O,R)).

Now as K — 0o , the last term goes to zero and hence L™ ((E\ D)NB**' (0,R)) =0,
which implies that

LMY ((E\D)) = Lr((E\D)NR™)

= £”+1<E\D (UB"“ 0n>>

~ Lo ( ((E\ D)n B (0,n))>

< YL (B\D)N B (0,n))

= 0

20



Hence, L™ ((A\ D)) = 0. A\ D is L™ measurable (See Remark on page 2 in [1].) Since
as noted earlier D is £ measurable, then A = (4 \ D) U D is L™ measurable. O

Notation Fiz a,b € R" | |a| = 1. Let us define

Ly = {b+ta; t € R}, the line through b in the direction of a
and P, = {z € R z.a =0}, the plane through the origin perpendicular to a.

Definition 4.1.2. Let a € R™, such that |a| = 1, and let A C R". We define the Steiner
Symmetrization of A with respect to the plane P, to be the set

11 a
(4= {b+ta;|t|§§H(Ame)}.

be Py, ANLE#£

In the next lemma, we prove some properties of Steiner Symmetrization.

Lemma 4.1.3. Let A C R"™ be a closed set.
1. diamS, (A) < diam A.

2. 8, (A) is L™ measurable and L™ (S, (A)) = L™ (A).

Proof. 1. If diam A = oo then statement (1) is trivial, so we will assume that diam A <
o0o. Fix € > 0 and by definition of supremum, select z,y € S, (A) such that

diam S, (A) < |z —y| + e (4.1.1)
Let
b=z — (z.a).a and c=y — (y.a) .a.

Moreover, b € P, since

0. (4.1.2)

Similarly, ¢ € P,.
Note that by definition of S, , we have

1
|z.a] > E’Hl (AN Ly) (4.1.3)
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and
1 1 a
ly.a| > ?H (ANLY). (4.1.4)
Now set

= inf{t; b+ta € A}
sup{t; b+ta € A}
inf{t; c+ta € A}
= sup{t; c+ta € A}

S £ » 3
Il

Assume that v—7 > s—u. Then £ (v —r) > 2 (s — u). Using the fact that § (v —r) =

=3
(v—r)—2(v—r); weget

(v-r)-%(u-r) > %(s—u). (4.1.5)
Adding % (v —r) on both sides of (4.1.5) we get
(v=—r) > %(v—r)-l—%(s—u)
= %(s—r)-}—%(’u—u). (4.1.6)

However,

s—r = sup{t; b+tac A} —inf{t; b+tac A} > H (ANL})
and
v—u = sup{t;c+ta€ A} —inf{t;c+ta€ A} > H' (ANLY).

Thus, plugging in (4.1.6), we get

v—T %7{1 (AﬂLZ)—!—%Hl (AN LY)
|z.al + |y.a
|z.a — y.al, (4.1.7)

(AVARAVARRLY,

where we used (4.1.3) and (4.1.4) in the step before the last. Now, recall by (4.1.1)
that

diam S, — e < |z — y, (4.1.8)
and by definition of b and ¢ that z = b+ (z.a) .a and y = ¢+ (y.a) .a. This means that

z—y=b—c+ ((z.a) — (y.a)). (4.1.9)
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Notice that (b — ¢) is perpendicular to (z — y) since their dot product gives 0. Hence,
by squaring both sides of the equation (4.1.9) and using pythagorian rule we get

lz—y> = |b—c*+|((z.a) - (y.a)).a]% (4.1.10)
Therefore, combining (4.1.8) , (4.1.10) and (4.1.7), we get

(diam Sg —€)® < |z —y)?

= -l +1((z.a) - (ya) |?
< Jb—cf+|w=-1)) (4.1.11)

However note that,using (4.1.2) we have

|(b4+ra) — (c+wva)|? = |b+ra—c—val
|(b—¢) + (r —v).al”
= b—c+|(r=v).a}+20-c)(r—v).a
b—c®+|r—v*+2b(r —v).a—2c(r—v).a
= b—c+|(w-1) (4.1.12)

So plugging (4.1.12) in (4.1.11) we get
(diam S, —€)* < |(b+ra) — (c+wva) %

Since A is closed , and v = sup{t; c+ta € A}, then c+wva € A. Similarly, b+ra € A.
Thus (4.1.11) becomes

(diam S, — €)* < (diam A)?
and hence,

diam S, — ¢ < diam A.

. Let A C R™ be a closed set.We start by studying £™ (A) . Since L™ is rotation invariant
, then without loss of generality take a = e, = (0,0,--- ,1), making P, = P,, = R""".
Knowing that H! = £! on R! and L™ = £! x L' then we get

LM (A) = / xadlr

= / xa(z,y) dL"™ (z,y)
Rr-1xR

= [ [xatw act @) e @), (4.1.13)
rR»-1 JR
where in the last step we used Fubini’'s theorem (see theorem 3.0.5) . Notice that
L (z,y) € A
xa(z,y) =
{0; (z,y) ¢ A
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0; y ¢ Aq 0; (z,y) ¢ A

xa(z,y).
Since the inner integral of (4.1.13) is independent of z ,(4.1.13) becomes

rw = [ ([xuwww) o
_ £ (A,) dLm (a).

Rn-1

Let the map f : R®! — R defined by f (b) = H' (AN L{) be £~ measurable. Since
L' is translation invariant, then

LM (A) = LYANLE) dL™* (b)
Rn-1
= H (ANLE) dC™ (b)
Rn—1
= f(b) db. (4.1.14)
Rn-1
On the other hand,
— . _]_“ 1 a
Sa.(A) = U {b+ta, it < 5H (Ame)}

beR" 1, ANLE#¢

- {(b,y); —%’Hl(AﬂLg <y< Hl(AﬂLz)}\{(b,O);AﬂLZ=¢}

Using lemma (4.1.1), we get that the first part of the union is £L" measurable. But the
second part of the union is nothing but the reflection with respect to R™ ! of the first

part, and hence is £L™ measurable also. Moreover, to see that B := { (6,0); ANL; = qS}
is measurable; notice that

{(b,O); AnLg:¢} —~ BCR™.
That is
{®,0); ANL; # ¢} = B* = prans (4).

Hence, B¢ = R* !\ B, which is measurable. Thus, S, (A) is £L* measurable.To see this
et B={be R, ANLE # ¢}. Then B*={bec R, ANL; = ¢}. Soifbe B

24

f(b)}U{(b,y); beR" ,y R, ——=
\{,0); 4n



then f(b) is f(b) and if b € B then f (b) = 0. Hence,

s = o ({owsvenyer T <y < I0))

xs (0) x_sw s0 (y) - (4.1.15)
Using Fubini’s theorem (see theorem 3.0.5), we get

cE@ = [ xe0 [ (g e e e) e o

x5 (b) f (b) dL"(b)

n—1

(x5 (b) f (b) + x5< (b) f (b)) dL™ (b)

n—1

(x& + x5e) f (b) dL™ (b)

n—1

xze-if (b) L™ (b)

1

I
T~ S — —

n—

= £ (b) AL (b)

JRn—1
= L"(A).
O
Theorem 4.1.4. Isodiametric Inequality
For all sets A CR", L"(A) < a(n) (dza;nA) .
Proof. If diam A = oo then it is trivial. Let us assume that diam A < co. Let {e1,-- ,en}
be the standard basis for R”, define A; = S, (A), Ay = Se, (A1), -+, An = Se, (An-1) ,

and write A* = A,.

1. Claim # 1: A* is symmetric with respect to the origin.
Proof of Claim # 1: We show this by induction. By definition of the Steiner
symmetrization, A; is symmetric with respect to P.,. Now let 1 < k < n and assume
that A is symmetric with respect to P.,, P.,,- - , Ps,. We prove Ag4; is symmetric
with respect to P.,, P.,, " , Pe,,,. By definition, Azy1 = Se,,, (Ax) is symmetric with
respect to Pe,,,. Fix 1 < j < k and let S; : R® — R™ to be the reflection through
P, . Fixbe P, Since Ay is symmetric with respect to P, , then S; (Ar) = Ay and

k+1"°
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(Ag) , by definition of

Se, , the latter equality implies that {t; b+tery1 € Ak+1} = {t; Sjb+teg € Ak+1}
that is, Sj (Ag+1) = Ak+1. S0, Agy1 is symmetric with respect to P, , thus A" = A, is
symmetric with respect to P, P.,,- - , P, and hence with respect to the origin.

