
 i

CASPER: Cross-platform Automated Space

Planning Engine for Retailers

By

Ziad Tauk

A thesis submitted to the

Faculty of Natural and Applied Sciences (FNAS)

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

NOTRE DAME UNIVERSITY

FACULTY OF NATURAL AND APPLIED SCIENCES

DEPARMENT OF COMPUTER SCIENCE

December, 2009

 ii

ABSTRACT

Keywords: Retail space management, Self-Organizing Map, Knapsack problem, Process

automation, Service-Oriented Architecture

Retail space planning is an accurate and complex process affecting the overall

performance of a retail environment. Such task, confronting large retailers consisting of

huge malls and hypermarkets, appears infinite in the absence of a complete automated

process, starting from the store plan generation, passing by the optimal product

assortment and finishing with the product-to-shelf allocation problem. Moreover, the

ever-changing factors affecting the retail space planning process, such as merchandising

rules, competitive strategies and consumer behavior require continuous follow-up and

optimization of the overall process. Based on the previous requirements, we propose an

automated engine which initiates by generating a store plan based on the results of the

market basket analysis, selects the optimal item assortment for each item category and

finally allocates the resulting items on their respective shelves. Moreover, a service-

oriented architecture is proposed to ensure interoperability between the engine and the

corresponding external modules.

 iii

TABLE OF CONTENTS:

1 Introduction... 1

1.1 Introduction to the general problem.. 1

1.2 Problem definition .. 1

1.2.1 Need for automation ... 1

1.2.2 Need for a complete on-going process.. 2

1.2.3 Need for dynamicity ... 3

1.2.4 Need for accuracy ... 3

1.3 Research objectives... 4

1.4 Approach and main results.. 4

1.5 Thesis organization ... 4

2 Literature Review ... 6

2.1 Definitions of the basic concepts .. 6

2.2 Space Planning Process... 8

2.3 Previous work ... 9

2.3.1 Algorithms .. 9

2.3.2 Business Models ... 10

2.3.3 Software packages .. 11

2.4 Reference books & Software tools ... 13

2.4.1 Books .. 13

2.4.2 Software tools ... 15

2.5 Research motivation.. 16

3 CASPER: Cross-platform Automated Space Planning Engine for Retailers ... 17

3.1 Introduction... 17

3.2 Global flow ... 17

3.3 Automatic Store Plan Generation Engine (ASPGE)... 19

3.3.1 Introduction... 19

3.3.2 Non-functional requirements .. 19

3.3.3 Functional requirements.. 19

3.3.4 Retail store structure ... 20

3.3.5 Global flow ... 21

3.3.6 Algorithm description ... 22

3.4 Auto-Segmentation Engine (ASE).. 28

3.4.1 Introduction... 28

3.4.2 Non-functional requirements .. 28

3.4.3 Functional requirements.. 28

3.4.4 Algorithm / approach selection... 29

3.4.5 Global flow ... 29

3.4.6 Self-Organizing Maps (SOM)... 31

3.4.7 Parameter selection ... 37

3.4.8 Implementation ... 38

3.5 Auto-Allocation Engine (AAE) .. 45

3.5.1 Introduction... 45

 iv

3.5.2 Non-functional Requirements... 45

3.5.3 Functional Requirements .. 46

3.5.4 Engine Phases ... 47

3.5.5 Global flow ... 49

3.5.6 Knapsack Problem .. 50

3.5.7 Dynamic Programming... 52

3.5.8 Implementation ... 57

3.5.9 Real-life Scenario.. 59

3.5.10 Wasted space... 66

4 Architecture... 67

4.1 Global environment .. 67

4.2 System context .. 69

4.3 CASPER Block Diagram.. 70

4.4 Technical considerations... 71

5 Conclusions.. 72

5.1 Main results... 72

5.2 Main contributions .. 72

5.3 Performance results... 73

5.3.1 Introduction... 73

5.3.2 AAE .. 74

5.3.3 ASE... 75

5.4 Factor table.. 77

5.5 Future work... 78

6 References:... 81

Appendix A:... 84

 v

LIST OF FIGURES:

Figure 1 – Example of item facings: 3 horizontal and 2 vertical facings 6

Figure 2 – Example of segmentation .. 6

Figure 3 - Example of a store plan.. 7

Figure 4 - Example of planogram: Beverage / Soda... 8

Figure 5 - Space planning process .. 9

Figure 6 - CASPER global flow ... 18

Figure 7 - Example of retail store structure .. 20

Figure 8 - Automatic store plan generation engine: global flow 21

Figure 9 - Example of co-occurrence matrix (by department) ... 22

Figure 10 - Example: Initial store plan ... 27

Figure 11 - Auto-segmentation engine: global flow... 30

Figure 12 - ANN biological inspiration .. 31

Figure 13 - Self-Organizing Maps .. 33

Figure 14 - Learning of a triangular input space... 35

Figure 15 - Effect of location within the neighborhood ... 36

Figure 16 - Planogram segmentation scenario 1: Self-Organizing Map........................... 40

Figure 17 – Planogram segmentation scenario 1: Clusters for each variable 42

Figure 18 - Planogram segmentation scenario 2: Self-Organizing Map........................... 43

Figure 19 - Auto-allocation engine: global flow... 49

Figure 20 – Scenario 1: Memoization vs Dynamic Programming 55

Figure 21 - Histogram of sub-problems - Scenario 2 ... 56

Figure 22 - Vertical allocation vector ... 58

Figure 23 - Scenario: Planogram after vertical allocation .. 63

Figure 24 - Scenario: Planogram after space maximization (BKP).................................. 64

Figure 25 - Scenario: Final planogram ... 65

Figure 26 - CASPER: global environment ... 67

Figure 27 - Enterprise Service Bus ... 69

Figure 28 - CASPER: System context .. 69

Figure 29 - CASPER: Block diagram... 70

Figure 30 - Performance Tests: Hardware environment... 73

Figure 31 - AAE Scenario: Total processing time.. 75

Figure 32 - ASE Scenario 1: Total processing time ... 76

Figure 33- ASE Scenario 2: Total processing time .. 77

Figure 34 - Future work: consumer trajectory example.. 79

 vi

LIST OF TABLES:

Table 1 - Planogram segmentation scenario 1: Obtained segments 39

Table 2 - Planogram segmentation scenario 1: Indispensable items 39

Table 3 - Planogram segmentation scenario 1: Optimal cluster(s) 40

Table 4 - Planogram segmentation scenario 1: Calculating the segments efficiency....... 41

Table 5 - Planogram segmentation scenario 2: Obtained segments 43

Table 6 - Planogram segmentation scenario 2: Calculating the segments efficiency....... 43

Table 7 - Planogram segmentation scenario 2: Optimal cluster(s) 44

Table 8 - Scenario: Items with attributes .. 61

Table 9 - Scenario: Vertical allocation ranking .. 62

Table 10 -Scenario: Wasted space .. 66

Table 11 - Scenario: Adjustment of horizontal spacing.. 66

Table 12 - AAE Scenario.. 74

Table 13 - ASE Scenario 1: Different category size... 75

Table 14 - ASE Scenario 2: Different number of variables.. 76

 vii

LIST OF ABBREVIATIONS:

AAE Automatic Allocation Engine

AEA Automatic Expansion Advisor

ANN Artificial Neural Network

ASE Automatic Segmentation Engine

ASPGE Automatic Store Plan Generation Engine

BKP Bounded Knapsack Problem

BMU Best Marching Unit

BRR Business Rule Repository

CASPER Cross-platform Automated Space Planning Engine for Retailers

DP Dynamic Programming

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

IDE Integrated Development Environment

KP Knapsack Problem

KPI Key Performance Indicator

MDM Master Data Management

OSGi Open Services Gateway initiative

PDF Portable Document Format

SaaS Software as a Service

SOA Service-Oriented Architecture

SOM Self-Organizing Map

SVG Scalable Vector Graphics

XML eXtensible Markup Language

 1

1 Introduction

1.1 Introduction to the general problem

Product assortment, product display area selection, shelf space allocation, and inventory

control are critical retailing operations having major impact on the financial performance

of retail stores. Managing these three operations individually will obviously result in sub-

optimal overall retail store’s profit [1]. Such a process induces multiple benefits such as:

• Maximizing space usability in the store

• Improving visibility and accessibility for the customers

• Adapting an optimal distribution of categories, sub-categories and items

• Maximizing profit and revenue

1.2 Problem definition

The choice of which brands to stock and the allocation of scarce shelf space among

stocked brands are important to the retailer because these decisions are key determinants

of his revenue and costs [2]. Hence, an optimal space planning for large retailers

consisting of huge malls and hypermarkets appears as an infinite problem, especially in

the absence of a complete automated process, starting from the store plan generation,

passing by the optimal product assortment and finishing with the product-to-shelf

allocation problem. Moreover, the ever-changing factors affecting the retail space

planning process, such as merchandising rules, competitive strategies and consumer

behavior yield to a continuous follow-up and optimization of the overall process. Such an

intensive and critical maintenance cannot be managed manually since it needs to be

performed in a fast, yet accurate manner.

1.2.1 Need for automation

Suppose CVS Caremark, the largest pharmacy chain in the United States, with

approximately 6900 stores (http://en.wikipedia.org/wiki/CVS/pharmacy), is planning to

apply a space planning process. It is to note that CVS Caremark sells both medical and

grocery products. For each of the 6900 stores, a proper store plan is to be generated,

taking into consideration the geo-spatial and demographic factors of the store’s location.

 2

Per example, a store located in an ethnic region with an intense Asian population will

obviously have a store plan different from another one located in New York’s downtown.

Moreover, for each store, different product assortment plans, hence different product-to-

shelf allocation outputs are to be applied since the marketing and promotional strategies

as well as the spatial constraints (number and distribution of fixtures / shelves) vary from

store to store. For the ethnic cluster of stores, non-national products (per example,

Chinese spices) might cover 5% of the overall assortment while it won’t cross 0.5% in

the other cluster, where there is a significantly lower ethnic concentration. As a result, the

product selection as well as distribution will considerably differentiate. Such a huge

variation cannot be managed manually store by store, especially in the presence of

continuous change in affecting factors (i.e. promotions, holidays, seasonality …).

1.2.2 Need for a complete on-going process

Most of the automated solutions involved in the space planning process focus on the

optimal assortment generation or the product-to-shelf allocation problem without taking

into consideration the whole lifecycle of the process. In a matter fact, ignoring one or

more sub-processes can yield to degradation in both performance and accuracy of the

resulting output. Automating the product assortment without a proper store plan or

automating the product-to-shelf allocation problem without an optimal underlying

assortment can create serious gaps. Suppose a given retailer is using an automated

allocation engine to maximize space utilization in his stores. As for the product

assortment, the category manager is manually, based on previous experience, selecting

the proper items. In such a real-life scenario, the following problems may occur:

• The items selected by the category manager do not reflect an optimal assortment;

given the complexity of certain strategies and the possible high number of related

dimensions or criteria, the category manager might pick the wrong, or “un-optimal”

set (selecting items yielding to a considerable waste of space in the product-to-shelf

allocation phase or products with low affinity to each other, ignoring items with

unobvious profitability)

• The rules considered by the category manager for selecting the assortment and which

are only present in his mind, and the merchandising rules applied by the auto-

 3

allocation engine to distribute the items might diverge from the common global

strategy. Per example, the selected assortment includes two items A and B with very

low affinity to each other (must not be placed adjacent to each other). On the other

hand, the auto-allocation engine, based on “hidden” criteria ignored by the category

manager, placed A and B next to each other, yielding to a strategical conflict.

1.2.3 Need for dynamicity

As mentioned in 1.2.1, the space planning process is tightly bound to various categories

of dynamic factors (i.e geo-spatial, marketing, managerial…). Hence, automated

solutions need to take into consideration such factors, regardless of their number,

respective types and business meaning; the engine should read a dynamic set of weighted

rules and reflect their strategical impact on the resulting output. Such a dynamic

scalability needs to be applied by both value and period. Suppose, for a given US retailer,

the “pain relievers” category is seasonal; the sales activity is higher in cold seasons. Such

a rule cannot be statically applied for the different store clusters; per example, stores

located in Alaska differ from stores located in Texas in terms of seasonality. Moreover,

the weight of such a rule will not be same in both clusters. It is also to note that some

rules and factors may be present and effective for one store cluster and insignificant for

others.

1.2.4 Need for accuracy

As explained before, completeness of the process is a crucial aspect of automated

solutions of the retail space planning problem. Hence, defects in early stages of the

process produce a “chain effect” with more severe impact in child sub-processes. Per

example, while generating the store plan of a given store, if two categories with low

affinity to each other (ex: child food and pet food) were placed adjacent to each other due

to defects in the automated engine, the corresponding items will consequently be

allocated on the wrong fixtures, which yield to inaccuracy in merchandising and waste of

resources (time and labor). Moreover, a poor selection of the assortment of a certain

category due to an inefficient clustering mechanism, yield to a deviation from the

targeted strategy, a decrease in the performance of the plan in terms of expected

profitability and an erroneous product-to-shelf allocation.

