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ABSTRACT 

 

 

Keywords: expert systems, knowledge acquisition and management, scheduling, web service, 

decision support system, academic advising 

 

 

Student academic advising is an educational decision support process required nowadays to 

be automated for both the student and advisor to speed up the planning process of course 

registration by finding out the optimal sequencing or prioritization of students degree 

requirements to enrol in for next semesters based on their academic standing in a way that 

suits students’ interests and meets overall graduation requirements within a time frame. This 

thesis integrated all the rules and constraints from all precedent references relevant to this 

subject that impacts the scheduling process and proposed a hybrid of model-driven and 

knowledge-driven decision support system (DSS). Model-driven DSS is based on 

interoperability between JESS inference engine and Java engine whereas knowledge-driven 

DSS is based on discovery of new knowledge or patterns using data mining techniques. The 

solution is named Course Schedule Advisory Expert System (CSAS) implemented as a Web-

based application as well as mobile application deployed on android smart device. CSAS 

analyses data in knowledge systems and allows students to seek quick responses to their 

queries regarding their plan of study and progress in the program. Technically, inference 

engine is a hybrid of rule-based engine using JESS (Java Expert System Shell) and 

knowledge-driven (data mining) based engine using RapidMiner-java libraries. JESS uses 

Rete algorithm which processes rules and facts in its working memory to generate feasible 

course registration plan for next semesters of the uncompleted requirements according to 

contract sheets of each major. JESS version 8 is a Java–based rule engine and scripting 

environment that supports android platform unlike precedent versions that supported only 

Java platform (NetBeans). JESS allows dynamic knowledge management in real time. 

Application retrieves student information from SQL Server knowledgebase database via web 

service application deployed on a communication server for further processing by 

computational model before rendering results in the GUI component of implemented 

application whether it’s Web-based or mobile-app. The results of the developed prototype 

revealed that the model generated accurate results according to system specifications and 

implemented rules. 
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Chapter 1 

Introduction 

 

1.1 Introduction to the general problem 

Academic institutions offer their students a variety of programs from which a student may 

choose his domain, register and satisfy requirements of degree in order to eventually obtain a 

degree [10]. The student has to satisfy all required courses which are categorized into four 

types: Core Requirements, General Requirements, Major Requirements and electives. Course 

registration is an integral aspect of student academic advising where students make decisions 

on the choice of courses to take in specific semesters based on their current academic 

standing. It’s a course schedule planning process of assigning students to courses that satisfy 

their respective curricula [1]. Automating this process in a form of DSS tool is a need to both 

students and their advisors. 

 

1.2 Problem definition 

The complexity in course schedule planning process is due to the increased number of 

sequencing rules (e.g., prerequisites) that need to be satisfied by the student. Finding an 

automated solution is a need for both students and advisors because such complexity may 

guide the advisor while planning student’s requirements (throughout his graduation period) to 

fall in mistakes prohibiting the student from timely graduation [1].  

Such automated process is divided into two tasks, the first task is structured in retrieving the 

non-satisfied requirements and the available class schedule for a student and less structured 

when sequencing these requirements over all semesters of graduation period according to 

predefined rules and constraints. The sequencing of courses is a less structured and 

mechanical than the extraction of non-satisfied requirements [7]. 

 

1.2.1 Problem of student advising and course planning 

Some of the shortcomings in the process of student advising and course planning: 

 Student advising becomes an iterative task and a heavy burden on the academic 

faculty [10] 

 Instability in requirements that change often which requires advisors interference to 

update them [10] 
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 The existing set of requirements is often inconsistent, which make its interpretation 

ambiguous and highly subjective especially when planning courses for next semesters 

 Variation in degree requirements and types of course offering vary from one 

department to another (variation in facts by department) 

 Rules are subjected to be changed rapidly by the faculty (particularly "last minute" 

changes) [10] 

 Variety of exemptions (exempted courses),  

 Substitution of courses: students who have taken certain sophisticated mathematics 

courses, for example, are sometimes exempted from college algebra and/or business 

calculus. Such decisions can only be made by university personnel [7] 

 Equivalences: differences in transferable units of different universities, 

 

1.2.1 Course planning challenges 

Although, this process may encounter some challenges due to many factors that may cause 

mistakes during scheduling process such as the: 

 Availability of classes: system cannot take into account when required courses will be 

offered. Certain courses are offered only during certain terms, such as only during the 

fall semester. When the DSS produces its prioritized eligible course listing, it assumes 

that all courses are immediately available [7].  

 Course content issues such as case of the two courses having similar priority and 

similar role as prerequisites for higher courses [7]. A student may dislike taking 

related courses together in the same semester. For example, DSS may suggest to 

schedule both macroeconomics and microeconomics courses in same semester [7]. 

 Individual attributes of students such as case of a student having some weakness in a 

recommended course for registration by system and prefers postponing it to next 

semester 

 

1.2.2 Need for interactive course planning DSS 

Here comes the need for a system that should overcome the above mentioned problems and 

plans the student’s remaining degree requirements and meet his preferences. System should 

store information about domain problem in a repository or knowledge base, processes data 

and generates results. For example, system has to find the remaining unsatisfied 

requirements, filter for eligible courses, apply the business rules and interactively suggests 
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alternatives, verify and accept the student’s requests and schedule the desired courses [10]. 

System should have an interactive graphical user interface to display degree requirements of 

a student, recommended plans of study, generated schedules and allows planner to input his 

preferences or wishes as parameters which impact the output of system. For example, a 

student may plan to graduate within 3 or 4 years or inputs the number of credits per semester 

or postpone some courses for next year, etc... Such choices are allowed as long as his/her 

plans doesn’t conflict with the following specifications: 

 University and departmental regulations must be satisfied, for example: prerequisite 

must be taken before its consequent, number of courses taken must be within the 

bounds 

 Individual preferences of student must be considered—e.g., total number of credits 

taken must be within the specified limits, preferences, etc… 

 The recommended set of courses must be scheduled without any type of conflict 

 

Such as system has the characteristics of a decision support system. Turban (1995) defines 

DSS as "an interactive, flexible, and adaptable computer-based information system, 

especially developed for supporting the solution of a non-structured management problem for 

improved decision making [3]. 

 

1.2.3 Need the best fit programming paradigm for problem solving 

In general, the choice of a convenient programming paradigm is an important matter for the 

modelling of any problem in real world. If the course schedule problem is classified as a non-

structured problem, then the developer may encounter some challenges during the 

implementation phase in case the adopted programming paradigm doesn’t support the 

optimal approach to problem solving. The developer tries to compose the problem by writing 

code that describes in exacting detail the steps that the computer must take to accomplish the 

goal, but managing the problem of the increased number of rules and managing the priority of 

these rules impacts course sequencing process and may make it difficult for developer to 

model the problem by an explicit detailed algorithm or explicit sequence of code statements.  

 

1.2.4 Need for automation 

The automation of this complex process is a need for both students and their advisors in 

reducing the frustration on the part of students and providing timely and reliable course 
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registration schedule for each student to register at the beginning of a new semester. Also, it 

eases the burden on advisor instead of iterating again and again the same task which becomes 

a time consuming and monotonous process [6]. It removes the time consuming tasks 

associated with course registration and allows advisors to concentrate on more complex 

advising functions. Moreover, automating the ordering of courses minimizes the amount of 

time required to complete the degree by ensuring that prerequisites are completed prior to the 

time the student needs to enrol in a particular required course [7]. 

 

1.2.5 Need for dynamicity and extensibility 

 

Due to the aspect of variation in changing requirements and the rules set by advisors, the 

proposed system should take into consideration the need to dynamically manage knowledge 

and rules and stay away from any form of static knowledge management because this costs 

continuous modification to the code of the program. So, the system should read the rules as 

inputs and all data relevant to the domain problem (knowledge base) from external resource 

and process them in real time. Our system adopts the methodology of dynamic knowledge 

management mentioned in thesis [2] where rules and facts are dynamically formed prior to 

being further processed by model base component. For example, the degree requirement rule 

is a form of dynamic rules that changes overtime. Courses may be substituted or their 

prerequisites may change with time. Also, system can be designed extensible by saving the 

rules modelled in the programming paradigm in knowledge base database.  

 

1.2.6 Need for accuracy 

The automation of course schedule planning process of the proposed system must guarantee 

to generate a feasible schedule plan for the problem of course planning by generating a 

proper sequencing of courses based on predefined rules. System should suggest timely course 

schedule planning within graduation period of a student, adhere to the rules that sequence the 

courses and schedule courses, overcome class time conflict, propose more than one schedule 

plan and extends the insight of advisor by analysing the impact of affinity between courses 

scheduled within same semester on performance of students based on historical data using 

data mining association algorithm.  
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1.3 Thesis organization 

The next part of the thesis is described as follows: In section 2 we define expert system and 

its benefits in academic advising. Section 3 introduces knowledge discovery process and data 

mining techniques. Section 4 elaborates on related work and all the exerted effort in CSP 

problem. Section 5 details personnel work and contribution of my thesis. Section 6 reports a 

trial evaluation of the developed prototype.  Section 7 combines conclusions and future work. 
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           Chapter 2 

        Expert System 

 

2.1 Definition of artificial intelligence 

Artificial Intelligence is the field that seeks to "build systems that exhibit intelligent 

behaviour and perform complex tasks with a level of competence that is equivalent or 

superior to the level currently exhibited by human experts" [6]. 

 

2.2 Definition of an expert system 

Expert system is one of the components of artificial intelligence developed with the objective 

of solving complex tasks by processing data stored in the knowledge base database thus 

improving efficiency and speed. Expert system captures the technical know-how of an expert 

into a knowledge-base which can then be analysed by computer systems to arrive at solutions 

thus freeing the expert to devote his/her time to more pertinent problems [6].  

Edward Figenbaum [11], the father of expert systems, defines expert system as "an intelligent 

computer program that uses knowledge and inference procedures to solve problems that are 

difficult enough to require significant human expertise for their solution." 

In academic advising, the faculty advisor suffers from doing the same repetitive tasks in 

course registration and student advising. It’s needed to free up his time to focus on more 

important matters such as choice of electives, career options, life career goals, etc… 

The purpose of using an expert system is to provide decision support for advisor and not to 

replace the advisor. Applying expert system in academic advising domain requires capturing 

the knowledge of the advisor in the knowledge base component of an expert system. Expert 

systems are built for the purpose of handling complex problems such as course schedule 

planning problem. 

 

2.2.1 Expert system components 

An expert system typically includes two main components knowledge base and inference 

engine (model base). The knowledge base is the repository of pertinent knowledge related to 

the problem that the expert system purports to solve. The inference engine interprets the 

knowledge using algorithms and rules to provide solutions [6]. The third component of an 

expert system is its interactive graphical user interface (GUI). 
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The knowledge engineering and software development tasks involved in constructing 

software for an expert system are very different from the task of designing an imperative 

program. Some of the problems in the construction of a rule based expert system include 

deducing or inferring the heuristics of the expert, converting these heuristics into a working 

taxonomy and rule base, and ordering the rule base so that the system performs efficiently 

and correctly [12].  

