
 
 

OPERATIONAL RISK MODELING UNDER THE LOSS DISTRIBUTION 
APPROACH  

 
_________________________________________________ 

 
 

A Thesis 

presented to 

the Faculty of Natural and Applied Sciences 

at Notre Dame University-Louaize 
 
 

_________________________________________________ 
 
 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Actuarial Science 
 
 

_______________________________________________________________ 
 
 

by 

HRAIR RAZMIG DANAGEUZIAN 

 
 

JULY  2021 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

ACKNOWLEDGEMENT  
 

I would like to express gratitude to Chedid Re for granting me a scholarship to pursue a Master’s 

in Actuarial Science at NDU. Their generous fund allowed me to join the program and work on 

this research. This scholarship has allowed me to develop my academic and research background, 

and I am confident this degree will be a distinctive asset for my future endeavors. 

 

I would like to thank my thesis advisor Dr. Re-Mi Hage, for giving me the opportunity to enter an 

interesting new field. Her continuous guidance, substantial support, and considerable commitment 

were the bedrock of this research. Many thanks are also addressed to Dr. George Eid, Dean of the 

Faculty of Natural & Applied Sciences, and Dr. Roger Nakad, Chairperson of the Department of 

Mathematics & Statistics and committee member.  

 

In addition, I would like to address special thanks to all the professors at the department who taught 

me throughout my time at NDU, namely Dr. John Haddad, Dr. Ramez Maalouf, Mrs. Claudia Bou 

Nassif, and my advisor Dr. Re-Mi Hage. I had my first academic encounter with Dr. Maalouf who 

taught me a course on Financial Economics for Actuaries. The course was really interesting and it 

is a great loss not to have him with us. I certainly looked forward for his classes.  

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

ABSTRACT 
 

The term operational risk became widespread in the late 1990s when central bank representatives 

of twelve countries formed a working committee; the Basel Committee on Banking Supervision 

(BCBS). The BCBS defines operational risk as the risk of loss resulting from inadequate or failed 

internal processes, people and systems or from external events. This research aims to model 

operational risk data using the Loss Distribution Approach under BCBS requirements.  

Simulated data was used consisting of 3,192 operational loss events between the years 2009 and 

2018. The implementation of the LDA was conducted using R programming language; R studio 

4.0.3. Due to the low count of loss events, the LDA could not be implemented at business line-risk 

category levels. Rather, it was implemented per business line and a second time per risk category. 

The capital requirement was determined for each case. Loss frequency and severity distributions 

were modeled, the aggregate loss distribution was determined through convolution, and finally the 

overall distribution was obtained through a copula function. Capital requirements were calculated 

for each year as the difference between the 99.9% VaR and the Expected Loss (EL). 

Significant differences were identified between the yearly capital requirements obtained for each 

of the two cases. Since operational risk data encompasses high-frequency low-severity and low-

frequency high-severity events, the variations of gross loss amounts within business lines and risk 

categories have a huge impact on the capital requirement. As per Basel requirements, internally 

generated operational risk measures used for regulatory capital purposes must be based on a 

minimum five-year observation period of internal loss data. Therefore, the total 10 year period was 

considered and a weighted average of the capital charge was calculated. Both cases yielded rather 

close capital charges. The business line method recorded a lower capital charge by around 15%. 

Ultimately, and to diminish the impact of operational risk, the larger capital charge of 8,738,614$ 

is recommended for the next year. The impact of the research findings is correlated towards a better 

understanding of the composition and distribution of operational risk data over risk classes and the 

corresponding operational risk capital requirements. 

 

Keywords: Operational Risk, Basel, Loss Distribution Approach, Capital Charge, Convolution, 

Monte Carlo Simulation, Copula, Value at Risk, R Studio. 



7 
 

Table of Contents 
 

List of Figures ................................................................................................................................ 9 

List of Tables ............................................................................................................................... 10 

List of Abbreviations .................................................................................................................. 12 

Chapter One: Introduction ........................................................................................................ 13 

1.1 Background ......................................................................................................................... 13 

1.2 Operational Risk Overview ................................................................................................. 14 

1.3 Research Aim and Objectives ............................................................................................. 15 

1.4 Scope of Work ..................................................................................................................... 15 

1.5 Research Significance and Contribution ............................................................................. 16 

Chapter Two: Literature Review .............................................................................................. 17 

2.1 Basel Committee on Banking Supervision .......................................................................... 17 

2.1.1 The Basel I Capital Accord .......................................................................................... 17 

2.1.2 The Basel II Capital Accord ......................................................................................... 19 

2.1.3 The Basel III Framework .............................................................................................. 31 

2.2 Research in Operational Risk .............................................................................................. 36 

Chapter Three: Methodology .................................................................................................... 60 

3.1 Loss Frequency Distributions .............................................................................................. 60 

3.2 Loss Severity Distributions ................................................................................................. 61 

3.3 Distribution Fitting .............................................................................................................. 63 

3.4 Goodness of Fit and Graphical Tests .................................................................................. 65 

3.4.1 Q-Q Plot ........................................................................................................................ 65 

3.4.2 P-P Plot ......................................................................................................................... 65 

3.4.3 The Kolmogorov-Smirnov Test .................................................................................... 65 



8 
 

3.5 Threshold Selection ............................................................................................................. 67 

3.5.1 The Mean Excess Plot .................................................................................................. 67 

3.5.2 The Hill Plot ................................................................................................................. 67 

3.6 Aggregate Loss Distribution ............................................................................................... 68 

3.7 Overall Loss Distribution .................................................................................................... 68 

3.8 Capital Charge ..................................................................................................................... 69 

Chapter Four: Data, Results, and Discussion .......................................................................... 70 

4.1 Operational Risk Data ......................................................................................................... 70 

4.2 Results and Discussion ........................................................................................................ 75 

4.2.1 De Minimis Gross Loss Threshold ............................................................................... 75 

4.2.2 Body and Tail of Loss Data .......................................................................................... 75 

4.2.3 Count of Loss Events .................................................................................................... 76 

4.2.4 Frequency Distribution ................................................................................................. 78 

4.2.5 Severity Distribution..................................................................................................... 79 

4.2.6 Convolution .................................................................................................................. 98 

4.2.7 Copula ......................................................................................................................... 101 

4.2.8 Capital Charge ............................................................................................................ 101 

Chapter Five: Conclusion and Recommendations................................................................. 105 

5.1 Conclusion ......................................................................................................................... 105 

5.2 Recommendations for Future Work .................................................................................. 106 

References .................................................................................................................................. 107 

 

 

 

 

 



9 
 

List of Figures 

Figure 1: Summary of the LDA Procedure ................................................................................................. 47 

Figure 2: Relationship between Data Elements (Wei et al., 2018) ............................................................. 52 

Figure 3: Data Types and Sources (Wei et al., 2018) ................................................................................. 52 

Figure 4: Industry Databases by Regulatory Authorities (Wei et al., 2018) ............................................... 54 

Figure 5: Public and Commercial Databases (Wei et al., 2018) ................................................................. 55 

Figure 6: External Databases (Wei et al., 2018) ......................................................................................... 56 

Figure 7: Breakdown of Scenario Databases (Wei et al., 2018) ................................................................. 56 

Figure 8: Histogram of the Frequency of Gross Loss Amounts in AG for 2009 ........................................ 80 

Figure 9: Q-Q and P-P Plots of the Fitted Severity Distributions of AG for 2009 ..................................... 80 

Figure 10: Histogram of the Frequency of Gross Loss Amounts in CB for 2009 ...................................... 82 

Figure 11: Q-Q and P-P Plots of the Fitted Severity Distributions of CB for 2009 .................................... 82 

Figure 12: Histogram of the Frequency of Gross Loss Amounts in RBR for 2009 .................................... 84 

Figure 13: Q-Q and P-P Plots of the Fitted Severity Distributions of RBR for 2009 ................................. 84 

Figure 14: Histogram of the Frequency of Gross Loss Amounts in PS for 2009 ....................................... 86 

Figure 15: Q-Q and P-P Plots of the Fitted Severity Distributions of PS for 2009 .................................... 86 

Figure 16: Histogram of the Frequency of Gross Loss Amounts in Other for 2009 ................................... 88 

Figure 17: Q-Q and P-P Plots of the Fitted Severity Distributions of Other for 2009 ................................ 88 

Figure 18: Histogram of the Frequency of Gross Loss Amounts in CPBP for 2009 .................................. 90 

Figure 19: Q-Q and P-P Plots of the Fitted Severity Distributions of CPBP for 2009 ............................... 90 

Figure 20: Histogram of the Frequency of Gross Loss Amounts in IF for 2009 ........................................ 92 

Figure 21: Q-Q and P-P Plots of the Fitted Severity Distributions of IF for 2009 ..................................... 92 

Figure 22: Histogram of the Frequency of Gross Loss Amounts in DPA for 2009 .................................... 94 

Figure 23: Q-Q and P-P Plots of the Fitted Severity Distributions of DPA for 2009 ................................. 94 

Figure 24: Histogram of the Frequency of Gross Loss Amounts in Rest for 2009 ..................................... 96 

Figure 25: Q-Q and P-P Plots of the Fitted Severity Distributions of Rest for 2009 .................................. 96 

Figure 26: Density Function, CDF, Q-Q, and P-P Plots BL Aggregate Distributions for 2009 ................. 99 

Figure 27: Density Function, CDF, Q-Q, and P-P Plots RC Aggregate Distributions for 2009 ............... 100 

Figure 28: Gross Loss Amount Variation over Years ............................................................................... 102 

Figure 29: Gross Loss Amount Variation over Years by Business Line .................................................. 103 

Figure 30: Gross Loss Amount Variation over Years by Risk Category .................................................. 103 



10 
 

List of Tables 

Table 1: Mapping of Business Lines ........................................................................................................... 21 

Table 2: Business Lines and their respective Beta Factors ......................................................................... 22 

Table 3: Definition of Event Type Internal Fraud ...................................................................................... 24 

Table 4: Definition of Event Type External Fraud ..................................................................................... 25 

Table 5: Definition of Event Type Employment Practices & Workplace Safety ....................................... 25 

Table 6: Definition of Event Type Clients, Products & Business Practices ............................................... 26 

Table 7: Definition of Event Type Damage to Physical Assets .................................................................. 26 

Table 8: Definition of Event Type Business Disruption and System Failures ............................................ 27 

Table 9: Definition of Event Type Execution Delivery & Process Management ....................................... 27 

Table 10: Business Indicator Components ILDC and FC ........................................................................... 32 

Table 11: Business Indicator Component SC ............................................................................................. 33 

Table 12: BI Range and Coefficients .......................................................................................................... 34 

Table 13: The 56-cell Matrix ...................................................................................................................... 71 

Table 14: Business Lines’ Abbreviations ................................................................................................... 71 

Table 15: Risk Categories’ Abbreviations .................................................................................................. 72 

Table 16: Count and Sum of Loss Amounts over All Years ....................................................................... 72 

Table 17: Count of Loss Amount Breakdown ............................................................................................ 73 

Table 18: Sum of Loss Amount Breakdown ............................................................................................... 73 

Table 19: Count of Loss Amount Breakdown for 2009 .............................................................................. 74 

Table 20: Threshold Values for Business Lines and Risk Categories for 2009 .......................................... 75 

Table 21: Count of Loss Events for All Years for each Business Line ...................................................... 76 

Table 22: Count of Loss Events for All Years for each Risk Category ...................................................... 77 

Table 23: Count of Loss Events for the Body of each Risk Class for 2009 ................................................ 77 

Table 24: Poisson’s Lambda Values of Business Lines and Risk Categories for 2009 .............................. 79 

Table 25: Total, Body, Tail, and Low Count of Losses of AG for 2009 .................................................... 80 

Table 26: Parameters of the Fitted Distributions, AIC, and p-value of AG for 2009 ................................. 81 

Table 27: Total, Body, Tail, and Low Count of Losses of CB for 2009 ..................................................... 82 

Table 28: Parameters of the Fitted Distributions, AIC, and p-value of CB for 2009 ................................. 83 

Table 29: Total, Body, Tail, and Low Count of Losses of RBR for 2009 .................................................. 84 

Table 30: Parameters of the Fitted Distributions, AIC, and p-value of RBR for 2009 ............................... 85 

Table 31: Total, Body, Tail, and Low Count of Losses of PS for 2009...................................................... 86 

Table 32: Parameters of the Fitted Distributions, AIC, and p-value of PS for 2009 .................................. 87 



11 
 

Table 33: Total, Body, Tail, and Low Count of Losses of Other for 2009 ................................................. 88 

Table 34: Parameters of the Fitted Distributions, AIC, and p-value of Other for 2009 .............................. 89 

Table 35: Total, Body, Tail, and Low Count of Losses of CPBP for 2009 ................................................ 90 

Table 36: Parameters of the Fitted Distributions, AIC, and p-value of CPBP for 2009 ............................. 91 

Table 37: Total, Body, Tail, and Low Count of Losses of IF for 2009 ...................................................... 92 

Table 38: Parameters of the Fitted Distributions, AIC, and p-value of IF for 2009 ................................... 93 

Table 39: Total, Body, Tail, and Low Count of Losses of DPA for 2009 .................................................. 94 

Table 40: Parameters of the Fitted Distributions, AIC, and p-value of DPA for 2009 ............................... 95 

Table 41: Total, Body, Tail, and Low Count of Losses of Rest for 2009 ................................................... 96 

Table 42: Parameters of the Fitted Distributions, AIC, and p-value of Rest for 2009 ................................ 97 

Table 43: Summary of Business Line and Risk Category Severity Distributions for 2009 ........................ 97 

Table 44: Summary of Aggregate Distribution Parameters of All Risk Classes for 2009 .......................... 98 

Table 45: Correlation Matrix Results of Business Lines for 2009 ............................................................ 101 

Table 46: Correlation Matrix Results of Risk Categories for 2009 .......................................................... 101 

Table 47: VaR and Capital by Business Line and Risk Category for All Years ....................................... 102 

Table 48: Weighted Average of Capital Charge for Business Line and Risk Category Methods ............ 104 

 

 

 

 

 

 

 

 

 

 

 



12 
 

List of Abbreviations 

 

BCBS  Basel Committee on Banking Supervision 

BIA  Basic Indicator Approach 

SA  Standardized Approach 

ASA  Alternative Standardized Approach 

AMA  Advanced Measurement Approaches 

NSA  New Standardized Approach 

VaR  Value at Risk 

EVT   Extreme Value Theory 

LD  Lognormal Distribution 

PD  Poisson Distribution 

PRD  Pareto Distribution 

GPD  Generalized Pareto Distribution 

WD  Weibull Distribution 

NBD  Negative Binomial Distribution 

LDA   Loss Distribution Approach 

IMA  Internal Measurement Approach 

SCA  Scorecard Approach 

SBA  Scenario Based Approaches 

POT  Peak over Threshold 

MLE  Maximum Likelihood Estimation 

LSE  Least Square Estimation 

 

 

 

 

 



13 
 

Chapter One: Introduction 

 

1.1 Background 

Operational risk is the risk which outlines the uncertainties and the threats that an organization 

experiences as it carries out its daily operations and business activities. Power, (2005) considers 

that businesses, banks in particular, have been aware of uncertainties arising from fraud, business 

disruption, defective information technology and infrastructure, and legal liability for many years. 

The assortment of such risks under operational risks has created a separate status which requires 

managerial and regulatory support. This formation of operational risks has connected good 

governance to risk management. Even though the term operational risk existed in the early 1990s, 

it only became widespread in the late 1990s with the development of Basel II proposal when the 

central bank representatives of twelve countries formed a working committee which was the Basel 

Committee on Banking Supervision. In 1994, the Basel Committee had already recognized the 

importance of risks related to business operations mainly as deficiencies in information systems 

or internal controls. In the banking industry, operational risk started as a residual category, as risks 

left behind from market and credits risks. Basel II reforms have successfully institutionalized 

operational risk as a category of regulatory knowledge production. Furthermore, Basel II mirrors 

an overall climate of regulatory attention to organizational control systems and cultures of control. 

However, definitional issues, data collection, and limits of quantification were the three main 

controversies of Basel II reforms to banking supervision. 

Balthazar, (2006) highlights the existence of a need in the 1980s for an international regulation to 

generate a more secure system in financial institutions. It was after the numerous banking crises 

of the 1980s that capital requirements were imposed as an international benchmark in banks. An 

overview on the history of banking regulation and bank failures worldwide from the mid-1800s 

and up until the late 1990s has showed that some common elements were recurrent in each and 

every banking crisis. These elements include deregulation phases, the entry of new competitors, 

asset price booms, and tighter monetary policies. History has proved that banks can actually go 

bankrupt and that there exists an illusory feeling of safety regarding the financial systems of 

developed countries. Thus, a regulatory framework is vital. 
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Fritz-Morgenthal, (2015) discusses the evolutionary steps towards operational risk management. 

Denial is the first step expressed in the form of “there is no such thing as operational risk”. In the 

1980s, banks considered that they have credit, market, and liquidity risk only. In the 1990s, and as 

a second step, ignorance emerged. Banks and financial institutions would not acknowledge that 

they were subject to operational risk. Before the 2000s, originated the third step, that of zero 

tolerance. They did not accept operational risk in their institutions. With the Basel II framework 

in the early 2000s, the fourth step of operational risk management began. That is, after banks and 

financial institutions acknowledged operational risk, they started collecting events and classifying 

operational risks. In step five, they started measuring operational risk using internal and external 

approaches. Thus, the management of operational risk became possible. Around the beginning of 

2010, and with multibillion losses from operational risks, banks and financial institutions entered 

the “Wake up” step or phase. They discovered that their approaches in quantifying and modeling 

operational risk did not actually describe their risk profile. Finally, banks and financial institutions 

by 2015 understood the importance and complexity of operational risk as an important component 

of the institution’s total risk. They entered the “New Normal” step and addressed how to improve 

the measurement and management of operational risks. 

1.2 Operational Risk Overview 

The Basel Committee on Banking Supervision in a revised framework of Basel II (2006), provides 

a comprehensive definition of operational risk. “Operational risk is defined as the risk of loss 

resulting from inadequate or failed internal processes, people and systems or from external events. 

This definition includes legal risk but excludes strategic and reputational risk”. Legal risk includes, 

but is not limited to, exposure to fines, penalties, or punitive damages resulting from supervisory 

actions, as well as private settlements. 