€k+1

we get H (A N LT = H (A, N L% | Since Apyr = S,
b Sib

. Claim # 2 £"(A") < a(n) d““;“l

Proof of Claim # 2: Let x € A* then by Claim # 1, we get that —z € A*.

Wiyt €
Thus, diam A* > 2|z| that is [z] < diam . This implies that A* C B (0, ZezA>) |
Therefore,

N A* . A* n
Lr(AY) < L <B (o, —d“”; )) =a(n) (d“”;" ) . (4.1.16)
. Claim # 3 £ (A) < a(n) <d"“2”A> .

Proof of claim # 3 :Z_ is £™ measurable since it is closed, and thus by applying
lemma 4.1.3 n times on A we get,

L (A) = L7 (Se, (A)) = L7 (A1) = L7 (Se, (A1) = £7 (Az) = -+ = L7 (4n) = L7 (4)"
Moreover by applying lemma 4.1.3 n times, we get
diam (A)" < diam (A) (4.1.17)
, and hence
Lr(4) < L (A)

£ ((4))

< a(n) @TQ(—A)*)R (4.1.18)
where the last equality comes from Claim #2 used on A. Using (4.1.17) on (4.1.18)
we get
LM(A) < a(n) (dia;n fl)"
— ) (dia;n A)”'
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Theorem 4.1.5. H" = L™ on R

Proof. Let A C R™.

Claim # 1: L"(A) < H"(A).

Proof of claim # 1:Fix ¢ > 0. Choose sets {C;}32; that cover A and such that diam C; <
0. By countable subadditivity we get

3£ (c)

and hence using the isodiametric inequality we get

Z (dzam C; )

Taking the infimum over all such sets {C;}32, we get

Lr(A) < mfz (dmmc>

= Hy (A)

Thus,
LM (A) <H"(A).

Before moving to Claim # 2, recall that £" is the product of £ x £1x---x L' (n times) .
(See theorem 3.0.6). Moreover we know by the definition of Lebesgue measure that for all
ACR"and d >0

= inf { ZE" );Q; are cubes ;A C UQl ,diam @Q; < (5}

i=1

Claim # 2:H" is absolutely continuous with respect to £".
Proof of claim # 2: For each cube Q C R" of side s we have,

L@ = " i
)
- (59

N

Let C, = o (n) (T) . Then,

Co L (Q) = a(n) (dm;”Q)n. (4.1.19)
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Moreover, notice that the set of all covers of A C R™ by cubes @); of diam Q; < ¢ is subset
to the set of all covers C; of A such that diam C; < 4. Hence,

HF(A) < inf{Za(n) (dzarg Qi) ; Q; cubes ;A C UQi ydiam Q; < (5}
j=1 =1

Cninf{f:ﬁn (Qj); Qi are cubes ;A C GQi ,diam Q; < 5}
j=1

i=1
= C.L"(A)
where we used (4.1.19) in the step before the last. Let § — 0, we get
H"(A) < C, L (A).

Claim #3:H" (A) < L"(A) for all A C R™
Proof of claim # 3: Fix d,¢ > 0. By the definition of infimum, choose cubes {Q;}2,

such that A C U Q; , diam @Q; < ¢ and

i=1

o0

S LM Q) S LMA) e (4.1.20)

i=1

Using Vitali’s covering (see theorem 3.0.7) we get that for each i € N there exist disjoint
closed balls {B}}%, contained in QY , the interior of Q; , such that diam Bj, < ¢ and

ﬁ”(@\UBi) = L" (Q?\U&i) =0.
k=1 k=1

Using Claim #2 we get ‘H" <Qi\ U B;) = 0. Also Q; = (Qz\ U BL) U <U B,’c> .
k=1 k=1

k=1
Thus by countable additivity , we get

H Qi) =H" (Qi \U Bi) +H (U Bi)

which gives us that

H(Q:) =H" (G B,i) : (4.1.21)
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Now, by (4.1.21) and countable subadditivity, we have

Hp(A) < > HF(Q)

IA
(]
] M
5
&

IA
[
(e

2
z

R
2
o
ME
e
~—
3

i=1 k=1
= D L£"(Q)
i=1
< LM(A) + e
Where we used (4.1.20) in the last step. Let € = 0, we get Hj (A) < L"(A). Let 6 =0,
we get H™ (A) < L™ (A) and we are done. O

4.2 Hausdorff measure and Lipschitz mappings

Definition 4.2.1. A function f : R®™ — R™ is called a Lipschitz function if there exists a
constant C such that |f (z) — f (y) | < C|z — y| for all z and y in R™.

Definition 4.2.2. Let f be a Lipschitz function. Define Lip (f) = sup {M%J—)—l

T, Y €
R" ,x # y}. We call Lip (f) the Lipschitz constant of the function f.
Theorem 4.2.3. Let f : R® — R™ be a Lipschitz function , A CR™ ,0 < s < oo. Then,

H* (f (A)) < (Lip (f))" H* (A) .

Proof. Fix § > 0. Choose sets {C;}32; C R" such that diamC; < d and A C UCz-. Let
i=1

z,y € C; then,

diam C; = sup{lx—yl, x,yeC’i}
and

diam £ (C;) = sup{|f @)~ f W)l, 2,9 € Ci}.
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Notice that

z) — _ @ -1l
|f (=) — f W)l =l |z -yl
lf(flc;:g](y)lsuplx y

Taking the supremum on both sides, we get

suplf (@) — f ()] < sup(

This shows that

|f (z) —f(y)l)

|z — |

diam f (C;) < Lip (f) diam C; < Lip(f) 6.

Now,

facf (UCE) clJr@).
=1 i=1
Thus, {f (C;)}2, are a cover for f (A) with diam f (C;) < Lip f 4. Hence,
Hiioirs (F(A) < D a(s) (dmmTf(C’)>

=1

, - — diam C; \°
< @y Ya) (2454
i=1
Taking the infimum over all such sets C; we get
Hiinins (f (A)) < (Lip ()" H5 (A).
Letting § — 0 we get

H(f (A)) < (Lip (f))"H* (A) .
0

Corollary 4.2.4. Suppose n > k. Let P : R® — R* be the usual projection. Let A C
R", 0 <s<oo,then H*(P(A)) <H (A).

Proof. The projection function is a Lipschitz function with Lip (P) = 1. To see that, take
z,y € R™ Since the projection function is linear, with norm 1 then, |P(z) — P(y)| =

|P(z —y)| < |z — y|. Hence ﬂ%_—z(y—)—l < 1 which implies that Lip (P) < 1. To see
that Lip (P) = 1 take z € R™ = (1, ,%4,0,--- ,0) and y € R” = (y1, -, ¥x, 0, - -~ ,0)

then P (z) = z and P (y) = y. Thus |P (z) — P (y)| = |z — y| that is, LP%):—PM = 1.
Using theorem 4.1.5 we get that Y
H*(P(A)) < Lip(P)H* (A)
= H’(A).
O
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Chapter 5

Lipschitz functions , Rademacher’s
Theorem

Rademacher’s Theorem states that Lipschitz functions f : R* — R™ are differentiable
L™ a.e. To be able to state Rademacher’s Theorem, we need to define what it means for a
function to be Lipschitz and to define differentiability from R"™ to R™.

We start by defining Lipschitz functions and locally Lipschitz functions.

Definition 5.0.1. 1. A function f: R® — R™ (n < m) is said to be Lipschitz if

|f(z) = f )| < Clz -y (5.0.1)
for some constant C and for all x and y in R™. Define
. |1f (z) - F(y)]
= YA J A, R™ )
Lip (f) = sup { oy e A )

Note that Lip (f) is the smallest constant C such that (5.0.1) holds for all z and y.

2. A function f: A — R™ (A C R") is said to be locally Lipschitz if, for each compact
set K C A ,there exists a constant Cj such that

If (z) = f(¥)| < Cklz —y| Vz,y € K.

Theorem 5.0.2. Extension of Lipschitz functions
Suppose f : A — R™ is a Lipschitz function where A C R™ , then there exists a Lipschitz

function f : R® — R™ such that :
1. f=fonA
2. Lip (f) < v/m Lip(f).
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Proof. Let us prove the theorem first for the case if f: A — R.