 

 

    Figure1: Software Engineering Flowchart 

2.2.1.1 Knowledge engineering phase 

In general, knowledge engineering is the process of organizing the knowledge gathered by 

knowledge engineer based on a set of interviews done with domain experts. In academic 

advising domain, experts are the advisors of faculties. Knowledge engineer has to deduce 

from the expert work the heuristics and the data base which are transformed later into a rule 

base.  The objective of knowledge engineer is to bridge the gap between interviews of 

domain expert and rule base which is not an easy task [12].  

The problem of representing the gathered knowledge has been resolved by representing 

knowledge in a form of a pictorial tree called “k-tree” (knowledge tree). The form of “k-tree” 

carry all the information of the if-then rules and group rules that have common antecedents. 

Each branch of a “k-tree” corresponds to a rule, the leaf represents the consequent and parent 

node represents the antecedent. This “k-tree” notation is also used as a mean to document 
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gathered knowledge of the expert. The “k-tree” notation, helps also to lead the knowledge 

engineer, in a systematic way, to a complete exploration of the heuristics. 

In our advising system, the antecedents include the student’s class, the semester, courses the 

student has taken previously, and so on. The consequents are often, but not always, course 

recommendations [12]. 

 

Figure 2: “k-tree” notation 

2.2.1.2 Software engineering phase 

After finalizing the process of representing the grouped heuristics and data base of an expert 

using “k-tree” notation, next objective of the knowledge engineer is to embody this domain 

knowledge in a software program. Before starting in programming phase of a rule based 

system, it’s required to construct the final taxonomy and construct the rule base. All 

antecedents of rules must appear in taxonomy. Construction of the rule base comes after 

completing the final taxonomy and this is done by grouping the “k-trees” by advice type 

which leads to logical grouping of rules. The “k-tree” notation helps in spotting repetitive 

rules and by creating new properties for similar property values of same nature or type of the 

existing ones in sub-“k-trees” to consolidate or merge sub-“k-trees”; consequently, this eases 

the contraction process of the k-tree and generates a more optimized non duplicated rule-

based tree [12]. For example, the offered course in each sub “k-tree” is different; so, we can 

create a new property named “current” and then merge the sub “k-trees”. Similar to concept 

of inheritance in Object Oriented Programming where generalization requires maximizing the 
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commonalities and specialization requires maximizing differences. The commonalities are 

the similar property values in different sub “k-trees” are consolidated into a new property 

name. By accomplishing task of grouping the “k-trees”, the construction of taxonomy 

(classification) is finalized and the rules can be written down. Next step is to implement the 

rules using a declarative style programming language that support inference type such as 

LISP, PROLOG or JESS. 

 

Figure 3: Knowledge Engineering Flowchart 

      

 

 

 

 

 

 

 

    

Figure 4: Antecedent/Consequent Relation 
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                   Figure 5: An Instance of Antecedent/Consequent Relation 

 

2.3 Need for inference engine in academic advising 

In academic advising, there exists complex problems that require inference aspect in order to 

be solved. For instance, the deepest layer rule in academic course schedule planning is a good 

example where we try to find the layer position at which a prerequisite stands in a chain of 

prerequisite courses. For any given course, inference engine checks if a course is a 

prerequisite to another course (of another layer). If yes, the process proceeds and again the 

deduced core-course becomes the prerequisite of another core-course in other layer and so 

forth. So, inference is a need to deduce at each level the course(s) of each prerequisite at its 

current layer with the minimum use of control flow statements. For structured problems in 

academic advising such as computing the remaining non-satisfied courses, imperative style is 

enough to state explicitly the sequence of steps of in a simple algorithm. For these reasons, 

we found that the domain of student advising and course schedule planning is amenable to 

benefit from features provided by both styles of programming paradigms: declarative style 

supported by inference type and imperative style. Inference feature exists in many declarative 

programming paradigms as mentioned before but not all (SQL is a declarative programming 

paradigm but doesn’t have inference feature); so, our inference engine for academic advising 

could be a hybrid of imperative and declarative (with inference type feature) to tackle 

structured and less structured problems. 

 

2.4 Programming Paradigms (algorithmic vs. declarative style) 

Mainly, there are two styles of programming paradigms or approaches for problem solving: 

imperative (algorithmic programming) and declarative (functional programming).  In 

algorithmic paradigm, the execution of statements or commands is ordered, detailed and 

Calculus I 
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Calculus II 

not taken 

Calculus III 

not taken 

No differential equations 

No fundamental concepts 

No advanced calculus 

 

Take fundamental 

concepts 

Take diff. eq. and 

Fund. con. 

 

Take diff. eq. and 

Fund. con. 
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explicit using control flow statements (If, While, etc…) which control the flow of execution. 

The focus in imperative approach is in how to perform tasks (algorithms) and how to track 

changes in state. In declarative paradigm, the sequence of computation or the control flow is 

implicit and the focus is on what information is desired and what transformations are 

required. If the problem is structured then it’s recommended to use the imperative style. If the 

problem is less or unstructured and it’s difficult or ambiguous to specify a detailed and 

controlled sequence of execution, it’s recommended to use declarative style where the 

developer states what the results should look like and not how to obtain it. In academic 

advising, there are lot of difficult and unstructured problems as well as structured problems. 

For example, paper [7] classifies extraction of eligible courses from knowledge base database 

as a structured problem by just retrieving from database by a simple query the courses 

marked as eligible whereas sequencing of courses is considered as a less structured problem. 

Paper [10] gives more examples about difficult problems which requires declarative style to 

solve them such as: the form of degree requirements (could be a course, training, etc…) and 

types of course offerings vary considerably from one department to another, last minute 

changes to rules occurs rapidly, variety of exemptions, substitutions, equivalences, rules of 

thumb, etc..  

Certain tasks or functions can be solved using imperative style such as matching the 

requirements with courses taken so far. Scheduling of courses comes after sequencing them; 

scheduling a set of sequenced courses requires implementation in an efficient algorithmic 

style. Also, the deepest level rule, which we will elaborate more in a later chapter, is one of 

the rules that impacts the sequencing of courses and considered as a complex task due to 

challenges a developer may encounter during implementation in case of adopting the 

imperative style. Such task may require using too many nested control flow of execution 

statements (if/then or for/loop or while) because the knowledge structure of such task is like a 

tree view with too many branches to find the longest path. Modelling such task in imperative 

approach is a difficult for developer whereas applying the declarative approach such as the 

rule-based inference engine is much feasible to find out by deduction the deepest level of a 

course in a chain of prerequisites. In fact, implementation of some rules in course scheduling 

problem require imperative approach (rules pertinent to semester-scheduling of courses such 

as requirement type pattern rule) whereas other rules require declarative style (rules pertinent 

to sequencing of courses such as deepest level rule). So, it’s important to select appropriate 

programming paradigm to implementation of scheduling and sequencing rules. 
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Example of imperative languages: C#, Visual Basic, C++ and Java whereas SQL, PROLOG, 

JESS are examples of declarative languages but SQL doesn’t have rule-based engine Instead 

of telling explicitly the computer what steps to executed to achieve the goal, the computer 

(compiler) is working harder doing this by itself. Declarative style is an advantage because it 

abstracts the use of control flow statements.  

In conclusion, we conclude that both styles of programming paradigms are necessary in order 

to model both structured and unstructured problems in academic advising; so, the model 

component of our DSS will be a hybrid of both approaches the declarative (rule-based 

engine) and imperative programming paradigms. 

 

2.5 Expert system benefits 

A rule based expert system supports extensibility and dynamic management of knowledge 

features in which rules and facts can be modified and extended in an external resource file 

before being loaded and processed by the rule-based inference engine of an expert system. 

This feature is an essential need in academic advising domain as we mentioned before the last 

minutes changes to rules by faculty. In imperative programming paradigm, rules are specified 

in terms of an explicit hard coded algorithm and any new changes to rules cost changes to 

source code of the program (intervention of programmer, testing changes, compilation, 

etc…). In addition, benefits of an expert system include increased efficiency, reduced costs, 

improved decision-making, and preservation of expert knowledge. Expert systems have been 

developed using LISt Processing (LISP) and PROgramming in LOGic (PROLOG) [6]. These 

languages are fairly simple and highly flexible. How-ever, the necessity of shortened 

processing times and the advent of increased computing power at lower costs have 

engendered a move to more recent programming languages such as Java. Java-based Expert 

System Shell (JESS) is a rule engine written in Java that facilitates easy inter-operability and 

data exchange between the rule engine and Java-based applications [6]. 
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Chapter 3 

Contribution of KDD in CSP Problem 

 

This chapter presents the contribution of knowledge discovery in databases (KDD) process in 

course schedule planning problem.  

 

3.1 Necessity of KDD 

In dynamic databases, new transactions are appended as time advances. The data volume 

growth is in continuous increase in educational databases. Knowledge discovery can help by 

applying new techniques and tools that can intelligently and automatically transform the 

processed data into useful information knowledge.  

 

3.2 KDD or data mining? 

Many publications use the term Knowledge Discovery in Databases as a synonym for Data 

Mining. In fact, they are not the same. Paper [15] presents a formal definition of knowledge 

discovery process (KDP): “It is defined as the nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data.”  

Among the definitions of Data Mining: “Data mining is one of the processes of Knowledge 

Discovery in Database (KDD) that is used for extracting information or pattern from large 

database.” [13] and “The non-trivial extraction of implicit, previously unknown and 

potentially useful information (such as rules, constraints and regularities) from data in 

databases.” [14].  

 

Data mining is a particular step in KDP as shown in below figure. The previous steps in KDD 

such as understanding of problem domain, understanding of data and data preparation 

(selection and cleaning) are essential to ensure that knowledge is derived from the data. 
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                        Figure 6: An Overview of the steps comprising KDD process 

 

3.3 Data Mining Techniques 

As of paper [14], several typical kinds of knowledge can be discovered by data miners, 

including association rules, characteristic rules, classification rules, discriminant rules, 

clustering, evolution, and deviation analysis. Among all these data mining techniques, we 

will focus on identifying association rule mining that discovers hidden knowledge in 

database.  

 

3.3.1 Association rule mining 

In fact many papers addressed in detail the algorithm of association rule such as [13] and 

[14]; so, we will focus on its specification and how we can employ such concept in course 

schedule planning problem. 

