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ABSTRACT 

 

Keywords: Retail space management, Self-Organizing Map, Knapsack problem, Process 

automation, Service-Oriented Architecture 

 

Retail space planning is an accurate and complex process affecting the overall 

performance of a retail environment. Such task, confronting large retailers consisting of 

huge malls and hypermarkets, appears infinite in the absence of a complete automated 

process, starting from the store plan generation, passing by the optimal product 

assortment and finishing with the product-to-shelf allocation problem. Moreover, the 

ever-changing factors affecting the retail space planning process, such as merchandising 

rules, competitive strategies and consumer behavior require continuous follow-up and 

optimization of the overall process. Based on the previous requirements, we propose an 

automated engine which initiates by generating a store plan based on the results of the 

market basket analysis, selects the optimal item assortment for each item category and 

finally allocates the resulting items on their respective shelves. Moreover, a service-

oriented architecture is proposed to ensure interoperability between the engine and the 

corresponding external modules. 
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1 Introduction 

1.1 Introduction to the general problem 

Product assortment, product display area selection, shelf space allocation, and inventory 

control are critical retailing operations having major impact on the financial performance 

of retail stores. Managing these three operations individually will obviously result in sub-

optimal overall retail store’s profit [1]. Such a process induces multiple benefits such as: 

• Maximizing space usability in the store 

• Improving visibility and accessibility for the customers 

• Adapting an optimal distribution of categories, sub-categories and items 

• Maximizing profit and revenue 

1.2 Problem definition 

The choice of which brands to stock and the allocation of scarce shelf space among 

stocked brands are important to the retailer because these decisions are key determinants 

of his revenue and costs [2]. Hence, an optimal space planning for large retailers 

consisting of huge malls and hypermarkets appears as an infinite problem, especially in 

the absence of a complete automated process, starting from the store plan generation, 

passing by the optimal product assortment and finishing with the product-to-shelf 

allocation problem. Moreover, the ever-changing factors affecting the retail space 

planning process, such as merchandising rules, competitive strategies and consumer 

behavior yield to a continuous follow-up and optimization of the overall process. Such an 

intensive and critical maintenance cannot be managed manually since it needs to be 

performed in a fast, yet accurate manner.  

1.2.1 Need for automation 

Suppose CVS Caremark, the largest pharmacy chain in the United States, with 

approximately 6900 stores (http://en.wikipedia.org/wiki/CVS/pharmacy), is planning to 

apply a space planning process. It is to note that CVS Caremark sells both medical and 

grocery products. For each of the 6900 stores, a proper store plan is to be generated, 

taking into consideration the geo-spatial and demographic factors of the store’s location. 
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Per example, a store located in an ethnic region with an intense Asian population will 

obviously have a store plan different from another one located in New York’s downtown. 

Moreover, for each store, different product assortment plans, hence different product-to-

shelf allocation outputs are to be applied since the marketing and promotional strategies 

as well as the spatial constraints (number and distribution of fixtures / shelves) vary from 

store to store. For the ethnic cluster of stores, non-national products (per example, 

Chinese spices) might cover 5% of the overall assortment while it won’t cross 0.5% in 

the other cluster, where there is a significantly lower ethnic concentration. As a result, the 

product selection as well as distribution will considerably differentiate. Such a huge 

variation cannot be managed manually store by store, especially in the presence of 

continuous change in affecting factors (i.e. promotions, holidays, seasonality …). 

1.2.2 Need for a complete on-going process 

Most of the automated solutions involved in the space planning process focus on the 

optimal assortment generation or the product-to-shelf allocation problem without taking 

into consideration the whole lifecycle of the process. In a matter fact, ignoring one or 

more sub-processes can yield to degradation in both performance and accuracy of the 

resulting output. Automating the product assortment without a proper store plan or 

automating the product-to-shelf allocation problem without an optimal underlying 

assortment can create serious gaps. Suppose a given retailer is using an automated 

allocation engine to maximize space utilization in his stores. As for the product 

assortment, the category manager is manually, based on previous experience, selecting 

the proper items. In such a real-life scenario, the following problems may occur: 

• The items selected by the category manager do not reflect an optimal assortment; 

given the complexity of certain strategies and the possible high number of related 

dimensions or criteria, the category manager might pick the wrong, or “un-optimal” 

set (selecting items yielding to a considerable waste of space in the product-to-shelf 

allocation phase or products with low affinity to each other, ignoring items with 

unobvious profitability) 

• The rules considered by the category manager for selecting the assortment and which 

are only present in his mind, and the merchandising rules applied by the auto-
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allocation engine to distribute the items might diverge from the common global 

strategy. Per example, the selected assortment includes two items A and B with very 

low affinity to each other (must not be placed adjacent to each other). On the other 

hand, the auto-allocation engine, based on “hidden” criteria ignored by the category 

manager, placed A and B next to each other, yielding to a strategical conflict. 

1.2.3 Need for dynamicity 

As mentioned in 1.2.1, the space planning process is tightly bound to various categories 

of dynamic factors (i.e geo-spatial, marketing, managerial…). Hence, automated 

solutions need to take into consideration such factors, regardless of their number, 

respective types and business meaning; the engine should read a dynamic set of weighted 

rules and reflect their strategical impact on the resulting output. Such a dynamic 

scalability needs to be applied by both value and period. Suppose, for a given US retailer, 

the “pain relievers” category is seasonal; the sales activity is higher in cold seasons. Such 

a rule cannot be statically applied for the different store clusters; per example, stores 

located in Alaska differ from stores located in Texas in terms of seasonality. Moreover, 

the weight of such a rule will not be same in both clusters. It is also to note that some 

rules and factors may be present and effective for one store cluster and insignificant for 

others. 

1.2.4 Need for accuracy 

As explained before, completeness of the process is a crucial aspect of automated 

solutions of the retail space planning problem. Hence, defects in early stages of the 

process produce a “chain effect” with more severe impact in child sub-processes. Per 

example, while generating the store plan of a given store, if two categories with low 

affinity to each other (ex: child food and pet food) were placed adjacent to each other due 

to defects in the automated engine, the corresponding items will consequently be 

allocated on the wrong fixtures, which yield to inaccuracy in merchandising and waste of 

resources (time and labor). Moreover, a poor selection of the assortment of a certain 

category due to an inefficient clustering mechanism, yield to a deviation from the 

targeted strategy, a decrease in the performance of the plan in terms of expected 

profitability and an erroneous product-to-shelf allocation. 



 4 

1.3 Research objectives 

The main objective of this master thesis is to provide a reliable, accurate and complete 

method for automated retail space planning. Based on the previous, the research should 

answer the following aspects: 

• Finding a complete automated flow which covers the whole retail space planning 

process. 

• Exploring and choosing the most convenient algorithms in terms of performance, 

cost and optimization accuracy. 

• Finding a methodology which takes into consideration the dynamicity of the 

factors affecting the process. 

1.4 Approach and main results 

To achieve the research objectives goal, multiple computer science algorithms are 

explored and analyzed to fit the addressed problem. We divided the problem into three 

major components: 

• Automatic store plan generation: which distributes, based on the market basket 

analysis, the different categories on the different physical fixtures of a given store. 

• Auto-segmentation engine: which optimally divides a given store cluster into a set 

of product categories, while taking into consideration constraints (i.e. affinity 

between categories, consumer behavior, etc…). On the micro-level, the same 

engine is used to divide a category’s planogram into optimal segments, based on a 

given strategy. All these terms will be explained in detailed in Chapter 2. This 

problem has been mapped to a special type of neural networks, the self-organizing 

maps. 

• Auto-allocation engine: which optimally allocate items over shelves and fixtures 

while applying a dynamic set of merchandising rules specified by the user as well 

as ensuring the profit / space maximization. This part has been solved by a custom 

method which includes the Bounded Knapsack problem. 

1.5 Thesis organization 
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This thesis consists of 4 chapters and one appendix. Chapter 1 introduces the main 

problem, defines the research objectives lists the approach and main results. In Chapter 2, 

definitions of concepts related to the retail space planning process are presented. 

Moreover, previous algorithms and methodologies are overviewed as well as the main 

motivation behind this research. Chapter 3 contains the original work, including the 

proposed automated process, the adopted algorithms and the corresponding 

methodologies. Finally, Chapter 4 summarizes the findings, highlights the contributions 

of the thesis and lists the research limitations and future work. 
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2 Literature Review 

2.1 Definitions of the basic concepts 

Below is the definition of the basic business concepts used in “retail space planning”: 

• Item category / sub-category: the group / sub-group or family to which a given item 

belongs. Per example, Coca Cola below belongs to the category “Beverage” and sub-

category “Soda”. 

• Item facing: vertical / horizontal copy of an item. 

 

 

Figure 1 – Example of item facings: 3 horizontal and 2 vertical facings 

 

• Shelf allocation: process of allocating items over shelves and fixtures in a retail 

environment. The process is usually performed by item category or sub-category. 

• Segmentation: process of dividing a given store by item department/category (or 

category/sub-category). Below is an example of basic store segmentation into 5 item 

categories: 

 

          

 

Figure 2 – Example of segmentation 
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Such a process defines the portion of each category in respect to the overall store, the 

geographical location as well as the neighborhood, which takes into consideration the 

affinity between different categories. Per example, there is a low affinity between 

baby food and pet food, hence it is not recommended to place the two categories close 

to each other. 

• Merchandising rule: business rule used to strategically perform segmentation and 

shelf allocation. Such rules can affect vertical allocation, horizontal allocation or 

simply imply positioning properties. Below is a few examples of merchandising rules 

used in a retail environment: 

o The minimum horizontal space between items is 1.2 cm (property) 

o National brand items must be on left on non-national brand items (horizontal 

allocation) 

o The maximum number of vertical facings for stackable items is 5 (property) 

o Within a category, top selling items must be place on eye-level shelves 

(vertical allocation) 

• Store plan: logical blueprint of the store resulting of the segmentation process. It 

shows the spatial distribution and location of different fixtures by category. 

 

 

 

Figure 3 - Example of a store plan 
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• Planogram: The planogram is a visual diagram, or drawing, that provides in detail 

where every product in a retail store should be placed. These schematics not only 

present a flow chart for the particular merchandise departments within a store layout 

but also show on which aisle and on what shelf an item is located. Generating 

planograms is a challenging and time-consuming process because the simplest form 

of planogram problem (ignoring all marketing and retailing variables) is already a 

multi-knapsack problem, a well-known NP-hard problem which is very difficult to 

solve [19]. 

 

 

Figure 4 - Example of planogram: Beverage / Soda 

The benefits of using planograms in a retail environment include: 

• Enhancing consumer behavior by maximizing trade-up and impulse purchases 

• Providing a detailed blueprint to facilitate the replenishment process 

• Improving customer satisfaction and loyalty by providing a structured and 

accessible product organization  

2.2 Space Planning Process 
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The space planning process covers both micro and macro-store planning. It includes 

managing standard and specific store plans, consolidating corporate, store group or store 

level view of regular and promotional performance and ensuring store compliance to 

corporate strategy and planogram definition.  

The figure below illustrates the basic flow of the space planning process adopted by most 

retailers: 

 

Figure 5 - Space planning process 

The process initiates by creating store plans, then defining assortments. Next, a corporate 

planogram, which is the most global version including all items of a certain category, is 

created. Based on the corporate planogram, store planograms are generated.  Given the 

complexity and time-consuming aspect of such a process on one hand and the critical 

need of accuracy on the other hand, automated solutions are needed to perform the space 

planning process. Based on this need, our proposed approach aims to automate the 

segmentation of the store (step 1) and the generation and filling of planograms (step 3 

and 5). Moreover, the same approach adopted to implement the auto-allocation engine 

can be used to generate store planograms from the resulting corporate planogram. In this 

study, our main concern is automating the store plan and corporate planogram creation. 