We start by showing that f is Lipschitz. Define f(z) = in£ { f(a)+ Lip(f) |z — a|}. Let
a€

z,y € R"™ then

f (=)

IN

inf {£(@)+ Lip (f) (v — el + o = D) }

= f(y)+Lip (f) |z -y

and similarly ,
fly) < f@)+Lip(f)lz~yl

To show (1), let b € A. Notice that f (b) = ;gg {f(a) + Lip(f) b — a|}. However, b € A

since f (b) < f(b) + Lip (f) |b—b] = f (b) and hence f (b) < f (b).

Conversely, for all a in A we have |f (b) — f (a)| < Lip(f) |b — a|. This implies that
—Lip(f)b—al < £ () - £ (a) < Lip (f) |b — al.

Hence, f (b) < f (a) + Lip(f) [b—al. But f (b) = inf { f (a) + Lip (f) [b—al }. Thus, £ () <

F ().
To show (2), Let f : A — R, such that A C R™ Then for all z,y € R" we have

|f (2) = f (y)| < Lip(f) l= — y|- This implies

|f (=) = F )| :
P— < Lip(f)
= +mLip(f) (since m is equal to 1 in this case.)
Hence,
. _ [f(z) ~F )]
Lol = s Ty
< VmLip(f).

For the general case, let f: A — R™.
z— f(z)=(fi(z), -, fm(z)) be a Lipschitz function.
Notice that each f; : A — R
z —> f; (z) is Lipschitz with Lip (f;) < Lip(f), since |fi(z) — fi(y)| <
|f (z) = f ()| < Lip(f) |z —y| for all z,y € R™
. . ra {fl = fi on A
Thus, by our discussion above, we can extend f; to f; : R* — R such that

Lip (f;) < Lip(f)

32



Then, we have

\fi(@) = fi()

=
&

I
)
S
o

I

M s

1

I

7

(Lip £;)? |z — y|?

s

=1

< 0 Wip Pl - P

= ;l(wa) e -y
which implies i (Ti:i |<2y) . m (Lip f)? .
Thus, L2 =7 @) (l)— —I( ) < i Lip (f) for all 2,y € R", which implies that s f (=) = 7 (W) (|“’ i :]; (ly)| <
v/m Lip (f) . Consequently, Lip (f) < v/m Lip(f). O
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Next we define differentiability for functions f : R — R™.

Definition 5.0.3. A function f : R® — R™ is differentiable at x € R"™, if there exists a
linear mapping L : R® — R™ such that

o F W= f@) ~LE-y)|

=0. 5.0.2
Y T3] (5.02)

Remark 5.0.4. Let us prove that if such a linear map exists, it is unique and we write D f (z)
for L. We call Df (z) is the derivative of f at z.

Proof. Suppose there exists 2 linear functions L; and Ls such that L;, Ly : R — R™, and
that satisfy the equation above (5.0.2). Fix z and v such that |v| = 1. Let y = x + tv. Then,
ly — z| = |tv| = |t| then, z — y = —tv. Hence,

lim f(z+tv) = f(z) — Ly (—tv) _ 0
t—0 | |
and
et ) — f@) - L)
t—0 |t|
tv) — Lqi(t tv) — Lo (t
This implics that lim | = @) I(to)|_ Nfettv) = f(@) L)} o
t-0 [t ¢l t=0 it |2l
Liv—L
lim Ly (tv) — L (tv) = 0 and consequently lim t[—lv—w—] = (. This in return gives
0| | It] t=0 ¢l
%ir% |Liv — Lyv| = 0. Thus, |L1v — Lyv| = 0. Hence,
._)
L, (v) = Ly (v) (5.0.3)
for all v € R™ such that | v |= 1. In general, Let z € R" , write z = %l | | then using
linearity of L; and L, and (5.0.3) for v = % , we get,

Li(z) = L <Ii.|x[>

z |
i)
- ()
_ LQ(%.MO
~ L(2)
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Theorem 5.0.5. Rademacher’s theorem
Let f : R™ — R™ be a locally Lipschitz function, then f is differentiable L™ a.e.

Proof. Case 1: Assume m = 1 ; since differentiability is a local property, we may assume
that f is Lipschitz. Fix any v € R" such that [v| = 1. For z € R™ define

va(x):hmf(%%v)—f(m) ;

t—=0 t

if this limit exists. ( This is the directional derivative of f at x with the direction of v )
Claim # 1 : D,f (z) exists for L™ a.e.z.
Proof of Claim # 1 : Since f is a continuous function then,

flz+tv) - f(z)

D,f(z) = limsup

t—0 t
tv) —
i e L@
k=00 0 lh1< 1 t

is Borel measurable and

fz+tv) - f(2z)
t

D, f (z) = liminf
t—0

is also Borel measurable. To see this, given that f is a lipschitz function then it is continu-

t
ous. Fix t >0, v € R" then f(z+ tv) is also continuous by translation and f(L:—Ul is
t —
also continuous by dilation. So g (z) = flett) = f@) is continuous which implies that g

3 —
is borel; because (g~ (open set) is an open set which is borel) . Hence lim,,o g () is borel

and the same goes for lim, ., g (z). Thus we get that
A, = {z € R"such that D,f () does not exist}
= {z € R"such that D, f (z) < D,f (z)} is Borel measurable.

Now for each z,v € R", with |v| = 1, define ¢ : R — R by ¢(t) = f(z+1tv)
where t € R. Let us show that ¢ is Lipschitz, and absolutely continuous, thus making it

differentiable £" a.e.
e ¢ is Lispchitz: ¢ (a) — ¢ (b) = f (z + av) (z + bv); but f is Lipschitz then

-f
lf(x+av)— f(z+bv)| < Clz+av—z—by|
<

Clav — bv]
= Clv(a-1b)]
< Clolla—b|
= Cla—b|.

¢ ¢ is absolutely continuous: Since ¢ is a Lipschitz function then it is absolutely
continous (see Theorem 3.0.3). Since ¢ is absolutely continuous then ¢ exists L ae
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, that is f is differentiable £! a.e on any line L parrallel to v. Consequently,

A,NL = {:c € R™ such that f is not differentiable at a:} NnL
= {z € L such that f is not differentiable atz}.
Which implies that £! (A, N L) = 0 ; hence, H' (A, N L) = 0 for all L. Then,

L"(A,) = /XA” act

- / x4, (@,9) dC" (2,9)
R-1xR

- /[ ( [xa @) ac @) e @)

: for inner integral z is fixed and hence x4, (z,y) = 1 if (z,y) € A, and x4, (z,y) =0

: Lifye(4)

if (z,y) ¢ A,. Now let (4,), = {y € R;(z,y) € Ay} then, x(4,). = . z
' 0y ¢ (A,

, then x4, (z,y) = x(a,), (¥) - This implies that

e = [ ([xon. 0 acw) o
= [ A @),

Rn—1
Notice that £! is translation invariant; thus,

£1((Ay),) dC™ Y (z) = /R LN(ANL) 4L (@)

Rn—1

= / H (A, N L) dH™ ' ()
Rn-1

= 0.
Finally we get,
L™ (A,) = 0.
This finishes the proof of Claim 1 .
Claim # 2: gradient f (z) = (8—6:;% (), -, % (:1:)) exists for L™ a.e z.

Proof of Claim # 2 : Applying Claim 1 for v=¢; = (0,---,1,---) we get that D, f
exists a.e; and hence for all i = {1,--- ,n} there exists E; such that p (Ef) = 0, that is De, f

exists on E;. Let E = UE: then p (E) = 0. Moreover, for (z1,--- ,2,) € E¢, we have
i=1

f(($17"' ’xn)+hvi) _f($17"' 7$n)

D..f(z1, -+ ,z,) = lim

h—0 h
o F@n e m homn, o m) ) = f (@ 20)
T RS0 h
0
= 83{‘ (z1, -+ ,Zn). (5.0.4)
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Claim #3: D,f(z)=v.gradf(z) for L a.ez.
Proof of Claim #3 : Let ( € C®(R") and let T : R* — R”
T — z + tu.
10 --- 0
0 1 .
Notice that T is one-to-one , then |Jp| = L . =1.
00 .- 1
Define g (z) = f (z) ( (x — tv) . Then by theorem 2.0.2 we get,

/ng(m) ac” = Rnf(a:) ¢ (z —tv) dL™

= / goT (z)| Jr| dL
]Rn

= / g(z+tv) dC™
= f(z+1tv) ((z) dL™
Rn
And so, / w dLt = fla+ tt'u) (=) dL™. This implies that,
R" R"
- t w1 an t -
Hence, / Clo= tz;) —¢(@) f(z)dL" = flz+ tvt) — /(@) ¢ (z) dL™, which gives
R R™
R t R™ t
Now, applying theorem 3.0.10 on 5.0.5 and using the fact that De,{ (@1, , %) = g—x( (1, ,Tn);
and by 5.0.4 that D, f (21, ,2n) = :99_3{ (1, ,Zp) , We get
- D¢ (z) f (z) dL" = - D,f (z) ¢ (z) dL" (5.0.6)
for all v. In fact for v = e¢; we get
o m_ [ O o
. 8_a:ifd£ = /n 8miCd£ . (5.0.7)
But since ¢ (z) is C° (R™) , we know that
_Nv, %
D =D gk, (5.0.8)



where v = Zviei. Using 5.0.6, 5.0.7 and 5.0.8 we get

i=1

D, f ()¢ (z) dL™

]Rn

hence D, f =v.grad f L™ a.e.

