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Abstract

The prediction of crystal size distribution from a continuous crystallizer at

steady state is important for the simulation, operation and design of crys-

tallizers. In this research, we consider integrodifferential population balance

equations (PBE) describing the crystal size distribution for a crystallizer

with random growth dispersion and particle agglomeration. We first de-

velop numerical schemes to solve the initial value problem after we establish

the well-posedeness of this problem. We then test the performance of these

schemes on examples with known solutions. The numerical results from the

first scheme we offer are in excellent agreement with the analytical solutions.

However, the other variations we examined appear to be inferior. We then

examine the analytical solution of the physical model and study its conver-

gence., positivity and monotonicity under certain conditions.

We then address the problem of parameter identification in the constant pa-

rameters case. The nature of the equation is that the solutions are oscillatory

for certain ranges of the parameters that are of interest. In order to carry

out the identification of parameters that would be physically meaningful, we

are required to solve a boundary value problem coupled with an optimization

procedure. We solve the BVP by the shooting method employing our nu-

rnerical scheme for the IVP. We then couple it with the Marquadt-Levenberg

algorithm to obtain optimal estimates for the parameters. We found out that

the shooting method is rather sensitive to the initial guesses. To ensure the

speedy convergence of the optimization, it is well known that "good" initial

guesses are necessary. For this purpose, we derive the moments of the PB
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and use them to obtain good initial estimates. Our algorithm performed

well when applied on a made-up example, and to the physical problem for

small parameter values. For large parameter values, or for larger domains

of the independent variable, obtaining physically meaningful results was not

possible due to the oscillating nature of the solution. This suggests that the

implementation of a more refined shooting method is necessary.



Chapter 1. Introduction

This research has two main goals: first, the development of a numerical

method to solve the PB model Eq.(1.50); then to utilize this numerical

method to estimate the parameters (crystallization kinetics) for the model

given by Eq. (1.60). In the first part, we develop, analyze, and test a new

numerical method to solve Eq.(1.50) which is a variation of the predictor-

corrector method of Khanh [K]. The second part, is devoted to the devel-

opment and implementation of an optimization algorithm that combines a

shooting algorithm and an optimization routine that utilizes the numerical

scheme developed earlier to generate optimal parameter values.

1.1. Background

Crystallization is a major separation and purification process used by the

chemical industry. It is utilized in the production of many commercial

commodities such as salts, sugar, fertilizers, pharmaceuticals; and for the

production of many important intermediate chemicals such as adipic acid,

terephthalic acid, and alumina. The crystallization process consists mainly

of nucleation (crystal birth) and crystal growth, and most often it is carried

out from solution. One of the main objectives in modeling crystallizers is to

describe the crystal size distribution (CSD). It is well known that the use

of empirical statistical distribution may have parameters that may not be

necessarily related to the factors influencing the process environment that

produced the particle distribution. The population balance (PB) approach

provides an excellent theoretical framework for the modeling and simula-

tion of crystallizers. The PBE forms the model that relates the CSD to
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the operating variable in the crystallizer. It also can account for all sorts

of "growth" phenomena such as agglomeration and growth rate dispersion

(among others). Agglomeration is another process by which the size of parti-

cles is enlarged whereby particles aggregate and get cemented to form larger

particles. The growth rate dispersion (GRD) phenomenon was recognized

in 1969 by White and Wright [WW] in their study of the crystallization of

sucrose. They have shown that crystals of the same size in the same con-

stant environment grow at different rates. When particle agglomeration and

growth rate dispersion are included into the PB model, and when only one

characteristic size of the particles is of interest, the macroscopic population

balance equation reduces to an integrodifferential equation (see Eq. (1.50)),

whose solution is the particle density function. Furthermore, it is also very

important to be able to reduce experimental data from laboratory or pilot

plants, and to extract the process kinetics that are built into the population

balance model and which are essential for the accurate simulation, design

and the scale-up of crystallization processes.

1.2. Mathematical Models

In this section, we introduce the background and the development of our

mathematical model. We consider an ensemble of large crystal population

in suspension. This is needed to be able to represent the distribution in a

continuous fashion (continuous particle size). This also justifies the use of a

deterministic (versus a stochastic) approach to derive the population balance

as a conservation equation for the number of particles in a population. The

development of the population balance for crystallizers was initiated in the
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early sixties by A. D. Randolph and M. A. Larson [RL], and by H. M. Hulburt

and S. Katz [HK] in view of Boltzmann's equation in statistical mechanics

and Smoulchowski 's coagulation equation.

Consider a region R of the particle phase space, which is typically taken to

have 3 spatial dimensions (external coordinates) and m independent internal

property coordinates. At any time t, define the (m + 3) dimensional crystal

distribution function n(R, t) over R. The number of particles existing at

any time t in a small incremental region of crystal phase space dR, can be

represented by

dN = ndR,

while the total number of particles present in a finite subregion R1 is

N(R1) = fR 1 
ndR.

A PB for an ensemble of crystals in R1 can be written from the Lagrangian

perspective as

Accumulation = Net generation + (Input - Output)

dl

	 fR
ndR = (B - D)dR + zero,

itt JR1	 1

where B and D represent birth and death density functions at a point in the

phase space and (B - D)dR is the net appearance rate of crystals.

Using Leibnitz's rule, then the left-hand side may be written as (a volume

integral + a surface integral), and using the Divergence theorem, we get

ndR=
/dx\

	

f15n

	

/	 JR1dtJR1
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where x is the set of internal properties and external spatial coordinates

comprising the phase space R.

Using the definition of crystal phase space velocity

dx
= V = V + V,

dt

where v is written as the sum of external velocities (cartesian components

of the fluid velocities) and the internal velocities (like particle growth rate),

the PBE from the Lagrangian viewpoint over R1 becomes

f[+v.(vn)+v.(vn)+D_B]dR=o.

Since the R1 was arbitrary, the integrand must vanish identically, and so we

have the microscopic PB

On
+V.(vn)+V.(vn)+D— B = 0.

Ot

This equation along with the momentum, mass and energy balances, ap-

propriate kinetic models for rate processes, and the boundary conditions

describe completely multidimensional crystal distributions. These equations

are rather difficult to solve in distributed form.

In many problems, the suspension can be considered to be well mixed thus

allowing us to ignore spatial variation and only worry about the internal

ru



phase space. Therefore, the PBE can be averaged over the external coor-

dinates (it remains distributed in internal coordinates) to get the so called

macroscopic PB

On 3Cm	 E ____

3

where y represents the particle size coordinate (we do assume that size coor-

dinate is sufficient for describing the crystal),

C is the overall growth rate of the crystals (= dt ),

m is the population density function,

V is the crystallizer volume,

Q3 is the volumetric flow rate of the jth stream,

B and D are the birth and death rate functions (now assumed also indepen-

dent of external coordinates), respectively.

As mentioned in the introduction, in certain systems (e.g., sucrose crystal-

lization), growth rate dispersion has been observed. That is, it has been

shown that crystals of the same size in the same constant environment grow

at different rates. To account for the stochastic fluctuations in the growth

rate of crystal faces, Melikov et al. [M] suggested the use of the generalized

Fokker-Planck equation. Randolph and White [RW], by analogy with axial

dispersion in columns and reactors, considered the modeling of size dispersion

by adding to the conventional convective flux vector effective diffusivities rep-

resenting flow and growth fluctuations, and proposed the following modified

deterministic macro-distributed population balance
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an 3(C(y)n)	
3 (log 

V) =	
+ B - D + DG,	 (1.10)

at	 ay	 at

where DG is the growth rate diffusivity, which we assume herein that it is

independent of y. In the Fokker-Planck equation DG represents the random

noise added to the growth process of each particle.

Now to account for particle agglomeration, Hulburt and Katz [HK], using a

statistical mechanical approach, and in view of Smoluchowski's coagulation

equation, introduced the following forms for the birth and death functions

(considering only binary collisional agglomeration - a diluteness assump-

tion).

COP

B(y) = f n(y - 6)n(E)de, and D(y) = J	 n(y)n(E)de.
0

The function 3 is called the agglomeration kernel and represents the fre-

quency of collisions between particles of size y - E and of size E to produce

a particle of size y. The factor 1 ensures that the collisions are not counted

twice.

For a self-seeding continuous crystallizer at steady state, equation (1.10)

becomes

- Dcn"(y) + (C(y)n(y))' + n(y)	 (1.20)

= 10 00 (y - 6, E)n(y)n(6)dE - f (y , e)n(y -
 2
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where T := V/Q is the residence time.

Now, we first integrate equation (1.20) from 0 to oc, then we integrate by

parts on the left-hand side and change the order of integration on the right-

hand side. We assume G such that G(y)(n(y)) -f 0 as y -p oo (this is a state-

ment about the asymptotic decay rate of C relative to n), and we also make

use of the physically justifiable assumptions lim y.,), n(y) = 0, limy,,,,) ri'(y) =

0. Moreover, we assume that ,i3(y - 6,6) can be expressed in the separable

multiplicative form 'y (y - 6)'y(e) where is an integrable function on [0, oc).

Finally, let NT := 0 	 and N := 0 	 Then, (1.20) be-

comes

- DGm (Y) + G(y)n'(y) + ( + C'(y) + N(y))n(y)	 (1.30)

= J (y, 6)n(y 
-2 

where N = V2 (C(0)n(0) - DGn'(0 ) - ), with the restriction that N is

a well defined real number.

Now let A(y) = G() ds and n(y) = ev(y). Then equation (1.30) can be
DG

written as

—Dcv"(y)+( 1 C'(y)—+	 +N'y(y))v(y)	 (1.40)
T	 2

= fy

	
- E)7(E)V(y)V(S)dE.

2
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Analytical solutions for special cases of equation (1.40) under appropriate

boundary conditions were given in Saleeby and Lee [SL]. However, in general,

one must solve equation (1.40) numerically. In Chapter 2, we will assume

that we have a complete set of boundary conditions; that is, n and n' are

given at the hypothetical zero particle size y = 0. This leads us to consider

the following more general problem

f"(x) = —a(x)f(x) + f 13(x, E)f(x - 6)f(s)de + k(x),

f(0) = fo, f'(0) =	 x  [0,L]
	

(1.50)

where f is the dimensionless density function, L is an arbitrary positive

number, a, and k are continuous functions, and fo, f are constants.

Observe that (1.40) is not as general as (1.50), nevertheless it is still a suffi-

ciently general special case that is still possible to carry out non-dimensionlization.

Moreover, in Chapter 2, we will examine the well-posedness of this initial

value problem, present a numerical method to solve it, and study the perfor-

mance of variations of this method.

Motivated by the identification of crystallization kinetics for a basic steady

state process, we will be interested in the special case of equation (1.10)

where G and 3 are assumed to be constant. Towards this end, let x =

1(x) =	 ) = n0 GKr2 and Pe G(Gi-) Then (1.10) reduces to
no DG

f"(x) - Pef'(x) - Pef(x) = 2Pef(x) f f(e)dE - APe f f(x -

(1.60)
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It turns out that, in the physical problem, we do end up with incomplete

initial (or boundary) data to describe the nucleation process. Nucleation is

well known to be difficult to characterize - especially in this instance.