2.3 Previous work 

2.3.1 Algorithms 

A paper by Chen and Lin uses a popular data mining approach, association rule mining, 

instead of space elasticity to resolve the product assortment and allocation problems in 

retailing. In this paper, the multi-level association rule mining is applied to explore the 

relationships between products as well as between product categories [3]. The approach 

consists of three stages. First, the algorithm starts with the multi-level association rule 

mining between product items, product subcategories and product categories. Second, 
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product assortment is applied by estimating the frequent item set profits then resolving 

the corresponding product assortment mathematical model. Finally, the algorithm 

performs shelf space allocation for product categories, product subcategories and product 

items respectively. Another paper entitled “Heuristic Approach for Automated Shelf 

Space Allocation” presents a heuristic approach for solving the automatic shelf allocation 

problem. The heuristic method described in the paper consists of four phases: 1) the 

preparatory phase checks that enough shelf space is available for all products to be 

displayed, 2) the allocation phase constructs an initial arrangement, 3) the adjustment 

phase makes iterative changes to the arrangement in order to improve the over-all profit, 

4) the termination phase computes the quality of the final arrangement and generates the 

corresponding planogram [4]. The approach was tested on two problems, a small one 

consisting of 135 products on 15 shelves and a large one consisting of 907 products on 

114 shelves. The results show that the method is capable of generating much improved 

arrangements in terms of the overall profit. Another paper entitled “Metaheuristics with 

Local Search Techniques for Retail Shelf-Space Optimization” extends the shelf 

allocation problem to address other problems such as product groupings and non-linear 

profit functions. The metaheuristics approach starts by developing a network flow 

solution approach to the problem and then, using many-to-many neighborhood moves 

and finally employing a strategy of combining a strong local search with metaheuristics 

[5]. These techniques are then applied to more complex models that address product 

groupings and nonlinear profit functions. Another paper divided the problem into two 

sub-problems: the Product to Shelf Allocation Problem (P2SAP) and the Shelf-Space 

Allocation Problem (SSAP). The authors propose a genetic algorithm where the 

chromosomes are coded as vectors of length M where each component i stores the 

category allocated to module I [6]. 

2.3.2 Business Models 

On the other hand, many business models have been proposed to solve the retail space 

allocation problem. In a paper entitled “A Dynamic Model for Strategically Allocating 

Retail Space” [7], the authors show how static models can be extended to incorporate 

dynamic market changes. The main issue is how to strategically allocate space among 
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product groups with widely different growth potentials. The proposed solution is a 

dynamic model which extends the classical concentration on retail sales and gross 

margins to include variables related to new growth markets. However, the model needs to 

be extended to include other competitive variables such as price, advertising and 

promotional strategies. Built on the work of Corstjens and Doyle, Bultez and Naret 

propose in their paper [8] a shelf space allocation model which focuses on the demand 

interdependencies prevailing across and within product-groups. The proposed model 

entitled SH.A.R.P (Shelf Allocation for Retailers’ Profit) introduces several distinctive 

characteristics such as sales-share elastisticy among product categories. Even though the 

model yielded satisfactory experimental results in terms of assortment profitability, the 

authors suggested developing the model to integrate additional merchandising variables 

such as shelf heights and special types of display fixtures. On the other hand, Zufryden 

presents in his paper entitled “A Dynamic Programming Approach for Product Selection 

and Supermarket Shelf-Space Allocation” [9], a model intended to select optimally 

among a given set of products and allocate integer shelf-space units to the selected 

products in supermarkets. The approach takes into considerations strategical 

specifications related to space elasticity, product cost and demand-related marketing 

variables, and is bound to constraints such as supply availability, block product allocation 

and operational requirements. 

2.3.3 Software packages 

Many Enterprise Resource Planning (ERP) software providers developed advanced tools 

for managing and automating the retail space planning process. We will briefly overview 

the leading packages in the market.  

2.3.3.1 SAS Integrated Merchandise Planning 

The solution by SAS corporation includes multiple modules, from which we are 

interested in: 

• SAS Merchandise Financial Planning: for setting merchandise financial goals 

based on analysis of historical data. 

• SAS Merchandise Assortment Planning: used for managing assortments based on 

consumer behavior and financial strategies. 
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• SAS Space Planning: for visually planning assortments and building store plans 

and category-based planograms. 

• SAS Space Optimizer: for automating the development of optimized store-

specific planograms. 

• SAS Merchandise Allocation: used to analyze store-specific needs and improve 

inventory management with allocation and replenishment of basic, fashion and 

promotional merchandise. 

2.3.3.2 Demandtec Assortment & Space 

DemandTec is a publicly traded company that provides pricing, promotion, and demand 

optimization solutions for retailers and consumer product (CP) manufacturers. They 

deliver their products as a Software as a Service (SaaS). DemandTec software services 

utilize  a science-based software platform to model and understand consumer behavior. 

This science is based on a quantitative understanding of incrementality, which is an 

item’s ability to increase overall category sales or profit, and transferable demand, which 

is the degree to which sales volume shifts to similar items in the category or leaves the 

store when an item is delisted. Based on DemandTec Assortment & Space™ white paper, 

retailers can create optimized assortments based on multiple criteria, including sales, 

profit, space productivity, and Gross Margin Return on Inventory Investment (GMROII). 

Merchants also have the flexibility to combine their optimization goals with additional 

controls to ensure optimized assortments align with company strategies such as 

protecting private label items and image items. They can also run multiple scenarios at 

once and compare results to identify the best strategy to meet their objectives.  

2.3.3.3 JDA Space Planning 

JDA Software Group, Inc. is a demand and supply chain partner to the world’s leading 

retailers, manufacturers and suppliers and is located in Scottsdale, Arizona. Their space 

planning solution supports optimization and analyzing of planograms against any metric 

(i.e., balance space to sales and/or days of supply). Moreover, Space Planning enables 

multiple planograms to be managed simultaneously, improving consistency and accuracy 

as products are quickly and easily added, replaced or updated across the entire planogram 

set. 
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2.3.3.4 Galleria Space Planning 

Founded in 1989, Galleria is a market leading provider of automated customer centric 

merchandizing solutions to retailers and manufacturers. Their space planning solution 

includes the following functionalities: 

• Forecasting procedures for optimizing promotional display planning. 

• Category management and logical clustering of merchandise. 

• Management and automation of strategic planograms which ensure consistency of 

merchandising process across all plans. 

• Store execution and scenario simulation. 

2.3.3.5 Apollo Space & Assortment Optimization 

Founded in 1986, Aldata is a supply chain management solutions provider with global 

retail, wholesale and logistics customers.The retail space planning solution provided by 

Aldata includes three modules: 

• Apollo Desginer Workstation: which uses automated procedures to generate 

planograms by using merchandising rules, assortments, performance criteria and 

space constraints. 

• Apollo Total Store: which is a database-driven desktop software product that 

allows users to analyze store layouts and plan the use of space in the store at the 

macro level. Data is analyzed from various perspectives and information is 

presented to best fit specific needs. 

• Apollo Web Publisher: which is a web-based system used to publish planograms, 

merchandising reports and performance charts in multiple formats. 

 

2.4 Reference books & Software tools 

2.4.1 Books 

2.4.1.1 Self-Organizing Maps (T. Kohonen, 3
rd
 edition) 

This book [10], written by the creator of the Self-Organizing Maps, presents a detailed 

study about such revolutionary structures, their structure, variations and usage scenarios. 
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The author starts by explaining mathematical preliminaries such as distance measures for 

patterns, statistical pattern analysis, subspace methods of classification and vector 

quantization. Then he presents the basics of neural modeling, the core philosophy behind 

his invention, as well as the relation between biological and artificial neural networks, the 

phases of development of neural networks and the different learning laws. After 

introducing the context of the problem, the detailed description of SOM is explained; the 

basic implementation, the physiological interpretation and the different variations. 

Finally, the author overviews the different real-life applications of SOM, as well as the 

different software / hardware packages used in this field. We will use this reference as a 

guideline for mapping the studied retail segmentation problem to a Self-Organizing Map, 

defining the optimal initialization parameters (dimensions of the map, neighborhood 

functions) as well as the training process parameters (number of learning steps, learning 

rate and neighborhood radius). Details about these notions and parameters are provided in 

Chapter 3. 

2.4.1.2 Algorithms for Knapsack Problems (D. Pisinger) 

The book [11], which is the result of a PhD thesis, provides a wide range of algorithms 

and methodologies to solve the different variations of the NP-complete Knapsack 

problems.  

In the first chapters, the author overviews Knapsack problems, their applications in real 

life as well their distinctive properties. In the following chapters, innovative minimal 

algorithms are presented to solve the 0-1 Knapsack Problem, the Bounded Knapsack 

Problem and the Multiple-choice Knapsack Problem. Moreover, the author reviews 

dominance relations in Unbounded Knapsack Problems, subset-sum problems and finally 

presents an algorithm for large Multiple Knapsack Problems. The main referential usage 

of this book is overviewing and analyzing the minimal algorithm intended to solve the 

Multiple Knapsack Problem; usually, such problems are mapped to classical 0-1 

Knapsack problems and solved using the corresponding approaches.  

2.4.1.3 A Java Library of Graph Algorithms & Optimization (K. Rosen) 

This book [12] includes a wide variety of algorithms and test cases implemented in Java 

language. Categories include graph-related problems (traveling salesman, network flow, 

Khaldoun
Highlight
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coloring…) as well packing problems (knapsack problems, set covering problems, 

assignment problems…). Every chapter is self-contained and largely independent. Each 

topic starts with a problem description and an outline of the solution procedure. 

Programmatic details about the implementation of the algorithms are supplied in the 

book’s appendices. We will be using this reference for writing basic Java-based 

implementations of the various Knapsack problems, which will be modified and 

upgraded to fit the requirements of the studied optimization problem.  

2.4.2 Software tools 

The following open-source packages are used to implement test cases and visualize 

results throughout the research. 

2.4.2.1 JavaSOM 

JavaSOM package is an open-source implementation of self-organizing maps (SOM) 

written in Java language. The tool consists of two major components: JSOM, which is an 

implementation of the Self-Organizing Maps training algorithm and Clusoe, an 

independent graphical tool used to configure and manage the maps. The visualization of 

the trained map is displayed using Scalable Vector Graphics (SVG) or Portable 

Document Format (PDF) files. The parameters used for controlling JSOM during the 

learning process as well as the input data are passed in an XML file. The third party 

applications included in the JavaSOM package are Xerces, Xalan and FOP. Xerces is the 

XML parser used by JSOM for reading in input data and interpreting instructions. Xalan 

is the XSL transformation processor which is controlled by JSOM totransform the trained 

map information into different XML formats. Currently, it is used only to output generic 

XML and SVG formats of the map. FOP is the formatting object processor controlled by 

JSOM to generate PDF versions of the maps. Both Xalan and FOP use also Xerces for 

XML parsing. We will use JavaSOM to create test cases for the auto-segmentation engine 

and visualize the results in SVG format. 

2.4.2.2 Eclipse IDE 

Eclipse is an open-source IDE written in Java which includes an extensible plug-in 

system. Eclipse employs plug-ins in order to provide all of its functionality on top of (and 
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including) the runtime system, in contrast to some other applications where functionality 

is typically hard coded. The runtime system of Eclipse is based on Equinox, an OSGi 

standard compliant implementation. We will use Eclipse for developing Java-based 

algorithms and real-life scenarios, executing unit tests and measuring their performance. 

2.5 Research motivation 

Most of the related research papers presented solutions related to some, but not all, of the 

sub-processes of the retail space planning problem. One of the closest researches related 

to our solution is entitled “A joint optimisation model for inventory replenishment, 

product assortment, shelf space and display area allocation decisions”, given its global 

approach to the problem even though it didn’t tackle the process automation from an 

architectural perspective. However, the authors did not consider some other important 

factors, such as the strategic importance of an item, that can influence decisions on 

product assortment, shelf space and display area allocations [1]. Moreover, the solution 

was not suitable for large sized problems, lacked the automated aspect of the process and 

did not cover the whole lifecycle of retail space planning; the authors did not mention the 

methodology used to generate the store plan before selecting the optimal product 

assortment.  

In an another related study entitled “A data mining approach to product assortment and 

shelf space allocation” [3], the authors focus on mining multi-level association rules from 

a set of store transactions to perform product assortment and shelf space allocation. The 

assortment model is mapped to a zero-one integer problem which is different from the 

approach that we adopted in this paper. Moreover, the item-to-shelf space allocation is 

bound to the shelf profit weight without taking into consideration the dynamicity of 

possible merchandising rules. 