 

In short, the association rule mining problem is to find out all the rules in the form of X => Y 

(antecedent => consequent) in a given number of transactions in a dynamic database, where 

X and Y ⊂ I are sets of items, called itemsets. The association rule discovery algorithm is 

usually decomposed into 2 major steps. The first step is to find out all large itemsets that have 

support value exceed a minimum support threshold which are called also frequent itemsets 

and the second steps is find out all the association rules from the itemsets generated in first 

step that have value exceed a minimum confidence threshold [13]. For example, consider the 

occurrence of items A, B, C, D and E in four transactions in a database table: 
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Figure 7: Support Count of All Elements of Itemset 

All subsets of itemset I must exceed the minimum support threshold (usually 22% of total 

count of transactions). This means each subset set of I must have a minimum frequency of 

repetition 22% (for example). 

 

Procedure of generating association rules from frequent itemsets is the following: 

For every nonempty subset s of I, the output rule “s  (I - s)”  

if support_count(I)/support_count(s) >= min_conf 

 



17 
 

Suppose I = {B, C, E} and the minimum confidence threshold is 70% and minimum support 

40%: 

Set I satisfies the minimum support condition because it has support of 2 in 4 rows dataset: 

2/4 = 0.5 => 50% (>= 40%). 

 

Rule “s  (I - s)” support_count(I)/support_count(s) Confidence Decision 

R1 B ^ C  E 2/2 100% Accepted 

R2 B ^ E  C 2/3 67% Rejected 

R3 E ^ C  B 2/2 100% Accepted 

R4 B  E ^ C 2/3 67% Rejected 

R5 E  B ^ C 2/3 67% Rejected 

R6 C  B ^ E 2/3 67% Rejected 

 

Only 2 rules (R1 and R3) out of 6 association rules satisfy minimum confidence condition. 

According to this dataset example: 

 R1 accepted: when items B and C (antecedent) exist together then there’s 100% 

(exceeds 70%) confidence that item E (consequent) will be also present 

 R3 accepted: when items E and C exist together then there’s 100% confidence 

(exceeds 70%) that item B will be also present 

 

3.3.2 Benefits and application of association rule 

Paper [17] provides an example of applying association rules in domain of market basket 

analysis in supermarkets. Consider a supermarket setting where the database records items 

purchased by a customer at a single time as a transaction. The planning department may be 

interested in finding “associations” between sets of items with some minimum specified 

confidence. Such association might be helpful in designing promotions and discounts or shelf 

organization and store layout. For example, a planner may be interested to: 

 

 Know the confidence factor of transactions that purchased bread and butter also 

purchased milk. 

 Find all rules that have “Diet Coke” as consequent. These rules may help plan what 

the store should do to boost the sale of Diet Coke. 
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 Find all rules that have “bagels” in the antecedent. These rules may help determine 

what products may be impacted if the store discontinues selling bagels. 

 Find all the rules relating items located on shelves A and B in the store. These rules 

may help shelf planning by determining if the sale of items on shelf A is related to the 

sale of items on shelf B. 

 

3.4 Advantage of employing association rules in course schedule planning 

Each student is supposed to obtain a scheduled academic plan on his remaining unsatisfied 

courses. Advisor, as well as students, need to run the DSS to review the recommended 

courses by the system and advise the advisee accordingly. A further analysis can be 

performed by advisor on recommended set of courses for next semester by applying the 

association rule-mining technique on historical data of students who have taken within same 

semester all or a subset of these recommended courses. The objective of applying the 

association rules is to elicit which sub list of courses have a high affinity or high confidence 

ratio of being present together within same semester. This preliminary result will be 

employed in analysing the impact of high affinity between courses on the performance of 

students. 
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Chapter 4 

Related Work 

 

Traditional information systems that provide simple services like access to students' current 

term enrolment, the GPA, units earned, and some mentoring resources lack major important 

features to facilitate effective academic advising. Typically, such systems do not support the 

student academic decisions in the development of her total academic potential. Many 

decisions that must be taken by both the student and the advisors are not supported by these 

systems [5]. 

 

In this section, we present an overview of the related works pertinent to advising system 

precisely the educational decision support systems which are based on inference engine 

expert systems and data mining techniques that address the course scheduling problem. Such 

systems were designed to provide intelligent advice and a true decision support for students 

and advisors by processing specific student information and recommending for next 

semesters a course schedule plan for that particular student. 

 

4.1 Introduction 

 

A brief description on each of the most relevant papers in domain problem: 

 

Web-based Expert System for Class Schedule Planning (CSP) Using JESS was reported in 

[2]. This is a web-based DSS based on JESS inference engine aims to help advisor and 

student to develop a course schedule plan while fitting individual’s interests such as courses 

students may try to avoid or postpone their registration, time availability, concentration, and 

number of units per semester. CSP automatically checks the degree requirements and 

available class schedule dynamically to produce a set of schedules that fits the students’ 

needs. Each schedule includes a detail class schedule for next semester and a multiple 

semester plan of classes that students should take to meet graduation requirements. The 

unique and new technical contribution of CSP system is that unlike most other expert systems 

that require static expert knowledge this expert system allows dynamic management of 

knowledge by administrator in real time using web interface. CSP supports two sets of 

features for its users: students who seek class scheduling advice, and administrators who 

perform knowledge management tasks. 

 

A hybrid model of an RBR-CBR Course Advisory Expert System (CAES) was reported in [1]. 

This paper is another attempt that tries to provide an automated solution for the complex 
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problem of course schedule planning in academic advising. It introduces the case-based 

reasoning model (CBR) which is a concept of AI-problem solving that relies on knowledge 

gained from previous problem-solving episodes to resolve new problems once sufficient 

similarity between the current case (problem) and previously stored cases have been 

established. The inference engine of CAES is a hybrid engine of a rule-based reasoning (RBR 

implemented using JESS) and case-based reasoning (CBR).  

 

A Decision Support System for Academic Advising was reported in [7]. This paper focuses on 

functional requirements of a DSS by proposing three hierarchical sequencing rules for 

courses at the cost of its implemented software architecture which can be a better one in 

terms of database and user interface. It presents design of the database table that stores 

student’s degree requirements and status of each course and linked to its prerequisites. Also, 

DSS generates four types of reports. 

 

A Simple Decision Support Tool for university academic advising was reported in [5]. This 

simple DSS is a spreadsheet-based decision support tool using VBA scripts for Microsoft 

Excel. It describes the advising process in Effat University as an example of undergraduate 

pre-registration advising process.  

 

Expert System for Student Advising using JESS was reposted in [6]. A JESS expert system 

that separates the rules stored in XML file from the execution. Users are able to customize or 

extend the system by updating the XML file that stores the rules. 

 

An Academic DSS for Student, Course and Program Assessment was reported in [8]. The 

paper describes capabilities of a performance based academic decision support system 

(PADSS) with some built-in data mining capabilities like analyses of students in ‘graduated 

position’ with respect to CGPA and ACT/TIU, analysis of the state of a course based on 

grade distribution, etc…. It allows the filtering and presentation of data in suitable forms and 

graphical representations (visualizations) more easily understandable by concerned advisors. 

 

A Knowledge-Driven Educational Decision Support System (EDSS) was reported in [9]. This 

paper presents the challenging issues in the educational knowledge discovery process 

emerging from the flexibility of a semester credit system. It mentions five types of decision 

support systems such as data-driven, model-driven, document-driven, knowledge-driven and 
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communication-driven. This DSS is about providing support to decision of education 

managers about students who have a poor study performance should they stop or should they 

be given the chance to extend their studies one more semester. System architecture is a web-

based knowledge-driven DSS with DBMS relational databases. System is a knowledge-

driven DSS; it employs the various data mining techniques such as classification, clustering 

and association rules.  

 

4.2 What is JESS? 

 

JESS is a rule engine and scripting environment written entirely in 

Oracle's® Java™ language by Ernest Friedman-Hill at Sandia National Laboratories in 

Livermore, CA. JESS is available at no cost for academic use and can be licensed for 

commercial use [4]. JESS is a tool for building expert system shell [2]. The expert knowledge 

and user inputs are stored as rules and facts in the JESS knowledge engine. JESS uses the 

Rete algorithm to match the rules and facts and generate new results. Java has been chosen to 

implement CSP mainly because JESS is implemented by Java and Java can interact directly 

with JESS which eases the interoperability process between JESS and Java. Also, Java can be 

easily ported to run on various operating systems although CSP was developed in a Windows 

environment. 

4.2.1 JESS Facts and Rules 

An expert system relies on a set of facts and rules to make decisions. In CSP, facts and rules 

are formed dynamically according to user request and current program information. Facts in 

CSP include the detail schedule data for the next semester, the course information, and the 

user-defined parameters. In CSP, All the facts are dynamically generated from the XML fact 

data either stored in the data files, loaded in real-time from school website, or entered by 

users. For example, CSC 201 starts from 5:20 to 8:20 pm on Monday only. CSP only requires 

the day, time, and the course name to generate feasible schedule. Other information, such as 

location and instructor, is for display purpose only. The JESS fact for this class would be: 

 

(assert (opencourse (name "CSC 201") (section "1") (call_num "41453") (seat 0) (day "M") 

(start 1730) (end 2020) (location "RVR 1008") (instructor "Zhang C")) 

 

Rules in JESS are a list of actions waiting to be triggered when the required condition(s) are 

satisfied. Because CSP allows an administrator to change the degree requirements from an 

http://java.com/
http://www.sandia.gov/
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interface, the degree requirement rules must be generated dynamically to reflect the update. 

For example, students must take all the Core area courses. The following is an example of the 

Core requirement rule: 

 

(defrule satisfy_core 

(declare (salience 950)) 

(course_taken (name "CSC 201")) 

(course_taken (name "CSC 204")) 

(course_taken (name "CSC 205")) 

(course_taken (name "CSC 206")) 

(course_taken (name "CSC 209")) 

(not (core_passed yes)) 

=> 

(assert (core_passed yes)) 

 

Dynamic generation of above rule means that the XML translator translates above rule 

(satisfy_core) to a JESS rule by constructing dynamically the conditional part of the rule by 

appending fact condition “course_taken” to each course read from XML facts source file. 

“course_taken” fact verifies if the slot value "CSC 201" exists in working memory of JESS or 

in fact “course_taken”. Although, I may suggest an alternative way to write this rule in a 

static form using JESS function accumulate function which counts the number of non-

completed courses in a fact named Course containing two slot values (CourseNo and 

CourseStatus).  

 

Note: CourseType = 2 (core course), CourseStatus = 1 (course completed) 

 

(defrule satisfy_core 

  ?CountUnSatisfied <- (accumulate (bind ?count 0) (bind ?count (+ ?count 1)) ?count  

                    (Course (CourseType 2)  

                                                      (CourseStatus ?CourseStatus &:(neq ?CourseStatus 1)) ) 

                                       ) 

 =>  

  (if  (= ?CountUnSatisfied 0) then 

  (assert (core_passed yes)) 

  ) 
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4.2.2 Prototyping with JESS 

JESS provides a command line interface (CLI) and application programming Interface (API). 