Two common types of boundary conditions that have typically been consid-

ered are

(1)f(0) --	 - 1 andPe -

(2)f(0) = 1, f'(0) = f where f is an unknown constant.

Using the asymptotic conditions lim 	 f(x) = 0,	 f'(y)	 0, type

(1) boundary conditions and the transformation f(x) = e() Xg(x) , (1.60)

can be written as

X

g" (x) + vg (x) = JO g(x - 6)g(6)d,
where ii = - L- - Pe/1 + 4), and p = — \Pe.

While using type (2) boundary conditions (1.60) can be written as

Xg"(x) + g(x) = A L g(x -
where I = -	 - Pe/1 + 4'(0, and i = — ) Pe.Pe

Note that equations (1.70) and (1.80) are special cases of (1.50).

(1.70)

(1.80)

For the rest of this investigation, we will limit ourselves to the study of

the problem with type (2) boundary conditions. Similar analysis can be

conducted for the other problem.



1.3. Outline

In Chapter Two, we will consider the initial value problem. We start by

establishing its well-posedness, then develop a numerical scheme to solve it.

To examine the performance of our method, we run tests on some examples

and compare the results with those given by other methods and with the

available analytical solutions.

In Chapter Three, we examine a boundary value problem that arises from

the analysis of a crystallization operation. We present the analytical solu-

tion of this BVP and study some of its properties before solving this BVP

numerically using the shooting method. The moments equations of the PB

are then derived and solved in order to determine initial approximations for

the parameters in the parameter estimation problem addressed in the last

section.

10



Chapter 2. Solution of the IVP

There are a number of different numerical schemes in the literature to solve

integral and integrodifferential equations (see [B], [DM]). Khanh [K] devel-

oped a predictor-corrector method to solve first order integral and integro-

differential equations that arose in the study of turbulent diffusion. In [ES],

the method of Khanh was extended to the IVP given by Eq.(1.50). In this

chapter, we develop different variations of the method of Khanh to solve nu-

merically our second order model represented by Eq.(1.50), which also allow

us to test the performance of another quadrature rule. We then apply these

methods to also solve (1.60) and compare the results with the analytical solu-

tion given in [SL]. This comparison motivates us to consider the solution of a

boundary value problem (BVP) whose solution will be addressed in Chapter

3.

2.1. Solution of the General IVP

In this section, we will develop a numerical method that allow us to examine

and compare the performance of the use of the Hermite quadrature with the

use of the Euler-Macluarin quadrature to solve IVP (2.10) given by

f"(x) = —a(x)f(x) + 
fX 

3 (x, E)f(x - E)f(E)d + 	 (2.10(a))

f(0) = fo,f'(0) = f
	

X G [0,L]
	

(2.10(b))
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2.1.1. Well- Posedness

Before trying to solve problem (2.10) numerically, one should make sure that

this problem has a unique solution on the interval of interest, and determine

whether this solution is continuously dependent on the initial conditions or

not. In other words, it is essential to establish the well-posedeness of this

initial-value problem. As we mentioned above, one of our major objectives

in this research is to use (1.60) for parameter estimation. We also noted

that (1.60) is a special case of (2.10(a)), and that it describes a model of a

physical problem in which the initial conditions are often measured quantities

or inferred from related measured variables. Therefore, it is very desirable

that any errors made in the measurements do not influence the solution very

much. Continuous dependence of the solution on initial conditions will give

the reassurance that these small errors produce a small error in the solution.

Theorem 2.1. Suppose that a and k are continuous functions on [0, L],

and that 3 is continuous function on the set {(x, ) : 0 e x L}. Then

(2.11) is well-posed.

The following theorem proved in [ES] will be used to establish the well-

posedness of our IVP.

Theorem 2.2. Suppose that a and k are continuous functions on [0, L], and

that I is continuous function on the set {(x, E) : 0 < s x L}. Then

(2.10) has a unique solution f e C2 ([0, L]) for any given constants fo and

f.

Before we give the proof of Theorem 2. 1, we state the following result due to

12



E. Young (see [Y], Eq.(12)) where he established a sharp bound for solutions

of an integral inequality of the Gronwall-Beliman type. The bound which

is the exact solution of the corresponding integral equation was obtained by

reducing the equation to a system of differential equations.

Theorem 2.3. Let u be a non-negative continuous function satisfying

	

u(x) b + a0	 uds + a0a1 r is udtds + a0a1a2 fo x fo ,9 f udrdtds,

where b, a0 , a1 and a2 are positive constants, then

	

u(x) <b.[	
a1	 a2ea0X	 a0a1 exp(a0 + a1 + a2)x)

a + a1 + a2 + a1 + a2 + ( + a2 )(ao + a1 + a2)

Proof of Theorem 2.1. First, by an exponential transformation, we observe

that (2.14) can be considered as a special case of (2.10). Thus, Theorem

2.2 gives us the existence and uniqueness of the solution of (2.14) on [0, L].

However, the proof of uniqueness in theorem 2 given in [ES] is rather tedious.

We start by giving an alternative simpler proof of the uniqueness of the

solution before proving that this solution is continuously dependent on the

initial data.

Uniqueness.

Let E" := C2 ([0, L]) be the space of real-valued functions with continuous

second derivative on [0, L] and let u and v e E" be two solutions of the IVP

13



(2.10), w(x) = u(x) — v(x), and z(x, ) = 3(x, x—E)u(x—s)+/3(x, E)v(x—E).

Then for all x in [0, U] we obtain that

w'(x) = - f a(e)w()dE + f 

I 
z(t, 6)w(E)dEdt,	 (2.11)

w(0)=0,	 xE[0,L].

Integrating (2.11) from 0 to x, we have

= - I f a()w()ddt +111 z(s, E)w(E)dEdsdt, 	 (2.12)

00	 000

Let M = SUP0<e<L w(e) ,A = SUPO<€<L a (E )! ,N = SUpo<s,<L z(s,,

then

w(x) 
<AMif 

dEdt + NM	 dEdsdt.

00	 000

	=AM— + NM_	 (2.13)

=(3A+xN)x2.

Substituting (2.13) in the right-hand side of (2.12), we obtain

xi	 x t

<A2M/IdEdt+ANMI/dEdt

+ ANM f f f j-dEdsdt + N2M f f f -dedsdt

000	 000

= A2M + 2ANM + N2M

= (30A2 + 12ANx + x2N2)x4.

14



Repeating again, we get

w(x)i <AM + 3A2NM + 3AN2M +

-M (504A 3 + 216A 2 Nx + 27AN2x2 + N3x3)z6.

In general we have,

w(x)i < Mx2flK2fl
- (3m)!	

'	 m=1,2,3,...

where K = max(1,A,N,L).

Letting m -i oc, we have that w(x) - 0 on [0, L] implying that u(x) = v(x),

and therefore, the solution is unique.

Continuous dependence on initial data.

To complete the proof of Theorem 2. 1, all is needed now is to show the

continuous dependence of the solution of (2.14) on the initial conditions.

Consider R, the set of real numbers with metric p(u, v) = iu - v i, and

C([0, U) the space of continuous functions on [0, U] with metric p(f(x), g(x)) =

max<<L if (x) - g(x).

Let T: R - C([0, L]) be defined by T(mo, m) = q where 0 is the solution of

1	 1
Dm"(y) - C(y)n'(y) - (- 	 2 Jo

Y + G'(y) + Ny(y))m(y) =-13(y - e)m(y -

(2.14)

m(0) = no, n'(0) =n'0.

We show that T is a continuous mapping.

15



Rewrite (2.14) as

Y)1 - 
1
y( 

1 
+ Ny(y))n(y)	 (2.15)

1= - 
fo

3 (y - , 6)7l(y -
G

Integrate (2.15) from 0 to y, we have

n'(y) - n - —[C(y)n(y) - C(0)n(0)]
DG

1 f	 N7

IY 'y(s)n(.$)ds	 (2.16)
DGTJO 

n(s)ds—

= - 1 fo fo
(t - 6, e ) n (t - E)n(6)dEdt.

G 

Now integrate (2.16) from 0 to y, we obtain

1
n(y) - no - n

	

	
G(0)n(0)

y - - j G(s)n(s)ds +
DG

1 1yt	 Nf-	
J J n(s)dsdt - -

	
I"y(s)n(s)dsdt

GT	 Go 

=	 1 

f f f
Ns  — 6, e)ri(s - 6)n(6)dedsdt.

Let 6 > 0. Let	 = T(r, t) and 0 = T(i7, ji) where Jq - ij	 51 and

- An  <2 (the subscript n is a fixed label).

Choose 8	 and 62 <I ___________
DC +	 2DG,J

where c is a number between /2 (G(0)ij - DGL - 2) and /2 (G(0)i7 - DGPTh -

Let S = /2 (G(0)ii - DGILL -	 , S	 J2 (G(0)i7 - DGILL -	 and

H =koIj + k'L) and also let

16



1 
+	

112J1L

M = MG	
h

1

	+ 
2D (ikoJJ + IIJ)e DG

DG DG 	 DG

11 G M00 1 11
D 157- --L+VyLS]exp [ DG

[ 1 11
[	 L + jy	 S] + H] r 2i[	 r ii

L DG +L+IlS]+H]

Then

ço(y) —b(y) - (r	
1

—ij) - (i—)—	 I' G(s)((p (y) —(y))ds
DG

G(0)	 1 ly J' (^p(y) - (y))dsdt	 (2.17)+ 
DG - - DQY

1-	 1 I {S(s) - S(s)] (s)dsdt
GJO 0

1
ff f (s -	 -	 -	 - E))]dEdsdt.

17



Note that

So(s) - S(s) = S (y(s) - (s)) + [S - Sn] '(s)

= S (p(s) - (s)) +	 G(0)( - n) -	 - n) (s),

(by the Mean Value Theorem), and that

ço(s—E)ço(E) —'/(s—E)'(6) = (s—E)(p(E) —'(s))+b(E)(p(s—E) —(s—E)).