Chaudhuri and Gosh, (2016) consider operational risk as a key risk component for banks and 

financial institutions. Operational risk is estimated to constitute between 15 and 25 % of total risks 

and thus requires consideration. In the 1970s and 1980s, derivatives were used to hedge market 

risk and credit derivatives were used to hedge credit risk. Even the first recommendations of the 

Basel Committee were not concerned with operational risk, considering that hedging the market 

and credit risks inevitably covers operational risks. Financial institutions, banks, and insurance 

companies have experienced more than 100 operational loss events suffering hundreds of millions 

of dollars in the 1990s and 2000s. Some examples include Allfirst Financial with $691 million 
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rogue trading loss, Household Finance with $484 million settlement due to misleading sales 

practices, and the Bank of New York with $140 million due to the 9/11 attack. Such issues must 

be handled with a uniform set of rules. The BCBS provides regulatory frameworks and acts as a 

forum for regular cooperation on banking supervisory matters. The objective of the committee is 

to improve the understanding of key supervisory issues and the quality of banking supervision. 

1.3 Research Aim and Objectives 

This research aims to model operational risk data using the Loss Distribution Approach under the 

Basel Committee on Banking Supervision requirements. The research aim is achieved through the 

following objectives: 

1. Conduct a comprehensive literature review on operational risk, Basel capital accords, and 

modeling methods for operational risk losses. 

2. Identify Basel requirements and measurement methodologies for calculating operational 

risk capital. 

3. Implement the LDA by modeling frequency and severity distributions, and conducting the 

convolution and copula methods. 

4. Estimate operational risk capital requirements. 

1.4 Scope of Work 

The scope of work is primarily determined by the operational risk loss data. Even though there are 

many operational risk databases, the data is not accessible to the public. Banks and other financial 

institutions join these databases by sharing their own data and thus having access to the community 

data. Therefore, in this research, simulated data was used which restricted the scope of work: 

1. The dataset used included the date of observation, loss amount, and the business line/risk 

category the loss belonged to. This created numerous limitations in the potential selection 

of measurement methodologies under Basel requirements.  

2. The Basic Indicator Approach and Standardized Approach were not implemented because 

the data used lacked the annual gross income.  

3. The Loss Distribution Approach was implemented with certain setbacks due to the limited 

number of operational risk loss events in numerous risk classes. 

4. Since the frequency of losses was not accessible, therefore modeling frequency distribution 

was compromised and an alternative method was integrated to produce the required results. 
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1.5 Research Significance and Contribution 

The significance of this research lies in providing a quantitative understanding of operational risk 

data in banks or financial institutions. This is achieved through the implementation of the LDA 

consistently with Basel requirements.  

The contribution of this research is the estimation of operational risk capital by breaking down the 

data to all business line and risk category classes. The impact of the research findings is correlated 

towards a better understanding of the composition and distribution of operational risk data over 

risk classes and the corresponding operational risk capital requirements. 

Numerical results are produced which can be used for future research along with the required codes 

which could be used as tools to further examine other characteristics of operational risk. 
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Chapter Two: Literature Review 

 

2.1 Basel Committee on Banking Supervision 

 2.1.1 The Basel I Capital Accord 
The central bank representatives of twelve countries formed a working committee which was the 

Basel Committee on Banking Supervision. The committee provided recommendations which were 

first published in 1988. The committee aimed at defining capital requirements based on a bank’s 

balance sheet position. Their initiative held two main objectives which were “to strengthen the 

soundness and stability of the international banking system, and to diminish existing sources of 

competitive inequality among international banks”.  

The Basel I framework was designed in a way to define and impose a minimum capital level on 

internationally active banks. Countries had the option to implement stronger requirements and to 

adopt the framework on national banks as well. The first step of the Basel I framework was 

determination of capital, that is, what is considered as capital (two classes Tier 1 and Tier 2). Next 

in the framework was the definition of a number of factors that would weigh the balance sheet 

amounts to reflect their risk levels (five broad categories). The committee, in a final step, defined 

weighing schemes for the off-balance sheet items which were divided into engagements similar to 

unfunded credits and derivative instruments. Increased competition and internationalization of the 

banking industry emphasized the need for market risk capital rules which conveyed the 1996 

Market Risk Amendment to the 1988 Basel I framework. A new class of capital (Tier 3) was 

introduced to support market risk recognizing short-term subordinated debts as capital instruments. 

The Basel I Accord provided two approaches for the calculation of the required capital. The first 

is the Standardized Approach in which the capital requirements for interest rates and equity 

positions are designed to cover only specific risks which are defined as “movements in market 

value of the individual security owing to factors related to the individual issuer” and general risks 

which are “the risks of loss arising from changes in market interest rates, or from general market 

movements in the case of equities”. A risk-weight by function of type and maturity is assigned to 

interest rate sensitive instruments for specific risks. Another capital requirement is estimated by 

categorizing securities into stacks based on maturity and integrating some recognition of long and 

short positions in the same currency. The second approach is the Internalized Models Approach 
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which bases the capital requirement on the Value at Risk models which are the bank’s proprietary 

internal models. A pricing model is adopted to value each position where the underlying risk 

parameters are simulated, the generated outcomes of the risk drivers are injected back in, and all 

positions are reexamined. Thousands of simulations are done to produce risk metrics which 

simulate a whole distribution of the potential future values. 

The main accomplishment of the Basel I Accord was the establishment of a worldwide benchmark 

of banking regulations. The Accord imposed a uniform set of rules on the required capital levels 

of international banks conducting the same business in many different countries. The Accord has 

created a safer banking sector as the capital ratios of most banks increased in the 1990s, yet it 

included several regulatory weaknesses. Basel I Capital Accord became less efficient as banks 

adopted the concept of Capital Arbitrage. Making an arbitrage between regulatory and economic 

capital to align them more closely allowed banks to correct the weakness of regulatory constraints. 

Other weaknesses of the Accord include lack of risk sensitivity, limited recognition of collateral, 

incomplete coverage of risk sources, and no recognition of diversification. 
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 2.1.2 The Basel II Capital Accord 

The final proposal of Basel II was published in 2004. It held three main objectives which were “to 

increase the quality and the stability of the international banking system, to create and maintain a 

level playing field for internationally active banks, and to promote the adoption of more stringent 

practices in the risk management field”. To meet its objectives, the Accord was developed on the 

basis of three pillars. 

Pillar 1 – Solvency Ratio 

Capital is still considered as the main safeguard against losses, however the way assets are 

weighted has been developed. A standard simplified credit risk model is used to derive the Basel 

II values which would align the capital requirements to internal economic capital estimates of 

banks through internal models. In an attempt to yield a more systematic collateral management 

practice, explicit capital requirements by function of risk levels are introduced. Furthermore, a new 

requirement is added for operational risk with an explicit capital requirement related to possible 

losses arising from errors in processes, internal frauds, and information technology problems. 

Pillar 2 – Supervisory Review and Internal Assessment 

Banks must evaluate their capital requirements in line with the regulatory framework within their 

risk profile by devising internal systems and models. Also, banks are required to assimilate risks 

not covered in the Basel II Accord such as risks related to reputation or strategy. Banks are 

expected to operate with a capital level higher than 8 % (pillar 1 requirement) to accommodate for 

other sources of risk. Banks and regulators must cooperate on the evaluation of internal models, 

and the latter can take actions if they consider that capital requirements are not sufficiently met. 

Pillar 3 – Market Discipline 

Under pillar 3, banks are required to build and periodically (twice a year) publish comprehensive 

reports on their internal risk management systems. This will allow the market to place additional 

pressure on banks to advance their risk management practices (Balthazar, 2006). 

The BCBS in a revised framework of Basel II (2006), provides three measurement methodologies 

for calculating operational risk capital which are the Basic Indicator Approach, the Standardized 

Approach, and the Advanced Measurement Approaches.  

The capital requirements calculated under the three aforementioned approaches are multiplied by 

12.5 to determine the risk weighted assets. The value 12.5 is the reciprocal of the minimum capital 

ratio of 8%. 
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I. Measurement Methodologies 

i. Basic Indicator Approach  

This approach imposes on banks to hold capital for operational risk “equal to the average over the 

previous three years of a fixed percentage (α) of positive annual gross income”. The approach 

requires to exclude annual gross incomes for any year if these figures are negative or zero, and 

necessitates supervisors to study fitting actions under Pillar 2. 

KBIA = 
Σ (GI1…n × α) 

n
 

Where 

 “KBIA = the capital charge under the Basic Indicator Approach”. 

 “GI = annual gross income, where positive, over the previous three years”. 

 “n = the number of the previous three years for which gross income is positive”. 

 “α = 15%, which is set by the Committee, relating the industry wide level of required 

capital to the industry wide level of the indicator”. 

The gross income, as defined by national supervisors and national accounting standards, is “the 

net interest income plus net non-interest income”. Thus, this measure should: 

 Be gross of any provisions (e.g. for unpaid interest); 

 Be gross of operating expenses, including fees paid to outsourcing service providers; 

 Exclude realized profits/losses from the sale of securities in the banking book; and 

 Exclude extraordinary or irregular items as well as income derived from insurance. 

The fees which banks receive for outsourcing services are included in gross income. However, 

securities classified as “held to maturity” and “available for sale” are excluded from gross income.  

ii. Standardized Approach 

In this approach, bank activities are divided into eight business lines as highlighted below. Gross 

income serves as a substitute of the likely scale of operational risk exposure within each of the 

eight business lines. Each business line is assigned a factor (β) which is a “proxy for the industry-

wide relationship between the operational risk loss experience for a given business line and the 

aggregate level of gross income for that business line”. Thus, each business line has its own capital 

charge which is equal to its corresponding gross income multiplied by β. Table 1 shows a detailed 

mapping of business lines, presenting the sub-level and activity groups of each. 
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Table 1: Mapping of Business Lines 

Level 1 Level 2 Activity Groups 

Corporate 
Finance 

Corporate Finance 
Mergers and acquisitions, underwriting, 
privatizations, securitization, research, debt 
(government, high yield), equity, 
syndications, IPO, secondary private 
placements 

Municipal/Government Finance

Merchant Banking 

Advisory Services 

Trading & 
Sales 

Sales 

Fixed income, equity, foreign exchanges, 
commodities, credit, funding, own position 
securities, lending and repos, brokerage, 
debt, prime brokerage 

Market Making 

Proprietary Positions 

Treasury 

Retail 
Banking 

Retail Banking 
Retail lending and deposits, banking 
services, trust and estates 

Private Banking 
Private lending and deposits, banking 
services, trust and estates, investment advice 

Card Services 
Merchant/commercial/corporate cards, 
private labels and retail 

Commercial 
Banking 

Commercial Banking 
Project finance, real estate, export finance, 
trade finance, factoring, leasing, lending, 
guarantees, bills of exchange 

Payment & 
Settlement 

External Clients 
Payments and collections, funds transfer, 
clearing and settlement 

Agency 
Services 

Custody 
Escrow, depository receipts, securities 
lending (customers) corporate actions 

Corporate Agency Issuer and paying agents 

Corporate Trust  

Asset 
Management 

Discretionary Fund 
Management 

Pooled, segregated, retail, institutional, 
closed, open, private equity 

Non-Discretionary 
Fund Management 

Pooled, segregated, retail, institutional, 
closed, open 

Retail 
Brokerage 

Retail Brokerage Execution and full service 
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The total capital charge is calculated as “the three-year average of the simple summation of the 

regulatory capital charges across each of the business lines in each year. In any given year, negative 

capital charges (resulting from negative gross income) in any business line may offset positive 

capital charges in other business lines without limit. However, when the aggregate capital charge 

across all business lines within a given year is negative, then the input to the numerator for that 

year will be zero”. 

KSA = 
Σyears 1-3	 max Σ	(GI1-8 ×	β1-8 , 0)

3
 

Where 

 “KSA = the capital charge under the Standardized Approach”. 

 “GI1-8 = annual gross income in a given year, as defined above in the Basic Indicator 

Approach, for each of the eight business lines”. 

 “β1-8 = a fixed percentage, set by the Committee, relating the level of required capital to 

the level of the gross income for each of the eight business lines”; presented in Table 2. 

 

Table 2: Business Lines and their respective Beta Factors 

Business Lines Beta Factors 

Corporate Finance (β1) 18 % 

Trading & Sales (β2) 18 % 

Retail Banking (β3) 12 % 

Commercial Banking (β4) 15 % 

Payment & Settlement (β5) 18 % 

Agency Services (β6) 15 % 

Asset Management (β7) 12 % 

Retail Brokerage (β8) 12 % 

 

Gross income of business lines must be developed based on a bank’s specific policies and criteria 

which must be reviewed for new or changing business activities. Internationally active banks using 

the Standardized Approach must meet additional criteria set out by the committee. The principles 

for business line mapping are also identified by the committee. 
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Alternative Standardized Approach 

A bank may be allowed to use the ASA as long as it provides an improved basis for calculating 

operational risk capital. Under this approach, the operational risk capital methodology is the same 

as that of the SA with the exception of two business lines which are retail banking and commercial 

banking. For these two business lines, gross income is replaced by the product of loans or advances 

and a factor (m). Thus, the operational risk capital charge for retail and (commercial banking) is 

represented as: 

KRB = βRB × m × LARB 

Where 

 “KRB is the capital charge for the retail banking business line”. 

 “βRB is the beta for the retail banking business line”. 

 “LARB is total outstanding retail loans and advances (non-risk weighted and gross of 

provisions), averaged over the past three years”. 

 m is 0.035 

 Loans and advances in retail banking consist of the total drawn amounts in the following 

credit portfolios: retail, purchased retail receivables, and SMEs treated as retail. 

 Loans and advances in commercial banking consist of the drawn amounts in the following 

credit portfolios: corporate, sovereign, bank, specialized lending, purchased corporate 

receivables, and SMEs treated as corporate. 

 

iii. Advanced Measurement Approaches 

The capital requirement under this approach is equal to the risk measure produced by the internal 

operational risk measurement system of a bank. This approach follows quantitative and qualitative 

criteria and requires supervisory approval. The qualitative standards include the following: 

1. The bank must have an independent operational risk management function. Its main 

responsibility is designing and implementing operational risk measurement methodologies, 

and developing strategies to identify, measure, monitor and control operational risk. 

2. An integration of the day-to-day risk management processes of the bank with the internal 

operational risk measurement system including methods for distributing capital to the main 

business lines. 
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3. Reports of operational risk exposures and loss experiences must be conveyed regularly to 

the bank’s management which must take appropriate actions accordingly. 

4. The bank must ensure compliance with policies, controls, and procedures related to the 

operational risk measurement system. 

5. Regular reviews of the operational risk management processes and measurement systems 

must be conducted by auditors to ensure that data flows and processes are easily accessible. 

The quantitative standards include: 

The Basel framework does not specify the analytical approaches for operational risk, but a bank 

must show that its adopted measure for operational risk meets a soundness standard such as a one 

year holding period and a 99.9th percentile confidence interval.  

Detailed criteria for calculating operational risk capital include: 

1. Any operational risk measurement system must be consistent with the Basel Committee 

definition of operational risk and the loss event types detailed in Tables 3 through 9. 

 

Table 3: Definition of Event Type Internal Fraud 

Event-Type  
Category (Level 1) 

Definition 

Internal fraud 

Losses due to acts of a type intended to defraud, misappropriate 
property or circumvent regulations, the law or company policy, 
excluding diversity/ discrimination events, which involves at least 
one internal party. 

Categories (Level 2) Activity Examples (Level 3) 

Unauthorized Activity 
Transactions not reported (intentional) 
Transaction type unauthorized (w/monetary loss) 
Mismarking of position (intentional) 

Theft and Fraud 

Fraud / credit fraud / worthless deposits 
Theft / extortion / embezzlement / robbery 
Misappropriation of assets 
Malicious destruction of assets 
Forgery 
Check kiting 
Smuggling 
Account take-over / impersonation / etc. 
Tax non-compliance / evasion (wilful) 
Bribes / kickbacks 
Insider trading (not on firm’s account) 
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Table 4: Definition of Event Type External Fraud 

Event-Type  
Category (Level 1) 

Definition 

External fraud 
Losses due to acts of a type intended to defraud, misappropriate 
property or circumvent the law, by a third party. 

Categories (Level 2) Activity Examples (Level 3) 

Theft and Fraud 
Theft/Robbery 
Forgery 
Check kiting 

Systems Security 
Hacking damage 
Theft of information (w/monetary loss) 

 

 

 

Table 5: Definition of Event Type Employment Practices & Workplace Safety 

Event-Type  
Category (Level 1) 

Definition 

Employment Practices 
& Workplace Safety 

Losses arising from acts inconsistent with employment, health or 
safety laws or agreements, from payment of personal injury claims, 
or from diversity / discrimination events. 

Categories (Level 2) Activity Examples (Level 3) 

Employee Relations 
Compensation, benefit, termination issues 
Organized labor activity 

Safe Environment 
General liability (slip and fall, etc.) 
Employee health & safety rules events 
Workers compensation 

Diversity & 
Discrimination 

All discrimination types 
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Table 6: Definition of Event Type Clients, Products & Business Practices 

Event-Type  
Category (Level 1) 

Definition 

Clients, Products & 
Business Practices 

Losses arising from an unintentional or negligent failure to meet a 
professional obligation to specific clients (including fiduciary and 
suitability requirements), or from the nature or design of a product. 

Categories (Level 2) Activity Examples (Level 3) 

Suitability, Disclosure 
& Fiduciary 

Fiduciary breaches / guideline violations 
Suitability / disclosure issues (KYC, etc.) 
Retail customer disclosure violations 
Breach of privacy 
Aggressive sales 
Account churning 
Misuse of confidential information 
Lender liability 

Improper Business or 
Market Practices 

Antitrust 
Improper trade / market practices 
Market manipulation 
Insider trading (on firm’s account) 
Unlicensed activity 
Money laundering 

Product Flaws 
Product defects (unauthorized, etc.) 
Model errors 

Selection, Sponsorship 
& Exposure 

Failure to investigate client per guidelines 
Exceeding client exposure limits 

Advisory Activities Disputes over performance of advisory activities 

 

Table 7: Definition of Event Type Damage to Physical Assets 

Event-Type  
Category (Level 1) 

Definition 

Damage to Physical 
Assets 

Losses arising from loss or damage to physical assets from natural 
disaster or other events. 

Categories (Level 2) Activity Examples (Level 3) 

Disasters and other 
events 

Natural disaster losses 
Human losses from external sources (terrorism, vandalism) 
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Table 8: Definition of Event Type Business Disruption and System Failures 

Event-Type  
Category (Level 1) 

Definition 

Business Disruption 
and System Failures 

Losses arising from disruption of business or system failures. 

Categories (Level 2) Activity Examples (Level 3) 

Systems 

Hardware 
Software 
Telecommunications 
Utility outage / disruptions 

 

Table 9: Definition of Event Type Execution Delivery & Process Management 

Event-Type  
Category (Level 1) 

Definition 

Execution, Delivery & 
Process Management 

Losses from failed transaction processing or process management, 
from relations with trade counterparties and vendors. 

