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Notre Dame University

Abstract

MODELING OF COMPLEX THREE
DIMENSIONAL OBJECTS WITH EMPHASIS ON

BOOLEAN OPERATIONS AND A MODIFICATION
OF THE RAY-CASTING METHOD

By

Michel R. Kokozaki

This thesis deals with the modeling of complex three-dimensional objects, and

emphasizes on the Boolean operations between objects. It discusses a modification of

the ray-casting method, which offers an improved performance over the regular ray-

casting method.

A small simulation will be performed, on a personal computer, about how to draw

three-dimensional primitives and shading them using the wire-frame technique, plus

performing Boolean operations between two objects using the modified version of the

ray-casting method. Data structures and the main drawing algorithms that were created

for this purpose will also be discussed in order to make a dearer view of how these

objects are represented on a computer screen.
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INTRODUCTION

Interactive graphics is a computer field that has been evolving exponentially since the

computer itself was born. In the last few years, it has benefited from the steady and

sometimes even spectacular reduction in the hardware price/performance ratio, and

from the development of high-level, device-independent graphics packages that help

make graphics programming rational and straightforward. Interactive graphics is now

finally ready to fulfill its promise to provide us with pictorial communication and thus to

become a major facilitator of man/machine interaction.

With the interactive graphics becoming more and more common in user interfaces and

visualization of data and objects, the rendering of 3D objects has become dramatically

more realistic, as evidenced by the mind-blowing computer-generated commercials and

movie special effects. Techniques that were experimental in the early eighties are now

standard practice, and more remarkable "photo realistic" effects are around the corner.

The simpler kinds of pseudo-realism, which took hours of computer time per image in

the early eighties, now are done routinely at animation rates (30 or more frames per

second) on personal computers. Thus "real-time" vector displays in 1981 showed

moving wire-frame objects made of tens of thousands of vectors without hidden-edge

removal; in 1990 real-time raster displays can show not only the same kinds of line

drawings but also moving objects composed of as many as one hundred thousand

triangles rendered with Gouraud or Phong shading and specular highlights and with frill

hidden-surface removal. The highest performance systems provide real-time texture

mapping, anti-aliasing, atmospheric attenuation for fog and haze, and other advanced

effects.

Perhaps the most important new improvement in graphics is the increasing concern for

modeling objects, not just for creating their pictures. Furthermore, interest is growing in

describing the time-varying geometry and behavior of 3D objects. Thus graphics is

increasingly concerned with simulation, animation, and a "back of physics" movement
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in both modeling and rendering in order to create objects that look and behave as

realistically as possible.

As the tools and capabilities available become more and more sophisticated and

complex, we need to be able to apply them effectively. Rendering is no longer the

bottleneck. Therefore researchers are beginning to apply artificial intelligence techniques

to assist in the design of object models, in motion planning, and in the layout of

effective 2D and 3D graphical presentations.
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Chapter 1

THE DEVELOPMENT OF 3D GRAPHICS

Computer graphics started with the display of data on hardcopy plotters and cathode ray

tube (CRT) screens soon after the introduction of computers themselves. It has grown

to include the creation, storage, and manipulation of models and images of objects.

These models come from a diverse and expanding set of fields, and include physical,

mathematical, engineering, architectural, and even conceptual (abstract) structures,

natural phenomena, and so on. Computer graphics today is largely interactive: The user

controls the contents, structure, and appearance of objects and of their displayed images

by using input devices, such as a keyboard, mouse, or touch-sensitive panel on the

screen. Because of the close relationship between the input devices and the display, the

handling of such devices is included in computer graphics.

Until the early 1980s, computer graphics was a small, specialized field, largely because

the hardware was expensive and graphics-based applications that were easy to use and

cost-effective were few. Then, personal computers with built-in raster graphics displays,

such as the Xerox Star and, later, the mass-produced, even less expensive Apple

Macintosh and the IBM PC and its clones, popularized the use of bitmap graphics for

user-computer interaction. - A bitmap is a ones and zeros representation of the

rectangular may of points (pixels or pels, short for "picture elements") on the screen.

Once bitmap graphics became affordable, an explosion of easy-to-use and inexpensive

graphics-based applications soon followed. Graphics-based user interfaces allowed

millions of new users to control simple, low-cost application programs, such as

spreadsheets, word processors, and drawing programs.

Even people who do not use computers in their daily work encounter computer

graphics in television commercials and as cinematic special effects. Computer graphics is

no longer a rarity. It is an integral part of all computer user interfaces, and is
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indispensable for visualizing two-dimensional (21D), three-dimensional (31D), and higher-

dimensional objects: Areas as diverse as education, science, engineering, medicine,

commerce, the military, advertising, and entertainment all rely on computer graphics.

Learning how to program and use computers now includes learning how to use simple

2D graphics as a matter of routine.

Differences Between Computer Graphics and Image Processing. Computer

graphics concerns the pictorial synthesis of real or imaginary objects from their

computer-based models, whereas the related field of image processing (also called

picture processing) treats the converse process: the analysis of scenes, or the

reconstruction of models of 2D or 3D objects from their pictures. Picture analysis is

important in many areas: aerial surveillance photographs, slow-scan television images of

the moon or of planets gathered from space probes, television images taken from an

industrial robot's "eye", chromosome scans, X-ray images, computerized axial

tomography (CAT) scans, and fingerprint analysis all exploit image-processing

technology. Image processing has the sub areas image enhancement, pattern detection

and recognition, and scene analysis and computer vision. Image enhancement deals with

improving image quality by eliminating noise (extraneous or missing pixel data) or by

enhancing contrast. Pattern detection and recognition deal with detecting and clarifying

standard patterns and finding deviations (distortions) from these patterns. A particularly

important example is optical character recognition (OCR) technology, which allows for

the economical bulk input of pages of typeset, typewritten, or even hand-printed

characters. Scene analysis and computer vision allow scientists to recognize and

reconstruct a 3D model of a scene from several 2D images. An example is an industrial

robot sensing the relative sizes, shapes, positions, and colors of parts on a conveyor belt.

Although both computer graphics and image processing deal with computer processing

of pictures, they have until recently been quite separate disciplines. Now that they both

use raster displays, however, the overlap between the two is growing, as is particularly

evident in two areas. First, in interactive image processing, human input via menus and

other graphical interaction techniques helps to control various sub-processes while



transformations of continuous-tone images are shown on the screen in real time. For

example, scanned-in photographs are electronically touched up, cropped, and combined

with others (even with synthetically generated images) before publication. Second,

simple image-processing operations are often used in computer graphics to help

synthesize the image of a model. Certain ways of transforming and combining synthetic

images depend largely on image-processing operations.

Representative Uses of Computer Graphics. Computer graphics is used today in

many different areas of industry, business, government, education, entertainment, and,

most recently, the home. The list of applications is enormous and is growing rapidly as

computers with graphics capabilities become commodity products. Let's look at a

representative sample of these areas:

User interfaces. As we mentioned, most applications that run on personal computers

and workstations, and even those that run on terminals attached to time-shared

computers and network compute servers, have user interfaces that rely on desktop

window systems to manage multiple simultaneous activities, and on point-and-click

facilities to allow users to select menu items, icons, and objects on the screen; typing is

necessary only to input text to be stored and manipulated. Word-processing,

spreadsheet, and desktop-publishing programs are typical applications that take

advantage of such user-interface techniques. The following figure illustrates the User

Interface.
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Figure 1: A classic User Interface for the "Microsoft ©
Word" word processing application.



with some fictions
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(Interactive) plotting in business, science, and technology. The next most

common use of graphics today is probably to create 2D and 3D graphs of mathematical,

physical, and economic functions; histograms, bar and pie charts; task-scheduling charts;

inventory and production charts; and the like. All these are used to present meaningfully

and concisely the trends and patterns gleaned from data, so as to clarify complex

phenomena and to facilitate informed decision-making. Figure 2 shows a sample chart

Figure 2:A sample chart.

statistics.