Then,

fy ft fs
I I I 113(s - E, 6) [(s - -- ) W(E) - i,b(s - 6)(s)] dEdsdt
Jo Jo Jo

cx Pt	 S

(s-6,(s—E)()—))dEdsdt
Jo Jo Jo
cx Pt	 S

+ / I I /3(s - e, e)) [(s - s) - (s - )] d6dsdt,
Jo Jo Jo

substituting v = s - rn the second integral of the right hand side, we get

JO
x
 J t 10 ,5 [(s - 6)o(s) - J(s - E)(s)}

y(s —6) [y() -	 )]

+
 ff

' f3(v,,9 - v)(s - v) [(v) - (v)] dvdsdt,

18



From (2.17) , we have

Ii+[I	 G(0)L +
DG ^	 I

I s)— (s) ds + 1 fy j'I^o(s)- V) (s)Idsdt
D 	 DGY

r
+	 2 (c(o) - DG -

	 )]
y 
]t

	
- (s)I dsdt

DG 0 0

•	 [C(0) In -	 + DG JA - n] 
L2

+HI J ' j s

x

0

which gives

[In - j +
(y)	

G(0)L +	 L2 I 1

ko (y) -	 <	
DG,J

 I
+	 - ,	 [t11111	 + i]	 j

1GM

+ Df	
(s)ds	 (2.18)

1   • + - 1
DGT 

+HI ff
x	 t	 S

0	 00

where 111I100 = maxO<<<L 3(x,e)andMh	 = maxO<<L h(x) jforh

Let u(x) = o(x) - (x), then (2.18) gives
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G(0)L + 	 R1' 	 L200G (0)+
Dc	 DG/	 21

+_l [Ll+ + IIGL ly u(s)ds
 Dc 

	

1	 1	 1	 y rt

+	 +	 sjJ J u(s)dsdt
DG T

+Hfox 
I

t 
 

S JO JO

Applying Theorem 2.3 with

b = -	 1 + G(0)L +
	 + [t -	 + 1],nI[	 2/DG

a0 =	 a1 = -[ +ll'yll©S] ,and a2 = H, we obtain
DG	 DG

u(x) bM,

which is equivalent to

IJIllllI	 L2

	

I	 DG	 DG/	 2

+l-1 I'"+1I M
2

VyE[O,L].

Since T (17, p) (y) - T (,q, p) (y) is a continuous function of y, the maximum

on the left hand side occurs on [0, L], so

p(T(17jL) ,T(17j)) <E,

Pic



and hence T is a continuous mapping. This completes the proof.

This result gives the continuous dependence of the solution of the IVP on

initial conditions, or in other words, that the solution is a continuous function

of the initial conditions.

2.1.2. Numerical Method

Using the result of Theorem 2.2, it is straight forward to obtain the neces-

sary degree of smoothness of f that we will need in developing high-order

numerical methods. We have

Theorem 2.4. If a (x) , k (x) E Ctm ([0, L])0 < j < i < m,-

are continuous for 0	 x	 L, then (2.10) possesses a solution f E
Cm+l([0,L]).

As we will see in Section 2.1.3, when estimating the discretization error,

Theorem 2.4 allows us to replace f E Cm+ l ([0, L]) by the Lipschitz continuity

of the mt derivative on [0, L]. This simply follows by applying the Mean

Value Theorem.

Take a uniform partition of the interval [0, L]

0 = XO < X1 < <X < <X_i < XN = L,

h:= Xn - Xnl = , 1 <ii < N.

Consider a point x 7 , and evaluate the equation in (2.10(a)) at x, we obtain

	

f"(x) = —a(x)f(x) + f	 )f(x - e)f()dE + k(x).	 (2.21)
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Integrate (2.21) between 0 and x, we obtain

Xn	 Xn t

f (x) = f _fa(s)f(s)ds+ff(t6)f(t_6)f(E)dedt+fk(s)ds.

(2.22)

Integrate (2.22) between 0 and x, we obtain

Xn t

f (x) = fo + fx - 

/ f  /
a (s) f (s) dsdt	 (2.23)

IJJ(s,E)f(s_6)f(E)dEdSdt+J)+	 k(s)dsdt.

000	 00

Differentiate (2.10(a)) and evaluate at x, we obtain

f (3) (x) = a' (x) f (x) - a (x) f' (x) + k' (x)

• 13(X. , x) f (0) f (x)	 (2.24)

•
 J

Xn

O 
[0'(Xn €)f(xTh - E)f(E) +	 €)f'(x -

Now we use quadrature rules to replace the integrals in equations (2.21),

(2.22) ,(2.23) and (2.24).

Let g(s) = a(s)f(s).

Set Oo () = 0 (x, 6) f (x - e) f (6),

0i (6) = (xi , 6) f (x -6) f (6), 1 <i < n - 1,

(6) =	 (/3 (x, s) f (x —6)f	 X=Xn

& (6) =	 (0 (x, 6) f (x -6) f (e))= 1	 —1.ax

In equations (2.21) (2.22) (2.23) and (2.24), replace the outer integrals by

the Euler-Maclaurin formula [B, p. 113]
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Xr

XO

(x) dx = h	 (Xe) + 0 (x i ) +	 +(Xri) +	 (Xr)]	 (2.25)

h2

 [0 ' (xr)(xo)] +0(h4).

Then the inner integral by the Hermite formula [K, Eq. (1.10), p.306]

Xn	 n	 Xj	 n q

f0 (x)dx 
=

(x)dx =
0 i=1	 il	 i=1 j=1

(2.26)

r	 '2
with the maximal error given by	 LL!!II	 _ [__ I q! I (

	
(2q)	 being theIIoo 2q+1	 3Tj

supremum of 	 where the coefficients are expressed recursively as

Ci,q =	
-

q -	 1 < j < q - 1, and q is assumed to have(2q—j)(j+1) 	 -

continuous derivatives up to order q.

Taking q = 4, let

Q (i, ) h ( (x) + (xi)) + h2 ((' (x) - ' (xi))

84	 ( 
1/ 

(x_ 1 ) + " (xi )) + 1h4 (((3) (x_1) - (3) (xi)),

and taking q = 3, let

Qi (i, () = h (( (x) + ((xi)) + h2 ((' (x) - C (xi))
+-h3 ((" (x_ 1 ) + (' (xi)),120

23



Equation (2.23) becomes

2
f (x) = fo + fx + h [g(x) -g(0)} -	 {k(x) - k(0)]

12	 12

+	 [13 (Xn, Xn)f(0)f(Xn) —(O,O)f(0)2J

h	 I —Q(i,g) +Q(i,k)+ Q(i,o) - 9Qi (i,1)Xi) 1 	 (2.27)
+	 L[i=i	 6 

n-i i
+ h	 [_Q (j, g) + Q (j, k) + hQ(j, Oi) - Qi (j, 010]

i=i j=1
n-i i-i j

+h2>>Q(k,q5oj).
i=2 j=i k=i

Similarly equation (2.22) becomes

f' (x) = f +
	

Q (i, k) -
	

Q (i, g)	 (2.28)

i=1 j=i	 i=i

-	 [(XnXn)f(0)f(Xn)12

equation (2.21) with q = 4 in the Hermite formula becomes

n
f"(n) = —a(x)f(x) + k(x) +	 Q (i,	 (2.29)

i=1

and equation (2.24) with q = 3 in the Hermite formula becomes
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f//I (x) = —a' (x) f (x) - a (x) f (x ) + k' (x)	 (2.30)

+(x,x)f(0)f(xTh) +Qi (i,1).

Now, the non-linear system of equations (2.27) to (2.30) can be solved nu-

merically to find the unknowns f (x,,),f' (x),f" (x),f'" (x), 1 < n < N.

Note that we have suppressed the error terms in writing out equations (2.27)

to (2.30), and that we have kept the same functional notation for the ap-

proximation.

2.1.3. Convergence Analysis

Let fn	 f (x,), f	 f1 (x), f' f" (x), f'	 f" (x) be the solution of

the system of equations (2.27),(2.28),(2.29) and (2.30), and for 0 < i < n,

let j = f (xi) - f,	 = f' (xi ) - f	 =// (x i) - f', E = f" (xi) -

Obviously, sí = 0,	 = 0,	 0, and '" = 0.

In this section, we show, under the regularity conditions mentioned in Section

2.1.2 above, that the global error tends to zero as we refine the discretization,

and that the speed of convergence is fourth order. First observe that equation

(2.23) can be considered as a special case of the more general equation

f(x) =fo+f.xn+ffC(s,f(s))ds+fffK(tsf(s))dsdt

where G(s,f(s))=k(s)—c(s)f(s) and K(t,s,f(s))=/(t,$)f(t—s)f(s).
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Let

QG (i) = [G(x 1 , f(x)) + G(x, f(x))]

+ 3h2
[G'(x _ 1 , f(x_ 1 )) - G'(x, f(x))]

+ [C"(x_ 1 , f(x_ 1 )) + C"(x, f(x))]

+	 [G "(x_ 1 , f(x_ 1 )) - G"(x, f(x))],

QK (i,j) =	 x_,, f(x_ 1 )) + K(x, x, f(x))}

±rK'(x,x_1,f(x_1)) - K'(x,x,f(x))}28

+[K"(x,x_1,f(x_1)) +K"(x,x,f(x))]

+-h4
[K... (xi , x_,, f (x_ 1 )) - K" (xi , x,f (xi))],

QK1 (i,j) = [K1(x,x_1,f(x_1)) +K1(x,x,f(x))]
h2 r - K(x,x,f(x))]

	

10	 1
h3+[K'(x, x_ 1 , f(x_ 1 )) + K(x, x, f(x))].

Using the quadrature formulae approximating (2.23) by (2.27), we have

f (x)	 + fx -	 [G(x, f(xTh )) - G(O, f(0))]

+	 [K(x,x,f(x)) —K(O,O,f(0))]

+	 QG (i) +	 QK (n, i) -	 Qç1 (n, i)	 (2.31)
1<i<n	 1<i<ri	 1<i<n

_	
[K(x, xi , f(x))—K(O,O,f(0))]

1<i<n

+h	 Qc(i) + h	 QK(i,j) -	 Q'< (i,j)
1<i<n-1 1<ji	 1<i<n-1 1<j<i	 1<i<n-1 1<j<i

H-h2

	

	 QK(j,k),
2i<n-1 1<j<i-1 1<k<j

where K1 (t, s, f (s)) = K (t, s, f (s)).
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Eq. (2.31) can be written as

f (x7) f  + fx + h2 M1 + h3 M2 + h4M3 + h5M4 + h6 M5,	 (2.32)

where

AG(x,f(x))+ >	 AG(x,f(x))
O<i<n	 1<i<m-1 O<j<i

-	 [G(x,f(x)) - G(O,f(0))],

=	 BC(x, f(x1 )) + E EK (x, x, f (xi )) + E LK (xi , x, f (xi))
ds

O<i<n	 O<i<n	 O<i<n

+	 MK(O,O,f(0))+
O<i<n	 1<i<ri-1 O<j<i

+	 AkK(x,xk,f(xk))
1<i<n-1 Oj<i	 2<i<n-1 1<j<i-1 O<k<j

+	 (x,x,f (x)) - K(O,O,f(0))],
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M3 =	 Ci 
d'  f(x)) +	 FK(x, Xi i f (xi )) +	 Ii K1 (x, x, f (xi))
ds'

O<i<n	 O<i<n	 O<i<n

	

+	 C1G(x,f(x))+
ds'

1 ds<i<n-10<j<i	 1i<n-1O<j<i

	

+	 Bk-K(x,xk,f(xk)),
1<i<n-1 O<j<i	 2in-1 1ji-1 O<k<j

DG(x,f(x))+	 JK1(x,x,f(x1))
O<i<n	 O<i<n	 O<i<ri

d3
+

1<i<n-1 O<j<i	 1<i<n-1 Oji

	

+	 Cjjk-K(x,xk,f(xk)),
1<i<rz-1 O<j<i 	 2<i<n-1 1<j:5i-1 Okj

	

=	 HjK (x, x, f (xi )) +	 KK1 (xv , x, f (xi))
O<i<n	 O<i<n

d3	d2
+

1iri-1 O<j<i	 1<i<n-1 O<j<i

d3
+

2<i<m-1 1<j<i-1 O<k<j

and

A ,B ,C, D, E, F, G, Hi , I, J, K, L, 1VI, 0 i < n,

1 i	 - 1,0 j i,and

1 < i < n - 1,0 < j < i - 1,0 < k < j are constant

coefficients.

