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Fuzzy measure theory is a generalization of classical measure the-
ory. It was first introduced by Lotfi Zadeh in 1965 in his famous
paper "Fuzzy Sets”. After more than 50 years of the existence and
development of classical measure theory, mathematicians felt that
the additivity property is, in some applications, too restrictive. It is
also unrealistic under real and physical conditions where measure-
ment errors are unavoidable. According to Sugeno, fuzzy measures

are obtained by replacing the additivity condition of classical mea-



sures with weaker conditions of monotonicity and continuity.

Chapter 1 defines fuzzy measures, semi-continuous fuzzy measures,
and A-fuzzy measures. We show that a A-fuzzy measure natu-
rally exists on a finite set X. Then, we prove that a non-additive
measure is induced from a classical measure by a transformation
of range of the classical measure. It is called quassi-measure.
Then, other non-additive measures are constructed in different
ways. These measures include belief, plausibility, possibility, and
necessity measures. We end Chapter 1 by giving some properties

of finite fuzzy measures.

In Chapter 2, we define measurable functions on fuzzy measure
spaces. Also, we explain what it means for a sequence of mea-
surable functions to converge almost everywhere, pseudo-almost
everywhere, almost uniformly, pseudo-almost uniformly, in mea-

sure or pseudo in measure to a function.

In Chapter 3, we define a fuzzy integral and give some of its prop-
erties. Moreover, we discuss several convergence theorems of fuzzy
integral sequences, in addition to the transformation theorem of
fuzzy integrals. We end the chapter by defining fuzzy measures

using the fuzzy integral.

Finally, in Chapter 4, we give an application of fuzzy measure



theory in real life. We apply this theory in areas where human
decision-making plays an important role. Students’ failure is one
of the issues that all academic institutes face. For this problem,
there are many interactive and interdependent criteria. As a result,

the mostimportant reasons for students’ failure are given.



To my family.
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Chapter 1

Fuzzy Measures

In this chapter, we define fuzzy measures, semi-continuous fuzzy measures,
and A-fuzzy measures (see [1]). We also define quasi-measures that are induced
from classical measures. Then, we introduce different non-additive measures
such as belief, plausibility, possibility, and necessity measures. At the end of
the chapter, we give some properties of finite fuzzy measures.

Throughout the whole thesis, we use the following conventions:

e () Xoo=(

. a; = 0, for every sequence of real numbers 7a;/
i€d

- sup{x,x €10, 00]} =0
XED

- inf {x,x €, 1]} =1
X€ED






Remark Let (E, A ) be a measurable space where E is a setand A is a o-
algebra on E. A classical measure pon(E, A)isafunctionuy: A —[0, o9

such that p(9) = 0 and y is additive, i.e., if fA,/, is a sequence of A that

are pairwise disjoint, then

pC A = W(An).

11 Fuzzy and Semi-Continuous Fuzzy Mea-
sures

Let X be a non-empty set and C a nonempty class of subsets of X. We
consider y : C — [0, +o9 a non-negative, extended real-valued set function

defined on C.

Definition 1.1.1. The function u is called a fuzzy measure on (X, C) if

and only if:

1. w(@)=0if PEC,

2. [Monotonicity]. For every E, F € C such that E € F, we have
M(E) = u(F),

3. [Continuity from below]. Let /E,/}, be a family of elements in C



such that E € E, € ---. If E, €C, then

4. [Continuity from abovel.] Let /E,}, be a family of elements in C
(]

such that Ey 2 E, 2 --- and u(E1) <eo. If E, €C, then
n=1
\
"
nlim W(Er) = u En
n=1

Definition 1.1.2. The function u is called a lower semi-continuous fuzzy
measure on (X, C) if and only if it satisfies conditions (1), (2) and (3) of
Definition 1.1.1 and it is called an upper semi-continuous fuzzy measure
on (X, C) if and only if it satisfies conditions (1), (2) and (4) of Definition
1.1.1. Both of them are simply called semi-continuous fuzzy measures.
Furthermore, we say that a fuzzy measure or a semi-continuous fuzzy measure

is regular if andonly if X € C and u(X) = 1.

Remark 1. The class C of subsets of X, where u is defined, is in general
a monotone class, semi-ring, ring, algebra, 6-algebra, or a power set of

C.

2. The space (X, F, p) is called a fuzzy measure space (or semi-continuous

fuzzy measure space) if y is a fuzzy measure (or semi-continuous fuzzy



measure) on a measurable space (X, F). In this thesis, (X, F) will
always represent a measurable space and X € F.

3. On a semi-ring, the fuzzy measure (or semi-continuous fuzzy measure)
abandons the additivity, but reserves the monotonicity, the continuity

(or the partial continuity), and vanishing on the empty set.

4. Fuzzy measures and semi-continuous fuzzy measures are not additive in

general.

5. As for classical measures, the same concepts of finiteness and 6é-finiteness
can be defined for fuzzy measures and semi-continuous fuzzy measures.
In fact, let y be a fuzzy measure. We say that u is finite if and only if
U(X') < oo (finiteness). Also, u is 0- finite if and only if X = ) E,

n=1

where E,, € C and u(E,) finite(d-finiteness).

Proposition 1.1.3. On a semi-ring, any classical measure is a fuzzy measure.

Proof. Let X be asetand y : C — R is a classical measure (here C is a
o-algebra). Let's prove u a fuzzy measure. Of course, we have u(?) = 0. Now,

let E, F € C such that E € F. We knowthat F = E U(F |E). Thus,
p(F) = W(E) + p(F 1E) = p(E) + 0= p(E).

Hence, u(E) < p(F). Take now a family /E,/, of elements in C such that
co ( co

Ey £E;, £---and E, =C. Let’s prove that llim WEn) = E, .

n=1 n=1
We consider a new family /B, 4, of elements in C defined by B; = E; and for



n-1
n=22B,=E, I Ek One can easily check that

U

g €Cand B, = E,
% =1 n=1
N

n»

ﬁ{Bn}n are pairwise disjoint.

N
Since /E, /, is an increasing sequence, we have B, = E,, IE,_; and so B, =
n=1
N
E, = Ey. Thus,
n=1
( N ( N
M E, = M Bn = IJ(EN )
n=1 n=1
We then have
N (N
lim wEy) = Ilimy E, = limy B,
N =eo ~ n=1 N = n=1
] N oo ( oo ( oo
= lim pB,) = uB,) =p B, =y E,.
o n=1 n=1 n=1 n=1
In a similar way, one can prove the continuity from above. O

Example 1.1.4. Let u be the Dirac measure on (X, P(X)), i.e., for any
E € P(X), we have [

H1 if x, €EE,
H(E) =
Ho if x, £E.



where X, is a fixed point on X . This set function u is a reqular fuzzy measure.

In fact,
1. u(9) = 0 because xo £ 0.

2. [Monotonicity]. Assume that E S F. If xo € E, then x, € F and we
have u(E) = 1= u(F). If xo £ E, we have u(E) = 0. In this case, we
have u(F) = 0 or 1 depending if xo belongs or not to F. In both cases,

we have u(E) =0 < u(F).

3. [Continuity from below]. Consider a family of elements {E,/}, in F

oo

such that Ey €E, £ ---and E, € P(X).

n=1
oo oo

Case1. If xo € E,, thenu( E,) =1and 3 ny such that x, € E,,, .
n=1 n=1
Since {E,}, is increasing, it means that x, € E,, for everyn = ny.

Thus, Yn = ny, we have u(E,,)\= 1. This implies that lim u(E,) = 1
n — oo
andso lim w(E,) = u E, =1.
n—e . n=1 \
Case 2. If xo £ E,, thenyu E, = 0andVYn =1, wehave

3

n=1

n=1
Xo £ E,. Thus, u(g,) =0, Vn\z 1. This implies that lim u(E,) =0
n — oo
andsonIiLn U(Ep) = E, =0.

n=1

4. [Continuity from above]. Considera family of elements {E,}, in
r
P(X) suchthat Ey 2 E; 2 --- suchthat y(E;) < e@and E, €

n=1

P(X).



"M
Case 1. If xo € E,, thenxy € E, for every n and
n=1

(m
u E, = Ii[7n WE,) =1.

n=1

\
Case 2. If xo /€ " E,, then " E, =0. Since x, /€ nn: E,
then 3n, such than‘r;(zo1 /E Ep,. Becaugz1 {E,}, is decreasing, it means that
Xo /€ E, for everyn = ny. Thus, u(E,) = 0 for everyn = ny and so
lim u(E,) = 0. This implies that

n—oo

u E, = ,I7i£n u(E,) =0.
n=1

Because u(X) =1, u is reqular.

Theorem 1.1.5. Let X be a non-empty finite set and C be a nonempty class
of subsets of X. We consideru : C — [0, +o9 a non-negative, extended
real-valued set function defined on C. Then the continuity from above and

the continuity from below are automatically satisfied.

Proof. Let X = £, -+, a,/ be a finite set. Take E; € E, € --- such

oo

that E, €C. Since X is finite, the sequence is stationary, i.e., we have

n=1
E, = E,, for some a and for all n = a. Thus,

lim u(En) = sup u(En) = p(Ea) = 1 E; =p E;
J=1 J=1

Therefore, u is continuous from below. Now take E; 2 E, 2 --- suchthat



E, € C. Again, the sequence is stationary, i.e., we have E, = Eg, for
=1
gome B andfor all n = . Thus,
) o}

lim w(Ey) =infu(E,) =wE)=p E =p E
J=1 J=1

Therefore, u is continuous from above. O

Example 1.1.6. Let X = A,2,---,nfand C = P(X). For E €C, we

define u by

Card(E) 2

uE) = S

where Card(E) is the cardinality of E. Then u is a reqular fuzzy measure. In

fact,
(c d@) 2
1. 0€ C andwe have p(0) = <90 =0

2. Llet E €C,F € C such that E € F. Of course, we have Card(E) =
Card(F) which gives that u(E) < u(F).

3. By Theorem 1.1.5 and since X is finite, the continuity from above and
below are satisfied.

Clearly, u is regular.

Example 1.1.7. Let f be a non-negative, extended, real- valued function de-

fined on X = (—o9 +09). We define for every E € P(X),

M(E) = sup £(x).

x€eE

We have that u is a fuzzy measure. In fact,



1. p(0) = sup,., F(x) =0

2. Let E € P(X),F € P(X) such that E S F. We have

H(E) = sup f(x) < sup F(x) = u(F)

xeE xeF

oo

3. Let {E,} € P(X) such that E, £ E, € ---and E, € P(X). We

n=1

have

lim u(E,) = lim sup f(x) = sup £(x)

n—oo n-co ycE, x€E;
and \

u E, = sup f(x)=supf(x)

n=1 oo x€eE;
xe En
n=1

where i =1,2, <<, or n.

Proposition 1.1.8. Let u be a reqular fuzzy measure (respectively a regular
upper semi-continuous fuzzy measure or a regular lower semi-continuous fuzzy
measure) on (X, R) where R is an algebra of subsets of X. For any E € R,

we define a set function v on (X, R) by

V(E) =1 —u(E),

where E denotes the complement of E in X. Clearly, v is also a reqular fuzzy
measure (respectively a reqular upper semi-continuous fuzzy measure or reqular
lower semi-continuous fuzzy measure). The fuzzy measure v is called a dual

fuzzy measure (respectively a dual upper semi-continuous fuzzy measure or a



dual lower semi-continuous fuzzy measure semi-continuous fuzzy measure).

Proof. It is obvious to prove that v(E) is a regular fuzzy measure. O

1.2 A-Fuzzy Measures

Definition 1.2.1. Let u be a fuzzy measure on (X, C).

» We say that u satisfies the A-rule on C if and only if there exists A €

-1
sup u’

oo (/ 02 where sup u = sup u(E), such that
EcC

H(E UF) = W(E) + p(F) + Au(E)u(F ),

whenever E €C,F €C,E UF €C andE NF = 0.

» We saythat u satisfies the finite A-rule on C if and only if there exists

A such that
o
(n =5 1+ Au(E;) =1 if A=0,
M E; = =1
i=1 o WEN, if A=0,

=1
for any finite disjoint class {E, -+, E,/ of sets in C whose union is

also in C.

» We saythat yu satisfies the 6 — A rule on C if and only if there exists A

10



such that

oo

0
Q% (1+Au(E;))) =1 if A=0
5

H(E)) if A=0,

for any finite disjoint class {E;, ---, E,/ of sets in C whose union is

also in C.

Remark When A = 0, the A-rule is just the additivity rule, the finite A-rule
is the finite additivity rule and the 6 — A rule is just the 6-additivity rule.

Theorem 1.2.2. If C = Ris aring and y satisfies the A-rule, then u satisfies

the finite A-rule.

Proof. When A = 0, we have from the previous remark that the finite A-rule
is just the finite additivity. So, y satisfies the finite A-rule. When A = 0 and
/E1, Es, -+, E, Fis adisjoint class of sets in A, we will use the mathematical
induction to prove that

\ \
1+ Au(E)] =1 . (1.2.1)

n
2 E; =

=1 =1

> =

From the definition of the A-rule, we know that Equation (1.2.1)is true when

n = 2. Suppose that Equation (1.2.1)is true for n = k —1 and let’s prove it

11



for n = k. We have

n \ k—1 \
v E = u E; UE
=1 =1
k—1
=y E; (1+AuE)) + u(Ex)
i=1
1K b
= 5 (U+AUE)) =1 (1+Au(Ex)) + p(Ex)
1 i7(1 \
= 5 (+AuE)) —(1+Au(Ek))  + p(Ek)
1 ij(1 \
= - (1 + AU(E})) = (1 + Au(Ex)) + Au(Ex)
=1 \
= A+ AuE) -1

=1

So Equation (1.2.1)is true for n = k.