 4

1.3 Research objectives

The main objective of this master thesis is to provide a reliable, accurate and complete

method for automated retail space planning. Based on the previous, the research should

answer the following aspects:

• Finding a complete automated flow which covers the whole retail space planning

process.

• Exploring and choosing the most convenient algorithms in terms of performance,

cost and optimization accuracy.

• Finding a methodology which takes into consideration the dynamicity of the

factors affecting the process.

1.4 Approach and main results

To achieve the research objectives goal, multiple computer science algorithms are

explored and analyzed to fit the addressed problem. We divided the problem into three

major components:

• Automatic store plan generation: which distributes, based on the market basket

analysis, the different categories on the different physical fixtures of a given store.

• Auto-segmentation engine: which optimally divides a given store cluster into a set

of product categories, while taking into consideration constraints (i.e. affinity

between categories, consumer behavior, etc…). On the micro-level, the same

engine is used to divide a category’s planogram into optimal segments, based on a

given strategy. All these terms will be explained in detailed in Chapter 2. This

problem has been mapped to a special type of neural networks, the self-organizing

maps.

• Auto-allocation engine: which optimally allocate items over shelves and fixtures

while applying a dynamic set of merchandising rules specified by the user as well

as ensuring the profit / space maximization. This part has been solved by a custom

method which includes the Bounded Knapsack problem.

1.5 Thesis organization

 5

This thesis consists of 4 chapters and one appendix. Chapter 1 introduces the main

problem, defines the research objectives lists the approach and main results. In Chapter 2,

definitions of concepts related to the retail space planning process are presented.

Moreover, previous algorithms and methodologies are overviewed as well as the main

motivation behind this research. Chapter 3 contains the original work, including the

proposed automated process, the adopted algorithms and the corresponding

methodologies. Finally, Chapter 4 summarizes the findings, highlights the contributions

of the thesis and lists the research limitations and future work.

 6

2 Literature Review

2.1 Definitions of the basic concepts

Below is the definition of the basic business concepts used in “retail space planning”:

• Item category / sub-category: the group / sub-group or family to which a given item

belongs. Per example, Coca Cola below belongs to the category “Beverage” and sub-

category “Soda”.

• Item facing: vertical / horizontal copy of an item.

Figure 1 – Example of item facings: 3 horizontal and 2 vertical facings

• Shelf allocation: process of allocating items over shelves and fixtures in a retail

environment. The process is usually performed by item category or sub-category.

• Segmentation: process of dividing a given store by item department/category (or

category/sub-category). Below is an example of basic store segmentation into 5 item

categories:

Figure 2 – Example of segmentation

 7

Such a process defines the portion of each category in respect to the overall store, the

geographical location as well as the neighborhood, which takes into consideration the

affinity between different categories. Per example, there is a low affinity between

baby food and pet food, hence it is not recommended to place the two categories close

to each other.

• Merchandising rule: business rule used to strategically perform segmentation and

shelf allocation. Such rules can affect vertical allocation, horizontal allocation or

simply imply positioning properties. Below is a few examples of merchandising rules

used in a retail environment:

o The minimum horizontal space between items is 1.2 cm (property)

o National brand items must be on left on non-national brand items (horizontal

allocation)

o The maximum number of vertical facings for stackable items is 5 (property)

o Within a category, top selling items must be place on eye-level shelves

(vertical allocation)

• Store plan: logical blueprint of the store resulting of the segmentation process. It

shows the spatial distribution and location of different fixtures by category.

Figure 3 - Example of a store plan

 8

• Planogram: The planogram is a visual diagram, or drawing, that provides in detail

where every product in a retail store should be placed. These schematics not only

present a flow chart for the particular merchandise departments within a store layout

but also show on which aisle and on what shelf an item is located. Generating

planograms is a challenging and time-consuming process because the simplest form

of planogram problem (ignoring all marketing and retailing variables) is already a

multi-knapsack problem, a well-known NP-hard problem which is very difficult to

solve [19].

Figure 4 - Example of planogram: Beverage / Soda

The benefits of using planograms in a retail environment include:

• Enhancing consumer behavior by maximizing trade-up and impulse purchases

• Providing a detailed blueprint to facilitate the replenishment process

• Improving customer satisfaction and loyalty by providing a structured and

accessible product organization

2.2 Space Planning Process

 9

The space planning process covers both micro and macro-store planning. It includes

managing standard and specific store plans, consolidating corporate, store group or store

level view of regular and promotional performance and ensuring store compliance to

corporate strategy and planogram definition.

The figure below illustrates the basic flow of the space planning process adopted by most

retailers:

Figure 5 - Space planning process

The process initiates by creating store plans, then defining assortments. Next, a corporate

planogram, which is the most global version including all items of a certain category, is

created. Based on the corporate planogram, store planograms are generated. Given the

complexity and time-consuming aspect of such a process on one hand and the critical

need of accuracy on the other hand, automated solutions are needed to perform the space

planning process. Based on this need, our proposed approach aims to automate the

segmentation of the store (step 1) and the generation and filling of planograms (step 3

and 5). Moreover, the same approach adopted to implement the auto-allocation engine

can be used to generate store planograms from the resulting corporate planogram. In this

study, our main concern is automating the store plan and corporate planogram creation.

2.3 Previous work

2.3.1 Algorithms

A paper by Chen and Lin uses a popular data mining approach, association rule mining,

instead of space elasticity to resolve the product assortment and allocation problems in

retailing. In this paper, the multi-level association rule mining is applied to explore the

relationships between products as well as between product categories [3]. The approach

consists of three stages. First, the algorithm starts with the multi-level association rule

mining between product items, product subcategories and product categories. Second,

 10

product assortment is applied by estimating the frequent item set profits then resolving

the corresponding product assortment mathematical model. Finally, the algorithm

performs shelf space allocation for product categories, product subcategories and product

items respectively. Another paper entitled “Heuristic Approach for Automated Shelf

Space Allocation” presents a heuristic approach for solving the automatic shelf allocation

problem. The heuristic method described in the paper consists of four phases: 1) the

preparatory phase checks that enough shelf space is available for all products to be

displayed, 2) the allocation phase constructs an initial arrangement, 3) the adjustment

phase makes iterative changes to the arrangement in order to improve the over-all profit,

4) the termination phase computes the quality of the final arrangement and generates the

corresponding planogram [4]. The approach was tested on two problems, a small one

consisting of 135 products on 15 shelves and a large one consisting of 907 products on

114 shelves. The results show that the method is capable of generating much improved

arrangements in terms of the overall profit. Another paper entitled “Metaheuristics with

Local Search Techniques for Retail Shelf-Space Optimization” extends the shelf

allocation problem to address other problems such as product groupings and non-linear

profit functions. The metaheuristics approach starts by developing a network flow

solution approach to the problem and then, using many-to-many neighborhood moves

and finally employing a strategy of combining a strong local search with metaheuristics

[5]. These techniques are then applied to more complex models that address product

groupings and nonlinear profit functions. Another paper divided the problem into two

sub-problems: the Product to Shelf Allocation Problem (P2SAP) and the Shelf-Space

Allocation Problem (SSAP). The authors propose a genetic algorithm where the

chromosomes are coded as vectors of length M where each component i stores the

category allocated to module I [6].

2.3.2 Business Models

On the other hand, many business models have been proposed to solve the retail space

allocation problem. In a paper entitled “A Dynamic Model for Strategically Allocating

Retail Space” [7], the authors show how static models can be extended to incorporate

dynamic market changes. The main issue is how to strategically allocate space among

 11

product groups with widely different growth potentials. The proposed solution is a

dynamic model which extends the classical concentration on retail sales and gross

margins to include variables related to new growth markets. However, the model needs to

be extended to include other competitive variables such as price, advertising and

promotional strategies. Built on the work of Corstjens and Doyle, Bultez and Naret

propose in their paper [8] a shelf space allocation model which focuses on the demand

interdependencies prevailing across and within product-groups. The proposed model

entitled SH.A.R.P (Shelf Allocation for Retailers’ Profit) introduces several distinctive

characteristics such as sales-share elastisticy among product categories. Even though the

model yielded satisfactory experimental results in terms of assortment profitability, the

authors suggested developing the model to integrate additional merchandising variables

such as shelf heights and special types of display fixtures. On the other hand, Zufryden

presents in his paper entitled “A Dynamic Programming Approach for Product Selection

and Supermarket Shelf-Space Allocation” [9], a model intended to select optimally

among a given set of products and allocate integer shelf-space units to the selected

products in supermarkets. The approach takes into considerations strategical

specifications related to space elasticity, product cost and demand-related marketing

variables, and is bound to constraints such as supply availability, block product allocation

and operational requirements.

2.3.3 Software packages

Many Enterprise Resource Planning (ERP) software providers developed advanced tools

for managing and automating the retail space planning process. We will briefly overview

the leading packages in the market.

2.3.3.1 SAS Integrated Merchandise Planning

The solution by SAS corporation includes multiple modules, from which we are

interested in:

• SAS Merchandise Financial Planning: for setting merchandise financial goals

based on analysis of historical data.

• SAS Merchandise Assortment Planning: used for managing assortments based on

consumer behavior and financial strategies.

 12

• SAS Space Planning: for visually planning assortments and building store plans

and category-based planograms.

• SAS Space Optimizer: for automating the development of optimized store-

specific planograms.

• SAS Merchandise Allocation: used to analyze store-specific needs and improve

inventory management with allocation and replenishment of basic, fashion and

promotional merchandise.

2.3.3.2 Demandtec Assortment & Space

DemandTec is a publicly traded company that provides pricing, promotion, and demand

optimization solutions for retailers and consumer product (CP) manufacturers. They

deliver their products as a Software as a Service (SaaS). DemandTec software services

utilize a science-based software platform to model and understand consumer behavior.

This science is based on a quantitative understanding of incrementality, which is an

item’s ability to increase overall category sales or profit, and transferable demand, which

is the degree to which sales volume shifts to similar items in the category or leaves the

store when an item is delisted. Based on DemandTec Assortment & Space™ white paper,

retailers can create optimized assortments based on multiple criteria, including sales,

profit, space productivity, and Gross Margin Return on Inventory Investment (GMROII).

Merchants also have the flexibility to combine their optimization goals with additional

controls to ensure optimized assortments align with company strategies such as

protecting private label items and image items. They can also run multiple scenarios at

once and compare results to identify the best strategy to meet their objectives.

2.3.3.3 JDA Space Planning

JDA Software Group, Inc. is a demand and supply chain partner to the world’s leading

retailers, manufacturers and suppliers and is located in Scottsdale, Arizona. Their space

planning solution supports optimization and analyzing of planograms against any metric

(i.e., balance space to sales and/or days of supply). Moreover, Space Planning enables

multiple planograms to be managed simultaneously, improving consistency and accuracy

as products are quickly and easily added, replaced or updated across the entire planogram

set.

 13

2.3.3.4 Galleria Space Planning

Founded in 1989, Galleria is a market leading provider of automated customer centric

merchandizing solutions to retailers and manufacturers. Their space planning solution

includes the following functionalities:

• Forecasting procedures for optimizing promotional display planning.

• Category management and logical clustering of merchandise.

• Management and automation of strategic planograms which ensure consistency of

merchandising process across all plans.

• Store execution and scenario simulation.

2.3.3.5 Apollo Space & Assortment Optimization

Founded in 1986, Aldata is a supply chain management solutions provider with global

retail, wholesale and logistics customers.The retail space planning solution provided by

Aldata includes three modules:

• Apollo Desginer Workstation: which uses automated procedures to generate

planograms by using merchandising rules, assortments, performance criteria and

space constraints.

• Apollo Total Store: which is a database-driven desktop software product that

allows users to analyze store layouts and plan the use of space in the store at the

macro level. Data is analyzed from various perspectives and information is

presented to best fit specific needs.

• Apollo Web Publisher: which is a web-based system used to publish planograms,

merchandising reports and performance charts in multiple formats.

2.4 Reference books & Software tools

2.4.1 Books

2.4.1.1 Self-Organizing Maps (T. Kohonen, 3
rd
 edition)

This book [10], written by the creator of the Self-Organizing Maps, presents a detailed

study about such revolutionary structures, their structure, variations and usage scenarios.

 14

The author starts by explaining mathematical preliminaries such as distance measures for

patterns, statistical pattern analysis, subspace methods of classification and vector

quantization. Then he presents the basics of neural modeling, the core philosophy behind

his invention, as well as the relation between biological and artificial neural networks, the

phases of development of neural networks and the different learning laws. After

introducing the context of the problem, the detailed description of SOM is explained; the

basic implementation, the physiological interpretation and the different variations.

Finally, the author overviews the different real-life applications of SOM, as well as the

different software / hardware packages used in this field. We will use this reference as a

guideline for mapping the studied retail segmentation problem to a Self-Organizing Map,

defining the optimal initialization parameters (dimensions of the map, neighborhood

functions) as well as the training process parameters (number of learning steps, learning

rate and neighborhood radius). Details about these notions and parameters are provided in

Chapter 3.