Categories (Level 2) Activity Examples (Level 3) 

Transaction Capture, 
Execution & 
Maintenance 

Miscommunication 
Data entry, maintenance or loading error 
Missed deadline or responsibility 
Model / system misoperation / Other task misperformance 
Accounting error / entity attribution error 
Delivery failure / Collateral management failure 
Reference Data Maintenance 

Monitoring and 
Reporting 

Failed mandatory reporting obligation 
Inaccurate external report (loss incurred) 

Customer Intake and 
Documentation 

Client permissions / disclaimers missing 
Legal documents missing / incomplete 

Customer / Client 
Account Management 

Unapproved access given to accounts 
Incorrect client records (loss incurred) 
Negligent loss or damage of client assets 

Trade Counterparties 
Non-client counterparty misperformance 
Misc. non-client counterparty disputes 

Vendors & Suppliers 
Outsourcing 
Vendor disputes 
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2. The bank is required to calculate the capital requirement as the sum of expected and 

unexpected losses unless it is able to prove that it has measured and accounted for the 

expected losses exposure. 

3. The measurement system adopted by the bank must be able to capture severe tail loss 

events and risk measures for different operational risk estimates must be added. 

4. To meet the soundness standard, any operational risk measurement system must include 

the use of internal data, relevant external data, scenario analysis, and factors reflecting the 

business environment and internal control systems. Banks must also have a credible, 

transparent, well-documented, and verifiable approach for weighting these elements. 

 Internal Data: the development of a reliable operational risk measurement system 

depends on the tracking of internal loss event data which is needed to match the 

bank risk estimates to its actual loss experience. A minimum five-year observation 

period of internal loss data is needed for internally generated operational risk 

measures. When the bank first moves to the AMA, a three-year historical data 

window is acceptable. The committee sets standards for a bank’s internal loss 

collection processes. 

 External Data: when a bank is exposed to severe losses, relevant external data must 

be used with information on the scale of business operations where the event 

occurred, information on the causes and circumstances of the loss events, or other 

information that would help in assessing the relevance of the loss event for other 

banks. The conditions for external data use must be reviewed periodically. 

 Scenario Analysis: is used in combination with external data to assess exposure to 

high severity events and the potential losses resulting from multiple concurrent 

operational risk loss events. This approach relies on the knowledge of experienced 

business managers and risk management experts to derive reasoned assessments of 

plausible severe losses. 

 Business Environment and Internal Control Factors: must be addressed in order to 

align capital assessments with risk management objectives and to directly identify 

improvements or declines in operational risk profiles. This directly reflects the 

quality of the bank’s control and operating environments. The committee sets 

standards for the use of these factors in a bank’s risk measurement framework. 
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Under the AMA, the recognition of insurance mitigation is limited to 20 % of the total operational 

risk capital charge calculated. The ability of a bank to utilize such risk mitigation is subject to 

compliance with criteria set by the committee. 

 

II. Principles for the Sound Management of Operational Risk 

In order to improve the effectiveness of operational risk management in the banking industry, the 

BCBS (2011) set out principles for the sound management of operational risk. These principles 

reflect the effectiveness of the board of directors and senior management in overseeing its portfolio 

of products, activities, processes, and systems. 

The Committee developed a set of eleven principles distributed as follows: 

1. The Fundamental Principles of Operational Risk Management 

“Principle 1: the board of directors should take the lead in establishing a strong risk management 

culture. The board of directors and senior management should establish a corporate culture that is 

guided by strong risk management and that supports and provides appropriate standards and 

incentives for professional and responsible behavior. In this regard, it is the responsibility of the 

board of directors to ensure that a strong operational risk management culture exists throughout 

the whole organization”. 

“Principle 2: banks should develop, implement and maintain a Framework that is fully integrated 

into the bank’s overall risk management processes. The Framework for operational risk 

management chosen by an individual bank will depend on a range of factors, including its nature, 

size, complexity and risk profile”. 

2. Governance 

a. The Board of Directors 

“Principle 3: the board of directors should establish, approve and periodically review the 

Framework. The board of directors should oversee senior management to ensure that the policies, 

processes and systems are implemented effectively at all decision levels”. 

“Principle 4: the board of directors should approve and review a risk appetite and tolerance 

statement for operational risk that articulates the nature, types and levels of operational risk that 

the bank is willing to assume”. 
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b. Senior Management 

“Principle 5: senior management should develop for approval by the board of directors a clear, 

effective and robust governance structure with well defined, transparent and consistent lines of 

responsibility. Senior management is responsible for consistently implementing and maintaining 

throughout the organization policies, processes and systems for managing operational risk in all of 

the bank’s material products, activities, processes and systems consistent with the risk appetite and 

tolerance”. 

3. Risk Management Environment 

a. Identification and Assessment 

“Principle 6: senior management should ensure the identification and assessment of the operational 

risk inherent in all material products, activities, processes and systems to make sure the inherent 

risks and incentives are well understood”. 

“Principle 7: senior management should ensure that there is an approval process for all new 

products, activities, processes and systems that fully assesses operational risk”. 

b. Monitoring and Reporting 

“Principle 8: senior management should implement a process to regularly monitor operational risk 

profiles and material exposures to losses. Appropriate reporting mechanisms should be in place at 

the board, senior management, and business line levels that support proactive management of 

operational risk”. 

c. Control and Mitigation 

“Principle 9: banks should have a strong control environment that utilizes policies, processes and 

systems; appropriate internal controls; and appropriate risk mitigation and/or transfer strategies”. 

4. Business Resiliency and Continuity 

“Principle 10: banks should have business resiliency and continuity plans in place to ensure an 

ability to operate on an ongoing basis and limit losses in the event of severe business disruption”. 

5. Role of Disclosure 

“Principle 11: a bank’s public disclosures should allow stakeholders to assess its approach to 

operational risk management”. 
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 2.1.3 The Basel III Framework 

Basel III is a 2009 international regulatory accord that introduced a set of reforms designed to 

mitigate risk within the international banking sector. It requires banks to maintain proper leverage 

ratios and keep certain levels of reserve capital on hand. Basel III framework, with its finalized 

post-crisis reforms, was a direct response to the economic crisis of 2008. The current date of Basel 

III implementation is effectively 1st of January 2023.  

Under Basel III framework, banks must meet the following capital requirements:  

 Common Equity Tier 1 must be at least 4.5% of risk-weighted assets at all times.  

 Tier 1 capital must be at least 6.0% of risk-weighted assets at all times.  

 Total Capital (Tiers 1 & 2 capital) must be at least 8.0% of risk-weighted assets at all times 

Basel III framework delivers the New Standardized Approach for measuring the minimum capital 

requirements for operational risk. This framework replaces all existing approaches in Basel II 

framework. 

This method is based on the following components: 

1. “Business Indicator (BI), which is a financial-statement-based proxy for operational risk”. 

2. “Business Indicator Component (BIC), which is calculated by multiplying the BI by a set 

of regulatory determined marginal coefficients (αi)”. 

3. “Internal Loss Multiplier (ILM), which is a scaling factor that is based on a bank’s average 

historical losses and the BIC”. 

Business Indicator 

The business indicator consists of  

 The interests, leases, and dividend component (ILDC) 

 The services component (SC) 

 The financial component (FC) 

Thus, the BI is calculated as: BI = ILDC + SC + FC 

BI = Min [Abs Interest Income	–	Interest Expense ; 2.25% Interest Earning Assets] + Dividend Income 

SC = Max [Other Operating Income; Other Operating Expense] + Max [Fee Income; Fee Expense]  

FC = Abs (Net P & L Trading	Book) + Abs (Net P & L Banking	Book) 

The terms in the formulas above are calculated as the average over three years: t, t – 1, and t – 2, 

where the absolute value of net items must be calculated first year by year and then averaged over 

the three years. Tables 10 and 11 summarize the components of the business indicator. 



32 
 

Table 10: Business Indicator Components ILDC and FC 

BI Component: Interests, Leases, and Dividend Component 

P&L  Description Typical sub-items 

Interest income 

Interest income from all financial 
assets and other interest income 
(includes interest income from 
financial and operating leases and 
profits from leased assets)  

• Interest income from loans and 
advances, assets available for sale, 
assets held to maturity, trading 
assets, financial leases and 
operational leases 
• Interest income from hedge 
accounting derivatives 
• Other interest income 
• Profits from leased assets 

Interest expenses 

Interest expenses from all financial 
liabilities and other interest 
expenses (includes interest 
expense from financial and 
operating leases, losses, 
depreciation and impairment of 
operating leased assets)  

• Interest expenses from deposits, 
debt securities issued, financial 
leases, and operating leases  
• Interest expenses from hedge 
accounting derivatives  
• Other interest expenses  
• Losses from leased assets  
• Depreciation and impairment of 
operating leased assets  

Interest earning 
assets 

Total gross outstanding loans, advances, interest bearing securities 
(including government bonds), and lease assets measured at the end of 
each financial year  

Dividend income 
Dividend income from investments in stocks and funds not consolidated 
in the bank’s financial statements, including dividend income from non-
consolidated subsidiaries, associates and joint ventures.  

BI Component: Financial 

Net profit (loss) on 
the trading book 

• Net profit/loss on trading assets and trading liabilities (derivatives, 
debt securities, equity securities, loans and advances, short positions, 
other assets and liabilities) 
• Net profit/loss from hedge accounting 
• Net profit/loss from exchange differences 

Net profit (loss) on 
the banking book 

• Net profit/loss on financial assets and liabilities measured at fair value 
through profit and loss 
• Realized gains/losses on financial assets and liabilities not measured at 
fair value through profit and loss (loans and advances, assets available 
for sale, assets held to maturity, financial liabilities measured at 
amortized cost) 
• Net profit/loss from hedge accounting 
• Net profit/loss from exchange differences 
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Table 11: Business Indicator Component SC  

BI Component: Services 

P&L  Description Typical sub-items 

Fee & commission 
income 

Income received from 
providing advice and services. 
Includes income received by 
the bank as an outsourcer of 
financial services. 

Fee and commission income from: 
• Securities (issuance, origination, 
reception, transmission, execution of 
orders on behalf of customers) 
• Clearing and settlement; Asset 
management; Custody; Fiduciary 
transactions; Payment services; 
Structured finance; Servicing of 
securitizations; Loan commitments 
and guarantees given; and foreign 
transactions 

Fee & commission 
expenses 

Expenses paid for receiving 
advice and services. Includes 
outsourcing fees paid by the 
bank for the supply of financial 
services, but not outsourcing 
fees paid for the supply of non-
financial services (e.g. 
logistical, IT, human 
resources) 

Fee and commission expenses from: 

• Clearing and settlement; Custody; 
Servicing of securitizations; Loan 
commitments and guarantees received; 
and Foreign transactions 

 

Other operating 
income 

Income from ordinary banking 
operations not included in 
other BI items but of similar 
nature (income from operating 
leases should be excluded) 

• Rental income from investment 
properties 
• Gains from non-current assets and 
disposal groups classified as held for 
sale not qualifying as discontinued 
operations (IFRS 5.37) 

Other operating 
expenses 

Expenses and losses from 
ordinary banking operations 
not included in other BI items 
but of similar nature and from 
operational loss events 
(expenses from operating 
leases should be excluded) 

• Losses from non-current assets and 
disposal groups classified as held for 
sale not qualifying as discontinued 
operations (IFRS 5.37) 
• Losses incurred as a consequence of 
operational loss events (eg fines, 
penalties, settlements, replacement 
cost of damaged assets), which have 
not been provisioned/reserved for in 
previous years 
• Expenses related to establishing 
provisions/reserves for operational 
loss events 
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Business Indicator Component 

The BIC is the product of the BI and the marginal coefficients. Table 12 shows these parameters 

for each of the three buckets. The marginal coefficients increase with the size of the BI.  

Table 12: BI Range and Coefficients 

Bucket BI Range (€ bn) BI Marginal Coefficients (αi) 

1 ≤ 1 12 % 

2 1 < BI ≤ 30 15 % 

3 > 30   18 % 

 

Internal Loss Multiplier 

ILM = ln (exp (1) – 1+	 LC/BIC 0.8) 

The operational risk capital calculation is affected by the internal loss multiplier which represents 

the bank’s internal operational loss experience. The Loss Component (LC) is equal to 15 times the 

average annual operational risk losses incurred over the previous 10 years.  

If the LC and BIC are equal, then the ILM is equal to 1. While, if the LC is greater than the BIC 

then the ILM is greater than 1 which is the case of a bank with losses that are high relative to its 

BIC. Thus, it is required to hold higher capital due to the incorporation of internal losses into the 

calculation methodology.  

On the contrary, if the LC is smaller than the BIC, then the ILM is less than one which is the case 

of a bank with losses that are low relative to its BIC. Thus, it is required to hold lower capital due 

to the incorporation of internal losses into the calculation methodology.  

The calculation of average losses in the Loss Component must be based on 10 years of high-quality 

annual loss data, the collection of which is subject to qualitative requirements. However, banks 

that do not have 10 years of high-quality loss data may use a minimum of five years of data to 

calculate the Loss Component (this exception does not apply to banks which are currently using 

the AMA). 

Minimum Operational Risk Capital 

Under the Standardized Approach, the operational risk capital is the product of the BIC and ILM. 

ORC = BIC × ILM 

For banks in bucket 1, the internal loss data does not affect the capital determination since the 

ILM is equal to 1 and thus ORC = BIC = 12 % × BI. 
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General Criteria for the Loss Component 

 Banks must have documented procedures and processes for the identification, collection, 

and treatment of internal loss data which must be linked to current business activities, 

technological processes and risk management procedures. 

 Banks’ internal loss data must be all-inclusive and must capture all material activities and 

exposures from all applicable subsystems and locations. A €20,000 minimum threshold for 

including a loss event in the data collection and calculation of average annual losses is set. 

 Banks must collect the following information regarding operational risk events: date of 

occurrence, date of discovery, and the date (or dates) when a loss event results in a loss, 

reserve, or provision against a loss being recognized in the bank’s profit and loss (P&L) 

known as date of accounting. Banks must also collect information on recoveries of gross 

loss amounts and the drivers or causes of the loss event.  

 Operational loss events that relate to credit risk, but are not accounted for in credit risk 

RWAs should be included in the loss data set.  

 Operational risk losses related to market risk are treated as operational risk for the purposes 

of calculating minimum regulatory capital under this framework and will therefore be 

subject to the Standardized Approach for operational risk. 
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2.2 Research in Operational Risk  

Embrechts et al., (2003) examine the VaR approach for calculating capital requirements for 

operational risk under Basel II. The capital charge is the summation of the VaR at confidence level 

α of each of the different business lines required by the BCBS. VaR can be defined as “a statistical 

estimation of a portfolio loss with the property that, with a given (small) probability, we stand to 

incur that loss or more over a given (typically short) holding period”. It is important to note that 

VaR techniques become delicate with confidence levels of 99.9% and beyond (as in operational 

risk) since there is barely repetitive data to predict the losses of such magnitude. VaR estimates 

can be derived by combining historical simulation and Extreme Value Theory techniques. Since 

operational risk measurement involves extreme loss events, the authors’ emphasis was directed to 

the assumptions underlying EVT. The authors use findings of a simulation study which compares 

the estimated quantiles with the corresponding theoretical ones for known distributions for which 

(high) quantiles can be calculated explicitly with datasets of {25, 50, 100, 200} exceedances. Three 

types of loss distributions are applied which are medium-tailed, heavy-tailed with infinite moments 

of order greater than or equal to two, and heavy-tailed with infinite moments of order greater than 

or equal to one. Thus, the Lognormal Distribution and Pareto Distribution with θ = 2 and θ = 1 are 

adopted respectively. The results show that larger sample sizes are needed with the heavier tails to 

obtain the desired accuracy. For a total number of 287 losses over a one year period, if the loss 

data are of the first type, i.e. LD, then estimating the VaR at the 99.9% level with 287 observed 

data points could be justified. While, if the loss data are of the second class type, i.e. PRD θ = 2, 

then the VaR at 99% confidence level can be sufficiently estimated with the targeted accuracy. 

However, for a 99.9% confidence level, 287 observations are not enough and 670 loss values or 

more are needed. Finally, considering that the loss data are of the third class type, i.e. PRD θ = 1, 

287 observations, assumed to be iid and repetitive, are even not enough to estimate the VaR at the 

99% confidence level. The estimation of high quantiles is an inherently difficult problem. The 

authors highlight that the best way to gain control over operational risk is to increase the quality 

of control over the possible sources of huge operational losses because the latter cannot be 

considered as simple accidents. Thus, the authors conclude that Pillar 2 and in part Pillar 3 of Basel 

II are extremely important, and that Pillar 1 should not be overemphasized. 

 



37 
 

Couto and Bulhoes, (2008) apply the BIA, the SA, and the ASA to quantify operational risk capital 

charge for seven eminent financial institutions in Portugal. Gross income values were extracted 

from the annual bank reports for 2002 and until 2006. The authors note that the AMA of Basel II 

was not applied due to the impossibility of retraction of internal data on operational losses. For the 

ASA, loans and advances for retail and commercial banking were also extracted. Results show that 

the SA generates a decrease in the capital required in all seven institutions as compared to the BIA. 

Thus, the progression of a bank from BIA to SA under Basel II is recommended. Whereas for 

ASA, the results were variable, some institutions witnessed a decrease in the capital requirement 

while others showed an increase. The progression directly from BIA to ASA generates significant 

reductions in capital charge for most of the institutions. Consist with the literature, the authors 

highlight the benefits of progressing from BIA to SA, yet reservations are noted regarding the 

factors assigned by Basel II for each business line. In addition, the authors note that the transition 

directly from BIA to ASA is advantageous in most situations. Finally, the authors emphasize the 

obstacles involved in analyzing operational risk including the correct quantification of losses, the 

inclusion of all operational risk situations, and the relevance of recorded risks over time. 

 

Moosa, (2008) criticizes the AMA proposed by the BCBS and considers it as problematic. There 

is no actual agreement of what constitutes this approach. The AMA requires banks to build their 

own internal models to calculate the capital charge for operational risk, and the motivation 

provided by the Committee for banks to adopt the AMA is that it yields lower capital charges as 

compared to the BIA or the SA. Moosa discourages banks to adopt the AMA since he considers 

that there is no understandable reason it would produce lower capital charges. The author addresses 

his critique of the AMA first by examining what constitutes this approach. There is no clear list of 

techniques which fall under the AMA. The BCBS proposes the Loss Distribution Approach, the 

Internal Measurement Approach, the Scorecard Approach, and the Scenario Based Approaches. 