Remark Theorem 1.2.2 is valid also when C is a semi-ring.

Example 1.2.3. Let X = fa,bfand C = P(X). We define u as follows:

go, if E=u
02 if E=f}

“04, if E=f}F

gt if E=X
We have 1 = 0.2+ 0.4 + A0.08. Hence, A = 5 and

-1

Sc ,
Sup ¥

o UL}= (-1, UNL

12



Thus u satisfies the A-rule with A = 5. Since C is a finite ring, by Theorem

1.2.2, u also satisfies the finite A-rule andthe é — A rule.

Definition 1.2.4. y is called a A-fuzzy measure on C if and only if it satisfies
the 6 —=A rule on C and there exists at least one set E € C such that y(E) < oe.
The A-fuzzy measure is denoted by g,. When C is a 6-algebra and g,(X) = 1,

the A-fuzzy measure g, is also called a Sugeno Measure.

Example 1.2.5. Let X = /x4, X0, -+ }be a countable set, C be the semi-ring
consisting of all singletons of X and the empty set. Consider {a;} a sequence
of non-negative real numbers. Define u as follows:

[l

w(xH=a; for i=1,2 .00,

Cu(o) = 0.

(
Then u is a A-fuzzy measure for any A € su‘gp, co O}

Theorem 1.2.6. If g, is a A-fuzzy measure on a class C containing the empty
set 9, then g,(9) = 0 and g, satisfies the finite A-rule.

Proof. From Definition 1.2.4, we know that 3 E € C such that g,(E) < oo
Case 1: Assume that A = 0. We have that g, is a classical measure (from
Definition 1.2.1). So gx(9) = 0.
Case 2: Assume that A = 0. Since ZE,E,, --- 2 where E, = E; = ---= 0, is
a disjoint sequence of sets in C, whose union is E, we have
\
1

INE) = (14 AgA(EN(1 + Agy(E)) 1
i=2

13



That is, \

oo

1+ Agi(E) = (1 + Agu(E)) (1+Aga(E))

=2

(
Note that A € Su‘p1p, oo and g (E) < o9, so

0<1+Agy(E) < oo

oo

Thus we have, (1+ Ag\(E;) =1 andso
=2

1+ Aga(0) = 1.

Hence, gx(?) = 0. By the above result, the second conclusion is clear. O

Theorem 1.2.7. If g, is a A-fuzzy measure on a semi-ring L, then g, is

monotone.

Proof. If A =0, g, is a classical measure, so g, is monotone. Assume now that

n
A=0.LetE €EL,F €L and E £F. Since L isasemi-ring, F IE = D;,

=1
where /D;}is a finite disjoint class of sets in L . We have

. \
1
1 (+AD) -1 =0,

=1

in both caseswhen A >0and A <0. By Theorem 1.2.6, g, satisfies the finite

14



A-rule and we have

9n(F) = G(EUD;y U---UDp)

\
= 1+ GO +Ag(E) ~1
=1 ) \
= GE)+,  (1+4gDY) =1 (1+4g(E))
i=1
= ga(E).

]

Remark Any A-fuzzy measure on a semi-ring possesses the continuity. On a

semi-ring, any A-fuzzy measure is a fuzzy measure.

Definition 1.2.8. 1. We say that u is subadditive if and only if
H(E) = p(Eq) + u(E),
whenever E €C,E; €C,E, €C andE = E; UE-.
2. We say that u is superadditive if and only if
H(E) = p(Eq) + p(Ez),

whenever E €C,E; €C,E, €C, E; /7E2=@andE=E1 UE2

Theorem 1.2.9. Let g, be a A-fuzzy measure on a semi-ring L.. Then, it is

subadditive when A < 0, superadditive when A > 0 and additive when A = 0.

15



Proof. From Theorems 1.2.6 and 1.2.7, we know that u satisfies the A-rule and

is monotone. If A <0, we have
H(E) = AU(Eq)(E2) = H(E+) + p(E2).
Since Au(Eq)U(E,) is negative, we get
H(E) = W(Eq) + H(E>),
and so g, is subadditive. If A >0, we have
M(E) = AU(E1)(E2) = H(E+) + U(E2).
Since Au(Eq)U(E,) is positive, we get

H(E) 2 U(Eq) + u(E>),

so g, is superadditive. If A = 0, we have u(E) = u(E;) + u(E,) and g, is
additive. ]

Theorem 1.2.10. Let g, be a A-fuzzy measure on a ring R. Then, for any

E €ER andF €R, we have

_ 9ME) ~gr(E NF)
1. gA(E IF) = A1+AgA(AE nF)

IA(E) + ga(F) —ga(E NF) + Aga(E)ga(F)
1+ Ag\(E NF)

2. g(E UF) =

16



3. If R is an algebra and g, is regular, then we have

Proof. 1. We have

(
g(E) = gr (ENF)U(E IF)

(
= GAENF)+g(E IF) 1+ Ag\(E NF) ,

E)—gx(ENF
sowe getgx(E IF) = gA1(+)AgA%[\_:( nF) )

2. We have

(
GW(E UF) = gx EU(F I(ENF))

(
= gM(E)+agx F I(ENF) (1+Aga(E))

_ gr(F) —gr(ENF)
= WE T E e (1 HANE)
IME) + ga(F) —ga(E NF) + Aga(E)ga(F)
1+ Agu(E NF)

3. We have

By — _ X)) m(XNE) _ 1 —=ga(E)
9ME) = 92X 1E) = T+ Agu(X NE) 1+ Agy(E)

[]

Lemma 1.2.11. Let X be a finite set. A A- fuzzy measure is a nonnegative

17



setfunction g, : P(X') =0, 1] satisfying:
gA(A UB) = ga(A) + ga(B) + Aga(A)ax(B),

for all A,B € X whenever A NB = @ where A € (—1, ©). Moreover, if X

finite, i.e., X = X4, X2, ...., Xn} then gx(X) can be formulated as follows:

gA(X) = gA(X'I,XZ, "'7XI’I)
= INxiH+ A o INZXi DI (Zx; A
i=1 =1 j=2
n-2n-1 n
+A? IN AN LG AN ik F) + -

=1 j=2 k=3

+A" G (B AP - gu(xn D

-1

Example 1.2.12. We can always construct a A-fuzzy measure on any finite
set X. In fact, let X = x4, ---, x,/is a finite set and C consists of X and all
singletons of X . We define uon C as u(#x; A < u(X) <oofori=1,2,+--,n.
There are at least 2 points x;, and x;, satisfying u(#;,/) >0, for j =1, 2.
So, the set function u is always a fuzzy measure on C for some parameter A.

n

Remark When y(X) =  M(Z:A holds, the parameter A is 0. Otherwise,

=1
A canbe determined by the equation

\
1+ Au(&ip) —1 (1.2.2)

18



Theorem 1.2.13. The equation
\
n
T+AuX) = (1 +Au(xAH -1

=1

determines the parameter A uniquely. In fact,

1. A >0 when u(xiA < u(X)

=1

n
2. A=0when  M(&iAH=uX)
=1
n

. og <A <0 when ~ (%A = p(X)

Proof. Denote u(X) = a, u(#; ) = a; fori=1,2,---,n and let
k
f(h) = (+aA) for k=2.--.n

=1

There is no loss of generality in assuming a; > 0,a, > 0. We know that
(1+axA) >0fork=1,---,nand A E(‘—;, ©0). Since fi(A) = (1+akA)fi _((A),
we get

1 (A) = afi1(A) + (1 + aA)f 4 (A),
1 (A) = 2a,fi_1(A) + (1 + aA)f _1(A),

forany k =2,---,nand any A € (‘—;, o). If f,_,(A) >0 and f,_,(A) >0,
then 7, (A) >0and £ (A) > 0. Since

f,(A) = ai(1 + azA) + ax(1 + a1A) >0,

and £, (A) = 2a1a2 > 0, then £, (A) > 0. So, f,,(A) is concave in (%, « . From

19



the derivation of £,,(A), we have 7,,(0) = a;. Note also that lim, .., 7,(A) =
o =1
n

Case 1: If a; <a, then £,(0) < g (0). So the curve of £,(A) has a unique
=1

intersection point with the line f(A) =1+ aA = g(A) on some A > 0.
n

Case 2: If a; = a, means 7,(0) = g (0), so the line f(A) =1+aAisjust a

=1

tangent of 7,(A) at point A = 0. Hence, there is only one point of intersection
between the curve of f,(A) and the line F(A) =1+ aA.
n
Case 3: If a; > a, then £,(0) > ¢g(0). Since 7,(A) > 0 and F(A) =
=1

1+ad <0whenA < ‘;1 the curve of £,(A) must have a unique intersection

point with the line F(A) =1 + aA for some A E(ﬁ, 0. ]

Remark « If there is some x; such that u(#; A = u(X), then Equation

(1.2.2) has infinitely many solutions. This means that u is a A-fuzzy

~1
measure for any A € 100

Otherwise, it has no solution in

oo (only when u(x; A = 0 for all j = i.
=
H(X)’
» After determining the value of A, it is not difficult to extend this A-fuzzy

measure from C onto the power set (X)) by using the finite A-rule.

Example 1.2.14. Let X = {a,b, ¢/ and define u as
pX) =1, u(fapH=u(AH=02 uL£H=01

According to Theorem 1.2.13, u is a A-fuzzy measure. To calculate A, using

Equation (1.2.2), we have

(1+ 0.24)(1 + 0.24)(1 + 0.14) — 1
A J
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that is 0.004(A%) + 0.084 —0.5 = 0. So we have

Vs
—0.08 + 0.0064 + 0.008 _
=25 or A = 0.008 = 5.

_ —0.08 —/_0.0064 +0.008 _

A 0.008

According to Theorem 1.2.13, and since 0.2 + 0.2 + 0.1 <1, we have A = 5.

1.3 Quasi-Measures

Definition 1.3.1. Let a € (0, o9|. An extended real function 6 : [0, a] = [0, o9
is called a T-function if and only if 6 is continuous, strictly increasing, such
that 8(0) = 0 and 8~ '({e=p) = 0 or {foo} depending on the point a being finite

or not.

Definition 1.3.2. 1. u is called quasi-additive if and only if there exists
a T-function 6 whose domain of definition contains the range of u, such

that the setfunction 6 ° u defined on C by:

(6 ° W)(E) = 6(u(E)), for any E €C,

is additive.

2. u is called quasi-measure if and only if there exists a T-function 6 such
that 6 ° u is a classical measure on C. The T-function 6 is called the

proper T-function of u.

3. A regular quasi-measure is called a quassi-probability. I/t is clear that
any classical measure is a quasi-measure with the identity function as its

proper T- function.
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Example 1.3.3. The fuzzy measure, gyen in Example 1.1.6, is a quasi mea-
sure. Its proper T-function is 6(y) = " y,y €[0, 1]. This is because u(E) =

(Sa9E)2 and so (6 © u)(E) = S2UE js a classical measure.
n n

Theorem 1.3.4. Any quasi measure on a semi-ring is a quasi-additive fuzzy

measure.

Proof. Let u be a quasi-measure on a semi-ring L. and 6 be its proper T-
function. Since any classical measure on a semi-ring is additive, u is quasi-
additive. Furthermore, 8" exists and it is continuous, strictly increasing, and
6'(0) =0. So y=67" (6 * u) is continuous. And since 8 ° uy is monotone,
we have

6 u(A) =6 °uB),

s007" 0 ou(A) =071 90 u(B). Thus uis monotone and u(?) = 0. Therefore,
u is fuzzy measure O]
Theorem 1.3.5. If u is a classical measure, then, for any T-function 8 whose
range contains the range of u, we have that 87" ¢ u is a quasi-measure with

proper T-function given by 6.

Proof. To prove that 87" ¢ u is a quasi-measure, according to Definition 1.3.2,
we need to find a T-function 6; such that 8; ¢ (87" ¢ u) is a classical measure.
Take 6; = 6. So0,0 ¢ (87" © y) = u which is a classical measure. Therefore

6" ¢ uis a quasi-measure with proper T-function given by 6. O

The following theorem gives the relation between quasi-additive and quasi-

measure.
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Theorem 1.3.6. Let u be quasi-additive on a ring R with p(9) = 0. If uis
either continuous from below on R, or continuous from above at @ and finite,

then u is a quasi-measure on R.

Proof. Since u is quasi-additive, there exists a T-function 6 such that 6 ° u is
additive on R. The composition 0 ¢ u is either continuous from below on R or
continuous from above at ¢ and finite. So, 6 ¢ u is a measure on R. Therefore,

by Theorem 1.3.5, u is a quasi-measure on R. O

Corollary 1.3.7. Any quasi-additive fuzzy measure on a ring is a quasi-

measure.

Proof. Let u be a quasi-additive fuzzy measure. So, there exists a T-function
6 such that 6 ° uy defined by (8 * u)(E) = 6(u(E)), for any E €C, is additive.
Let’s prove that 6 ° u is a classical measure. First, YE €C,0 *u(E) = 0. Let’s
prove that 6 ¢ u(?) = 0. We know that u(9) = 0 since u is a fuzzy measure
and 6(0) = 0. So,

6 > () = 6(u(?)) = 6(0) = 0.