2.4.1.2 Algorithms for Knapsack Problems (D. Pisinger)

The book [11], which is the result of a PhD thesis, provides a wide range of algorithms

and methodologies to solve the different variations of the NP-complete Knapsack

problems.

In the first chapters, the author overviews Knapsack problems, their applications in real

life as well their distinctive properties. In the following chapters, innovative minimal

algorithms are presented to solve the 0-1 Knapsack Problem, the Bounded Knapsack

Problem and the Multiple-choice Knapsack Problem. Moreover, the author reviews

dominance relations in Unbounded Knapsack Problems, subset-sum problems and finally

presents an algorithm for large Multiple Knapsack Problems. The main referential usage

of this book is overviewing and analyzing the minimal algorithm intended to solve the

Multiple Knapsack Problem; usually, such problems are mapped to classical 0-1

Knapsack problems and solved using the corresponding approaches.

2.4.1.3 A Java Library of Graph Algorithms & Optimization (K. Rosen)

This book [12] includes a wide variety of algorithms and test cases implemented in Java

language. Categories include graph-related problems (traveling salesman, network flow,

Khaldoun
Highlight

 15

coloring…) as well packing problems (knapsack problems, set covering problems,

assignment problems…). Every chapter is self-contained and largely independent. Each

topic starts with a problem description and an outline of the solution procedure.

Programmatic details about the implementation of the algorithms are supplied in the

book’s appendices. We will be using this reference for writing basic Java-based

implementations of the various Knapsack problems, which will be modified and

upgraded to fit the requirements of the studied optimization problem.

2.4.2 Software tools

The following open-source packages are used to implement test cases and visualize

results throughout the research.

2.4.2.1 JavaSOM

JavaSOM package is an open-source implementation of self-organizing maps (SOM)

written in Java language. The tool consists of two major components: JSOM, which is an

implementation of the Self-Organizing Maps training algorithm and Clusoe, an

independent graphical tool used to configure and manage the maps. The visualization of

the trained map is displayed using Scalable Vector Graphics (SVG) or Portable

Document Format (PDF) files. The parameters used for controlling JSOM during the

learning process as well as the input data are passed in an XML file. The third party

applications included in the JavaSOM package are Xerces, Xalan and FOP. Xerces is the

XML parser used by JSOM for reading in input data and interpreting instructions. Xalan

is the XSL transformation processor which is controlled by JSOM totransform the trained

map information into different XML formats. Currently, it is used only to output generic

XML and SVG formats of the map. FOP is the formatting object processor controlled by

JSOM to generate PDF versions of the maps. Both Xalan and FOP use also Xerces for

XML parsing. We will use JavaSOM to create test cases for the auto-segmentation engine

and visualize the results in SVG format.

2.4.2.2 Eclipse IDE

Eclipse is an open-source IDE written in Java which includes an extensible plug-in

system. Eclipse employs plug-ins in order to provide all of its functionality on top of (and

 16

including) the runtime system, in contrast to some other applications where functionality

is typically hard coded. The runtime system of Eclipse is based on Equinox, an OSGi

standard compliant implementation. We will use Eclipse for developing Java-based

algorithms and real-life scenarios, executing unit tests and measuring their performance.

2.5 Research motivation

Most of the related research papers presented solutions related to some, but not all, of the

sub-processes of the retail space planning problem. One of the closest researches related

to our solution is entitled “A joint optimisation model for inventory replenishment,

product assortment, shelf space and display area allocation decisions”, given its global

approach to the problem even though it didn’t tackle the process automation from an

architectural perspective. However, the authors did not consider some other important

factors, such as the strategic importance of an item, that can influence decisions on

product assortment, shelf space and display area allocations [1]. Moreover, the solution

was not suitable for large sized problems, lacked the automated aspect of the process and

did not cover the whole lifecycle of retail space planning; the authors did not mention the

methodology used to generate the store plan before selecting the optimal product

assortment.

In an another related study entitled “A data mining approach to product assortment and

shelf space allocation” [3], the authors focus on mining multi-level association rules from

a set of store transactions to perform product assortment and shelf space allocation. The

assortment model is mapped to a zero-one integer problem which is different from the

approach that we adopted in this paper. Moreover, the item-to-shelf space allocation is

bound to the shelf profit weight without taking into consideration the dynamicity of

possible merchandising rules.

Based on the previous points, we will focus in this research on providing a “complete”

automated solution which covers the different aspects of retail space planning, takes into

consideration the relatively large size of the problem as well as the dynamicity of the

involved factors.

 17

3 CASPER: Cross-platform Automated Space Planning

Engine for Retailers

3.1 Introduction

In this chapter, we will present our automated solution entitled CASPER (Cross-platform

Automated Space Planning Engine for Retailers). First, we will overview the automation

process flow used to cover the different aspects of retail space planning. For each of the

embedded sub-processes, we will explain the arguments behind the selection of the

different adopted techniques and methodologies. Then, we will explain, using a real-life

test case the methodology used to automate the process, passing by the different phases

(store plan generation, product assortment, product-to-shelf allocation & space

maximization).

3.2 Global flow

The figure below illustrates the global process flow of our proposed engine. The process

initiates by utilizing the results of the market basket analysis as well as the store activity

data to generate an optimal store plan. The output of this phase is a map of the store

specifying which categories of items correspond to which physical fixtures / shelves

within the store. Given the fact that not all items within a category are allocated to their

corresponding shelves, the next phase is an iterative sub-process which operates for each

category and choose the optimal product assortment based on strategy-oriented metrics

and rules. Once the assortment is selected for each of the categories, the final sub-process

allocates the items to their relative shelves, applies the different merchandising rules and

optimizes space utilization.

The main advantage of the proposed flow is the completely automated aspect, which

doesn’t require any external user interaction or supervision. Based on a data repository

containing all information related to items / categories / store attributes and a business

rule repository defining the strategy-related constraints and parameters, the proposed

flow operates module by module throughout the complete space planning process.

 18

Figure 6 - CASPER global flow

 19

3.3 Automatic Store Plan Generation Engine (ASPGE)

3.3.1 Introduction

Allocating retail space is an hierarchical problem where one first divides the space in a

retail outlet among the major departments, then the subdepartments, and so forth right

down to the single shelf. Although the actual allocation problem is identical at any level

in the hierarchy, the rewards for getting the basic allocation right are higher, the higher

one goes in the hierarchy [13]. Based on the above, the automatic store plan generation

engine is the entry point for automating the retail space planning process. Its main

purpose is to distribute the categories over the physical fixtures of the store, taking into

consideration affinities and dependencies. Based on the portion allocated for each

category by the category manager, the auto-segmentation engine will select the

corresponding optimal assortment. On the other hand, the auto-allocation engine will

distribute the items included in the optimal assortment on the shelves selected by the

ASPGE.

3.3.2 Non-functional requirements

We assume that the following non-functional requirements are to be satisfied by the

engine:

• Accuracy: as macro-level module, the ASPGE’s result will affect the overall

output of CASPER, hence it needs to accurately distribute the categories over the

store, taking into consideration the different affecting factors.

• Scalability: ASPGE depends on the results of the market basket analysis and key

performance indicators (KPIs) specified by the category manager. Given the fact

that both sources are dynamically changed, ASPGE needs to be scalable enough

to handle such an aspect.

3.3.3 Functional requirements

We assume that the ASPGE needs to perform the following functionalities:

• Reading the result of the market basket analysis and deriving input data related to

affinity between the different categories present in the basket.

 20

• Reading the KPIs specified by the category manager and reflecting their

strategical meaning by allocating the corresponding categories on the

corresponding physical fixtures.

• Taking into consideration the geo-spatial attributes and constraints of the store.

• Optimizing space utilization on the macro-level (fair distribution of categories

over shelves).

3.3.4 Retail store structure

Depending on the retailer’s operational strategy, a store can be divided into a number of

levels. Unless the plan corresponds to a newly opened store, macro-levels (i.e. zones) are

rarely changed and compose the static part of the store plan. Each macro-level includes

multiple micro-levels (i.e. departments), which can be also divided into other sub-levels,

and so on. In this study, we will adapt the structure illustrated in the example below,

where a store is divided into zones, zones into departments and departments into

categories. It is to note that the items within a category are not all used in the product-to-

shelf allocation process; a product assortment is to be applied in a later phase, resulting in

finding the corresponding set of items.

Figure 7 - Example of retail store structure

 21

3.3.5 Global flow

Figure 8 - Automatic store plan generation engine: global flow

 22

3.3.6 Algorithm description

Our algorithm, based on the “divide-and-conquer” approach, initiates by extracting the

results of the market basket analysis and building a co-occurrence matrix by product

department. In other words, the engine scans the items found in different market baskets,

checks their respective departments and computes the co-occurrence frequency of these

departments, as follows:

(Di,Dj) = + n if Di and Dj belong to the same store zone

 - n if Di and Dj belong to different store zones

where n is the frequency of co-occurrence of departments Di and Dj in the market basket

analysis.

In the example below, department D1 and department D2 are found together in 125

different baskets and belong to the same store zone (positive value) while department D1

and department D3 are found together 89 times but belong to different store zones

(negative value).

Figure 9 - Example of co-occurrence matrix (by department)

After, the fixture table and fixture adjacency/matrix are initialized. The fixture table

contains properties and attributes related to each physical fixture in the store, as follows:

• Fixture ID: unique identifier of the fixture.

 23

• Fixture-group (or planogram after filling it): which specifies the group of fixtures

which contains the studied fixture. In Figure 3 - Example of a store plan, each

group of assembled squares having the same color illustrates a different

planogram.

• Allocated department: which specifies the department to which the fixture is

allocated. This value is initially set to -1 (not allocated).

• Allocated category: which specifies the category within the department to which

the fixture is allocated. This value is initially set to -1 (not allocated).

• Proportion: which denotes how much a given fixture constitutes from the overall

volume of its zone (set of all fixtures). It is calculated as follows:

 where:

• p is the number of shelves in fixture A

• w(i), h(i) and d(i) are the width, height and depth of a given shelf i

• n is the total number of fixtures in the given zone

On the other hand, a fixture distance matrix is generated as follows:

 + n if Fi and Fj belong to the same fixture-group (planogram)

 (Fi,Fj) = - n if Fi and Fj belong to different fixture-groups

 0 if Fi and Fj are adjacent

where n is the distance between fixtures Fi and Fj.

Similarly, a fixture-group table and fixture-group distance matrix are initialized. The

table contains the fixture-group identifier as well as the corresponding zone while the

matrix is created as follows:

 24

 + m if FGi and FGj belong to the same zone

 (FGi,FGj) = - m if FGi and FGj belong to different zones

 0 if FGi and FGj are adjacent

where m is the distance between fixture-groups FGi and FGj.

After completing the initialization of the needed structures, fixed departments, which

preserve their locations regardless of the engine’s output, are allocated to their respective

fixtures. Per example, in a given grocery store, the “bread” department is statically

allocated near the baking oven. Once all fixed departments are allocated, the engine

selects the most profitable boundary departments, which are departments having a large

co-occurrence frequency with departments in other zones and the highest KPI values

specified by the category manager (i.e. profitability, net profit margin, …). In other

words, if the entry (Di, Dj) in the matrix has a relatively small negative value and a large

KPI (profitability) value, this means that department Di needs to be placed on the

boundaries of its zone in such a way that it is shifted closer to the zone to which

department Dj belongs. To choose the corresponding fixture-groups, one of the following

two cases is confronted:

• Dj is already allocated to a fixture-group FGj: in this case, the following algorithm is

applied:

1. Read the fixture-group table and get all fixture-groups belonging to the zone

which includes department Di.

2. Get all entries (x, FGj) in the fixture-group distance matrix where x denotes

the different fixture-groups found in previous step.

3. Sort the absolute value of the entries found in previous step in ascending

order (from closest fixture-group to furthest in respect to FGj).

4. Read the sorted fixture-groups one-by-one and apply the following check:

� If the total of proportions of all non-allocated fixtures within the

fixture-group is greater than the proportion assigned to Di by the

category manager, perform the following “growing algorithm” for

department allocation:

 25

A. Allocate fixture to department, starting from closest fixtures to

FGj to the furthest ones.

B. Repeat until all the proportion assigned to Di is allocated on

fixtures.

C. If the remaining non-allocated proportion of the fixture-group

is greater than a predefined error margin (i.e. 20% of total

proportion assigned for the department), separate allocated and

non-allocated proportions of the fixture-group; a new fixture-

group is created from the non-allocated proportion.

5. If no fixture-group fits department Di, allocate Di on the fixture-group having

the largest free proportion.

• Dj is not yet allocated: in that case, the following algorithm is applied:

1. Get all couples (FGi, FGj) from the fixture-group distance matrix such that

FGi belongs to the zone containing Di and FGj belongs to the zone containing

Dj.

2. Sort the absolute value of the entries obtained in the previous step by

ascending order (from smallest distance to largest).