However, authors argue that the AMA is not restricted to the mentioned techniques, as it could be 

based on any technique which leads to the precise measurement of operational risk exposure. The 

AMA provides flexibility for banks to develop their own internal models, but this leaves the 

approach ambiguous. Moosa also tackles the issue of whether the proposed techniques under the 

AMA are treated as independent and considered alternatives or they must be used jointly and are 

considered as complementary. The Committee, in 2003, considers that the SCA and the SBA can 
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be used to supplement the data used by the LDA or that they can be used separately. However, in 

2006 the Committee considers that all techniques must be used jointly and that the bank’s approach 

for weighting the four fundamental elements (internal data, external data, scenario analysis, and 

business environment and internal control factors) should be internally consistent. Furthermore, 

Moosa considers that the AMA is not viable in terms of costs and benefits and that it has brought 

many complaints from banks because it is too expensive and complex. 

 

Esterhuysen et al., (2008) calculate regulatory capital under the AMA based on a VaR model using 

actual operational loss data from a retail bank in South Africa. The LDA was used to calculate the 

VaR. The data used, which is regarded as internal loss data, includes the operational losses and the 

gross income for the last three years. The SA was also adopted in calculating the capital charge. 

Since the data used is that of a retail bank, thus only one business line (retail banking) is applied. 

Accordingly, the regulatory capital using the SA is calculated as 50,891,219 R. Under the AMA, 

the Poisson distribution is used to model the frequency, while the Exponential Distribution is used 

to model the severity. The aggregate loss distribution is determined through a Monte Carlo 

simulation. Finally, the percentiles are calculated in order to determine the VaR. For a 99.9% 

confidence level, as per Basel II requirements, the capital charge is calculated as 13,384,748 R. 

The authors note the big reduction in operational risk capital requirement when shifting from the 

SA to the AMA. They relate this to the fact that the SA is based on gross income which is a poor 

indication of the real operational risks occurring in a bank. The capital value under the AMA will 

be a truer reflection of the operational risk a bank faces. 

 

Gregoriou, (2009) classifies internal models developed by banks under the AMA to two categories, 

the LDA and the SBA. The LDA is a parametric method which is based on previous observed 

internal loss data possibly supplemented with external data. The LDA involves an estimation of 

the frequency distribution for the occurrence of operational losses in addition to a severity 

distribution for the economic impact of the individual losses. The two distributions are combined 

using n-convolution of the severity distribution with itself, and n is a random variable that follows 

the frequency distribution. The main obstacle for developing LDA models is the availability of 

loss data points, particularly large ones. Financial institutions are somewhat exempt of this issue 

since its activities include a lot of interaction with other parties and thus operational errors are 
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usually identified. In many cases, such as new business environments, small banks, and specific 

operational risk classes, employing a comprehensive LDA model would not be feasible due to the 

difficulty in obtaining enough relevant data points. In such cases SBA under the AMA are adopted, 

which are based on experts’ opinions. Similar to the LDA, the SBA combines frequency and 

severity to quantify the aggregate loss distribution however the difference is that the estimation is 

based on experts’ about different scenarios. These scenarios are determined first by describing 

possible adverse events realizing operational risks, this is done by banks. Then, experts provide 

their opinions on the frequency and severity of the events described. Thus, the chief obstacle is the 

reliability of the experts’ estimation. It is essential that the SBA yield statistically compatible 

results with the LDA. The most suitable technique to combine LDA and SBA under AMA is the 

Bayesian inference in which the experts set parameters of the loss distribution. 

 

Angela et al., (2009) apply the LDA to quantify operational risk in a financial institution (bank or 

insurance company) using empirical observations from OpData dataset of OpVantage (division of 

Fitch Risk Management). The Expectation and Maximization algorithm is implemented on the 

dataset to overcome the fact that only operational risk losses exceeding $1 million are recorded. 

The database includes loss events from worldwide firms corresponding to the financial services 

sector. This analysis considers the period from 1994 till 2006 with a total of 1,025 records. Losses 

are categorized into seven event types as per the Basel II Accord. However, only five event types 

are considered due to lack of data in business disruption and system failures, and damage to 

physical assets event types. The PD is used to estimate the frequency of loss, while for severity 

the LD is used in the left tail and center, whereas the Generalized Pareto distribution is used for 

the right tail. For each event type, the Monte Carlo simulation is used to estimate the aggregate 

loss distribution while Value at Risk and Expected Shortfall are used to quantify operational risk 

capital charge. Capital charges are calculated for each event type at confidence levels 95%, 99%, 

and 99.9%. The total operational risk capital is quantified in three cases, where in the first case 

perfect dependence is assumed while in the second, independence between two event types is 

assumed. In the third case dependence structure between event types is modeled using a t-Student 

copula. The results, expressed as a percentage of total assets, show that the application of the t-

Student copula produces capital charges as expected. That is, the values fall between the minimum 

(assumption of independence) and the maximum (assumption of perfect dependence). Thus, the 
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authors note the importance of considering the dependence between event types. Furthermore, 

since the results were presented as a percentage of the total assets at different confidence levels, 

this allows financial institutions to use these results to measure their own operational risk capital 

charges each based on its total assets. Finally, the authors highlight the importance of the quality 

of operational loss databases and its impact on the final results. The authors recommend that a 

financial institution should not rely on its internal data only, yet it must integrate with good quality 

databases. 

 

Momen et al., (2012) model the operational risk of an Iranian private bank based on the LDA. The 

authors highlight that Iranian banks suffer from loss data unavailability, unreported large losses, 

and lack of attention to dependence structure of operational risks. Starting with frequency 

distribution, the Negative Binomial Distribution was selected for all risk categories based on the 

results of three statistic hypothesis tests. While regarding severity distribution, discrimination 

between ordinary (high frequency and low impact) and large (low frequency and high impact) 

losses has been considered. Furthermore, SCA was implemented to model the tail of the severity 

distribution since large disastrous losses such as bankruptcy have not been reported in Iranian 

banks. In this approach, bank experts provide scenarios about frequency and severity of large 

losses in 1 year. As per the Basel II Accord, a combination of the eight business lines and the seven 

event types was adopted thus generating a 56-cell matrix. However, due to the scarcity of data, 

only four cells were used for modeling in this study covering two business lines which are Retail 

and Commercial Banking with two event types which are Business Disruption and System Failures 

and Execution, Delivery, and Process Management. Monte Carlo simulation was used to estimate 

the aggregate operational losses for each cell. Finally, dependence among aggregate losses is 

modeled by a multidimensional t-copula. The Basel Committee has assumed a perfect positive 

dependence between risks since it mentions calculating the total capital charge of the bank by 

simple summation of the capital charges of all 56 risk categories. However, banks are interested 

in considering the dependence structure to yield a lower capital charge. Techniques used in 

modeling dependence between variables include correlation, yet studies show the superiority of 

copula over correlation for modeling dependence due to higher flexibility of the copula and its 

ability in modeling dependence between extreme events which are the central concern in 

operational risk modeling. The results modeled with t copula and a 99.9% confidence level 
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generated a Capital at Risk of Karafarin Bank almost equal to 7.4 × 1011 IRR. As compared with 

other approaches under Basel II, such as the BIA or the SA, the model requires much less capital 

which was consistent with the bank’s management presumptions. Thus, using the model allows 

banks to use the extra unallocated capital for creating further income within a controlled level of 

operational risk. The authors recommend considering other multivariate copulas and modeling 

operational risk with other methods under the AMA such as Bayesian approaches, neural networks, 

or Fuzzy modeling. 

 

Pietro et al., (2012) apply the double transformation kernel estimation to approximate the severity 

distribution of operational risk. Noting the difficulties in estimating the severity distribution and 

its significance on the capital requirement, the non-parametric kernel estimation is proposed as an 

alternative to parametric estimations. The analysis is based on double transformation to improve 

the severity estimation, and the operational losses data sample of a medium-sized Spanish Savings 

bank is used. Double transformation kernel estimation involves carrying out an initial processing 

of the data by using the distribution function of the generalized Champernowne with three 

parameters. Thus, the transformed variable has a distribution that is positioned around a Uniform 

distribution (0, 1). Successively, the data is transformed again by using the inverse of the Beta 

function (3, 3). Finally, the result of this double transformation will have a distribution close to 

that of Beta (3, 3). The data used is internal loss data in retail banking ranging from 2004 to 2006. 

Parametric approaches in estimating the severity distribution are applied for comparison purposes, 

namely Weibull Distribution, LD, and GPD. The Cramer-Von Mises (CVM) and the Kolmogorov-

Smirnov (KS) goodness-of-fit tests are implemented, the results of which show that the distribution 

of the double transformation kernel estimation provides the best fit to the data. Next, the severity 

distributions obtained are aggregated with a PD to determine the operational VaR. Results show 

that VaR approximated using parametric approaches tends to be overestimated or underestimated, 

while the double transformation kernel estimation presents the more realistic estimation compared 

with the empirical estimation. Thus, the authors highlight the use of the double transformation 

kernel estimation as a substitute for the estimation of operational risk loss severity distribution as 

it comprises all tail behavior and includes data of high-frequency small losses which form the body 

of the distribution.  
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Lin et al., (2013) apply the BIA, the SA, and the AMA to quantify the operational risk capital 

requirement of a bank in Taiwan with all of its branches and headquarters. Loss data of the bank 

used in this study ranges from January 2004 to December 2006 with a total of 320 records and 

total loss amount of $16.9 million. Since the Basel Committee requires data over 3 years for banks 

using AMA for the first time, EVT is used on the operational loss data of one case bank to examine 

the operational VaR. Results show that the capital charge calculated by the SA is $134.01million 

which is less than that of the BIA, $142.1 million. Under the AMA, EVT is used to estimate the 

VaR of the operational loss using the Peak over Threshold method. The GPD is used in which any 

value exceeding the threshold meets the distribution. The threshold is determined from the loss 

curve as $64,516.13. The Maximum Likelihood Method and the Least Square Method are used to 

estimate the parameters of the GPD, the LD, and the PD. The parameters are imported into R 

platform and 100,000-time stimulations are conducted, and the loss exceeding probability (EP) at 

a 99.6% confidence level is estimated. Different results are obtained for the estimation models 

used, however the highest capital charge is determined as $16.7 million using the PD at 99.9% 

confidence level which is drastically less than that of the BIA and SA. Thus, the implementation 

of the EVT to estimate the operational VaR and consequently to calculate the operational risk 

capital charge for banks will decrease the regulatory capital required for banks to hold in large 

amount. The authors note that within the banking industry, the BIA and SA are generally 

employed, and that there has been no researcher adopting the AMA. However, the adoption of the 

GPD or PD model of the EVT under the AMA results in a radically less amount in operational risk 

capital charge. 

 

Corrigan et al., (2013) investigate the current state of operational risk assessment frameworks and 

their development to meet the emerging needs of the future. The chief research findings include 

firstly that operational risk is a material risk and it is one of the main reasons for organizational 

failure. It was with Basel II, in 2004, that banks started quantifying their operational risk and 

insurance companies began to follow in the same path. The value of an effective operational risk 

management framework is increasing in the development of resilient organizations. Secondly, it is 

important to note the nature of operational risks which are highly skewed. Even though the number 

of operational risk loss events are characterized with low severity, however total operational losses 

are dominated by high-severity and low-frequency events. Thus, any operational risk framework 
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must accommodate for the aforementioned loss event types. Thirdly, the authors note advantages 

of scenario and statistical modelling approaches such as the LDA over the basic indicators and 

standard formulas which are blunt tools. However, improvement is required in these approaches 

to respond to changing operational risk levels during financial crises. Fourthly, the leading models 

in operational risk are structural or casual-based models. For instance, the Bayesian network is 

able to flow information in both directions through the Bayesian inference and thus allows for the 

vigorous determination of operational risk limits which would be consistent with operational risk 

levels. In addition the authors address the use of phylogenetic techniques in assessing operational 

risk events. Phylogenetic techniques involve the objective assessment of the relationships of the 

characteristics of operational risk and facilitate a structured way for including new and emerging 

risks. Finally, the authors discuss the divergence of regulatory frameworks in assessing operational 

risk and quantifying the corresponding capital charge and highlight the value of establishing a Loss 

Data Collections process. 

 

Shevchenko and Peters, (2013) review proposed methods for combining different data sources as 

a regulatory constraint of the LDA under the AMA of Basel II. The LDA requires banks to quantify 

distributions for frequency and severity of operational risk losses for each cell of the 56-cell matrix 

combining the eight business lines and seven event types highlighted in Basel II Accord. One of 

the criteria which banks using AMA must satisfy includes the use of internal data, relevant external 

data, scenario analysis through expert opinions, and factors reflecting the business environment 

and internal control systems. Yet, the main obstacle remains the lack of quality data, since in the 

past banks did not collect operational risk loss data. Furthermore, the challenge is in combining 

the different data sources which is addressed in this work. Starting with internal data, it must be 

collected over a period of five years, but a three year period is accepted for banks starting the 

AMA. The data must be mapped over all the cells of the 56-cell matrix. Also, a reporting threshold 

of the order of 10,000 Euros can be adopted. For internal data, requirements include information 

on gross loss amounts and any recoveries, date of the event, and information regarding the drivers 

of the loss event. In regards to external data, it must include actual loss amounts, information on 

the scale of business operations where the event occurred, and information on the causes and 

circumstances of the loss events. External databases provide industry data, however the data suffer 

from a survival bias since the data of collapsed companies are not included. Thirdly, for scenario 
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analysis, Basel II requires banks to use scenario analysis in combination with internal and external 

data to assess exposure to high severity events. Scenario analysis is very subjective since it 

involves opinions of experienced business managers and risk management experts in the 

identification and analysis of risks. Most commonly, opinions are collected on distribution 

parameters, the number of losses with the amount to be within some ranges, the frequency of the 

losses and quantiles of the severity, and how often the loss exceeding some level may occur. 

However, expert elicitation remains one of the main challenges in operational risk due to the 

various backgrounds of managers which might create some misunderstandings. Additionally, 

another problem is the fact that scenario analysis is done at the loss process level while external 

data is collected for the risk cells of the matrix, this creates problems in data combining. 

Furthermore, since Basel II requires that the risk measure used for capital charge should 

correspond to the 99.9% confidence level for a one-year holding period, data sufficiency is another 

aspect which must be considered. The amounts of data on annual losses needed to meet the 

aforementioned requirement are not available, even from the largest databases. As a result, 

parametric models must be adopted. Finally, factors reflecting the business environment and 

internal control systems must be incorporated as well. Thus, the major obstacle lies in combining 

data from the different sources discussed above for model estimation. The proposed methods 

include Ad-hoc combining, parametric and nonparametric Bayesian methods, and general non-

probabilistic methods such as Dempster-Shafer theory. Ad-hoc combining is primarily used to 

combine internal data, external data and expert opinions. The minimum variance estimator 

theorem is applied. Assuming that the estimators are unbiased is considered reasonable when 

combining estimators from different experts, or from expert and internal data. However, it is 

doubtful when applied to combine estimators from the external and internal data. Regarding 

Bayesian methods, the Bayesian inference method can be used to combine different data sources 

in a consistent statistical framework. Moreover, nonparametric Bayesian approaches could be 

adopted such as the Dirichlet process which represents a probability distribution of the probability 

distributions. Lastly, the Dempster-Shafer theory is proposed as a method for combining data from 

different sources particularly in situations where there is little information on which to evaluate a 

probability or when information is ambiguous or conflicting.  Researchers highlight that the use 

of p-boxes and Dempster-Shafer structures in risk analyses offers many significant advantages 

over a traditional probabilistic approach. However, it might be problematic to justify application 
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of Dempster’s rule to combine statistical bounds for empirical data distribution with exact bounds 

for expert opinions. The authors concludes that Bayesian framework is suitable to combine 

different data sources such as internal data, external data and expert opinions, and to account for 

the relevant uncertainties. 

 

Lu et al., (2013) implement the Semi-linear credibility theory in operational risk measurement 

using Chinese commercial banks’ data from 1990 to 2011. Credibility theory is widely employed 

in non-life insurance. It uses the previous loss information of an insured to estimate the cost of 

providing references for future pricing. Credibility theory was proposed by Buhlmann and it could 

be adopted by banks to calculate operational risk capital requirements. Semi-linear credibility 

theory is needed to transform large claims before integrating the original and transformed data in 

estimating the credibility premiums of the next period. That is, because when large claims occur, 

the credibility weights are rather small for small and medium insurance contracts thus credibility 

premiums will vary which is inconsistent. As a first step, a threshold must be selected as a 

truncation point since the operational loss data is characterized by a fat tail. The Hill plot, mean 

excess plot, and kurtosis methods are used to determine the threshold value. Moreover, two 

threshold values are selected empirically to improve accuracy. The Chi-square test of goodness of 

fit is implemented to select the best threshold value. The MLE is used to generate the parameters 

of the POT model. An evaluation of the six groups of banks demonstrates that the estimations 

differ for the tail of the banks’ internal data. Results indicate that the operational risk capital reserve 

must be greater than the mean of the one-year operational risk loss for the following year. Thus, 

the Semi-linear credibility model is applied to integrate the internal and external loss data of the 

six groups of banks to generate the mean operational risk loss of the six groups of banks separately. 

Subsequently, the PD is used for frequency distribution and VaR values are generated. Operational 

risk capital charge is also calculated using different approaches such as the LDA under the AMA, 

and the BIA. Results show that the Semi-linear credibility model will save approximately Yn 245.5 

billion in capital for Chinese commercial banks every year when compared to the AMA, and it is 

better than the BIA since it will also save between Yn 2.6 billion to Yn 59.2 billion in capital. The 

authors highlight that the Semi-linear credibility model increases the profitability and enhances 

the competitiveness of Chinese commercial banks.  
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Rahman et al., (2014) present the Bayesian inference method for the modeling and estimation of 

operational risk in a bank. The dataset used belongs to the ET4, clients, products, and business 

practices where the simulated bank data has 152 internal and external loss datasets. The loss data 

is categorized over 16 risk cells which are then related to the eight business lines detailed by the 

Basel Committee. Regarding the estimation of frequency and severity prior, MLE procedure is 

used to estimate the prior gamma distribution parameters α and β, and the prior normal distribution 

parameters μ and σ. The prior distribution parameters estimated are then used for the estimation 

of frequency and severity posterior distributions for each cell. The Poisson frequency parameter λ 

and log-normal severity parameter μ uncertainties are taken into consideration. The entire ET4 loss 

data is fitted into a LD to determine a point estimation of the standard deviation which is used in 

determining the posterior distributions of the parameters in addition to the frequency and severity 

distributions. Monte Carlo simulation is conducted with a K of 1,000,000 for each of the 16 cells. 

Regarding the high severity losses, they are broken into six buckets. Only buckets 4 through 6 are 

considered since they cover the higher loss levels which are $1M – $5M in bucket 4, $5M – $25M 

in bucket 5, and losses higher than $25M are in bucket 6. Buckets 1 through 3 are ignored since 

those losses are already included by the internal and external data. The bucket frequencies of high 

severity losses are defined by bank experts each year. The same Monte Carlo simulation is also 

conducted for this structured scenario. The loss data, internal and structured scenario, are merged 

and added to get the aggregated total which is then sorted by the level of severity. The capital 

charge is calculated for a confidence level of 99.9%, 99.93%, and 99.97%. For comparison, the 

capital charge values are then determined using frequentist methods which do not include the effect 

of parameter uncertainty while estimating the capital requirement. The results from both 

approaches, Bayesian inference and frequentist methods, are rather similar with the frequentist 

approach estimating slightly higher capital charge values. The authors highlight that the main 

advantage of Bayesian inference is that it takes into consideration the parameter uncertainties. 