The CLI is an interactive command console program and it actually calls the CLI batch 

function for every interaction. The API typically requires a lot of hard coding and is not so 

suitable to create dynamic facts and rules. However, the batch function of the JESS API is 

most efficient for loading and defining the rules and facts in a program. The batch function of 

the JESS API allows the facts and rules to be saved in a file which can be updated 

dynamically. As a simple prototype, we save nine facts and one rule in a fact-rule data file in 

plain text format. 

The following is a sample output of the simple JESS prototype. The first three lines state the 

results of the rule indicating the three classes that has passed the prerequisite rule. The rest of 

the output is the verbose JESS output specifying the nine facts from the data file [2]. 

 

You can take csc275 

You can take csc258 

You can take csc255 

f-0 (MAIN::course (name csc255) (prereq csc175)) 

f-1 (MAIN::course (name csc258) (prereq csc175)) 

f-2 (MAIN::course (name csc275) (prereq csc175)) 

f-3 (MAIN::course (name csc175) (prereq none)) 

f-4 (MAIN::taken_course (name csc175)) 

f-5 (MAIN::taken_course (name csc205)) 

f-6 (MAIN::taking_course (name csc255)) 

f-7 (MAIN::taking_course (name csc258)) 

f-8 (MAIN::taking_course 
 

4.3 Architecture 

 

In general, CSP is composed of two components: (1) framework implemented with a subset 

of Java technologies and (2) JESS engine. The framework provides JESS facts and rules for 

the JESS engine which acts as the core intelligence to generate the schedule results. 

 

CSP architecture includes four main server components: 

• Apache Web Server: listens for web page requests. 

• Tomcat Servlet Engine: serves dynamically generated web page using JSP and Servlet 

technology. The java server page (JSP) that contains HTML design code and business logic 

in java is converted to a servlet class in real time. An instance of servlet class is executed by 

Tomcat Servlet engine. 
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• CSP Business logic: processes the schedule request and translates the request into JESS 

language. 

• JESS Engine: processes the incoming JESS language and return the expert advising result. 

Tomcat Servlet Engine, CSP Business Logic, and JESS Engine are running under the same 

JVM (Java Virtual Machine).  

 

Figure 8: CSP system data flow 

 

CAES is a 3-tier web-based architecture: 

1. Presentation layer: web browser in presentation layer which communicates with 

middle later through HTTP protocol. 

2. Middle layer: Webserver, CBR and RBR engines in middle layer. Middle layer 

communicates with data layer through JDBC (Java Data Base Connectivity) protocol. 

a. RBR engine: is a JESS rule-based engine 

b. CBR engine: case-based reasoning engine that contains stored cases of 

pervious advice 

c. Webserver: handles communication with the external environment and routes 

external calls to appropriate components (GUI or web browser application and 

database components). Implemented webserver is Apache Tomcat. Tomcat 

implements Java Servlet and the JSP specifications, providing an environment 

for Java code to run in cooperation with a web server. Tomcat includes its own 
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internal HTTP server. Communication with the data tier is through the JDBC 

(Java Data Base Connectivity) protocol. 

3. Data layer: There are two databases in data layer, the educational relational database 

which is maintained by the University’s database administrator stores information for 

each student and details of course registration information of the university, the 

knowledge base database which stores the facts (prepared data) and rules transferred 

to inference engines for further processing to provide advice in later stages. The 

knowledge base which is a component of the expert system is maintained by the 

knowledge engineer who models the rules as used by the human course adviser in 

advising student. 

 

Figure 9: The Three-tire Architecture of EDSS 

 

Architecture of the proposed knowledge-driven EDSS in paper [9] is based on a typical three-

tier component-based architecture:  
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 Presentation tier: The presentation tier is a web interface. It is developed with Java 

technologies. 

 Business logic tier: 

 Storage tier:  

 

 

 

Figure 10: Architecture of the proposed knowledge-driven educational DSS 

 

4.4 Functional Requirements 

CSP in paper [2] implements three rules:  

1. Degree Requirement Rule: enforce the requirements that the students must fulfil to 

graduate. 

2. Class Time Conflict Rule: ensures course schedule does not overlap 

3. Enrolment Unit Rule: ensures the enrolment unit does not exceed the user-defined 

input. In other words. It specifies the maximum number of credits allowed to schedule 

per semester.  

      The last two rules are static but the degree requirement rules can change overtime.  

 

Paper [7] describes important functions which are possible to automate: 

1. Identify unsatisfied courses required for a certain business degree by reconciling 

student’s records (transcript) with university bulletin 
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2. Discard from the unsatisfied list of courses generated in previous function the courses 

that didn’t meet their prerequisites (after evaluating the prerequisite rules). The 

student is not yet eligible to register courses that have unsatisfied prerequisites.  

3. Prioritize or sequence list of eligible courses based on their importance in meeting 

prerequisites for remaining courses. For example, the highest priority would go to 

courses which serve as prerequisites for the greatest number of subsequent courses.  

Three hierarchical rules has been applied and fired in order to determine optimized 

and effective course sequence (although not always optimal): 

a. Deepest Layer Rule: has the highest priority and is used to determine the 

position of a course in a chain of prerequisites. Courses on the deepest level of 

prerequisites should be taken first. For example, if the accounting major has a 

maximum of five layers of courses, the first course(s) that should be taken 

is/are positioned on the fifth level. Each layer stands for one semester. For 

example, for a student majoring in computer science at NDU, course CSC212 

(Program Design & Data Abstraction I) must be taken before CSC213 

(Program Design & Data Abstraction II), which must be taken before CSC311 

(Theory of Computation), which must be taken before CSC431 (Compiler 

Design). If a student must graduate within a period of 3 years (6 semesters), 

the student must begin taking courses in this chain starting third semester 

(CSC212 is the first course of deepest level 4). 

b. Maximum Dependency Rule: this rule is used for sorting eligible courses 

within a given layer i.e. eligible courses on the same layer should be taken in 

order of the number of prerequisites served. This requires that each course be 

analysed to see how many other higher-layer courses depend upon it as a 

prerequisite. 

c. Lower Course Number Rule: this rule prioritizes courses on the same layer 

and with the same number of dependencies in ascending order of course 

number but within same requirement type (Major or Core or General 

Requirement). The logic is that lower numbered courses are intended for less 

advanced students. For example, MAT215 is given before MAT224 and both 

of them have the same deepest layer and maximum dependency level. 

 

Paper [5] describes rules that impacts sequence of scheduled process of courses such as: 

1. Maximum credits per semester,  
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2. Course offering in two scenarios (considering instructor is available), either the 

number of pre-registered students exceeds 10 or the course is compulsory for 

graduation or a 'critical core course' (course that is a prerequisite for other important 

course(s)). 

3. Failed or dropped course is an incomplete course included in the registration plan for 

next semester  

 

4.5 Description of the Course Advisory inference mechanism 

The implementation of CSP consists of the following steps: 

1. Gathers data from various data sources: user parameter data, degree requirement 

update data, and real-time school web site data. 

2. Translates the gathered data into one format (XML) for easy processing. 

3. Translates the facts from XML format to JESS facts. 

4. Interacts with JESS to process the facts and rules to produce the proper results. 

5. Converts the JESS results into a class schedule and present the result. 
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Figure 11: Multiple Stages Activity Flowchart 

 

In paper [1] CAES Inference mechanism performs a similar case matching and if found, it 

retrieves the matched case; otherwise, the rule base inference engine will handle the 

computation process and stores the recommended solution as a new case in the case base 

reasoning engine. 

The following formula computes the similarity score which compares the similarity of new 

case with each old case i.e. it counts for each case the common courses taken so far and the 

different and generate similarity ratio. The highest similarity score is chosen if it exceeds a 

certain threshold which means the candidate of highest score is selected for adaptation in 

recommending courses for next semester for the student of the new case. 
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NC = new case, OC = old case, common = matching common courses, different = courses not 

found in old case 

 

 
 

                 Figure 12: Schematic representation of CAES recommendation process 

 

EDSS in paper [9] has four data mining functionalities to discover actionable knowledge 

from educational data imported from Excel files. They are: final status-based student 

classification using J48 algorithm; study trend prediction with clustering using k-means 

algorithm; status prediction with clustering in terms of probability using Expectation-

Maximization algorithm; and course association analysis using Apriori algorithm. It is worth 

noting that these functionalities are mainly devoted to decision making support for problems 

about students with poor study performance and doesn’t target our domain problem (course 

schedule planning). A short description on kind of discovered actionable knowledge by the 

employed data mining algorithms: 
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J48 algorithm is used for classifying students based on status  (building a classifier to classify 

all students into the seven groups such as “complete”, “incomplete”, “drop-out”, “first 

warning”, “second warning”, “extended”). 

 

K-means algorithm is a clustering algorithm used for study trend prediction to decide on 

whether to extend or not a student with poor performance. Applying a clustering algorithm to 

derive the study result of a student in the past who is the most similar to the student being 

considered in terms of accumulated knowledge and credits from courses they took. 

 

Course Association Analysis using Apriori algorithm: in course registration, course 

association analysis has been applied on course registrations of all students who have the 

most similar characteristics to the student being considered to find out which groups of 

courses the students never pass when studying them together. From the resulting groups of 

courses, the course registration of the student being considered should not consist of any 

group of those courses in its entirety; however, maybe part of some group.  

 

4.6 Database component 

 

Paper [7] describes by field name the design of course table in a database as follows: 

1. Course-no (department name + course number like Mat1302) 

2. Course-description: description of course 

3. Status (indicates course status: complete, failed, dropped, incomplete, to-be-repeated 

course of grade D) 

4. Multiple prerequisite fields (of domain course-no) for each record or course 

a. PreReq1, PreReq2, etc… 

5. Eligible: this field is used by the DSS in extracting courses to recommend to the 

student (if eligible = 1 => all the prerequisites are taken, if eligible = 0 then there are 

still incomplete prerequisites).  

 

CSP in paper [2] uses XML template files are used as a knowledge base data sources which 

stores fact data. Also, user parameters are considered as fact data. The role of XML translator 

in CSP is to translate XML data into JESS facts which are then inserted into JESS engine (working 

memory) by CSP controller. 
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Figure 13:   User Parameter XML Template in W3C Schema Format 

 

Figure 14: Degree Parameter XML Template in W3C Schema Format 

 

4.7 Modelling component 

 

In Paper [7] the modelling component of the DSS selects by retrieving from knowledge base 

database the eligible courses for the student. Then, it suggests an effective and efficient 

sequence for completing these courses. Modelling component is supposed to handle the 

computation of eligible courses first as the case in traditional DSSs, but this DSS does only 

the sequencing of courses. This makes its modelling function of the modelling component in 

DSS strongly tied to knowledge base. The computation of eligible field of a course is handled 

at database level which makes the processing function built into structure of data itself. In 

traditional decision support systems, the modelling component handles both tasks that is the 

computation and sequencing of eligible courses. 