Based on the previous points, we will focus in this research on providing a “complete” 

automated solution which covers the different aspects of retail space planning, takes into 

consideration the relatively large size of the problem as well as the dynamicity of the 

involved factors. 

 

 



 17 

3 CASPER: Cross-platform Automated Space Planning 

Engine for Retailers 

3.1 Introduction 

In this chapter, we will present our automated solution entitled CASPER (Cross-platform 

Automated Space Planning Engine for Retailers). First, we will overview the automation 

process flow used to cover the different aspects of retail space planning. For each of the 

embedded sub-processes, we will explain the arguments behind the selection of the 

different adopted techniques and methodologies. Then, we will explain, using a real-life 

test case the methodology used to automate the process, passing by the different phases 

(store plan generation, product assortment, product-to-shelf allocation & space 

maximization). 

3.2 Global flow 

The figure below illustrates the global process flow of our proposed engine. The process 

initiates by utilizing the results of the market basket analysis as well as the store activity 

data to generate an optimal store plan. The output of this phase is a map of the store 

specifying which categories of items correspond to which physical fixtures / shelves 

within the store. Given the fact that not all items within a category are allocated to their 

corresponding shelves, the next phase is an iterative sub-process which operates for each 

category and choose the optimal product assortment based on strategy-oriented metrics 

and rules. Once the assortment is selected for each of the categories, the final sub-process 

allocates the items to their relative shelves, applies the different merchandising rules and 

optimizes space utilization. 

 

The main advantage of the proposed flow is the completely automated aspect, which 

doesn’t require any external user interaction or supervision. Based on a data repository 

containing all information related to items / categories / store attributes and a business 

rule repository defining the strategy-related constraints and parameters, the proposed 

flow operates module by module throughout the complete space planning process. 
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Figure 6 - CASPER global flow 
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3.3 Automatic Store Plan Generation Engine (ASPGE) 

3.3.1 Introduction 

Allocating retail space is an hierarchical problem where one first divides the space in a 

retail outlet among the major departments, then the subdepartments, and so forth right 

down to the single shelf. Although the actual allocation problem is identical at any level 

in the hierarchy, the rewards for getting the basic allocation right are higher, the higher 

one goes in the hierarchy [13]. Based on the above, the automatic store plan generation 

engine is the entry point for automating the retail space planning process. Its main 

purpose is to distribute the categories over the physical fixtures of the store, taking into 

consideration affinities and dependencies. Based on the portion allocated for each 

category by the category manager, the auto-segmentation engine will select the 

corresponding optimal assortment. On the other hand, the auto-allocation engine will 

distribute the items included in the optimal assortment on the shelves selected by the 

ASPGE. 

3.3.2 Non-functional requirements 

We assume that the following non-functional requirements are to be satisfied by the 

engine: 

• Accuracy: as macro-level module, the ASPGE’s result will affect the overall 

output of CASPER, hence it needs to accurately distribute the categories over the 

store, taking into consideration the different affecting factors. 

• Scalability: ASPGE depends on the results of the market basket analysis and key 

performance indicators (KPIs) specified by the category manager. Given the fact 

that both sources are dynamically changed, ASPGE needs to be scalable enough 

to handle such an aspect. 

3.3.3 Functional requirements 

We assume that the ASPGE needs to perform the following functionalities: 

• Reading the result of the market basket analysis and deriving input data related to 

affinity between the different categories present in the basket. 
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• Reading the KPIs specified by the category manager and reflecting their 

strategical meaning by allocating the corresponding categories on the 

corresponding physical fixtures. 

• Taking into consideration the geo-spatial attributes and constraints of the store. 

• Optimizing space utilization on the macro-level (fair distribution of categories 

over shelves). 

3.3.4 Retail store structure 

Depending on the retailer’s operational strategy, a store can be divided into a number of 

levels. Unless the plan corresponds to a newly opened store, macro-levels (i.e. zones) are 

rarely changed and compose the static part of the store plan. Each macro-level includes 

multiple micro-levels (i.e. departments), which can be also divided into other sub-levels, 

and so on. In this study, we will adapt the structure illustrated in the example below, 

where a store is divided into zones, zones into departments and departments into 

categories. It is to note that the items within a category are not all used in the product-to-

shelf allocation process; a product assortment is to be applied in a later phase, resulting in 

finding the corresponding set of items. 

 

Figure 7 - Example of retail store structure 
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3.3.5 Global flow 

 

Figure 8 - Automatic store plan generation engine: global flow 
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3.3.6 Algorithm description 

Our algorithm, based on the “divide-and-conquer” approach, initiates by extracting the 

results of the market basket analysis and building a co-occurrence matrix by product 

department. In other words, the engine scans the items found in different market baskets, 

checks their respective departments and computes the co-occurrence frequency of these 

departments, as follows: 

(Di,Dj) =         + n           if Di and Dj belong to the same store zone 

                        - n            if Di and Dj belong to different store zones 

where n is the frequency of co-occurrence of departments Di and Dj in the market basket 

analysis. 

In the example below, department D1 and department D2 are found together in 125 

different baskets and belong to the same store zone (positive value) while department D1 

and department D3 are found together 89 times but belong to different store zones 

(negative value). 

 

Figure 9 - Example of co-occurrence matrix (by department) 

 

After, the fixture table and fixture adjacency/matrix are initialized. The fixture table 

contains properties and attributes related to each physical fixture in the store, as follows: 

• Fixture ID: unique identifier of the fixture. 
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• Fixture-group (or planogram after filling it): which specifies the group of fixtures 

which contains the studied fixture. In Figure 3 - Example of a store plan, each 

group of assembled squares having the same color illustrates a different 

planogram. 

• Allocated department: which specifies the department to which the fixture is 

allocated. This value is initially set to -1 (not allocated). 

• Allocated category: which specifies the category within the department to which 

the fixture is allocated. This value is initially set to -1 (not allocated). 

• Proportion: which denotes how much a given fixture constitutes from the overall 

volume of its zone (set of all fixtures). It is calculated as follows: 

 

    

         where:  

• p is the number of shelves in fixture A 

• w(i), h(i) and d(i) are the width, height and depth of a given shelf i 

• n is the total number of fixtures in the given zone  

On the other hand, a fixture distance matrix is generated as follows: 

                          + n         if Fi and Fj belong to the same fixture-group (planogram) 

 (Fi,Fj) =          - n          if Fi and Fj belong to different fixture-groups 

                           0          if Fi and Fj are adjacent 

 

where n is the distance between fixtures Fi and Fj. 

 

Similarly, a fixture-group table and fixture-group distance matrix are initialized. The 

table contains the fixture-group identifier as well as the corresponding zone while the 

matrix is created as follows: 
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                            + m         if FGi and FGj belong to the same zone 

 (FGi,FGj) =       - m         if FGi and FGj belong to different zones 

                             0           if FGi and FGj are adjacent 

 

where m is the distance between fixture-groups FGi and FGj. 

After completing the initialization of the needed structures, fixed departments, which 

preserve their locations regardless of the engine’s output, are allocated to their respective 

fixtures. Per example, in a given grocery store, the “bread” department is statically 

allocated near the baking oven. Once all fixed departments are allocated, the engine 

selects the most profitable boundary departments, which are departments having a large 

co-occurrence frequency with departments in other zones and the highest KPI values 

specified by the category manager (i.e. profitability, net profit margin, …). In other 

words, if the entry (Di, Dj) in the matrix has a relatively small negative value and a large 

KPI (profitability) value, this means that department Di needs to be placed on the 

boundaries of its zone in such a way that it is shifted closer to the zone to which 

department Dj belongs. To choose the corresponding fixture-groups, one of the following 

two cases is confronted: 

• Dj is already allocated to a fixture-group FGj: in this case, the following algorithm is 

applied: 

1. Read the fixture-group table and get all fixture-groups belonging to the zone 

which includes department Di. 

2. Get all entries (x, FGj) in the fixture-group distance matrix where x denotes 

the different fixture-groups found in previous step. 

3. Sort the absolute value of the entries found in previous step in ascending 

order (from closest fixture-group to furthest in respect to FGj).  

4. Read the sorted fixture-groups one-by-one and apply the following check: 

� If the total of proportions of all non-allocated fixtures within the 

fixture-group is greater than the proportion assigned to Di by the 

category manager, perform the following “growing algorithm” for 

department allocation: 
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A. Allocate fixture to department, starting from closest fixtures to 

FGj to the furthest ones. 

B. Repeat until all the proportion assigned to Di is allocated on 

fixtures. 

C. If the remaining non-allocated proportion of the fixture-group 

is greater than a predefined error margin (i.e. 20% of total 

proportion assigned for the department), separate allocated and 

non-allocated proportions of the fixture-group; a new fixture-

group is created from the non-allocated proportion. 

5. If no fixture-group fits department Di, allocate Di on the fixture-group having 

the largest free proportion. 

• Dj is not yet allocated: in that case, the following algorithm is applied: 

1. Get all couples (FGi, FGj) from the fixture-group distance matrix such that 

FGi belongs to the zone containing Di and FGj belongs to the zone containing 

Dj. 

2. Sort the absolute value of the entries obtained in the previous step by 

ascending order (from smallest distance to largest). 

3. Read the sorted couples one-by-one and apply the following check: 

� If the total of proportions of all non-allocated fixtures within the 

fixture-group FGi is greater than the proportion assigned to Di, apply 

the “growing algorithm” explained above to Di. 

4. If no couple of fixture-groups fits department Di, allocate Di on the fixture-

group couple having the greatest free proportion.. 

 

Once all departments are allocated to fixture-groups, a similar procedure is applied on the 

micro-level, to allocate categories to fixtures within fixture-groups. It is to note that the 

algorithm is applied department by department. Assuming we have a category Ci which 

is a boundary category in respect to another category Cj which belongs to a different 

department, the procedure can be summarized in one two possible cases: 

• Cj is already allocated to a fixture Fj: in this case, the following algorithm is applied: 
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5. Read the fixture table and get all fixtures belonging to the department which 

includes category Ci. 

6. Get all entries (x, Fj) in the fixture distance matrix where x denotes the 

different fixtures found in previous step. 

7. Sort the absolute value of the entries found in previous step in ascending 

order (from closest fixture to furthest in respect to Fj).  

8. Read the sorted fixtures one-by-one and apply the following check: 

� If the fixture is not yet allocated to another category, perform the 

following “growing algorithm” for category allocation: 

A. Allocate category to department, starting from closest fixtures 

to Cj to the furthest ones. When no additional adjacent fixtures 

are available, stop. 

B. Repeat until all the proportion assigned to Ci is allocated on 

fixtures. 

C. If there aren’t enough non-allocated fixtures to fit Ci’s 

proportion, allocate Ci on the set of adjacent fixtures having 

the greatest free proportion. 

• Cj is not yet allocated: in that case, the following algorithm is applied: 

1. Get all couples (Fi, Fj) from the fixture distance matrix such that Fi belongs to 

the department containing Ci and Fj belongs to the department containing Cj. 

2. Sort the absolute value of the entries obtained in the previous step by 

ascending order (from smallest distance to largest). 

3. Read the sorted couples one-by-one and apply the following check: 

� If the total of proportions of all adjacent non-allocated fixtures within 

department Di is greater than the proportion assigned to Ci, apply the 

“growing algorithm” explained above to Ci. 