 

Zhu et al., (2014) address the severity distribution in the LDA by proposing a nonparametric 

approach based on Cornish-Fisher expansion for operational risk modeling. Since the choice of 

severity distribution has a distinct impact on the capital requirement, as compared to the frequency 

distribution, an inadequate choice would lead to overestimated or underestimated capital charges. 

In most cases, researchers use parametric approaches to estimate the severity distribution such as 
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the LD, WD, and ED which fit high-frequency and low-severity loss events. However, the tail of 

the severity distribution, which includes the low-frequency and high-severity losses, cannot be 

fitted with such distributions. Thus, tail distributions such as the g-h distribution or the α-stable 

distribution are employed. Furthermore, the EVT is also employed, however incorrect threshold 

selections for the start of the tail lead to compromised results. Thus, under the LDA, different 

severity distribution assumptions results in noteworthy differences in the capital charge calculated. 

The commonly used distributions mentioned above either cannot fit both the body and the tail or 

cannot determine an objective threshold value. Nonparametric approaches on the contrary, do not 

assume any particular severity distribution. Accordingly, the Cornish-Fisher expansion is adopted 

to estimate severities under the LDA framework. Cornish-Fisher expansion is a mathematical 

expansion which is used to approximate the quantiles of a random variable based on its first few 

cumulants or moments, it does not require a predetermined distribution to fit the loss severity of 

operational risk. The standard normal distribution along with the Cornish-Fisher expansion is used 

to produce samples of severity which are used in a Monte Carlo simulation to sketch the annual 

operational risk loss distribution. Figure 1 summarizes the procedure of the proposed framework. 

VaR is used to measure the magnitude of operational risk. 

 

Figure 1: Summary of the LDA Procedure 

The data used in this research is from an operational risk database of Chinese banking spanning 

from 1994 to 2012 with a total of 2132 collections. Each record is manually searched, labelled, 

and sorted out from public resources, such as the newspapers, the internet, and court documents. 

The end time and the loss amount are exacted from the database. Regarding frequency distribution, 

the NBD is selected based on the results of the KS test. After completing the procedure of the 

framework described above, results show that the VaR at 99.9% ranges from 67 to 13290 billion 

CNY. It is important to note that the order of Cornish-Fisher expansion radically affects the 

magnitude of VaR. where the larger the order of Cornish-Fisher expansion, the more accurate the 



48 
 

results are. When higher order moments, such as fourth and fifth moments are added in the 

expansion, VaR converges to about 82 billion CNY. The authors highlight that the lognormal 

distribution only uses information of the first and second moments, while the suggested approach 

is able to include the information of high order moments. Thus, the authors conclude that the LDA 

with the Cornish-Fisher expansion for severity distribution is capable of yielding a more accurate 

operational risk capital charge. 

 

Vukovic, (2015) demonstrates an operational risk model by implementing the GPD and the Monte 

Carlo simulation. A random number generator is used, due to the lack of sufficient data, to simulate 

the events such that extreme events do not occur frequently. The PD is selected to model the 

frequency, while for severity, the body and the tail are modeled separately. Based on EVT, a 

threshold μ is determined to separate the body from the tail. Thus, the LD is used to model the 

severity of the body, while the GPD is used to model that of the tail. Furthermore, the convolution 

method is used, through Monte Carlo simulation, with the frequency and severity distributions to 

obtain the annual loss distribution. A high threshold value μ is set where the parameters are 

estimated on excess over threshold using probability weighted moments (mean excess function). 

Consequently, the Q-Q plots demonstrate that the tail of the severity distribution is characterized 

by a GPD. A Student t-copula is used for the overall loss distribution since it is the combination 

of Lognormal and GPD. R software is used to conduct the convolution method and to generate the 

overall loss distribution with VaR results. The author highlights that the presented work represents 

a review of the state of the art techniques and serves as a model for quantifying operational risk in 

insurance and financial institutions.  

 

Han et al., (2015) apply the POT model to quantify operational risk in Chinese commercial banks 

using operational loss data from 1995 till 2012. The POT requires the selection of a threshold, 

which is a critical step, as it impacts the scale and shape parameters of the GPD. An optimal 

threshold value must be selected by balancing the relationship between bias and variance. The 

Anderson-Darling statistic is used for threshold testing. The data sample used is composed of 533 

operational loss events from Chinese commercial banks during the period of 1995 till 2012. The 

data shows that internal fraud is the main source of operational risk. Four threshold values are 

selected using the mean excess plot, and the MLE is used to estimate the corresponding parameters 
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of the GPD. Based on the results of the Anderson-Darling statistic, a threshold value of 75,000 is 

selected. VaR and Expected Shortfall are calculated using this threshold at confidence levels of 

95%, 99%, 99.5% and 99.9%. Consistent with Basel II, a confidence level of 99.9% is selected 

and the operational risk capital requirement is 13,922 million RMB. The authors conclude that 

commercial banks need to strengthen their internal control to decrease internal fraud. The authors 

also highlight the importance of implementing computer technology to discover illegal operations 

and thus decrease corresponding bank losses in real time.  

 

Bajaj, (2016) estimates the operational risk capital charges (ORCC) of public and private sector 

banks in India using the BIA and the SA from 2003 till 2013. For the BIA, data of the total period 

of 10 years is used, while for TSA since 2006 was the first year on segment reporting as per the 

Reserve Bank of India (RBI) thus data of the total period of 7 years only is used. Collection of data 

was conducted through the RBI website, Indian Banks Association’s Performance Highlights, and 

annual reports of the banks included in this work. The period from 2003 till 2013 is divided into 

eight phases under BIA and five phases under SA where each phase covers 3-year positive average 

gross income. Furthermore, a bank’s Capital Adequacy Ratio (CAR) and Tier 1 capital ratio are 

examined to assess the impact of operational risk capital charges. Results show how ORCC differs 

based on a bank’s size regardless of the risk management system adopted. A comparison between 

private and public section banks shows that a considerable proportion of the ORCC is held by 

public sector banks. It is important to note that capital charges are higher under BIA, as compared 

to SA. Also, variations in business size and bank income levels influence the GI levels and 

consequently the ORCCs. In regards to CAR and Tier 1 capital, the analysis shows a decline due 

to the incorporation of additional ORCCs across Indian public and private sectors banks over the 

years. The author notes that banks which want to use SA must have a well well-defined business 

line mapping framework to avoid the burden of high beta factors. 

 

Wang et al., (2017) present the LDA with Piecewise-defined Frequency Dependence (LDA-PFD) 

to calculate the operational risk capital of the entire Chinese Banking system based on the Chinese 

Operational Loss Database (COLD). Under Basel II and within the AMA, the LDA is the most 

common. However, the LDA holds many setbacks mainly in the severity distribution component 

of operational risk as compared to the frequency distribution component which does not have as 
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much of an impact on capital charge. Operational risk loss distribution has a fat-tail characteristic 

since the loss is minor in most cases yet major in some extreme cases. Thus, loss events due to 

operational risk are divided to two categories which are the high-frequency low-severity and low-

frequency high-severity loss events. Furthermore, as the Basel Committee divides banks’ business 

activities into 8 business lines, dependencies between these lines must be studied which are the 

frequency dependence, severity dependence, and loss distribution dependence. The dataset used 

consists of 2132 records ranging from 1994 to 2012 collected from publicly available information 

sources. The occurrence of operational risk events mostly appears in three business lines which 

are Retail Banking (1145 times), Commercial Banking (619 times), and Payment and Settlements 

(263 times). Other business lines are discarded since loss events in them does not exceed 30 times. 

From the data, the end time, loss amount in CNY, and business line type are used for the three 

business lines. The aforementioned data is first used to determine a proper threshold which is 200 

million CNY based on the mean excess plot. A threshold is selected to divide the data since the 

frequency and severity distributions of body and tail of operational risk loss data are different. 

Results also show that the NBD is better for high-frequency low-severity data while the PD is 

better for low-frequency high-severity data. Moreover, the Skewed Generalized Error Distribution 

can fit the high-frequency low-severity data well while the Logarithmic Normal distribution fits 

the low-frequency high-severity data better. Regarding the copula function, results show that the t 

copula fits the data better for body and tail as compared to the Gaussian copula. Finally, the Monte 

Carlo simulation is used to calculate the operational risk capital charge for the Chinese banking 

system at different confidence levels. Results show that the capital charge is 76 billion CNY at 

99.9%. The capital charge is also calculated at 99.9 % using the BIA, LDA, loss distribution 

approach simply considering frequency dependence of the entire data (LDA-FD), and loss 

distribution approach based on piecewise-defined distribution but not considering dependence 

(LDA-PD). Results show that the LDA-PFD approach adopted yields the lowest capital 

requirements for operational risk which is favored by banks. The authors conclude that the LDA-

PFD can obtain more accurate results as compared to the LDA, LDA-FD, and LDA-PD since it 

makes the distribution fitting more accurate and it can capture a more precise correlation structure. 

 

Tharwat et al., (2018) propose an improvement to the LDA using Fuzzy numbers. The authors 

note that the LDA is the most common under the AMA, yet they highlight that it suffers from 
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numerous setbacks such as problems related to combining data from different sources, 

uncertainties in the estimated capital due to subjectivity in the parametric model assumption, and 

its dependence on past conditions which are assumed to extend to the future. Among other reasons, 

the authors were motivated to improve the LDA through Fuzzy numbers. The proposed 

improvement is titled Triangular Fuzzy Number-Loss Distribution Approach (TFN-LDA). In an 

attempt to avoid using specific distribution or assumptions during estimation of the expected 

operational loss, operational risk frequency and severity can be expressed as triangular fuzzy 

numbers. Triangular fuzzy number was used such that the triplet [a, b, c] can be viewed as the 

[minimum, average, maximum] expected loss. For both frequency and severity, the lower 

(optimistic), average (realistic), and upper (pessimistic) bounds are determined. Consequently, m 

sequence triangular fuzzy numbers are generated for frequency and severity, each in its respective 

interval. Extreme events were expressed by allowing frequency and severity to exceed the upper 

bounds of the interval. Finally, the risk measure VaR was used to estimate the required operational 

loss capital for the minimum, average, maximum, and extreme cases. Data used is the operational 

loss data obtained from a South African retail bank recorded in 2003, 2004, and 2005. The results 

show that the capital requirement falls in the interval [10,397,622 rand and 19,789,549 rand]. The 

operational risk capital requirement is also calculated for the same dataset in previous work using 

the BIA, and the LDA under the AMA. Under BIA, the minimum regulatory capital required to 

cover the operational losses is calculated as 50,891,219 rand for one year, while under the LDA it 

is calculated as 13,384,748 rand for one year. The PD is used for frequency, while the ED is used 

for severity under the LDA. A comparison of the results shows that the BIA leads to a much higher 

capital charge as compared to the LDA and TFN-LDA which are more consistent. The authors 

highlight the benefits of the TFN-LDA which include more accuracy in estimating the capital 

charge, less subjectivity in the parametric model assumption, and the ability to study the impact of 

extreme events easily. Also, the TFN-LDA provides more flexibility to choose the required capital 

from a specific interval which reflects the occurrence of extreme events. 

 

 

Wei et al., (2018) provide a comprehensive overview of the worldwide operational Loss Data 

Collection Exercises (LDCEs) of the four data elements of the AMA which are internal loss, 
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external loss, scenario analysis, and business environment and internal control factors (BEICFs). 

The relationship between the aforementioned data elements can be seen in Figure 2. 

 

Figure 2: Relationship between Data Elements (Wei et al., 2018) 

The authors reviewed a total of 267 papers related to operational risks in banks from 2002 until 

March 2017, along with 34 relevant articles, and surveyed a large amount of other information. 

Consequently, the authors classify various sources of operational risk into five types which are 

individual banks, regulatory authorities, consortia of financial institutions, commercial vendors 

and, researchers. These sources and the data type from them are summarized in Figure 3. 

 

Figure 3: Data Types and Sources (Wei et al., 2018) 

Internal loss represents banks’ activities, technological processes, and risk management processes 

which are the most relevant information required for operational risk measurement. It is with Basel 

II, that many banks started dedicating resources for the collection of loss data and the construction 

of internal databases. Since the Basel II framework permits banks to set reporting thresholds to 

collect losses exceeding the threshold amount, this has led to a (left) truncation biased internal 
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database since the true frequency of losses below this threshold is not zero. Furthermore, the major 

weaknesses of internal databases include the fact that internal loss data is not sufficient due to the 

short time period for data collection, and that most of the operational loss events are High 

Frequency Low Impact (HFLI) events. Since very few of the loss events are Low Frequency High 

Impact (LFHI), this leads to the inability of modeling the tail of operational risk distribution. 

Internal loss data is not sufficient, and banks must also rely on relevant external loss data which 

provide insights into losses incurred by the entire industry. External loss data include information 

on operational loss events experienced by other firms and must be used to the enhancement of 

internal loss data for banks which are exposed to infrequent severe losses. Pooled industry and 

public data constitute external loss data.  

The first type of providers of pooled industry data are the consortium of financial institutions which 

aim at creating a secure and confidential platform for sharing high quality individual loss data 

(internal loss data). Banking consortium databases are: 

1. Operational Riskdata eXchange Global Banking Database (ORX-GBD) 

2. Database Italiano delle Perdite Operative (DIPO) database 

3. Daten Konsortium operationelle Risiken (DakOR) database 

4. Deutsche Sparkassen-und Giroverband (DSGV) database 

5. Global Operational Loss Database (GOLD) 

6. Operational Loss Data Sharing Consortium Database (OLDSCD) 

7. Credit Operational Risk Data Exchange (Cordex) database 

8. Hungarian Operational Risk (HunOR) database 

Moreover, insurance consortium databases are: 

1. ORX Global Insurance Database (ORX-GID) 

2. Operational Risk Insurance Consortium (ORIC) database. 

While the second type of provides is the regulatory authorities which aim at constructing pooled 

industry databases for regulatory purposes. Regulatory authorities have suggested detailed data 

collection standards to compare loss experience across banks. The BCBS provides a forum for 

cooperation on banking supervisory matters as it is the primary global standard-setter for the 

regulation of banks. BCBS has conducted three international LDCEs in 2001, 2002, and 2008. 

Moreover, LDCEs conducted at the national level include the 2004 US LDCE and the 2007 Japan 
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LDCE. Austria has also set up a confidential database for the sole use of the supervisory authority. 

These are summarized Figure 4. 

 

 
Figure 4: Industry Databases by Regulatory Authorities (Wei et al., 2018) 

 

Public data is the second source of external loss data. It complements pooled industry data since 

the latter has a key limitation, which is it does not contain the data of non-participating banks. 

Public databases can take three forms according to different types of providers. Furthermore, 

amongst public databases the majority are commercial, provided by commercial vendors, which 

contain operational loss events in numerous financial institutions across the world over the past 

decades. Information on public databases are summarized in Figure 5 below. 
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Figure 5: Public and Commercial Databases (Wei et al., 2018) 

 

Secondly, public databases provided by consortia of financial institutions include ORIC (a dataset 

with 15,000 publicly reported risk events from the financial services sector), ORX News (a 

database with over 5300 loss events in the global financial services industry from 2008 onward)   

and ÖffSchOR (it provides a detailed description of 2190 loss events across the world ranging 

from 1980 to 2015). Lastly, public databases provided by researchers include Solako˘glu and Köse 

(a self-collected database with 22 operational loss events in the Turkish banking sector between 

1998 and 2007) and COLD (it contains 2132 operational loss events that occurred in the entire 

Chinese banking system over the years 1994–2012). All findings related to external loss databases 

are summarized in Figure 6 below. 
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Figure 6: External Databases (Wei et al., 2018) 

 

In scenario analysis, the knowledge of experienced business managers and risk management 

experts is used to develop rational evaluations of potential operational risk exposures. Scenario 

data have two quantitative components which are severity and frequency, and one descriptive 

component which is a detailed description of the scenario. The main reason for constructing a 

scenario database is to capture LFHI events which may not have happened in a bank’s loss history. 

Individual banks and researchers gather and generate scenario data, which are then collected by 

consortia of financial institutions and regulatory authorities to establish scenario databases, which 

are needed in analyzing scenario data across the banking industry. A comprehensive review shows 

that there are a total of 7 scenario databases, including 1 scenario database provided by researchers, 

4 scenario databases provided by consortia of financial institutions and 2 databases provided by 

regulatory authorities, which are summarized in Figure 7. 

 

Figure 7: Breakdown of Scenario Databases (Wei et al., 2018) 



57 
 

The fourth and final data element of the AMA is the business environment and internal control 

factors (BEICFs). BEICFs provide forward-looking assessments of key business environment 

factors such as the rate of growth, employee turnover, and new product introductions, and internal 

control factors such as findings from the challenge process, internal audit results, and system 

downtime. The incorporation of these factors can recognize both improvements and deterioration 

in operational risk profiles in a more instant manner, which makes a bank’s operational risk capital 

estimation sensitive to its changing operational risk profile. The 2008 BCBS LDCE has collected 

information of BEICFs only. The most commonly used BEICFs tools are risk and control self-

assessments (RCSAs), audit results, key risk indicators (KRIs), key performance indicators (KPIs) 

and Key Control Indicators (KCIs). It is important to note that a KRI Library with about 2500 

detailed KRI specifications has been established by the consortium of ORIC to help banks identify 

appropriate KRIs. Incorporating BEICFs into operational risk measurement is in its developmental 

stages particularly due to the subjectivity and structure of BEICF tools. Finally, the authors 

highlight that under the recently proposed Standardized Measurement Approach (SMA) of the 

BCBS, only the first AMA data element (internal loss) is used. The other three (external loss, 

scenario analysis, and BEICFs) are not included. Thus, the authors consider that the SMA may not 

provide a reliable estimation of operational risk because the use of each AMA data element is 

crucial for measuring operational risk. 