Now, take ZE, /2, pairwise disjoint sets in C. Given that 6 ¢ p is additive,

we get
@ EH)=  0°uEx).
k=1 k=1
Therefore, 6 © u is a classical measure. O

The following theorem states the relation between A-fuzzy measures, quasi-

measures, and classical measures.
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Theorem 1.3.8. Let A = 0. Any A-fuzzy measure g, is a quasi-measure with

_In(1 + Ay)
BAY) = =
as its proper T-function, where y € [0, sup g,] and k is an arbitrary finite

positive real number. Conversely, if u is a classical measure, then 9;1 ouis a

A-fuzzy measure where

for x €[0, o9 and k is an arbitrary finite positive real number.

Proof. 6, is a T-function. Let /E, }be a disjoint sequence of sets in C, whose

oo

union  E,isalsoin C. If g, is a A-fuzzy measure on C, then it satisfies the

n=1
0-A rule and JE, € C such that g,(Ey) < oo. Therefore, we have

oo 1 (
Gr g En) = mln 1+ Aga( o°E,)
n=1 n=1 \\
1 [
= mln 1+ ) (1+ Agu(Ep)) —1
n=1
1 [
= 1 N +ga(En))
n=1
_ 7 In(1+Aga(En))
) kA
n=1
= (9/\ 0 gA)(En):
n=1

and (6 ° ga)(Eog) = 0,(9r(Ep)) < ©o. So, 8, ° g, is a classical measure on C.

Conversely, if u is a classical measure on C, then it is 6-additive, and JE, € C
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such that y(Ey) < eo. Therefore, we have

N\ \
CL, E, = 6, u(Ep)
n=1 n=1
0 0
kA H(ER)-
e n=t -1
- A
ekAH(En) — 4
= n=1
1 _
= 3 (1+ A6, (u(En))) —1
n:1 \
1 _
= 5 (A6 p(E) 1
n=1

That is Gf o satisfies the 6 —A-rule. Note that (6/(1 'u)(Eo) = (9;1 (M(Ep)) <

oo, so we know that 9;1 o is a A-fuzzy measure on C. [

Example 1.3.9. Let X = #a,b/ F = P(X) and define g, by:

J

0 ifE=g¢g

0.2 ifE= 4/}
ax(E) =

[

0.4 ifE= 58}

1 ifE=X
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Let’s calculate A using Equation (1.2.2). We have
s N\
2 E;

=1

= 1= /—:((1 +0.2A)(1 + 0.41) — 1)

- %((1 +0.24)(1 +0.4) = 1)

1
2 1= (0.64+ 0.08/X)
= 1=0.6+0.08A

=2 A=5.

+ +
So, g, is a A-fuzzy measure with A = 5 and 6,(y) = In(1 + Ay) = In(1 5y)'

KkA) 5k
By taking k =28, we get6,(y) = """, So, we have
U
0 ifE=¢

0.387 if E =
01 ¢ g)(E) = TE=8/

“0.613 ifE=fH}

1 ifE=X

Hence, 6, ° g, is a probability measure.

Example 1.3.10. Let X = fa,b}and F = P(X). Define the A-fuzzy mea-

sure g, by:

S

if E=¢

I O I R

o
»

if E= {a}
if E= 6/

ar(E) =

J
S
(0]

1 if E=X
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Let’s calculate A using Equation (1.2.2). We have

u(UE;) = /1\((1 +0.54)(1 +0.8A) — 1)
= 1= /1\((1 +0.540)(1 +0.8A) — 1)
2 1= /—:(1.3/\ + 0.4A%)
= 1=13+0.4A

=2 A= —=0.75,

In(1 + A In(1 —0.75 , |
o 6x(y) = ) = PO by taking k = 222, we have

— In(1-0.75
Ox(y) = n(ln 0.25y) ana

S

ifE=v

N I A R B

0.34 if E =
6 ° GA)(E) = TE=&/

0.66 if E= f}

1 ifE=X
Hence, 6, ° g, is a probability measure.

Remark Under the mapping 6,, the A-rule and the finite A-rule become the
additivity and the finite additivity, respectively. Under the mapping q—1, the
additivity and finite additivity become the A-rule and the finite A-rule, respec-
tively.

Corollary 1.3.11. On a semi-ring, the A-rule is equivalent to the finite A-rule.

Proof. =) On a semi-ring, the o-additivity is satisfied. So, the A-rule is sat-
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isfied which means that A = 0. Then, u( ’ E)) = ’ U(E;). Therefore, the
finite A-rule is satisfied. - -

) The finite A-rule is satisfied. On a semi-ring, the o-additivity is satisfied.
So, we take the case A = 0. Then, u( ’ E;) = ’ U(E;). Therefore the A-rule

=1 =1

is satisfied. 0
Corollary 1.3.12. Any A-fuzzy measure on a semi-ring is continuous.

Corollary 1.3.13. On a ring, the A-rule with the continuity, together, are
equivalent to the 6-A rule. Thus, on a ring, any fuzzy measure that satisfies

the A-rule is a A-fuzzy measure.

Remark A fuzzy measure on a semi-ring that satisfies the A-rule may not
satisfy the & — A rule. A fuzzy measure on a semi-ring that is quasi-additive

may not be a quasi-measure.

Corollary 1.3.14. If g, is a regular A-fuzzy measure on an algebra R, then
its dual-fuzzy measure u, defined by W(E) =1 —g,(E), for any E € R, is also

a regular A-fuzzy measure on R, and the corresponding parameter is given by

=__A
A1 T
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Proof. Let E €R, F €R, and E NF = 4. Using Theorem 1.2.10, we have:

W(E) + U(F) = 2 EW(F)

= 1 =gE) +1 ~0u(F) = 2= (1 ~9)(F)
A+ DGE) | A+ NDguF) _, (A + NoEV(F)
THAGME) T 1HAGF) A+ AGENT +Ag(F))
(A + 1)GA(E) + Gu(F) * AGUE)(F))

(1 + AGUENT +AgH(F)
(A + 1)g(E UF)
1+ Agu(E UF))

= 1-g(EUF))=uE UF).

Since y is continuous, by Corollary 1.3.13, we get that u satisfies the 6 — A

rule with a parameter A = /\;31- Since u(X) =1 —gx(9) = 1, u is a regular

A-fuzzy measure on R with parameter A = ;\—11. O

1.4 Belief Measures and Plausibility Measures

In the previous section, we induced a non-additive measure from a classical
measure by a transformation of range of the classical measure. In this section,

we attempt to construct a non-additive measure in another way.

Definition 1.4.1. Let P(P (X)) be the power setof P(X ). If p is discrete
probability measure on (P (X ), P(P(X))) with p({@}) = 0, then the set func-
tion m : P(X) =0, 1] determined by m(E) = p({EA for any E € P(X) is

called a basic probability assignment on P(X).

Theorem 1.4.2. A set function m : P(X) — [0, 1] is a basic probability
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assignment if and only if

]

Hm@y =0

. m(E) = 1
EeP(X)

Proof. =) Let m : P(X) — [0, 1] be a basic probability assignment. So,
m(9) = p({@}) = 0 and

m(E) = p(EH=1.

EcP(X) EcP(X)

<) Consider D, = /E/~l—<m(E) <1} forn=1,2---. EveryD, is a

finite class so countable. Then

oo

D= D,={&E/mE)>0}
n=1
is a countable class. We have £~= f/EYE € P(X )/U{@}is a semiring and
we define, for any E € P(X')
U

H
p(EAH =
EO, else

m(E) for E €D

and p({@) = 0. Then p is a probability measure on £~ with p({/@}) = 0.

Moreover, p can be extended uniquely to a discrete probability measure on
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(P(X), P(P(X)) by
p(Ey=  P(ZED,

EcE
forany E € P(P(X)). O

Definition 1.4.3. If m is a basic probability assignment on P(X), then the
setfunction Bel : P(X) —=[0, 1] determined by

Bel(E) = m(F) forany E € P(X), (1.4.1)
FcE

is called a belief measure on (X, P (X)) or more exactly a belief measure

induced from m.

Lemma 1.4.4. If E is a nonempty finite set, then

( -1 )Card(F) =0

F cE

Proof. Let E = x4, X5, «++, X,,4 Then we have

Lard(F),F SE}=N0,1,---,n}

(
and Card #F,Card(F) =i} = (’,’. ,fori=0,1,---,n. So, we have

n
(=)= T =1 -1 =0,
FcE =0 !

where 7 is the cardinality of the set and (’} is the number of sets whose

cardinality is 1. O
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Lemma 1.4.5. If E is a finite set, F € E, then

(_1 )Card(G) =0

G/F <GCSE
Proof. E |F is a non-empty finite set. UsingLemma 1.4.4, we have
( -1 )Card(G) — ( -1 )Card(F D) — ( -1 )F ( -1 )Card(D) =0

G/F<cGeE DcE |F DcE |F

The following lemma gives the relation between 2 finite setfunctions.

Lemma 1.4.6. Let X be finite, and A andv be two finite set functions defined

on P(X). Then, for any E € P(X), we have:

NE) =  W(F) <=2 v(E)= (-1 EIPAF)
FcE FcE
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Proof. If A(E) = v(F) for any E € P(X), then
FcE

(—1)CadEIFNF Y = (—1)CardE) (=1)CaPN(F)
FcE FcE
— ( -1 )Card(E) ( -1 )Card(F) V(G)
F cE GcF
— ( -1 )Card(E) ( -1 )Card(F)V(G)

F,G/GsF cE 0

— ( -1 )Card(E) | ( -1 )Card(F)V(G)j

GcE F/GcFcE
l H

— ( -1 )Card(E) 0] V(G) ( -1 )Card(F) M
GeE F/G<cF cE

— ( -1 )Card(E) V(E)( -1 )Card(E)

= V(E).

Conversely, if v(E) = (—1)C@4EIPAF ) for any E € P(X), then
F cE

(
V(F) — ( -1 )Card(F IG)A(G) — ( -1 )CardGA(G) ( -1 )CardF
FcE FcE GeF GcE GcF cE
( -1 )CardEA(E)( -1 )CardE

= AE).

Theorem 1.4.7. If Bel is a belief measure on (X, P(X)), then

1. Bel(d) = 0.

2. Bel(X) = 1.
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3. If &4, ---,E, is a finite subclass of P(X), then

\ \
N
Bel E, = (—1)Cad*Be E,

=1 1A, ,nkl=¢ il

4. Bel is continuous from above.

Proof. 1. Bel(?) = m(F) = m(2) =0
2. Bel(X) = m(F) =1
Fex

3. Let /E4, E,, ---, E,}be afinite subclass and let

I(F)={iN<isnF SE;}
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forany F € P(X). UsingLemma 1.4.4, we have:

( (n
( -1 )Card(l)+1 Bel Ei

1<, ,nkl=0 iel
— (_1 )Card(l)+1 m(F)
1<A,...n 2= F< jesrEi
= m(,:) (_1 )Card(l)+1
F/I(F)=¢ ( (_CI(F ), I=0
= m(,:) 1 - (_1 )Card(l)
F/I(F)=¢ 1<I(F)
= m(F)
F/I(F)=0
= m(F)
F cE; for some 7
< m(F)
Fcell Ei
( n
= Bel E; .

=1

4. Let /E;}be a decreasing sequence of sets in A~ (X) and n?; E; = E.
From Theorem 1.4.2, we know there exists a countable class D,/ €
P(X) suchthat m(F) = 0 whenever F & {D,/ and for any ¢ >
0, dny such that -

n=n

,m(Dn) < c. For each D,, wheren < ng , if
D, /€ E (that is D, |E = ¢), then 3i(n)/D, /S Eipn). Taking iy

max(#(1), ...., i(no)), then if D, /€ E, we have D, /€ E;, for any n < n.

35



So, we have:

v

v

v

BelE) =  m(F)
F cE
m(Dp,)
Dnp CE
m(Dp,)
Dn cE,n<ng
m(Dp,)
Dn_CEiO,nSno
m(Dp) -
Dn_CE,'O
m(F) —c
F_CE,'O

Bel(E;,) —c.

m(Dr)

n=no

Noting that Bel(E) = Bel(E;) for i =1,2, --- and /Bel(E;)}is decreas-

ing with respect to /7, we have Bel(E) = lim Bel(E;).

Theorem 1.4.8. Any belief measure is monotone and superadditive.

Proof. Let E; €X, E, €X,and E; N E, = @. We have

=

>

Bel(E; UE))
Bel(E1) + Bel(Ez) - Bel(E1 n Ez)
Bel(E;) + Bel(E,)

Bel(E;).

Thus, Bel(E; UE,) = Bel(E,)+Bel(E,). Therefore, Bel is superadditive. Now,
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we have E; € E; UE,, So Bel(E,) = Bel(E; UE;). So, Bel is monotone. [J

Remark From Theorems 1.4.7 and 1.4.8, we know that the belief measure is

an upper semi-continuous fuzzy measure since Bel(9) = 0, Bel is monotone,

and continuous from above.

The following theorem shows that on a finite space, we can express a basic

probability assignment by the belief measure induced by it.