0 East
West

0 North

Computer-aided drafting and design. In computer-aided design (CAD), interactive

graphics is used to design components and systems of mechanical, electrical,

electromechanical, and electronic devices, including structures such as buildings,

automobile bodies, airplane and ship hulls, very-large-scale-integrated (VLSI) chips,

optical systems, and telephone and computer networks. Sometimes, the user merely

wants to produce the precise drawings of components and assemblies, as for online

drafting or architectural blueprints. More frequently, however, the emphasis is on

interacting with a computer-based model of the component or system being designed in

order to test, for example, its structural, electrical, or thermal properties. Often, the

model is interpreted by a simulator that feeds back the behavior of the system to the

user for further interactive design and test cycles. After objects have been designed,

utility programs can post-process the design database to make parts list, to process "bills

of materials", to define numerical control tapes for cutting or drilling parts, and so on.

See Figure 3.
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Figure 3: A Jaguar modeled using a very popular CAD
program: 3D Studio Max.

Simulation and animation for scientific visualization and entertainment.

Computer-produced animated movies and displays of the time-varying behavior of real

and simulated objects are becoming increasingly popular for scientific and engineering

visualization. We can use them to study abstract mathematical entities as well as

mathematical models of such phenomena as fluid flow, relativity, nuclear and chemical

reactions, physiological systems and organ function, and deformation of mechanical

structures under various kinds of loads. Another advanced-technology area is interactive

cartooning. The simpler kinds of systems for producing "flat" cartoons are becoming

cost-effective in creating routine "in-between" frames that interpolate between two

explicitly specified "key frames". Cartoon characters will increasingly be modeled in the

computer as 3D shape descriptions whose movements are controlled by computer

commands, rather than by the figures being drawn manually by cartoonists. Television

commercials featuring flying logos and more exotic visual trickery have become a

common, as have elegant special effects in movies. Sophisticated mechanisms are

available to model the objects and to represent light and shadows.

Art and commerce. Overlapping the previous category is the use of computer graphics

in art and advertising; here, computer graphics is used to produce pictures that express a
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Teletext and Videotext terminals in public places such as museums, transportation

terminals, supermarkets, and hotels, as well as in private homes, offer much simpler but

still informative pictures that let users orient themselves, make choices, or even

"teleshop" and conduct other business transactions. Finally, slide production for

commercial, scientific, or educational presentations is another cost-effective use of

graphics, given the steepy rising labor costs of the traditional means of creating such

material. See Figure 4.

Figure 4: A slogan featuring a logo for the Kinetix
Company, creators of 31) Studio.

Process control. Whereas flight simulators or arcade games let users interact with a

simulation of a real or artificial world, many other applications enable people to interact

with some aspect of the real world itself. Status displays in refineries, power plants, and

computer networks show data values from sensors attached to critical system

components, so that operators can respond to problematic conditions. For example,

military commanders view field data--number and position of vehicles, weapon

launched, troop movements, casualties--on command and control displays to revise their

tactics as needed; flight controllers at airports see computer-generated identification and

status information for the aircraft blips on their radar scopes, and can thus control

traffic more quickly and accurately than they could with the unannotated radar data
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alone; spacecraft controllers monitor telemetry data and take corrective action as

needed.

Cartography. Computer graphics is used to produce both accurate and schematic

representations of geographical and other natural phenomena from measurement data.

Examples include geographic maps, relief maps, exploration maps for drilling and

mining, oceanographic charts, weather maps, contour maps, and population-density

maps.

Today's 3D Workstation. In the past, barely more than 5 years ago, true professional

level 3D graphics and animation was confined almost exclusively to very expensive

workstations produced by Silicon Graphics Incorporated. The most important and most

sophisticated professional-level packages used in Hollywood film effects--Alias and

Softlmage--were available only for SGI machines. There were exceptions. AutoDesk,

makers of AutoCAD, produced their original 3D Studio for Intel machines. Electric

Image produced a rendering and animation package (without modeling) for the

Macintosh. These products developed a strong professional following, but there

remained a clear distinction between these "PC" or "desktop" products, and the true

workstation applications used on SGI. Given the price of both the workstations and the

software, professional level 3D was largely out of reach for the vast majority of

otherwise interested people.

Today, as these words are being written, fully professional 3D has moved irrevocably to

a PC platform that is already affordable to those with a serious interest. Affordable

means a complete system running from $4,000 to about $10,000. These are machines

that run 3D Studio MAX, LightWave, and Softlmage, all using Windows NT as an

operating system. With a set-up like this, and the skills to use this software, the

committed individual will find his or her way into professional 3D graphics and

animation.

Hardware wise, you always want the ability to add the second processor, and there is no

performance cost to adding it later rather than including it from the start.
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The harder question is whether to buy that second Pentium right away. Windows NT

made multi-threaded applications possible on the PC. To multi-thread an application

means to write it such that it can allocate tasks between different processors, and where

this is done completely and correctly, a dual processor machine comes very close to

doubling its power. So the question comes down to the choice of application.

64 MB of RAM is the minimum and 128 is recommended. Professional 3D animation

packages are memory-intensive far beyond any other kind of program you may be

familiar with using. The moment you run out of RAM and start swapping out to your

hard drive, things become unbearably slow.

If RAM is important, cache memory is even more so. All the Pentium Pro systems

include 256KB of Level 2 cache per processor. The new Pentium II and Pentium III

systems have '512KB.

The hard drive should be ultra-wide SCSI. Speed is very important here to improve the

inevitable swapping from "virtual memory" and for screen playback of animation files.

A 21-inch monitor is obviously far superior to a 17 inch one because professional 3D

applications necessarily divide the screen into multiple windows for simultaneous

viewing from different positions. But a 21-inch monitor still costs $1,000 more than a 17

inch one, and even if you have that money, you may want it for a second processor or a

beefier graphics card. On the other hand, you can't simply "upgrade" a monitor in the

way you can add more RAM or a second Pentium. In any event, look for a refresh rate

no slower than 75Hz. Intensive hours of 3D graphics work can be hard on the eyes, and

noticeable flicker on the screen promotes fatigue.
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Chapter 2

REPRESENTING PRIMITIVE OBJECTS IN 3D SPACE

Here is a three-dimensional coordinate system.

Ii!
Figure 5: A 31) coordinate system.

We are looking at the origin (0,0,0) from above and somewhat over to the left so that we

can see the whole scene unobstructed. The blue axis is the vertical one, called y. Positive

y values are up and negative ones are down. Let's assume that our axes extend exactly 1

unit from the origin. Thus the point (0,1,0) is at the top end of the y (blue) axis, and

(0, -1, 0) is at the bottom end.

The yellow axis is the horizontal one, called x. (1,0,0) is at the right tip of this axis and

(-1,0,0) is at the left tip as we look from the front. The green axis is z, the depth axis.

(0,0, -1) is at the far end away from us, while (0,0,1) is at the tip nearest to us as we look

from the front. Notice that depth increases in this way as the z value decreases. This

creates what is called a "right-handed" coordinate system, and is the most common

convention in use today.