Likewise, we get

fn fo + f0Xn
	 (2.33)

+ right-hand side of (2.32) with f (x) replaced by f.
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Let

G (i) = G(x, f(x)) - G(x, f),

	

K(i , j )	 and

'K1 (i) = K1 (x, x ) f (xi )) - K1 (x, x, f), then (2.32) and (2.33) yield

= If (x) - f <h2 zM1 + h3 M2 + h4L\M3

2
+h5 M4 +h6 M5 + MG(2P)M T(h)

2" p! 1

2p +I 1(2p)!]
(2.34)

T(h)2' 

1 (2p)!
+ h	

p!

2p+l 	]
-i2

+ h2	
(2)	 T (h)2 

I q 
I +0 (h4),

2q+1 [(2q)!]

where

	M1 =	 A /G (i) + E	 >1 JAjjJ kc (i)j -	 G (n) J ,
O<i<n	 1<i<n-1 O<j<i

AM2 =
 :i:	 IG (i)j + E JEiJjAK(n, i)J+ E JLjJJAK (i,i) J

O<i<n	 O<i<n	 O<i<n

+ E E 'B IdG(j)+	 >I	 ijI I	 ;1<i<ri-1 O<j<i	 1<i<n-1 O<j<i

+ >
2<i<ri-1 1<j<i-1 O<kj

	

AM3 = 	 C	 G(i) +	 F	 K(fl,) +E J 1iJJAK, (n,i) J

O<i<n	 O<i<n	 O<i<n

+	 C -!12-AG
()

dS2 ii' iui
i

ds
1<i<n-1 O<j<i	 1<i<n-1 O<j<i

+ >i:	 : 1 jH / Ki( i , j )+	 i:	 >i:	 i: ds
1i<n-1 O<ji	 2<i<n-1 1<j<i-1 O<k<j

	LM4 =	 D	 G (i)+	 Gi	 LK (n,i)+>: I Ji	 Ki (n,i)
O<i<n	 O<i<n	 O<i<n

+ >i:	 LG (j) +	 :	 >	 £LK (i, i)
1<in-1 O<j^i	 1i<n-1 O<j^i

+E	 E ijij Id 
K1 (i,j)+

1<i<n-1 O<j<i	 2<i<m-1 1j:5i-1 O<k<j	 ^ 

ds
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LM5= i: H	 3K(Tl,i)+ >i: K K1 (n,i)+ >
O<i<n	 O<i<n	 1<i<m-1 O<j<i

	

+ E	 E jKjj j 2.K1(i,j)+ >	 >
1<i<n-1 O<j<i	 2<i<n-1 1<j<i-1 O<k<j

The term 0 (h4 ) is due to the error term resulting from the Euler-Maclaurin

formula.

Then by using the Lipschitz property of C (s, f (s)) and K (t, s, f (s)) and

the chain rule in several variables we have that

K(i,j) <L2 jEjj

K1 (i,j)I <L3 jEjj,

IG(i)I	 lEil

	

LG (i) <L6	+ L	 + L8 '

LG (i) <L9 lE i l + L10	 + L 11	 + L12 ",

ds

ds K(i,j) <M3 E +M4 j +M5

K(i , 3) M6 E+M7 e +M8E+M9',

and

Kj (i,j) <N1 j + N2 k
K1 (i,j) <N3jEjj+N4jE'j+N5jE

where L2 , M3 and Nk are positive constants for 1 < i < 12, 1 j < 9, and

1<k<5.
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Therefore, for a sufficiently small h, (2.35) yields

<P0h8+P1h2 Y, ( IE
i j +J6+jE'I+k3)

O<i<n

E E (I	 I i 1) (2.35)
1<i<n O<j<i

+P3h3	 EkI + JE' I + IE"I + E 
(3) ^) + 0 (h 4)

E E E (I	 k k k

2<i<n-1 1<j<i-1 O<k<j

where P0 , P1 , P2 and P3 are positive constants.

Replacing the double summation in (2.35) by (n—i) E ( + ki +
O<j<i

and the triple summation by (n-1)(m-2) 
>1 (	

+	 + I + 4	 yields
O<k<j

J	 <P0h8+P1h2 E (1--i l + I E'iI + I E'i' I + 

E^3)

O<i<n

+P2h2n Y, (I Ei I + I E'iI + 1411 1 +

O<j<i

Okj

which reduces to

E' I <P4h4 +T1h	 ^_^3)1) ,

O<i<n

whereT1 =P1+P2L+P3.
Applying a similar analysis to the equations (2.28), (2.29) and (2.30), we

obtain
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<Nh4 + R1h E (i + + +
O<i<n	

I )

IEn
<N2h8+R2h

O<i<n

4j <N3h6 +R3h (leil +	 +	 + 
I 

E 
i

O<i<n

where N1 , N2 , N3 , R1 , R2 , and R3 are positive constants.

Summing up, we thus have

I E-I + 	 +	 +	 Nh + Rh	 ( I Ei j +	 +	 +
O<i<n

where N, and R are positive constants.

By the discrete version of Gronwall's inequality, we obtain

 ^ + 1 6(3)1 < h4L	 (RL'I

l_RhexPl_Rh).

	

Hence, , e, e, and	 go to zero as h goes to zero.

2.1.4. Numerical Experiments

To evaluate the performance of our numerical scheme, we tested it on the

following example

f" (x) = - (x - 1) f (x) +4 JO f (x - t) f (t) dt + (x - 4) sin x + 2x cos x,

(2.40)

	

f(0)=0,f'(0)=O,	 0<x<2,

whose exact solution is f(x) = sin x.
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We compute f (x7 ),f' (x),f" (x,,), f ... (x) using equations (2.27),(2.28),(2.29)

and (2.30). To solve these equations, we use the Newton-Raphson method

for a non-linear system of equations as implemented in the subroutine mnewt

given in Press et al. (see [P], page 374). We supplied the analytic expres-

sion for the Jacobian.We wrote the program in FORTRAN 95 using double

precision.The results are shown in Table 1 that displays the errors e at the

mesh points x, for different step size h.

Note that e = f(x) - f, where f(x) and f7-, are respectively the exact and

approximate values of f at x,.

x	 h=0.1
0.5 4.57 x 10_8
1.0 4.00 x 10_8
1.5 3.33 x 10
2.0 8.18 x 10

h = 0.05	 h = 0.025	 h = 0.01
2.87 x iO	 1.80 x 10_1	 4.61 x 1012
2.46 x iO	 1.53 x 10— 'o 3.91 x 10-12
2.07 x 10_8 1.29 x 10	 3.31 x 10_1i
5.10 x 108 3.19 x 10	 8.15 x 10_1i

Table 1: Errors for problem (2.40)

These results show that our numerical scheme yields very good approxima-

tions in comparison to results given for first order integrodifferential equa-

tions of this sort reported by Khanh in [K].

Moreover, we further evaluate the accuracy of our method by comparing the

above results with those reported in [ES] for their method given in Table 2

below
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X, h=0.1
0.5 2.34 x 10-8
1,0 1.77 x 10
1.5 5.57 x 10
2.0 1.21 x 10-6

h = 0.05	 h = 0.025	 h = 0.01
1.44 x 10	 8.96 x 10 -1 '2.29 x 10-12
1.10 x 10- 8 6.90 x 10_ 11 1.76 x 10_1l
3.47 x 10-8 2.17 x 10 9 	5.56 x 10_11
7.54 x 10-8 4.71 x 10	 1.21 x 10-10

Table 2: Errors for problem (2.40)

The comparison of the two tables shows that both methods give similar

results. Based on this test, our method seems to perform slightly better for

larger x values.

2.1.5. Comparison with Two Other Numerical Schemes

In this section, we develop two other numerical schemes derived similarly

but with some variations in the use of the quadrature formulae. In the

first method, we evaluate the inner integral in Eqs.(2.21), (2.22), (2.23), and

(2.24) using a higher order Euler-Maclaurin formula instead of the Hermite

quadrature formula. In the second method, instead of evaluating the middle

integral in Eq.(2.25) using the Euler-Maclaurin formula, we carry out the

approximation using the Hermite formula.

Method 1. The general Euler-Maclaurin formula is given by

N
-h2k _B2k [02k_l)(Xr ) - (2k_1)(x0)] + E,

k=i	
(2k)!
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where E = O(h2"') if 0(2N+l)(x) is continuous, and E = O(h2'2) if

(2N+2 ) (x) is continuous, and where B3 are the Bernoulli numbers [B, p.

113].

Note that in the Euler-Maclaurin formula, derivatives of even order are miss-

ing. Note also that when N = 1, this formula gives formula (2.25) adopted

so far.

In the derivation of this method we proceed in a similar fashion as we did

above when deriving our first scheme. That is, we replace the outer inte-

grals in equations (2.21), (2.22), (2.23), and (2.24) by the Euler-Maclaurin

formula (2.25), but instead now we will replace the inner integral by the

Euler-Maclaurin formula of order 8

 (xO)]	
10

(3)-	
10 , (Xr) - '	 +(Xr) - (3) (XO)]

h6

- 30240 

10(,) 
(Xr) - (

5) 
(x0 )] +0 (0),

which was obtained from the general Euler-Maclaurin formula with N = 3.