4. If no adjacent non-allocated fixtures on Di have enough free proportion to fit 

category Ci, allocate Ci on the set of non-allocated  adjacent fixtures having 

the greatest free proportion on Di. 
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It is to note that in both cases when Dj (or Cj) is not yet allocated, Dj (or Cj) is used only 

as a reference point to its corresponding zone and should not be allocated using the 

“growing algorithm”. To justify this statement, consider the following example: 

 

In a given store, suppose we have 3 zones Z1, Z2 and Z3 and 5 departments D1, D2, D3, 

D4 and D5 such as D1 Є Z1, D2 Є Z2, D3 Є Z2, D4 Є Z3 and D5 Є Z3. Moreover, we 

assume that we have the following entries in the co-occurrence matrix (by department): 

(D1, D2) = 125; (D1, D3) = 25;  (D1, D4) = 512; (D1, D5) = 90; 

(D2, D4) = 180; (D2, D5) = 700; (D3, D4) = 72;  (D3, D5) = 2130; 

The figure below illustrates the initial store plan: 

 

Figure 10 - Example: Initial store plan 

 

The algorithm initiates with zone Z1 and allocates D1 to the closest fixture-group to Z3 

since the largest co-occurrence value is (D1, D4) = 512 and D4 Є Z3. On the other hand 

D4 is not yet allocated. Suppose we also allocated D4 on the closest fixture-group to Z1 

which is FG7. When proceeding to zone Z2, we find that the largest co-occurrence value 

corresponds to (D3, D5) = 2130 where D5 Є Z3. If we allocate D3 to FG6 and D5 to FG8 

(since it the only available one), this will be considered as an unfair distribution since D5 

should have been allocated on FG7 (the closest fixture-group to Z2) since (D3, D5) > 

(D1, D4). Hence, the previous statement is justified. 
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3.4 Auto-Segmentation Engine (ASE) 

3.4.1 Introduction 

The main purpose of the auto-segmentation engine is selecting the optimal product 

assortment for a given item category. By assortment, we mean choosing what items are to 

be included in the planogram and hence placed on the shelves. It is to note that not all 

items of a certain category are included in its planogram. To solve such a problem, we 

use a special type of Artificial Neural Networks, called Self Organizing Maps (or 

Kohonen Maps). 

3.4.2 Non-functional requirements 

We assume that the following non-functional requirements are to be satisfied by ASE: 

• Scalability: the segmentation process is tightly bound to the strategy defined by 

the retailers, which usually varies based on the goals and circumstances. Hence, 

the engine needs to be able to process multiple dynamic dimensions or factors. 

• Accuracy: An optimal assortment directly affects the performance of the store 

since it includes selecting what items to allocate on the physical fixtures. Hence, 

the auto-segmentation engine should be very accurate in reflecting the assortment 

strategy defined by the retailer. 

• Interoperability: The segmentation process needs to take into consideration geo-

spatial, demographic and analytical data. Hence, the engine needs to collect 

information from multiple heterogeneous systems and export results to 

visualization packages (i.e. Store plan rendering, Category segment graph…) 

3.4.3 Functional requirements 

The engine needs to analyze high-dimensional data corresponding for a certain category, 

generate the corresponding clusters and select the optimal ones based on the strategy 

defined in the business rule repository. This process needs to be repeated for all 

categories that need to be included in the studied store. Once the optimal assortment is 

selected, the engine communicates with the auto-allocation module to distribute the 

chosen items on the corresponding shelves. 
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3.4.4 Algorithm / approach selection 

The main purpose of the auto-segmentation engine is the optimal assortment per 

category, which is “dividing” the items belonging to a given category (based on multiple 

dimensions reflecting a certain strategy) and selecting the optimal clusters, the ones 

which reflect the most the desired strategy. Given the dynamic automation objective in 

our research and the inability to specify the desired output, our selection scope can be 

narrowed down to unsupervised learning methodologies. One form is basic “clustering” 

algorithms, like K-means and vector quantization. Though these clustering algorithms are 

simple, they have several drawbacks. The radius of clusters or the number of clusters has 

to be predefined. Minor changes in these values will lead to change in the output which is 

not desirable [14]. In our case, we cannot pre-define the number of clusters for a given 

category, hence another approach is to be considered. The other alternative to 

unsupervised learning problems is adopting Artificial Neural Networks (ANN). Among 

ANNs, Self-Organizing Maps (SOM) and Adaptive Resonance Theory (ART) are the 

most commonly used approaches for unsupervised learning problems. The main 

advantage of ART is the ability to control the degree of similarity between the members 

of the same cluster via a pre-defined parameter called “vigilance parameter”. On the other 

hand, SOM are used for multi-dimensional data and are able to preserve the topology 

through the neighborhood function; in a topology-preserving map, units located 

physically next to each other will respond to classes of input vectors that are likewise 

next to each other. Back to our application, given that the items of a certain category need 

to be segmented based on a set of dynamic criteria and that the optimal clusters are 

topologically adjacent, the main properties of SOMs respond more efficiently to the 

requirements of our auto-segmentation module. 

3.4.5 Global flow 

The flow initiates by initializing the different segmentation dimensions or criteria which 

reflect the strategy defined by the retailer. Next, the Self-Organizing Map is initialized 

and trained in terms of size (number of neurons), initial neuron values and learning 

parameters. Once the quality of the map is ensured, the input data is mapped to the 

trained map and the optimal obtained clusters are selected. 
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Figure 11 - Auto-segmentation engine: global flow 
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3.4.6 Self-Organizing Maps (SOM) 

3.4.6.1 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a computational model, inspired from the 

structure of the brain, and used to transform a given input space into a desired output 

space.  

The image below illustrates how ANN are related to the physiological neural system; 

different neurons cooperate based on certain functional similarities in order to produce 

the corresponding output. Per example, neurons in the occipital lobe of the brain are 

connected by their synapses in order to process the visual functions. The main difference 

between biological neural systems and ANN is their organization; unlike the 

heterogeneous organization of biological systems, the majority are of ANN are organized 

according to the same basic structure. 

 

 

Figure 12 - ANN biological inspiration 

 

An ANN can be used for the following computational applications: 

• Classification: like pattern recognition, image comparison, behavior extraction 

and data clustering. 
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• Noise reduction: by recognizing noisy patterns in a certain input and producing a 

noiseless output. 

• Prediction: forecasting based on historical data. 

 

The main power of neural networks is their ability to “learn” their function based on the 

sample input and produce the corresponding generalized output without any pre-

configuration. In order for an ANN to determine its functions, we need to assign weights 

for it. Such a process is applied through “training”, by providing sample data to the 

network and adjusting the weights to fit the desired function. There are two types of 

learning: 

• Supervised training: by supplying the network with the input as well as the 

desired output and modifying the weights to minimize the difference between the 

actual and desired output. 

• Unsupervised training: by supplying the network with the input exclusively; the 

network identifies the similarities and differences in the input without any 

intervention or adjustment.  

Depending on how the neurons are connected, ANN can be divided into three basic 

categories: 

• Unidirectional networks: mainly one-layer networks, multi-layer networks and 

radial networks. 

• Recursive networks: including Hopfield networks, Hamminga networks and Bam 

networks. 

• Cellular networks. 

3.4.6.2 Self-Organizing Maps 

Self-Organizing Maps (SOM), also known as Kohonen Maps, are special types of 

Artificial Neural Networks similar to biological systems; Self-Organizing Maps are 

inspired from the topology of the human brain which is divided into regional clusters of 

informational representation (i.e. human sensory and motor maps). SOM are mainly 

based on Vector Quantization, a technique of representing multi-dimensional data in 

lower dimensional spaces, usually one or two dimensions. Moreover, the approach 
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generates a network which preserves the topology of the training data. Such a mapping 

can be achieved by the following aspects: 

• Input layer and output layer (map) are completely connected. 

• Output neurons, which are the nodes of the map, are interconnected through a 

neighborhood function. 

 

 

 

Figure 13 - Self-Organizing Maps (retrieved from http://www.ij-

healthgeographics.com/content/download/figures/1476-072X-3-12-7.TIFF) 

SOM have been intensively adopted in real-life applications, mainly for data mining, 

process analysis and control as well data analysis in economical and commercial fields. 

Examples of SOM include mapping of colors from their 3-dimensional representation 

(Red, Blue, Green) into a 2-dimensional grid representation and clustering of geographic 

maps based on certain criteria (poverty, population size, etc…). In a paper entitled “A 

cross-national market segmentation of online game industry using SOM” [15], the 

authors adopt a two-level SOM to develop clusters within each nation concerning the 

studied online game industries. The authors state that adopting SOM helped to effectively 

reduce the complexity of the reconstruction task and noise. Another paper entitled 

“Unsupervised segmentation using a self-organizing map and a noise model estimation in 

sonar imagery” [16] presented SOM as an effective approach to segment images provided 

by a high-resolution sonar; the learning of a Kohonen self-organizing map (SOM) is 

performed directly on the input image to approximate the discriminating functions, i.e. 

the contextual distribution function of the grey levels. These papers and many others 
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show how SOM can be used to efficiently cluster n-dimensional data; such an approach 

can be interesting to segment a retail store to different categories based on multiple 

criteria or dimensions (i.e. affinity, performance, consumer behavior, etc…).  

3.4.6.3 Unsupervised Learning 

One of the main characteristics of Self-Organizing Maps is unsupervised learning, which 

means the ability to classify data without needing to specify a target vector. In contrast, 

supervised training techniques such as back-propagation requires comparing the output 

vector to the target vector; if there’s a difference, the weights of the nodes are altered to 

reduce the error in the output. This process is repeated several times until the network 

reflects the desired output.  

 

Given an n-dimensional input space and m output neurons, unsupervised learning 

operates as follows: 

1. Randomly generate a weight vector W for the m neurons. 

2. Choose a random input x from the training data. 

3. Iteratively examine all the nodes of the map and compare their weights to the 

input vector’s weight; the closest matching node is selected and referred to as the 

Best Matching Unit (BMU). 

4. Calculate the radius of the neighborhood of the BMU; this value, initially large 

and set to the radius of the map, diminishes after each iteration. Then, update the 

weight vectors of all neurons i in the neighborhood of the examined neuron k, as 

follows:  

wi := wi + η·ϕ(i, k)·(x – wi) , where ϕ is the neighborhood function and η the 

learning parameter (both explained below). Any nodes found within this radius 

are deemed to be inside the BMU's neighborhood. 

5.  Narrow neighborhood function ϕ and learning parameter η and repeat step 2. 
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Figure 14 - Learning of a triangular input space 

3.4.6.3.1 Calculating the BMU & Neighborhood 

The BMU is selected by calculating the Euclidian Distance, as follows: 

 

where (W1, W2, … , Wn) are the node’s weights, and (V1, V2, … , Vn) are the input 

vector’s values. 

As for the node’s neighborhood, it is expressed as an exponential decay function which 

decreases from iteration to iteration until reaching the value of the BMU. It can be 

formulated as follows: 

    

where  σ (0) is the width of the radius at time t0, λ is a time constant and t is the current 

iteration. 

On the other hand, the effect of location within the neighborhood is defined by a 
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Gaussian curve as follows: 

 

Figure 15 - Effect of location within the neighborhood 

 

Finally, to ensure the convergence of the map, the learning rate L is defined as follows: 

 

3.4.6.4 Map Initialization 

It is often reported in the technique literature that the success of the self-organizing 

feature map formation is critically dependent on the initial weights and the selection of 

main parameters (i.e. the learning-rate parameter and the neighborhood set) of the 

algorithm [17]. Before selecting the approach that we will adopt to initialize the map, we 

will present the different general methodologies used for this purpose. 

3.4.6.4.1 Random Initialization 

This is the most straight-forward approach consisting of initializing the map nodes with 

random values. Even though it’s the easiest methodology, it’s poorly efficient since it 

requires an additional number of training cycles. 

3.4.6.4.2 Initialization using Random Training Data 

This approach consists of selecting a random set of input vectors from the training data 

and using it to initialize the map. This method is certainly more efficient than the random 

initialization since it will produce a basic map state reflecting the input data, and hence 
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decrease the needed training cycles and computational time. However, such a state will 

not be very accurate: given that the map nodes are much less than the training data 

vectors and that the chosen set is picked randomly, the initialized map will end up 

reflecting a partial representation of the overall training data. 

3.4.6.4.3 Initialization using Selected Training Data 

In contrast to the previous approach, this method consists of selecting a more meaningful 

set of input vectors in order to reproduce a more accurate map state. To achieve this, we 

need to cluster our data before choosing the initialization set, which seems not that easy 

given the multi-dimensional aspect of the training data. Hence, Principle Component 

Analysis (PCA) can be used to reduce the dimensionality, while preserving the variability 

of the data .PCA involves a mathematical procedure that transforms a number of possibly 

correlated variables into a smaller number of uncorrelated variables called principal 

components. The first principal component accounts for as much of the variability in the 

data as possible, and each succeeding component accounts for as much of the remaining 

variability as possible. 