We will create the simplest possible object by placing points in the space. A cube can be

completely described if we know the location of each of its eight corners. We will create

a cube to exactly enclose our 3 axes. The first point we will place is the one nearest to

the viewpoint we established in the last picture.
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Let's change view to look down from the top. The ability to move between different

views of the same scene is the most essential skill to develop, and it doesn't come

naturally to anyone. Notice that our first (pink) point is placed at 1 on the z-axis and -1

on the x-axis. From the top view, we can't tell its location on the y-axis.

Figure 6: The top view.

Now let's switch to a front view. Now we can see that the point is placed at 1 on the y-

axis. The point is therefore at

Figure 7: The front view.
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Let us look at a third view from the left side to confirm this location. It takes time to get

accustomed to thinking and seeing in this way.

Figure 8: The left view.

Let's swing back to a viewpoint close to where we began. You can readily see how

difficult it would be to determine the location of the pink point from this view alone.

Figure 9: A perspective view.

Building an Object in 3D Space. Next we add three other points to define the four

corners of the upper corners of the cube.

a

Figure 10: Adding upper rectangle points to draw the cube.
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All of these points sit on the same plane, the plane in which the y value is always equal

to 1. The four points are (1,1,1), (1,1, -1), (-1,1, -1) (-1,1,1). This is how we learn to work

in 3D space.

Let's add the lower group of points to make all the corners of the cube. The new points

are all on the plane y = -1.

Figure 11: Adding lower rectangle points to draw a cube.

Now how do we go from the points alone to a solid object? We use the points to

represent the vertices (corners) of six separate squares that form the surface of the cube.

The points are used to define linked polygons that define the shape of the cube. Using

points, and connecting them to create polygons, we create a Model that can be viewed,

or "rendered" by 3D software.

Figure 12: The final rendered box model
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Notice how the very tips of the 3 axes are visible in this rendering. This helps us to

understand where the cube is located in our space. To clarify things even more, we will

make the cube translucent, so that the axes may be seen within.

-

,	

a

Figure 13: The cube after being made a little transparent to
show the axes.

Now that we see how a 3D object is created by using points to create surface polygons

(in this case, squares), we can return to the ideas of transformation. By transforming the

upper group of points downward in y (from yl to y.S) and transforming the lower

group upward in y (from y-1 to y-.5), the cube is compressed vertically. This

demonstrates how scaling (resizing) is achieved by transformation of coordinates.

Figure 14: A scale transformation.
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By transforming all the points together, we can rotate the object around the z-axis.

Figure 15: A rotation transformation.

Finally, we translate (move) the entire object back away from our point of view.

Figure 16: A translation transformation.

Building Smooth Surfaces. A sphere is the ultimate smooth surface. If we create it out

of a mesh of flat polygons, we get something like this.

:

Figure 17: A sphere.

,

t2
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A close-up view shows a kind of faceted ball, which is not smooth.

Figure 18: A close view to a sphere.

Each little four-sided polygon on the surface has its own normal. That is to say that each

polygon faces a slightly different direction toward the light. Now, we might imagine

dividing the ball up into smaller and smaller units, and if the squares were many and

small enough, a good illusion would be created of a smooth surface. All computer

graphics is based on this kind of digital principle. We can scan a continuous tone picture

into a bitmap composed of discrete little points very convincingly. But we need not go

this far with our 3D model of a sphere. We can keep the relatively rough polygonal

model we have and make it look smooth when it renders.

This is how the very same model looks when rendered with "smooth shading" instead

of "flat shading."

Figure 19: The same sphere rendered using smooth shading
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In flat shading, all of the points on a polygon surface have the same normal. They all

point in the same direction. In smooth shading, the lighting for every point on the

surface of a polygon is computed separately, and the normal is adjusted for each point

so that there is a slight change of direction against the light at each pixel as it is drawn.

To achieve smooth shading, the idea of a normal is expanded from what we already

understand. We are no longer concerned with the normals of the individual faces, but

rather of the normals at the points (the vertices) where these faces meet. The normal at a

vertex is determined by averaging the normals of all the polygons that share it. Thus

there is a kind of direction toward the light at a given point on the surface of the sphere.

This idea may seem very peculiar, but it is a core concept found again and again in

mathematics. If we pick a point on a sphere, we can imagine a plane that is tangent to

that point--a plane that embeds that point alone and no other on the sphere. Once we

have a plane, we can easily imagine a normal to that plane, and that normal is, in effect

the normal to the point on the sphere. The following figure should strengthen the idea

of the continuous change of normals across the surface of a sphere.

Figure 20: A tangent plane to any point on the sphere, with
its normal.

Primitive Objects. Each application will have its own special approaches to modeling.

But most of the basic modeling concepts transcend individual applications and are

found in one form or another on all. The first step in all modeling is working with

Primitives. Every application will generate certain basic models automatically. Just as a

vector graphics program like Corel Draw will generate 2D circles and squares, a 3D

application will always generate spheres, cubes, cylinders, pyramids, and usually cones.
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Lin
Figure 21: Some basic primitives.

In the high-end programs, the artist can manipulate the individual points and polygons

on these primitives, so that a sphere primitive may form the starting point for a highly

detailed human head. In all applications, however, the geometry of the primitive can be

manipulated as a whole, and a very broad range of effects is possible from such simple

controls.

Primitives can be merged in space to create composite objects.

Figure 22: Combing multiple objects to create composite
objects.

Rendering Techniques. Recalling that deep question of philosophy, which asks

whether a tree, falling in a deserted forest, makes a sound. Just so, our 3D models can't

be seen unless there is someone there to see them. In this case, however, that

"someone" is not a person, but a hypothetical camera, and the process of seeing is called
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Rendering. But the models themselves are just the data necessary to produce a rendered

image, and the rendering process itself is half the story.

To strip the rendering process to its bare essentials, a hypothetical camera is placed in

the san-ic 3D coordinate space that contains our models. It therefore has a location in (x,

y, z) coordinates. It is a single point that represents the spot from which an "eye" looks

at the scene, and so it is often called the viewpoint. Like a real eye and real camera, it

must have an orientation. It must be looking in a certain direction. And it must also have

a field of vision, an angle projecting out from the viewpoint. Objects that fall within this

angle can be seen, and those falling outside it cannot. This is all exactly like a real camera

and like our own eyes, although a camera with a zoom lens can expand and contract its

field of vision without moving the camera itself. So can our hypothetical camera in 3D

coordinate space.

In the rendering process, the camera "takes a picture" of the objects in the scene as seen

from the camera's viewpoint, given its direction and field of view. The rendering is

achieved mathematically, by tracing lines from the vertices of all the polygons in all the

objects in the scene back to the viewpoint of the camera. This enables the "rendering

engine," as the software that produces the rendering is often called, to reconstruct the

polygons as they would be projected on a flat surface, just as light is focused though the

center of a camera lens onto the film plane. A major aspect of this process is

determining which polygons (surfaces) on the objects are obstructed by other polygons

from the camera's viewpoint. Surfaces that are behind other surfaces obviously should

not be rendered.

Once the rendering engine has determined which polygons are visible and how they

should be projected on the rendering surface, called the "viewing plane," they must be

drawn as pixels to produce a bitmap. Each pixel in a bitmap must be assigned a color.

How does the rendering engine assign a color?

Here we approach one of the most fascinating aspects of 3D graphics. 3D graphics

applications model reality in two distinct ways. The most obvious is in geometry. A 3D
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object is no mere flat representation, but rather like a sculpture that can be viewed from

different directions to reveal its full three-dimensional substance. But 3D graphics also

models the way that light interacts with objects and with our eyes. Objects don't have

just a color the way they do in painting and 2D computer graphics. They have surface

qualities that reveal themselves under the particular lighting in the scene. If there is no

lighting, the object is rendered black regardless of what color it would appear in light.