Taking N = 3, let

Q (i, ) = [( (0) + ((xi)]	 h2 '
-	 (xi) - C (0)1

±--h[ 3 (xi) - (. (3) (0)] - 1 h61 
(5)

(xi) - (5) (0)] + 0(h8),720

taking N = 2, let

Qi (i, () = h[( (0) + ((xi )] -	 2 [' (x) - C (0)112
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+thh4[(
(3) 

(xi) - (3) (0)1 + 0(h6)

and taking N = 1, let

Q (i, () = h[( (0) + ((x i)] - h2 [(' (x) - ('(0)]  + 0(h4)

Set

o (s) = 0 (x, s) f (x - s) f (s),

j (s) = /3 (xi , s) f (x - s) f(s),1 <i < n - 1,

=

i (s) =	 (3(x,$)f(x —s)f(s)). ,1	 i	 n —i,

2 (s) = 32 ()3(IqX 2 	 X, s) f (x - s) f (s))_,

2 (8) = 32(0 (x,$)f(x— s)f(s)). ,1 < i < n — i,

33
03 (8) =

qj (s)	
33

(/3 (x, s) f (x - s) f ( s)). ,	 1 < i < n - 1.
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Equation (2.23) becomes

r hQ(n,0)_9Q (
m,i)+Q(n k)_Q(ng) 1hi

f(x)	 fo+f xn+	 I - [(Xn,Xn)f(0)f(Xn)_(O,O)f(0)2]	 I2 
L	 _h [k(Xn) - k(0)] + [g(x) - g(0)]	 j

	

n-i [
	

Q(i,k)—Q(i,g)+hQ(i,o)—Qiqi1)	 1
+h	 I	 +çqo(x)—i(x1)	 I

[(x,x)f(0)f(x) —(O,O)f(U)2] +[k(x) —

	

12	 g(xj)]j
(2.41)

h2
+h2

	

	Q(j,o) +h 01 (x) - jii(xi) + [k(x) —g(xj)]
1=2 j=1
n-i i-i j-1

1=2 j=2 k=1

Similarly equation (2.22) becomes
	n-i i-i	

h2 
n-i	

h3 n-i
	 n-i

	

f' (x) = f + h2	 +	 00 (Xi) -
	 01 (xi ) + h	 Q (i, oj)2	 12	1=2 j=i	 1=1	 1=1	 1=1

n-i	 n-i	
h	 h2

+hk(x1) - hg(x1 ) + Q(n,o) * -Qi (n, 0 1 ) + Q(ri,k) —Q(n,g)

(2.42)
1,2

-	 {(Xn , Xn )f(0)f(Xn ) —(0,0)f(0)2} +0(h4),

equation (2.21) becomes
n-i

f" (mn) = k(x) - g(xn) + hqo(x1 ) + Q (n, o) + 0(h4 ),	 (2.43)

and equation (2.24) becomes

f(3) (Xn) = k'(x) - g'(xn) + 3 (x, x) f (0) f (x)	 (2.44)

+h&(xj)+Qi(n,i)+0(h4).
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In this case, we need two more equations to be able to solve the system.

Differentiating (2.24) and conducting a similar analysis, we get

f(4) (x) = k"(x) - g"(xn) +	 W (x, x))	 f (0) f (x)	 (2.45)
dx

+ (x, x) f (0)1' (x) +	 P (x, e))	 f (0) f (x)
dx

n-i

+ 0 (x, x) f (0) f (x) + h	 2(x) + Qi (n ,02) + 0(h4).
j=1

Differentiating one more time and proceeding the same way, we get

f(5) (Xn) = k 3 (x) - g (3) (x) + d W (x, x))f (0) f (x)

+2((x,x))f(0)f(xTh) +(xTh,x)f(0)f" (x)
dx
d fd

+	 (j— ((0(x,	 f (0) f (xn))	 (2.46)

+	 W (x, )	 f (0) f' (x) +	 ( (x, x))	 f'(0) f (x)
dx	 dx

+ 0 (x, x) f (0) f (x) + —(/3 (x, E))f (0) f (Xn)

+2	 ( (x, e))	 f' (0) f (x) + 0 (x, xn) F' (0) 1 (Xn)
dx
n-i

+ h	 3(x) + Q (n, 0) + 0(h4).
i=1

Now, the non-linear system of equations (2.41) to (2.46) can be solved numer-

ically to find the unknowns f (x)j' (x),f" (n),f" (xn ) , f (4) (xn) , f(5) (xn)

1<ri<N.
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We evaluated the performance of this new scheme on example (2.40) given

above. Our implementation in code for this example did not produce satis-

factory results. We can tentatively conclude that using the Euler-Maclaurin

quadrature for the inner integral instead of the Hermite quadrature has no

advantages.

Method 2.

In this method we proceed similarly as in section 2.1.2. First, as we did

above, we replace the outer integral in equations (2.21), (2.22), (2.23), and

(2.24) by the Euler-Maclaurin formula, but in this instance we replace all

inner integrals by the Hermite formula (2.26).

Taking q = 4, let

Q(i,() = h(((x 1 ) +((x)) + h2 ((' (x) -C (xi))

	

±-	 "	 - h4 (((3) (x± --1) - ((3) (xi )),

	

8h34	 ( (x_ 1 ) + C (xi))	 1680

and taking q = 3, let

Qi (i, () = h (( (x) + ((xi)) + h2 (' (x) - C' (xi))

+- 2 --h3 (C" (10	 x-1) + (" (xi)),

and q = 4, let

Q2 (i, () = h (C (x) + ( (xi )) + h2 (C' (x) - C' (xi))
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Equation (2.23) becomes

n—i i j-i

[
f (x) =	 Q (k, 0(ji)) + Qi (k, 1(j-1)) +	 Q2 (k,

i=2 j=2 k=i

	

'	 j1 r 1
+

	

	 (k, Oj) - Qi (k, &	
h2

) + Q2 (k,
z=1 j=2 k=1

h I	 ((s,$))5=1f(0)f(xi) + (TS

[0 (x, x) f (0) f (x) - 	 x)f (0) f(x)]10 

n—i	
L +(	 (s, ))f (0) f (x) + (	 (s,	 (0) f

h r	

(xi)
1	i=1 j=1	 +

120 [+ (x i , x) f (0) f' (x) +13(xi , x) f (0) f' (xi)]

+Q (j, k) — Q (j, g)

i-i	
h	 h2

+	 [Q , O(ii)) + Qi (j, &(i-i)) + 60 Q2 (j,2(ii))]
i=2 j=i

(2.47)

+	 [Q U,Oj ) +	 (j, &) +	 (j, 2j)]60j=i j=1

[/3 (x i , x) f (0) f (x) - /3(x, x)f (0) f(x)]

	

+I	 I	 (@ (s, s))81 f (0) f (x) + ( Td (s, s)) 3 f (0) f (xi)
n

/3 (Xji, x) f' (0) f (x) + /3 (x i , x) f' (0) f (x i) 1+ h	

L

120	 (s, 6))f (0) 1 (x) + (/3 (s, E))s,E=xf (0) f (xi)

i=1	
+/3 (x 1 , x 1 ) f (0) f' (x1) +,3 (xi , x) f (0) f' () ]

+Q(i,k) —Q(i,g) - Q(i3Oo)

2
+ fo + fXn - h- [[k(x) - k(0)] - [g(xn ) - 9(0)]}.
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Similarly equation (2.22) becomes

f' (x) = f 
+

Q (i, k) -
	

Q(i, g)

n-i i	 fl

+

	

	
h

hQ(j,qo) +	 Q(i,qo)
i=i j=i

h2 [-	 —(xo,xo)f(0)2+
12 

equation (2.21) with q = 4 in the Hermite formula becomes

f"(x) = —a(xn )f(xn ) + k(x) +
	

Q , o),

(2.48)

(i&)]

(2.49)

and equation (2.24) with q = 3 in the Hermite formula becomes

f" (x) = —a' (Xn) f (Xn) - a (Xn) f (Xn) + k' (x)
	

(2.50)

+(x Th ,xTh)f(0)f(x) +Qi(i,i).

Now, the non-linear system of equations (2.47) to (2.50) can be solved nu-

merically to find the unknowns f (x), f (Xn),f" (Xn),f" (Xn), 1 <fl < N.

To evaluate the performance of this scheme we test it on the same example

(2.40).

Preliminary results are shown in the following table,
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x	 h = 0.001
0.5 6.68 x 10-
1.0 3.21 x 10-
1.5 9.02 x 10

-2.0 2.00 x io-

Table 3: Errors for problem (2.40)

The results shown are acceptable but are of low accuracy when compared to

our initial method developed in section 2.1.2. At this point, the reasons for

this are not clear. Further analysis and testing of the program implementing

this scheme is necessary before making any definite conclusions.

2.2. Solution of the Physical Problem

2.2.1. Analytical Solution

As seen before, our physical problem can be modeled by the following IVP

'(x) - Pef'(x) - Pef(x) = 2Pef(x) f 
00

f	 f()d - APe f
f(0) =1 1 f(0)=f;,

f(x -

(2.51)

where f is an unknown constant.

An analytical solution for this problem was given in Saleeby and Lee [SL].

We will present it briefly before tackling the problem numerically.

Consider problem (2.51). Using an Inverse Transform method (Laplace

Transform coupled with series reversion an operational calculus type

method), the solution of (2.51) can be shown to be
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f (x) = e()x {

+e()x {

d	 00 ______
2	 L_aj=2 (j-1)!(2j-2

• a0 ( 
2I2) (d+)	 2j— 2)

1
3j+i — m-4 (_1)53_2m_6+k(3j+j_m_4)!xm+k
k=0	 k!(2b)3m3k

1 - d +°°	 ,L3_1	 -j (2j - 2 \\ 
(d+

2	 L...aj=2 (j-1)!(2j-2)! Li=0 	 -	 )	
i!

2j-2 ( 2j	
)

- 2	 (_1)53+1_2m_5(3j+i_m_4)!xm
Lim=U	 m	 (2)33+i_m_3

(2.52)

},

where

d = f'(0) - 2'

=	 =+	 +	 andPe

= —APe.

2.2.2. Comparison Between Analytical Solution and Numerical

Solution

In this section, we plot the graphs of the analytical solution given by (2.52)

for different values of f'(0), Pe and A.

Fig.(2.21) and Fig.(2.22) display the analytical solutions on a logarithmic

scale.

Fig. (2.21) shows a plot of log (f(x)) whenever f(x) > 0 whereas Fig. (2.22)

shows a plot of - log(—f(x)) to account for the negative values of 1(x).
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100

fJ)=-1 ,Pe=.01 ,Iambda01
fJ)=-1 Pe=.01 ,Iambda50.0

---f)=-1 Pe=10.0Iambda=1.0

L f)=-1,Pe1.0,ambda=50.0

60

	

40	 -

	

20	 .-	 -

-

	

-20	 I	 I

	0 	 2	 4	 6	 8	 10	 12	 14	 16	 16	 20

Fig. (2.21): Plot of log (f(x)) when f(x) > 0.. 1(x) represents the analytical

solution of the IVP.
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0	 -- - - -

10

15

20

-fl3) I Pe01 Iambda0l
-----f\)=-1,Pe=,01,Iambda50.0

t'1J)-1 Pe10.0Iarnbdal.0
t'13)-1 ,Pe=1.0,Iambda50.0

	

400	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20

Fig. (2.22): Plot of — log (—f(x)) when f(x) <0. f(x) represents the analyt-

ical solution of the IVP.



The numerical solution was in perfect match with the analytical solution

(with only 9 terms used in the infinite series).

We notice from the graphs above, that we do have oscillating solutions, and

solutions that could go to infinity, and this is highly influenced by the choice

of initial conditions. So in order to enforce lim f(x) 0 as needed by

the physical setting, we are required to solve the following BVP

f"(x) - Pef'(x) - Pe1 + 4 (Fe - f(x) = —APe	 f(x - E)f(E)d6,
Fe Jo

f(0) = 1,

f(L)=0.

Note that (3.0) is obtained from (1.60) by using j0 f(€)aE =	
Pe

 2A
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Chapter 3. Solution of the BVP

Physically, f(x) represents the dimensionless number of particles of size x.

Therefore, for large x, f(x) should tend to 0. To account for this, we consider

in this chapter the following BVP (3.0)

f"(x) - Fef'(x) - Pe1 + 4 (Fe - f'(0)) f(x) = —APe/ f(x -
Fe

(3.0(a))

f(0) = 1,	 (3.0(b))

f(L) = 0,	 0 < x < L.	 (3.0(c))

We start by presenting its analytical solution with some of its properties, then

solve it numerically using the shooting method which employs our numerical

solution of the IVP. In the last section, we couple the shooting technique

with an optimization technique to find optimal estimates for the parameters.