= D¢ (z) f (z) dL”

R
_ 0. 9 £
= /n;viaxifdﬁ

9¢

i=1 e

- Zvi/n gicd,c"
i=1 '

_ /nzvi%;gdﬁ"
i=1 :

= /" v.grad f (z) ¢ (x) dL".

Now choose {v;}$2, to be a countable , dense subset of B (0,1) . Set

A = {x € R™; D, fand grad f (z) existand D,, f (z) = vg.grad f () } for ke N.

Define A = ﬂ A;. Notice by Claim # 2 that £"(A§) =0, hence L™ (R™\ A4;) = 0 for all

k=1
k e N.

Lr R\ A) =
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By countable subaddivity we get,

cr (G GR"\Ak)) <

k=1

M8

L7 (R™\ A)

fI
O o
T

Thus, £ (R"\ A) =0.
Claim #4: f is differentiable at each point z € A.
Proof of Claim #4: Fix an z € A. Choose v € 9B (0,1) ,t € R,t # 0. Write

fz+tv) - f(2)

Q a0, = 212

—v.grad f (z) .

Then if v/ € 0B (0,1), we get

1Q (z,v,t) — Q (z,0v',t)] = f(x+wt)—f(x)—v.gmdf(x)—

_ f(x"'t“)_tf(x“"t”/)+gmdf($)(vl_v)

fz+tv)— f(z+t)
t

flz+t) - f(z)
t

IN

+ lgrad f (z) (v — v)|

But
fz+tv) — fz+t)

_ |f(x+tv)—f(x+tv')|‘

Lv () 2 | =y = @ o) it (=0 (5.0.10)
Hence, replacing 5.0.10 in 5.0.9 we get
1Q (z,v,t) ~ Q (2,9, t)| < Lip(f) lv — v'| + |grad f (z) [lv — v/|. (5.0.11)
Let us show that
lgrad f (z) | < V7 Lip (£). (5.0.12)

Let grad f (z) = (%, e ,aa—xf—> . Notice that

af — f(xlv"' )xi+t:mi+17"' axn)_f(xl?'” yLiy e ,.’L"n) SLpr(fE)
8xi t
Hence,
hmlf(xh :xi+t:$i+1:"’ ;In)_f(mla"' s Liy o ,xn)[ SLpr(CIJ)
t—0 t
Thus,
'gfi < Lipf.
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Then,

af 9]
dfl? = | P+... 4|2
lgrad [ = |5=P 4+
< n(Lipf)’.
Hence, |grad f| < +/n Lip f, this proves 5.0.12. Replacing 5.0.12 in 5.0.11 we get
1Q(@,0,1) ~ Q (&,v/,1)] < (VA +1) Lip (f) Jv — v/|. (5.0.13)

Now fix € > 0 and choose N so large so that if v € 8B (0, 1) then there exists k € {1,--- ,N}
and vg such that

€

— < . 5.0.14
v S A e () (5048
We want to show that lim f ) — /() _| gradlf (z) (2= y)] = 0. Replacing 5.0.14 in
| y-e z—y
5.0.13 for v’ = vy , we get
1Q (2, 0,1) — Q (&, vs, 1)] < = (5.0.15)

2

Now by definition of vy we have -yrré Q (z, vk, t) = 0. This implies that for the chosen € there
—

exists 4 such that if |t] < & then |Q (z, vk, t)| < % Hence

1Q (2,0,0)] < |Q (z,0,8) — Q (z, 06, 8)] + |Q (z, v6, )] < = + % = (5.0.16)

[N-N e

Fix 6 > 0 and choose y € R";y # z and |y — z| < 6. Write v = l—y_—z‘ and hence
y —_—
t = |z — y| < 4. Thus, using 5.0.16 we get

f ()= f(z)—gradf(z).(x—y)| _ |f(@z+t) - f(z)—gradf(z).tv|

|z -yl t
= |f(:v—|—t’vt)—f($) —grad f (z) |
- Qv
< €.

Hence, f is differentiable at z with Df (z) = grad f (z).
We need to prove the theorem for the general case.
Let f:R" — R™

z — (fi(z), -, fm(z)) be a Lipschitz function. Then, each
fi:R* —R
z — f; (z) ; is also Lipschitz since
Ifi(@) - i) < 1f(2) - F)]
< Lip flz —y|



Hence,

file) - fin)| _ Lipf
|z — yl -

= C.

Thus, f; is Lipschitz and by Case 1 we get that f; is differentiable a.e , which implies that
f is differentiable a.e. O
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Chapter 6

Linear maps and Jacobians

Definition 6.0.1.
1. A linear map O : R® — R™ is orthogonal if (Oz).(Oy) = z.y for all z,y € R™
2. A linear map S : R® — R™ is symmetric if z. (Sy) = (Sz) .y for all z,y € R™.

3. A linear map D : R®* — R™ is diagonal if there exists di,--- ,d, € R such that
D, = (diz1, - ,dnxy) for all z € R™.

4. Let A : R®™ — R™ be linear. The adjoint of A is the linear map A* : R™ — R"
defined by z. (A*y) = (Az) .y for all z € R*,y € R™.

Theorem 6.0.2. Properties of Linear maps

1. A = A.
(Ao B)" = B*o A*.
O*=07"1,if O:R* — R™ is orthogonal.

S*=S5if §:R* — R" is symmetric.

AT S

If O : R® — R™ is orthogonal thenn <m and O* o O =1 on R* and O o O* =1 on
O([R").

Theorem 6.0.3. Polar decomposition.
Let L : R™ — R™ be a linear map.

1. If n < m , then there exist a symmetrz'c map S : R — R™ and an orthogonal map
O :R* — R™ such that L= 00 S.

2. If m < n , then there ezist a symmetric map S : R™ — R™ and an orthogonal map
O :R™ — R"™ such that L = S0 O*.
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Proof. 1. Consider C' = L* o L : R® — R". Then, by the definition of the adjoint

(Cz)y = (L7el)z)y

= (Lz).(Ly)
z.Cy.

Also (Cz).x = Lz.Lz > 0 , hence C is symmetric, non negative definite. Then there
exist p1,- -+, tn > 0 and an orthogonal basis {zx}7_, of R™ such that

Czxy = ppry (k;:]_, 7n)_

Write pr = M2 ;0 >0 (k=1,---,n).
Claim: There exists an orthonormal set {zj}7_, in R™ such that Lz, = A\g2g fork =
{1, ,n}
1
Proof of Claim: Case 1:If \; # 0, define 2z, = )\—ka. Then, if Ag, Ay # 0 we get
k

1
2.2l = mLCEkal

lif k=1
0if k#1

Case 2 : If ), = 0 then M2 = 0; this implies that pz = 0. but, Czy = pkzk then,
Cz, =0.So L*o L(zx) =0, hence (L* o L (zx)) .z = 0. And by the definition of the
adjoint we get L (2x).L (xx) = 0 which implies |L (zx) |* = 0 thus, L (z;) = 0. Define
S:R* — R" by Sz = \pzp, (k=1,---,n)

and

O :R®* — R™ by Oz, = z;. Then,

where 0y = { . Thus the set {z ; \x # 0} is orthonormal.

OOS:E}C — O()\k:ck)

AkOmk

= /\ka
Lxy.