The following is a rendering of a sphere. There is no lighting in the scene, and therefore

the sphere is completely black. Notice that the background is white. In 3D graphics

applications, the background of a scene is typically assigned a fixed color (or an image)

that may have no relationship with the scene.

C
Figure 23: A rendering of a sphere without any lighting.

Now we add a light, actually a couple of lights. A spotlight is pointing down on the

object from above and behind, reflecting off the surface of the sphere. This simple

highlight gives the viewer a completely different reading of the scene.

Figure 24: The same sphere with a couple of lights added.
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The object is now perceived of (barely) as a 3D sphere, and not just a flat circle. The

color of the sphere is black, but it is made of a somewhat shiny material, like a billiard

ball. The highlight, called a "specular reflection" is white; telling the viewer the light

shining on the object is white. To compare, look at a rendering using a yellow spotlight.

Figure 25: The same sphere with a yellow spotlight.

The object being black, the only visual clue to its three-dimensional nature is the

highlight. Shadows cannot be seen on a black surface. If we change the object's surface

to a light blue, the shading across the surface (revealed as darker shades of blue and

gray) do much more to reveal the shape.

Figure 26: The same sphere with a light blue surface color.

22



Chapter 3

DIFFERENT MODELING TECHNIQUES

Let us now talk about the different techniques used in modeling three-dimensional

objects. We have considered using primitive, and then editing or deforming them to get

the geometry we want. An enormous amount of modeling is possible from this

approach. But often we must create even the basic geometry from scratch. This is one

of the most creative aspects of 3D graphics, both for the programmers developing the

tools and for the artists using them.

Primitive Instancing. In primitive instancing, the modeling system defines a set of

primitive 3D solid shapes that are relevant to the application area. These primitives are

typically parameterized not just in terms of transformations, but on other properties as

well. For example, one primitive object may be a regular pyramid with a user-defined

number of faces meeting at the apex. Primitive instances are similar to parameterized

objects, except that the objects are solids. A parameterized primitive may be thought of

as defining a family of parts whose members vary in a few parameters, an important

CAD concept known as group technology. Primitive instancing is often used for relatively

complex objects, such as gears or bolts, that are tedious to define in terms of Boolean

combinations of simpler objects, yet are readily characterized by a few high-level

parameters. For example, a gear may be parameterized by its diameter or number of

teeth, as shown in the figure below.
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Figure 27: Two gears defined by primitive instancing.
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Although we can build up a hierarchy of primitive instances, each leaf-node instance is

still a separately defined object. In primitive instancing, no provisions are made for

combining objects to form a new higher-level object, using, for example, the regularized

Boolean set operations. Thus, the only way to create a new kind of object is to write the

code that defines it. Similarly, the routines that draw the objects or determine their mass

properties must be written individually for each primitive.

Sweep Representations. Sweeping an object along a trajectory through space defines a

new object, called a sweep. The simplest kind of sweep is defined by a 2D area swept

along a linear path normal to the plane of the area to create a volume. This is known as a

translational sweep or extrusion and is a natural way to represent objects made by extruding

metal or plastic through a die with the desired cross-section. In these simple cases, each

sweep's volume is simply the swept object's area times the length of the sweep. Simple

extensions involve scaling the cross-section as it is swept to produce a tapered object or

sweeping the cross-section along a linear path that is not normal to it. Rotational sweeps

are defined by rotating an area about an axis. The illustration below shows two objects

and simple translational and rotational sweeps generated using them.

Figure 28: Sweeps. Here in (a) we have 2D areas used to
define translational sweeps (b) and rotational sweeps (c).
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The object being swept does not need to be 2D. Sweeps of solids are useful in modeling

the region swept out by a machine-tool cutting head or robot following a path, as shown

in the next figure. Sweeps whose generating area or volume changes in size, shape, or

orientaion as they are swept and that follow an arbitrary curved trajectory are called

,general sweeps. General sweeps of 2D cross-sections are known as generalized cylinders in

computer vision and are usually modeled as parameterized 2D cross-sections swept at

right angles along an arbitrary curve. General sweeps are particularly difficult to model

efficiently. For example, the trajectory and object shape may make the swept object

intersect itself, making volume calculations complicated. As well, general sweeps do not

always generate solids. For example, sweeping a 2D area in its own plane generates

another 2D area.

(b)

Figure 29: Path of a cutting tool (a), modeled as a solid
sweep, is used to define model of an aircraft part in (b).

Boundary Representations. Boundary Representations, also known as b-reps, describe an

object in terms of its surface boundaries: vertices, edges, and faces. Some b-reps are

restricted to planar, polygonal boundaries, and may even require faces to be convex

polygons or triangles. Alternatively, they can also be represented as surface patches if the

algorithms that process the representation can treat the resulting intersection curves,

which will, in general, be of higher order than the original surfaces. B-reps grew out of

the simple vector representations and are used in many current modeling systems.

Because of their importance in graphics, a number of efficient techniques have been

developed to create smooth shaded pictures of polygonal objects.
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Many b-rep systems support only solids whose boundaries are 2-manifolds. By definition,

every point on a 2-manifold has some arbitrarily small neighborhood of points around it

that can be considered topologically the same as a disk in the plane. This means that

there is a continuous one-to-one correspondence between the neighborhood of points

and the disk, as shown in the figures in (a) and (b) below. For example, if more than two

faces share an edge, as in (c), any neighborhood of a point on that edge contains points

from each of those faces. It is intuitively obvious that there is no continuous one-to-one

correspondence between this neighborhood and a disk in the plane, although the

mathematical proof is by no means trivial. Thus, the surface in (c) is not a 2-manifold.

(a)	 (b)	 (c)

Figure 30: A 2-manifold surface.

Polyhedra and Euler's Formula. A polyhedron is a solid that is bounded by a set of

polygons whose edges are each a member of an even number of polygons (exactly two

polygons in the case of 2-manifolds) and that satisfies some additional constraints. A

simple polyhedron is one that can be deformed into a sphere; that is, a polyhedron that,

unlike a torus, has no holes. The b-rep of a simple polyhedron satisfies Euler's formula,

which expresses an invariant relationship among the number of vertices, edges, and

faces of a simple polyhedron:

V—E+ F= 2

Where V is the number of vertices, E is the number of edges, and F is the number of

faces. The following figure shows some simple polyhedra and their numbers of vertices,

edges, and faces. Note that the formula still applies if curved edges and nonpianar faces

are allowed. Euler's formula by itself states necessary but not sufficient conditions for an

object to be a simple polyhedron. One can construct objects that satisfy the formula but
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do not bound a volume, by attaching one or more dangling faces or edges to an

otherwise valid solid. Additional constraints are needed to guarantee that the object is a

solid: each edge must connect two vertices and be shared by exactly two faces, at least

three edges must meet at each vertex, and faces must not interpenetrate.

Figure 31:

F-6 -A> F-5	 F.8

 Some simple polyhedra with their V - E

\\V
 + F = 2.

A generalization of Euler's formula applies to 2-manifolds that have faces with holes:

V - E + F - H 2(C - G)

Where H is the number of holes in the faces, G is the number of holes that pass

through the object, and C is the number of separate components (parts) of the object, as

shown below. If an object has a single component, its G is known as its gernii if it has

multiple components, then its G is the sum of the genera of its components. As before,

additional constraints are also needed to guarantee that the objects are solids.