Theorem 1.4.9. Let X be finite. If a set function u: P(X) =0, 1] satisfies

the conditions:

1. w(0) =0

2. u(X) =1

3. If {E,,---,E,is a finite subclass of P(X), we have

u Ei = ((_1 )Card(l)+1lJ( n Ei

=1 1<, n21=0 il

Then, the set function m determined by

mE) = (-1 ERYF), forany E €PX), (1.4.2)
F<E
is a basic probability assignment , and u is just the belief measure induced

from m, that is: y(E) = Bel(E) = m(F)
F cE

Proof. We have m(9) =  (—1)°@9@F) yF) = (@) = 0. From Equation
Fco
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(1.4.2)and Lemma 1.4.6, we have

L
We already have that m(9) = 0and m(E) = 1. We still have to prove that
m(E) = 0for any E € X. Since X is finite, E is also finite and we can write

U
E = X, -+, } If we denote E; = E | ;4 thenE = "_, E; and

m(E) = (=1 ER )
FcE
( N
= WwE) - (=)D Ey)

1A, nkl=0 iel
n

( Card(/)+1 n
En - (=)= Ej) 0.
=1 1S, nAlI=0 iel

I
=

Therefore, m is a basic probability assignment and u is the belief measure

induced from m. ]

Definition 1.4.10. /f m is a basic probability assignment on P(X), then the
setfunction Pl : P(X) =0, 1] determined by

PI(E) = m(F), forany E € P(X) (1.4.3)
FnE=0

is called plausibility measure on (X, P(X)) or a plausibility measure

induced from m.

The following theorem gives the relation between belief measure and plau-

sibility measure.
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Theorem 1.4.11. If Bel and PI are the belief measure and plausibility measure

induced from the same basic probability assignment respectively, then

Bel(E) =1 —PI(E) and Bel(E) < PI(E),

for any E € X.

Proof. We have

Bel(E) = m(F)
FcE
= m(F) = m(F)
Fex FjcE
= 1= m(F)
FNE=0
= 1 =PI(E).
Since Bel(E) = m(F) and PI(E) = m(F), so we have, for any
FcE FnE=0

E £X,

Bel(E) < PI(E)

Theorem 1.4.12. If PI(E) is a plausibility measure on (X, P(X)), then:

1. PI(0) =0

2. PI(X) =1
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3. If &4, ---,E, is a finite subclass of P(X), then

(A ( (
Pl E =< (-1)Card+1p - E,

=1 I1CA, - n2l=0 icl
4. Pl is continuous from below.
Proof. 1. Bel(X)=1=1 —PI(9), so PI(9) =0

2. Bel(d) =0=1—PI(X), so PI(X ) = 1

3. UsingLemma 1.4.4, we have:

(r
Pl E;
=1
(A
= 1 —Bel E;
=1
(n_
= 1 —Bel E;
=1
< 1 - (_1 )Card(l)+1Be|( n E;
1A, ,ntd=0 icl
— (_1)Card(l)+1(1 - Bel nE
1A, .nklI=0 iel
— (_1)Card(l)+1(1 _Be|( Ei
1<, .nkI=0 iel
— ((_1)Card(l)+1(P|( Ei
1<, ,nf1=0 iel

4. Clearly that PI is continuous from below.

Theorem 1.4.13. Any plausibility measure is monotone and subadditive.
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Proof. If E €F €X,thenF €E € X. From Theorems 1.4.8 and 1.4.11, we

have that a belief measure is monotone, so

Bel(F) < Bel(E).

Take E € F, then

PI(E) =1 —Bel(E) 1 —Bel(F) = PI(F).

Thus, Pl is monotone. For subadditivity, if E; £ X and E; £ X, then

0 s PI(E, NE,) < PIE,) + PI(E,) —PIE, UE,).

Thus, PI(E; UE,) = PI(E;) + PI(E,) and therefore, PI is subadditive. ]

Remark According to Theorem 1.4.12 and Theorem1.4.13 , we conclude that

Pl measure is a lower semi-continuous fuzzy measure.

Theorem 1.4.14. Any discrete probability measure p on (X, P (X)) is both a
belief measure and a plausibility measure. The corresponding basic probability
assignment focuses on the singetons of (X, P(X)). Conversely, if m is a
basic probability assignment focusing on the singletons of P (X ), then the belief
measure and the plausibility measure induced from m coincide, resulting in a

discrete probability measure on (X, P(X)).

Proof. Since p is a discrete probability measure, there exists a countable set
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L
X1, X2, « F S X such that — Z, p(#&; A = 1. Define

(]

“p(E) E =&/
m(E) =

EO otherwise

for any E € P(X). Note that m is a basic probability assignment. We have

p(E)=  p(&iAH=  mF)= m(F ).

X;€E FcE FnE=0

Therefore, p is both a belief measure and plausibility measure. Conversely, if a
basic probability assignment m focuses only on the singletons of P (X), then,

forany E € P(X),
Bel(E) = m(F) = m(&xAH = m(F) = PI(E).
FcE X€EE FnE=0

So, Pl and Bel coincide and they are ¢ -additive. Therefore, the belief and

possibility measures are discrete probability measures on (X, P(X)) [

Theorem 1.4.15. Let Pl and Bel be the plausibility measure and the belief
measure, respectively, induced from a basic probability assignment m. If Bel

coincide with Pl, then m focuses only on singletons.

Proof. If there exists E € P(X)), which is not a singleton of P(X') such that
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m(E) > 0, then, for any x € E, we have

Bel(&xA = m(#&A

< m(&A+m(E)

IA

m(F)
F nix /=0

= PI(&J).

This is a contradiction with the coincidence of Bel and PI ]

Remark The Sugeno measures defined on the power set P (X ') are the special

examples of belief measures and plausibility measures when X is countable.

The following theorem gives the relation between the A-fuzzy measure g,, belief

measure and plausibility measure.

Theorem 1.4.16. Let X be countable, and g, A = 0 be a Sugeno measure on
(X, P(X)). Then, when A >0, g, is a belief measure, and when A <O, it is

a plausibility measure.

Proof. Let X = £, X5, <-4 When A >0, we define m: P(X) =0, 1] by

O

- ACard(E) 1 (X H for E=10
m(E) = xi€E

EO for E=20.
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Obviously, m(E) = 0 for any E € P(X). From Definition 1.2.1, we have

1(
(1+Aga(#xiA) —1

X,'GE

INE) =

>l= >

ACard(F) QA(I&I})

F cE,F =50 x;j€eF

— ACard(F)f1 g/\(l,)'(/.})

F cE,F =0 x;€F
= m(F).
FcE
. L
Since gA(X) = 1,wehave o _ m(F) = 1. Therefore, m is a basic probability
assignment, and thus, g, is the belief measure induced from m. When A <0,
we have A = ?A% > 0. Using Corollary 1.3.14 and Theorem 1.4.11, we

conclude that g, is a plausibility measure. O

1.5 Possibility and Necessity Measures

Definition 1.5.1. y is fuzzy additive (or f-additive) on C if and only if

p( Er)=sup u(Ey), (1.5.1)

teT
teT

for any subclass {Ew/t € T # of C whose union is in C and where T is an
arbitrary index set. If C is a finite class, then the f-additivity of u on C is

equivalent to the simpler requirement that

M(Er UE;) = p(Eq) V U(E?) (1.5.2)
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whenever E4, E,, and E; UE, €C. Here, we denote by mu(E;) Vmu(E,) the

supremum of u(E4) and u(E>).

Definition 1.5.2. pu is called a generalized possibility measure on C if
and only if it is f-additive on C and FJE €C /u(E) < oo. Usually a generalized

possibility measure is denoted by 1.

Definition 1.5.3. If m is a generalized possibility measure defined on P (X)),
then the function F defined on X by f(x) = m(.A for any x € X is called

possibility density function.

Theorem 1.5.4. Any generalized possibility measure m on C is a lower semi-

continuous fuzzy measure on C.

Proof. According to the convention, when T = 2, we have E; = 7 and

teT

supu(E¢)= 0. So if 2 € C, then m(¢) = 0 (vanishing at ¢). Furthermore, if
teT

E €C,F €C, and E £ F, then by using f-additivity, we have

m(F)=m(E UF)=mn(E) An(F) =2 m(E).

At last, m is continuous from below. In fact , if /E, #is anincreasing sequence
of sets in C whose union E is also in C, we have from the definition of the

supremum that for any ¢ > 0,
Ine/m(En,) = supm(En) —¢c=m(E) —c.
n

Noting that m is monotone, we know lim, m(E,) = m(E). O
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Definition 1.5.5. A reqular generalized possibility measure 1 defined on P (X)

is called a possibility measure.

The following example shows that a possibility measure is not necessarily

continuous from above.

Example 1.5.6. Let X = (—o9,09) andm : P(X) —[0, 1] the set function

defined by
U]
1 E=0
mE) =
Qo E=0

Let’s prove that m is f-additive. If for all t, E; = 0, then u(U E;) = 1 and
sup(u(Ey)) = 1. If all E; = 0, then u(U E;) = 0 and sup(u(E;)) = 0. If 3t;
suchthat E;, = 0, so p(U E;) = 1 and sup(u(E¢)) = 1. In all cases, m is

f-additive and m(x) = 1 since X = 0. Therefore, it is a possibility measure

on P(X). However,it is not continuous from above. In fact, if we take

i
E, = O,% , then {E,} is decreasing, and  E, = 0. We have m(E,) = 1,
n=1
Yn=1,2,--- butm(?) = 0. So,
\
N
imm(E,) =T «~E,
" n=1

Therefore,  is a possibility measure but not continuous from above.

Theorem 1.5.7. If £ is the density function of a possibility measure 1, then
sup f(x) = 1. Conversely, if a function f : X —[0, 1] satisfies sup f(x) = 1,
xeX xeX

then f can determine a possibility measure 1 uniquely and F is the density

function of 1.
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Proof. From Equation (1.5.1), we have

sup £(x) = sup m(&xA) = m(Uxex & H = m(X) = 1.

xeX xeX

Conversely, set m(E) = sup, e f(x) for any E € P(X), then 1 is a possibility

measure and m(#X.A) = supycx :F(X) = F(x). O

Remark Any function £: X —[0, o9 can uniquely determine a generalized

possibility measure mon P(X) by m(E) = sup f(x) for any E € P(X).

x€eE

Definition 1.5.8. A basic probability assignment is called consonant if and
only if it focuses on a nest (A nestis a class fully ordered by the inclusion

relation of sets).

The following theorem gives the relation between the possibility measure

and the plausibility measure.

Theorem 1.5.9. Let X be finite. Then any possibility measure is a plausibil-
ity measure, and the corresponding basic probability assignment is consonant.
Conversely, the plausibility measure induced by a consonant basic probability

assignment is a possibility measure.

Proof. Let X = {x4, X,, -+, X,/ and m be a possibility measure. There is no

loss of generality in assuming

1=m(drh 2 m(faof) = - 2 1(nl).
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Define a set function m on P(X) by

]
%ﬂ(ﬁ(ﬂ') -mM(XishH E=F,i=1-+-,n-1
m(E) = m({x,H E=F,
0 else,

where F; = #X1,++-,x; /i =1,---,n. Then m is a basic probability assign-
ment focusing on #F;, ---, F, 2 which is a nest. The plausibility measure
induced from this basic probability assignment m is just m. Conversely, let
m be a basic probability assignment focusing on a nest #F;, -- -, F,# which
satisfies F1 € F, £ --- £ F, and Pl be the plausibility measure induced
by m for any E; € P(X). Denote by j, = ming/F; N(E, UE;) = @} and
Joi=ming/F; NE;= @} fori=1,2,---. Then we have

PI(E; UE))

= m(F;)
F;(E1 UE2)=0

= mF)
J=jo

= mF)
J=jo

= m(F;) V m(F;)
J=Jo1 J=Jo,2

= m(F;) V m(F;)
FinE1=0 FinEx=0

= PIE,) VPI(E,).

That is PI satisfies Equation (1.5.2) on P(X). So, Pl is a possibility measure.
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Example 1.5.10. Let X = /x4, X2, X3, Xa, Xs £ and m be a possibility measure
on (X, P(X)) with a density function f(x) = m(A,x = x4, -+, X5 defined

as follows:

F(x1) =1, F(x;) = 0.9, F(x3) = 0.5, F(x4) = 0.5, f(xs) = 0.3

The corresponding basic probability assignment m focuses on 4 subsets of X,

which are

Fi1= &} Fo= &1, X0} Fa = X1, X2, X3, Xa } Fs = X,

with

m(Fq) = f(x1) —f(x2) =1-0.9 = 0.1, m(F;) = f(xz2) —f(x3) =0.9-0.5 = 0.4,

m(Fs) = F(x3) =F(xs) = 0.5—0.5 = 0, m(F,) = F(x;) —F(xs) = 0.5—0.3 = 0.2,

m(Fs) = f(xs) = 0.3.

Notice that {F, F,, F4, Fs.# forms a nest.

Remark When X is not finite, a possibility measure on 2 (X ) may not be a

plausibility measure even when X is countable.