 

Zhu et al., (2019) highlight the importance of the AMA in operational risk results within the 

Chinese banking industry and reject the decision of the Basel Committee to discard the AMA. The 

committee considers that this approach is complex and lacks comparability. Furthermore, it notes 

that the AMA was established with a significant degree of flexibility which was expected to be 

reduced over time, leading to the emergence of a best practice. The authors examine the 

convergence of operational risk results using different AMAs in the Chinese banking industry 

since 2006. Chinese researchers have conducted studies to improve the accuracy of the LDA under 

the AMA, noting that out of the 253 papers published on operational risk, 79 are written by Chinese 

researchers. Research has been conducted in better fitting loss frequency and severity distributions, 

using piecewise distributions, and introducing nonparametric methods. Moreover, dependencies 

across different business line/event type cells has been considered, which can have a substantial 

impact on operational risk estimation. The authors have conducted a comprehensive review of 
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operational risk results in the Chinese banking industry and note that results varied considerably 

from less than 300 to more than 1500 (in billion CNY) in early years which involved the use of 

relatively small datasets and basic approaches. Yet, due to the improvements in the accuracy of 

the LDA based on advanced methods and approaches developed by Chinese researchers, result 

fluctuations clearly decline in later years. Thus, the AMA results narrow considerably over time. 

The authors conclude that as the AMAs have become more refined over the past decade, 

operational risk results for the Chinese banking industry have tended to converge. Thus, BCBS’ 

decision to withdraw the AMA is not reasonable.  

 

Nuugulu and Kock, (2020) propose robust operational risk capital allocation methods under the 

AMA through analytical work which attempts to fit several theoretical distributions to real banking 

and financial data. This work focuses only on modelling the severity of the loss data since it 

includes many difficulties. Two data sets are utilized, one from a Spanish Savings bank and another 

from a South African retail bank. The QQ-plot is used as a graphical goodness-of-fit technique, 

while the Kolmogorov-Smirnov (KS), the Anderson-Darling (AD), the Cramer-von Misses 

(CVM), and the Kuiper tests are used as empirical goodness-of-fit techniques to select the best 

distribution for each operational loss data set. The LD, WD, and PD are considered. Starting with 

the Spanish data, results show that the LD provides a fairly good fit based on the results of the 

Cramer-von Misses test. An estimation of the Value at Risk is 557,100 € by the LD and PD at 

99.8% and 99.7% confidence levels respectively. Using the WD, the same VaR estimate is found 

at a 99.9% confidence level. Thus, 557,100 € is an accurate estimate of the capital requirement for 

operational risk of the Spanish Savings bank. Moving on to the South African retail bank, results 

show that the LD is a good fit for the data, however, there are some data points not corresponding 

with the fitted line. Therefore, a more heavier-tailed distribution is required. The WD fits the data 

better, yet there remains a significant number of deviating points. Finally, the PD provides a good 

fit and the best VaR estimates, but still a heavier distribution is required. At 99.8% confidence 

level, the VaR using the Pareto distribution is 9,669,000 R while the WD yields a VaR of 5,380,000 

R at 99.9% confidence level. To this end, the POT method is used to estimate the VaR taking into 

account extreme loss events. For both data sets, a threshold is selected and the exceedances are 

fitted to the GPD. For the Spanish Savings bank data, the 97.4% VaR estimate is recorded as 

407,100 €, thus the LD estimate is sufficient to cover operational losses on all fronts. While for 
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the South African retail bank data, the 96.6% VaR estimate is recorded as 9,389,000 R, thus the 

PD estimate is accepted since the distribution best fits the data and it covers low severity losses 

and extreme events. The WD estimate is rejected as it does not cover operational losses on all 

fronts. The authors note that in both cases none of the best fit distributions could achieve the 99.9% 

VaR as proposed in Basel II. Yet, the authors highlight that both distributions provided superior 

fitness to the two datasets since their QQ-plots suggest evidence of under-fitting to some extent.  
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Chapter Three: Methodology 

The Loss Distribution Approach 

 

Modeling aggregate loss distributions is a central task in operational risk management. There are 

many approaches for calculating operational risk capital charge. The LDA is the most sophisticated 

one. Under the LDA, the bank or financial institution estimates the probability distributions of the 

severity and frequency using business line and risk category classes. It involves four main steps: 

1. Loss frequency distribution 

2. Loss severity distribution 

3. Aggregate loss distribution by compounding (convolution) 

4. Overall distribution (copula) and VaR measure 

The application of these steps will yield the operational risk capital charge (Frachot et al., 2001). 

3.1 Loss Frequency Distributions 

In modeling the frequency of losses, the main task lies in determining a discrete random variable 

which represents the number of operational risk events observed. These events will occur with 

some probability p. There are numerous frequency distributions such as the binomial, negative 

binomial, geometric, … However, a detailed examination of the literature shows that the Poisson 

distribution is most commonly used in modeling frequency of loss events in operational risk. 

The Poisson Distribution 

The Poisson distribution is a discrete probability distribution that expresses the probability of a 

given number of events occurring in a fixed interval of time or space if these events occur with a 

known constant mean rate and independently of the time since the last event. The Poisson 

distribution can also be used for the number of events in other specified intervals such as distance, 

area or volume.  

A discrete random variable X is said to have a Poisson distribution, with parameter λ > 0. 

f k; λ 	= Pr X	=	k = 
λke-λ

k!
  

The positive real number λ is equal to the expected value of X and also to its variance. 

λ	=	E X 	=	Var(X) 
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3.2 Loss Severity Distributions 

Any statistically based model of operational risk first requires fitting probability distributions to 

loss events on the severity of these losses arising from operational risks. The observed data may 

be actual data collected from a bank, financial institution, or insurance company. As well, it might 

be simulated data. The first step lies in considering a number of relevant distributions as examined 

in the literature. Then, distributional parameters are estimated and the distribution best fitting the 

data is selected. In this sense, the five most commonly used distributions for severity are presented. 

The Normal Distribution 

A normal distribution is a type of continuous probability distribution for a real-valued random 

variable. The general form of its probability density function is: 

f x 	=
1

σ √2π
e-

1
2

x- μ
σ

2

  

The parameter μ is the mean or expectation of the distribution (and also its median and mode), 

while the parameter σ is its standard deviation. The variance of the distribution is σ2. 

The Lognormal Distribution 

A lognormal distribution is a continuous probability distribution of a random variable whose 

logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then 

Y = ln(X) has a normal distribution. A random variable which is log-normally distributed takes 

only positive real values.  

A positive random variable X is log-normally distributed (X ~ Lognormal (μX
2 , σX

2 )) if the natural 

logarithm of X is normally distributed with mean μ and variance σ2. 

ln X ~ N	(μ, σ2) 

Let Ф and φ be respectively the cumulative probability distribution function and the probability 

density function of the N (0, 1) distribution. 

fX x 	=	
d

dx
Pr X	≤	x =

d

dx
Pr lnX	≤	lnx =

d

dx
Ф

lnx- μ

σ
 

fX x 	=	 φ
lnx- μ

σ

d

dx

lnx- μ

σ
= φ

lnx- μ

σ

1

σx
	 

fX x 	=	
1

xσ√2π
exp -

lnx- μ 2

2σ2  
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The Weibull Distribution 

The Weibull distribution is a continuous probability distribution. The probability density function 

of a Weibull random variable is: 

f x;	λ, k 	=  
k

λ

x

λ

k-1
e-

x
λ

k

   x	≥	0

0                     		x	<	0
	 

Where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution 

The Gamma Distribution 

The gamma distribution is a two-parameter family of continuous probability distributions. 

There are two different parameterizations in common use: 

 With a shape parameter k and a scale parameter θ. 

 With a shape parameter α = k and an inverse scale parameter β = 1/θ, which is called a rate 

parameter. 

In each of these forms, both parameters are positive real numbers. 

Characterization using shape α and rate β: 

A random variable X that is gamma-distributed with shape α and rate β is denoted: 

X ~ Γ α, β 	=	Gamma α, β  

f x; α, β  = 
βαxα-1e-βx

Γ(α)
	for x	>	0 and α, β	>	0 

The Log Logistic Distribution 

The log-logistic distribution is a continuous probability distribution for a non-negative random 

variable. The log-logistic distribution is the probability distribution of a random variable whose 

logarithm has a logistic distribution. It is similar in shape to the log-normal distribution but has 

heavier tails. 

f x; α, β 	= 
(β/α)(x/α)β-1  

1+ (x/α)β 2  

The parameter α > 0 is a scale parameter and is also the median of the distribution. The parameter 

β > 0 is a shape parameter.  

The above mentioned parametric approaches are used to estimate the severity distribution which 

fit high-frequency and low-severity loss events. However, operational risk loss distribution has a 

fat-tail characteristic since the loss is minor in most cases yet major in some extreme cases. Thus, 

loss events due to operational risk are divided to two categories which are the high-frequency low-
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severity and low-frequency high-severity loss events. (Wang et al., 2017). A thorough review of 

the literature shows that the Generalized Pareto Distribution is most commonly used to fit the tail 

of the severity distribution, which includes the low-frequency and high-severity losses. 

The Generalized Pareto Distribution 

The generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is 

often used to model the tails of another distribution.  

It is specified by three parameters: location μ, scale σ, and shape ξ. 

fξ z 	=  1+ξz
-ξ+1

ξ 									  			 	for ξ ≠	0
e-z                     							for ξ	 	0

 

Where z	= x - μ

σ
 

3.3 Distribution Fitting 

Distribution fitting comprises finding the appropriate probability distribution to a series of data 

concerning the repeated measurement of a variable phenomenon. Thus, the aim is to predict the 

probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a 

certain interval. The distribution giving a close fit is supposed to lead to good predictions.  

There are many techniques of distribution fitting. In the parametric methods, the parameters of the 

distribution are calculated from the data series. The most prominent parametric method is the 

Maximum likelihood estimation (MLE) which involves maximizing a likelihood function, so that 

under the assumed statistical model the observed data is most probable. The point in the parameter 

space that maximizes the likelihood function is called the maximum likelihood estimate. The logic 

of maximum likelihood is both intuitive and flexible, and as such, the method has become a 

dominant means of statistical inference.  

From a statistical standpoint, a given set of observations is a random sample from an unknown 

population. The goal of maximum likelihood estimation is to make inferences about the population 

that is most likely to have generated the sample, specifically the joint probability distribution of 

the random variables {y1,	y2, …}  not necessarily independent and identically distributed. 

Associated with each probability distribution is a unique vector θ	=	 θ1,	θ2, …,	θk
T of parameters 

that index the probability distribution within a parametric family f . ; θ  | θ ϵ Θ}, where Θ is 

called the parameter space, a finite-dimensional subset of Euclidean space.  
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Evaluating the joint density at the observed data sample y	=	(y1, y2, …, yn)	gives a real-valued 

function. 

Ln θ 	=	Ln θ;y 	=	fn y; θ  

This is called the likelihood function, and for independent and identically distributed random 

variables, 	fn y; θ  will be the product of univariate density functions. 

The goal of maximum likelihood estimation is to find the values of the model parameters that 

maximize the likelihood function over the parameter space, that is 

θ	=	 arg maxθ ϵ Θ Ln(θ;	y) 

Intuitively, this selects the parameter values that make the observed data most probable. 

The specific value θ	= θn y  ϵ Θ that maximizes the likelihood function Ln is called the maximum 

likelihood estimate. In practice, it is often convenient to work with the natural logarithm of the 

likelihood function, called the log-likelihood: 

l θ;	y 	=	ln	Ln θ;	y  

While the domain of the likelihood function, the parameter space, is generally a finite-dimensional 

subset of Euclidean space, additional restrictions sometimes need to be incorporated into the 

estimation process. The parameter space can be expressed as: 

Θ = {θ: θ ϵ Rk, h θ 	=	0} 

Where h θ 	=	[h1 θ ,	h2 θ , …,	hr θ ] is a vector-valued function mapping Rk	into Rr. 

Estimating the true parameter θ belonging to Θ then, as a practical matter, means to find the 

maximum of the likelihood function subject to the constraint h θ 	=	0. 

In practice, restrictions are usually imposed using the method of Lagrange which, given the 

constraints as defined above, leads to the restricted likelihood equations 

∂l

∂θ
	- 

∂h(θ)T

∂θ
λ	= 0  and h θ  = 0  
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3.4 Goodness of Fit and Graphical Tests 

The goodness-of-fit test is a statistical hypothesis test used to examine how well a sample data fits 

a certain distribution. Measures of goodness of fit typically summarize the discrepancy between 

observed values and the values expected under the model in question. There are multiple methods 

for determining goodness-of-fit. Some of the most popular methods used in statistics include the 

Kolmogorov-Smirnov test, the chi-square, the Anderson-Darling test, and the Shipiro-Wilk test. 

There are many graphical and statistical tests for assessing the fit of a hypothesized severity of a 

loss probability distribution. The Q-Q and P-P plot are the most common plots used to assess the 

fitness of a distribution while the Kolmogorov-Smirnov test is the most common test used for 

goodness of fit. 

3.4.1 Q-Q Plot 

A Q-Q (quantile-quantile) plot is a probability plot, which is a graphical method for comparing 

both probability distributions, fitted and actual, by plotting their quantiles against each other. First, 

the set of intervals for the quantiles is chosen. A point (x, y) on the plot corresponds to one of the 

quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first 

distribution (x-coordinate). Thus the line is a parametric curve with parameters that present the 

number of the interval for the quantile. If the two distributions being compared are similar, the 

points in the Q-Q plot will approximately lie on the line y = x. If the distributions are linearly 

related, the points in the Q-Q plot will approximately lie on a line, but not necessarily on the line 

y = x. Q-Q plots can also be used as a graphical means of estimating parameters in a location-scale 

family of distributions such as the gamma distribution. 

3.4.2 P-P Plot 

A P-P (probability-probability plot or percent-percent plot or P value plot) is a probability plot for 

assessing how closely two data sets agree; it plots the two cumulative distribution functions against 

each other. P-P plots are vastly used to evaluate the skewness of a distribution. The comparison 

line is the 45° line from (0,0) to (1,1) and the distributions are equal if and only if the plot falls on 

this line; any deviation indicates a difference between the distributions. 

3.4.3 The Kolmogorov-Smirnov Test 

The Kolmogorov–Smirnov test (or KS test) is a nonparametric test of the equality of continuous 

(or discontinuous) one-dimensional probability distributions that can be used to compare a sample 
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with a reference probability distribution (one-sample KS test), or to compare two samples (two-

sample KS test). It is named after Andrey Kolmogorov and Nikolai Smirnov. 

The Kolmogorov-Smirnov test is defined by: 

 Ho The data follow a specified distribution 

 Ha The data do not follow the specified distribution 

The Kolmogorov-Smirnov statistic quantifies the distance between the empirical distribution 

function of the sample and the cumulative distribution function of the reference distribution, or 

between the empirical distribution functions of two samples. The null distribution of this statistic 

is calculated under the null hypothesis that the sample is drawn from the reference distribution (in 

the one-sample case) or that the samples are drawn from the same distribution (in the two-sample 

case). The empirical distribution function Fn for n independent and identically distributed (i.i.d.) 

ordered observations Xi is defined as 

Fn x 	=
1

n
I -∞, x (Xi)

n

i=1

 

Where I -∞, x (Xi) is the indicator function, equal to 1 if XI	≤	x	and equal to 0 otherwise. 

The Kolmogorov-Smirnov statistic for a given cumulative distribution function F(x) is: 

Dn	= supx |Fn x 	-	F x | 

Where supx is the supremum of the set of distances. Intuitively, the statistic takes the largest 

absolute difference between the two distribution functions across all x values. 

The p-value returned by the KS test has the same interpretation as other p-values. We reject the 

null hypothesis that the two samples were drawn from the same distribution if the p-value is less 

than the significance level. The smaller the p-value, the stronger the evidence that you should reject 

the null hypothesis.  

Many times, the KS test results show that several distributions are a good fit for the data. In order 

to select the best fitted distribution, the Akaike Information Criterion (AIC) is considered. It is 

an estimator of prediction error and thereby relative quality of statistical models for a given set of 

data. AIC deals with both the risk of over fitting and the risk of under fitting. 

The application of the AIC involves starting with a set of candidate models, and then finding the 

models’ corresponding AIC values. There will almost always be information lost due to using a 

candidate model to represent the “true model”. The aim is to select, from among the candidate 

models, the model that minimizes the information loss.  
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3.5 Threshold Selection 

Since operational risk loss distribution has a fat-tail characteristic, threshold selection is a key to 

parameter estimation and prediction of loss data. If a low threshold is chosen, then the risk of 

obtaining biased estimates is incurred. While if a high threshold is selected, then few data points 

will be obtained and thus the estimation will be subject to high standard errors. There are many 

threshold selection methods, and the most commonly adopted ones are presented below. 

3.5.1 The Mean Excess Plot 

The mean excess plot is a useful method to determine the threshold u.  

Using the mean excess function e u 	=	E X	-	u	| X	>	u), we can obtain the following: 

e u 	= 
β	+ αu

1	- α
, 											β+ αu	>	0 

For a given sample x1, x2, … xn, its mean excess loss function e(u) is defined as: 

e u 	= 
xi-u

+

Nu

n

i=1

 

Where Nu is the number of data points exceeding the threshold u: 

xi - u
+	= 

x - u,   					x>u
0            	x≤u 

That is, the sum of excess over the threshold u divided by the number of data points exceeding the 

threshold u. An empirical plot that apparently follows a reasonably straight line with a positive 

gradient above a certain value of u indicates that the u can be chosen as a threshold. 

3.5.2 The Hill Plot 

The order of observations is X1 > X2 > ... > Xk > … > Xn, and the Hill estimator based on the order 

statistics is: 

γk, n	=
	1
k

log
Xi

Xk

k

i=1

	 

The Hill plot is defined as a scatter plot which is composed by (k, γk, n
-1 ). Xk is selected as a threshold 

and the subscript k is the abscissa of the Hill plot from where the scatter plot begins to stabilize. 
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3.6 Aggregate Loss Distribution 

It is possible to generate sample values that represent aggregate operational risk losses given the 

severity and frequency of a loss probability model. Using the frequency and severity of loss data, 

we can simulate aggregate operational risk losses and then use these simulated losses for the 

calculation of the operational risk capital charge. The best way to achieve the aggregate loss 

distribution is to collect data on frequency and severity of losses for a particular operational risk 

type and then fit frequency and severity of loss models to the data. Thus, convolution is used to 

derive the distribution of a sum of two distributions. The aggregate loss distribution can be found 

by compounding the distributions for severity and frequency of operational losses over a fixed 

period such as a year. One of the most commonly used convolution methods for deriving the 

aggregate operational risk distribution is the Monte Carlo method, and it is presented below. 

The Monte Carlo Method 

It involves the following steps: 

1. Choose a severity of loss and frequency of loss probability model. 

2. Generate n number of losses daily or weekly regarding the frequency of loss distribution. 

3. Generate n losses Xi (i = 1, … , n) regarding the loss severity distribution. 

4. Repeat steps 2 and 3 for N= 365 (for daily losses) or N = 52 (for weekly losses). Summing 

all the generated Xi to obtain S which is the annual loss. 