Ar wNwo

V - E + F - H = 2(C -
24 36 15 3	 1

Figure 32: A polyhedron with two holes in its top face and
one hole in its bottom face.
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Spatial-Partitioning Representations. In spatial-partitioning representations, a solid is

decomposed into a collection of adjoining, non-intersecting solids that are more

primitive than, although not necessarily of the same type as, the original solid. Primitives

may vary in type, size, position, parameterization, and orientation, much like the

different-shaped blocks in a child's block set. How far we decompose objects depends

on how primitive the solids must be in order to perform readily the operations of

interest.

Cell Decomposition. One of the most general forms of spatial partitioning is called cell

decomposition. Each cell-decomposition system defines a set of primitive cells that are

typically parameterized and are often curved. Cell decomposition differs from primitive

instancing in that we can compose more complex objects from simple, primitive ones in

• bottom-up fashion by "gluing" them together. The glue operation can be thought of as

• restricted form of union in which the objects must not intersect. Further restrictions

on gluing cells often require that two cells share a single point, edge, or face. Although

cell-decomposition representation of an object is unambiguous, it is not necessarily

unique, as shown below.

&^ff V ;P
(a)	 (b)	 c)

Figure 33: A non-unique cell-decomposition representation
of an object. The cells in (a) may be transformed to
construct the same object shown in (b) and (c) in different
ways.

Cell decompositions are also difficult to validate, since each pair of cells must potentially

be tested for intersection. Nevertheless, cell decomposition is an important

representation for use in finite element analysis.
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Spatial-Occupancy Enumeration. Spatial-Occupany enumeration is a special case of cell

decomposition in which the solid is decomposed into identical cells arranged in a fixed,

regular grid. These cells are often voxels (volume elements), in analogy to pixels. The

figure below shows an object represented by spatial-occupancy enumeration.

Figure 34: A torus represented by spatial-occupancy
enumeration.

The most common cell type is the cube, and the representation of space as a regular

array of cubes is called a cuberille. When representing an object using spatial-occupancy

enumeration, we control only the presence or absence of a single cell at each position in

the grid. To represent an object, we need only to decide which cells are occupied and

which are not. The object can thus be encoded by a unique and unambiguous list of

occupied cells. It is easy to find out whether a cell is inside or outside of the solid, and

determining whether two objects are adjacent is simple as well. Spatial-occupancy

enumeration is often used in biomedical applications to represent volumetric data

obtained from sources such as computerized axial tomography (CAT) scans.

For all of its advantages, however, spatial-occupancy enumeration has a number of

obvious failings that parallel those of representing a 2D shape by a 1-bit-deep bitmap.

There is no concept of partial occupancy. Thus, many solids can be only approximated;

the torus of the previous figure is an example. If the cells are cubes, then the only

objects that can be represented exactly are those whose faces are parallel to the cube

sides and whose vertices fall exactly on the grid. Like pixels in a bitmap, cells may in
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(0)	 (0)

principle be made as small as desired to increase the accuracy of the representation.

Space becomes an important issue, however, since up to n 3 occupied cells are needed to

represent an object at a resolution of n voxels in each of the three dimensions.

Boolean Set Operations. No matter how we represent objects, we would like to be

able to combine them in order to make new ones. One of the most intuitive and popular

methods for combining objects is by Boolean set operations, such as union, difference,

and intersection, as shown in the illustration below.

ME
AI.
P z:A.r .L g r' IL'

__ V	 ar
(b)	 (c)	 (d)	 e)

Figure 35: (a) The objects A and B, (b) A 4 B, (c) A 3 B, (d)
A -B,(e)B-A.

These operations are the 3D equivalents of the familiar 2D Boolean operations.

Applying an ordinary Boolean set operation to two solid objects, however, does not

necessarily yield a solid object. For example, the ordinary Boolean intersections of the

cubes in the below illustration through (e) are a solid, a plane, a line, a point, and the null

object, respectively:

-
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71 ..^ .	 1.-11T71 /E?L
...

()	 (b)	 (C)

Figure 36: The ordinary Boolean intersection of two cubes
may produce: (a) A solid, (b) a plane, (c) a line, (d) a point,
or (e) the null set.

30



Regularized Boolean Set Operators. Rather than using the ordinary Boolean set

operators, we will instead use the regu/aried Boolean set operators, denoted 4*, 3*, and -

and defined such that operations on solids always yield solids. For example, the

regularized Boolean intersection of the objects shown in the above illustration is the

same as their ordinary Boolean intersection in cases (a) and (e), but is empty in (b)

through (d).

To explore the difference between ordinary and regularized operators, we can consider

any object to be defined by a set of points, partitioned into interior points and boundary

points, as illustrated below.

(a)	 (b)	 (C)	 (d)

Figure 37: Difference between ordinary and regularized
operators.

In (a), Boundary points are those points whose distance from the object and the object's

complement is zero. Boundary points need not be part of the object. A closed set

contains all its boundary points, whereas an open set contains none. The union of a set

with the set of its boundary points is known as the set's closure, as shown in (b), which

is a self closed set. The boundary of a closed set is the set of its boundary points,

whereas the interior, shown in (c), consists of all of the set's other points, and thus is the

complement of the boundary with respect to the object. The regularization of a set is

defined as the closure of the set's interior points. In (d) we see the closure of the object

in (c) and, therefore, the regularization of the object in (a). A set that is equal to its own

regularization is known as a regular set. Note that a regular set can contain no boundary

point that is not adjacent to some interior point; thus, it can have no "dangling"

boundary points, lines, or surfaces. We can define each regularized Boolean set operator

in terms of the corresponding ordinary Boolean set operator as:
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A op" B closure (interior (A op B))

Where op is one of 4, 3, or -. The regularized Boolean set operators produce only

regular sets when applied to regular sets.

We now compare the ordinary and regularized Boolean set operations as performed on

regular sets. Consider the two objects in (a) of the illustration below, positioned as

shown in (b). The ordinary Boolean intersection of two objects contains the intersection

of the interior and boundary of each object with the interior and boundary of the other,

as shown in (c). In contrast, the regularized Boolean intersection of two objects. Shown

in (d), contains the intersection of their interiors and the intersection of the interior of

each with the boundary of the other, but only a subset of the intersection of their

boundaries. The criterion used to define this subset determines how regularized Boolean

intersection differs from ordinary Boolean intersection, in which all parts of the

intersection of the boundaries are included. Intuitively, a piece of the boundary-

boundary intersection is included in the regularized Boolean intersection if and only if

the interiors of both objects he on the same side of this piece of shared boundary. Since

the interior points of both objects that are directly adjacent to that piece of boundary are

in the intersection, the boundary piece must also be included to maintain closure.

Consider the case of a piece of shared boundary that lies in coplanar faces of two

polyhedra. Determining whether the interiors he on the same side of a shared boundary

is simple if both objects are defined such that their surface normals point outward (or

inward). The interiors are on the same side if the normals point in the same direction.

Thus, segment AB in (d) is included. Remember that those parts of one object's

boundary that intersect with the other object's interior, such as segment BC, are always

included.
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Figure 38: Comparing the ordinary and regularized Boolean
set operations.

Consider what happens when the interiors of the objects lie on the opposite sides of the

shared boundary, as is the case with segment CD. In such cases, none of the interior

points adjacent to the boundary are included in the intersection. Thus, the piece of

shared boundary is not adjacent to any interior points of the resulting object and

therefore is not included in the regularized intersection. This additional restriction on

which pieces of shared boundary are included ensures that the resulting object is a

regular set. The surface normal of each face of the resulting object's boundary is the

surface normal of whichever surface(s) contributed that part of the boundary. Having

determined which faces he in the boundary, we include an edge or vertex of the

boundary-boundary intersection in the boundary of the intersection if it is adjacent to

one of these faces.