3. Read the sorted couples one-by-one and apply the following check:

� If the total of proportions of all non-allocated fixtures within the

fixture-group FGi is greater than the proportion assigned to Di, apply

the “growing algorithm” explained above to Di.

4. If no couple of fixture-groups fits department Di, allocate Di on the fixture-

group couple having the greatest free proportion..

Once all departments are allocated to fixture-groups, a similar procedure is applied on the

micro-level, to allocate categories to fixtures within fixture-groups. It is to note that the

algorithm is applied department by department. Assuming we have a category Ci which

is a boundary category in respect to another category Cj which belongs to a different

department, the procedure can be summarized in one two possible cases:

• Cj is already allocated to a fixture Fj: in this case, the following algorithm is applied:

 26

5. Read the fixture table and get all fixtures belonging to the department which

includes category Ci.

6. Get all entries (x, Fj) in the fixture distance matrix where x denotes the

different fixtures found in previous step.

7. Sort the absolute value of the entries found in previous step in ascending

order (from closest fixture to furthest in respect to Fj).

8. Read the sorted fixtures one-by-one and apply the following check:

� If the fixture is not yet allocated to another category, perform the

following “growing algorithm” for category allocation:

A. Allocate category to department, starting from closest fixtures

to Cj to the furthest ones. When no additional adjacent fixtures

are available, stop.

B. Repeat until all the proportion assigned to Ci is allocated on

fixtures.

C. If there aren’t enough non-allocated fixtures to fit Ci’s

proportion, allocate Ci on the set of adjacent fixtures having

the greatest free proportion.

• Cj is not yet allocated: in that case, the following algorithm is applied:

1. Get all couples (Fi, Fj) from the fixture distance matrix such that Fi belongs to

the department containing Ci and Fj belongs to the department containing Cj.

2. Sort the absolute value of the entries obtained in the previous step by

ascending order (from smallest distance to largest).

3. Read the sorted couples one-by-one and apply the following check:

� If the total of proportions of all adjacent non-allocated fixtures within

department Di is greater than the proportion assigned to Ci, apply the

“growing algorithm” explained above to Ci.

4. If no adjacent non-allocated fixtures on Di have enough free proportion to fit

category Ci, allocate Ci on the set of non-allocated adjacent fixtures having

the greatest free proportion on Di.

 27

It is to note that in both cases when Dj (or Cj) is not yet allocated, Dj (or Cj) is used only

as a reference point to its corresponding zone and should not be allocated using the

“growing algorithm”. To justify this statement, consider the following example:

In a given store, suppose we have 3 zones Z1, Z2 and Z3 and 5 departments D1, D2, D3,

D4 and D5 such as D1 Є Z1, D2 Є Z2, D3 Є Z2, D4 Є Z3 and D5 Є Z3. Moreover, we

assume that we have the following entries in the co-occurrence matrix (by department):

(D1, D2) = 125; (D1, D3) = 25; (D1, D4) = 512; (D1, D5) = 90;

(D2, D4) = 180; (D2, D5) = 700; (D3, D4) = 72; (D3, D5) = 2130;

The figure below illustrates the initial store plan:

Figure 10 - Example: Initial store plan

The algorithm initiates with zone Z1 and allocates D1 to the closest fixture-group to Z3

since the largest co-occurrence value is (D1, D4) = 512 and D4 Є Z3. On the other hand

D4 is not yet allocated. Suppose we also allocated D4 on the closest fixture-group to Z1

which is FG7. When proceeding to zone Z2, we find that the largest co-occurrence value

corresponds to (D3, D5) = 2130 where D5 Є Z3. If we allocate D3 to FG6 and D5 to FG8

(since it the only available one), this will be considered as an unfair distribution since D5

should have been allocated on FG7 (the closest fixture-group to Z2) since (D3, D5) >

(D1, D4). Hence, the previous statement is justified.

 28

3.4 Auto-Segmentation Engine (ASE)

3.4.1 Introduction

The main purpose of the auto-segmentation engine is selecting the optimal product

assortment for a given item category. By assortment, we mean choosing what items are to

be included in the planogram and hence placed on the shelves. It is to note that not all

items of a certain category are included in its planogram. To solve such a problem, we

use a special type of Artificial Neural Networks, called Self Organizing Maps (or

Kohonen Maps).

3.4.2 Non-functional requirements

We assume that the following non-functional requirements are to be satisfied by ASE:

• Scalability: the segmentation process is tightly bound to the strategy defined by

the retailers, which usually varies based on the goals and circumstances. Hence,

the engine needs to be able to process multiple dynamic dimensions or factors.

• Accuracy: An optimal assortment directly affects the performance of the store

since it includes selecting what items to allocate on the physical fixtures. Hence,

the auto-segmentation engine should be very accurate in reflecting the assortment

strategy defined by the retailer.

• Interoperability: The segmentation process needs to take into consideration geo-

spatial, demographic and analytical data. Hence, the engine needs to collect

information from multiple heterogeneous systems and export results to

visualization packages (i.e. Store plan rendering, Category segment graph…)

3.4.3 Functional requirements

The engine needs to analyze high-dimensional data corresponding for a certain category,

generate the corresponding clusters and select the optimal ones based on the strategy

defined in the business rule repository. This process needs to be repeated for all

categories that need to be included in the studied store. Once the optimal assortment is

selected, the engine communicates with the auto-allocation module to distribute the

chosen items on the corresponding shelves.

 29

3.4.4 Algorithm / approach selection

The main purpose of the auto-segmentation engine is the optimal assortment per

category, which is “dividing” the items belonging to a given category (based on multiple

dimensions reflecting a certain strategy) and selecting the optimal clusters, the ones

which reflect the most the desired strategy. Given the dynamic automation objective in

our research and the inability to specify the desired output, our selection scope can be

narrowed down to unsupervised learning methodologies. One form is basic “clustering”

algorithms, like K-means and vector quantization. Though these clustering algorithms are

simple, they have several drawbacks. The radius of clusters or the number of clusters has

to be predefined. Minor changes in these values will lead to change in the output which is

not desirable [14]. In our case, we cannot pre-define the number of clusters for a given

category, hence another approach is to be considered. The other alternative to

unsupervised learning problems is adopting Artificial Neural Networks (ANN). Among

ANNs, Self-Organizing Maps (SOM) and Adaptive Resonance Theory (ART) are the

most commonly used approaches for unsupervised learning problems. The main

advantage of ART is the ability to control the degree of similarity between the members

of the same cluster via a pre-defined parameter called “vigilance parameter”. On the other

hand, SOM are used for multi-dimensional data and are able to preserve the topology

through the neighborhood function; in a topology-preserving map, units located

physically next to each other will respond to classes of input vectors that are likewise

next to each other. Back to our application, given that the items of a certain category need

to be segmented based on a set of dynamic criteria and that the optimal clusters are

topologically adjacent, the main properties of SOMs respond more efficiently to the

requirements of our auto-segmentation module.

3.4.5 Global flow

The flow initiates by initializing the different segmentation dimensions or criteria which

reflect the strategy defined by the retailer. Next, the Self-Organizing Map is initialized

and trained in terms of size (number of neurons), initial neuron values and learning

parameters. Once the quality of the map is ensured, the input data is mapped to the

trained map and the optimal obtained clusters are selected.

 30

Figure 11 - Auto-segmentation engine: global flow

 31

3.4.6 Self-Organizing Maps (SOM)

3.4.6.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model, inspired from the

structure of the brain, and used to transform a given input space into a desired output

space.

The image below illustrates how ANN are related to the physiological neural system;

different neurons cooperate based on certain functional similarities in order to produce

the corresponding output. Per example, neurons in the occipital lobe of the brain are

connected by their synapses in order to process the visual functions. The main difference

between biological neural systems and ANN is their organization; unlike the

heterogeneous organization of biological systems, the majority are of ANN are organized

according to the same basic structure.

Figure 12 - ANN biological inspiration

An ANN can be used for the following computational applications:

• Classification: like pattern recognition, image comparison, behavior extraction

and data clustering.

 32

• Noise reduction: by recognizing noisy patterns in a certain input and producing a

noiseless output.

• Prediction: forecasting based on historical data.

The main power of neural networks is their ability to “learn” their function based on the

sample input and produce the corresponding generalized output without any pre-

configuration. In order for an ANN to determine its functions, we need to assign weights

for it. Such a process is applied through “training”, by providing sample data to the

network and adjusting the weights to fit the desired function. There are two types of

learning:

• Supervised training: by supplying the network with the input as well as the

desired output and modifying the weights to minimize the difference between the

actual and desired output.

• Unsupervised training: by supplying the network with the input exclusively; the

network identifies the similarities and differences in the input without any

intervention or adjustment.

Depending on how the neurons are connected, ANN can be divided into three basic

categories:

• Unidirectional networks: mainly one-layer networks, multi-layer networks and

radial networks.

• Recursive networks: including Hopfield networks, Hamminga networks and Bam

networks.

• Cellular networks.

3.4.6.2 Self-Organizing Maps

Self-Organizing Maps (SOM), also known as Kohonen Maps, are special types of

Artificial Neural Networks similar to biological systems; Self-Organizing Maps are

inspired from the topology of the human brain which is divided into regional clusters of

informational representation (i.e. human sensory and motor maps). SOM are mainly

based on Vector Quantization, a technique of representing multi-dimensional data in

lower dimensional spaces, usually one or two dimensions. Moreover, the approach

 33

generates a network which preserves the topology of the training data. Such a mapping

can be achieved by the following aspects:

• Input layer and output layer (map) are completely connected.

• Output neurons, which are the nodes of the map, are interconnected through a

neighborhood function.

Figure 13 - Self-Organizing Maps (retrieved from http://www.ij-

healthgeographics.com/content/download/figures/1476-072X-3-12-7.TIFF)

SOM have been intensively adopted in real-life applications, mainly for data mining,

process analysis and control as well data analysis in economical and commercial fields.

Examples of SOM include mapping of colors from their 3-dimensional representation

(Red, Blue, Green) into a 2-dimensional grid representation and clustering of geographic

maps based on certain criteria (poverty, population size, etc…). In a paper entitled “A

cross-national market segmentation of online game industry using SOM” [15], the

authors adopt a two-level SOM to develop clusters within each nation concerning the

studied online game industries. The authors state that adopting SOM helped to effectively

reduce the complexity of the reconstruction task and noise. Another paper entitled

“Unsupervised segmentation using a self-organizing map and a noise model estimation in

sonar imagery” [16] presented SOM as an effective approach to segment images provided

by a high-resolution sonar; the learning of a Kohonen self-organizing map (SOM) is

performed directly on the input image to approximate the discriminating functions, i.e.

the contextual distribution function of the grey levels. These papers and many others

 34

show how SOM can be used to efficiently cluster n-dimensional data; such an approach

can be interesting to segment a retail store to different categories based on multiple

criteria or dimensions (i.e. affinity, performance, consumer behavior, etc…).

3.4.6.3 Unsupervised Learning

One of the main characteristics of Self-Organizing Maps is unsupervised learning, which

means the ability to classify data without needing to specify a target vector. In contrast,

supervised training techniques such as back-propagation requires comparing the output

vector to the target vector; if there’s a difference, the weights of the nodes are altered to

reduce the error in the output. This process is repeated several times until the network

reflects the desired output.

Given an n-dimensional input space and m output neurons, unsupervised learning

operates as follows:

1. Randomly generate a weight vector W for the m neurons.

2. Choose a random input x from the training data.

3. Iteratively examine all the nodes of the map and compare their weights to the

input vector’s weight; the closest matching node is selected and referred to as the

Best Matching Unit (BMU).

4. Calculate the radius of the neighborhood of the BMU; this value, initially large

and set to the radius of the map, diminishes after each iteration. Then, update the

weight vectors of all neurons i in the neighborhood of the examined neuron k, as

follows:

wi := wi + η·ϕ(i, k)·(x – wi) , where ϕ is the neighborhood function and η the

learning parameter (both explained below). Any nodes found within this radius

are deemed to be inside the BMU's neighborhood.

5. Narrow neighborhood function ϕ and learning parameter η and repeat step 2.

 35

Figure 14 - Learning of a triangular input space

3.4.6.3.1 Calculating the BMU & Neighborhood

The BMU is selected by calculating the Euclidian Distance, as follows:

where (W1, W2, … , Wn) are the node’s weights, and (V1, V2, … , Vn) are the input

vector’s values.

As for the node’s neighborhood, it is expressed as an exponential decay function which

decreases from iteration to iteration until reaching the value of the BMU. It can be

formulated as follows:

where σ (0) is the width of the radius at time t0, λ is a time constant and t is the current

iteration.

On the other hand, the effect of location within the neighborhood is defined by a

 36

Gaussian curve as follows:

Figure 15 - Effect of location within the neighborhood

Finally, to ensure the convergence of the map, the learning rate L is defined as follows:

3.4.6.4 Map Initialization

It is often reported in the technique literature that the success of the self-organizing

feature map formation is critically dependent on the initial weights and the selection of

main parameters (i.e. the learning-rate parameter and the neighborhood set) of the

algorithm [17]. Before selecting the approach that we will adopt to initialize the map, we

will present the different general methodologies used for this purpose.