Hence, L = O o S. Rest to show that S is symmetric and O is orthogonal.

n n
e S is symmetric. To see this, let z,y € R™ where z = Z oz and y = Zﬁm.
k=1 I=1
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Then,
z.S(y) = (Z akxk> .S (Z &xl)
k=1 =1
= Z QT (Z BiS (iBl)>
k=1 1=1

n

= Z arBizk.S (»’Ul)

kl=1
n
= Z OékS (CEk) Iy
k=1

= Y wS(z). Y BS (=)
k=1 =1

= 8 (z akazk> . Zﬂﬂ?g
k=1 =1
= S(z).y.
e O is orthogonal. To see this , let

Ozk.Om, = Zk-2
= Ou

= XTk.Xj.

n n
For any z,y ¢ R* | let z = Zakxk and y = Zﬂlml. Then,
k=1 =1

!
Oz.0y = O (Z akxk> 0] <Z ,3,3&2;)
k=1 =1

= > ar(z). Y BO ()
k=1

1

o~

n

= Z Qg Z B0 (zx) O (z1)
=1

= Z%Zﬁz(xk)(wz)
o) (£
= 2.y
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2. For the case where n > m, let L : R® — R™, then L* :R™ — R™. But L* =00 §
such that O is orthogonal and § is symmetric, then
L = (L)

= (0o8)"

— §* 00"

So0O".
O
Definition 6.0.4. Let L : R® — R™ be a linear map. If n < m , write L = O o § and define

the Jacobian of L to be [[L]] = |det S|.
Note that [[L]] = [[L*]].

Theorem 6.0.5. Forn < m ; [[L]]*> =det(L*o L).
Proof. Write L=00 5 and L* = §* 0o O* = S o O*. Then,
L*oL = S00*000S
= S%(0*00).
Hence,
det(L*o L) = det(S?)
= det(S.9)
= (detS)?
(L1
O
Definition 6.0.6. 1. Forn < m ; define A (m,n) = {)\ {1, ,n} = {1,--- ,m}; Ais increasing}.

2. Foreach A € A (m,n) ; define Py : R™ — R” by P\ (21, ,Zm) = (x,\(l), e ,a:,\(n)) )

Remark 6.0.7. For each A € A (m,n), there exists an n-dimensional subspace Sy =
span{e,\(l), e ,e,\(n)} € R™ such that Py is the projection of R™ onto 5.

Theorem 6.0.8. Binet-Cauchy Formula
Letn <m,L:R™ — R™ be a linear map. Then,

[ZIP = D (det(ProL))’.
AEA(m,n)
Notice that Pyo L : R" — R™ — R" and
Pyo L = (det (Py, o L))* + (det (P, 0 L))* + -+ .

Remark 6.0.9. : In order to calculate [[L]]?> , we compute the sums of the squares of the
determinants of each (n x n) submatrix of the (m X n) matrix representing L.
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Chapter 7

The Area Formula

In this section, we will show that if f:R™ — R™ is a Lipschitz function such that n < m.
Then for each £™ measurable set A C R™

/deL"z/ HO (AN fHy}) dH™ (y).
A m

Notice that the left hand side of this equation gives the area of A C R™.

Lemma 7.0.1. If L : R® — R™ is a linear map such that n < m , then
H™ (L (A)) = [[L]]IL" (A); VA CR™

Proof. 1. Let L=0oS , then [[L]] = |det S]|.
Case 1: If [[L]] = 0. Since L = O o S and § : R* — R" is a linear symmetry,
then n = dim Ker S + dim Im S. But [[L]] = 0, thus |detS| = 0 and hence S is
not invertible. It follows that S is not one-to-one , thus Ker S # {0} ,implying that
dim Ker S > 1. Finally we get dim Im S < n—1. Hence dim S (R™) < n—1 and hence
dim L (R™) < n — 1. Using the fact that dim L (R") < n — 1 we get H™ (L (R")) = 0.
Case 2: If [[L]] > 0. Notice that

H™ (L (B (z,7))) L™ (0* o L(B(z,r)))
L™ (B(z,T)) L (B (z,7))

L (0*0 0o S(B(z,T)))
L (B (z,r))

L (S(B(z;r)))

L (B(z,r))

L (S(B(0,1)))

a(n)

. (7.0.1)

But using the change of variables formula for £ (see theorem 2.0.2) we get

£ (S(B(0,1)))

) — |det S| = [IL]]. (7.0.2)
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Plugging 7.0.2 in 7.0.1 we get

H™ (L (B (z,1)))

L™ (B (z,1)) = [[Z])- (7.0.3)

Notice that the Jacobian of S is equal to the determinant of S which is a number.

. Define v (A) = H™(L(A)) for all A C R". We will prove that v is a radon measure
and is absolutely continuous with respect to £™. First let us prove that v is a measure.

a) v(¢) =H"(L(4)) =0.

BN
|

IA

[
o
3
(=
5

Hence, v is a measure.

Next we will prove that v is borel regular.

Let A C R™ then L (A) C L(R™). H™ is borel regular then there exists a borel set C
such that L (A) C C and such that

H™ (L(A) =H"(C). (7.0.4)
Also since H™ is borel regular then there exists a borel set B such that H™ (A4) =
H™ (B) . Notice that since A C B then L(A) C L(B) C L(R™). Take C N L(B) and
let D:=CnNL(B)C L(R"). Since L is bijective then there exists a set E such that
L(E)= D thatis E=L"1(D).CNL(B)CC and L(A) CCnNL(B) then

H"(CNL(B)) <H"(C)=H"(L(A) <H"(CNL(B)).
Hence,
H™(L(A)) =H"(CNL(B)) =H"(L(E)).
Thus,
v(4) = v (B),

and v is a radon measure.
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Next we will prove that v <« L™,

Let A C R™ such that £" (A) = 0. We want to prove that v (4) = 0. But, £"(A4) =
H™(A) =0, hence H™ (L (A)) = 0. This implies that v (A) = 0.

Now recalling the definition of Dznv (see theorem 3.0.1) , we have

i VB @)
0L (B (z,1))

o HML(B(z,)
= 2 (B )

= [IL]]:

Where last step comes from 7.0.3. Hence for all borel sets B C R™ we have

DcnU (.’I?)

v(B) = H"(L(B))
= /Dﬁnfu (B) dL™
B
~ [ wpac
B
= [[L}]£™(B).
Thus,
H" (L (B)) = [[L]]£™(B). (7.0.5)
We still need to show that
H™ (L (A)) = [[L]]L" (A) ;for any set A C R".
To see that, let A C R™. Since v is borel then there exists a set By such that A C B;
and v (A) =v(B,) =v(B).
Also since £™ is borel then there exists a set By such that A C By and L™ (A) =
L™ (Bsy) = L™ (B) . Notice that B = B; N B, then A C B C B; and hence we get
v(A) <v(B) <v(B1)=v(A).
On the other hand A C B C B, then
LM (A) < LM(B) < LM(By) =L"(A).
Thus,
v(A) =v(B)=[[L]|£" (B) = [[L]]L" (4) .
O
Lemma 7.0.2. Let f : R® —s R™ be a Lipschitz function. If A C R is L™ measurable then :

1. f(A) is H™ measurable.
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2. The multiplicity function from y to H° (AN f~1{y}) is H™ measurable on R™.

3. /R } HO (AN f~H{y}) dH™ < (Lip f)" L™ (A).

Proof. 1. Assume A is bounded , then for all ¢ € N there exists compact sets K; C A
1
such that L™ (K;) > L™ (A) — T And hence, L™ (A) — L™ (K;) < 1 But £" (A\ K;) =

L"(A) — L (K;) and thus, £ (A\ K;) < % Notice

cr (A \ G Ki) = 0. (7.0.6)

Moreover, since f is a contlnuous function then f (K;) is compact and thus H™ mea-

surable. So, f (U K; ) U f (K;) is H™ measurable. Let us show that

=1

A ———

To see this, we have that f (A <U K) (AN f <G Ki)

R ot

This implies that

(i (@) e lpge)) o

Notice that by Theorem 4.2.3, H" ( (A \ U K, )) (Lip f)" (A \ U K)

hence replacing in 7.0.7 and using 7.0.6, we get

(i (09) = e (039

= 0.
Which implies that f (A) is H" measurable.
Ci ci+1 . :
2. Fixk € N.Let By, = {Q Q = (a1,b1) % x(an,bn); a; = T b = o ciare integers ,i =
1,2,---,n } Notice that R™ = U Q. Let g, = Z Xf(AnQ) > then gi is H™ mea-
QEB; QEBy

surable, since A N @ is measurable. Notice that gi (y) is equal to the number of
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cubes Q € By such that f~{y} N (ANQ) # ¢ ; let us show that g; (y) converges
to HO (AN f~Y{y}) as k — oo for each y € R™. Since, let g = Z Xf(ang) , then

QEBy,
Jim g = lm > xsane)
QGBk
= Z X7 (ANQ)-
QelUpL, B
Then,
lim g (y) = D Xsane) W)
QeR™
= Z Xf(ANQ)
zef-y}
= H'(AnfHy}). (7.0.8)

Sog:y— HO(AN f~1{y}) is H™ measurable.