3.1. Analytical Solution

3.1.1. Analytical Expression of the Solution

We have seen in section 2.2.3, that we could have oscillations in the solution

of (2.51). It is clear from the analytical expression of the solution given by

(2.52), that these oscillations are caused by the term e()x(.). So in order

that lim f (x) = 0, the term multiplying e( in (2.52) should be set

equal to zero, and therefore, the solution reduces to

we



	

I (x) = e()x	- 
+ j=2 U-12j-2!	

( 

2i_2) (d$)

L_i2j-2 ( 21' - 2 \ (_ p5j+i_2m_5 (33+i—m-4)!Xm
m=O	

/
Tn	 I	 (2)33_m_3

(3.11)

Conducting further analysis (see [SL]), and to obtain real solutions, it can

be shown that

Fe	
' +	

(Fe - f'(0))] <f'(0) Fe.
	 (3.12)

	

2 
I— v
	 FeV	 Fe

Note that the upper bound in (3.12) was set to 0 in [SL]. This was determined

based primarily on numerical experiments, some heuristic physical reasoning,

and considerations of limiting cases. In section 3.1.4 we actually justify this

upper bound mathematically (see Proposition 3.4). For more details see

Saleeby and Lee [SL].

3.1.2. Convergence of the Solution

It was shown in section 3.1.1 above that the analytic solution of (2.52) with

lim	 f (x) = 0 is given by

	

f (x) e()x	
- + j=2 U-12j-2P	 ( 

2j —2	 (d+

2j-2 ( 2j - 2	 (_1)5i+_2m_5j+i_m_4)!xm
m )	

(2)32_m_3



Let

S = E . 
_ i )	

(3.13)
j=2 (J— 1)! (2j — T)i E ( 3	 il

23- -2 (_1)5i+i_2m_5(3j+i_m_4)!xm1: (m)	
. 3j+i-m-3

M=O	 (2b)

then,
1

f(x) = e()x 1_ - d-+si.	 (3.14)

	

12	 2b	 ]

It follows that if the series S is convergent, then f will also be convergent.

Since S is a positive series, we will show that it is convergent by showing

that it is bounded above by a convergent series.

Let i = —5, where cS> 0 then

j-i 

j=2 (j-1)!(2j-2)!	 )	 i!	
(3.15)

i=O (

2j-2
( 2j-2 (3j+i—m-4)!xm

m )	
/ -\ 3j+i-m-3

M=O	 (2b)

Considering that

1	 (2j-2\1(2j-2\

(j-1)!(2j-2)!	 i—i )	
m ) (3j+z—m-4)!

-	 1	 (21' - 2)!	 1	 (2j - 2)!

- (j-1)!(2j-2)!(j—i)!(j+i-2)!i!m!(2j-2—m)!

3.k(23 —2—rn). (j +z - 2).-j

- (j - 1)!j!m! (j —i)!i!

where k is a positive constant.

48



S can be written as

()1 j-2)!	 ( ) (-1) (d±)2 (?
S = k> 

From Eq. (3.12) we have that

d < b	 and that	 d+b>0,	 (3.16)

implying that
d+b

0<1—	 <1.	 (3.17)
2b

Using (3.17) and the binomial expansion formula

n
k ) akbn_k =(a+b),

k=O

we get

(2j-2)! 
(i d+3

\3
j=2 80(j-1)!j!	 2b )

For the series to be convergent, we need that

S
<1	 hei> -Q,	 (3.18)

80

so that

\j1 (2j-2)! (	 d+3\3(1—I —0 asj — oo.
2 \8b3 / 	 (3 	1)!j! \\	 2bj= 	 J

In this case, applying the ratio test



( 8 )i (2j)! d-^I)j+l

lim	 = urn	
(

	

a 1	 j!(j+1)! Ii	
-

—

3-400 a3	 3-*00 ()i1 (2j-2)! ( -

	

(j-1)!j!	 2b )

= lim 
8 (2j)(2j-1) (1d+\

--
j-400 8b3 j(j+1)	 21)

d+6

=(	 2)

For this limit to be less than 1,	 should be less than 1

<1	 i.e	 j> —Pb.	 (3.19)
2b3

From Ineq.(3.18) and (3.19), we can conclude that 8, and subsequently f, is

convergent whenever u> —2b3.

3.1.3. Positivity of the Solution

Since f is a density function (although not necessarily normalized), then it

should be positive. In this section, we show that f is positive by showing

that it is bounded below by a positive function.

It was shown in section 3.1.2, that

ri	 d
	 I

f(x) =e()x I----+s,
L2	 2b 

where

(31)j2)!(3_) (_i)i(d+)2

2j-21 2j-2 (3j+i_m_4)!xm

	

m 	 3j+z—m-3
(2—b)m=O 
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Considering that

1 (2j-21(2j-2\
(j-1)!(2j-2)!	 j — i )	

m )(3+i_m_4)!

=	 1	 (2j-2)!	 1 (2j-2
(j-1)!(2j-2)!(j—i)!(j+i-2)! 	 m

k(2j —2—m)!(j+i-2)!

-	 k(j(2j-2\
m )(23_2_m)!

S can be written as

= k	
(i)3i3 

(j —1)!j!	
( ) (-1) (d+)i

2j-2
(2i_2 ) (23- — 2 — m)!(2x)m,

m=O

using that n! > 2' and that

d+b
1— - >0,

2b

we have that
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00 7	 \jl
S>2k(\-)

2j-2
\-( 2-2

)Lm
m=O

00	 j—i
=2k>()

= 
i 1

2k	
()

1	 (	 d+b\3
(j—l)!j!	 2—b )

1	 (	 d+b\3
(j-1)!j!	 21)

1	
(	

d+b'\3
(j-1)!j!	 2b )

(2 + 2bx)22

(1 +x)22 > 0,

where k is a positive constant.

We know from Eq.(3.14) that

f 	 =e(
12	 2b	 I

So in order that

f(x)>0 Vx,

all we still need to prove is that 1 - > 0. This follows immediately from2	 2b

d<b.

3.1.4. Monotonicity of the Solution

Given that in a previous section we have established that the solution given in

(3.11) converged, it is natural to attempt to examine the monotone behavior

of the solution by finding a representation for its derivative. However, in

order to do this, even at x = 0, it is then necessary to solve an infinite series

implicit inequality, which appears to be a difficult task. Alternatively, in this
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section we obtain the result we are seeking by considering the equation of

our model coupled with the constraints under which we have obtained the

convergence and positivity of the series representation of solution.

Differentiate Eq.(3.0), we obtain

f"(x) - Pef"(x) - pf'(x) + Pef(x) = —Ape f f(x - E)f'(E)dE, (3.21)

where p = 
Pe1 ± 4A(Pe_f)

Pe

Let g(x) = f'(x ) . Then (3.21) can be written as

g"(x) - Peg'(x) - pg(x) + APef(x) = —Ape f f(x - e)g(E)de. (3.22)

Integrate (3.22) from 0 to x and exchange the order of integration, we obtain

g' (x) = Peg (x) + fX (p - Ape f f (s - e) ds) g (s) d
	

(3.23)

- Ape JO f (e) de + g' (0) - Peg (0).

Again, integrate (3.23) from 0 to x and exchange the order of integration, we

obtain

fox Itg(x)=
	

P_APe  f(s _e)ds] g(e)dedt+Pefg(e)de

fX fS

- Ape  j f (e) deds + (g'(0) - Peg (0))x + g(0),
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which can be written as

fg (x) =
	

(Fe + f Ip - APe f f (s - ) ds] dt) g (e) dE	 (3.24)

- APe f f f (e) deds + (g'(0) - Peg (0))x + g(0),

which can in turn be written as

g (x) = f K (x - e) g (e) de + k(x). 	 (3.25)

Then, from (3.24) we see that

K (x - e) = Fe + f Ip - APe f f (s - e) ds] dt.

Recall that from the expression of the solution (3.11), and under the con-

straints [ - 1 + + 4t(0] <f'(0) <Pe, and > it

was shown in section 3.1.3 that f (x) > 0 on [0, oo). This implies that

K (x - e) > Pe 
+ Ix 

[p - APe f f (s - e) ds] dt 	 (3.26)

—1
= Fe + ( - APe	

+

( 2A )) -

=Pe+ (P+Pe)x_s >0.
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The expression of k(x) is

k(x) = —APe f f f () dads + (g'(0) - Peg (0))x + g(0), 	 (3.27)

where g (0) = f, and g' (0) = Pef + p.

Now, we are interested in showing (under the constraints stated above) that

g (x) = f'(x) <0 on [0, oc). Towards this end we need the following results,

from [GLS] and Naito et al. [NSMN], that characterize positive solutions of

equation (3.25). Recall that L([0, oo), R) is the space of functions that are

locally integrable.

Theorem 3.1. (see [GLS]) Let K E Lt0([0, oo), R). Then for every k E

L' ([0, oc), R), there exists a unique solution G(x) e Lt0([0, oc), R) of (3.25)

given by the variation of parameters formula

G(x) = k(x) + (r * k) (x), x>0,	 (3.28)

where r is the resolvent of K.

Definition. (Definition 3.3 in [NSMN]) Equation (3.25) is called positive if

for every k (E L1'0([0, oc), R) being nonnegative, the corresponding solution

g is also nonnegative.

Theorem 3.2. (Theorem 3.4 in [NSMN]) Equation (3.25) is positive if and

only if the resolvent r of K is nonnegative.

Corollary 3.3. (Corollary 3.7 in [NSMN]) If K is nonnegative, then Equa-

tion (3.25) is positive.
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In order to employ these results, multiply (3.25) by —1, and let G(x) =
—g(x), h(x) = —k(x). Then (3.25) can be written as

G(x) 
= f K (x - E) C () de + h (x). 	 (3.29)

Given K non-negative, then by Theorem 3.2, Eq.(3.28) and Corollary 3.3, it

follows that (3.29) is positive (or f' (x) < 0) if and only if h(x) is nonnegative

(k (x) is nonpositive).

Now we obtain a necessary condition for k (x) to be nonpositive.

Consider the expression of k (x) given in (3.27), then

Xk' (x) = —APe 
in 

f (6)&  + p,

and

V (x) = —)Pef (x).

Under our assumptions, we immediately obtain that k" (x) < 0 on [0, oc).

Now suppose that k'(x) < 0 on [0, oc), then

fX
	 ^

But then by the positivity of f we have that

f0°° f(e)d 
=	

> j f (E) dE ^	 ,w hich is impossible.
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Therefore, we have that k (x) is a concave down monotone increasing function

on [0, oo). Hence, a necessary (but not sufficient) condition for k(x) to be

nonpositive is that k(0) = f is nonpositive.

Thus we have proved that

Proposition 3.4. A necessary condition for 1(x) to be monotone decreasing

positive on [0, oo) is that

PC	
+ 

4 ^, + 4(1I(0)] 
<f'(0) 0, and i> —2w.