3.4.7 Parameter selection 

The selection of the map’s initialization parameters depends on the purpose and outcome 

of the scenario, but there are a number of recommendations suggested by Kohonen to 

optimize the results. Below are the main “best practices”: 

 The map dimensions affect its visualization; a small map is recommended for cluster 

identification purposes. 

 The length of the reference vector P(x) must be 1.3 times the length of the reference 

vector P(y). 

 The learning factor must be large in the initial training phase and relatively small in 

the final phase. 

 The initial network radius should be rather large, preferably larger than half the 

network diameter [10]. 
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3.4.8 Implementation 

The scenario for the auto-segmentation engine is divided into two parts: generation of the 

store plan and segmentation of a given planogram. 

3.4.8.1 Planogram segmentation 

The studied scenario will be applied to the category “pain relievers”, consisting of 68 

items, from which an optimal item assortment is to be selected. Based on the objective 

specified by the retailer, we will generate a self-organizing map, which clusters the multi-

dimensional data and helps to decide which segments to choose for the assortment. The 

following variables (dimensions) will be taken into consideration: 

• Last year total sales volume 

• The Net Profit Margin: calculated as follows: 

 

  

• Indispensability of the item: if this value is true, this means that it is mandatory to 

select the corresponding item. 

• Profitability: which is a value computed by the forecast engine specifying how 

much an item is profitable in respect to its spatial dimensions. 

Using the parameter initialization tips mentioned in the previous section, we will apply 

our scenario on two map variations: small map (4*3 with diameter = 6) and large map 

(12*8 with diameter = 40). The learning factor has a value of 0.5 in the initial phase and 

0.05 in the final phase. 

3.4.8.1.1 Using a small map 

The following results are obtained (colors of the segments will be illustrated later in 

Figure 16 - Planogram segmentation scenario 1: Self-Organizing Map): 

 

Segment Color Frequency 

(%) 

LY 

Sales 

Net Profit 

Margin 

Is 

Indispensable 

Profitability 

S1  22.06 438 23.87 0 0.5047 
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S2  5.88 393 76.25 1 0.3925 

S3  25 182 37.18 0 0.8324 

S4  16.18 196 57.82 0 0.2291 

S5  14.71 220 24.3 0 0.237 

S6  16.18 639 71.55 0 0.6918 

 

Table 1 - Planogram segmentation scenario 1: Obtained segments 

 

The table above shows the 6 segments obtained in the resulting map. By analyzing the 

attributes, it is clear that the segment S2 includes all indispensable items (Is Indispensable 

= 1), hence it will be automatically selected. 

The items included in S2 are shown in the table below: 

 

Item # LY Sales Net Profit 

Margin 

Is Indispensable Profitability 

19 497 70 1 0.85 

38 415 81 1 0.08 

56 299 79 1 0.68 

60 362 75 1 0.29 

 

Table 2 - Planogram segmentation scenario 1: Indispensable items 

 

Suppose that the retailer needs to choose around 25% of the items of each category and 

assign them to the corresponding planogram. After selecting the indispensable items, one 

additional cluster can be chosen (all remaining segments have a frequency between 

14.71% and 25%). By reviewing the attributes of each cluster and given that the strategy 

tends to maximize sales / net profit margin / profitability, the segment S6 must be 

obviously selected (LY Sales = 639, Net Profit Margin = 71.55 and Profitability = 

0.6918). Below are the items corresponding to the segment S6: 

Item # LY Sales Net Profit 

Margin 

Is Indispensable Profitability 

1 528 72 0 0.82 
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10 831 64 0 0.78 

27 711 84 0 0.43 

33 243 91 0 0.72 

37 352 84 0 0.55 

42 702 62 0 0.59 

47 523 83 0 0.79 

50 690 61 0 0.62 

51 522 65 0 0.72 

63 902 59 0 0.81 

68 1025 62 0 0.78 

 

Table 3 - Planogram segmentation scenario 1: Optimal cluster(s) 

Below is the graphical presentation of the self-organizing map’s clusters: 

 

 

Figure 16 - Planogram segmentation scenario 1: Self-Organizing Map 

The optimal selected segment corresponds to the upper-left pink segment in the above 

figure. To justify the accuracy of the map, we will inspect the items belonging to the 

bottom-right purple segment; such items must be the least compatible with the specified 

strategy. Below is the list of these items: 

 

The table below shows the total efficiency for each cluster (assuming that the sales 

volume, net profit margin and profitability have the same priority). The efficiency is the 

sum of the ratio of the attribute over its maximum value for all indicators (except item 

indispensability): 
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Segment LY Sales / 

maximum LY 

Sales 

Net Profit Margin / 

maximum Net Profit 

Margin 

Profitability / 

maximum 

Profitability 

Efficiency 

S1 0.685 0.313 0.606 1.604 

S2 0.615 1 0.472 2.087 

S3 0.285 0.488 1 1.773 

S4 0.307 0.758 0.276 1.341 

S5 0.344 0.319 0.285 0.948 

S6 1 0.938 0.831 2.769 

 

Table 4 - Planogram segmentation scenario 1: Calculating the segments efficiency 

 

The results above show that segments S4 and S5 (green and purple segments 

respectively) have the lowest efficiency value, while the optimal segment is S6 (pink 

segment). This can be justified visually by the distance between the optimal segment and 

the least efficient segments (which are the furthest of the optimal segment). 

 

Furthermore, the picture below illustrates the map clusters for each of the four 

dimensions. It is clear that the indispensability dimension clustered the map into 2 main 

regions: all 4 indispensable items (red region) on one side, and all the other non-

indispensable items on the other side. In terms of overall sales (first part of the figure), it 

is clear that the selected optimal cluster outperforms the others significantly. As for the 

net profit margin and the profitability dimensions, the optimal cluster is among the top 

two in both cases. The relatively acceptable performance of S3 (top-right segment), third-

best in terms of overall efficiency, can be explained by its leading score in terms of 

profitability. 
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Figure 17 – Planogram segmentation scenario 1: Clusters for each variable 

3.4.8.1.2 Using a large map 

Using a large map of size (12*8), the following segments are obtained: 

 

Segment Color Frequency 

(%) 

LY 

Sales 

Net Profit 

Margin 

Is 

Indispensable 

Profitability 
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S1  51.47 301 35.17 0 0.3309 

S2  26.47 194 35.44 0 0.835 

S3  16.18 639 71.55 0 0.6918 

S4  5.88 393 76.25 1 0.3925 

 

Table 5 - Planogram segmentation scenario 2: Obtained segments 

 

Below is the graphical representation of the self-organizing map’s clusters: 

 

Figure 18 - Planogram segmentation scenario 2: Self-Organizing Map 

 

Similarly to the previous scenario, segment S4 is picked since it includes all 

indispensable items. The additional segment will be selected based on its efficiency. 

 

Segment LY Sales / 

maximum LY 

Sales 

Net Profit Margin / 

maximum Net Profit 

Margin 

Profitability / 

maximum 

Profitability 

Efficiency 

S1 0.471 0.461 0.396 1.328 

S2 0.304 0.465 1 1.769 

S3 1 0.938 0.829 2.767 

S4 0.62 1 0.47 2.09 

 

Table 6 - Planogram segmentation scenario 2: Calculating the segments efficiency 
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Based on the results above, segment S3 will be selected. To validate if it includes the 

same items selected in scenario 1, we will extract the records corresponding to it: 

 

Item # LY Sales Net Profit 

Margin 

Is Indispensable Profitability 

1 528 72 0 0.82 

10 831 64 0 0.78 

27 711 84 0 0.43 

33 243 91 0 0.72 

37 352 84 0 0.55 

42 702 62 0 0.59 

47 523 83 0 0.79 

50 690 61 0 0.62 

51 522 65 0 0.72 

63 902 59 0 0.81 

68 1025 62 0 0.78 

 

Table 7 - Planogram segmentation scenario 2: Optimal cluster(s) 

 

It is clear that the same optimal clusters are obtained in both scenarios (small and large 

map respectively). The only difference is their number; using a small map, we obtained a 

larger number of clusters. Given the fact that the segmentation process is a clustering 

approach in its nature, we recommend using relatively small maps for the ASE. 
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3.5 Auto-Allocation Engine (AAE) 

3.5.1 Introduction 

The purpose of the auto-allocation engine is to optimally distribute items belonging to a 

certain category (optimal assortment generated by the auto-segmentation engine for the 

related category) over the corresponding fixtures. Such a process must take into 

consideration a set of dynamic rules specified by the user in the business rule repository 

and must ensure optimal profitability while maximizing space utilization. We will show 

in the coming sections how the dynamicity of the strategy is maintained and how the 

problem is mapped to Bounded Knapsack Problem. Moreover, the different 

implementation aspects of the engines are explained. 

3.5.2 Non-functional Requirements 

We assume that the following non-functional requirements are to be satisfied by the auto-

allocation engine: 

• Performance: Given the huge amount of data that needs to be processed by the 

engine as well as the broad number of categories within a store, the engine needs 

to have an optimal performance (i.e. less than one second for an average size 

segment, consisting of less than a hundred items and a dozen of fixtures). 

• Scalability: The architecture of the engine needs to be flexible enough to allow 

interaction with other modules of an enterprise application (i.e. fetching data from 

heterogeneous data sources, requesting statistical data from analytical engines and 

exporting results to presentation interfaces, including 3D rendering). The service-

oriented aspect, which will be discussed in the architecture-related section, 

ensures the satisfaction of this crucial requirement. 

• Accuracy: The main purpose of the engine is to maximize the profit derived from 

a certain strategy defined by the end user. Hence, this should be reflected 

accurately in the output; per example, if space maximization is the highest priority 

rule, then the engine’s output should intelligently consider minimizing space 

wasting. 
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• Dynamicity: Given the fact that the merchandising rules change frequently from 

period to period (i.e. seasonality, promotion, competitor strategy, etc…), the 

engine should be able to process dynamic sets of rules and reflect the underlying 

strategy. 

3.5.3 Functional Requirements 

We assume that the following functionalities and capabilities are to be provided by the 

auto-allocation engine: 

• Rule parsing & execution: the engine needs to parse the merchandising rules 

defined in the business rule repository and apply the priority weights. 

• Item ranking: by classifying the different items based on the different attributes 

and provided criteria. 

• Applying mandatory rules and properties: defined by the user, such as horizontal / 

vertical spacing between items, minimum facings, etc… 

• Item allocation: Based on the results of the above steps, the engine can locate the 

horizontal / vertical coordinates of the item on the corresponding shelf / fixture. 

• Space maximization: by optimally ensuring that the space / profit constraints are 

satisfied. This problem is mapped to the bounded Knapsack problem, explained in 

coming sections. 
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3.5.4 Engine Phases 

Suppose a certain planogram (set of fixtures, each consisting of several shelves) is 

segmented by the user. As explained in the previous sections, on the micro level, 

segmentation means that the user specifies that a certain percentage of the overall 

planogram corresponds to a specific category of items. On the macro level, the store is 

divided into regions where categories are allocated to corresponding sets of physical 

fixtures and shelves. 

Per example:  (Note that results are not accurate and intended for illustration purposes) 

B 

(25%) 

A 

(50%) 

C 

(12.5%) 

D 

(12.5%) 

 

Based on the above, the application supplies the auto-allocation engine with information 

about each segment (from A to D), consisting of: 

• Set of items corresponding to the related category 

• Set of sub-shelves 

 

 

Next, the vertical merchandising rules prioritized by the user are applied. Per example, 

new items are to be placed from top to bottom, from left to right. By iteratively applying 

Sub-Shelf S1 (Order 1: � Top): 
start-point:0 , end-point: 200 � width:200 

Sub-Shelf S2 (Order 2 � Bottom): 
start-point:0 , end-point: 200 � width:200 

 

Item I1 

Item I2 

Item 
I3 

Item I4 
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these rules (from lowest priority to highest priority), we will end up knowing which items 

are to be placed on which sub-shelves. 

 

The next step is to fill up the wasted space on each shelf by adding “facings”. To solve 

this problem, we will assume that we have a 0-N (bounded) knapsack problem (items 

having a width W and a profitability P). By applying the algorithm, we will be able to 

maximize space utilization. 

 

The final step is to apply horizontal merchandising rules which will arrange items on 

the same sub-shelf (local brand items are to be placed on the left of national brand 

items), as well as apply “stacking” rules (items stacked 

vertically).