3. Using the Monotone convergence theorem (see Theorem 3.0.8) and 7.0.8 we get,

/ HO(ANfH{y}) dH™ = lim [ gpdH"

k—oo fpm

= [ 3 et

QEBy
= 1
lim / Xj(an@) dH"
QEBy

= fim 2 HM I (ANQ)
QeBy

< lm Y (Lipf) £(ANQ)
k:—)oerBk

— (Lipf)" L™ (4).
O

Lemma 7.0.3. Let f : R* — R™. Lett > 1 and B = {m;Df (z) exists, Jf (z) > 0}. Then

there exists a countable collection {E}}2, of borel subsets of R™ such that:

.
k=1

2. f |g, is one-to-one for k€N
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3. For each k € N, there exists a symmetric automorphism Ty : R — R" such that :

o Lip((f Ig) o Ty ") <tt
o Lip(Tio(f 1)) <t

. t_nIthTkl < Jf [EkS tn|d6tTk|.

1

Proof. 1. Fix € > 0 so that 7 +e<1<t—e Let BCR" Since R” is separable, let C
be a countable dense subset of B. Since any set of symmetric automorphism on R” is
isomorphic to R z , we have a countable dense subset S of symmetric automorphism

T (x
T on R™ | with operator norm ||T|| = sup M Note that for all T : R® — R"

z€R™ z#£0 |.’L'|
a symmetric automorphism 7" is Lipschitz.To see that notice that 7" is a linear function
, hence continous. Thus since all norms are equivalent in a finite dimensional space

R™*™ _ continuity is equivalent to boundedness. And we have

r—y r—Y

so, [T (z) = T (y) | < [ Tlllz - y|. Thus,

LipT < ||T]. (7.0.9)

1
Define E (¢, T,1), wherec€ C, T € Sand i € N, to be the set of allb€ BN B <c, ;)

that satisfies
(% + e) ITv| < |Df (b)v] < (t — €) |T| for allv € R (7.0.10)
and
If (@) — £ (b) = Df (b) (a — b) | < €|T (a— b) | for alla € B (b, %) . (7.011)

Notice that E (c,T,1) is a borel set since Df is borel measurable. Letting v =a —b ,
we get

Y @-nI<If@-F ) <UT @b | forbe BT, ) ,aeB(b, %)(mu)
Claim: If b € E (¢, T, i) then
(% +e)n |detT| < Jf (b) < (t—¢)"|detT|.
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Proof of Claim: Write Df (b) = L = O o S. Then,
Jf () =[[Df B))] = |det S|. (7.0.13)
Moreover for all v’ € R we have
IDf (b)v| = |00 S ()] =|S ()] (7.0.14)

Replacing 7.0.14 in 7.0.10 for o' = T7! (v) , we get,

(% + 6) |(0)| <|SoT™ ()| < (t—¢)|v|for all v € R™ (7.0.15)

Thus, (SoT7") (B(0,1)) C B(0,t — ¢) . This gives L‘"( (SoT™)(B(0,1)) ) < LM(B(0,t—¢)).
But L"( (SoT1) (B0, 1))) = det|S o T™!|a(n) (see Theorem 2.0.2).Thus,

det|SoT Ya(n) < L*(B(0,t—¢))
= a)(t-e"
That is,
|det S| < (t — €)™ |det T. (7.0.16)

Plugging 7.0.13 in 7.0.16, we get Jf (b) < (¢t —¢)" |det T'|. This proves the right hand
side of our Claim. Now in order to prove the other inequality we notice that by 7.0.15

1
we have that B (O, 7 + 6) C (S o T—l) (B(0,1)). Hence,

L <B <0, % + e>) < L((SoT™Y) (B(0,1)))
= det|SoT ! (a(n)).
This implies that
a(n) (% + 6) < det|S o T‘1| (a(n)) (7.0.17)
but,
1
det|S o T7!| = |det S| |detT ™| = |det S| T@ers (7.0.18)

Thus replacing 7.0.18 in 7.0.17 we get
1 "
|det S| > (Z + 6) |det T'| . (7.0.19)
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Plugging 7.0.13 back in 7.0.19, we get the inequality we want, and the claim is proved.
Let {E;}, = {E(c, Ti);ceC,TeSie N}. Fix b € B. First, we will show that
there exists 7' € S such that

Lip(ToS™) < (% + e) h (7.0.20)

and

Lip(SeT™) <t—e (7.0.21)

Since S is symmetric automorphism , then for any ¢ > 0 there exists T € S such that
|IT — S|| < €. This implies that

|(ToS™—1Id)oS|<c¢.

|[(T oSt —1d)o S ()]

|z|
for all y € R™ there exists an z € R" such that z = S~! (y) . Hence,

[(ToS7 —1d)oS(S ()| _
15~ (y) | ’

< ¢. But since S is bijective,

Thus, for all z € R™ we have

that is,
|(ToS™ —1Id) (y)| < €157 (y) | < € 1S {lyl.
If we divide both sides by |y| we get,

| (ToS™ —1d)(y)|
lyl

< €||S7Y|forally € R™

So, ||[T o8t —1Id| <€||S7Y, which implies ||ToS7'|| <1+ € ||S71||. Thus,

Lip(ToS™) <1+¢€|IS7Y. (7.0.22)
We want
1 -1
L+e||S7Y = (; + e) (7.0.23)
: A 1 :
, that is we want , 1 + ¢ ||S77|| = T This means,
T
1 A
e (1+€ IS ||) =1
Hence,
1 s )
T te 1570 n | +e+e ST =1,
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which implies

IS 1
€ (Ht_” +eHS‘1||t> =1- 7 ¢

Thus, for

_1_
; 1—3—c¢

€ =
[ - ’
(B0 4 e 52t

we have 7.0.23. Replacing 7.0.23 in 7.0.22, we get 7.0.20. similiar work gives us 7.0.21.
Next, let us show b € E (¢, T,1). First we show that b satisfies 7.0.11. Since

|f(a) = f(b) =Df (b) (a =b)|

‘lgrllj la — b] =0
€ . ‘
Then for Lip (T there exits ¢, such that if |a — b] < § we have
€
— f(b —_—. .0.24
£(@) =1 8)] < Ty (7.0.24)

2
Choose 7 such that = < 4 , then for alla € B (b, %) we get
i

f@-f®)-DfB)@-bh)| < f——la=b

Lip (T71)
— T @) T )
< poe L (T 1@ =T ()]
= €T (a—b)]|

Choosing ¢ € C such that |b—c| < % ( we can because C is dense in B). This shows

that b satisfies 7.0.11. Rest to show that b satisfies 7.0.12. Since Df (b)) = L =00 S
then, for all v € R™

IDf () (v)| = 1005 (v)]

1S (v) |

|SoT o T (v)]

|SoT™ (T (v)|

|ISo T (T (v)) = SoT (T (0))]
Lip|S o T H|Tw|

t—e|T (v)].

It

IAIA
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where the last inequality comes from 7.0.21. Also,

T (v) |

o
TN_NN
o O ©
w99
»—lr—-or—l

5]

=

This implies that

1 1
DI WIS 02 ford—esiT @) 2 (14 170

Where the last inequality comes from 7.0.20. This shows that b satisfies 7.0.12. So,

1Sw)| = |Df(b)(v)]
> <-i—+e) IT (v)].