2	 PC	 PC

3.2. Numerical Solution: Shooting Method

In this section, we consider the following BVP

f"(x) - Pef(x) - Pe1 + 
'\ (Fe - f'(0))

1(x) = —APe / Ax -
Fe	 .10

f(0) = 1,

f(L)='y,

and show how to solve it numerically.

Note that for 'y = 0, this BVP reduces to problem (3.0) that we are interested

in solving.

In the literature, there exist several different methods to solve such a problem.

The primary methods used are the finite difference method, the collocation

method and the shooting method. To make use of our numerical scheme

we will employ the shooting method, which replaces the given BVP by a

sequence of IVPs (3.3) of the form
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If"(x) - Pef'(x) - Pe1 + '\ (Fe - f(0)) 	f(x -f(x) = —APe
x

Fe

f(0) - 1,

f'(0) = 8,

(3.3(a))

(3.3(b))

(3.3(c))

where s is a guessed initial value that is successively refined until the desired

boundary condition at L is satisfied.

Since the solution of this IVP depends on s, we will denote it by f(s, x), and

the problem reduces to finding the value s of s, such that f(s*, L) - = 0.

(3.3) with s = s * and y = 0 is then equivalent to (3.0).

We start by guessing a value s0 of s in (3.3(c)) and then solve the resulting

IVP using our numerical method to find f(so, x), then we examine its value

at x = L. If f(so, L) - 'y is not sufficiently close to 0, we choose another value

s 1 for s, then again solve the resulting IVP and compare f(s i , L) to 'y. We

repeat until f(*, L) - 'y is sufficiently close to "hitting" 0 within a specified

tolerance E.

To find sK we can use a root-finding method such as Newton's method or the

secant method. For example, using the secant method, after choosing two

good initial approximations s0 and s, the successive approximations given

by

Sn = Sn_i - [
f(s_ i , L) - 'y] ( sn_ i - s_2)	

n = 2,3,...
 f(Sn_i, L) - f(s2, L)

converge to s'.
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But for the method to converge, s0 and s 1 should be close to s whose value

is unknown. To overcome this problem, we derive the moments of the PB,

which will give us good initial guesses for s0 and s1.

Note that it is not a simple matter to implement the Newton method in this

setting as this would involve finding the derivative of a functional.

Example:

To examine the performance of the method, we first carry out a test on the

following problem

f/I (x) = - (x - 1) f (x) +4 [x f (x - t) f (t) dt + (x —4) sin x + 2x cos x,

f(0)=0,f(r)=0,	 0<x<r,	 (3.40)

whose exact solution is f(x) = sin x.

Casel:

We start with s0 = 0. 4, and choose 6 = iO. We obtain If(so, ir)J = 5.0920>

E, then we have to apply the shooting method in order to find a value s" such

that If(s*, 7r) I <6. So we guess another values 1 = 3.6710 of sand apply the

secant method with the two initial guesses so and s. The successive values

of s given by the secant method were as follows:

= 0.4841, S3 = 0.5540, s4 = 1.7168, 85 = 0.7652, S6 = 0.8881,

87 = 1.0320, 88 = 0.9964,s9 = 0.9998,s10 =	 0.9999,with If(s*,ir) <6

Since f'(0) = cos(0) = 1, it is clear that the shooting method converges to

the exact solution. This is illustrated in Fig.(3.21) below
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50	 100	 150	 200	 250	 300

Fig. (3.21): The solution of (3.4) given by the shooting algorithm, using so=

0.4 as initial guess.

Case 2:

Now, we start with 8 	 0. 05, and choose e = 10'. We obtain 
If

(so, ir)

4.4771 > e, so we also need to apply the shooting method. In this case, we

choose s1 to be s1 = —0.9267, and apply the secant method with so and s1as

initial guesses. The successive values of s resulting from applying the secant

method were as follows:

S2 = —0.4078,83 = — 0.4952,s4 = —0.5061,s5 =? = —0.5057 with If (s* ,7r) <

E.

In this case, the shooting method fails to find the exact solution. This is

clearly illustrated in Fig. (3.22)
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Fig. (3.22): The solution of (3.4) given by the shooting algorithm, using s0 =
0.05 as initial guess.

The observation of the two cases, shows that the shooting method converges

to the exact solution of the problem only if the initial guess s0 is close to the

actual one. This emphasizes the need for deriving the moments equations

that will give good initial guess.

3.3. Moments Equations

It is well known that the method of moments can be applied to compute

estimates of the parameters in population balances of first order integrodif-

ferential equations(see [HK] &[RL]). It is then possible that these moments

could be of some help to obtain reasonable initial estimates for our optimiza-

tion algorithm. Our numerical experiments show that this is the case for

small parameter values. However, a more detailed investigation is needed to
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assess how useful these initial estimates can be in our case for large parameter

values. In this section, we derive the moments of (3.50).

Consider the equation

fy
DGm"(y) - Gri	

1
(y) - n(y) = Kn(y) J rt(e)dE K-	 rt(y -

0 	 2
(3.50)

Its moment transformation is

DG f
yn"(y)dy - C f yn'(y)dy - ! f yn(y)dy	 (3.51)

0	 0

= K f yin(y) f n(E)dEdy - f y fy 
n(y - E)m(e)dedy.

The terms in the above equation can be integrated separately

(	 1l	 Ifr\too	 I	 Y')'	 for	 3 =
DG j Y

in// 	 = Dn(0),	 for	 j = 1
0	 1 DGj (j - 1)/12, for	 j > 2

I0 oo 
yn'(y)dy = —Gn(0)

 j —Gjj_1

1 '°°	 1
- I yn(y)dy=—ji,

Jo	 T
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yn(y) 
1000 

n(e)dEdy =

K 00 

y	
K2- I /2 Jo	 Jo-2 i=Q

E (j)

where

	m =	 niyi3 Ay.

Replacing in Eq.(3.51), the moment form of the population balance Eq.(3.50)

is given as

	—DGn'(0) + Gm(0) - m0 =	 for j=0
Dcn(0) + Cm0 -	 = 0,	 for j=1

DGj (j - 1)m_2 + Gjm_ 1 - rn = Kmom - I ()mm_, for j>2.

The parameters DG , C, r and K can then be determined by solving the fol-

lowing system of nonlinear equations

Mo = — Dcn'(0) + Gn(0) -

= DGn(0) + Cm0,

= 2DQm0 + 2Gm1 + Km,

= 6DGm1 + 3Gm2 + 3Km1m2.
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Using the dimensionless variables introduced in section 1.2, we see that
m

Aj =, j = 1, 2, 3, ••, and we then have the dimensionless moments

equations

[Lo

fo
I_t i =	 + li3O,

2
/2 = Ao+ 2A, + 2Aj5

=	 L1 + 3i1 + 6)iili2.
Pe

To estimate the moments yj from the discrete data, we define aj := j1 f(xflx73tx,

where ; = x_1	
-

= h, and f(x) f(x_i)+f(x)
2 -	 2

The following exact solution can be obtained for these equations

- [t
Pe = —6	

+

A2AO
 3 12 + 3i

=
	

13ti.t2 + 3P2Io YOA3 - 6pi
/2b10 -Ill



D

Let

9p2	 3 - 27ii	 - 3it/iiL2fL3 -

+ 90/o[ 4p 2 + 6/-Lo/,t 	 - 364 + 45[LfLi / - go/.L2 i4p2

+ 36ioi4 - 91L 4 + 3ji3 -	 - 64i3

I
2Jo -

	 ii

ILl+/2o
fo = 6 (20 - ) 

—3[L +312 +3L1

3.4. Parameter Estimation and Optimization

As was mentioned in the introduction, equations of the type of (1.10) arise

in crystallization. Such models are used for predicting the crystal size distri-

bution knowing the kinetics. Present theoretical knowledge does not permit

the prediction of crystallization kinetics for a particular substance a priori.

Hence we have the inverse problem for estimating the parameters from ex-

perimental data.

Given a set of data, the objective of the inverse problem is to find the model

parameters that reproduce the experimental results in the best possible way.

The inverse problem is then posed as an optimization problem that uses it-

erative techniques to minimize an objective function measuring the goodness

of fit of the model with respect to experimental data.

The inverse problem can be divided into two phases:

I=
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In the first phase, the unknown parameters are guessed and the direct prob-

lem is solved.

In the second phase, an optimization algorithm such as in Newton method

and gradient search methods (conjugate gradient method, quasi-Newton up-

dates, Levenberg-Marquardt method or modified Gauss-Newton method) is

used to minimize the objective function which is defined as an error norm

between the experimental data and the data calculated for the guessed pa-

rameters. This gives new parameters values that are substituted for the

unknown parameters, and the process repeats.

We apply in our case, the optimization routine lsqnonlin of Matlab Opti-

mization Toolbox that uses the Levenberg-Marquardt algorithm to minimize

the sum of squares S(p) = - f(x,p)J 2 , where fi is the measured

value, f(x, p) is the value obtained from the solution of the direct problem

with estimated parameters, and p is the vector of unknown parameters, and

solve the direct IVPs using our numerical scheme.

It turns out that in our problem, f is one of the parameters to be estimated,

and this parameter is subject to another constraint, since f should be chosen

to satisfy f(L, f) = 0. To account for this constraint, the optimization algo-

rithm should be coupled with the shooting algorithm as described in section

3.4.1. below.

3.4.1 Algorithm

1/ Generation of a synthetic data set.

Let p = [co, c1 , c3, c4, c5 ] be the vector of unknown parameters.



Specify values c for c, i = 0, 1, 3, 4, 5 . Apply the shooting method to the

IVP with the specified parameters to get a value co* of f such that

f(c ,L)=0.

Let pK 
= [c , c , c , c , c ]. Use p* to generate a synthetic data set.

/ Shooting method and optimization.

Step 1:

Guess two values	 and	 for f and values	 for	 = 1, 34 5

Step 2:

Apply the shooting method to the IVP with the above guesses to get a new

value	 of f, such that f(c° , L) = 0.

Let p	 -(°) -	 (0)	 (0)	 (0)	 (0)
, C1 , C3 , C4 , C5

Step 3:

Consider now the IVP with p = (°) and the synthetic data set generated

earlier. Apply the optimization routine lsqnonlin.

This will result in a new vector p(l) = [ct) , Ci(opt)CJJ ,

of optimal values.

Step 4:

Test if If c, L) I <6, where 6 is the specified tolerance. If not, consider the

IVP with Cj = C, i = 1,3,4,5. Set s = and guess a new value of

f. Use these new values to apply the shooting method to the new IVP. Get
(1)n	 /	 (1)n

, such that f(	 , L) = 0.