The result of each regularized operator may be defined in terms of the ordinary

operators applied to the boundaries and interiors of the objects. The table below shows

how the regularized operators are defined for any objects A and B; and the figure below

the table shows the results of performing the operations. Ab and A1 are the A's boundary

and interior, respectively. A b 3 Bb same is that part of the boundary shared by A and B

for which Ai and Bi he on the same side. This is the case for some point b on the shared

boundary if at least one point i adjacent to it is a member of both A 1 and B1. Ab 3 Bb cliff

is that part of the boundary shared by A and B for which A and B 1 he on opposite sides.
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This is true for b if it is adjacent to no such point i. Each regularized operator is defined

by the union of the sets associated with those rows that have a * in the operator's

column.

Set	 AUB AIVB A—.B

AflB
As — B	 e
Re — A

A' — B
8k—A
A,flB,some
A1flBJiff

Table 1: Defining the regularized operators for any objects
A and B

A and 8	 ArB	 Ai—B	 Ac.r6

BD rAJ	 A0—B	 Sb — A	 AorBbsame AorBt,cMT

Figure 39: The results of performing the Boolean
operations.

Note that, in all cases, each piece of the resulting object's boundary is on the boundary

of one or both of the original objects. When computing A 4* B or A 3* B, the surface

normal of a face of the result is inherited from the surface normal of the corresponding

face of one or both original objects. In the case of A - B, however, the surface normal

of each face of the result at which B has been used to excavate A must point in the

opposite direction from B's surface normal at that face. This corresponds to the

boundary pieces Ab 3 Bb cliff and Bb 3 Ai. Alternatively, A -* B may be rewritten as 	 A
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3* B. We can obtain B (the complement of B) by complementing B's interior and

reversing the normals of its boundary.

The regularized Boolean set operators have been used as a user-interface technique to

build complex objects from simple ones in most of the representation schemes we shall

discuss. They are also included explicitly in one of the schemes, constructive solid

geometry.
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Chapter 4

WORK EXPERIENCE

After presenting the different modeling techniques, we emphasize the Boolean

operations method, and suggest an improvement to it. My main work study is presented

in this chapter, along with some simulation algorithms to emphasize this study.

Constructive Solid Geometry (CSG). Constructive Solid Geometry, or simply CSG, is

another technique for solid modeling where the volumes occupied by overlapping 3D

objects using set operations are combined together. This modeling method creates a

new volume by applying the union, intersection, or difference to two specified volumes.

The illustrations below show examples for forming new shapes using the set operations.

(,)

Figure 40: Forming new shapes using the set operations.

In this picture, part (a) shows a block and a pyramid, which are placed adjacent to each

other. Specifying the union operation, we obtain the combined object shown in part (b).
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Figure 41: Showing the intersection and difference
operations.

In the right part of the above figure, we see a block and a cylinder with overlapping

volumes. Using the intersection operation, we obtain the resulting solid shown in the

middle of the picture. With a difference operation, we can get the solid shown in the

leftmost part of the image.

A CSG application starts with an initial set of 3D objects (primitives), such as blocks,

pyramids, cylinders, cones, spheres, and closed spline surfaces.

Figure 42: A set of primitives used in CSG applications.

The primitives can be provided by the CSG package as menu selections, or the

primitives themselves could be formed using sweep methods, spline constructions, or

other modeling procedures. To create a new 3D shape using CSG methods, we first

select two primitives and drag them into position in some region of space. Then we

select an operation (union, intersection, or difference) for combining the volumes of the

two primitives. Now we have a new object, in addition to the primitives, that we can use

to form other objects. We continue to construct new shapes, using combinations of
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primitives and the objects created at each step, until we have the final shape. An object

designed with this procedure is represented with a binary tree.

Binary Tree Representation of CSG. In constructive solid geometry (CSG), simple

primitives are combined by means of regularized Boolean set operators that are included

directly in the representation. An object is stored as a tree with operators at the internal

nodes and simple primitives at the leaves as shown in both illustrations below.

cso
0

0014	 09Sf,	 -

ob,	 ob3	 QbL	 0914

ob	 ob	 0
Figure 43: Tree representations for a CSG object.

Some nodes represent Boolean operators, whereas others perform translation, rotation,

and scaling. Since Boolean operations are not, in general, commutative, the edges of the

tree are ordered.

To determine physical properties or to make pictures, we must be able to combine the

properties of the leaves to obtain the properties of the root. The general processing

strategy is a depth-first free walk, to combine nodes from the leaves on up the tree. The

complexity of this task depends on the representation in which the leaf objects are

stored and on whether a full representation of the composite object at the tree's root

must actually be produced. In some implementations, the primitives are simple solids,

such as cubes or spheres, ensuring that all regularized combinations are valid solids as

well. In other systems, primitives include half-spaces, which themselves are not bounded
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solids. For example, a cube can be defined as the intersection of six half-spaces, or a

finite cylinder as in infinite cylinder that is capped off at the top and bottom by planar

half-spaces. Using half-spaces introduces a validity problem, since not all combinations

produce solids. Half-spaces are useful, however, for operations such as slicing an object

by a plane, which might otherwise be performed by using the face of another solid

object. Without half-spaces, extra overhead is introduced, since the regularized Boolean

set operations must be performed with the full object doing the slicing, even if only a

single slicing face is of interest.

We can think of the cell-decomposition and spatial-occupancy enumeration techniques

as special cases of CSG in which the only operator is the implicit glue operator: the

union of two objects that may touch, but must have disjoint interiors (i.e., the objects

must have a null regularized Boolean intersection).

CSG does not provide a unique representation. This can be particularly confusing in a

system that lets the user manipulate the leaf objects with tweaking operators. Applying

the same operation to two objects that are initially the same can yield two different

results. Nevertheless, the ability to edit models by deleting, adding, replacing, and

modifying subtrees, coupled with the relatively compact form in which models are

stored, have made CSG one of the dominant solid modeling representations.

Ray-Casting Methods Used for Boolean Operations. Ray-casting methods are

commonly used to implement constructive solid geometry operations when objects are

described with boundary representations. We apply ray casting by constructing

composite objects in world coordinates with the xj plane corresponding to the pixel

plane of a video monitor. This plane is then referred to as the "firing plane" since we

fire a ray from each pixel position through the objects that are to be combined (see

illustration below). We then determine surface intersections along each ray path, and

sort the intersection points according to the distance from the firing plane. The surface

limits for the composite object are then determined by the specified set operation.
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Figure 44: Using ray-casting methods to implement
constructive solid geometry.

An example of the ray-casting determination of surface limits for a CSG object is given

in the right side of the illustration above, which shows y< cross sections of two

primitives and the path of a pixel ray perpendicular to the firing plane.

Operation	 Surface Limits

Union	 A,D

Intersection	 C, B

Difference (obj2 - obji) 	 B, D

Table 2: Showing the surface limits of the objects in figure
36.

> For the union operation, the new volume is the combined interior regions

occupied by either or both primitives.

> For the intersection operation, the new volume is the interior region common to

both primitives.
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> And a difference operation subtracts the volume of one primitive from the

other.

Each primitive can be defined in its own local (modeling) coordinates. Then, a

composite shape can be formed by specifying the modeling-transformation matrices that

would place two primitives in an overlapping position in world coordinates. The inverse

of these modeling matrices can then be used to transform the pixel rays to modeling

coordinates, where the surface-intersection calculations are carried out for the individual

primitives. Then surface intersection for the two objects are sorted and used to

determine the composite object limits according to the specified set operation. This

procedure is repeated for each pair of objects that are to be combined in the CSG tree

for a particular object.