 

4.8 Conclusion 

I recapped my observations on the exerted effort pertinent to our domain problem as the 

following: 
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 CSP in paper [2] is the only system that provides interfaces for administrative 

knowledge management by changing the rules and facts without requiring source 

code changes and for Student users to input their personalized parameters from a web 

interface. Also, the design and implementation of CSP is a successful integration of 

the following key elements:  

1. Thorough understanding of needs for student academic planning and knowledge 

of academic advising 

2. Tools: JESS, Java, JSP, Servlet, XML and web technology 

3. Unique methodology that supports dynamic knowledge management 

 

The implemented technology in tools CSP using same web tools, Java and Jess with 

dynamic knowledge management are considered in my personal work. 

 

 In CAES [1], the change in requirements in a credit system with time may be 

considered as a drawback in CBR although we can step over this issue partially by 

mapping previous courses with new only in case they are related. Also, it suffers from 

cold start up problem for new students who don’t have yet any historical data to be 

used for matching in CBR.  

 

 The presented functional requirements in DSS [7] are worthy to consider in my 

personal work. The software architecture of this DSS is not much appropriate and a 

better system architecture can be made using relational DBMS database, inference 

engine, better user interface, integration of knowledge base with student information 

system (SIS) to facilitate getting current status of student courses. 

 

 We can benefit from the application of course association analysis on course 

registrations in EDSS of paper [9] in our domain problem (course schedule planning) 

by applying the same data mining technique on the scheduled courses for next 

semesters but for different purpose than the one mentioned in EDSS. The course 

association analysis in our proposed system is meant to provide improved decision 

support for faculty advisors by finding the percentile of any indicated average grade 

value (by advisor) of the courses that have high affinity or confidence ratio of being 

mostly present together within same semester (based on historical data).  
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Chapter 5 

Course Schedule Advisory Expert System (CSAS) 

 

5.1 Introduction 

Based on the current position of the problem elicited from the previous work, we propose a 

DSS named Course Schedule Advisory Expert System (CSAS) that adopts many of the 

previous presented functional aspects and implemented technologies in problem domain and 

suggests a new algorithm for course schedule planning problem with an implemented 

prototype on web server. 

CSAS consists of the following components with description on specification of each: 

 Knowledge base database: the back end component that stores the rules and prepared 

data extracted originally from university educational database (student information 

system). Knowledge base include current information about the academic status of a 

student (dropped or failed courses, completed courses, untaken courses). Establishing 

a synchronous connection between the educational database (SIS) and the mined 

knowledge base is needed to ensure data consistency property. Any change in degree 

requirements by university knowledge administrator or in student status has to be 

synchronized with knowledge base database.  

 Rule-based inference engine processes business rules and facts (extracted from 

knowledge base) and outputs a non-sequenced list of eligible courses for next 

semester that becomes an input to Java engine. Each eligible course in the course list 

is concatenated with additional information like the course status, deepest level, 

maximum dependency, course number, requirement type, etc… to form a unique 

composed key used when performing a bubble sort operation on the list in order to 

sequence and prioritize the courses before starting the selection or scheduling process 

from the course list. 

 Java engine (algorithm) sorts the course list and selects and schedule courses for next 

semester based on scheduling rules such as enrolment unit rule or predefined pattern 

by semester rule for allowed type of courses (for example: 2 core courses, 2 general 

courses, 1 major course). After scheduling next semester courses, call again inference 

engine to regenerate the course list to add new eligible non-scheduled courses to the 

list. The process of interaction between Java and JESS engine iterates until scheduling 

or allocating all courses to all semesters throughout graduation period. 
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  Knowledge-driven inference engine which is considered as a heuristic approach that 

processes historical data of students who had taken some or all of the courses 

recommended by CSAS within one semester and tries to finds new patterns or 

relationships between scheduled courses within same semester by applying data 

mining techniques. Then the students who had taken courses of high affinity to one 

another (minimum confidence percentage) are categorized based on a certain 

threshold which is the average of courses for each student. This kind of classification 

of students constitutes an indicator for advisor to infer the performance of students in 

case of scheduling these courses within same semester whether it may lead to cause a 

low grade average. 

 An interactive graphical user interface (GUI) is needed to allow users to perform 

interactive tasks. 

 

The following figure illustrates the steps of automatic course scheduling process: 

 

Figure 15: Automatic Course Scheduling Process Flowchart 
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5.2 Detailed description of CSAS implementation 

 

5.2.1 Classification of courses 

The process starts by retrieving all the degree requirements and rules from knowledge base 

and uploading them to working memory of JESS. The status of each degree requirement or 

course may be either completed, unfinished, dropped, failed. The unfinished courses (not 

taken yet) are divided into two sets: eligible and ineligible courses. Eligible courses are the 

courses eligible to be scheduled next semester whereas ineligible courses are the courses that 

didn’t satisfy yet their preconditions like for example an unsatisfied prerequisite.  

 

5.2.2 Type of rules 

Static and dynamic rules are applied on facts when running JESS inference engine. The three 

hierarchical rules of sequencing courses mentioned in paper [7]: Deepest Layer Rule, 

Maximum Dependency Rule, Lower Course Number Rule and enrolment unit rule are 

adopted in CSAS. These rules are considered as static rules because they will not be 

subjected to any modifications later on as other dynamic rules such as the pattern of 

scheduling courses by requirement type (requirement type pattern rule). This rule, for 

example, is stored in form of a data-table in knowledge base database. It specifies the 

preferences of requirement types on one another and determines how many courses of each 

requirement type to schedule each semester. This rule is subjected to be modified by system 

administrator through a GUI. For example, the priority goes first for remedial requirements 

(RR), followed by core requirements (CR), etc… 

Another example of dynamic rule is the class level of the student (sophomore, junior or 

senior) which determines the ineligible courses of the current class level. Each class level has 

a set of courses a student cannot enrol in until he/she completes a minimum number of credits 

or change his class level. For example, a computer science sophomore student is not eligible 

to take CSC480 and CSC490 at NDU (eligible only at senior level). So, inference engine 

sorts out eligible courses according to student current class level. 

 

5.2.3 JESS inference engine facts 

Every fact has a template. A fact gets its name and its list of slots from its template. Therefore 

a template is something like a Java class. It’s a class of JESS facts. The deftemplate construct 

is the most general and most powerful way to create a template. This is its syntax in JESS 

language: 
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 (deftemplate template-name 

    ["Documentation comment"] 

    [(declare  (slot-specific TRUE | FALSE) 

               (backchain-reactive TRUE | FALSE) 

               (from-class class name) 

               (include-variables TRUE | FALSE) 

               (ordered TRUE | FALSE))] 

    [extends template-name] 

     (slot | multislot slot-name 

         [(type ANY | INTEGER | FLOAT | 

                NUMBER | SYMBOL | STRING | 

                LEXEME | OBJECT | LONG)] 

         [(default default value)] 

         [(default-dynamic expression)])*) 

 

The following templates are pertinent to CSP problem and created in JESS working memory 

from java engine by creating new java objects of type Deftemplate. The light green 

background color in below tables means that the slots are initially populated with data from 

knowledge base database and other slots are updated later upon running by JESS engine: 

 

Template structure of StudentClass Fact: 

Slot Multi- 

Slot 

Slot Name Description Data 

Type 

Domain Example 

Y N Class Class code Integer 1-5 1 = Sophomore 

N Y ExcludedCourses List of ineligible courses 

for current class level 

String A-Z CSC480, CSC490 

Y N FromUnits Class level from units 

limit 

Integer 1-500 60 

Y N ToUnits Class level to units limit Integer 1-500 90 

 

Template structure of StudentInfo Fact: 

Slot Multi- 

Slot 

Slot Name Description Data 

Type 

Domain Example 

Y N CurrentClass active Class code Number 1-5 1 = Sophomore 

Y N StudentStatus Status of student whether 

regular or on probation 

Number 0-1 0 = regular 

1= on-probation 

N Y CompletedCourses List of completed course 

with grade different than 

D 

String A-Z0-9, 

A-Z0-9, 

etc.. 

 

 

Template structure of Course Fact: 

Slot Multi- 

Slot 

Slot Name Description Data 

Type 

Domain Example 

Y N StudentId Id of student Integer 1..∞ 10 

Y N TypeReqId Requirement type id Integer 1-5 1 = major req. 
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Y N TypeReq Requirement type String A-Z MR 

Y N CoreReq Course number Integer A-Z0-9 CSC311 

Y N CourseDescrip Course Description String A-Z THEORY OF 

COMPUTATION 

Y N Preference A preference to 

course(s) to be 

scheduled before 

other courses within 

a requirement type 

of same layer 

Integer 0-100 1 

Y N CreditCarrying Course is credit 

carrying or not 

Integer 0-1 1 

N Y Temp_PreReqList List of temporary 

usage of 

prerequisites 

String A-Z1-9, 

A-Z1-9, 

etc,, 

 

Y N CourseCount_In_PreR

eqList 

Count of courses in 

PreReqList 

Integer 1-100  

N Y PreReqList List of prerequisites String A-Z1-9, 

A-Z1-9, 

etc… 

CSC213, 

MAT211 

Y N Status Course status Integer 0-6 2 = not-taken 

Y N Grade Course grade String A-F A 

Y N TakeAllPreReq Take all 

prerequisites or any 

Integer 0-1 1 = take all 

0 = take any 

Y N EligibleClassCourse Eligible courses 

after discarding 

ineligible courses as 

of student class level 

Integer 0-1 1 = eligible 

0 = ineligible 

Y N Eligible Course is eligible for 

scheduling 

Integer 0-1 1 

Y N Units Course credits no Integer 0-15 3 

Y N Available Course is available 

or not by faculty 

Integer 0-1 1 

Y N CanEnroll Student can enrol in 

eligible course 

Integer 0-1 1 

Y N DeepestLevel Deepest layer level 

of a course 

Integer 0-20 2 

Y N MaxDependency Number of courses 

that depends on 

current course 

Integer 0-20 3 

Y N LowerCourseNo Course number Integer 0-9 311 

Y N Scheduled Course is scheduled 

or not 

Integer 0-1 1 

Y N SchedSemester In which semester 

number course 

scheduled 

Integer 0-20 3 

Y N Class Indicates student 

class level 

Integer 1-3 1 = sophomore 
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Y N PreSchedCourses Indicates how many 

prerequisites are 

scheduled so far for 

current course in a 

chain of 

prerequisites 

Integer 1-8 3 

N Y PrevSchedCoursesList1 Lists prerequisites of 

CoreReq  

String A-Z0-9, 
A-Z0-9, 
etc… 

Prereq of 

CSC325 is 

CSC313 

N Y PrevSchedCoursesList2 Lists prerequisites of 

courses in 

PrevSchedCourses

List1 

String A-Z0-9, 
A-Z0-9, 
etc… 

Prereq of 

CSC313 is 

CSC213 

N Y PrevSchedCoursesList3 Lists prerequisites of 

courses in 

PrevSchedCourses

List2 

String A-Z0-9, 
A-Z0-9, 
etc… 

Prereq of 

CSC213 is 

CSC212 

N Y PrevSchedCoursesList4 Lists prerequisites of 

courses in 

PrevSchedCourses

List3 

String A-Z0-9, 
A-Z0-9, 
etc… 

 