3.4.6.4.1 Random Initialization

This is the most straight-forward approach consisting of initializing the map nodes with

random values. Even though it’s the easiest methodology, it’s poorly efficient since it

requires an additional number of training cycles.

3.4.6.4.2 Initialization using Random Training Data

This approach consists of selecting a random set of input vectors from the training data

and using it to initialize the map. This method is certainly more efficient than the random

initialization since it will produce a basic map state reflecting the input data, and hence

 37

decrease the needed training cycles and computational time. However, such a state will

not be very accurate: given that the map nodes are much less than the training data

vectors and that the chosen set is picked randomly, the initialized map will end up

reflecting a partial representation of the overall training data.

3.4.6.4.3 Initialization using Selected Training Data

In contrast to the previous approach, this method consists of selecting a more meaningful

set of input vectors in order to reproduce a more accurate map state. To achieve this, we

need to cluster our data before choosing the initialization set, which seems not that easy

given the multi-dimensional aspect of the training data. Hence, Principle Component

Analysis (PCA) can be used to reduce the dimensionality, while preserving the variability

of the data .PCA involves a mathematical procedure that transforms a number of possibly

correlated variables into a smaller number of uncorrelated variables called principal

components. The first principal component accounts for as much of the variability in the

data as possible, and each succeeding component accounts for as much of the remaining

variability as possible.

3.4.7 Parameter selection

The selection of the map’s initialization parameters depends on the purpose and outcome

of the scenario, but there are a number of recommendations suggested by Kohonen to

optimize the results. Below are the main “best practices”:

 The map dimensions affect its visualization; a small map is recommended for cluster

identification purposes.

 The length of the reference vector P(x) must be 1.3 times the length of the reference

vector P(y).

 The learning factor must be large in the initial training phase and relatively small in

the final phase.

 The initial network radius should be rather large, preferably larger than half the

network diameter [10].

 38

3.4.8 Implementation

The scenario for the auto-segmentation engine is divided into two parts: generation of the

store plan and segmentation of a given planogram.

3.4.8.1 Planogram segmentation

The studied scenario will be applied to the category “pain relievers”, consisting of 68

items, from which an optimal item assortment is to be selected. Based on the objective

specified by the retailer, we will generate a self-organizing map, which clusters the multi-

dimensional data and helps to decide which segments to choose for the assortment. The

following variables (dimensions) will be taken into consideration:

• Last year total sales volume

• The Net Profit Margin: calculated as follows:

• Indispensability of the item: if this value is true, this means that it is mandatory to

select the corresponding item.

• Profitability: which is a value computed by the forecast engine specifying how

much an item is profitable in respect to its spatial dimensions.

Using the parameter initialization tips mentioned in the previous section, we will apply

our scenario on two map variations: small map (4*3 with diameter = 6) and large map

(12*8 with diameter = 40). The learning factor has a value of 0.5 in the initial phase and

0.05 in the final phase.

3.4.8.1.1 Using a small map

The following results are obtained (colors of the segments will be illustrated later in

Figure 16 - Planogram segmentation scenario 1: Self-Organizing Map):

Segment Color Frequency

(%)

LY

Sales

Net Profit

Margin

Is

Indispensable

Profitability

S1 22.06 438 23.87 0 0.5047

 39

S2 5.88 393 76.25 1 0.3925

S3 25 182 37.18 0 0.8324

S4 16.18 196 57.82 0 0.2291

S5 14.71 220 24.3 0 0.237

S6 16.18 639 71.55 0 0.6918

Table 1 - Planogram segmentation scenario 1: Obtained segments

The table above shows the 6 segments obtained in the resulting map. By analyzing the

attributes, it is clear that the segment S2 includes all indispensable items (Is Indispensable

= 1), hence it will be automatically selected.

The items included in S2 are shown in the table below:

Item # LY Sales Net Profit

Margin

Is Indispensable Profitability

19 497 70 1 0.85

38 415 81 1 0.08

56 299 79 1 0.68

60 362 75 1 0.29

Table 2 - Planogram segmentation scenario 1: Indispensable items

Suppose that the retailer needs to choose around 25% of the items of each category and

assign them to the corresponding planogram. After selecting the indispensable items, one

additional cluster can be chosen (all remaining segments have a frequency between

14.71% and 25%). By reviewing the attributes of each cluster and given that the strategy

tends to maximize sales / net profit margin / profitability, the segment S6 must be

obviously selected (LY Sales = 639, Net Profit Margin = 71.55 and Profitability =

0.6918). Below are the items corresponding to the segment S6:

Item # LY Sales Net Profit

Margin

Is Indispensable Profitability

1 528 72 0 0.82

 40

10 831 64 0 0.78

27 711 84 0 0.43

33 243 91 0 0.72

37 352 84 0 0.55

42 702 62 0 0.59

47 523 83 0 0.79

50 690 61 0 0.62

51 522 65 0 0.72

63 902 59 0 0.81

68 1025 62 0 0.78

Table 3 - Planogram segmentation scenario 1: Optimal cluster(s)

Below is the graphical presentation of the self-organizing map’s clusters:

Figure 16 - Planogram segmentation scenario 1: Self-Organizing Map

The optimal selected segment corresponds to the upper-left pink segment in the above

figure. To justify the accuracy of the map, we will inspect the items belonging to the

bottom-right purple segment; such items must be the least compatible with the specified

strategy. Below is the list of these items:

The table below shows the total efficiency for each cluster (assuming that the sales

volume, net profit margin and profitability have the same priority). The efficiency is the

sum of the ratio of the attribute over its maximum value for all indicators (except item

indispensability):

 41

Segment LY Sales /

maximum LY

Sales

Net Profit Margin /

maximum Net Profit

Margin

Profitability /

maximum

Profitability

Efficiency

S1 0.685 0.313 0.606 1.604

S2 0.615 1 0.472 2.087

S3 0.285 0.488 1 1.773

S4 0.307 0.758 0.276 1.341

S5 0.344 0.319 0.285 0.948

S6 1 0.938 0.831 2.769

Table 4 - Planogram segmentation scenario 1: Calculating the segments efficiency

The results above show that segments S4 and S5 (green and purple segments

respectively) have the lowest efficiency value, while the optimal segment is S6 (pink

segment). This can be justified visually by the distance between the optimal segment and

the least efficient segments (which are the furthest of the optimal segment).

Furthermore, the picture below illustrates the map clusters for each of the four

dimensions. It is clear that the indispensability dimension clustered the map into 2 main

regions: all 4 indispensable items (red region) on one side, and all the other non-

indispensable items on the other side. In terms of overall sales (first part of the figure), it

is clear that the selected optimal cluster outperforms the others significantly. As for the

net profit margin and the profitability dimensions, the optimal cluster is among the top

two in both cases. The relatively acceptable performance of S3 (top-right segment), third-

best in terms of overall efficiency, can be explained by its leading score in terms of

profitability.

 42

Figure 17 – Planogram segmentation scenario 1: Clusters for each variable

3.4.8.1.2 Using a large map

Using a large map of size (12*8), the following segments are obtained:

Segment Color Frequency

(%)

LY

Sales

Net Profit

Margin

Is

Indispensable

Profitability

 43

S1 51.47 301 35.17 0 0.3309

S2 26.47 194 35.44 0 0.835

S3 16.18 639 71.55 0 0.6918

S4 5.88 393 76.25 1 0.3925

Table 5 - Planogram segmentation scenario 2: Obtained segments

Below is the graphical representation of the self-organizing map’s clusters:

Figure 18 - Planogram segmentation scenario 2: Self-Organizing Map

Similarly to the previous scenario, segment S4 is picked since it includes all

indispensable items. The additional segment will be selected based on its efficiency.

Segment LY Sales /

maximum LY

Sales

Net Profit Margin /

maximum Net Profit

Margin

Profitability /

maximum

Profitability

Efficiency

S1 0.471 0.461 0.396 1.328

S2 0.304 0.465 1 1.769

S3 1 0.938 0.829 2.767

S4 0.62 1 0.47 2.09

Table 6 - Planogram segmentation scenario 2: Calculating the segments efficiency

 44

Based on the results above, segment S3 will be selected. To validate if it includes the

same items selected in scenario 1, we will extract the records corresponding to it:

Item # LY Sales Net Profit

Margin

Is Indispensable Profitability

1 528 72 0 0.82

10 831 64 0 0.78

27 711 84 0 0.43

33 243 91 0 0.72

37 352 84 0 0.55

42 702 62 0 0.59

47 523 83 0 0.79

50 690 61 0 0.62

51 522 65 0 0.72

63 902 59 0 0.81

68 1025 62 0 0.78

Table 7 - Planogram segmentation scenario 2: Optimal cluster(s)

It is clear that the same optimal clusters are obtained in both scenarios (small and large

map respectively). The only difference is their number; using a small map, we obtained a

larger number of clusters. Given the fact that the segmentation process is a clustering

approach in its nature, we recommend using relatively small maps for the ASE.

 45

3.5 Auto-Allocation Engine (AAE)

3.5.1 Introduction

The purpose of the auto-allocation engine is to optimally distribute items belonging to a

certain category (optimal assortment generated by the auto-segmentation engine for the

related category) over the corresponding fixtures. Such a process must take into

consideration a set of dynamic rules specified by the user in the business rule repository

and must ensure optimal profitability while maximizing space utilization. We will show

in the coming sections how the dynamicity of the strategy is maintained and how the

problem is mapped to Bounded Knapsack Problem. Moreover, the different

implementation aspects of the engines are explained.

3.5.2 Non-functional Requirements

We assume that the following non-functional requirements are to be satisfied by the auto-

allocation engine:

• Performance: Given the huge amount of data that needs to be processed by the

engine as well as the broad number of categories within a store, the engine needs

to have an optimal performance (i.e. less than one second for an average size

segment, consisting of less than a hundred items and a dozen of fixtures).

• Scalability: The architecture of the engine needs to be flexible enough to allow

interaction with other modules of an enterprise application (i.e. fetching data from

heterogeneous data sources, requesting statistical data from analytical engines and

exporting results to presentation interfaces, including 3D rendering). The service-

oriented aspect, which will be discussed in the architecture-related section,

ensures the satisfaction of this crucial requirement.

• Accuracy: The main purpose of the engine is to maximize the profit derived from

a certain strategy defined by the end user. Hence, this should be reflected

accurately in the output; per example, if space maximization is the highest priority

rule, then the engine’s output should intelligently consider minimizing space

wasting.

 46

• Dynamicity: Given the fact that the merchandising rules change frequently from

period to period (i.e. seasonality, promotion, competitor strategy, etc…), the

engine should be able to process dynamic sets of rules and reflect the underlying

strategy.

3.5.3 Functional Requirements

We assume that the following functionalities and capabilities are to be provided by the

auto-allocation engine:

• Rule parsing & execution: the engine needs to parse the merchandising rules

defined in the business rule repository and apply the priority weights.

• Item ranking: by classifying the different items based on the different attributes

and provided criteria.

• Applying mandatory rules and properties: defined by the user, such as horizontal /

vertical spacing between items, minimum facings, etc…

• Item allocation: Based on the results of the above steps, the engine can locate the

horizontal / vertical coordinates of the item on the corresponding shelf / fixture.

• Space maximization: by optimally ensuring that the space / profit constraints are

satisfied. This problem is mapped to the bounded Knapsack problem, explained in

coming sections.

 47

3.5.4 Engine Phases

Suppose a certain planogram (set of fixtures, each consisting of several shelves) is

segmented by the user. As explained in the previous sections, on the micro level,

segmentation means that the user specifies that a certain percentage of the overall

planogram corresponds to a specific category of items. On the macro level, the store is

divided into regions where categories are allocated to corresponding sets of physical

fixtures and shelves.

Per example: (Note that results are not accurate and intended for illustration purposes)

B

(25%)

A

(50%)

C

(12.5%)

D

(12.5%)

Based on the above, the application supplies the auto-allocation engine with information

about each segment (from A to D), consisting of:

• Set of items corresponding to the related category

• Set of sub-shelves

Next, the vertical merchandising rules prioritized by the user are applied. Per example,

new items are to be placed from top to bottom, from left to right. By iteratively applying

Sub-Shelf S1 (Order 1: � Top):
start-point:0 , end-point: 200 � width:200

Sub-Shelf S2 (Order 2 � Bottom):
start-point:0 , end-point: 200 � width:200

Item I1

Item I2

Item
I3

Item I4

 48

these rules (from lowest priority to highest priority), we will end up knowing which items

are to be placed on which sub-shelves.

The next step is to fill up the wasted space on each shelf by adding “facings”. To solve

this problem, we will assume that we have a 0-N (bounded) knapsack problem (items

having a width W and a profitability P). By applying the algorithm, we will be able to

maximize space utilization.

The final step is to apply horizontal merchandising rules which will arrange items on

the same sub-shelf (local brand items are to be placed on the left of national brand

items), as well as apply “stacking” rules (items stacked

vertically).