 

 

 

 Item I2 

Item I4 Item I4 

Item I2 

Item I1 

Item I1 

Item 
I3 

Item 
I3 

 

 

 
Item I1 

Item I2 
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3.5.5 Global flow 

 

Figure 19 - Auto-allocation engine: global flow 
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3.5.6 Knapsack Problem 

3.5.6.1 Introduction 

The knapsack problem or rucksack problem is a problem in combinatorial optimization: 

Given a set of items, each with a weight and a value, determine the number of each item 

to include in a collection so that the total weight is less than a given limit and the total 

value is as large as possible. It derives its name from the problem faced by someone who 

is constrained by a fixed-size knapsack and must fill it with the most useful items. 

The problem usually arises in financial problems as well combinatorics, complexity 

theory, cryptography and applied mathematics. We will introduce this problem to solve 

the problem of retail space planning (i.e. shelf allocation) with the presence of dynamic 

sets of prioritized merchandising rules. 

3.5.6.2 Variations 

There are three main variations of the N-P complete Knapsack problem: 

• 0-1 Knapsack problem: the most common variation of the problem, where 0 or 1 

copy of each item can be included in the knapsack. 

• Bounded (0-N) Knapsack problem: where 0 to N copies of each item can be 

included in the knapsack. N is the maximum number of copies for each item. 

• Unbounded Knapsack problem: where an unlimited number of copies of each 

item can be included in the Knapsack. 

• Multiple-choice Knapsack problem: where we have a set of classes, each 

consisting of several items and one item is to be picked from each class. 

• Subset sum problem: if for each item, the profit and weight are equal. 

The third variation is the most complex. It is to note that the multiple Knapsack problem 

(i.e. more than one knapsack is introduced) can be formulated as the “Bin Packing” 

problem. Our approach can be formulated as a bounded Multi-knapsack problem with the 

presence of multiple dynamic constraints. 

3.5.6.3 Solving the Knapsack Problem 

All Knapsack problems belong to the family of NP-hard problems, meaning that it is very 
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unlikely that we can ever devise polynomial algorithms for these problems. But despite 

the exponential worst-case solution times of all Knapsack algorithms, several large scaled 

instances may be solved to optimality in fractions of a second [12]. To do so, multiple 

computer science algorithms and approaches can be adopted [11], notably: 

• Dynamic Programming: which is a metatechnique, not an algorithm, similar to 

“divide & conquer”. It is used when the examined problem can be divided into 

recurring sub-problems; the resulting solution of each sub-problem is stored in 

memory for reuse. Additional details about dynamic programming will be 

provided in the next section. 

• Branch-and-Bound: is a general algorithm for finding optimal solutions of 

various optimization problems, especially in discrete and combinatorial 

optimization. It consists of a systematic enumeration of all candidate 

solutions, where large subsets of fruitless candidates are discarded en masse, 

by using upper and lower estimated bounds of the quantity being optimized. 

• Greedy approximation algorithm: which is frequently used to obtain sparse 

solutions to learning problems. In a paper entitled “Approximation algorithms 

for the multiple knapsack problem with assignment restrictions” [18], the 

authors show that simple greedy approaches yield 1/3-approximation 

algorithms for the objective of maximizing assigned weight of the studied 

problem. Two different 1/2-approximation algorithms are proposed: the first 

one solves single knapsack problems successively and the second one is based 

on rounding the LP relaxation solution. 

• State Space Relaxation: which is a concept related to dynamic programming, 

where the optimization problem can be formulated as a task to find the 

smallest-cost path of transitions between initial and final states by 

exhaustively exploring the corresponding state-space. 

Those are some, and not all, of the main approaches used to solve the Knapsack problem. 

Additional approaches include preprocessing, genetic algorithms, backtracking and 

metaheuristics.  
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3.5.7 Dynamic Programming 

3.5.7.1 Why not Brute Force? 

The most basic solution to the Knapsack problem would be adopting Brute Force. 

Suppose we have a set of n items, each having a profit P and size S, and we need to fill a 

shelf of size W. The mentioned approach initiates by generating all 2
n
 subsets, 

eliminating all subsets whose sum of sizes exceed W and select the maximum total profit 

of the remaining subsets.  

Example: 0-1 Knapsack problem: only one copy of each item is allowed 

We have 3 items (item, size, profit): 

(item A, 9, 12.5), (item B, 6, 10) and (item C, 14, 4) and a Knapsack of size W=20. 

The Brute Force approach initiates 2
3
=8 possible subsets: 

S1: empty set 

S2: item A with total profit of 12.5 and total size of 9 

S3: item B with total profit of 10 and total size of 6 

S4: item C with total profit of 4 and total size of 14 

S5: item A + item B with total profit of 22.5 and total size of 15 

S6: item A + item C with total profit of 16.5 and total size of 23 

S7: item B + item C with total profit of 14 and total size of 20 

S8: item A + item B + item C with total profit of 26.5 and total size of 29 

 

The subsets S6, S7 and S8 are eliminated since their total size exceeds W. The subset S5 

is selected since it has the maximum total profit between the remaining sets. Even for the 

simplest variation of the Knapsack problem (0-1) and for a small problem (3 items and a 

single knapsack), such a process has a runtime of O(2
n
), which is obviously not suitable 

for large-scale applications such as retail shelf allocation; even for a simple planogram 

consisting of one shelf and 50 items, brute force can take up to 2
50
 operations to derive 

the optimal allocation, which is clearly inconvenient. 

3.5.7.2 Greedy Approach: Performance vs. Optimality 

The greedy approach obtains the optimal solution by passing through a series of choices. 

At each pass, the algorithm makes the best local solution without referring to results from 
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previous sub-problems; this is the main aspect that differentiates it from dynamic 

programming. However, the greedy approach shares some similarities with dynamic 

programming such as optimal substructure (An optimal solution to the entire problem 

contains within it optimal solutions to sub-problems) and recursive solutions. 

Theoretically, the greedy approach is more efficient than dynamic programming in terms 

of simplicity and performance but it cannot be useful to in our case, as shown in the 

example below. 

Counter-example: 0-1 Knapsack problem: 

We have 3 items (item, size, profit): 

(item A, 25, 10), (item B, 10, 9), (item C, 10, 9) and Knapsack of size W=20. 

Suppose the greedy strategy consists of picking the items with highest profit first � The 

strategy will pick item A, yielding a total profit of 10 while the optimal solution consists 

of picking B and C, yielding to a total profit of 18. 

Hence, given the crucial need of optimality in retail shelf allocation, we can discard the 

greedy approach. Nevertheless, such a methodology can be useful in solving the 

Fractional Knapsack Problem, where fractions of an item can be included in the 

Knapsack; this approach can be suitable for solving the Cutting Stock problem (i.e. 

papers rolls in an industrial mill). 

3.5.7.3 Dynamic Programming for the Knapsack Problem 

The shelf auto-allocation problem can be solved using dynamic programming since it 

satisfies its main two characteristics: 

• Principle of Optimality (or Optimal substructure): since the optimal solution to 

our problem contains within it optimal solutions to sub-problems 

• Overlapping sub-problems: since in certain cases, the same sub-problem is solved 

more than once. 

Using dynamic programming, the Knapsack Problem can be expressed by the following 

recursive formula: 
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which means that the subset cannot contain an item k if the total weight becomes larger 

than the Knaspack’s weight w; otherwise, we choose between two subsets based on the 

largest total profit: 

• Total profit of original subset (without item k) 

• Total profit of new subset (with item k added) 

Below is the pseudo-code for the 0-1 Knapsack Problem using Dynamic Programming: 

 

 

Hence, the algorithm repeats O(W) n times resulting in an overall time of O(n*W), where 

n is the number of items and W is the weight of the Knapsack. The pseudo-polynomial 

time is divided as follows: O(nw) times to fill the array, which has (n +1)*(w +1) entries, 

each requiring O(1) time to compute and O(n) time to trace the solution, because the 

tracing process starts in entry n of the array and moves up 1 row at each step. 

3.5.7.4 Memoization vs. Dynamic Programming 

Memoization is a top-down variation of dynamic programming based on the concept of 

storing solutions to sub-problems as solved in the recursion algorithm. The solutions are 

stored in a table-like structure, indexed by the arguments of the corresponding function. 

Such an approach can outperform dynamic programming when not all solutions to sub-

problems are needed. The following summarizes the difference between the two 

approaches: 

• Memoization has the overhead of recursion, but computes fewer entries in the table 

than dynamic programming. 
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• Dynamic programming avoids the overhead of recursion, but computes more entries 

than necessary 

To determine if it’s suitable to adopt it for the retail auto-allocation engine, let us analyze 

a real-life scenario for a given simple planogram. 

Example: Consider the following 10 items (profit, width in cm) that needs to be allocated 

on a small shelf of width W=50 cm (Assume that 0-1 copy of each item is allowed � 0-1 

Knapsack Problem): 

Item1 (5,28) Item2 (9,26) Item3 (6,22) Item4 (1,34) Item5 (7,28) 

Item6 (8,20) Item7 (7,17) Item8 (4,14) Item9 (5,18) Item10 (3,16) 

The following graph illustrates the progress of the dynamic programming algorithm: 

 

 

Figure 20 – Scenario 1: Memoization vs Dynamic Programming 

The main difference is that dynamic programming tries to fill the knapsack for all W=50 

different sizes, while memoization only fills sizes that occur in the recursive call (only 12 

in this case). But, it is to note that the memorization approach implied 338 recursions.  

Moreover, in retail applications, the shelf (knapsack) size is at least 10 times larger than 

the average item size. To translate such a real-life constraint, let us consider the same 

scenario as above but with a realistic shelf size of 200 cm; like the previous scenario, 

memorization outperforms dynamic programming in terms of memory saving (up to 

70%) but yielded to 1988 recursions, which induces very large overhead. 

 

Hence, the selection will be based on the following fact:  memory saving vs. less 

recursion overhead. Given that real auto-allocation scenarios in the retail industry are 

very similar to the previous scenario and that memoization is mainly efficient for the 

unbounded Knapsack problem, dynamic programming will still be the most efficient 

candidate for the engine. 
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3.5.7.5 Tailoring dynamic programming 

Let us compute the histogram of the different sub-problems occurring in the second 

scenario of the previous section (real-life scenario: realistic values of retail items and 

shelves):
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Figure 21 - Histogram of sub-problems - Scenario 2 

 

By analyzing the histogram above, we can clearly observe that some sub-problems are re-

computed considerably by the traditional dynamic programming approach, resulting in 

loss of performance. In figure 6, we can also observe that a set of trailing values in each 

line in the output is repeated; this is can be explained by the following: 

• For each item, dynamic programming is computing the profit for ALL weights (0 

≤ w ≤ W), regardless if the sub-problem will be used or not. 

 

As a result, the first enhancement would be specifying an initial bound for each iteration 

(each item), which is the weight of that corresponding item. Implementation-wise, the 

change will affect the inner loop in the pseudo-code as follows: 
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3.5.8 Implementation 

3.5.8.1 Dynamic Rules 

The auto-allocation engine’s behavior is directly linked to the defined strategy, hence to 

the combination of merchandising rules. It is to note that rules with high priority affects 

the most the outcome of the engine. To ensure both dynamicity and strategy-driven 

computation, the following methodology is adopted: 

• Dividing merchandising rules as follows: 

o Vertical rules: affecting vertical allocation on different shelves. These 

rules can be affect top-down or bottom-up distribution. 

o Horizontal rules: affecting horizontal allocation / positioning within the 

same shelf (given that the item is already allocated to a given shelf) 

o Hybrid rules: when an item needs to be allocated to a certain region within 

the planogram 

• Applying vertical rules then horizontal rules: this will initialize the components of 

the Knapsack problem; a set of items and a wasted space to be filled in an optimal 

manner. 

 

Assume that we have a set of vertical rules, a set of horizontal rules and a set of items that 

need to be allocated on 3 shelves S1, S2 and S3. 

The items will hold attributes for each of the rules (if we have n different rules then we 

have n different attributes): 

Item 1: r1:5 r2:10; r3:2 ……………………., rn: 8 
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Item 2: r1:2 r2:* r3:7, ……………………., rn: 3  (* indicated that no value is 

defined) 

……. 