5. Repeat the steps 2 to 4, at least 5000 times, to obtain the annual aggregate loss distribution. 

3.7 Overall Loss Distribution 

The Basel requirements for the calculation of the total operational capital charge involves a simple 

summation of the capital charges of all 56 risk classes. In this sense, a perfect positive dependence 

between the risks is implicitly assumed. However, this will yield large capital requirements and 

therefore it is crucial to investigate the dependence structure. Conventionally, correlation is used 

to model dependence between variables, but latest research works show the superiority of copula 

over correlation for modeling dependence due to higher flexibility of the copula and its ability to 

model dependence between extreme events. 

A copula is a multivariate joint distribution defined on the n-dimensional unit cube [0, 1] n in a 

way that every marginal distribution is uniform in the interval [0, 1]. There are various copula 

functions, however according to the literature, a multidimensional t-copula is commonly used in 
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modeling operational risk. The t-copula exhibits tail dependence, which is appealing in operational 

risk modeling and it is capable of modeling dependence in the tail without giving up the flexibility 

to model dependence in the center (Momen et al., 2012).  

A Multivariate t-copula (MTC) is defined as follows: 

TR, v u1, u2, …, un 	= tR, v(tv
-1 u1 , tv

-1 u2 , …, tv
-1 un )	 

Where R is a symmetric, positive definite matrix with diag(R) = (1, 1, …, 1)T and tR, v is the 

standardized multivariate Student’s t distribution with correlation matrix R and v degrees of 

freedom. tv – 1  is the inverse of the univariate cdf of Student’s t distribution with v degrees of 

freedom. Using the canonical representation, it turns out that the copula density for the MTC is:  

CR, v u1, u2, …, un  = |R|-
1
2

Γ(
v+n

2 )

Γ(
v
2 )

Γ(
v
2 )

Γ(
v+1

2 )
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Where ςj	= tv
-1 uj , Using the t-copula, the capital charge can be calculated (Momen et al., 2012). 

3.8 Capital Charge 

Under the LDA, the capital charge or known as the Capital-at-Risk is a Value-at-Risk measure of 

risk.  Given some confidence level α ϵ (0, 1) the Value-at- Risk (VaR) at the confidence level α is 

given by the smallest number l in a way that the probability that the loss L exceeds l is not larger 

than (1 − α). The capital charge is the summation of the VaR at confidence level α of each of the 

different risk classes required by the BCBS. VaR can be defined as “a statistical estimation of a 

portfolio loss with the property that, with a given (small) probability, we stand to incur that loss or 

more over a given (typically short) holding period” (Embrechts et al., 2003).  

VARa	=	inf	 l ϵ R:	P L	>	l 	≤	1 - a  

VARa	=inf 	l ϵ R: FL	≥	a  

The right equality assumes an underlying probability distribution, which makes it true only for the 

parametric VaR. The left equality means that we are 100(1 − α)% confident that the loss in the 

related period will not be larger than the VaR (Momen et al., 2012). 

The Basel framework does not specify the analytical approaches for operational risk, but a bank 

must show that its adopted measure for operational risk meets a soundness standard such as a one 

year holding period and a 99.9th percentile confidence interval.  
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Chapter Four: Data, Results, and Discussion 

 

4.1 Operational Risk Data 

There are numerous operational risk databases as indicated in Chapter 2. However, these databases 

are not open to individuals, only corporations or institutions can access these databases. In addition 

access is granted on condition that the joining member has to share their own operational risk data, 

and that is to ensure the sustainability of the database. In this sense, researchers in this field suffer 

tremendously in search for data to conduct studies. Even journal papers do not contain the full 

dataset required. In the case of this study, thorough research was conducted to obtain a complete 

set of operational risk data from any database or researcher in the field. However, all the attempts 

were unsuccessful in obtaining real operational risk data. Thus, the final resort in our case was to 

obtain simulated data online. The dataset utilized in this research is obtained from GitHub. The 

data obtained consists of 3,192 operational loss events from the year 2009 and until 2018. For each 

loss event, the following terms are provided, namely ID, Date, Business Line, Risk Category, 

Gross Loss Amount, and Recovery Amount. The major benefit of this dataset is that the operational 

risk loss events are categorized as per the Basel requirements for business line and risk category.  

This makes the application of the LDA under the Basel requirements possible. Under Basel II, the 

LDA requires to quantify distributions for frequency and severity of operational risk loss data for 

each cell of the 56-cell matrix combining the eight business lines and seven event types highlighted 

in Chapter 2 within Basel II Capital Accord and presented in Table 13. The eight business lines 

(BL) are listed by row and the seven risk categories (RC) are listed in by columns. 

In the case of this research, the simulated data obtained is divided over eight business lines and six 

risk categories. Risk categories are equivalent to event types. The 7th risk category which does not 

have any loss events assigned to it is “Business Disruption & System Failures”. Therefore, in this 

case, the data is spread over a 48-cell matrix, that is 8 business lines x 6 risk categories. 

The implementation of the LDA is accomplished using R programming language: R studio 4.0.3.  
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Table 13: The 56-cell Matrix  

 
 

                  RC 
 

BL 

Internal 
Fraud 

External 
Fraud 

Employment 
Practices & 
Workplace 

Safety 

Clients, 
Products, & 

Business 
Practices 

Damage to 
Physical 
Assets 

Business 
Disruption 
& System 
Failures 

Execution, 
Delivery, & 

Process 
Management 

Corporate 
Finance 

       

Trading & Sales        

Retail Banking        

Commercial 
Banking 

       

Payment & 
Settlements 

       

Agency 
Services 

       

Asset 
Management 

       

Retail 
Brokerage 

       

 

Tables 14 and 15 show the abbreviations used for business lines and risk categories in this study. 

Table 14: Business Lines’ Abbreviations 

Business Lines 

AG Agency Services 

AM Asset Management 

CB Commercial Banking 

CF Corporate Finance 

PS Payment & Settlements 

RBA Retail Banking 

RBR Retail Brokerage 

TS Trading & Sales 
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Table 15: Risk Categories’ Abbreviations 

Risk Categories 

CPBP Clients, Products, & Business Practices 

DPA Damage to Physical Assets 

EDPM Execution, Delivery, & Process Management 

EF External Fraud 

EPWS Employment Practices & Workplace Safety 

IF Internal Fraud 

 

Table 16 presents the count and sum of loss amounts per year, while Tables 17 and 18 show a 

breakdown of these parameters over the 48-cell matrix respectively.  

 

Table 16: Count and Sum of Loss Amounts over All Years 

Year Count of Loss Amount Sum of Loss Amount 

2009 237 41,141,849.1 

2010 210 29,264,198.6 

2011 475 25,408,481.86 

2012 572 47,028,002.82 

2013 191 26,751,725.55 

2014 450 55,772,861.78 

2015 196 36,805,607.01 

2016 230 9,681,592.7 

2017 335 29,799,515.61 

2018 296 155,363,004 

TOTAL 3,192 457,016,838.98 
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Table 17: Count of Loss Amount Breakdown  

Count of Loss Amount 

             RC   
BL CPBP DPA EDPM EF EPWS IF TOTAL 

AG 610   136  54 800 

AM   114   157 271 

CB 318   51 124 50 543 

CF  127 27 42   196 

PS  251 58  78 80 467 

RBA   15   60 75 

RBR 421  133   63 617 

TS  207  16   223 

TOTAL 1349 585 347 245 202 464 3192 

 

Table 18: Sum of Loss Amount Breakdown 

Sum of Loss Amount 

          RC    
BL CPBP DPA EDPM EF EPWS IF TOTAL 

AG 73064225.45   7345959.62  3121818.72 83532003.79 

AM   5764053.66   9041258.9 14805312.56 

CB 30784949.9   2609418.7 16584413.53 19109419.08 69088201.21 

CF  114999120.8 524084.59 35239168.42   150762373.8 

PS  13486537.48 1880023.27  1897672.73 23204153.71 40468387.19 

RBA   26975464.28   2055989.24 29031453.52 

RBR 15616867.91  23860823.48   1363736.17 40841427.56 

TS  28317105.84  170573.48   28487679.32 

TOTAL 119466043.3 156802764.1 59004449.28 45365120.22 18482086.26 57896375.82 457016838.98 
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One of the main restrictions of this research work remains the dataset utilized. For this research, it 

is impossible to implement the LDA at the level of the business line x risk category cells, and that 

is due to the count of the loss events. Table 19 shows the breakdown of the loss events of 2009 

over the 48-cell matrix addressed. 

 

Table 19: Count of Loss Amount Breakdown for 2009 

Count of Loss Amount – 2009  

             RC   
BL CPBP DPA EDPM EF EPWS IF TOTAL 

AG 48   7  6 61 

AM   8   15 23 

CB 22   4 8 7 41 

CF  11  5   16 

PS  22 4  3 3 32 

RBA   1   6 7 

RBR 30  10   6 46 

TS  10  1   11 

TOTAL 100 43 23 17 11 43 237 

 

Even before excluding the low loss amounts and dividing the data into body and tail, which will 

be addressed next, the data is insufficient for modeling as a cell matrix under the LDA. As can be 

seen, there are 26 cells without any loss events to start with, and 14 cells with 10 or less loss events. 

This is the case for all the years; the same 26 cells do not have loss events and numerous other 

cells have 10 or less loss events. This situation is not so uncommon. A review of the literature 

shows that many research studies have been conducted with a certain number of business lines or 

risk categories only due to either data unavailability or very low loss event count. Therefore, in the 

case of this research, the LDA will be implemented per business line and per risk category and at 

the end, the capital requirement will determined for each case. 
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4.2 Results and Discussion 

4.2.1 De Minimis Gross Loss Threshold 

The Basel committee addresses certain standards which banks must meet in the loss data collection 

process. A bank’s internal loss data must be comprehensive in that it captures all material activities 

and exposures from all appropriate sub-systems and geographic locations. A bank must have an 

appropriate de minimis gross loss threshold for internal loss data collection, for example €10,000.  

The data used in this research is currency agnostic and therefore gross loss amounts are considered 

to be incurred in dollars. Therefore, the de minimis gross loss threshold was set as $10,000 whereby 

all gross loss amounts below this threshold were categorized as “Low” and excluded all together. 

4.2.2 Body and Tail of Loss Data 

Since the operational risk loss data is characterized by a fat tail, a threshold must be selected as a 

truncation point. The threshold is determined to separate the body from the tail. Therefore, both 

the Mean Excess Plot and the Hill Plot methods were implemented to calculate the said threshold. 

Table 20 summarizes the threshold values for business lines and risk categories of 2009. 

Similarly, these two methods are implemented all throughout the remaining years. 

Table 20: Threshold Values for Business Lines and Risk Categories for 2009 

Set Mean Excess Plot Hill Plot Selection (Minimum) 

AG 225,000 225,000 225,000 

CB 300,000 300,000 300,000 

RBR   No Tail 

PS 250,000 250,000 250,000 

AM 200,000 200,000 200,000 

CF 200,000 200,000 200,000 

RBA   No Tail 

TS 275,000 275,000 275,000 

CPBP 300,000 300,000 300,000 

IF 250,000 250,000 250,000 

DPA 550,000 825,000 550,000 

EDPM   No Tail 

EF   No Tail 

EPWS 250,000 250,000 250,000 
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The results of the two adopted methods are the same or very close for most of the classes. Some 

differences are identified in rare instances. In all cases and as a safety factor, for each class, the 

minimum of the two thresholds is selected to divide the data. All gross loss amounts above the 

selected thresholds are categorized as “Tail”, and the remaining losses which are below the said 

threshold, yet above the de minimis threshold, are categorized as “Body”. Furthermore, it is 

important to note that certain risk classes did not yield any threshold value indicating that these 

classes do not include high-severity and low-frequency events.  

4.2.3 Count of Loss Events 

The data used in this research imposes many restrictions. Tables 21 and 22 summarize the count 

of loss events throughout the years for each business line and risk category respectively.  

There are numerous risk classes, business lines or risk categories, which include a small number 

of loss events such as the case of RBA, or TS, or EPWS for example. It is important to note that 

these are the total number of loss events per risk class. 

 

Table 21: Count of Loss Events for All Years for each Business Line 

BL 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

AG 61 56 126 139 49 119 45 51 77 77 800 

AM 23 15 37 48 14 43 20 24 22 25 271 

CB 41 40 81 98 32 85 28 30 56 52 543 

CF 16 11 28 35 15 22 12 15 27 15 196 

PS 32 29 64 84 21 61 28 44 56 48 467 

RBA 7 3 14 13 8 9 4 4 10 3 75 

RBR 46 41 96 117 37 80 36 48 70 46 617 

TS 11 15 29 38 15 31 23 14 17 30 223 

Total 237 210 475 572 191 450 196 230 335 296 3192 
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Table 22: Count of Loss Events for All Years for each Risk Category 

RC 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

CPBP 100 88 204 242 89 206 74 89 137 120 1349 

DPA 43 38 78 103 38 73 46 41 67 58 585 

EDPM 23 27 47 70 20 44 19 28 35 34 347 

EF 17 17 43 39 12 31 16 18 26 26 245 

EPWS 11 14 26 34 10 34 9 17 22 25 202 

IF 43 26 77 84 22 62 32 37 48 33 464 

Total 237 210 475 572 191 450 196 230 335 296 3192 

 

Therefore, it is essential to examine the number of loss events which constitute the “Body” of each 

risk class. In this sense, the Table 23 summarizes these values for 2009. 

 

Table 23: Count of Loss Events for the Body of each Risk Class for 2009 

Set Total Body Tail 

2009 (Total) 237 111 7 

AG 61 26 1 

AM 23 10 1 

CB 41 19 2 

CF 16 9 1 

PS 32 16 1 

RBA 7 5 0 

RBR 46 19 0 

TS 11 6 2 

CPBP 100 39 1 

DPA 43 23 2 

EDPM 23 13 0 

EF 17 11 0 

EPWS 11 4 1 

IF 43 22 2 
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Distribution fitting on small size samples is statistically not significant. Examining the count under 

“Body” of each risk class dictates that certain classes must be merged. Therefore, in this case, four 

business lines, particularly AM, CF, RBA, and TS are merged into one class titled “other”. While 

three risk categories, particularly EDPM, EF, and EPWS are merged into one class titled “rest”. 

This is similarly implemented for all years with certain provisions where needed. For these merged 

classes, the threshold value is set to be the minimum threshold among constituents.   

4.2.4 Frequency Distribution 

The information provided for each operational risk event in the dataset used is limited to: ID, Date, 

Business Line, Risk Category, Gross Loss Amount, and Recovery Amount. Thus, this imposes a 

major restriction on modeling the frequency of the losses. In this sense, an alternative method is 

proposed and implemented which is the Poisson process. Since the date of each loss event is 

available, then the time between two consecutive events is assumed to be exponentially distributed.  

Thus, the collection of these points (operational risk events) forms a Poisson process, and therefore 

the frequency distribution will follow a Poisson distribution which is consistent with the literature. 

A Poisson Process is a model for a series of discrete events where the average time between events 

is known, but the exact timing of events is random. The arrival of an event is independent of the 

event before (waiting time between events is memoryless). A Poisson process is defined in terms 

of the sequence of inter-arrival times X1, X2 … which are defined to be independent and identically 

distributed. A Poisson process is a renewal process in which the inter-arrival intervals have an 

exponential distribution function. For some real λ > 0, each Xi has the density fX x 	= λexp(-λx) 

for x ≥ 0. The parameter λ is called the rate of the process.  

For a Poisson process of rate λ, and for any t > 0, the PMF for N(t) which is the Poisson counting 

process, that is the number of arrivals in (0, t], is given by the Poisson PMF: 

pN(t)n	= 
(λt)nexp(-λt)

n!
 

For each risk class, the operational risk loss events were first sorted in chronological order and the 

Poisson process was implemented. The results of the process were the determination of the lambda 

(λ) parameter of the Poisson distribution for frequency modeling.  

Table 24 below summarizes the λ values for business lines and risk categories of 2009. Similarly, 

this process is implemented all throughout the remaining years. 
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Table 24: Poisson’s Lambda Values of Business Lines and Risk Categories for 2009 

Set Poisson’s Lambda Set Poisson’s Lambda 

AG 0.98 CPBP 2.90 

CB 0.45 IF 0.41 

RBR 0.50 DPA 0.75 

PS 0.32 Rest 1.11 

Other 1.18   

 

4.2.5 Severity Distribution 

Regarding the severity distribution, first a logarithmic transformation of the gross loss amount was 

implemented since the original data didn’t fit any common distribution. Afterward, the five most 

commonly used distributions in operational risk modeling are implemented, namely normal, 

lognormal, gamma, weibull, and log logistic. For each risk class, business line or risk category, 

the “Body” of the data is fitted against these distributions. Accordingly, Q-Q and P-P plots are 

generated to graphically assess the fitness of said distributions and the KS test is implemented to 

determine the goodness of fit through the p-value and the AIC. In this study, a p-value < 0.05 is 

considered statistically significant. It indicates strong evidence against the null hypothesis, as there 

is less than a 5% probability the null is correct and the results are random. Furthermore, to select 

the best fitting distribution, the AIC value of distributions with p-value > 0.05 are compared, and 

the one with the minimum AIC is selected.  

Furthermore, regarding the operational risk losses belonging to the “Tail”, these losses are fitted 

against the Generalized Pareto distribution. However, as addressed in section 4.2.3, the main 

restriction in this research is in the number of operational risk events. For all risk classes, there are 

no enough observations to statistically fit the data with a distribution. Similarly, these steps are 

implemented for each year. 

The results for the year 2009 are presented and both Q-Q and P-P plots for each risk class show 

that all five distributions are a good fit for the data. This is determined by examining the closeness 

of the data points to the best fit line. However, this graphical interpretation remains subjective and 

the KS test results must be studied to quantitatively select the best fit distribution.  
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Business Line Severity Distribution Fitting  

1. Agency Services (AG)  

Table 25 presents the total records for AG in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only one observation. 

Table 25: Total, Body, Tail, and Low Count of Losses of AG for 2009 

Set Total Body Tail Low 

2009_AG 61 26 1 34 

 

Figure 8 presents the histogram of the frequency of gross loss amounts in AG for 2009.  

 

Figure 8: Histogram of the Frequency of Gross Loss Amounts in AG for 2009 

 

Figure 9 presents the Q-Q and P-P plots respectively.

   

Figure 9: Q-Q and P-P Plots of the Fitted Severity Distributions of AG for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 26 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 26: Parameters of the Fitted Distributions, AIC, and p-value of AG for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.28 0.85 69.63 0.21 TRUE 

Lognormal 2.33 0.08 67.80 0.23 TRUE 

Weibull 11.38 10.69 76.00 0.31 TRUE 

Gamma 151.04 14.70 68.38 0.22 TRUE 

Log logistic 21.47 10.15 68.70 0.40 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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2. Commercial Banking (CB) 

Table 27 presents the total records for CB in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only two observations. 