 Item I2

Item I4 Item I4

Item I2

Item I1

Item I1

Item
I3

Item
I3

Item I1

Item I2

Item I4 Item I4

Item I2

Item I1

Item I2

Item I4

Item
I3

Item
I3

Item
I3

 49

3.5.5 Global flow

Figure 19 - Auto-allocation engine: global flow

 50

3.5.6 Knapsack Problem

3.5.6.1 Introduction

The knapsack problem or rucksack problem is a problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine the number of each item

to include in a collection so that the total weight is less than a given limit and the total

value is as large as possible. It derives its name from the problem faced by someone who

is constrained by a fixed-size knapsack and must fill it with the most useful items.

The problem usually arises in financial problems as well combinatorics, complexity

theory, cryptography and applied mathematics. We will introduce this problem to solve

the problem of retail space planning (i.e. shelf allocation) with the presence of dynamic

sets of prioritized merchandising rules.

3.5.6.2 Variations

There are three main variations of the N-P complete Knapsack problem:

• 0-1 Knapsack problem: the most common variation of the problem, where 0 or 1

copy of each item can be included in the knapsack.

• Bounded (0-N) Knapsack problem: where 0 to N copies of each item can be

included in the knapsack. N is the maximum number of copies for each item.

• Unbounded Knapsack problem: where an unlimited number of copies of each

item can be included in the Knapsack.

• Multiple-choice Knapsack problem: where we have a set of classes, each

consisting of several items and one item is to be picked from each class.

• Subset sum problem: if for each item, the profit and weight are equal.

The third variation is the most complex. It is to note that the multiple Knapsack problem

(i.e. more than one knapsack is introduced) can be formulated as the “Bin Packing”

problem. Our approach can be formulated as a bounded Multi-knapsack problem with the

presence of multiple dynamic constraints.

3.5.6.3 Solving the Knapsack Problem

All Knapsack problems belong to the family of NP-hard problems, meaning that it is very

 51

unlikely that we can ever devise polynomial algorithms for these problems. But despite

the exponential worst-case solution times of all Knapsack algorithms, several large scaled

instances may be solved to optimality in fractions of a second [12]. To do so, multiple

computer science algorithms and approaches can be adopted [11], notably:

• Dynamic Programming: which is a metatechnique, not an algorithm, similar to

“divide & conquer”. It is used when the examined problem can be divided into

recurring sub-problems; the resulting solution of each sub-problem is stored in

memory for reuse. Additional details about dynamic programming will be

provided in the next section.

• Branch-and-Bound: is a general algorithm for finding optimal solutions of

various optimization problems, especially in discrete and combinatorial

optimization. It consists of a systematic enumeration of all candidate

solutions, where large subsets of fruitless candidates are discarded en masse,

by using upper and lower estimated bounds of the quantity being optimized.

• Greedy approximation algorithm: which is frequently used to obtain sparse

solutions to learning problems. In a paper entitled “Approximation algorithms

for the multiple knapsack problem with assignment restrictions” [18], the

authors show that simple greedy approaches yield 1/3-approximation

algorithms for the objective of maximizing assigned weight of the studied

problem. Two different 1/2-approximation algorithms are proposed: the first

one solves single knapsack problems successively and the second one is based

on rounding the LP relaxation solution.

• State Space Relaxation: which is a concept related to dynamic programming,

where the optimization problem can be formulated as a task to find the

smallest-cost path of transitions between initial and final states by

exhaustively exploring the corresponding state-space.

Those are some, and not all, of the main approaches used to solve the Knapsack problem.

Additional approaches include preprocessing, genetic algorithms, backtracking and

metaheuristics.

 52

3.5.7 Dynamic Programming

3.5.7.1 Why not Brute Force?

The most basic solution to the Knapsack problem would be adopting Brute Force.

Suppose we have a set of n items, each having a profit P and size S, and we need to fill a

shelf of size W. The mentioned approach initiates by generating all 2
n
 subsets,

eliminating all subsets whose sum of sizes exceed W and select the maximum total profit

of the remaining subsets.

Example: 0-1 Knapsack problem: only one copy of each item is allowed

We have 3 items (item, size, profit):

(item A, 9, 12.5), (item B, 6, 10) and (item C, 14, 4) and a Knapsack of size W=20.

The Brute Force approach initiates 2
3
=8 possible subsets:

S1: empty set

S2: item A with total profit of 12.5 and total size of 9

S3: item B with total profit of 10 and total size of 6

S4: item C with total profit of 4 and total size of 14

S5: item A + item B with total profit of 22.5 and total size of 15

S6: item A + item C with total profit of 16.5 and total size of 23

S7: item B + item C with total profit of 14 and total size of 20

S8: item A + item B + item C with total profit of 26.5 and total size of 29

The subsets S6, S7 and S8 are eliminated since their total size exceeds W. The subset S5

is selected since it has the maximum total profit between the remaining sets. Even for the

simplest variation of the Knapsack problem (0-1) and for a small problem (3 items and a

single knapsack), such a process has a runtime of O(2
n
), which is obviously not suitable

for large-scale applications such as retail shelf allocation; even for a simple planogram

consisting of one shelf and 50 items, brute force can take up to 2
50
 operations to derive

the optimal allocation, which is clearly inconvenient.

3.5.7.2 Greedy Approach: Performance vs. Optimality

The greedy approach obtains the optimal solution by passing through a series of choices.

At each pass, the algorithm makes the best local solution without referring to results from

 53

previous sub-problems; this is the main aspect that differentiates it from dynamic

programming. However, the greedy approach shares some similarities with dynamic

programming such as optimal substructure (An optimal solution to the entire problem

contains within it optimal solutions to sub-problems) and recursive solutions.

Theoretically, the greedy approach is more efficient than dynamic programming in terms

of simplicity and performance but it cannot be useful to in our case, as shown in the

example below.

Counter-example: 0-1 Knapsack problem:

We have 3 items (item, size, profit):

(item A, 25, 10), (item B, 10, 9), (item C, 10, 9) and Knapsack of size W=20.

Suppose the greedy strategy consists of picking the items with highest profit first � The

strategy will pick item A, yielding a total profit of 10 while the optimal solution consists

of picking B and C, yielding to a total profit of 18.

Hence, given the crucial need of optimality in retail shelf allocation, we can discard the

greedy approach. Nevertheless, such a methodology can be useful in solving the

Fractional Knapsack Problem, where fractions of an item can be included in the

Knapsack; this approach can be suitable for solving the Cutting Stock problem (i.e.

papers rolls in an industrial mill).

3.5.7.3 Dynamic Programming for the Knapsack Problem

The shelf auto-allocation problem can be solved using dynamic programming since it

satisfies its main two characteristics:

• Principle of Optimality (or Optimal substructure): since the optimal solution to

our problem contains within it optimal solutions to sub-problems

• Overlapping sub-problems: since in certain cases, the same sub-problem is solved

more than once.

Using dynamic programming, the Knapsack Problem can be expressed by the following

recursive formula:

 54

which means that the subset cannot contain an item k if the total weight becomes larger

than the Knaspack’s weight w; otherwise, we choose between two subsets based on the

largest total profit:

• Total profit of original subset (without item k)

• Total profit of new subset (with item k added)

Below is the pseudo-code for the 0-1 Knapsack Problem using Dynamic Programming:

Hence, the algorithm repeats O(W) n times resulting in an overall time of O(n*W), where

n is the number of items and W is the weight of the Knapsack. The pseudo-polynomial

time is divided as follows: O(nw) times to fill the array, which has (n +1)*(w +1) entries,

each requiring O(1) time to compute and O(n) time to trace the solution, because the

tracing process starts in entry n of the array and moves up 1 row at each step.

3.5.7.4 Memoization vs. Dynamic Programming

Memoization is a top-down variation of dynamic programming based on the concept of

storing solutions to sub-problems as solved in the recursion algorithm. The solutions are

stored in a table-like structure, indexed by the arguments of the corresponding function.

Such an approach can outperform dynamic programming when not all solutions to sub-

problems are needed. The following summarizes the difference between the two

approaches:

• Memoization has the overhead of recursion, but computes fewer entries in the table

than dynamic programming.

 55

• Dynamic programming avoids the overhead of recursion, but computes more entries

than necessary

To determine if it’s suitable to adopt it for the retail auto-allocation engine, let us analyze

a real-life scenario for a given simple planogram.

Example: Consider the following 10 items (profit, width in cm) that needs to be allocated

on a small shelf of width W=50 cm (Assume that 0-1 copy of each item is allowed � 0-1

Knapsack Problem):

Item1 (5,28) Item2 (9,26) Item3 (6,22) Item4 (1,34) Item5 (7,28)

Item6 (8,20) Item7 (7,17) Item8 (4,14) Item9 (5,18) Item10 (3,16)

The following graph illustrates the progress of the dynamic programming algorithm:

Figure 20 – Scenario 1: Memoization vs Dynamic Programming

The main difference is that dynamic programming tries to fill the knapsack for all W=50

different sizes, while memoization only fills sizes that occur in the recursive call (only 12

in this case). But, it is to note that the memorization approach implied 338 recursions.

Moreover, in retail applications, the shelf (knapsack) size is at least 10 times larger than

the average item size. To translate such a real-life constraint, let us consider the same

scenario as above but with a realistic shelf size of 200 cm; like the previous scenario,

memorization outperforms dynamic programming in terms of memory saving (up to

70%) but yielded to 1988 recursions, which induces very large overhead.

Hence, the selection will be based on the following fact: memory saving vs. less

recursion overhead. Given that real auto-allocation scenarios in the retail industry are

very similar to the previous scenario and that memoization is mainly efficient for the

unbounded Knapsack problem, dynamic programming will still be the most efficient

candidate for the engine.

 56

3.5.7.5 Tailoring dynamic programming

Let us compute the histogram of the different sub-problems occurring in the second

scenario of the previous section (real-life scenario: realistic values of retail items and

shelves):

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

value of sub-problem

n
u
m
b
e
r
o
f
o
c
c
u
re
n
c
e
s

Figure 21 - Histogram of sub-problems - Scenario 2

By analyzing the histogram above, we can clearly observe that some sub-problems are re-

computed considerably by the traditional dynamic programming approach, resulting in

loss of performance. In figure 6, we can also observe that a set of trailing values in each

line in the output is repeated; this is can be explained by the following:

• For each item, dynamic programming is computing the profit for ALL weights (0

≤ w ≤ W), regardless if the sub-problem will be used or not.

As a result, the first enhancement would be specifying an initial bound for each iteration

(each item), which is the weight of that corresponding item. Implementation-wise, the

change will affect the inner loop in the pseudo-code as follows:

 57

3.5.8 Implementation

3.5.8.1 Dynamic Rules

The auto-allocation engine’s behavior is directly linked to the defined strategy, hence to

the combination of merchandising rules. It is to note that rules with high priority affects

the most the outcome of the engine. To ensure both dynamicity and strategy-driven

computation, the following methodology is adopted:

• Dividing merchandising rules as follows:

o Vertical rules: affecting vertical allocation on different shelves. These

rules can be affect top-down or bottom-up distribution.

o Horizontal rules: affecting horizontal allocation / positioning within the

same shelf (given that the item is already allocated to a given shelf)

o Hybrid rules: when an item needs to be allocated to a certain region within

the planogram

• Applying vertical rules then horizontal rules: this will initialize the components of

the Knapsack problem; a set of items and a wasted space to be filled in an optimal

manner.

Assume that we have a set of vertical rules, a set of horizontal rules and a set of items that

need to be allocated on 3 shelves S1, S2 and S3.

The items will hold attributes for each of the rules (if we have n different rules then we

have n different attributes):

Item 1: r1:5 r2:10; r3:2 ……………………., rn: 8

 58

Item 2: r1:2 r2:* r3:7, ……………………., rn: 3 (* indicated that no value is

defined)

…….

Item j: r1:7 r2:* r3:*, ……………………., rn: 11

Each of the rules will have a priority weight defined by the user:

a1:2 a2:1; a3:4 ……………………., an: 10

First of all, we need to decide which items belong to which shelf, hence to apply the

vertical rules.

For each vertical rule, we rank the items based on the corresponding rule attribute; if the

item has no value, we assign to it the average of all other non-null item attributes. The

final rank of each item can be expressed as:

where: n is the total number of vertical rules

 ai is the priority weight of the rule

 xi is the rank of the item for the corresponding rule

After calculating the ranks for all the items, we generate a sorted vector as follows (the

sorting order, ascending or descending, depends on the type of the vertical allocation –

whether it’s top-down or bottom-up):

Figure 22 - Vertical allocation vector

The figure above illustrates how items (black squares) are sorted by calculated rank and

distributed proportionally over shelves (colored squares). The proportion depends on the

size, as well as the profitability of the shelf; per example, the user can specify that eye-

level shelves can hold more items than top or bottom shelves. As a result, each item is

assigned to specific shelf, reflecting the specified vertical rules. After filling each shelf

iteratively (explained in the coming sections), the same procedure will be applied for

horizontal allocation (positioning of the item on the shelf).