Example 1.5.11. Let X be the set of all rational numbers in [0, 1] and f(x) =

x for all x € X. The set X is a countable set. Define a set function m on
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P (X)) asfollows:
m(E) = sup f(x), VE € P(X).
xXeE

Let’s prove that 1 is a possibility measure on P (X ). We have

mE; UER) = sup F(x) = sup f(x) Vsup f(x),

XEEq UE2 xXEE1 XEE>

so m is f-additive. Let E = 0, m(?) = sup f(x) = 0 < oo, Therefore, m is a
X€eQ
possibility measure on P (X) but it is not a plausibility measure. Assume 1T is

a plausibility measure . If we take E = X, then

PI(X ) = m(F) =0,

FnX=0
However, m(X) = sup, x f(x) = 1. So, 0 =1 which leads to a contradiction.

Definition 1.5.12. If 7 is a possibility measure on P(X), then its dual set
function v ,which is defined by v(E) = 1= m(E) for any E € P(X) is called
a necessity measure or consonant belief function on P(X).

Theorem 1.5.13. A setfunction v : P(X) —[0, 1] is a necessity measure if

and only if it satisfies \
N

v E; =infv(Ey)
teT
for any subclass /E«/t € T }of P(X), where T is an index set, and v(9) = 0.

Proof. According to Defintions 1.5.5 and 1.5.12, we have

V(NEy) =1 —m(UEy) =1 —sup m(E;) = inf(1 —m(Ey)) = itr;fTv(Et).
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The following theorem shows the relation between necessity measure and

belief measure.

Theorem 1.5.14. Any necessity measure is an upper semi-continuous fuzzy
measure. Moreover, if X is finite, then any necessity measure is a special
example of belief measure and the corresponding basic probability assignment

is consonant.

Proof. Let v be the necessity measure. Let’s prove that v is an upper semi-
continuous fuzzy measure. We have v(9) = 1 —m(0) = 1 —m(X) = 0. Let
E EP(X)F € P(X)E SF. Lets prove V(E) < v(F), v(E) =1 —m(E)
and v(F) = 1 —m(F). Since m is a possibility measure then 1 is a lower

semi-continuous fuzzy measure, by Theorem 1.5.4. So, we have

F CE
= n(F) s n(E)
= -n(E) = -n(F)
= 1-n(E) =<1 -n(F)
= V(E) s v(F)

Now, v(E) = 1 —m(E), and 1 is continuous from below, so v is continuous
from above. Therefore, v is an upper semi-continuous fuzzy measure. Also,
V(E) =1 =m(E), but 1 is possibility measure and according to Theorem 1.5.9,
when X is finite, a possibility measure is a plausibility measure but we have

Bel(E) =1 —PI(E). Therefore v is a special case of belief measure. O
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1.6 Properties of Finite Fuzzy Measures

In this section, we take a §-ring F as the class C.

Theorem 1.6.1. If u is finite fuzzy measure, then we have
lim w(E,) = p(lim Ep)
n— oo n— oo

for any sequence {E,} S F whose limit exists.

Proof. Let {E,}be a sequence of sets in /~ whose limit exists. Write

E = lim E, = lim supE, = lim inf Ej.

n—oco n—eo p n—eco n

By applying the finiteness of u , we have:

H(E)
( ~
= y(lirp SupEy) = Iir,p u E;
i=n
. ¢ =
= Ilrlp sup u E; zli'r7n sup u(En)
i=n
2 liminf y(E,) = liminf u(E,)
n n
(m (m
= liminf y E, =limpy E;
n i=n n i=n
= u(lirqn inf E,)
= p(E).
Therefore, lim u(Ey,) exists and lim u(E,) = u(E). O
n—oo n—oo

Definition 1.6.2. We saythat u is exhaustive if and only if Il7irf u(En) =0
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for any disjoint sequence {E,} of sets in .

Theorem 1.6.3. If u is a finite upper semi-continuous fuzzy measure, then it

is exhaustive.

Proof. Let {E,/be a disjoint sequence of sets in F~. If we write F, =  E;,

then /F, Fis a decreasing sequence of sets in /~, and

(|
limF, = F, =limsupE, = 2.
n =1 n

Since u is a finite upper semi-continuous fuzzy measure, by using the finiteness

and the continuity from above of u, we have:
lim p(Fn) = p(lim Fn) = p(2) = 0.

Note that 0 = u(E,) =< p(F,), thus we obtain lim u(E,) = 0 and so yu is

exhaustive. ]

Corollary 1.6.4. Any finite fuzzy measure on a measurable space is exhaus-

tive.

Proof. Let u be a finite fuzzy measure. If u is upper semi-continuous, then,
by Theorem 1.6.3, it is exhaustive. If u is lower semi-continuous, consider

U
{E,}EC suchthat E1 €E, £---and E, €C, sowe get

(
lim p(En) =4 E, = p(lim (Ep))

n—oo
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Chapter 2

Measurable Functions on Fuzzy

Measure Spaces

In this chapter, we define / —measurable functions and Borel functions on
fuzzy measure spaces, and we study the relation between them. Also, we
explain what it means for a sequence of measurable functions to converge al-
most everywhere, pseudo-almost everywhere, almost uniformly, pseudo-almost

uniformly, in measure or pseudo in measure to a function.

2.1 Measurable Functions

Definition 2.1.1. A measurable space is a couple (X, ) where X is a set

and F is a o-algebra on X . Elements of - are called measurable sets.

Definition 2.1.2. Let B be a collection of subsets of a topological space X .

B is called a Borel field if and only if:
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(o]
1. If (A)); is a family of elements of B, then A; €B
=1

2. IfA€EB, thenX |IA€B

Definition 2.1.3. Let A collection of subsets of X. Let B(A ) the intersec-
tion of all Borel fields containing A . Then everysetB € B(A) is called a

Borel set.

Let (X, F) be a measurable space, u: F —[0, o9 be a fuzzy measure (or

semi-continuous fuzzy measure), and B the Borel field on ( —o9, 9).

Definition 2.1.4. A real-valued function f : X —= (—o0,09) on X is F-
measurable (or measurable) if and only if £ '(B) = #x/f(x) € B} € F for
any Borel setB € B

Theorem 2.1.5. If £ : X — (—o9 09) js a real-valued function, then the

following statements are equivalent:

1. f is measurable

2. x/f(x) 2a €EF, Ya €(—oo, o)
3. x/f(x) >a €F, Va €(—oo o0)
4. x/f(x) sa €F, Ya €(—oo, o)
5. x/f(x) <a €F, Va €(—oo o0)

Proof. (1) = (2): We have #&/f(x) = a}= F'([a, ©9)). Since f is measur-

able and [a, ©9) is a Borel set, we get
f([a, o) EF.

99



(2) = (1): Since &X/f(x) = al€ F, Ya € (—oo, 09), we have f(B) € F for
any B € [a, o9)/a € (—oo,00) . Consider the sets A = /B/f '(B) € F}
and C = [a, e9)/a €(—o0,00) . We have C £ A. GivenanyB €A, we
have £ '(B) = F'(B) € F, andso B € A, that is A is closed under the

formation of complements. Now, let /B,/ < A . We have,

oo oo

So U;"=1 B, € F and hence A is closed under the formation of countable
unions. Thus, A is a 0- algebra and we have B = F(C) £ A . Therefore,
is a measurable function.

(2) = (3) : We have &Xx/f(x) = at= &Xx/f(x) > atU &x/f(x) = a} Since
X/f(x) =2 al € F and &x/f(x) = a} € F and since F is closed under
complement, then #&x/f(x) > af€ F.

(3) = (4) : We have that /Xx/f(x) > a}€ F, Ya € (—o9 09). Let’s prove
that /x/f(x) < a}€ F. We have #x/f(x) < a}= #x/f(x) >aj} Since F
is closed under complement, we get /x/f(x) s a}€ F.

(4) = (5) : We have that &X/f(x) s al € F, Ya € (—o9 09). Let’s prove
that Xx/f(x) <af€ F, Ya €(—oo, 09). \We have

IX/F(X) s af= Ix/M(x) <atUx/mf(x) =at

Since Xx/f(x) = af€ F and &x/f(x) = af€ F, then Xx/f(x) <alf€EF

(5) = (1) : We have that Xx/f(x) < af€ F, Ya € (—o0,09). Let's prove

that 7 is measurable. Since /x/f(x) < af € F, Ya € (—o9 o9, we get
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that £'(B) € F forany B € f{—o0, a)/a € (—os, o9) 2 Consider the sets
A =/B/f'(B) €E F}and C = f—oo, a)/a € (—oo 09) 2 \We have that

C €A . GivenanyB €A, we have B €A because F'(B) = F1(B) €F.

Thus, A is closed under complements. Let /B, S A, so
. B, = f'B,) €EF.

U
Then, ,.,B, € F. So,A is closed under formation of countable union.
Therefore, A is a g-algebra. Hence, B = F(C) £ A and f is a measurable

function. O

Corollary 2.1.6. If f is a measurable function, then {x/f(x) = a} € F,

Ya € (—oo, co)
Proof. We know that #&/f(x) = af= f'(£a. Since (—o9 a] and [a, °)

are Borel sets, we get (—o9,a] N [a, o = fatis also a Borel set. Because £

measurable, we obtain £ (&} = &X/f(x) = a}€ F, Ya € (—oo, 00) O

Definition 2.1.7. [et R = (=09 09 and R" = R XR X --- X R be the

n-dimensional product space. Denote

n
L"= [aib)/—o0<a sb<o00j=12-,n.

=1
The o-algebra B = F(L ™) s called the Borel field on R" and the sets
in B™ are called n-dimensional Borel sets. A function f: R"” = R is called

an (n-ary) Borel function if and only if it is a measurable function on the

measurable space R", B("
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Theorem 2.1.8. Let £y, ---, f,, be measurable functions. If g : R" =R is a

Borel function, then g(fi, ---, ;) is a measurable function.

Proof. For any Borel setB £(—o9, ©9), we have:

-1

g(ﬁ(, --e,f;)  (B)
= x/g fi(x), -, f(x) €EB
= xAfi(x), -, F(x)) Eg7(B)
N
Forany E = "_.[a; b;) € L™, we have
(4]
DAF(X), »--, (X)) EE}=  x/fi(x) Ela;, b))} E F.
=1
n . :
Thus, &XAFi(x), -+-, F,(x)) EFF=""_, f"([a; b)) Since [a;,b;) is a Borel
set, ;' ([a;, b;)) € F. Then,
" (lan b)) EF

=1

So, &X/Afi(x), -+ F(x)) EFFE F forany F € B™. As g is a Borel function,
g "(B) € B for any Borel set B C(—o9, 09). Thus, &X/AFi(x), -+ fn(x)) €
g '(B)} € F for any Borel set B C (—o9, 09). Therefore,g(fi, -+-, ) is

measurable. n

Remark [A special case of Theorem 2.1.8] If £, , are measurable, a €

(—o0, 9) is a constant, then the functions

afi, i+, —h, [ A X6 AL (VR AR
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and the constant a are all measurable. Furthermore, #x/f;(x) = f(xX)} =

X/fi(x) —H(x)=0/€EF.

Theorem 2.1.9. If /f,/}is a sequence of measurable functions, h(x) = sup,, #f,(x).}

and g(x) = inf, ff,(x).}for any x € X. Then h and g are measurable.

Proof. By Theorem 2.1.5, for any a € (—o9, ©9), we have

oo

X/h(x)>at= &/supffr(X) > at= Xf(x)>aleEF

n=1

and

r
&x/g(x) = a}= {x/irllf{ﬂ(x)}}= X/ (x) = alEF.

n=1

Therefore, h and g are measurable. O

Corollary 2.1.10. Let {7,/ be a sequence of measurable functions. Denote
by F(x) = lim,7,(x) and f(x) = lim,f,(x). Then, f and f are measurable.

Furthermore, if lim,, f,, exists , then it is also measurable.

Proof. We have

f(x) = inf sup £,(x) and F(x) = suplrltn{ﬁ,(x)}

nz=m

By Theorem 2.1.9, F and f are measurable. Assume that lim, 7, exists and
f, = f. Then, lim,f, = lim,f, = F. But lim,f,, and |lim,f,, are measurable,

hence lim, f,, = f is measurable m

Remark » In the next sections, we will consider only measurable func-

tions that are non-negative.
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e f,f, -, f, symbolize non-negative measurable functions.

» The class of all non-negative measurable functions is denoted by F.

2.2 “Almost” and “Pseudo Almost” Proposi-
tions

Definition 2.2.1. Let A € F and P be a proposition w.r.t points in A. If
there exists E € F with u(E) = 0 such that P is true on A |E, then we say
“P is almost everywhere true on A”. If there exists F € F with u(A |
F) = u(A) such that P is true on A IF , thenwe say “P is pseudo-almost

everywhere true on A”

Remark From now on, we denote almost everywhere by a.e and pseudo al-
most everywhere by p.a.e. Moreover, #7,/converges to £ a.e will be denoted

by £, <> f, and £F,}converges to f p.a.e by f, 225 F

Example 2.2.2. let X = 0,1} F = P(X) and

]

1 E=0
H(E) =

Ho E=o,

for any E € FF. Define a measurable function sequence on (X, F, u) as fol-

lows: 0
1 x=1,
f,(x) =
dim x=0,
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n=1,2 ---. Let’s prove that f,, 2= 0. Let F = A} thenX |IF = £ }and
pX 1F) = p(DhH=pX)=1.

We have f,(x) = 1 =0. So, f, =0 on X |F. Therefore, f, £=50. Let’s
prove that f,, 25 1. Let E = 0} thenX |E = A}and

pX 1E) = p(x)=1.