As this conclusion holds for all b € B then B = U E,.
k=1

. Choose any set Ej which is of the form E (¢,T,i) for some c € C ,T € §,i € N. Let
T, = T. Using (7.0.12) we get

%m (a—b)| < |f(a)— f(B)| <t{Tk(a—b)| foralla,b € Ep.  (7.0.25)

1
Let us show that f [g, is one-to-onelf f(a) = f(b) ,then let ¥|T;c (a=b)] <0

, hence 1|T;c (a—b)| = 0, which implies that Tx (a —b) = 0 , and hence a =

b (because Tisa symmetrlc automorphlsm)
Let T, ' (z) = a and T, (y) = b, then using 7.0.25, we get that

I%Tk (T @) = T @) | < Uf e (T (@) = £ e T W) | S LI (@) - T () |
and hence,

Y=yl <IF 0Tt (0) = Fo T ()] < tho =l
Thus,

IfoTk (z) = foT, ()] <
|z — yl B

H~|D—l

Taking the supremum on both sides we get
Lip((f1g)oTy") <t
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and
Lip (Tio (f Ig) ") <t
Finally, notice that the Claim gives us the estimate
t"|det Ti| < Jf B, < t"|det Ty
O

Theorem 7.0.4. The Area Formula
Let f : R® — R™ be a Lipschitz function such that n < m. Then for each L™ measurable
set ACR"

/decnz/ HO (AN f7H{y}) dH" () .
A m

Proof. Using Rademacher’s theorem (see Theorem 5.0.5), we may assume that Df (z) and
Jf (z) exist for all A C R™ and L"(A) < oo. There are 2 cases to be considered :

Case 1: AcC {Jf(x)>0}.

Fix k > 0 and t > 1. Choose borel sets {E;}%2, as in Lemma 7.0.12 assuming that they are
disjoint. Define

[
|
o
I

Bk = {Q)Q: (a'17b1) X (a’25b2) X X (a‘nabn) , G4 ,ciintegers 77:: 1a2 7n}'

Set F; = E; UQ; UA;(Q; € By, j €NN), then the sets FJ’ are disjoint and A = U F]z To
i,j=1
see this, let

Ur = U @Euaua
ij=1 i,j=1

= Am(D Equi>

3,j=1

_ Am([‘jEjU[jQi)

= An{Jf>0}NR")
= An{Jf >0}
= A

Claim # 1: ’“h*%i;%n (f (F})) =/m HO (AN fH{y}) dH" (y).

Proof of Claim # 1: Let g = Z Xy(F1) 80 that gi (y) is the number of the sets F]’ ,
ig=1
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such that F} N f~*{y} # ¢. Then, by proof of Lemma 7.0.2, g (y) — H° (AN f~*{y}) as
k — o0, and

o) a1 ) = [ A (AN £ () 4 ).

m

lim
k—oo R™

Hence, using Theorem 3.0.9 we get

i [ S @@ = Jim S [ e i@
4=

ij=1
= m S (1(5) )
ij=1
Note that
i (F}) = f(B;NF)) = f(F;)
Then,

w(r(E) = (s o1 e (1 (7)) )
< (Lip(f Ig, oT;71)" H™ (T (F})) - (7.0.26)

J
Where Tj is as in Lemma 7.0.12. Using lemma 7.0.12 we get
e ( (F)) < 0 (T (F))
But since T} : R® — R then, H" (T; (F})) = L™ (T; (F})) - Hence, we conclude that
H™ (f (F)) <L (T; (F})) - (7.0.27)

Also by Lemma 7.0.2 we have,

(T () = (T (F)

= W (Tyo(f 1) of (F))

(Lin (0 (7 1)) o (7 (E))

< oW () (F)) (7029

IA

Thus, using 7.0.27 , 7.0.28 and 2.0.2 , and the fact that by Lemma 7.0.3 we have t™"|det T;| <
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Jf g, < t" |det Tj| we get,

A (f (F7))

7

7L (T (7))
= t"|det T;|L" (F})
= t"|detTy| [ dL”

F¢
i

_ / £ det Ty | L™
5

< /Jf g, dC”
i

= / JfdC”
Fi

t" |JdetTj]£" (F})
"L (T; (F;))
A1 (f (F)) -

IN

Now summing on ¢ and j we get

S () < [ 05 @) agr < S (5 ().

i,j=1 ,j=1

Let £ — oo and recall Claim # 1 to get

o [ A aew < [ I @ e < [ nAn ) i ).

m

Finally, send ¢ — 17 to get the equality

/AJf (z) dﬁnz/m HO (AN {y}) dH" (y),

and we are done.

Case 2: A C {Jf (z) =0}. Then/ Jf (z) dL™ = 0. We will show that/ HO (AN fH{y}) dH" =
A

m

0.Fixe>0.Let f=pog, where
g:R* — R*" x R™
z — (f (z),ex) for z € R™.

And,
p:R™ xR* — R™

(y,2) — y fory e R™, 2z € R™.
Then, pog: R* — R™

5 — pog(z) =p(f(2),ca) = £ (@).
Claim # 2: There exists a constant C such that 0 < Jg(z) < C¢; for z € A.
Proof of Claim # 2: Write g = (f*,---, f™, €x1, -~ ,€z,). Then,
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Dg(z) = (Dil(x))(mrm)xn.

Since (Jf (z))® is the sum of the squares of (n x n) subdeterminants of Df (z) according
to the Binet-Cauchy formula ( see Theorem 6.0.8), then (Jg (z))” is the sum of the squares
of (n x n) subdeterminants of Dg(z). Let us show that Jg(z) > €2 > 0, to see this let

Dy (e) - ((Df () (d)m) .

Then, det(el) = ¢™ , which implies that det? (eI) = €. Hence, (Jg(z))* > ¢*" > 0. Fur-
thermore, since |Df| < Lip f < oo, and we may use the Binet-Cauchy formula to compute
the following equation (Jg (z))* = (Jf (z))*+ { sum of squares of terms each involving at
least one €} < Ce?; for each z € A. In order to prove this inequality let

a11 Q12 s Qin
a1 a2 te Ain

Df(z) = | : : ; : |. Then, Dg(z) = a5 a: ’ a: :
n—1,1 n—-1,2 °°° n—1,n

An1 Qp-12 °°° Qp-1n € 0 . 0

and |Jg (z)| = ¢ |Df (z)| = Ce. Then
(Jg(2))2 < (cre+cae+ -+ cne)? = (c1+cr+ - +cn)’ = €2C.

Since p : R™ x R® — R™ is a projection, we can compute using Case 1,

H"™ (f (A)) H™ (pog(A))
H™ (p(g(4)))
(Lipp)™ H™ (g (4)). (7.0.29)

IN

Notice that Lipp < 1 thus we get,

H*(f(4)) < 1"H"(9(4))
= H"(g9(4))

= dH" (y, 2)
g(A)

< [ HANg @) a0,

= /A Jg (z) dL™
< CLM(A).

Let ¢ — 0, to get H" (f (A)) = 0. Since the support of H° (AN f7{y}) C f (A) then,

HO (AN fH{y}) dH" (y)

0 -1 dH™
/n'H (Anf {y}) dH" (v) /sptHO(Anf-l{y})

< / HO (AN F {y}) dH™ (3).
f(A)
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But H" (f (A)) = 0, this implies that / H° (AN f{y}) dH" (y) = 0. This concludes
f(4)
Case 2.

Now for the general case let A = A; U Ay where, A; C {Jf >0}, Ay C {Jf = 0}. Here

we can apply both cases to get, / Jf (x) dC™ = / HO (AN fH{y}) dH" (y) . Hence,
A R

/ Jf () dC™ + / Jf (z) dC"
AN{If>0) AN{J =0}

where the second part of the summand is equal to zero. Thus,

[ ar@de = [ wansi) o).
An{J >0} m
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Chapter 8

Change of Variables formula for H"

Let f: R® — R™ be a Lipschitz function (n < m) , then for each £" - summable function
g : R" — R we have

[ 9@ @ dc“=/Rm{ > o

dH" (y) .
z€f~1{y}

Remark 8.0.1. Note that using the area formula (see theorem 7.0.4) we notice that f~! (y)
is at most countable for H™ a.e y € R™. To see this, we have for all [ € N

/ JfdL"
B(0,)
|Lip fI* L™ (B(0,1))

(Lip )" an I™
00.

[ e @enNTw) arw

ARVANRVAY

Since the integral over f is finite hence f is finite H™ a.e ,which implies that

HO(B(0,1)N f' (y)) < o0 H"ae.