 59

3.5.8.2 Mapping to Knapsack Problem

We assume that the space maximization process of the auto-allocation engine can be

mapped to a bounded (0-N) Knapsack problem. After allocating items on corresponding

shelves with the minimum required number of horizontal facings, we need to optimally

fill the remaining space on each shelf. The selection of the “bounded” aspect is due to the

business rule stating that 0 to N copies of a given item can be allocated horizontally on

the remaining space, where N is the maximum allowed number of horizontal facings.

Mathematically the bounded knapsack problem can be formulated as:

maximize

subject to

where:

• n is the number of distinct items on the shelf

• pj, wj and xj are respectively the profit (calculated by an independent forecasting

engine), weight (width in our case) and number of copies of a given item j

• W is the remaining total space on the shelf

3.5.9 Real-life Scenario

Based on the output of the auto-segmentation engine obtained in the previous scenario,

we need to allocate the items within the obtained assortment (for the category “pain

relievers”) on the corresponding fixture (composed of 4 shelves, each of 200 cm width).

The minimum horizontal space between 2 items is 1 cm.

Below is the list of items with the following attributes:

Item name Item image National / non-

national

Item attributes

Depth: 12 Width: 18

Height: 10 Min Stacks: 4

Min Facing: 2 Max Facing: 5

Advil 100 mg

National brand

LY Sales: 528 Profit: 60

 60

Depth: 10 Width: 16

Height: 9 Min Stacks: 4

Min Facing: 3 Max Facing: 5

Advil 200 mg

National brand

LY Sales: 831 Profit: 78

Depth: 14 Width: 17

Height: 9 Min Stacks: 4

Min Facing: 2 Max Facing: 4

Advil PM 500

mg

National brand

LY Sales: 497 Profit: 55

Depth: 13 Width: 17

Height: 11 Min Stacks: 3

Min Facing: 3 Max Facing: 6

Advil Liqui-gels

500 mg

National brand

LY Sales: 711 Profit: 82

Depth: 8 Width: 20

Height: 15 Min Stacks: 3

Min Facing: 1 Max Facing: 3

Herbal Nights

Non-national brand

LY Sales: 243 Profit: 38

Depth: 11 Width: 12

Height: 18 Min Stacks: 2

Min Facing: 2 Max Facing: 4

Lanes Quiet

Life

Non-national brand

LY Sales: 352 Profit: 47

Depth: 8 Width: 11

Height: 20 Min Stacks: 1

Min Facing: 2 Max Facing: 4

Natrol

Melatonin

National brand

LY Sales: 415 Profit: 44

Depth: 9 Width: 13

Height: 16 Min Stacks: 3

Min Facing: 3 Max Facing: 5

Vivarin Blu-

emu

Non-national brand

LY Sales: 702 Profit: 68

Depth: 8 Width: 8

Height: 16 Min Stacks: 1

Min Facing: 2 Max Facing: 4

Snore relief

Non-national brand

LY Sales: 323 Profit: 49

Depth: 11 Width: 11

Height: 18 Min Stacks: 2

Xiboprofen

Activon

National brand

Min Facing: 3 Max Facing: 5

 61

LY Sales: 690 Profit: 61

Depth: 11 Width: 11

Height: 18 Min Stacks: 2

Min Facing: 2 Max Facing: 5

Xiboprofen

Activon Forte

National brand

LY Sales: 522 Profit: 52

Depth: 9 Width: 19

Height: 10 Min Stacks: 4

Min Facing: 2 Max Facing: 4

Cengent Bayer

Non-national brand

LY Sales: 299 Profit: 45

Depth: 9 Width: 18

Height: 11 Min Stacks: 4

Min Facing: 2 Max Facing: 5

Cengent Bayer

Children

Non-national brand

LY Sales: 362 Profit: 52

Depth: 11 Width: 19

Height: 12 Min Stacks: 3

Min Facing: 3 Max Facing: 6

Aleve

National brand

LY Sales: 902 Profit: 83

Depth: 12 Width: 13

Height: 20 Min Stacks: 2

Min Facing: 3 Max Facing: 6

Rapid Sleep PM

National brand

LY Sales: 664 Profit: 59

Depth: 10 Width: 20

Height: 20 Min Stacks: 2

Min Facing: 2 Max Facing: 7

Tylenol Extra

Package

National brand

LY Sales: 1025 Profit: 90

Table 8 - Scenario: Items with attributes

The following rules are to be applied to the scenario:

• Items with high profitability are to be placed on upper shelves (vertical rule with

priority=1). The profitability is computed by an external forecast engine which

takes into consideration factors such as the item’s space elasticity, item

replenishment cost and demand function.

 62

• Items with high profitability are to be placed on upper shelves (vertical rule with

priority=2). Profitability is also computed by the forecast engine and is dependent

on the specified strategy (i.e. maximizing space utilization, maximizing profit …)

• National-brand items must be on the left of non-national brand items (horizontal

rule with priority=1).

The first phase is to apply the vertical rules which will assign the items to their

corresponding shelves.

For each rule, we rank the items and multiply their position by the rule’s priority

coefficient. We obtain the following table (sorted in descending order):

Item

Allocated Shelf

Min. Facings

2274727 45 1 2

2274726 42 1 3

2274714 38 1 3

2274716 37 2 3

2274720 33 2 3

2274722 30 2 3

2274713 27 3 2

2274715 22 3 2

2274723 22 3 2

2274725 17 4 3

2274719 14 4 2

2274718 12 4 2

2274721 11 4 2

2274724 7 4 2

2274717 3 4 1

Table 9 - Scenario: Vertical allocation ranking

It is to note that shelves are counted from top to down (i.e. shelf 1 is the top-most shelf)

and priorities are counted in ascending order (priority=1 is the highest priority).

We can deduce from the table that top items have a larger number of minimum horizontal

facings than bottom items; this can be explained by the fact that the forecast engine,

 63

which computes this value, assign more minimum facings to profitable items (the vertical

rules specifies that best-selling items and items with high profitability are to be allocated

from top to down). By proportionally assigning items to shelves (in a random order) and

adding the minimum required number of horizontal facings, we obtain the following view

of the resulting planogram:

Figure 23 - Scenario: Planogram after vertical allocation

The figure above shows the distribution of the items over the shelves, along with the

minimum number of horizontal facings. The next step is to optimally fill the remaining

 64

space (red arrow). To solve this problem, we map it to a Bounded Knapsack Problem

(BKP) where the set of items is nothing but the items already allocated on the shelf

(having a width w and a profit P), the knapsack of size W is the remaining space on the

shelf (red arrow in the figure) and N copies of each item can be added to the Knapsack,

where N = maximum number of horizontal facings – allocated number of horizontal

facings for each of the items.

Figure 24 - Scenario: Planogram after space maximization (BKP)

 65

The last step in the auto-allocation process is to apply the horizontal rules which will re-

arrange the items on their relative shelf and to add the stacks (which must be less then the

shelf’s height). By applying the same ranking methodology adopted for the vertical rules,

we obtain the following final planogram:

Figure 25 - Scenario: Final planogram

 66

3.5.10 Wasted space

In the real-life scenario above, we used the auto-allocation engine to fill a fixture

consisting of 4 shelves, each of 200 cm width. Below is a table showing the percentage of

unallocated space in each of the shelves:

Shelf number Total Width (in cm) Unallocated space

(in cm)

Percentage of

unallocated space

1 200 5 2.5%

2 200 0 0%

3 200 3 1.5%

4 200 5 2.5%

Table 10 -Scenario: Wasted space

Hence, the average percentage of unallocated space in the scenario is 6.5/4 = 1.625%,

which is acceptable. Such wasted space can be filled by dividing it by the number of

facings on the shelves and adding the resulting value to the minimum horizontal spacing

between items. By applying this procedure, we obtain the following:

Shelf number Total number of

facings

Unallocated space

(in cm)

Total horizontal

space between items

(in cm)

1 10 5 1.5

2 14 0 0

3 13 3 1.23

4 12 5 1.42

Table 11 - Scenario: Adjustment of horizontal spacing

 67

4 Architecture

4.1 Global environment

The figure below illustrates the global environment of the Cross-platform Automated

Space Planning Engine for Retailers where the different external elements are shown as

well as their interaction with the three modules which compose CASPER (AAE, ASE

and ASPGE):

Figure 26 - CASPER: global environment

 68

The Automatic Store Plan Generation Engine (ASPGE), the initial module of CASPER,

communicates with the Master Data Management application via corresponding web

services to gather information related to fixture-groups, fixtures and shelves within the

store. Web services, used for implementing the Service-Oriented Architecture (SOA)

aspect of the our engine, allow interoperability between heterogeneous systems via cross-

platform messaging (i.e. XML). The information gathered by the web services is used by

ASPGE to initialize the structures needed for automating the process. Moreover, ASPGE

communicates with the POS system via another web service to read market basket

transactions which will be used to compute the co-occurrence matrix by item department

and item category. Finally, ASPGE calls web services exposed on the Category

Management application in order to get the proportions assigned by the category manager

for the item departments and categories. On the other hand, the Automatic Segmentation

Engine (ASE) interacts with the Category Management application to read the objectives

per category needed for the assortment process, with the Business Rule Repository to get

item constraints and rules (i.e. indispensable items, complementary items…), with the

POS system to gather item activity information (i.e. sales, net profit margin) and with the

Master Data Management application to get the general item attributes as well as the

item/category relationships. Finally, the Auto-Allocation Engine (AAE) initiates by using

the results of the ASE, collecting corresponding item and shelf attributes from the Master

Data Management application, reading computed item profitability from the Forecast

Engine and allocating items on shelves based on the merchandising rules extracted from

the Business Rule Repository. Moreover, communication between the external modules

is ensured via the corresponding web services, mainly between the forecast engine and

POS system to read transactional data and predict the different indicators (i.e.

profitability, space elasticity, forecasted sales volume, and forecasted net profit margin).

It is to note that the orchestration between the different services is managed via an event-

driven and standards-based messaging-engine, the Enterprise Service Bus (ESB) shown

in the image below. ESB allows standardizing the service-oriented communication

between the modules by eliminating the coupling between the invoked service and the

transport medium.

 69

Figure 27 - Enterprise Service Bus

4.2 System context

Figure 28 - CASPER: System context

 70

4.3 CASPER Block Diagram

Figure 29 - CASPER: Block diagram

The figure above illustrates the internal architecture of CASPER using a block diagram

representation. The different sub-modules of each engine are shown as well as their

respective interaction routines: the “Category Initialization Routine” which passes the

output of ASPGE to ASE, the “Assortment Initialization Routine” which passes the

output of ASE to AAE and the “Spatial Data Initialization Routine” which passes the

 71

output of AAE to the corresponding spatial visualization tool. It is to note that this tool is

not part of the internal architecture of CASPER.

4.4 Technical considerations

The following technical aspects need to be satisfied by CASPER to ensure the cross-

platform nature of the proposed engine:

• Service-Oriented Architecture (SOA): by implementing a “web service” layer to

ensure interoperability with other heterogeneous systems.

• Cross-platform programming language: satisfied by using Java programming

language to implement the engine.

• XML Data Source: Given that the input data is gathered from multiple external

systems (i.e. Master Data Management, POS system, Business Rule Repository

…) and output data is passed to other visualization systems, CASPER needs to

store both its input and output in XML files, instead of using proprietary Database

Management Systems.

 72

5 Conclusions

5.1 Main results

The main results of this research are highlighted below:

• Finding an automated process covering the complete retail space planning process

starting from store plan management (using ASPGE), passing by product assortment

(using ASE) and finishing by solving the product-to-shelf allocation problem (using

AAE).

• Providing a custom algorithm to generate the store plan based on results of the market

basket analysis and the KPI provided by the category manager.

• Adopting a special type of Artificial Neural Networks, the Self-Organizing Maps

(SOM), to cluster the items of a given category based on multiple dimensions and

using the results to select the optimal product assortment.

• Providing a custom algorithm to allocate products on shelves by mapping the process

to a Knapsack Problem, taking into consideration a dynamic set of merchandising

rules (vertical and horizontal) as well as space constraints.

• Suggesting an architecture for the proposed solution, knowing that the engine needs

to interoperate with a multitude of external modules and applications.

5.2 Main contributions

Our proposed solution helps retailers to take advantage of the following capabilities:

• Managing the complete space planning process using a unified solution, which

maintains consistency and integrity throughout the whole process.

• Saving resources (time and personnel) by automating this complex task especially

when the retailer owns a large chain of stores.

• Benefiting from the dynamicity of the engine which allows retailers to continuously

manage and optimize space planning by simulating multiple scenarios which include

different sets of rules and objectives.

 73

• Locally controlling the whole process without needing to “wire” results between

different modules (i.e. using a module to perform product assortment and manually

inputting the results into another to generate the corresponding planogram).