Once a CSG object has been designed, ray casting is used to determine physical

properties, such as volume and mass. To determine the volume of the object, we can

divide the firing plane into any number of small squares, as shown in the illustration

below.

Firing
PIsns\

Ag
	 ;:'-1-I ht-..1

411 24

Figure 45: Determining the volume of the object.

Volume and Mass Calculation of the Resulting Objects. We can then approximate

the volume V,, of the object for a cross-sectional slice with area A, along the path of a

ray from the square at position (i, j) as:
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Vq'Aq

Where 
21z, is the depth of the object along the ray from position (i, j). If the object has

internal holes, tz, is the sum of the distances between pairs of intersection points along

the ray. The total volume of the CSG object is then calculated as:

Given the density function, f(x, y, z), for the object, we can approximate the mass

along the ray from position (i, j) as:

r(xi y, z)dz
$ 

Where the one-dimensional integral can often be approximated without actually carrying

out the integration, depending on the form of the density function. The total mass of

the CSG object is then approximated as:

mM1

Other physical properties, such as center of mass and moment of inertia, can be

obtained with similar calculations. We can improve the approximate calculations for the

values of the physical properties by taking finer subdivisions in the firing plane.

In chapter 3, we talked about the different modeling techniques, mainly primitive

instancing, sweeps, b-reps, spatial partitioning (including cell decomposition and spatial-

occupancy enumeration). In this chapter we talked in detail about Boolean operations

between objects and constructive solid geometry (CSG).

Comparison of the Different Modeling Representations. We will now compare

these different modeling techniques and show their advantages and disadvantages, in the

following table:
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When we talk about modeling, we surely need to talk about a way to design, model, and

structure our geometrical models. In this chapter, I will present the data structures and

classes that I have created in order to model and display 2D and 3D models correctly on

the computer screen.

In order to display models on the screen, we have to present a certain inter-relation

between the various objects.

Two dimensional objects, like points, lines, circles, ellipses, and the like, are the

foundation for what will be later called "3D Models", or primitives. For example, lines

and rectangles will be used to draw 3D boxes; circles and ellipses will be used to draw

spheres, etc...

Data Definitions of 2D Primitives. I will present the following definitions of 2D

objects' data structures, together with the definitions of the classes that I have created

for them, which are demonstrated in the Appendix.
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> A point

Property	 Property	 Method	 Method

Description	 Description

x-coordinate (integer)	 The x-coordinate	 Draw	 Draws the point on

of the point,	 its container.

y-coordinate (integer)	 The y-coordinate	 Clear	 Deletes the point

of the point,	 from its container.

Container (object)	 The object that is

containing the

point.

Table 4: The point data structure.

> A polygon (including lines):

Property	 Property	 Method	 Method

Description	 Description

Collection of points	 These points	 Draw	 Draws the polygon

delimit the	 on its container.

polygon.

Container (object)	 The object that is 	 Clear	 Deletes the polygon

containing the	 from its container.

polygon.
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DrawStyle (integer) 	 Determines the

style of the

drawing (solid,

dotted, etc...).

ClosePolygon	 Determine whether

(Boolean)	 we want to close

the polygon.

Table 5: The polygon data structure.

> An ellipse (including circles):

Property	 Property	 Method	 Method

	

Description	 Description

Center point	 The center point of Draw	 Draws the ellipse on

the ellipse.	 its container.

Radius (single)	 The radius of the	 Clear	 Deletes the ellipse

ellipse.	 from its container.

StartAngle (single)	 The starting angle,

in radians, of an

ellipse arc.

EndAngle (single)	 The ending angle,

in radians, of an

ellipse arc.
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AspectRatio (single) 	 The aspect ratio of

the vertical to

horizontal axes

DrawStyle (integer)	 Determines the

style of the

drawing (solid,

dotted, etc...).

Container (object) 	 The object that is

containing the

ellipse.

Table 6: The ellipse data structure.

If we are to draw a perfect circle, we set its "AspectRatio" property to 1, and the

"Radius" property will set the circle's radius.

If we are to draw an ellipse, we set its "AspectRatio" to a value other than 1. This

property will then be the ratio between the vertical radius and the horizontal one, and

the "Radius" property will then describe the greater between the vertical and the

horizontal radii.

The "StartAngle" and "EndAngle" properties are, respectively, the start and end angle in

radians, if we want to draw an arc instead of a closed ellipse or circle.

The ellipse also takes as properties, a center point, a draw style, and a container object.

Data Definitions of 3D Primitives. After these definitions of 2D objects, I have

created so far the following 3D object models.
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> Abox:

Property	 Property	 Method	 Method

Description	 Description

Collection of points	 The 4 points that	 Draw	 Draws the box on

delimit the box.	 its container.

Container (object)	 The object that is 	 Clear	 Deletes the box

containing the box.	 from its container.

Table 7: The box data structure.

I have found some contribution while working on the box object, which is drawing 3D

boxes with only 4 input points, as follows:

Figure 46: Drawing a box using 4 input vertices.
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> A sphere:

Property	 Property	 Method	 Method

Description	 Description

Center point	 The center point of Draw	 Draws the sphere

the sphere.	 on its container.

Radius (single)	 The radius of the	 Clear	 Deletes the sphere

sphere.	 from its container.

Container (object) 	 The object that is 	 Islnside	 Determines if a

containing the	 given point is inside

sphere.	 a sphere or not.

[able 8: The sphere data structure.

> A pyramid:

Property	 Property	 Method	 Method

Description	 Description

Collection of points 	 The 4 points that 	 Draw	 Draws the pyramid

delimit the	 on its container.

pyramid.

Container (object) 	 The object that is	 Clear	 Deletes the pyramid

containing the	 from its container.

pyramid.

Table 9: The pyramid data structure.
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Here also, I have found some contribution while working on the pyramid object, which

is drawing 3D pyramids with only 4 input points, as follows:

Figure 47: Drawing a pyramid using 4 input vertices.

In addition to this, all the 2D and 3D primitives have a Name property, which is a string

data type. This property is referred to later in the implementation of the Boolean

operations.

I will now talk about collections of classes. For example, we have a points collection,

containing a set of points, and this collection has properties and methods just like any

other class. This is the outline definition of the points collection as I defined it:

1. An Add method to add a point to the collection

2. A Remove method to remove a specific point.

3. A RemoveAll method to remove all the points from the collection.

Just like this collection of points, we have a collection of polygons, a collection of

ellipses, a collection of pyramids, a collection of boxes, and a collection of spheres.
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Simulating the Boolean Operations Between 2 Objects. I will now present a simple

simulation that features a modification of the ray-casting method for the Boolean

operations between 2 objects, and talk about the algorithm that I have enhanced to

improve performance.

Suppose we have 2 objects on the computer screen, as follows:

X

Object 2

Y

Object 1

Minimum bounding box
of object 1

Minimum bounding box
of object 2

Figure 48: 2 objects on a computer screen.

> For intersection, or 3, we find the minimum bounding box of the smallest

object (in volume). And then, for each point inside this bounding box, if this

point belongs to object 1 and object 2, then this point belongs to their

intersection, and so on. By choosing the smallest object, we minimize the

number of vertices that are to be tested for their inclusion inside that object, and

we do not need to test all the pixels on the screen at all, like the regular ray-

casting method suggests. The resulting intersection object is shaded below.
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Figure 49: The resulting Boolean intersection object.