Notice that B (0,1) N f~1(y) is a finite set except on E; where H" (E;) = 0. Let E = U E
1=1
then

H" (E) < iw (E) = 0.
=1

Let y € E° then y € ﬂEf which implies that y € Ef ,V I. Hence, B (0,1) N f~ (y) is
=1
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finite V I. On the other hand,
fy) = R ﬂf‘1 ()

()

which is a countable union of finite sets, hence a countable set, thus f~!(y) is at most
countable for H" a.ey € R™.

Proof. 2 cases are to be considered for this proof.

1
Case 1: If g > 0 then there exist L™ measurable sets {Ax}32, in R™ such that g = Z 7 XA
k=1
Then, by the Monotone convergence theorem (see theorem 3.0.8) and by the area fomula
(see theorem 7.0.4 we have

21
/ngdﬁ” - /ZEM JfdL
" JR™ pq
=1
k ]Rn
k=1
= Zl / Jfdcr
k=1 k Ak
1
-y / H (A f7y)) dH" (9). (8.0.1)
k=1 Rm™
Moreover,
o0 1 n
Sop [ M (A ane Z LY w@are o2
k=1 R zef~{y} .

because, H° (A, N f{y}) = Z x4, (z) . Replacing 8.0.2 in 8.0.1 and interchanging

zef~Hy}
the sum since our functions are positive we get

Loraer = g [ F @ an )

=/R S o) dH ().

™ zef-Hy)
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Case 2: If g is any L™ - summable function, then g can be written as the sum of two positive
functions, let g = g* — g~. Now applying case 1 on gt and g~ we get

[otas@ar = [ 3 q@ar

zef~H{y}
and
/ g Jf(z) dC" = / S g (@) dH )
" R™ sef-1{y}

hence,
[ 9@ sr@acr = [ (g -g) Ifact
- [ @ @i - | g @ Jf@

the last equality comes from the fact that ¢* and g~ are £™ summable on R™. And hence,

) dH" (y / > g (z) dH™(
R™

" zef- l{y} )
—g7) (z) dH" (y)

/ng+(x) Jf (z) dﬁn—/ng— (z) Jf (z) dL =

™ zef- 1{y}

i
%\%\%\

) dH™ (y) .
" zef- 1{y}
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Chapter 9

Applications of the Area Formula

A- Length of a curve : (n=1;m > 1)).
Consider any injective Lipschitz function f: R — R™, and consider the curve
C = f([a,b]) C R™, where — 00 < a < b < co. Using the area formula, we show that the

b
length of the curve C is H}(C) = / JfdL", where Jf = |Df|.

Proof. By the area formula, we have

[aracr = [ #(ans (wh) )

= [ W edns @)+ [ H (a0 () )
R™N0f([a,b])

R™\f([a.])

Notice that the second part of the summand in (9.0.1) is zero, since for y € R™\ f ([a,b]),
[a,b] N f({y}) = 0, and thus H°([a,b] N f~' ({y})) = 0. As for the first part of the
summand, we recall that f is injective, and thus for y € f([a,b]), there exists a unique
z € [a,b] such that f(z) = y. Hence, in this case, we get that H® ([a,0] N f~' ({y})) = 1.
Therefore, plugging in equation (9.0.1), we get

b
[orac=[ 1) =#(f (o5) = H(©
a RN £ ([a,b])
O
B- Surface area of a graph:(n > 1;m =n+1).

Let g : R® — R be any Lipschitz function. For U C R™ open set define the graph of g over
Utobe G={(z,9(z)) ,z €U} Then,

H" (G) := Surface area of G

- /U (J£2)? dcn.
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Proof. Let f: R® — R™*!, be defined as f (z) = (z, g (z)) . Notice that f is Lipschitz since

1f (@)= fWl = [(z,9(z)) —(y,9 ()]
[(z —y,9(z) —g(v))l
< (14 Lipg)|z—y.

1 0 --- 0
Moreover, note that Df = [ ° : :
f 0 0o .- 1
d9 dg ., dg
dz; dzo dzn/ (n+1)xn

Now, we need to prove that (Jf)> = 1+ |Dg[*>. To simplify our calculations , let
us take a small example : Suppose g : R® — R and define f : R} — R* then

1 0 0
0 1 0
Di=lo o 1] >

dg dg dg
dz1 dza dr3/ 4x3

and by definition (JF )2 = sum of squares of 3 x 3 subdeterminants so that :
10 0\\’ 1 0 0\\° 0 1 0\\~
(JFY?=|det{0 1 0 +|det|l 0 1 0 +[det{ 0 0 1 +
0 1 dg dg dg dg dg dg

0
1
0 dr1 dxe dzs dry dzxe dzs
1 0 o0\\’
det{ 0 O 1

dg dg dg
dzx

dz; dzo 3

dg 2 dg 2 dg 2
_ 12 et et —Z

=1+ |Dg|*.

Now for the general case; if we have an (n+1) x n matrix, then by taking the sum of squares

2 2
of all n x n subdeterminants we will end up by getting (Jf)2 =1+ (d%%) 4.+ (d—'i%) ,
which is nothing but 1+ |Dg|?.

Using the area formula we have that / JfdL" = / HO(UN fH(y)) dH ().
U Rr+1

but /chw" = /(1+|Dg|2)%dﬁ"
U U

- / HO(UN f1(y)) dH (y) + / HO(UN f(y)) diip)
Rr+H1A(U xg(U)) R\ (Uxg(U))
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Notice that the second part of the summand in (9.0.2) is zero, since if there exists z €
Un f~(y) then , f(z) = y = (z,9(z)) and = € U implies that y € U x g (U) which is a
contradiction. As for the first summand, notice that f is one-to-one:

Suppose f(z1) = f(z2) then (z1,9(z1)) = (22,9 (z2)) this implies z1 = z3 and g (1) =
g(z2). Hence f is one-to-one which implies that H° (U N f~'(y)) = 1. Thus,

/ HO(UN fHy)) dH (y) = / 1dH"™(y)
R+1N(U xg(U)) Rr+H1IN(Uxg(U))

- /U LW (9.0.3)

But U x g (U) is f (U) hence, replacing 9.0.3 in 9.0.2, we get
[a@ar=[ are)= [ e -weo)=1e),
U Uxg(U) f)

O

C- surface area of a Parametric hypersurface (n > 1,m=n+1).
Consider any one-to-one Lipschitz function f:R™ — R™"!. Let U C R™ be an open set
and S = f(U) C R*". Then,

H™(S) = /[(Jf)z]% dC™ ; where (Jf)* = sum of square of n x n
U

n+1 1 k=1 fh+l n+1
a(fL,-, ’ e
subdeterminants of the (n + 1) x n matrix = Z[ ( B{x f P f )]2
1,70 3 Zn

K=1

Proof. Write f = (f%,---, f™*!) where each f*: R* — R is a Lipschitz function.Let us
calculate (Jf)°.

ost .. ot
dxy O0zn

Note that Df = : :
afn-{»l 3fn+1

oz, O0xn / (n+1)xn
First, let us take a small example on how to derive the formula of the Jacobian. For the

simplicity of calculations, suppose n=2, then f:R? — R?;

oft  oft
Df= oz 2~

oz Oz
ot af
Oz1  Oxz3/ 3x2

ot o\ \? ot o\ \? arr a8\ \”
then (Jf)* = <det (gg;; 3}53)) + <det (g;g o3 + | det| 5m 9%
bz Oz bz1  DOxp Bz3 Ozg

a(f%f?)r+ [M% [B(F,f?’)r

9 (x1, x2) 9 (z1,22)

a(‘rlij)

which is equivalent to [
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For the general case we have that for the (n+1) x n matrix , the formula of the Ja-
cobian means,that for each K |, the (n xmn) subdeterminant is the determinant of the
partial derivatives of f ; that is the partial derivatives of (f%,---, f™*!) with respect to
(z1,--+ ,z,) except for the k** one.

Now coming back to the application of the area formula we get that
/ Jfdcr = / HO(UN fF(y)) dH™(y)
U Rn+1
= / HO(UN 7 (y)) dH (y) +/ HO(UN fHy)) dHEH4)
]Rn-(-lr]f(U)

R*HI\f(U)

The second part of the summand in (9.0.4) is zero, since if z € U N f~! (y) then z € U and
f(z) =1y, thus y € f(U) which is a contradiction. And since f is one to one then

HO(UN f(y)) dH"(y) = 1

Hence the first part of the summand implies that

/ aHy) = / H™(y)
Rr+inf(U) FU)

= H*(f(U))
= H(S).
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