5.3 Performance results

5.3.1 Introduction

Multiple tests were applied on the different modules of CASPER using data from CVS

Caremark. The actual names were changed for privacy concerns. Below is the hardware

architecture of the testing environment:

Figure 30 - Performance Tests: Hardware environment

HP Integrity rx6600 Server

Microprocessor: 4x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache

Memory: 16 GB

Internal storage devices: Hot-plug Serial Attached SCSI HDD drive, 146GB with RAID

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i v3

HP Integrity rx7640 Server

Microprocessor: 8x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache

Memory: 32 GB RAM

 74

Internal storage devices: Hot-plug Ultra320 SCSI HDD drive, 300 GB with RAID

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i v3

HP Integrity rx2620

Microprocessor: 2x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache

Memory: 4 GB RAM

Internal storage devices: Any Internal storage capacity

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i

As for the software implementation, the following platforms were used:

• Application server: Apache Tomcat 6.0

• Database server: Oracle 10g R2

• Frontal server: Apache Frontal Server 2.2.4

5.3.2 AAE

The following scenario is applied to measure the performance of the auto-allocation

engine: 8 cases with different number of items, different number of shelves and 8

merchandising rules. The performance results are shown in the figure below:

Table 12 - AAE Scenario

 75

Figure 31 - AAE Scenario: Total processing time

The largest scenario consisting of 900 items that need to be allocated on 12 shelves in

respect to 8 merchandising rules is taking around 12 seconds which is acceptable, given

the size of the underlying Bounded Knapsack Problem.

5.3.3 ASE

5.3.3.1 Scenario 1

The first scenario of the auto-segmentation engine consisted of inputting 6 different

categories in increasing order of size (number of items) as well as 4 variables (selling

price, brand, supplier, size). It is to note that category with ID=6 is the largest category

for the studied retailer, consisting of 1241 items. The total processing time is shown in

figure below:

Table 13 - ASE Scenario 1: Different category size

 76

Figure 32 - ASE Scenario 1: Total processing time

The chart above shows that the auto-segmentation engine processed the largest category

in less than 7 seconds which is a considerable improvement compared to the days spent

in performing the same process manually. As for the quality of the obtained clusters (i.e.

segments), no overlapping is noticed. It is to note that, for most retailers, the average

number of items per category is around 300 items, which can be processed by the auto-

segmentation engine in less than a second.

Table 14 - ASE Scenario 2: Different number of variables

 77

Figure 33- ASE Scenario 2: Total processing time

Based on the results illustrated in the chart above, we can deduce that the performance of

the auto-segmentation engine is linearly affected by the number of variables and hence

doesn’t yield to considerable performance bottlenecks.

5.3.3.2 Scenario 2

The second scenario of the auto-segmentation engine consisted of inputting the largest

category (1241) and different number of variables (starting progressively from 2 to 10).

The total processing time is shown in figure below:

5.4 Factor table

Factor Quality scenario Future work Impact on

stakeholders

Automation - Eliminating all aspects of

user intervention except

the definition of the master

data and strategy

objectives.

- Automating the

store expansion

process by

implementing a data

mining algorithm

which interacts with

real-time Web

services related to

geographic /

demographic data.

- Saving time and

resources.

Completeness - Automating the whole

space planning process by

generating the store plan

- Handling

additional (i.e.

special) aspects of

- Enforcing

consistency of rules

and strategy

 78

(allocating categories to

fixtures), selecting the

optimal items from each

category and allocating the

resulting items on the

corresponding shelves.

the space planning

process (ex:

expansion

management –

consumer

clustering, …)

objectives

throughout the

whole process.

Dynamicity - Generating a store plan

based on the results of the

market basket analysis

(which varies from period

to period).

- Performing the

assortment process based

on a dynamic number of

variables.

- Allocating assorted items

on the corresponding

shelves with respect to a

set of dynamic

merchandising rules.

- Extending the

dynamicity of

ASPGE to generate

the store plan

assuming that the

store is empty (no

fixed assets)

- Having the ability

to re-manage the

space planning

process under

varying factors and

circumstances (i.e.

seasonality,

economic /

demographic

factors, etc…)

Accuracy /

Performance

- Checking the accuracy of

the clusters obtained by

ASE

- Measuring the wasted

space on the shelves after

allocating items using

AAE.

- Measuring the

processing time of the

different automated

procedures.

- Tuning the

performance of the

different modules

and applying

additional

approaches and

methodologies.

- Obtaining optimal

(or near-optimal)

results while saving

time and labor.

5.5 Future work

The functionalities of CASPER will be extended in future work to provide the following

functionalities:

• Tuning the performance of CASPER and optimizing the resource-consuming

algorithms and routines. Given the large-sized retailers targeted by CASPER, load

 79

tests need to applied to the engine to identify possible bottlenecks and performance

issues.

Figure 34 - Future work: consumer trajectory example

• Upgrading the Automatic Store Plan Generation Engine (ASPGE) to process the

“consumer behavior” within the store by analyzing the underlying geographical

trajectory within the store. Such data can be gathered by implementing RF-ID

technology on the shopping carts, hence tracking the movement of the different

consumers. Per example (figure above), it will be possible to know how consumers

(red spots) move from zone to zone, from fixture to fixture and how much time did

they spend at each. This information can extend the scope of ASPGE to optimize

 80

spatial distribution in the store, which affects the consumer satisfaction and enhances

the overall profitability.

• Implementing a new module entitled the “Automatic Expansion Advisor” (AEA),

which helps retailers to optimally manage their expansions. In other words, AEA

analyzes spatial and demographic information of different locations and automatically

suggests optimal emplacements for building new stores, based on pre-defined

strategies and objectives. Moreover, AEA generates from scratch the most suitable

architecture of the newly opened store to ensure enhanced spatial utilization,

increased profitability and maximum consumer satisfaction (i.e. shape and size of

store, distribution of fixtures, functional store structure…).

 81

6 References:

[1] Moncer Hariga, Abdulrahman Al-Ahmari, and Abdel-Rahman Mohamed, “A

Joint Optimization Model for Inventory Replenishment Product Assortment, Shelf

Space and Display Area Allocation Decisions,” European Journal of Operational

Research, Vol. 181, No. 1, pp.239-251, 2007

[2] Marcel Corstjens, Peter Doyle, "A model for optimizing retail space allocations",

Management Science, Vol. 27 No.7, pp.822-33, 1981

[3] Mu-Chen Chen , Chia-Ping Lin, “A data mining approach to product assortment

and shelf space allocation”, Expert Systems with Applications: An International

Journal, v.32 n.4, pp.976-986, May, 2007

[4] Dario Landa-Silva, Fathima Marikar, Khoi Le, “Heuristic Approach for

Automated Shelf Space Allocation”, Proceedings of the 24th ACM Symposium

on Applied Computing (SAC 2009), Volume 2, ACM Press, pp. 922-928, 2009

[5] Andrew Lim , Brian Rodrigues , Xingwen Zhang, “Metaheuristics with Local

Search Techniques for Retail Shelf-Space Optimization”, Management Science,

v.50 n.1, pp.117-131, January 2004

[6] Anna I Esparcia-Alcázar, Lidia Lluch-Revert, Jose Miguel Albarracín-Guillem,

Marta Palmer-Gato, and Ken Sharman, “Towards an evolutionary tool for the

allocation of supermarket shelf space”. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO), volume 2, pp.1653–1660,

Seattle , USA, 2006

[7] Marcel Corstjens, Peter Doyle, "A dynamic model for strategically allocating

retail space", Journal of the Operational Research Society, Vol. 34 No.10, pp.943-

51, 1983

 82

[8] Alain Bultez, Philippe Naert, "SHARP: Shelf Allocation for Retailers’ Profit",

Marketing Science, Vol. 7 No.3, pp.211-31, 1988

[9] Fredc Zufryden, "A dynamic programming approach for product selection and

supermarket shelf-space allocation", Journal of the Operational Research Society,

Vol. 37 No.4, pp.413-22, 1986

[10] Teuvo Kohonen, "Self-Organizing Maps", Springer-Verlag, Leipzig,

 Germany, 1997

[11] David Pisinger, "Algorithms for Knapsack Problems", Ph.D. thesis, DIKU,

 University of Copenhagen, 1995

[12] David Pisinger, "A Java Library of Graph Algorithms & Optimization",

 Chapman & Hall, 2006

[13] Madan G. Singh, Roderick Cook, Marcel Corstjens, " A Hybrid Knowledge-

Based System for Allocating Retail Space and for Other Allocation Problems",

Interfaces, Vol. 18, No. 5, pp. 13-22, 1988

[14] Sujatha, P.K. Kannan, A. Ragunath, S. Bargavi, K.S. Githanjali, S., “A

Behavior Based Approach to Host-Level Intrusion Detection Using Self-

Organizing Maps”, International Conference on Emerging Trends in Engineering

and Technology, pp. 1267-1271, July 2008

[15] Sang-Chul Lee, Yung Ho Suh, Jae Kyeong Kim, Kyoung Jun Lee, “A cross-

national market segmentation of online game industry using SOM”, Expert

Systems Applications 27(4), pp. 559-570, 2004

 83

[16] Koffi Yao, Max Mignotte, Christophe Collet, Pascal Galerne, Gilles Burel,

“Unsupervised Segmentation Using a Self-Organizing Map and a Noise Model

Estimation in Sonar Imagery”, Pattern Recognition 33(9), pp.1575-1584, 2000

[17] M. C. Su, T. K. Liu, and H. C. Chang, “Improving the self-organizing feature map

algorithm using an efficient initialization scheme,” Tamkang Journal of Science

and Engineering, vol. 5, no. 1, pp. 35-48, March 2002

[18] Milind Dawande, Jayant Kalagnanam, Pinar Keskinocak, Sibel Salman, R. Ravi,

“Approximation Algorithms for the Multiple Knapsack Problem with Assignment

Restriction”, J. Comb. Optim. 4(2), pp.171-186, 2000

[19] Ruibin Bai and Graham Kendall, “An Investigation of Automated Planograms

Using a Simulated Annealing Based Hyper-heuristics”, in Ibaraki, T., Nonobe, K.,

and Yagiura, M. (Eds.) Metaheuristics: Progress as Real Problem Solvers -

(Operations Research/Computer Science Interfaces, Vol. 32), Springer: Berlin,

Heidelberg, New York, pp. 87-108, 2005

 84

Appendix A:

Item # Item
Code

Sales Net
Profit
Margin

Is
Indispensable

Efficiency

1 2274673 528 72 0 0.82

2 2274674 413 35 0 0.42

3 2274675 505 40 0 0.31

4 2274676 621 34 0 0.37

5 2274677 98 54 0 0.3

6 2274678 158 30 0 0.4

7 2274679 387 50 0 0.13

8 2274680 352 15 0 0.56

9 2274681 401 9 0 0.22

10 2274682 831 64 0 0.78

11 2274683 258 60 0 0.73

12 2274684 364 40 0 0.78

13 2274685 88 49 0 0.43

14 2274686 12 68 0 0.44

15 2274687 532 21 0 0.44

16 2274688 301 28 0 0.53

17 2274689 189 17 0 0.27

18 2274690 421 38 0 0.46

19 2274691 497 70 1 0.52

20 2274692 502 25 0 0.45

21 2274693 234 18 0 0.82

22 2274694 567 12 0 0.75

23 2274695 531 8 0 0.34

24 2274696 314 27 0 0.78

25 2274697 419 33 0 0.04

26 2274698 285 21 0 0.04

27 2274699 711 84 0 0.43

28 2274700 102 41 0 0.99

29 2274701 94 30 0 0.23

30 2274702 260 28 0 0.42

31 2274703 397 6 0 0.88

32 2274704 112 53 0 0.91

33 2274705 243 91 0 0.72

34 2274706 329 14 0 0.96

35 2274707 148 12 0 0.89

36 2274708 259 31 0 0.53

37 2274709 352 84 0 0.55

38 2274710 415 81 1 0.08

39 2274711 198 82 0 0.23

40 2274712 89 54 0 0.38

41 2274713 76 42 0 0.76

42 2274714 702 62 0 0.59

43 2274715 290 47 0 0

 85

44 2274716 139 26 0 0.7

45 2274717 428 30 0 0.79

46 2274718 411 55 0 0.18

47 2274719 323 93 0 0.07

48 2274720 184 19 0 0.5

49 2274721 254 45 0 0.02

50 2274722 690 61 0 0.62

51 2274723 522 65 0 0.1

52 2274724 69 32 0 0.87

53 2274725 102 41 0 0.85

54 2274726 680 5 0 0.61

55 2274727 74 72 0 0.08

56 2274728 299 79 1 0.68

57 2274729 309 41 0 0.42

58 2274730 64 59 0 0.81

59 2274731 70 12 0 0.13

60 2274732 362 75 1 0.29

61 2274733 41 63 0 0.93

62 2274734 12 71 0 0.77

63 2274735 902 59 0 0.81

64 2274736 185 41 0 0.62

65 2274737 369 22 0 0.92

66 2274738 157 29 0 0.36

67 2274739 165 34 0 0.26

68 2274740 1025 62 0 0.78