N Y PrevSchedCoursesList5 Lists prerequisites of 

courses in 

PrevSchedCourses

List4 

String A-Z0-9, 
A-Z0-9, 
etc… 

 

N Y PrevSchedCoursesList6 Lists prerequisites of 

courses in 

PrevSchedCourses

List5 

String A-Z0-9, 
A-Z0-9, 
etc… 

 

N Y PrevSchedCoursesList7 Lists prerequisites 

of courses in 

PrevSchedCourses

List6 

String A-Z0-9, 
A-Z0-9, 
etc… 

 

N Y PrevSchedCoursesList8 Lists prerequisites 

of courses in 

PrevSchedCourses

List7 

String A-Z0-9, 
A-Z0-9, 
etc… 

 

N Y DeepestLayerList1 Same as CoreReq String A-Z0-9, 
A-Z0-9, 
etc… 

CSC212 

N Y DeepestLayerList2 List courses that 

have their 

prerequisites in 

DeepestLayerList1  

String A-Z0-9, 
A-Z0-9, 
etc… 

CSC213,  

CSC218 

N Y DeepestLayerList3 List courses that 

have their 

prerequisites in 

DeepestLayerList2 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

CSC311, 

CSC313, 

CSC316, 

CSC387, 

CSC423, 

CSC426, 

CSC425, CSC432 
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N Y DeepestLayerList4 List courses that 

have their 

prerequisites in 

DeepestLayerList3 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

 

N Y DeepestLayerList5 List courses that 

have their 

prerequisites in 

DeepestLayerList4 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

 

N Y DeepestLayerList6 List courses that 

have their 

prerequisites in 

DeepestLayerList5 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

 

N Y DeepestLayerList7 List courses that 

have their 

prerequisites in 

DeepestLayerList6 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

 

N Y DeepestLayerList8 List courses that 

have their 

prerequisites in 

DeepestLayerList7 

String A-Z0-9, 
A-Z0-9, 
A-Z0-9 

 

 

 

5.2.4 JESS inference engine rules 

JESS inference engine processes rules according to their salience or priority. The 

computation process in inference engine is confined in determining the eligible courses for 

next semester during the scheduling process of all unsatisfied courses throughout the 

graduation period. Also, Jess inference engine computes the following attributes for each 

eligible course, concatenates them into one key value, and adds it to the course list array. 

o Status  

o Preference 

o PreSchedCourses 

o DeepestLevel  

o MaxDependency  

o LowerCourseNo  

 

The JESS inference engine doesn’t perform any course scheduling. The process starts by 

firing the following set of rules in the following sequence: 

 Rule I (“EligibleCoursesAsOfClass”): the class level of the student rule refines the 

unsatisfied list of courses by discarding tentatively ineligible courses according to his 

current class level. In fact, there are two kinds of ineligible courses, the ones that are 

associated to student class level and the ones that are ineligible to be taken or 
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scheduled next semester because their prerequisites are not satisfied yet. Perquisites 

become satisfied either when they are taken or scheduled during the automatic 

scheduling process of all unsatisfied courses throughout the graduation period. 

 Rule II (“EligibleCourse”): The consequent of rule-1 fires rule-2 which determines 

the eligible courses for scheduling that have no prerequisite courses at all. 

 Rule III (“CanTakeNextCourse_After_Taking_All_Prerequisites”): The consequent 

of rule-1 fires rule-3. If all the prerequisites of a course are completed or scheduled, 

then the course becomes eligible for scheduling next semesters. To recall, a course is 

eligible if it satisfies any of the following conditions: 

o has no prerequisite 

o has a completed prerequisite 

o has a scheduled prerequisite in previous semester 

 Rule IV (“CanTakeNextCourse_After_Taking_Any_Prerequisite”): The consequent 

of rule-1 fires rule-4. If any of the prerequisites of a course has been completed or 

scheduled, then the course becomes eligible for scheduling next semesters. 

 Rule V (“UpdateStatusOfCourseGradeD”): this rules changes the status of a 

completed course from completed to untaken only for students having on probation 

status and had taken grade D on completed courses in order to schedule them again.  

 

 Rule VI (“DeepestLevelRule1”): This rule determines the deepest level layer of a 

course in a chain of prerequisites. There are eight multislots or lists 

(DeepestLayerList1, DeepestLayerList2… DeepestLayerList8) created for this 

purpose. The first list (DeepestLayerList1) contains only the active course code in 

course fact. DeepestLevelRule1 updates DeepestLayerList2 with all courses that have 

their prerequisites in DeepestLayerList1. 

 Rule VII (“DeepestLevelRule2”): updates DeepestLayerList3 with all courses that 

have their prerequisites in DeepestLayerList2 (the consequent of Rule V fires 

antecedent of Rule VI). 

 Rule VIII (“DeepestLevelRule3”): updates DeepestLayerList4 with all courses that 

have their prerequisites in DeepestLayerList3 (the consequent of Rule VI fires 

antecedent of Rule VII). 
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 Rule IX (“DeepestLevelRule4”): updates DeepestLayerList5 with all courses that 

have their prerequisites in DeepestLayerList4 (the consequent of Rule VII fires 

antecedent of Rule VIII). 

 Rule X (“DeepestLevelRule5”): updates DeepestLayerList6 with all courses that have 

their prerequisites in DeepestLayerList5 (the consequent of Rule VIII fires antecedent 

of Rule IX). 

 Rule XI (“DeepestLevelRule6”): updates DeepestLayerList7 with all courses that 

have their prerequisites in DeepestLayerList6 (the consequent of Rule IX fires 

antecedent of Rule X). 

 Rule XII (“DeepestLevelRule7”): updates DeepestLayerList8 with all courses that 

have their prerequisites in DeepestLayerList7 (the consequent of Rule X fires 

antecedent of Rule XI). 

 Rule XIII (“ComputeDeepestLevel”): determines the deepest level of a course based 

on the last non-empty DeepestLayerList (18) list. 

 Rule XIV (“PrevSchedCoursesRule1”): Updates PrevSchedCoursesList1 with 

prerequisites of CoreReq field. 

 Rule XV (“PrevSchedCoursesRule2”): Updates PrevSchedCoursesList2 with 

prerequisites of courses in PrevSchedCoursesList1. 

 Rule XVI (“PrevSchedCoursesRule3”): Updates PrevSchedCoursesList3 with 

prerequisites of courses in PrevSchedCoursesList2. 

 Rule XVII (“PrevSchedCoursesRule4”): Updates PrevSchedCoursesList4 with 

prerequisites of courses in PrevSchedCoursesList3. 

 Rule XVIII (“PrevSchedCoursesRule5”): Updates PrevSchedCoursesList5 with 

prerequisites of courses in PrevSchedCoursesList4. 

 Rule XIX (“PrevSchedCoursesRule6”): Updates PrevSchedCoursesList6 with 

prerequisites of courses in PrevSchedCoursesList5. 

 Rule XX (“PrevSchedCoursesRule7”): Updates PrevSchedCoursesList7 with 

prerequisites of courses in PrevSchedCoursesList6. 

 Rule XXI (“PrevSchedCoursesRule8”): Updates PrevSchedCoursesList8 with 

prerequisites of courses in PrevSchedCoursesList7. 

 Rule XXII (“MaxDependencyRule”): determines for each eligible course the 

maximum dependency 
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 Rule XXIII (“LowerCourseNumberRule”): determines for each eligible course its 

course number, concatenates the following arguments which constitute a unique key 

combination and adds the composed key to the course list array: 

o Fact Id  

o Course Number 

o Status  

o Preference 

o PreSchedCourses 

o DeepestLevel  

o MaxDependency  

o LowerCourseNo  

o TypeReqId 

 

5.2.5 Java engine algorithm 

The output of JESS engine (CourseList array) is the input in java engine. Java main algorithm 

starts by performing in sequence the following explicit computational tasks: 

 

1. Bubble sort on course list array in descending order based on sub key value: Status + 

PreSchedCourses + DeepestLevel + MaxDependency + LowerCourseNo + 

TypeReqId.  

 

2. A second  bubble sort operation is done on course list array in ascending order based 

on sub key value (DeepestLevel + MaxDependency) to sort courses at same deepest 

layer level and maximum dependency level in ascending order by course number.  

 

3. Based on enrolment unit rule and the requirement type pattern rule, the program loops 

over the elements of the sorted CourseList array and selects the non-scheduled 

courses. The process iterates as long as it doesn’t violate the two previously 

mentioned rules.  

 

4. Java algorithm validates the student class constraint. It’s a pre-condition or a predicate 

that has to be true before scheduling course by updating the “Scheduled” slot to true 

in the JESS course fact in working memory. 

 

5. In case of violation occurs in student class constraint, then a sequence of actions must 

be performed: 

a. Loop over all facts in JESS working memory and reset “EligibelClassCourse” 

slot in course fact 

b. Increment “Class” slot in “StudentInfo” fact 
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c. Refresh “ActiveStudentClassFact” (Java object of type Fact) 

 

6. Run JESS engine  

 

7. Iterate over the above 6 steps until scheduling all unfinished courses over all 

semesters throughout graduation period. 

 

The following is a description on each dependant variable used in below flow chart: 

 Status: is the slot value in a working memory fact that holds the status of the course 

(1: taken/completed, 2: not taken, 3: dropped, 4: assigned to a completed course with 

grade D for rescheduling if student is on probation, 5: failed, 10: scheduled). The 

domain values of status field must be in this listed sequence because failed and 

dropped courses have the highest priority to be scheduled first. 

 PreSchedCourses: is the slot that holds the count of previous scheduled courses in a 

chain of prerequisites 

 DeepestLevel: is the slot that holds deepest layer level value 

 MaxDependency: is the slot that holds maximum dependency value 

 LowerCourseNo: : is the slot that holds lower course number value 

 TypeReqId: is the slot that holds the Id value of the requirement type (remedial, core, 

general, major, elective) 

 Priority1, Priority2 and Priority3 variables are indexes of CanStillAllocate array. The 

values of these variables stand for priority of each requirement type defined in 

database table TypeReqPattern 

  CanStillAllocate array of index priority stands for the maximum limit of courses of a 

certain requirement type a student allowed to register in one semester 

 CreditCount variable holds the remaining count of eligible and non-scheduled units 

 SemesterCreditNo is the maximum number of units allowed per semester 

 AccumUnitsPerSemester is for accumulating the number of credits or units scheduled 

so far in current semester 

 Get the pattern of requirement type for current semester from knowledge base. This is 

for indicating the type and number of courses to register in current semester in 

sequence. For example, if the current semester is Fall/Winter then the pattern is 2 

core, 2 major, 1 general, the current semester is Spring/Summer then the pattern is 1 



45 
 

core, 2 major, 2 general. The pattern is sorted by Priority to indicate the importance of 

which courses to schedule first. The program must iterate  

 CoursesOfReqTypeExist is a Boolean type variable that indicates whether course list 

array still contains non-scheduled courses of the current fetched requirement type 

 CoursesCountOfReqType is the number of courses allowed to schedule in current 

semester of the fetched requirement type 

 FactId is the fact id value generated by JESS of the fact in working memory that has 

the current fetched course from course list 

 FactObject is the reference from Java engine to the fact in JESS working memory. 