We have fi(x) =1 -1 =1. So, f, = 10nX IE. Therefore, f, £25 1.
Let’s check if f, *>0. Take F = 0 sou(F) =0and X IF =X = 0,1}
So, in case x = 0, we have f,(x) = % sof, =0 butin case x = 1, we have
f.(x)=1-1 sof, = 1. Therefore, f, °° 0. Let’s check if f, <> 1. Let
F =20 thenu(F)=0andX IF =X = £,1/ So, in case x = 1, we have
fa(x)=1-1 sof, =1, butin case x = 0, wehave f,(x) = 1, sof, =0.

Therefore, £, “° 1.

Example 2.2.3. Let X = 0,1}and F = P(X). We define

[

1 E=x,
H(E) =
Ho E=x,

for any E € F and D

H1am x=1,
fr(x) =
“1m x=0.

Let’s prove that f;, <> 0. Take F = i} So, F = X and u(F) = 0. We have
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fa(x) = 1, sof, = 0. Therefore, f, *> 0. Let’s prove that f, *> 1. Let
E = f}soE =X and u(E) = 0. So, fr(x) =1 -1 and hence f, = 1.
Therefore, f, % 0. Let’s check if £, == 0. Take F = 0, X IF = X
and u(X IF) = uX) =1. So,in case x = 0, fr(x) = }7 =0, but in case
x =1, fa(x) =1 =1 __ 0. Therefore, f, **°0. Let’s check if , 2= 1. Let

F=0 X IF=XanduX IF)=uX)=1. So,in case x = 1, we have

1 0. Therefore,

fa(x) =1-1 =1 putin case x = 0, we have F,(x) =

£, 7.

Remark 1. In classical measure theory if both £, <> Fand £, <> g, then

2. If proposition P is true a.eon A € F, then P is also true a.e on any
subset of A that belongs to /~. However if we replace a.e with p.a.e, this

statement will no longer be true.

Example 2.2.4. LetX = fa,b,c/and F = P(X). We define

[

Hcard(E) E= b}
HE) =
&l E=4#b}

for any E € F and the function f by

0

Ho x €A b2
f(x) =

17 x=c.

Let’s prove that u is a fuzzy measure.
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. u(9) =Card(9) =0

. Let E,F € F such that E S F. If E € F, then E hasequal or less
cardinality than F. Hence Card(E) =< Card(F). Therefore, (E) =<

H(F).

. Let fE,} € F such that E, €E, € ---E,, and UE, € F. We have

H(UE,) = p(P(X)) = 2°=8.

Thus, lim, u(E,) = 8. So continuity from below is satisfied.

. Consider {E,} € F such that E; 2 E, 2 ---E, and NE, € F. We

have

H(NE,) = u(9) = 0.

Thus, lim, u(E,) = 0. So continuity from above is satisfied.

Therefore, u is a fuzzy measure. Let’s check if f =0on X, p.a.e. Let F = £}

We have

X 1F)=pu(fa,bh =3,

and u(X) = Card(X) = 3. On X |F, we have f(x) = 0. Therefore, f =0 on

X, p.a.e. Let’s prove that “f = 0on £a, c/p.a.e”is not true. By contradiction,

assume f =0 on #a,ctp.a.e, so IE € F such that

p(#a, ¢/ 1E) = u(4a,ch
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andf =0on fa,ctIE. If we take E = fa} we have

M(E) = y(z’x/f(X) =0,x €facH =1=u(fach=2

which is a contradiction. Therefore f =0 on £a,c/}p.a.e is not true.

Definition 2.2.5. let A € F,f €F and ,# € F. If FE.} E F with
lim, p(Ex) = 0 such that £f,, * converges to f on A |E, uniformly for any fixed
k=12 ---, then, we say that {f,,} converges to f on A almost uniformly
and it is denoted by f, == f. If JfF } S F with lime u(A 1F.) = u(A) such
that {T,} converges to f on A | F, uniformly for any fixed k = 1,2, ---, then,
we say that T,/ converges to £ on A pseudo- almost uniformly andit is

denoted by f,, 55 F.

Definition 2.2.6. LetA €EF,FEF, {f,}EF. If
(
lim y &/ffo(x) —F(x)/ 2cNA =0
n

for any ¢ > 0, then we say that {f,,}converges in u (or converges in mea-

sure) to £ on A and it is denoted by f;, = F on A. If

im p(B/[F(X) = F(X)] < cFNA) = p(A),

for any ¢ > 0, then we saythat {f,}converges-pseudoin u (or converges

pseudo in measure)to £ on A and denote it by f,, &= f on A.

Remark In Definitions 2.2.1, 2.2.5, 2.2.6, when A = X, we omit “on A” from

the statements.
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Example 2.2.7. Let X =0, o9), F = B., and u be the Lebesgue measure.

Here B. is the class of all Borel sets in [0, + ).

- Let’s check if f, 225 f. Let f(x) = %,n =1,2,--- and let f(x) = 0.
We have (
limy X I/E(} = u(X)

and X =0 on X | £ }uniformly. Hence f, PESF

- Let’s check if £, &= F. We want to prove that
(
lim - 45/ fa(x) = FO) <eFNX = u(X)
for any ¢ = 0. We have

¢ x
imp £/ = =0 <cFN[o, &)

= limpy {x/)—; < N[0, )
" (

limy #x/—nc<x <nc}N[0, o)
n

lim p([0, nc)) = eo= w([0, &9)).

- Let’s check if £, & F on X. We want to prove that

(
lim LS [F(x) —F(X)[ 2 cFNX = p(X)
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for any ¢ > 0. We have

lim ,u({x/ % -0 =>c/N[0, o)
= limy &/ % 2cFN0, o)
n ( n

= limy &/ —nc=sx =<nctN|0, o)
n

lim p([nc, «)) = 0.
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Chapter 3

Fuzzy Integrals

In this chapter, we will define the fuzzy integral and study its properties.
We will also give several convergence theorems of fuzzy integral sequence.
Moreover, we will discuss the transformation theorem for fuzzy integrals and

explain how to define a fuzzy measure using a fuzzy integral.

3.1 Introduction

In this chapter, we assume that (X, F) is a measurable space where X € F, u:
F — |0, o9 is a fuzzy measure (or a nonnegative monotone set function for
section 1.6) and F is the class of all finite nonnegative measurable functions

defined on (X, F). For any given f € F, we write

F, = &xX/f(x) =2 ajt

For = IX/f(x) > a}
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where a €[0, o9. We call F, and F,. the a— cut and the strict a — cut of £,

respectively. We will take the convention:

700 = o2

since the range of the function f that we consider in this chapteris [0, ©0).

Definition 3.1.1. Let A € F,f € F. The fuzzyintegral of f (also called

Sugeno Integral) on A with respect to u, denoted by -, fdu is defined by

— fdu= sup [a Au(A NFy).
A a€l0, ]

When A = X, the fuzzy integral may also be denoted by - fdu. When we write
-, Fdy, it directly implies that A € F and f € F.

The geometric significance of -, fdu. If X = (—o9 o9), F is the Borel
field B, u is the Lebesgue measure and £ : X —[0, ©9) is a unimodel continous
function, then -, fdu is the edge’s length of the largest square between the

curve of f(x) and the x — axis.

Lemma 3.1.2. 1. Both F, and F,. are nonincreasing with respect to a

and Fq. 2 Fg when a <.

2. We have

lim Fs= lim Fgs=Fy D Far= lim Fg = lim Fg.
B—a~ B—a~ B—a+ B—at

Proof. 1. Let a4, a2 €0, o9 suchthat a; < a,. Take x € F,,. Since

ay < ap s f(x), we have #&x/F(x) = a.} & {x/f(x) = a1/ Then,
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Fa, € F, . This means that F, is non-increasing. Now, let a, 8 €[0, o9
such that a < . Take x € Fz. Since a < = f(x), we get /Xx/f(x) =
B} E {x/f(x) >at Hence, Fg € Fgs.

2. Since Fg and Fp, are nonincreasing with respect to a, we have

N
”ID— Fe= & f(x) =B/}

p<a

B

N
lim Fp = &/(x) > B}

p<a

B

Thus,

(@ N
O/(x) 2BF = Ix/f(x) > BF
B<a B<a

= X/f(x) 2 a} 2 &x/(x) > a}
= & f(x) 2B}

B>a
= &, f(x) > Bt

p>a

Theorem 3.1.3. We have

- fdu = sup aAu(A/?Fa

A a€l0, o)

= sup aA p(A N For
a€l0, o] (

= sup aAu ANFs
a€l0, o) (

= sup inff(x) AWANE
EeF( x€E (

= sup inff(x) AWANE
EeF X€E
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where I~ (F) is the d-algebra genrated by F, the smallest 6-algebra such that f

iS measurable.

Proof. When a = +o9,we have F, = Fo,+ = 0 and so

—fdu= sup [aAuANF)] = sup [aAuA NFL)].
A a€[0,+ oo] CIG[O, + 00)

Similarily, sup [dAu(A NFa+)] = sup [aAu(A NF4+)]. Let's prove that
a€]0,+ oo] agl0,+ o)

sup [a A (A NF)] = sup [aAu(A NFg+)l.
x€[0, c0) x€[0, o)

By Lemma3.1.2,F,+ £ F,. So,ANF, £ A NF,. Since uyis monotone,
U(A NFg+) < u(A NF,) for any given a €[0, ©9). Then,

sup [a Au(A NFg+)l = sup [a Au(A NFL)I.
x€]0, o) x €0, )

Let ¢ > 0,a € (0,90 andlet a € ((a —c) Va). We have a < a, so
Fo € F,t.(by Lemma3.1.2). Thus, ANFy EA NFy .. Then, u(A NFy) =<
U(A NF,e.). It means that a A u(A NF,) < (a™c)Au(A NF). Hence, we

have

sup a/\,u(AnFa = sup a/\/J(A/?Fa
a€l0, o) a&(0, o) ( (

sup a*tc /\,uAf)F;+
at g0, o)

sup [a AWANF,S +¢
at g0, o)

= sup a/\p(A nNF; +c.
a€l0, o)

I

A
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As c tends to O, we get

sup [a Au(A NF,) = sup [aAu(A NFg+).
adf0,+ o) a€l0, o)

Therefore, sup [a Au(A NF,) = sup [a Au(A N Fg+). We still have to
adl0,+ o) a€l0, o)
prove that

- fdu= sup [(|nf f(x)) Au(A NE)] = sup[(lnf f(x)) Au(A NE)].
A EeF(r) *°E EeF X&

For any a €10, +o9, since infy., F(x) = a and denoting F, € F(f), we
have

[aAuA NF)] = sup [(inf ) Au(A NE)].
EeF(f) X€F ()

Next, since f is F~ measurable, we have F~(f) € F~, and therefore,

sup [(inf #(x)) A p(A NE)] < supl(inf (x)) A (A NE)]
EeF(f) xeE EcF X¢€l

Finally, for any given E € F, take a = inf,.s f(x), then E £ F,:. Hence,
U(A NE) < u(A N Fga) (by the monotonicity of y). Now, we have

[im::_f(x)] AU(ANE) sa Ap(ANF,) < sup [aAuA NFy)] =  fdy,
XE a0, o]

forany E € F. So,
sup[(lnf f(x)) Au(ANE)] = — fdu
EecF X€l

Therefore, -, Fdu = supgg[infyee F(x) Au(A NE)]. O
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Remark To simplify the calculation of the fuzzy integral, for a given (X, F, u), f €
F,and A € F, we write

C )]
T= a/a€l0, o9, A NF,) >u(A NFz) foranygiven B>a .

So, we get

= fdu= sup [a Au(A NFy)] =supla A u(A N Fq)l
A

a€l0, e] acT

Example 3.1.4. Considerthe fuzzy measure space givenin Example 2.2.4.
We recall that X = fa,b,cAF = P(X), F, = {xX/f(x) = a/

]

Hcard(E) E = #4,b}
M(E) =
3 E=4#bF foranyE € F

and

U]

Es if x=a

fx)= 25 ifx=b
Ez if x=¢

We have -, Fdu=[3 Au(8A] V(2 bAl V2 Au(X) =1V25V2=25

Example 3.1.5. Let X =0, 1], F be the class of all Borel sets in X, y= m?

where m is the Lebesgue measure and f(x) =%, We have

F, = X/f(x) = a}=[2a,1].
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Since T = [0, %), we only need to consider a € [0, 12). So we have

- fd,u— sup [a A p(F,)] = sup [aA(1 —2a)].
ado, b) a€lo, })

In this expression, (1 —2a)? is a decreasing continuous function of a when
a €]0, %). Hence, the supremum will be attained at the point which is one of

the solutions of the equation a = (1 —2a)?. That is, at a = 14 so - fdu=+

3.2 Properties of the Fuzzy Integral

The following theorem gives the most elementary properties of the fuzzy inte-

gral.
Theorem 3.21. 1. If y(A) =0, then -, fdu=0for any f € F.
2. If -, fdu =0, then u(A N {x/f(x) >0A =0.
3. If f; =1, then -, fidu = -, Hdu.
4. -, fdu= - Fxadu , where x4 is the characteristic function of A.
5. -, adu= a A u(A) for any constant a €[0, o).
—(f+a)du = -, fdu+ -, adu for any constant a €0, o)

Proof. 1. If u(A) =0, then

- fdu— sup [a Au(A NFy)] = sup [aA0]= sup (0) =
a€lo, o] a€l0, o] A€o, o]
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2. Assume that u(A N #/f(x) >0A =c¢ >0. We have

A N &/F(x) 2 % F} ANBHSx) > 02

By using the continuity from below of y, we have lim, u(A N &x/f(x) =

1) =c. Take ¢ = &, then, 3n, such that

HANF 1)=u AN XMf(x) zni} =
nO O

l\)lo

Consequently, we have:

= foy= sup [a A(A NF,) > 4%50
a€l0, oo] o 2

This contradicts -, fdu = 0.