Item j: r1:7 r2:* r3:*, ……………………., rn: 11 

Each of the rules will have a priority weight defined by the user: 

a1:2 a2:1; a3:4 ……………………., an: 10 

First of all, we need to decide which items belong to which shelf, hence to apply the 

vertical rules.  

For each vertical rule, we rank the items based on the corresponding rule attribute; if the 

item has no value, we assign to it the average of all other non-null item attributes. The 

final rank of each item can be expressed as: 

   

where: n is the total number of vertical rules 

 ai is the priority weight of the rule 

 xi is the rank of the item for the corresponding rule 

After calculating the ranks for all the items, we generate a sorted vector as follows (the 

sorting order, ascending or descending, depends on the type of the vertical allocation – 

whether it’s top-down or bottom-up): 

 

Figure 22 - Vertical allocation vector 

 

The figure above illustrates how items (black squares) are sorted by calculated rank and 

distributed proportionally over shelves (colored squares). The proportion depends on the 

size, as well as the profitability of the shelf; per example, the user can specify that eye-

level shelves can hold more items than top or bottom shelves. As a result, each item is 

assigned to specific shelf, reflecting the specified vertical rules. After filling each shelf 

iteratively (explained in the coming sections), the same procedure will be applied for 

horizontal allocation (positioning of the item on the shelf). 
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3.5.8.2 Mapping to Knapsack Problem 

We assume that the space maximization process of the auto-allocation engine can be 

mapped to a bounded (0-N) Knapsack problem. After allocating items on corresponding 

shelves with the minimum required number of horizontal facings, we need to optimally 

fill the remaining space on each shelf. The selection of the “bounded” aspect is due to the 

business rule stating that 0 to N copies of a given item can be allocated horizontally on 

the remaining space, where N is the maximum allowed number of horizontal facings. 

Mathematically the bounded knapsack problem can be formulated as: 

maximize   

subject to   

where: 

• n is the number of distinct items on the shelf 

• pj, wj and xj are respectively the profit (calculated by an independent forecasting 

engine), weight (width in our case) and number of copies of a given item j 

• W is the remaining total space on the shelf 

3.5.9 Real-life Scenario 

Based on the output of the auto-segmentation engine obtained in the previous scenario, 

we need to allocate the items within the obtained assortment (for the category “pain 

relievers”) on the corresponding fixture (composed of 4 shelves, each of 200 cm width). 

The minimum horizontal space between 2 items is 1 cm. 

Below is the list of items with the following attributes: 

Item name Item image National / non-

national 

Item attributes 

Depth: 12 Width: 18 

Height: 10 Min Stacks: 4 

Min Facing: 2 Max Facing: 5 

Advil 100 mg 

 

National brand 

LY Sales: 528 Profit: 60 
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Depth: 10 Width: 16 

Height: 9 Min Stacks: 4 

Min Facing: 3 Max Facing: 5 

Advil 200 mg 

 

National brand 

LY Sales: 831 Profit: 78 

Depth: 14 Width: 17 

Height: 9 Min Stacks: 4 

Min Facing: 2 Max Facing: 4 

Advil PM 500 

mg 
 

National brand 

LY Sales: 497 Profit: 55 

Depth: 13 Width: 17 

Height: 11 Min Stacks: 3 

Min Facing: 3 Max Facing: 6 

Advil Liqui-gels 

500 mg 
 

National brand 

LY Sales: 711 Profit: 82 

Depth: 8 Width: 20 

Height: 15 Min Stacks: 3 

Min Facing: 1 Max Facing: 3 

Herbal Nights 

 

Non-national brand 

LY Sales: 243 Profit: 38 

Depth: 11 Width: 12 

Height: 18 Min Stacks: 2 

Min Facing: 2 Max Facing: 4 

Lanes Quiet 

Life 

 

Non-national brand 

LY Sales: 352 Profit: 47 

Depth: 8 Width: 11 

Height: 20 Min Stacks: 1 

Min Facing: 2 Max Facing: 4 

Natrol 

Melatonin 

 

National brand 

LY Sales: 415 Profit: 44 

Depth: 9 Width: 13 

Height: 16 Min Stacks: 3 

Min Facing: 3 Max Facing: 5 

Vivarin Blu-

emu 

 

Non-national brand 

LY Sales: 702 Profit: 68 

Depth: 8 Width: 8 

Height: 16 Min Stacks: 1 

Min Facing: 2 Max Facing: 4 

Snore relief 

 

Non-national brand 

LY Sales: 323 Profit: 49 

Depth: 11 Width: 11 

Height: 18 Min Stacks: 2 

Xiboprofen 

Activon 

National brand 

Min Facing: 3 Max Facing: 5 
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LY Sales: 690 Profit: 61 

Depth: 11 Width: 11 

Height: 18 Min Stacks: 2 

Min Facing: 2 Max Facing: 5 

Xiboprofen 

Activon Forte 

 

National brand 

LY Sales: 522 Profit: 52 

Depth: 9 Width: 19 

Height: 10 Min Stacks: 4 

Min Facing: 2 Max Facing: 4 

Cengent Bayer 

 

Non-national brand 

LY Sales: 299 Profit: 45 

Depth: 9 Width: 18 

Height: 11 Min Stacks: 4 

Min Facing: 2 Max Facing: 5 

Cengent Bayer 

Children 
 

Non-national brand 

LY Sales: 362 Profit: 52 

Depth: 11 Width: 19 

Height: 12 Min Stacks: 3 

Min Facing: 3 Max Facing: 6 

Aleve 

 

National brand 

LY Sales: 902 Profit: 83 

Depth: 12 Width: 13 

Height: 20 Min Stacks: 2 

Min Facing: 3 Max Facing: 6 

Rapid Sleep PM 

 

National brand 

LY Sales: 664 Profit: 59 

Depth: 10 Width: 20 

Height: 20 Min Stacks: 2 

Min Facing: 2 Max Facing: 7 

Tylenol Extra 

Package 

 

National brand 

LY Sales: 1025 Profit: 90 

 

Table 8 - Scenario: Items with attributes 

 

The following rules are to be applied to the scenario: 

• Items with high profitability are to be placed on upper shelves (vertical rule with 

priority=1). The profitability is computed by an external forecast engine which 

takes into consideration factors such as the item’s space elasticity, item 

replenishment cost and demand function. 
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• Items with high profitability are to be placed on upper shelves (vertical rule with 

priority=2). Profitability is also computed by the forecast engine and is dependent 

on the specified strategy (i.e. maximizing space utilization, maximizing profit …) 

• National-brand items must be on the left of non-national brand items (horizontal 

rule with priority=1). 

The first phase is to apply the vertical rules which will assign the items to their 

corresponding shelves. 

For each rule, we rank the items and multiply their position by the rule’s priority 

coefficient. We obtain the following table (sorted in descending order): 

 

Item  

 

Allocated Shelf 

 

Min. Facings 

2274727 45 1 2 

2274726 42 1 3 

2274714 38 1 3 

2274716 37 2 3 

2274720 33 2 3 

2274722 30 2 3 

2274713 27 3 2 

2274715 22 3 2 

2274723 22 3 2 

2274725 17 4 3 

2274719 14 4 2 

2274718 12 4 2 

2274721 11 4 2 

2274724 7 4 2 

2274717 3 4 1 

 

Table 9 - Scenario: Vertical allocation ranking 

It is to note that shelves are counted from top to down (i.e. shelf 1 is the top-most shelf) 

and priorities are counted in ascending order (priority=1 is the highest priority). 

We can deduce from the table that top items have a larger number of minimum horizontal 

facings than bottom items; this can be explained by the fact that the forecast engine, 
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which computes this value, assign more minimum facings to profitable items (the vertical 

rules specifies that best-selling items and items with high profitability are to be allocated 

from top to down). By proportionally assigning items to shelves (in a random order) and 

adding the minimum required number of horizontal facings, we obtain the following view 

of the resulting planogram: 

 

Figure 23 - Scenario: Planogram after vertical allocation 

The figure above shows the distribution of the items over the shelves, along with the 

minimum number of horizontal facings. The next step is to optimally fill the remaining 
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space (red arrow). To solve this problem, we map it to a Bounded Knapsack Problem 

(BKP) where the set of items is nothing but the items already allocated on the shelf 

(having a width w and a profit P), the knapsack of size W is the remaining space on the 

shelf (red arrow in the figure) and N copies of each item can be added to the Knapsack, 

where N = maximum number of horizontal facings – allocated number of horizontal 

facings for each of the items. 

 

Figure 24 - Scenario: Planogram after space maximization (BKP) 
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The last step in the auto-allocation process is to apply the horizontal rules which will re-

arrange the items on their relative shelf and to add the stacks (which must be less then the 

shelf’s height). By applying the same ranking methodology adopted for the vertical rules, 

we obtain the following final planogram: 

 

Figure 25 - Scenario: Final planogram 
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3.5.10 Wasted space 

In the real-life scenario above, we used the auto-allocation engine to fill a fixture 

consisting of 4 shelves, each of 200 cm width. Below is a table showing the percentage of 

unallocated space in each of the shelves: 

 

Shelf number Total Width (in cm) Unallocated space 

(in cm) 

Percentage of 

unallocated space 

1 200 5 2.5% 

2 200 0 0% 

3 200 3 1.5% 

4 200 5 2.5% 

 

Table 10 -Scenario: Wasted space 

Hence, the average percentage of unallocated space in the scenario is 6.5/4 = 1.625%, 

which is acceptable. Such wasted space can be filled by dividing it by the number of 

facings on the shelves and adding the resulting value to the minimum horizontal spacing 

between items. By applying this procedure, we obtain the following: 

Shelf number Total number of 

facings 

Unallocated space 

(in cm) 

Total horizontal 

space between items 

(in cm) 

1 10 5 1.5 

2 14 0 0 

3 13 3 1.23 

4 12 5 1.42 

 

Table 11 - Scenario: Adjustment of horizontal spacing 
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4 Architecture 

4.1 Global environment 

The figure below illustrates the global environment of the Cross-platform Automated 

Space Planning Engine for Retailers where the different external elements are shown as 

well as their interaction with the three modules which compose CASPER (AAE, ASE 

and ASPGE): 

 

Figure 26 - CASPER: global environment 
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The Automatic Store Plan Generation Engine (ASPGE), the initial module of CASPER, 

communicates with the Master Data Management application via corresponding web 

services to gather information related to fixture-groups, fixtures and shelves within the 

store. Web services, used for implementing the Service-Oriented Architecture (SOA) 

aspect of the our engine, allow interoperability between heterogeneous systems via cross-

platform messaging (i.e. XML). The information gathered by the web services is used by 

ASPGE to initialize the structures needed for automating the process. Moreover, ASPGE 

communicates with the POS system via another web service to read market basket 

transactions which will be used to compute the co-occurrence matrix by item department 

and item category. Finally, ASPGE calls web services exposed on the Category 

Management application in order to get the proportions assigned by the category manager 

for the item departments and categories. On the other hand, the Automatic Segmentation 

Engine (ASE) interacts with the Category Management application to read the objectives 

per category needed for the assortment process, with the Business Rule Repository to get 

item constraints and rules (i.e. indispensable items, complementary items…), with the 

POS system to gather item activity information (i.e. sales, net profit margin) and with the 

Master Data Management application to get the general item attributes as well as the 

item/category relationships. Finally, the Auto-Allocation Engine (AAE) initiates by using 

the results of the ASE, collecting corresponding item and shelf attributes from the Master 

Data Management application, reading computed item profitability from the Forecast 

Engine and allocating items on shelves based on the merchandising rules extracted from 

the Business Rule Repository. Moreover, communication between the external modules 

is ensured via the corresponding web services, mainly between the forecast engine and 

POS system to read transactional data and predict the different indicators (i.e. 

profitability, space elasticity, forecasted sales volume, and forecasted net profit margin). 