This allows modifying JESS facts from Java engine. Algorithm checks through 

FactObject the course type and current status (scheduled or not) of the fetched course 

from course list array.  

 ActiveStudentClassFact is a reference from Java Engine to the fact in JESS that holds 

the student class information about his current class level, excluded courses, 

FromUnits, ToUnits. 
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Figure 16: Core Algorithm of CSAS Hybrid Engine Flowchart 
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5.2.6 Physical database design of Knowledge base 

The physical database design is the process of producing a description of the implementation 

of the database on secondary storage; it describes the base relations, file organizations, and 

indexes used to achieve efficient access to the data, and any associated integrity constraints 

and security measures. Knowledge base repository is implemented in SQL Server 2008 

relational DBMS and the below figures show a detailed explanation of the fields of each SQL 

table: Course, StudentClass and TypeReqPattern. 

 

Course Table Design: 

Field Description Data 

Type 

Domain Example 

StudentId The student identification no. Number 1-* 10 

TypeReqId Type Requirement Id Number 1-5 1 = Major Req. 

2 = General Req. 

3 = Core Req. 

4 = Elective Req. 

5 = remedial Req. 

TypeReq Type Requirement Code String A-Z CR = core req. 

MR = major req. 

GR = general req. 

ER = elective req. 

RR = remedial req. 

CourseNo Course Code String A{A*}d{d*} CSC213 

Description Course Title String A-Z Program Design & Data 

Abstraction II 

PreReqList Prerequisite list of course  

(if exists) 

String A{A*}d{d*} CSC212, CSC201, etc… 

Units Number of credit hours Integer 1-12 3 

Available Course is available or will be 

given by faculty 

Integer 0-1 0 = not available 

1 = available 

Status Status of course Integer 1-4 1 = taken , 2 = not taken 

3 = failed, 4 = dropped 

CreditCarrying Credit carrying courses 

(countable in degree 

requirements) 

Integer 0-1 0 = non-credit carrying 

1 = credit carrying 

TakeAllPreReq Indicates whether a student has 

to take all courses in 

PreReqList domain or take any 

Integer 0-1 0 = take any 

1 = take all 

 

StudentClass Table Design: 

Field Description Data 

Type 

Domain Example 

Class Student class level Number 1-3 1 

Description Description of class level String A-Z Sophomore 
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ExcludedCourses List of non-eligible courses String A{A*}d{d*} CSC480, CSC490 

FromUnits From range of class units Integer 1-100 31 

ToUnits To range of class units Integer 1-100 60 

 

TypeReqPattern Table Design: 

Field Description Data 

Type 

Domain Example 

TypeReqId Type Requirement Id Number 1-5 3 (core req.) 

TypeReq Type Requirement Code String A-Z RR or CR or MR or GR or ER 

Semester1 Number of planned courses in 

Fall Semester 

Integer 1-3 2 

Semester2 Number of planned courses in 

Spring Semester 

Integer 1-3 1 

Semester3 Number of planned courses in 

Summer Semester 

Integer 1-3 0 

Priority Importance of requirement  Integer 1-3 1 

 

StudentHistory SQL table 

Field Description Data 

Type 

Domain Example 

Id The student id Number 1-* 3 (core req.) 

Course1 1st scheduled course Integer 0-1 1 

Course2 2st scheduled course Integer 0-1 0 

Course3 3st scheduled course Integer 0-1 1 

Course4 4st scheduled course Integer 0-1 0 

Course5 5st scheduled course Integer 0-1 1 

Course1Grade Grade of Course1 Integer 0-100 80 

Course2Grade Grade of Course2 Integer 0-100 79 

Course3Grade Grade of Course3 Integer 0-100 75 

Course4Grade Grade of Course4 Integer 0-100 0 

Course5Grade Grade of Course5 Integer 0-100 90 

AvgGrade Used for temporary average 

computation of the courses 

of itemsets which exceeded 

minimum confidence 

specified by advisor 

Float 0-100 88 
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StudentHistory is a temporary table created in real time by the system during course 

association analysis. The first five fields’ names stand for scheduled courses in any selected 

semester from the recommended plan by the prototype. The field name is the name of the 

scheduled course (e.g. Course1 replaced by CSC201). The other remaining five fields stand 

for the grade of each scheduled course field (e.g. Course1Grade replaced by GCSC201: G for 

Grade, CSC201 for course name). The following figures show the design form and output 

result of StudentHistory: 

 

 

The following figure stands for the historical data of 11 anonymous graduated students who 

had taken a subset of these courses but within same semester. Information of one student may 

be found in one or more records in below table and each record stands for the semester he/she 

took a subset of these five courses. Of course, the data preparation of below table require 

implementation of a subroutine that fetches from historical data for students who had 

accomplished the recommended set of courses shown as column names in below figure: 

 

Figure 17: StudentHistory Output 
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5.2.7 Prototyping with RapidMiner 

RapidMiner is a software platform developed by the company of the same name that provides 

an integrated environment for machine learning, data mining, text mining, predictive 

analytics and business analytics. RapidMiner is developed on a business source model which 

means the core and earlier versions of the software are available under an OSI-certified open 

source license on Sourceforge. RapidMiner offers Starter Edition for free download whereas 

Personal Edition and Professional Edition require licensing. Not all software components in 

Starter Edition are accessible for free, for example, the operator that reads data from 

databases is locked. So, I had to extract data table StudentHistory to excel file and utilize the 

“Read Excel” operator instead of “Read Database” operator. 

 

In RapidMiner, we create a process that utilizes operators and data repositories.   

The implementation of knowledge discovery process (KDP) in RapidMiner tool starts by 

creating a new process which is based on a chain of interconnected operators of different 

functionalities. Each operator has input and output ports. Finally, the RapidMiner process can 

be saved as a file (e.g. StudentHistory.rmp) on hard disk storage.  

 

 

Figure 18: StudentHistory table in excel format - StudentHistory.xls 

 

After finalizing preparation process of the input file, the next step is to import 

StudentHistory.xls into a new process created in RapidMiner application. The following 

snapshot shows five operators followed by an explanation of the specification of each: 
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Figure 19: RapidMiner Application 

“Read Excel” operator: This operator reads an ExampleSet by loading data from Microsoft 

Excel spreadsheets via its input port and delivers the Excel file in tabular form along with the 

meta-data via its output port. 

 

Figure 20: Output of Database Table 

“Select Attributes” operator: This operator selects which attributes of an ExampleSet 

should be kept and which attributes should be removed. This is used in cases when not all 

attributes of an ExampleSet are required; it helps in selection of required attributes. The 

output of this operator is an ExampleSet with selected attributes. 
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“Numerical to Binominal” operator: This operator changes the type of the selected 

numeric attributes to a binominal type (also called binary). It also maps all values of these 

attributes to corresponding binominal values. This operator not only changes the type of 

selected attributes but it also maps all values of these attributes to corresponding binominal 

values. Binominal attributes can have only two possible values i.e. 'true' or 'false'.  

 

 

 

“FP-Growth” operator: This operator efficiently calculates all frequent itemsets from the 

given ExampleSet using the FP-tree data structure. It is compulsory that all attributes of the 

input ExampleSet should be binominal.  

 

“Create Association Rule” operator: This operator generates a set of association rules from 

the given set of frequent itemsets which contain a subset of the recommended courses. Each 

itemset has a confidence ratio.  

 

 



54 
 

5.2.8 Computational steps of student’s percentile 

In order to find out the percentile of the threshold grade specified by advisor: 

1. Consider from all the generated frequent itemsets by RapidMiner process only the courses 

that have their minimum confidence exceeds the specified confidence parameter by the 

advisor. 

2. Compute the average of courses in these itemsets for each student.  

3. Find the percentile of any chosen threshold grade by the advisor. Advisor may specify for 

each itemset a different threshold grade; consequently, a new percentile will be generated for 

each itemset and its threshold grade. By knowing such percentile, we can deduce the count 

the students that fall below the percentile. For example, suppose the threshold grade is 80 and 

the count of students that have average below 80 is 70 students out of a total of 100 students. 

This means the students that have 80 average grade are at the 70th percentile. To recall, a 

percentile is a measure used in statistics indicating the value below which a given percentage 

of observations in a group of observations fall). The below figure is an example on percentile: 

 

 

Figure 21: Percentile Illustration 

  http://www.mathsisfun.com/data/percentiles.html 

The computation of the percentile takes place at the back end SQL Server database 

(knowledge base). The output itemset (courses) of RapidMiner subroutine and the threshold 

grade in java engine become input arguments of the stored procedure parameters that 

http://www.mathsisfun.com/data/percentiles.html
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computes the percentile and returns results to java engine based on data of StudentHistory 

table.  

 

Figure 22: Percentile Computational Process Flowchart 

5.2.9 Dynamic management of RapidMiner process in Java 

We can benefit from the created process file by RapidMiner (StudentHistory.rmp) with 

RapidMiner.jar library in programming a subroutine in Java using NetBeans IDE 8.0 
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framework. The generated process file (StudentHistory.rmp) is based on the input excel file 

StudentHistory.xls which consists of meta-data (columns names) and students’ data. The 

excel file is dynamically generated each time the content of SQL-table StudentHistory gets 

exported to StudentHistory.xls file. When running the process file from NetBeans, the “Read 

Excel” operator loads the dynamically generated data in excel, but the meta-data of the 

operator didn’t change (metadata of previous courses itemset). The following snapshot shows 

a subroutine that can manipulate the meta-data of the “Read Operator” by renaming the 

column names to the names of a new set of scheduled courses.  

 

 

Figure 23: Integration of RapidMiner Process File into Java Application 
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Figure 24: Example of Java Application Code 

 

5.3 CSAS Architecture 

 

CSAS architecture includes four main server components: 

 

5.3.1 JESS Engine 

Its role is to process the facts and rules and generates a customized advice to the student. 