Let p(l)Th = , , , , c$, }. Go back to Step 3, and apply the

optimization algorithm to the IVP but now with p = p ('). Repeat until the

condition in Step 4 is satisfied.
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This algorithm is illustrated in Fig.(3.41) below

Fra_intcO. (oth€rperameters= fc_ =1 3 45)

( Cree Synthetic Data
tusing StOUng Method

\Jf

r_syn, to syn=o

uess other parameters= (ci_(0) =1 , 3.4 5

Othi parameters1

First Guess tO

EISecond cussn

ACptm

lzabonete =fcI(Okt3451

 Method

metors (CLO) =1 .3,4,5

n)

c0_(1)_(opt)topmat other pararnetersl = cL(1)_(aptI= 1 3,4

[_(1)_(opt),L)I<=EpsIIon1

optimal other parameters= {:(1)(o) 1=1

sl_(l)=CO—(I)—(QPI 	 Appity Sficiotrq Method)

CO_(l )n
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Fig(3.41): Flowchart illustrating the algorithm used for parameter estima-

tion. The algorithm couples the shooting algorithm with an optimization

routine to give optimal parameters.

Note that the Levenberg-Marquardt method tends to be quite fast and ef-

ficient but may lead to local minima. To improve the chance of finding the

global minima, prior information about the parameters is needed. As men-

tioned previously, this information will be taken from the moments of the

PBE derived earlier.

3.4.2. Numerical Experiments

Our algorithm is tested first on the following example, before applying it to

the actual problem.

Example 1:

f (x) = 6_151g (x),

g" (x) = - (x - c3) g (x) + C4 j g (x - t) g (t) dt + (x - 4) sinx + 2x cos x,

f (0) = c1 , f (0) =	 (3.60)

g(0) = f(0) = CI, g'(0) = c2 = c5 c1 +c0 ,	 0 x 4

1/ Generation of a synthetic data set.

Guessf = 0.4, and set c1 = 0.0, c3 = 1.0, c4 = 4.0, and c5 = 1.0. Apply the

shooting method with tolerance E = iO, to get a new value for f = 0.0175.

Solve the resulting IVP to generate a synthetic data.

21 Shooting method and optimization.
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Step 1:

Guess values: 0) = 0.04,	 = 0.05,	 0.3,	 = 0. 5,	 = 3.0, and

= 0.5.

Step :

Apply the shooting method to the IVP (3.60) with the above guesses.

Get a new value of f0/ : c0(0) 
= —0.5483.

This Step is illustrated in Fig. (3.42) below

	

-10 I- 	--	 I	 -	 I	 I

0	 50	 100	 150	 200-	 250	 300	 350	 400

(Fig.(3.42): Illustration of the shooting method applied to (3.6) with s 0)
0 =

0.04,s° = 0.05,	 = 0.3,	 = 0.5,	 3.0, and	 = 0.5.

Step 3:

Consider (3.60) with p = (°) = [-0.5483, 0.3, 0.5, 3.0] and the synthetic

data set generated earlier.

Apply the optimization routine lsqnorilin which uses 23 iterations to give the

following optimal values:
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f(0t) = 0. 175 7 C1(t)	 0.0, C3 (opt) = 1.0, C4(t)	 4.0, C5(t) = 1.0.

Notice that these results perfectly match the actual values.

Remark.

If we increase the value of L, allowing for more oscillations, the shooting

algorithm although may find a solution that satisfies the BVP, this solution

may not satisfy the condition 1im 1(x) = 0, as it will keep on oscillating

for x > L. Note also, that for some initial guesses of f, not sufficiently close

to the exact value of f, the algorithm may find a solution that is different

from the exact solution of the BVP as illustrated by the example in Section

3.2 above, and by Fig.(3.43) and Fig. (3.44) below

21
X IC

16-S-	 I 	 I 	 -

1000	 2000	 3000	 40 
1 
00	 5000	 3000

Fig.(3.43): Solution of (3.60) with L = 47r, and initial guess f = —0.6.
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Fig.(3.44): Solution of (3.60) with L = 47r, ,and initial guess f = 0.4.

Remark.

The solutions given by the shooting algorithm are not positive.

Example 2:

In this example, we consider BVP(3.0)

f"(x) - Pef(x) - PeIl + 4 (Pe -	 f(x) = APe] Ax -
Pe

f(0)	 1,	 (3.70)

f, (0) =

where f, Pe, and A are unknown parameters.
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Trial 1:Pe = 0.01, and A = 0.01.

This is close to a limiting case where we have high dispersion (small Pe) but

very low agglomeration rate (small A).

1/ Generation of a synthetic data set.

Guess f = —0.1, and set Pe = 0.01, and A = 0.01. Apply the shooting

method with tolerance = 10, to get a new value of f = 0.1062.

Solve the resulting IVP to generate synthetic data.

/ Shooting method and optimization.

Step 1:

Using the moments equations set 	 = —0.2230, Pe (")	 0.0358, A° =

0.0733 and guess	 = 0.1633,

Step :

Apply the shooting method to the IVP(3.70) with the above guesses, and

with tolerance E = iO.

Get a new value of f = — 0.2230.

The shooting method is illustrated in Fig.(3.45) below
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Fig. (3.45): Illustration of the shooting method applied to (3.7) with 8 (0)
=

—0.2230 , Pe(0) = 0.0358,and A°	 0.0733.

Step 3:

Consider (3.70) with f = —0.2230, Fe = 0.0358, ). = 0.0733, and the

synthetic data set generated earlier.

Apply the optimization routine lsqnonlin which uses 43 iterations to give the

following optimal values:

f(t) = —0.1095, Pe(0 ) = 0.0074, and A(0 t) = 0.0342
O

with If (-0.1095,L)l = 0.0052 > tolerance.

Step 4:

Since If(-0.1095, L) = 0.0052 > tolerance, it goes back to Step 2, and apply

the shooting method with the optimal parameters obtained, as follows:

= f(0t) = —0.1095, Fe = Pe() = 0.0074, and A = '\(opt) = 0.0342. Set

= —0.2230.
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Get a new f = — 0.1094.

Apply the optimization routine lsqnonlin which uses 31 iterations to give the

following new optimal values:

ft)	 0.1062, Pe ) = 0.01, and A t) = 0.01

with If(-0.1095, L) I = 2.9957 * 10 <tolerance.

Trial 2:Pe = 0.5, and A = 0.5.

1/ Generation of a synthetic data set

Guess f = —0.2541, and set Pe = 0.5, and A = 0.5. Apply the shooting

method with tolerance 6 = 10, to get a new value of f = — 0.2944.

Solve the resulting IVP to generate synthetic data.

21 Shooting method and optimization.

Step 1:

Guess values: 0) = 0.0316, 0) = 0.0370, Pe (0) 0.5, A° = 0.5.

Step 2:

Apply the shooting method to the IVP(3.70) with the above guesses, and

with tolerance 6 = iO.

Get a new value of f = 0.0376.

The shooting method is illustrated in Fig.(3.46) below
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Fig.(3.46): Illustration of the shooting method applied to (3.7) with s 0)(
0 =

0.0316, s(0) = 0.0370, p6(°) = 0.5, and A M = 0.5.

Step 3:

	Consider (3.70) with f	 0.0376, Pc = 0.5, A = 0.5, and the synthetic data

set generated earlier.

Apply the optimization routine lsqnonlin which uses 18 iterations to give the

following optimal values:

f(t) = —0.2944, Pe() = 0.5, and A(0t) = 0.5

with If(-0.2944 , L) I = 3.4701 * 10-6 <tolerance.

Remark.

After running other trials with greater values of A and Pc, we have found

out the same limitations as in example 1 above. The solution found by the
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shooting algorithm may be oscillating and not always positive. Such solution

is not relevant from a physical point of view - as it may not possess the

properties of the number density function that we are seeking.

It would be interesting to attempt to solve this problem - perhaps by imple-

menting some modified version of the shooting method where the shooting is

carried out in a more controlled stepwise fashion to maintain the character

that is required physically.
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Chapter 4. Conclusion and Future Work

In this research, we have examined the solution of a second order integrodif-

ferential equation arising as a population balance that describes the particle

size distribution from suspension crystallizers with random growth dispersion

and particle agglomeration, and the associated parameter estimation prob-

lem. In particular, we first considered the IVP, established its well-posedness,

developed variations on a numerical scheme and evaluated their performance

and compared the numerical results with the analytical ones. Numerical ex-

periments showed that our numerical scheme is highly performant. Our tests

using Euler-Maclaurin quadrature in place of Hermite quadrature showed

that the Hermite quadrature has certain properties that are not captured by

the Euler-Maclaurin quadrature of similar order.

For physical considerations, it was necessary to solve an associated BVP. To

solve this BVP we employed the shooting method which utilized our numeri-

cal method for the P/P. In order to solve the parameter estimation problem,

we coupled the shooting method with the Levenberg-Marquardt algorithm.

The numerical experiments that we have carried out have demonstrated the

feasibility of the solution of this problem with good accuracy for the first

example (Example 3.60 above). However, for our physical example, the al-

gorithm performed well for small values of the parameters Pe and A. Further

investigation in employing a modified version of the shooting method is per-

haps necessary to cope with the strong oscillations that may occur in our

physical example as the parameters increase in value.
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In general, it is possible that the BVP(3.0) does not have a unique solution.

This is illustrated in the example in section 3.2 where two different solutions

were obtained depending on the values of the initial guesses. Moreover,

in our analysis we have obtained in Proposition 3.4 conditions to have a

positive monotone decreasing solution. This prompts us to pose the following

question:

Question. For a given Fe and \, does BVP (3.0) has a unique solution when

s, for the associated IVP (3.3), is chosen to satisfy the conditions given in

Proposition 3.4?

Note that, by analogy with nonlinear BVPs for ordinary differential equa-

tions, to solve this question, one perhaps has to show that when (3.0) has an

isolated solution, then f(L, s) = 0 has a simple isolated root. Showing that

(3.0) has an isolated solution demand that we consider the solution of a cer-

tain linearized problem, which in our case involves computing the derivative

of the convolution functional with respect to the solution. This will entail

the use of further techniques from functional analysis which might also help

us solve at the same time the problem of deriving the sensitivity equations

that are typically considered in parameter estimation problems to compute

standard errors.

Another extension of this work, would be to carry out similar analysis for

type (1) boundary conditions given is section 1.2. Although most of the steps

in the analysis would essentially be identical, nevertheless, as shown in [SL],

there could be some advantages now due to the explicit nature of some of the

conditions and constraints derived there for this case - this is in contrast to
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what we have for type (2) boundary conditions considered herein.

Further investigation to examine the performance of our algorithm on real

experimental data, which tend to be more sparse and perhaps more noisy

than the synthetic data considered above, would be essential. There are a

number of data sets available in the literature for agglomerating particles.

However, analysis that take growth rate dispersion into account has not been

considered in detail for such systems. This is primarily due to the difficulties

which this study has brought up and addressed. It would be interesting to

apply our model and algorithm to these existing data sets after adding some

noise source that would simulate the growth rate dispersion phenomenon. We

note that for no growth dispersion (Pe -* oo), our model reduces to a first

order integrodifferential equation. Such equations have markedly different

qualitative behavior than the model we have considered in this research.

Thus, it would be of interest to examine the effects of considering other

sources of randomness, for either the first order or the second order models,

and to compare the performance of these models. This would be valuable

from the point of view of model selection.
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