3. Assume that 7, < 7,. Let's prove -, fidu = -, f,du. We recall that

- f1du = sup [a A (A NFY)
a€o, o]

~ fadu= sup [a ApA N Fal
a€lo, o]
where F2 = #x/f,(x) = afand F} = &x/fi(x) 2af But a = fi(x) <
>(x). So, Fiq £ F5..Then, A NFiq €A NF,,. By the monotonicity of
u, we get
H(A NFiq) < p(A N Fy).
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So, a A (A NFiq < a Au(A NF2) and hence

sup [a Ap(A NFD] = sup [a AuA NF2).
a€l0, o] a€l0, o]

Thus, -, fidy = -, du

4. We have -, fdu = sup(a Au(A NF,)) where Fy = #x/f(x) = a/ Thus,
= f.xady = supla A u(X NF)],

where F; = X/f.xa(x) 2 at= {&x € A/f(x).1 = al= F,. Therefore,
- Fdu= - F.xadu.

5. Let’s calculate - adu. We have F, = #&X/f(x) = a}= {x/a = a} Then,

—adu= sup [a Au(A NFy)l.
A a€lo, o]

Now F, is either dor X. So, F, A is either 2 or A and hence u(A NF,)
is either 0 or y(A). So, -, adu= a A u(A).

6. We have
_ (. (
—(f+a)duy = sup inf fix)+a AUANE
A EcF ,X€E ( ( (
= sup inff(x) AWANE + aAuANE
(e ( C
= sup infflx) AWANE + aAuA
EeF , X€E ( ( (
= sup inff(x) NAWANE + aAuA
EeF X€E
= = fdu+ — ady
A A
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Corollary 3.2.2. 1. If A 2B, then -, fdu = — fdu
2. p(HVh)duy 2 -, frdu V-, Hdu
3. A(Fi AFy)du < — Fidu A~ Fod
4.  fdu= -, fduV -, fdu
5. -, fdus -, fdu/ -, fdu

Proof. 1. Assume that B €A. Wehave BNF, €A NF,. So,

H(B NFy) < WA NFq).

Then,a Au(B NF,) =a Au(A NF,). So,

sup [a Au(B NF,)] = sup [aAu(A NFR).
a €0, o] a€l0, o]

Hence,  fdu = -, fdu.

2. We have
Ix/fi(x) 2 al S N VE)(x) = al

X/H(x) 2 al & NG VH)(x) 2 at

Then,ANF2 EANF, andANF} EANF,. So,

aAuA NF2) <a Au(A NFy)
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a AuANF) sa Au(A NFy).

Consequently, -, fody < -, f; Vhduand -, fidu < -, f; V,du. There-
fore, -, fidu V -, Hdu = -, (F; V £)dp.

3. We have
N AB)(Xx) = al S Ix/fi(x) =al

AT A)(x) 2 a} S Ix/H(x) 2 at

Then,ANF, EANFlandANF, €A NF2. So,

aAuA NFy) saAu(ANFL)
aAu(ANF,) saAulA f)Fj).

Consequently, -, fi Afodu < -, fiduand -, fi Afhdu < -, frdu. There-
fore, -, /i AKhdu = -, fidu A -, Fdu.
4. We have A SAUB andB €A UB. So,ANF, £(AUB) NF, and

B NFy S(A UB) NFqy Then,

a AuA NFy) <aAu((A UB) NFEy)

aAu(B NFy) <aAu((A UB) NFy).

So, - fdu = -, g fdu and  fdu =< -, ; fdu. Therefore, -, fdu V

B U s 48

fdu.

5.ANB £AandANB £B. Then, ANB)NF, € ANF, and
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(ANB)NF, £BNF,. So,
aAu((ANB) NF,) saAu(A NFy)

aAu((A NB) NF,) saAuB NF,).

Then, -, ; fdu = -, fduy and -, , fdu = - fdu. Hence

ANB fdu =
-, fdu A - fdp.

' TANB

]

Remark In general, the fuzzy integral lacks some important properties that
Lebesgue’s integral possesses. For example, Lebesgue’s integral has linearity,

that is

— (A + RH)du= — fidy+ — Hdu
A A A

and

—afdu=a— fdu
A A

But the fuzzy integral does not. We can see this in the following example:

Example 3.2.3. Let X = [0, 1] and F be the class of all the Borel sets in X
(namely B N[0, 1]) and u be the Lebesque measure. We take f(x) = x for any

X €EX,anda= Then, we have

1
5

Fo = £x/f(x) = aj= {x/g > ajf=[2a,1].
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Now,

—afdu

However,

a—fdu =

Therefore, - af du = a- fdy.

I\)l—\ N —

Nl =

L

Ha

N —q if a2

1

2

X
P

sup [a A u(A NFa)]
adg0, o]

sup [a A p([2a, 1])]
a€lo, ]

(a A (1 -2a))

M -2a if a1

Ha if a<i
1

3

= xdu

\
sup [a A (A NFg)]
a0, oo

sup [a A p(A Na, 1])]
a€0, o] \

sup [a A (1 —a)]
a0, oo

i 1
if as;

N|—
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Lemma 3.2.4. LetA €EF,a €[0, o), f, €EF andf, €EF. If
[fi —ff<a

on A, thenwe have -, fiduy — -, L,du =<a

Proof. Since [f; — /< a,then —a < f; —f, < a. So, f; s f,+aonA, using
properties 3, 5, 6 of the fuzzy integral (Theorem 3.2.1), we have

- fidy s —(fR+a)du s — Kdu+ — aduy= - KLdu+[aAu(A)] s — Hdu+a
A A A A

A A

Similarily, since f, < f; +aonA , then
A A A

- fhdy s —(fh+a)dy s - fdu+ — adu= - fidu+[aAu(A)] < — fdu+a.
A A A

(
Therefore, Card -, fidy — -, Ldu <a O

Lemma 3.2.5. We have
—fdusaVuA NFy) sa VA NFy)Ya €0, o9
A

Proof. We calculate

- fdu sup [a ApA NF]

A atelo,a]
ty
supa V sup MANFT)

al &(a, o]

aVulANF])

In

In

In

a VuA NFy)
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Lemma 3.2.6. We have -, fdu= o0 <= u(A NF,) = o9, Ya €[, oo)

Proof. =) If -, fdu = oo, then by Lemma 3.2.5, a V u(A NF,) = oo. So, if
a €0, o0), then (A NF,) = oo
<) If y(A NF,) = oo, Ya €]0, o0), then,

—fdu= sup[aAu(ANF,)] = sup [aAod= o0
A a0, o] a0, o]

Lemma 3.2.7. For any a €[0, 0), we have
1. 4 fdu=za < uANFg) =aforanyB <a <uANF,) =a

2. 5 fdu<a < 3B <a suchthat y(A NFg) <a 2 uA NF,) <a =

A NFe) < a
3. o, fdusa < YA NFy)sa <uANF,) sa
4. — fdu>a <= YA NFe)>a SuANF,) > a

5.  fdu=a < foranyB < a, A NFg) = a = A NFe) <
MA NF) = a

When u(A) < oo, we have

6. ,fdu=a < uANF,) =2a

~N

., fdu=a = uA NFy) 2a = uA NFg)
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Proof. 1. We only need to consider the case when a € (0, @9). If u(ANFz) =

a for any B < a, then

—fdu = sup [BA WA NFp)
A BE[0, o)

= sup [BAUA NFg)
BEI0, )

= sup [BAd]
BEI0, «0)

= sup B
B€0,a)

= a

Conversely, if I8 < a such that u(A 11 Fz) <a. Then by Lemma 3.2.5,
we have -, fdu < B V(A NFg) <a. So

—fduz2a < uANFg) 2aVB<a
A

Now let’s prove that u(A NF,) = a = u(A NFg) = a, ¥B < a. Since
B <a, by Lemma 3.1.2, Fy € Fg+ £ Fg. Then, A NFs €A N Fg which
implies that y(A NF,) < u(A NFg) So,a < (A NF) < p(A N Fp).
Therefore, u(A NFg) = a, V6 < a

2. From the previous part, by negation we directly get -, fdy < a

3B < a such that p(A 1 Fg) <a. Also, from the previous part we have
that (A NF,) = a = u(A NFg) = a, VB <a. So by negation, we get
if 38 < a such that u(A NFg) <a = u(A NF;) <a. Now, let's prove
that if u(A NFy) < a, then y(A N F,+) < a. We have Fo+ € Fq, SO
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A NF, € A NF, which implies that

UA NFe+) s (A NF,) <a.
Hence, u(A NFy+) < a
. If y(A NF4+) < a, then by Lemma 3.2.5, we have
—Afdy_<a VA NFg+) = a.

Now, if u(A N Fq+) > a = Jay > a such that y(A NF,) > a. So, by
Definition 3.1.1,

—fdu=ao Au(A NFy) > a.
A

Now, let’s prove if u(A NF,) =< a, then u(A N Fy+) < a. We have
Fo+ €F4, 50 ANFy €A NF, which implies that

UA NFe) S pA NF,) <a.

Therefore, u(A NFy+) < a.

. We already proved in the previous part that

—fdu>a < u(ANFs)>a
A

. Now let's prove if u(A N Fq+) > a, then y(A NF,) > a. We have
For EFy, SOANF+ EANF,. Then,a < u(A NFa+) < u(A NFy).
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Hence, u(A NF,) > a.

5. We have

- fdu=a < —-fdu=a
A A

and -, fdusa 2 VB <a, WA NFg) =a and y(A NFs+) < a. Hence
8B < a, (A NFg+) s a < u(A NFg). Now, yA NF) = a
U(A NFy) 2 aand u(A NF,) < a. Thus, by parts 1 and 3, we have

- fdu=a and - fdus<a.
A A

Then, uA NFy) =a = -, fdu=a.

6. Since u(A) < oo, we have from part 1 that
HANFy) 2a=>—-Ffdu=a=puANFs) =a, VB<a
A

S -=-fdu=a
A

7. ,fdu=a = -, fdu=a = uA NF;) = alby part 6). We have
- fdu=a 2 u(A NFq+) < a (by part 5). Hence,

WA NFg+) sa < u(A NFy).

By part 3, if (A NFs+) =a = -, fdu < a and by part 6, we have

UANF) 2a=—-fdu= sup[aAu(ANF)] = sup a=a
A x€[0, e0] x €10, ed]
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Therefore, -, fdu=a < YA NF,) =a = A NFg+)
O

In classical measure theory , if two measurable functions £ and 7%, are

equal a.e, then their integrals are equal. What about the fuzzy integral on

fuzzy measure space?

Example 3.2.8. Let X = 0,1}and F = P(X). We define

(]

1 fE=X
M(E) =

0 IFEEZX

]

1 o ifx=1
fi(x) =

0 ifx=0

and f,(x) = 1. Let E = 0} wehave y(E) =0 (E = X) andf; = £, on
X |E. Therefore, 1 = £, a.e. Then,

= fidu= sup [a A (A NF,)]
x€l0, 0]

O

: .
Fa = {X/ﬂ(x)2a}= 15(/1 ZG} if x=1

AN 2> ap if x=0
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buta €[0, o9, so, F, = /1 = a}=10,1]. We have

= fidu = sup [a Au(A NFq)]
A x€[0, o]

= sup [a Au(A N[0, 1])]

x€[0, o]

= 11 Au(AA] V0 Au(H, 1]
= [1 AQ] V[0 A1]

= 0/40=0

Also, F, = {&x/f,(x) = a}= &/ = a}=]0,1], so

—fHduy = sup [a Au(A NFy)]
x€[0, o]

= sup [a A (A N0, 1])]
x€]0, o9]

= 1 Ap(X N[0, 1])
= 1ApX)=1A1=1.

SO! - ﬁle = - ’-—Zle

Definition 3.2.9. y: F —=[—o9 o9 js null additive if and only if
M(E UF) = 1(E),

whenever E € F,F € F,E NF = 7 and u(F) = 0.

Now, we give an important theorem for fuzzy integrals.
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=f a.e. Then,

Theorem 3.2.10. Assume that f;

- fidu= —fhdu < u is null-additive.