 

It is to note that the orchestration between the different services is managed via an event-

driven and standards-based messaging-engine, the Enterprise Service Bus (ESB) shown 

in the image below. ESB allows standardizing the service-oriented communication 

between the modules by eliminating the coupling between the invoked service and the 

transport medium. 
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Figure 27 - Enterprise Service Bus 

 

4.2 System context 

 
Figure 28 - CASPER: System context 
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4.3 CASPER Block Diagram 

 

Figure 29 - CASPER: Block diagram 

The figure above illustrates the internal architecture of CASPER using a block diagram 

representation. The different sub-modules of each engine are shown as well as their 

respective interaction routines: the “Category Initialization Routine” which passes the 

output of ASPGE to ASE, the “Assortment Initialization Routine” which passes the 

output of ASE to AAE and the “Spatial Data Initialization Routine” which passes the 
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output of AAE to the corresponding spatial visualization tool. It is to note that this tool is 

not part of the internal architecture of CASPER. 

4.4 Technical considerations 

The following technical aspects need to be satisfied by CASPER to ensure the cross-

platform nature of the proposed engine: 

• Service-Oriented Architecture (SOA): by implementing a “web service” layer to 

ensure interoperability with other heterogeneous systems. 

• Cross-platform programming language: satisfied by using Java programming 

language to implement the engine. 

• XML Data Source: Given that the input data is gathered from multiple external 

systems (i.e. Master Data Management, POS system, Business Rule Repository 

…) and output data is passed to other visualization systems, CASPER needs to 

store both its input and output in XML files, instead of using proprietary Database 

Management Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

5 Conclusions 
 

5.1 Main results 

The main results of this research are highlighted below: 

• Finding an automated process covering the complete retail space planning process 

starting from store plan management (using ASPGE), passing by product assortment 

(using ASE) and finishing by solving the product-to-shelf allocation problem (using 

AAE). 

• Providing a custom algorithm to generate the store plan based on results of the market 

basket analysis and the KPI provided by the category manager. 

• Adopting a special type of Artificial Neural Networks, the Self-Organizing Maps 

(SOM), to cluster the items of a given category based on multiple dimensions and 

using the results to select the optimal product assortment. 

• Providing a custom algorithm to allocate products on shelves by mapping the process 

to a Knapsack Problem, taking into consideration a dynamic set of merchandising 

rules (vertical and horizontal) as well as space constraints. 

• Suggesting an architecture for the proposed solution, knowing that the engine needs 

to interoperate with a multitude of external modules and applications. 

5.2 Main contributions 

Our proposed solution helps retailers to take advantage of the following capabilities: 

• Managing the complete space planning process using a unified solution, which 

maintains consistency and integrity throughout the whole process. 

• Saving resources (time and personnel) by automating this complex task especially 

when the retailer owns a large chain of stores. 

• Benefiting from the dynamicity of the engine which allows retailers to continuously 

manage and optimize space planning by simulating multiple scenarios which include 

different sets of rules and objectives. 
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• Locally controlling the whole process without needing to “wire” results between 

different modules (i.e. using a module to perform product assortment and manually 

inputting the results into another to generate the corresponding planogram). 

5.3 Performance results 

5.3.1 Introduction 

Multiple tests were applied on the different modules of CASPER using data from CVS 

Caremark. The actual names were changed for privacy concerns. Below is the hardware 

architecture of the testing environment: 

 
Figure 30 - Performance Tests: Hardware environment 

 

HP Integrity rx6600 Server 

Microprocessor: 4x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache 

Memory: 16 GB  

Internal storage devices: Hot-plug Serial Attached SCSI HDD drive, 146GB with RAID  

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i v3 

 

HP Integrity rx7640 Server 

Microprocessor: 8x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache 

Memory: 32 GB RAM 
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Internal storage devices: Hot-plug Ultra320 SCSI HDD drive, 300 GB with RAID 

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i v3 

 

HP Integrity rx2620 

Microprocessor: 2x Dual-core1.6 GHz Intel Itanium 2 processors with 18 MB L3 cache 

Memory: 4 GB RAM 

Internal storage devices: Any Internal storage capacity 

Operating system: RedHat Enterprise Linux 1 AS4 or HP-UX 11i 

 

As for the software implementation, the following platforms were used: 

• Application server: Apache Tomcat 6.0 

• Database server: Oracle 10g R2 

• Frontal server: Apache Frontal Server 2.2.4 

5.3.2 AAE 

The following scenario is applied to measure the performance of the auto-allocation 

engine: 8 cases with different number of items, different number of shelves and 8 

merchandising rules. The performance results are shown in the figure below: 

 

 

Table 12 - AAE Scenario 
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Figure 31 - AAE Scenario: Total processing time 

 

The largest scenario consisting of 900 items that need to be allocated on 12 shelves in 

respect to 8 merchandising rules is taking around 12 seconds which is acceptable, given 

the size of the underlying Bounded Knapsack Problem.  

5.3.3 ASE 

5.3.3.1 Scenario 1 

The first scenario of the auto-segmentation engine consisted of inputting 6 different 

categories in increasing order of size (number of items) as well as 4 variables (selling 

price, brand, supplier, size). It is to note that category with ID=6 is the largest category 

for the studied retailer, consisting of 1241 items. The total processing time is shown in 

figure below: 

 

Table 13 - ASE Scenario 1: Different category size 
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Figure 32 - ASE Scenario 1: Total processing time 

 

The chart above shows that the auto-segmentation engine processed the largest category 

in less than 7 seconds which is a considerable improvement compared to the days spent 

in performing the same process manually. As for the quality of the obtained clusters (i.e. 

segments), no overlapping is noticed. It is to note that, for most retailers, the average 

number of items per category is around 300 items, which can be processed by the auto-

segmentation engine in less than a second. 

 

 

Table 14 - ASE Scenario 2: Different number of variables 
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Figure 33- ASE Scenario 2: Total processing time 

 

Based on the results illustrated in the chart above, we can deduce that the performance of 

the auto-segmentation engine is linearly affected by the number of variables and hence 

doesn’t yield to considerable performance bottlenecks.  

5.3.3.2 Scenario 2 

The second scenario of the auto-segmentation engine consisted of inputting the largest 

category (1241) and different number of variables (starting progressively from 2 to 10). 

The total processing time is shown in figure below: 

5.4 Factor table 

Factor Quality scenario Future work Impact on 

stakeholders 

Automation - Eliminating all aspects of 

user intervention except 

the definition of the master 

data and strategy 

objectives. 

- Automating the 

store expansion 

process by 

implementing a data 

mining algorithm 

which interacts with 

real-time Web 

services related to 

geographic / 

demographic data. 

- Saving time and 

resources. 

 

Completeness -  Automating the whole 

space planning process by 

generating the store plan 

- Handling 

additional (i.e. 

special) aspects of 

- Enforcing 

consistency of rules 

and strategy 
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(allocating categories to 

fixtures), selecting the 

optimal items from each 

category and allocating the 

resulting items on the 

corresponding shelves. 

the space planning 

process (ex: 

expansion 

management – 

consumer 

clustering, …) 

objectives 

throughout the 

whole process. 

Dynamicity -  Generating a store plan 

based on the results of the 

market basket analysis 

(which varies from period 

to period). 

 

-  Performing the 

assortment process based 

on a dynamic number of 

variables. 

 

- Allocating assorted items 

on the corresponding 

shelves with respect to a 

set of dynamic 

merchandising rules. 

- Extending the 

dynamicity of 

ASPGE to generate 

the store plan 

assuming that the 

store is empty (no 

fixed assets) 

- Having the ability 

to re-manage the 

space planning 

process under 

varying factors and 

circumstances (i.e. 

seasonality, 

economic / 

demographic 

factors, etc…) 

Accuracy / 

Performance 

-  Checking the accuracy of 

the clusters obtained by 

ASE 

 

-  Measuring the wasted 

space on the shelves after 

allocating items using 

AAE. 

 

- Measuring  the 

processing time of the 

different automated 

procedures. 

 

- Tuning the 

performance of the 

different modules 

and applying 

additional 

approaches and 

methodologies. 

- Obtaining optimal 

(or near-optimal) 

results while saving 

time and labor. 

 

5.5 Future work 

The functionalities of CASPER will be extended in future work to provide the following 

functionalities: 

• Tuning the performance of CASPER and optimizing the resource-consuming 

algorithms and routines. Given the large-sized retailers targeted by CASPER, load 
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tests need to applied to the engine to identify possible bottlenecks and performance 

issues. 

 

Figure 34 - Future work: consumer trajectory example 

 

• Upgrading the Automatic Store Plan Generation Engine (ASPGE) to process the 

“consumer behavior” within the store by analyzing the underlying geographical 

trajectory within the store. Such data can be gathered by implementing RF-ID 

technology on the shopping carts, hence tracking the movement of the different 

consumers. Per example (figure above), it will be possible to know how consumers 

(red spots) move from zone to zone, from fixture to fixture and how much time did 

they spend at each. This information can extend the scope of ASPGE to optimize 
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spatial distribution in the store, which affects the consumer satisfaction and enhances 

the overall profitability. 

• Implementing a new module entitled the “Automatic Expansion Advisor” (AEA), 

which helps retailers to optimally manage their expansions. In other words, AEA 

analyzes spatial and demographic information of different locations and automatically 

suggests optimal emplacements for building new stores, based on pre-defined 

strategies and objectives. Moreover, AEA generates from scratch the most suitable 

architecture of the newly opened store to ensure enhanced spatial utilization, 

increased profitability and maximum consumer satisfaction (i.e. shape and size of 

store, distribution of fixtures, functional store structure…). 
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Appendix A: 

Item # Item 
Code 

Sales Net 
Profit 
Margin 

Is 
Indispensable 

Efficiency 

1 2274673 528 72 0 0.82 

2 2274674 413 35 0 0.42 

3 2274675 505 40 0 0.31 

4 2274676 621 34 0 0.37 

5 2274677 98 54 0 0.3 

6 2274678 158 30 0 0.4 

7 2274679 387 50 0 0.13 

8 2274680 352 15 0 0.56 

9 2274681 401 9 0 0.22 

10 2274682 831 64 0 0.78 

11 2274683 258 60 0 0.73 

12 2274684 364 40 0 0.78 

13 2274685 88 49 0 0.43 

14 2274686 12 68 0 0.44 

15 2274687 532 21 0 0.44 

16 2274688 301 28 0 0.53 

17 2274689 189 17 0 0.27 

18 2274690 421 38 0 0.46 

19 2274691 497 70 1 0.52 

20 2274692 502 25 0 0.45 

21 2274693 234 18 0 0.82 

22 2274694 567 12 0 0.75 

23 2274695 531 8 0 0.34 

24 2274696 314 27 0 0.78 

25 2274697 419 33 0 0.04 

26 2274698 285 21 0 0.04 

27 2274699 711 84 0 0.43 

28 2274700 102 41 0 0.99 

29 2274701 94 30 0 0.23 

30 2274702 260 28 0 0.42 

31 2274703 397 6 0 0.88 

32 2274704 112 53 0 0.91 

33 2274705 243 91 0 0.72 

34 2274706 329 14 0 0.96 

35 2274707 148 12 0 0.89 

36 2274708 259 31 0 0.53 

37 2274709 352 84 0 0.55 

38 2274710 415 81 1 0.08 

39 2274711 198 82 0 0.23 

40 2274712 89 54 0 0.38 

41 2274713 76 42 0 0.76 

42 2274714 702 62 0 0.59 

43 2274715 290 47 0 0 
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44 2274716 139 26 0 0.7 

45 2274717 428 30 0 0.79 

46 2274718 411 55 0 0.18 

47 2274719 323 93 0 0.07 

48 2274720 184 19 0 0.5 

49 2274721 254 45 0 0.02 

50 2274722 690 61 0 0.62 

51 2274723 522 65 0 0.1 

52 2274724 69 32 0 0.87 

53 2274725 102 41 0 0.85 

54 2274726 680 5 0 0.61 

55 2274727 74 72 0 0.08 

56 2274728 299 79 1 0.68 

57 2274729 309 41 0 0.42 

58 2274730 64 59 0 0.81 

59 2274731 70 12 0 0.13 

60 2274732 362 75 1 0.29 

61 2274733 41 63 0 0.93 

62 2274734 12 71 0 0.77 

63 2274735 902 59 0 0.81 

64 2274736 185 41 0 0.62 

65 2274737 369 22 0 0.92 

66 2274738 157 29 0 0.36 

67 2274739 165 34 0 0.26 

68 2274740 1025 62 0 0.78 

 

 