> As for union, or 4, we find the minimum bounding box for both objects. And

then, for each point inside each bounding box, beginning with the smallest one,

if this point belongs to object 1 or object 2, then this point belongs to their

union. We then consider the other object, but now we take all the pixels that are

inside the bounding box not contained inside the first bounding box, in order to

avoid repetitive pixel comparisons. This way also, we are minimizing the number

of vertices that are to be tested for their inclusion inside the objects, and we do

not need to test all the pixels on the screen at all. The resulting union object is

shaded below.
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Figure 50: The resulting Boolean union object.

> For difference, or -, we find the minimum bounding box for the object that we

want to subtract from, object 1 - object 2 here. And then, for each point inside

that bounding box, if this point belongs to object I and not to object 2, then

this point belongs to their difference. Here also, we are minimizing the number

of vertices that are to be tested for their inclusion inside the objects, and we do

not need to test all the pixels on the screen nor on the subtracted from object.

The resulting difference object is shaded below.

S	 S

I--

_----------------
 /.--

Figure 51: The resulting Boolean difference object.

In my simulation project, I have tried this technique on spheres, as shown in the

Appendix. But first of all, let me define a method to find out if a point P(x, y) is inside a

given sphere of center C(x, y) and radius r, as illustrated below.
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Y	 Figure 52: Determining if a point is inside a sphere.

In order for P to be inside the sphere, we just need to prove that CP < r.

But we have CP2 I x - x 1 2+ Iy-ycI2

SoCP

And the condition becomes as follows:

VI xxc I 2+ YYc I 2 <r.

P is located outside of the sphere if:

x.xc2+jyyc2 >r.
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Chapter 5

CONCLUSION

In this thesis, we have presented the basic aspects of computer graphics for modeling of

three-dimensional objects. To cite, we talked about primitive instancing, sweep

representations, boundary representations, spatial-partitioning enumeration, and

Boolean operations between objects.

Different Boolean operation methods were discussed, mainly regularized Boolean set

operators, Constructive Solid Geometry (CSG), and the binary tree representation of

objects. We also discussed methods for calculating the volume and the mass of the

resulting objects.

A modification of the ray-casting method is also discussed, which uses the bounding

boxes of the 3D objects and makes the calculations in them. In particular, we simulated

an operation for finding the resulting objects derived from the Boolean operations

between two spheres.

Future research may deal with more improvements to the various drawing objects, like

cones and cylinders. More improvements can be made to the Boolean operations

between objects by modifring the ray-casting methods in order to let it tolerate some

model accuracy in favor of the speed of calculations, with the object's quality staying

slightly the same.
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GLOSSARY

3D Coordinate Space. There are six directions ranged about us in three pairs: left and

right--the horizontal directions, up and down--the vertical directions, forward and

backwards (or front and behind)--for which we have no general name. We have a pure

Cartesian space of 3 dimensions, and call the dimensions X, Y and Z. We choose a point

in this space and call it the origin. As the origin, it is the location where X0, Y0, and

Z0, and the point is designated as (0,0,0). We run three axes right through this point,

the X, Y, and Z-axes, each perpendicular to the other two. Now we can designate the

exact location of any point in our space relative to the origin. For example, a point at

(3,2,1) can be reached by starting at the origin (0,0,0) moving 3 units of length (perhaps

inches) in the X direction, then moving 2 units in the Y direction, and finally 1 unit in

the Z direction. The numbers are called "coordinates" and therefore the defined space is

called a 3D coordinate space. The coordinates can be negative as well as positive

Boolean Operations. Boolean Operations are modeling methods that make use of two

objects that overlap and therefore share part of the same space. In Boolean union, the

geometry of the overlapping area is eliminated and a single object is created from the

two using all of the exposed surface area. Union is generally used to merge objects that

are most easily built from component parts that have been modeled separately. Boolean

subtraction is used to sculpt out the overlapping volume from one object or the other.

After the operation, one object is left, minus its overlapping region with the other

object. Boolean intersection preserves the overlapping region only, eliminating all the

rest of both objects.

Minimum Bounding Box. It is the box surrounding a three-dimensional object,

having the minimum volume.

Normals. Normals can be associated with the flat surfaces of the polygons, and also

with the individual points that make up the vertices where polygons meet on the surface

of a model. This technique is used in rendering to create the appearance of curved
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surfaces rather those flat, faceted sides. Such vertex normals can be directly assigned in

the model file, but are usually computed during rendering by averaging the normals of

the adjacent polygons.

Orthogonal Viewing. An orthogonal view or projection eliminates the effect of

distance from a viewpoint, and therefore provides a useful means of locating points and

objects in 3D space. An orthogonal view effectively eliminates one dimension. For

example, when working in a front orthogonal view, points can be moved in the x and y

dimensions, but not in z.

Primitives. Primitives are the basic 3D geometric shapes, like spheres, cubes, cylinders

(sometimes called disks), cones, and pyramids, that are automatically generated by 3D

modeling applications, and which therefore need not be constructed from scratch. The

most considerable amount of modeling begins with primitives, which are then edited

and used with other primitives to create more complex objects.

Rendering. Rendering is the process of producing bitmapped images from a view of

3D models in a 3D scene. An animation is a series of such renderings, each with the

scene slightly changed.

Scene. A scene is a file containing all the information necessary to identify and position

all of the models, lights and cameras for rendering. A scene can be identified with the

3D coordinate space in which rendering takes place. This space is often called the

"global" coordinate space; as opposed to the "local" coordinate spaces associated with

each individual object in the scene.

Surfacing. Surfacing (sometimes called shading) is the process of assigning values to the

surfaces of objects. These values generally control the manner in which the surface

interacts with light in the scene to create the object's color, specularity (highlights),

reflective qualities, transparency, and (if the surface is at all transparent) refraction.

Surfacing controls those qualities that suggest the material that an object is made of,
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whether wood or plastic or metal, and the art of surfacing is coming to understand how

the range of surfacing parameters interact to create realistic or imaginative effects.

Transformation of Coordinates. It is the most general term for movement, rotation,

and scaling of objects by changing their coordinates.
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Appendix

SOURCE CODE AND OUTPUT

In this appendix, I will present the main algorithm for the Boolean operations of the

simulation program, which is written in Visual Basic.

This pseudo-code is executed when the "OK" button is pressed on the Boolean

operations window.

Select case of Boolean operation

Case of "Intersection"

Find the minimum bounding box of the smallest sphere.

For I = x-coordinate of top-leftmost pixel to bottom-rightmost

For J = y-coordinate of top-leftmost pixel to bottom-rightmost

If that (I, J) pixel is in that sphere and in the other one then

We have found an intersection pixel.

End If

Next J

Next I
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Case of "Union"

Find the minimum bounding box of the smallest sphere.

For I = x-coordinate of top-leftmost pixel to bottom-rightmost

For J = y-coordinate of top-leftmost pixel to bottom-rightmost

If that (I, J) pixel is in that sphere or in the other one then

We have found a union pixel.

End If

Next 

Next I

Move to the other bounding box

For I = x-coordinate of top-leftmost pixel to bottom-rightmost

For J = y-coordinate of top-leftmost pixel to bottom-rightmost

If that (I, J) pixel is in that sphere or in the other one

without being in the first bounding box then

We have found a union pixel.

End If

Next J

Next I
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Case of "Difference"

Find the minimum bounding box of the first sphere.

For I = x-coordinate of top-leftmost pixel to bottom-rightmost

For J y-coordinate of top-leftmost pixel to bottom-rightmost

If that (I, J) pixel is in that sphere and not in the other one

then

We have found a difference pixel.

End If

Next 

Next I

Here are some sample output screens of the simulation:

Figure 53: The intersection.
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Figure 55: The difference.
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