Table 27: Total, Body, Tail, and Low Count of Losses of CB for 2009 

Set Total Body Tail Low 

2009_CB 41 19 2 20 

 

Figure 10 presents the histogram of the frequency of gross loss amounts in CB for 2009.  

 

Figure 10: Histogram of the Frequency of Gross Loss Amounts in CB for 2009 

 

Figure 11 presents the Q-Q and P-P plots respectively. 

 

Figure 11: Q-Q and P-P Plots of the Fitted Severity Distributions of CB for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 28 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 28: Parameters of the Fitted Distributions, AIC, and p-value of CB for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.36 1.06 59.99 0.48 TRUE 

Lognormal 2.33 0.10 58.35 0.64 TRUE 

Weibull 9.46 10.87 64.13 0.27 TRUE 

Gamma 101.55 9.80 58.86 0.58 TRUE 

Log logistic 17.82 10.19 58.91 0.79 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

3. Retail Brokerage (RBR) 

Table 29 presents the total records for RBR in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains zero observations. 

Table 29: Total, Body, Tail, and Low Count of Losses of RBR for 2009 

Set Total Body Tail Low 

2009_RBR 46 19 0 27 

 

Figure 12 presents the histogram of the frequency of gross loss amounts in RBR for 2009.  

 

Figure 12: Histogram of the Frequency of Gross Loss Amounts in RBR for 2009 

 

Figure 13 presents the Q-Q and P-P plots respectively. 

 

Figure 13: Q-Q and P-P Plots of the Fitted Severity Distributions of RBR for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 30 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 30: Parameters of the Fitted Distributions, AIC, and p-value of RBR for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.10 0.55 35.46 0.83 TRUE 

Lognormal 2.31 0.05 35.03 0.83 TRUE 

Weibull 18.18 10.37 38.91 0.80 TRUE 

Gamma 336.94 33.37 35.16 0.83 TRUE 

Log logistic 31.02 10.06 36.20 0.69 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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4. Payment and Settlements (PS) 

Table 31 presents the total records for PS in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only one observation. 

Table 31: Total, Body, Tail, and Low Count of Losses of PS for 2009 

Set Total Body Tail Low 

2009_PS 32 16 1 15 

 

Figure 14 presents the histogram of the frequency of gross loss amounts in PS for 2009.  

 

Figure 14: Histogram of the Frequency of Gross Loss Amounts in PS for 2009 

 

Figure 15 presents the Q-Q and P-P plots respectively. 

 

Figure 15: Q-Q and P-P Plots of the Fitted Severity Distributions of PS for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 32 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 32: Parameters of the Fitted Distributions, AIC, and p-value of PS for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.35 0.96 48.14 0.67 TRUE 

Lognormal 2.33 0.09 46.85 0.79 TRUE 

Weibull 10.15 10.81 52.07 0.47 TRUE 

Gamma 121.90 11.78 47.25 0.75 TRUE 

Log logistic 19.77 10.21 47.03 0.90 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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5. Other: Asset Management (AM) + Corporate Finance (CF) + Retail Banking (RB) + 
Trading & Sales (TS) 

Table 33 presents the total records for Other in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only five observations. 

Table 33: Total, Body, Tail, and Low Count of Losses of Other for 2009 

Set Total Body Tail Low 

2009_Other 57 29 5 23 

 

Figure 16 presents the histogram of the frequency of gross loss amounts in Other for 2009.  

 

Figure 16: Histogram of the Frequency of Gross Loss Amounts in Other for 2009 

 

Figure 17 presents the Q-Q and P-P plots respectively. 

 

Figure 17: Q-Q and P-P Plots of the Fitted Severity Distributions of Other for 2009 
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 An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 34 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 34: Parameters of the Fitted Distributions, AIC, and p-value of Other for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.31 0.83 75.24 0.48 TRUE 

Lognormal 2.33 0.08 73.63 0.54 TRUE 

Weibull 12.17 10.71 81.33 0.32 TRUE 

Gamma 161.07 15.62 74.13 0.52 TRUE 

Log logistic 21.83 10.21 75.10 0.70 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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Risk Category Severity Distribution Fitting  

1. Clients, Products, & Business Practices (CPBP) 

Table 35 presents the total records for CPBP in 2009 as well the number of losses in body, tail, 

and low. Fitting distribution in the tail is discarded since it contains only one observation. 

Table 35: Total, Body, Tail, and Low Count of Losses of CPBP for 2009 

Set Total Body Tail Low 

2009_CPBP 100 39 1 60 

 

Figure 18 presents the histogram of the frequency of gross loss amounts in CPBP for 2009.  

 

Figure 18: Histogram of the Frequency of Gross Loss Amounts in CPBP for 2009 

 

Figure 19 presents the Q-Q and P-P plots respectively. 

 

Figure 19: Q-Q and P-P Plots of the Fitted Severity Distributions of CPBP for 2009 
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 An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 36 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 36: Parameters of the Fitted Distributions, AIC, and p-value of CPBP for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.33 0.80 97.56 0.54 TRUE 

Lognormal 2.33 0.08 95.29 0.61 TRUE 

Weibull 12.00 10.72 107.57 0.19 TRUE 

Gamma 171.70 16.62 95.99 0.59 TRUE 

Log logistic 22.92 10.24 96.33 0.77 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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2. Internal Fraud (IF) 

Table 37 presents the total records for IF in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only two observations. 

Table 37: Total, Body, Tail, and Low Count of Losses of IF for 2009 

Set Total Body Tail Low 

2009_IF 43 22 2 19 

 

Figure 20 presents the histogram of the frequency of gross loss amounts in IF for 2009.  

 

Figure 20: Histogram of the Frequency of Gross Loss Amounts in IF for 2009 

 

Figure 21 presents the Q-Q and P-P plots respectively. 

 

Figure 21: Q-Q and P-P Plots of the Fitted Severity Distributions of IF for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 38 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 38: Parameters of the Fitted Distributions, AIC, and p-value of IF for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.31 0.98 65.43 0.40 TRUE 

Lognormal 2.33 0.09 63.60 0.50 TRUE 

Weibull 10.18 10.79 70.31 0.20 TRUE 

Gamma 117.11 11.35 64.18 0.47 TRUE 

Log logistic 19.05 10.14 64.42 0.49 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 
 

3. Damage to Physical Assets (DPA) 

Table 39 presents the total records for DPA in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only two observations. 

Table 39: Total, Body, Tail, and Low Count of Losses of DPA for 2009 

Set Total Body Tail Low 

2009_DPA 43 23 2 18 

 

Figure 22 presents the histogram of the frequency of gross loss amounts in DPA for 2009.  

 

Figure 22: Histogram of the Frequency of Gross Loss Amounts in DPA for 2009 

 

Figure 23 presents the Q-Q and P-P plots respectively.

   

Figure 23: Q-Q and P-P Plots of the Fitted Severity Distributions of DPA for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 40 presents the estimated parameters of the fitted distributions in addition to the AIC and p 

value of the KS test.  

Table 40: Parameters of the Fitted Distributions, AIC, and p-value of DPA for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 10.86 1.12 74.69 0.27 TRUE 

Lognormal 2.38 0.10 73.45 0.38 TRUE 

Weibull 9.79 11.39 78.22 0.16 TRUE 

Gamma 96.16 8.85 73.81 0.34 TRUE 

Log logistic 16.82 10.72 74.74 0.61 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the lognormal distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  
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4. Rest: Execution, Delivery, & Process Management (EDPM) + External Fraud (EF) + 
Employment Practices & Workplace Safety (EPWS) 

Table 41 presents the total records for Rest in 2009 as well the number of losses in body, tail, and 

low. In this case, fitting distribution in the tail is discarded since it contains only one observation. 

Table 41: Total, Body, Tail, and Low Count of Losses of Rest for 2009 

Set Total Body Tail Low 

2009_Rest 51 28 1 22 

 

Figure 24 presents the histogram of the frequency of gross loss amounts in Rest for 2009. 

 

Figure 24: Histogram of the Frequency of Gross Loss Amounts in Rest for 2009 

 

Figure 25 presents the Q-Q and P-P plots respectively 

 

Figure 25: Q-Q and P-P Plots of the Fitted Severity Distributions of Rest for 2009 
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An examination of the Q-Q and P-P plots shows that all five distributions are a good fit; that is 

based on their closeness to the best fit line.  

Table 42 presents the estimated parameters of the fitted distributions in addition to the AIC and p-

value of the KS test.  

Table 42: Parameters of the Fitted Distributions, AIC, and p-value of Rest for 2009 

Distribution Parameter 1 Parameter 2 AIC p-value Accepted 

Normal 9.98 0.74 66.76 0.29 TRUE 

Lognormal 2.30 0.07 63.61 0.30 TRUE 

Weibull 11.09 10.35 78.52 0.07 TRUE 

Gamma 194.41 19.49 64.62 0.28 TRUE 

Log logistic 27.27 9.85 60.80 0.60 TRUE 

 

The KS test results indicate that all distribution have a p-value > 0.05. Hence, the AIC values are 

examined to select the best fit distribution among the five. In this case, the log logistic distribution 

records the minimum AIC and therefore it is selected as the severity distribution.  

 

Table 43 summarizes the severity distribution results for year 2009, whereby the selected best fit 

distribution along with its parameters are indicated for each business line and risk category. 

 

Table 43: Summary of Business Line and Risk Category Severity Distributions for 2009  

Set Severity Distribution Parameter 1 Parameter 2 

AG Lognormal 2.33 0.08 

CB Lognormal 2.33 0.10 

RBR Lognormal 2.31 0.05 

PS Lognormal 2.33 0.09 

Other Lognormal 2.33 0.08 

CPBP Lognormal 2.33 0.08 

IF Lognormal 2.33 0.09 

DPA Lognormal 2.38 0.10 

Rest Log logistic  27.27 9.85 
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The results show that all risk classes follow a lognormal distribution except for the “Rest” class 

which follows a log logistic distribution. The mean and standard deviation of all classes following 

a lognormal distribution are very close. 

4.2.6 Convolution 

Convolution is used to produce the aggregate loss distribution. That is, to compound the frequency 

and severity distributions. In this study, the Monte Carlo simulation is implemented, with number 

of simulations set to 10000, to estimate the aggregate loss distribution of each risk class. Regarding 

frequency, all distributions follow a Poisson distribution as addressed in section 4.2.4. The lambda 

parameter for each risk class is determined using the Poisson process as detailed earlier. Regarding 

severity, the distribution and respective parameters of each risk class are addressed in section 4.2.5.  

The aggregate distribution obtained follows a normal distribution. Table 44 presents the mean and 

standard deviation for each risk class. Similarly, this process is implemented for each year. 

 

Table 44: Summary of Aggregate Distribution Parameters of All Risk Classes for 2009 

Set Frequency Severity Mean SD 

AG Poisson Lognormal 7.13 1.69 

CB Poisson Lognormal 3.78 1.42 

RBR Poisson Lognormal 4.70 1.56 

PS Poisson Lognormal 7.17 2.16 

Other Poisson Lognormal 15.57 2.37 

CPBP Poisson Lognormal 30.42 2.87 

IF Poisson Lognormal 5.39 1.59 

DPA Poisson Lognormal 8.91 2.07 

Rest Poisson Log logistic 0.08 0.02 

 

For each business line and risk category, the results of the convolution are presented in Figures 26 

and 27. The bell shaped curve of the aggregate distributions are clearly observed in the density 

plots and this is also confirmed by the Q-Q, and P-P plots. 
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Business Line Aggregate Distribution Fitting  

 

AG CB 

  

RBR PS 

  

Other  

 

 

 

Figure 26: Density Function, CDF, Q-Q, and P-P Plots BL Aggregate Distributions for 2009 
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Risk Category Aggregate Distribution Fitting  

 

CPBP IF 

  

DPA Rest 

   

 

Figure 27: Density Function, CDF, Q-Q, and P-P Plots RC Aggregate Distributions for 2009 
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4.2.7 Copula 

From the aggregate distributions of each risk class, the overall loss distributions can be obtained 

through a copula function. The t-copula, which is typically used in operational risk modeling, is 

implemented. Tables 45 and 46 present the results of the correlation matrix for the year 2009. 

 

Table 45: Correlation Matrix Results of Business Lines for 2009 

Business Line  AG CB RBR PS Other 

AG 1 -0.102 0.072 0.486 -0.111 

CB -0.102 1 0.012 -0.049 -0.112 

RBR 0.072 0.012 1 0.049 -0.079 

PS 0.486 -0.049 0.049 1 -0.128 

Other -0.111 -0.112 -0.079 -0.128 1 

 

Table 46: Correlation Matrix Results of Risk Categories for 2009 

Risk Category  CPBP IF DPA Rest 

CPBP 1 -0.085 -0.074 -0.027 

IF -0.085 1 -0.015 -0.038 

DPA -0.074 -0.015 1 -0.059 

Rest -0.027 -0.038 -0.059 1 

 

The number of simulations is set to 1,000,000 and the VaR is determined at the 99.9th percentile 

confidence interval as per the Basel requirements. 

4.2.8 Capital Charge 

Finally, the capital requirement is calculated for each year as the difference between the 99.9% 

VaR and the Expected Loss (EL). EL was calculated as the median (50th percentile), since the 

average is sensitive to extreme values. Capital requirement is calculated first using business line 

breakdown and then using risk category breakdown of the loss data.  

Table 47 presents the VaR and capital requirement values for both business line and risk category 

methods for each year. For each year, significant differences are identified between the capital 

requirements obtained by the two methods. 
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Table 47: VaR and Capital by Business Line and Risk Category for All Years 

Year BL VaR BL Capital RC VaR RC Capital 

2009 58.8 642,688.1 51.5 110,977.2 

2010 38.7 39,595.37 40.2 60,147.54 

2011 109 3,850,904 244 12,168,160 

2012 269 23,064,948 289 28,372,603 

2013 36.6 38,057.07 34.8 31,485.27 

2014 89.7 17,230,244 186 12,754,811 

2015 24 8,314.57 51.7 21,966.54 

2016 60.7 39,822.86 32.4 11,836.07 

2017 65.9 1,003,365 45.2 44,166.93 

2018 48.6 550,570.2 85.3 499,405.1 

 

A proper understanding of the capital charge requires a detailed examination of the loss data.  

Figure 28 presents the variation of the gross loss amount over the 10 years. It can be clearly noted 

that the gross loss amount varies between 24$ and 55$ million between the years 2009 and 2015. 

In 2016, it decreases remarkably to around 9$ million, nevertheless it then increases back to 29$ 

million and records a tremendous surge to around 155$ million in 2018.  

 

 

Figure 28: Gross Loss Amount Variation over Years 
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A detailed examination of the variation of gross loss amounts is required at two levels, by business 

line and by risk category as presented in Figures 29 and 30 respectively. 

 

 

Figure 29: Gross Loss Amount Variation over Years by Business Line 

 

 

Figure 30: Gross Loss Amount Variation over Years by Risk Category 
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Gross loss amounts in business lines CF, PS, RBA, and RBR vary vastly over the years. In addition, 

an immense surge is noticed in CF from 2017 till 2018. Also, gross loss amounts in risk categories 

fluctuate greatly except for EPWS which is rather stable over the years. CPBP records the greatest 

fluctuations, however, similar to business line CF, an enormous surge is noticed in DPA from 2017 

till 2018. 

These variations have a huge impact on the capital requirement mainly because operational risk 

data involves high-frequency low-severity and low-frequency high-severity events. This is why 

operational risk loss data is characterized by a fat tail. These high severity events in the tail will 

dramatically impact the overall loss distribution and consequently the capital requirement.  

As per Basel requirements, internally generated operational risk measures used for regulatory 

capital purposes must be based on a minimum five-year observation period of internal loss data. 

In this research study, the total 10 year period is considered, and a weighted average of the capital 

requirement is calculated. Table 48 presents the weighted average of the capital charge for both 

business line and risk category methods. Even though the capital charges varied significantly 

between these two methods per year, weighted averages over the 10 year period shows that both 

methods yield rather close capital charges. The business line method records a lower capital charge 

as compared to the risk category method. It is less by around 15%. Ultimately, and to diminish the 

impact of operational risk, the larger capital charge of 8,738,614$ is recommended for the next 

year. 

Table 48: Weighted Average of Capital Charge for Business Line and Risk Category Methods 

Over 10 Year Period Business Line Method Risk Category Method 

Weighted Average of Capital Charge 7,407,347 8,738,614 
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Chapter Five: Conclusion and Recommendations 

 

5.1 Conclusion 

The Basel Committee defines operational risk as the risk of loss resulting from inadequate or failed 

internal processes, people and systems or from external events. Operational risk is one of the main 

risk components for banks and financial institutions; as it is estimated to constitute between 15 and 

25 % of total risks. Since the 1990s, the Basel Committee has been providing frameworks for the 

quantification of operational risk to allow banks cover such risks by required capital charges. 

 

The aim of this research is to model operational risk under the Loss Distribution Approach. Due 

to the inaccessibility of real operational risk data, simulated data was used in this study. The data 

used included 3,192 operational risk events for a period of 10 years categorized by Basel’s business 

line and risk category levels. However, the main obstacle in this study was that many risk classes 

lacked loss events and numerous other classes included a small number of events. Hence, many 

setbacks were imposed in frequency and severity distribution fitting. Furthermore, implementing 

the LDA was impossible at the level of business line and risk category combinations. As such, two 

main methods were considered. The LDA was implemented first using business line breakdown 

and second risk category breakdown of loss data. The capital charge was calculated for each 

method per year by following Basel standards and criteria. 

 

The results show that capital charges vary significantly between the two methods adopted per year. 

However, in considering the 10 year period and calculating the weighted average, the two methods 

yield close values. The business line method records a lower capital charge by around 15% of that 

obtained by the risk category method. Consequently, the larger capital requirement of 8,738,614$ 

is recommended for the following year. 
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5.2 Recommendations for Future Work 

Since any research study is defined by its scope of work, not all related questions can be answered. 

This research aimed at modeling operational risk under the Loss Distribution Approach. Two main 

procedures were implemented, the first using business line breakdown and the second using risk 

category of the breakdown. Certainly, the optimal method would be to consider combinations of 

business line and risk category cells. This was not possible in this research due to major restrictions 

in the data used. From this consideration, future research could include the following: 

 Applying the R codes generated for this research on a different dataset, particularly data 

obtained from a database reflecting actual operational risk loss events. 

 Adjusting the R codes generated for this research on another dataset covering the entire 56-

cell matrix at the level of business line and risk category combinations. 

 Modeling operational risk under the LDA with additional multivariate copulas such as the 

Gaussian or Gumbel copulas.  

 Investigating supplementary methods under the AMA such as Bayesian approaches, neural 

networks, or Fuzzy modeling. 

 Exploring Basel IV changes on capital charges which are due for future implementation.  
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