JESS 7 operates fine on NetBeans java platform but when testing it on android platform, I 

encountered some technical problems which I shared with Mr. Friedman-Hill who confirmed 

to me by email that JESS 8.0 supports android platform and will be released in the coming 

months. The coming up version 8.0 is going to be used in CSAS system. The expert 

knowledge and user inputs are stored as rules and facts in the JESS knowledge engine to be 

processed by JESS-Rete algorithm to match the rules and facts to generate new results. 

Android platform uses Java language; so, we chose JESS which is written in Java and allows 

interoperability and data exchange with Java in both directions. Many expert systems had 

been developed using PROLOG and LISP, but with the advent of more powerful languages 

such as Java it’s better to use a more compatible inference engine with Java such as JESS. 

 

5.3.2 Internet Information Services (IIS, formerly Internet Information Server):  

IIS is Microsoft Web Server on which a web service application is deployed on a 

communication server that acts as an interface between mobile applications and knowledge 
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base (SQL Server database). Web service responds to http-read-write requests issued by 

mobile application. For read-requests, it accesses back-end database and transforms retrieved 

dataset result into JSON string format (serialization) prior to sending data via internet 

connection to mobile device. For write-requests, it transforms JSON string sent from mobile 

device and transforms it to objects (deserialization) prior to writing to back-end database. 

 

5.3.3 Android Mobile Application 

Is a java application developed on eclipse that is responsible for preparing facts to be 

processed by JESS engine and transforms user requests to http-requests sent to web service 

application for storing or retrieving data from knowledge base database. Gson is a java 

library used by mobile application to convert JSON to Java objects and vice-versa. 

 

 

 

Figure 25: CSAS System Data Flow Diagram 

 

 

 

https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
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1) For students: 

1. Students request for their course registration plan with personal inputs through mobile 

application. 

2. The CSAS controller sends http-request to web server to retrieve student information 

degree. 

3. The web server which acts as an interface between database data-source and mobile 

application retrieves data of student request from data-source database, translates it to JSON 

format and send it via internet to mobile application for further processing.  

4. The CSAS controller receives JSON data and translates it to Java objects using GSON 

library (deserialization) and populates the slots of facts of the JESS engine 

5. JESS engine processes the dynamic facts and rules and generates the schedule output to 

controller which displays it finally in the android-GUI application (XML layout) to be 

viewed by the student. 

 

5.3.4 Relational Database Management System (RDBMS) 

Is the repository or the knowledge base database that is synchronized with SIS database to 

retrieve and store all current information needed about student academic status. The 

synchronized connection is needed to ensure instant refreshing of knowledge base. 

 

5.4 Main Results 

 

After integrating all rules into model base of CSAS such as degree requirement rule, 

traditional hierarchal (deepest level, mac-dependency, lower course number), suppose 

running a test case of CSAS with the following inputs: 

1. The starting semester of scheduling process is semester 1 i.e. Fall Semester 

2. Credits Given on admission is 30 

3. The maximum limit of units/semester is 15 (enrolment unit rule) 

4. Eligible courses as of student class level (Senior class courses: CSC480, CSC490) 

5. An instance of requirement type pattern rule:  
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Requirement Type Pattern Table indicates the number of courses by semester and req-type: 

TypeReq Semester1 (Fall) Semester2 (Spring) Semester3 (Summer) Priority 

RR 3 3 0 1 

CR 2 1 0 2 

MR 2 2 0 3 

GR 1 2 0 4 

ER 2 1 0 5 

 

After running CSAS, the following course schedule plan has been generated automatically. 

The results are valid and meet the functional requirements. For example, the eligible courses 

that have the highest preference by requirement type, highest deepest level, maximum 

dependency, lowest course number (at same  DeepestLevel and Max-Dependency) and 

requirement type RR (four dimensions of courses’ prioritization) are scheduled first 

(ENL002). The requirement type pattern is a fourth dimension proposed in this thesis for 

selection pattern of courses in a semester by course type (doesn’t not impact course 

sequencing). For example, the system can still allocate 3 credits in semester 1 of type RR, but 

this is not possible for semester-1 because ENL002 is the only eligible of type RR; 

consequently, the system proceeds in selecting eligible courses of type CR (Priority=2) and 

again based on the four dimensions of courses’ prioritization. Semester-1 has reached its 

maximum allocation limit as indicated by the enrolment unit rule. It’s important to recall that 

there may be prerequisite courses among the scheduled courses in semester-1; consequently, 

their courses at next lower deepest layer become eligible for scheduling in semester-2. For 

example, CSC213 is scheduled at semester-2 directly after scheduling its prerequisite 

CSC212. Some courses like CSC311 require all its prerequisites CSC213 and MAT211 to be 

satisfied or scheduled (CSC311 scheduled at Semester-6 whereas CSC213 at semester-2 and 

MAT211 at semester-5). Some courses require any of their prerequisites to be satisfied or 

scheduled such as CSC312 (perquisites: CSC219, CSC222, EEN220). You can observe that 

CSC219 scheduled at semester-3 whereas CSC312 scheduled at semester-4. U can notice that 

none of the below 8 semesters violated the enrolment unit rule (total number of credits didn’t 

exceed 15). Also, eligible courses by student class level CSC480, CSC490 (senior level) are 

scheduled at semesters-7 and semester-8 respectively. Moreover, the sequence of scheduling 

(by semester) for a chain of prerequisites is guaranteed i.e. system must give a scheduling 

priority for a course in an already started scheduled chain over other recommended courses 

according to the count of previous scheduled courses in its chain so far. For example, 
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CSC212 is the first prerequisite scheduled in semester 1 in a chain of four courses ends with 

CSC325 scheduled in semester 4.  

 

Semester 1 

Req.  

Type 

Course Description Previous 

Scheduled 

Courses 

Deepest 

Level 

Maximum 

Dependency 

Units 

CR CSC212 PRO DESIGN DATA ABSTRACTION I 0 4 2 3 

RR ENL002 INTENSIVE ENGLISH II 0 1 0 12 

Semester 2 
RR ENL105 COLLEGE ENGLISH I           1 4 2 5 

CR CSC213 PRO DESIGN DATA ABSTRACTION II 1 3 8 3 

MR CSC218 PRINC.OF COMMUNICATION SYSTEMS 1 2 1 3 

GR CSC201 COMPUTERS AND THEIR USE 0 1 0 3 

Semester 3 

CR CSC219 DIGITAL COMPUTER FUNDAMENTALS 0 3 1 3 

CR CSC313 DATA STRUCTURES USING C++ 2 2 1 3 

MR CSC316 COMPUTER SECURITY & THEIR DATA 2 1 1 3 

MR CSC387 ADV PROGRAMMING USING JAVA 2 1 0 3 

RR ENL110 COLLEGE ENGLISH II 2 3 1 3 

Semester 4 

CR MAT211 DISCRETE MATH 0 2 1 3 

MR CSC325 ANALYSIS OF ALGORITHMS 3 1 0 3 

MR CSC423 SOFTWARE ENGINEERING 2 1 0 3 

GR BAD201 FUNDAMENTALS OF MANAGEMENT 0 1 0 3 

GR ENL213 SOPHOMORE ENGLISH RHETORIC 3 2 1 3 

Semester 5 

CR MAT213 CALCULUS III 0 2 1 3 

CR MAT215 LINEAR ALGEBRA I 0 1 0 3 

MR CSC425 DATA COMMU & COMPUT NETWORKS 2 1 0 3 

MR CSC426 PRINCIPLES OF DATABASE SYSTEMS 2 1 0 3 

GR ENL230 ENGLISH IN THE WORKPLACE 4 1 0 3 

Semester 6 

CR MAT224 CALCULUS IV 2 1 0 3 

MR CSC432 INTRO TO ARTIFI INTELLIGENCE 2 1 0 3 

MR CSC463 ADVANCED SOFTWARE 

DEVELOPMENT 

2 1 0 3 

GR NTR201 BASIC HUMAN NUTRITION 2 1 0 3 

GR CSC202 COMPUTERS FOR VISUAL ARTS 0 1 0 3 

Semester 7 

MR CSC311 THEORY OF COMPUTATION 1 1 0 3 

MR CSC312 COMPUTER ARCHITECTURE 1 2 2 3 

MR CSC480 INTERNSHIP 0 1 0 1 

GR HIT211 HIST OF LEB & THE ME 0 1 0 3 

ER PDP201 BASIC PHOTOGRAPHY 0 1 0 3 

ER PES314 HANDBALL 0 1 0 1 
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Semester 8 

MR CSC414 APPLIED OPERATING SYSTEMS 2 1 0 3 

MR CSC490 SENIOR STUDY 0 1 0 3 

GR ARB212 ADV ARABIC GRAMMAR 0 1 0 3 

ER PES322 DANCING 0 1 0 2 

Semester 9 

GR REG314 MARRIAGE & FAMILY-CATH. CHURCH 0 1 0 3 

 

 

 

 

 

Figure 26: Relation between All Contract Sheet Requirements for CS Student 
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Figure 27: RapidMiner Association Rules Process Results 

 

 

Figure 28: RapidMiner Association Rules Process Console Output Results 
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Chapter 6  

Conclusion and future work 

 

6.1 Conclusion 

 

CSAS has been tested for an anonymous B.S degree student at NDU who has completed his 

bachelor degree in Computer Science in Spring-2014. The sequence of scheduled courses 

generated by system were not the same as the sequence presented in student’s transcript, but 

the results show that courses are optimally allocated according to the implemented functional 

requirements.  

 

The functional requirements are expressed in the form what the system must do according to 

the predefined rules and facts in Jess engine and the explicit detailed algorithm implemented 

in Java. To recall, functional requirements may be calculations, technical details, data 

manipulation and processing and other specific functionality that define what a system is 

supposed to accomplish. 

 

6.2 Future work 

 

The proposed CSAS system is intended for use in mid-range universities. As a first step, it’s 

needed to develop an experimental version to be launched at the Faculty of Natural and 

Applied Sciences at Notre Dame University. The modular structure, web based and mobile 

application design makes it possible to be launched and used elsewhere. In our future work 

we hope to elaborate more considering more test cases from other departments and focus on 

issues relating to data security and database mapping, in order to prevent unauthorized access 

to data. 

 

CSAS will not replace the need for wise and sympathetic counsel from human advisors, 

CSAS focuses students more clearly on issues to consider and let them have instant access to 

the expert system before contacting their advisors, thus alleviating academic staff of part of 

their burden. 

 

For the future, there is lots of work still to be done to realize a full-fledged automated 

decision support system such as CSAS especially at the implementation level: 

1. Establish a synchronized connection between knowledge database and student 

information system: 
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a. Synchronized connection facilitates connection to the student information 

database directly so that part of student user input like courses taken can be 

automated 

2. Implementation of Web Server application to receive and respond to http requests, 

Web page application using Java Server Pages as well as mobile android-application. 

3. Testing CSAS model on student requirements of other majors 

4. Making the degree requirement specification more scaleable: 

a. Adding more sequencing and scheduling rules to the model 
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