Proof. <)If u is null-additive, then u(/x/fi(x) = f2(x).A = 0, and

p(x/fy(x) 2 ah
p(dx/fi(x) 2 af) U Ix/fi(x) = H(x)A

= U(&/MF(x) = ad,
for any a €][0, o9 Also,

p(x/fi(x) 2 ah
p(x/F(x) 2 a}U Ix/fy(x) = F(x).A

= U(&x/hH(x) 2 ad).
So, u(x/Ffi(x) = ap) = u({x/fH(x) = ap, Ya €0, o9. Therefore,

—fidu= —tfdy
) Forany E € F,F € F with y(F) = 0. If y(E) = eothen by monotonicity

of u, we have U(E UF) = co= y(E). Assume u(E) < o9, use contradiction to

prove U(E UF) = u(E). Assume u(E UF) > u(E). Take a € (u(E), u(E UF))
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and N

“a ifx €EE
fi(x) =
-0 ifx £E

[

a ifx EEUF
f(x) =
o ifx £E UF

Then, u(x/f;(x) = f1(x))H = u(F IE) s u(F)=0. That is f; = £, a.e. So,
we should have - fidu = - f,du. But,

—fidu = sup [aAu(A NFy)]
xel0, 0]
= [0 Au(E)] VIaAu(E)]
= 0 V[aAp(E)]

= aAuE) = (E)

—fdu = sup[aAuA NFy)]
x€]0, e0]

= [0 AUE vF)] ViaAuE UF)]

= 0 V[aAu(E UF)]

a= u(E)

Then - fdu = - f,du, which is a contradiction. O

Corollary 3.2.11. If y is null-additive, then -, fidu = -, f,du whenever

=1 aeonA.

88



Proof. If £, =7, ae on A, then fi.x4 = f,.xa a.e. So,
= fiXady = — frxadp.

Hence, -, fidu = -, frau O

Corollary 3.2.12. If u is null additive, then for any f € F, we have

- fdu= - fdy,
A

AuB

whenever A € F,B € F with u(B) =0

Proof. We have f.xaus = f.Xa a.e. So, -, , fdu= -, fdu =

We already discussed in the previous chapter several convergences of mea-
surable function sequences on fuzzy measure spaces. In classical measure the-
ory, there are some concepts of convergence of measurable function sequences
that concern the integral. One of them is the mean convergence. Since the
fuzzy integral has been defined for measurable functions, we can introduce a

concept of fuzzy mean convergence on fuzzy measure measure spaces as follows.

Definition 3.2.13. Let /.S F andf € F. We saythat {f,}fuzzy mean

converges (f-mean converges) to f if and only if

lim = ff, = f/du=10
n

However, the following theorem shows that such convergence is not neces-

sary.
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Theorem 3.2.14. The f-mean convergence is equivalent to the convergence in

measure on fuzzy measure spaces.

Proof. If £, = F, then for any givenc¢ > 0, 3n, such that

B fa¥) = F0) 2 2D <,

whenever n = ny. UsingLemma 3.2.7 part 1, we know

- [fy —H)fdu<c.

So, lim, - /f;, = f/du = 0. This shows that /7, #f-mean converges to . Con-

versely, if £, £ £ does not hold, then 3¢ >0, & > 0, and a sequence Zh;#such

that
(s ffr,(x) —F(x)/ =2cH=cAs >0,

for any n;, i = 1,2, ---. This shows that 77,/ does not f mean converge to

f. ]

3.3 Convergence Theorems of the Fuzzy Inte-
gral Sequence

In this section, we will give several convergence theorems of fuzzy integral
sequence under some conditions as weak as possible. In these theorems, we
assume £,/ € F, and we will usesymbol” |,. ” to denote "decreasingly

converge to”, ” to denote "increasingly convergeto” and” —” to denote
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"convergeto” for both function sequences and number sequences. We will

write F? = &/f,(x) 2 afand F2. = &/f,(x) > a/
Lemma 3.31. If £, |,. £, then

" (|
Fll. Fl=F; and Fo~ EFJ. |,. F.. EF,.

n=1 n=1

Proof. Let £, |,. F. Since f,, = f, Yx € X, we have

XEFg 2Ff(x) >a 2(x)>a >x €EF)..
So, Fo+ € F[.. Nowsince £, > f, ¥x € X and

Fl. = &x/fi(x) > al Fi = {&x/F(x) > aj}

. . . . . n,
We get /F/. /is nonincreasing w.r.t n which impliesthat FJ. . 72, FJ..

n
Now let x € 7_, Fl. =x € Fl.,¥n. Then f,(x) > a, Vn. So, f(x) = a

n
which implies that £(x) € F,. Hence °_.F". € F, Let f, f. Since

n=1"a* —

f,<f/xeX []

Theorem 3.3.2. LletA €F. If f, |,. f on A and 3ny such that
U /M (x) > — fdufNA <oo
A

orif f, fthen

lim = f,du = = fdpu.
m A A

Proof. There is no loss of generality if we assume that A = X. Write - fdu=—¢
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and let 7, |,. £ with ng such that u(#/f,,(x) >cA < oo If ¢ = o9, by using

monotonicity of fuzzy integral (Theorem 3.2.1 part 3),we have
=f,du = —fdu= eco

So, the conclusion of this theorem holds. If ¢ < oo, then - £,du = ¢ for any

n=1,2,--- and therefore,
lim = f,du = c.
n
Assume lim,, - f,du > ¢, then ¢ > ¢ such that lim, - f,,du >c, so

- fdu>c,

for any n. From Lemma3.2.7 part 2 ,We know that u(F7, > c) for any n.

Since Jny such that
H(F &) = p(dx/Too(x) 2 ¢ f) < p(/F(x) > cf) < o9

then by applying the continuity from above of y, by Lemma 3.3.1 we get
u(F,) =lim, u(F,") = c. Using Lemma 3.2.7 part 1, we know - fdu =c¢ >c.
This contradicts - fdu = c. Consequently

lim = f,du=c= —fdu.
n

When f,, £, the proofis similar. m
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Corollary 3.33. Let A € F. If £, |,. £ on A, then 3ny and a constant
¢ < -, fdu such that u(#x/fn, > ¢ NAJ) < e .Then -, frdu |,.. -, Fdu.

Corollary 3.3.4. If £, |,. F and u is finite, then -, f,du |,. -, fdu.
Corollary 3.3.5. Let u be null additive.
1. If £, |,. f a.eand 3n, and a constant ¢ < - fdu such that

U5/ Fon(X) > ) < o0,

then - f,du |,. - fdu.
2. If f, Ffae then-f,du -fdu
Theorem 3.3.6. Let A € F. If f(x) =liminf, £,(x), Vx €A, then

= fdu < liminf = fL,du.
A n A

Proof. Let g,(x) = inf;., fi(x), Vx €A, theng, fon A. By using Theorem
3.3.2, we get

lim —gn,du = — fdu.

n A A

Since g, = 7, on A, we have -, g,du = -, f,du and, therefore lim, -, ghay =

liminf, -, f,du. Consequently, we have

= fdu < liminf = f,du.
A n A
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In Theorem 3.3.2, when £7,, .} is a non-increasing sequence,the condition
that Jno/u(#x/foy(x) > -, FdutN A) < oo cannot be abandoned casually.
Without this condition, the conclusion of this theorem might not hold. We

can see this from the following example.

Example 3.3.7. Let X =0, o0) and F be the class of all Borel sets that are
in X (F =B NX), and u be the Lebesgue measure. Take f,(x) =% for any
x €EX andanyn=1,2,---, thenf, |,. f =0. Such a measurable function
sequence {7,/ does not satisfy the condition given in Theorem 3.3.2. In fact,

we have

p (X)) > —duf = u(x/F(x) >0A = puX)= oo

for any n = 1,2,---. Consequently, - f,du = oo for anyn = 1,2,--- but
- fdu=0. Thatis, lim, - f,du = - fdu

Now, we will make use of the monotone convergence theorem to give a
convergence theorem of fuzzy integral sequence for the measurable function

sequence which is convergent everywhere.

Theorem 3.3.8. [The everywhere convergence theorem.] Let A € F.

If f, = fonA, and dng and a constant ¢ < -, fdu such that

U x/sup fh >c}NA <oo

n=nop
then -, fpdu = -, fdu.

Proof. There is no loss of generality if we assume that A = X. Let h, =

sup,-, fi and g, = inf;>, ;. Then h, and g,(n = 1,2, --+) are measurable.
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We also have h, |,. fandg, f. Sinceg, =7, <h,, we have

—gndu s —frdu = — hpdy,
and therefore
Iinm —gndu = Iirr,11 inf —fdu < Iilsn — hpdu.

Noting that u(#x/h,,(x) > cA < oo, where ¢ < - fdu, from Theorem 3.3.2
and Corollary 3.3.3, we get

lim = gndy = lim = hydy = — Fd.

So-, frduy = - fau. O

For a measurable function sequence which is convergent a.e, we have the

following theorem.

Theorem 3.3.9. [“a.e” Convergence Theorem]. We have -, f,du =
-, Fdu whenever A € F, f, 5 f on A and 3n, and a constantc s -, fdu
such that

p(#x/ sup F,(x) > ctNA) < oo

n=nop

if and only if u is null additive .

Proof. To prove that u is null additive by Theorem 3.2.10, it is enough to
prove that - fidu = - f,du whenever f; = £, a.e. But we have - f,du =
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-, fdu whenever A € F, 25 on A and 3ny, constant ¢ < -, Fdu such that

sup,-, fi and g, = inf;>, ;. Then h, and g,(n = 1,2, --+) are measurable.
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u(x/sup f,(x) > c}NA) < oo Then - fidu = - fHdu. Hence, y is null
additive. O

Corollary 3.3.10. Let u be finite and subadditive. If £, == f, then we have
- fpdu = - fdp.

Example 3.3.11. Let X = [0, 99, F = B 1 X, and u be the Lebesque mea-

sure. Consider 0
1 ifx>n
f,(x) =
Ho if x €[0, n]

Then, f,, |,. f =0. Note that 0 < f,(x) = 1 for any x € X andany n =
1,2,--- and -1du= 1 < oo In our case, however, - f,du = 1n=1,2,---

and - fdu = 0. Consequently, we have lim, - f,du = - fdu . So, in this
example the function sequence {T,} does not satisfy the finiteness condition

on u given in Theorem 3.3.2.
Definition 3.3.12. y: F —[—o9 o9 js autocontinuous from above (or from

below) if and only if

(
lim p(E v Fn) = u(E)  or limu(E 1Fn) = p(E)

whenever E € F,F, € F,E NF, = 0 (orF, S E, respectively), n=1,2,---
and lim, y(F,) = 0. We say that u is autocontinuous <= it is both

autocontinuous from above and autocotinuous from below .
Theorem 3.3.13. [Convergence in Measure Theorem.] We have - f,du =

-, Fdu whenever A € F, {f, }S F,f €F andf, 5 f on A if and only if u

is autocontinuous.
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Proof. <) Without any loss of generality, we can assume A = X. Let u be
autocontinuous and f;, & £, and let ¢ = - fdu. When ¢ < o9, by using

Lemma 3.2.7 part 5, for any givenc > 0, we have
UF._)=c and u(F.+) sc.
Onone hand, F., S F.. U/ [f(x) —F(x)] = c} Since £, 5 F, we get
(B [a(x) = FX)] 2 ¢ D) =0,
An application of autocontinuity from above yields that
B Fo UBS[(X) = F)) 2cF = p(Fer ).

So, Jng such that

:U(Fc+2 )
< WFer UL [ = F(X)] 2P

< UF. )+csc+cesc+ 2

whenever n = ng. It follows, by Lemma 3.2.7 part 3 that
—f,dus<c+2c

for any n = nq. On the other hand, to prove a converse inequality we only
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need to consider the case when ¢ > 0. For any givenc € (0, %), we have
Fl, DF.,. =&/ [f(x) —F(x)] =c}
Since, f;,, & £ and p is autocontinuous from below, Jn, such that

MU(Fe2) 2 p(Fe.- ) —c2c —2

whenever n = n,. Hence, lim, - f,du exists and - f,du —*c. If ¢ = o9, then

from Lemma 3.2.6, we have u(F,) = oo for any given N > 0 and
F{ D Fner — X/ [fa(x) — F(x)] 212

Since £, = F and p is autocontinuous from below, Jny such that

MFR) 2 p(Fy v = 6 [o(x) = F(x)[ 21/ 2 N,

whenever n = ny. It follows from Lemma3.2.7 part 1 that - f,du = N for
any n = ng. This shows that - f,dy = co=c.

=) Forany B € F and /B, } £ CardF with u(B) —=0, we are going to prove
that u(B NB,) — u(B). Benefiting from the monotonicity of uy, we only need

to consider the case when u(B) < oo. Take a > u(B) and

(]
a ifx€eB
f(x) =
0 ifx £B
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[

"a ifx€EBUB
f(x) =
o ifxgBUB,

foranyn=1,2, ---. Then, for any givenc > 0, we have

5/ (%) = FX)] 2 A E By,

for any n = 1,2, ---. So, f,, & f. By the hypothesis of this proposition, it
should hold that - £,,du = - fdu. Since

—fdu=aAuB UB,),
and - fdu=aA uB) = u(B), we get

u(B UB,) = u(B).

This means that y is autocontinuous [1]. m

Theorem 3.3.14. [ f-mean Convergence Theorem]. We have

— fody = = fdy,

whenever {f,} S F,f € F and {f,/f-mean converges to f if and only if u is
autocontinuous.

Example 3.3.15. Let X = A,2,---}C = P(X) and

u(E) =card(E) 27,

icE
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YE €C. First, uis not continuous from above . Take f(x) = xaAx) and
fr(xX) = xanAx) for x €EX andn =1,2,---. Then, for any given ¢ €(0, 1),

we have

p(#x/Card(Fo(x) = F(x)) 2 ch=u(hh=2" -0

Namely f,, & f. But - fdu = % and - f,dy = 1 for anyn =1,2,---. So,
- f,du does not tend to - fdp.

Definition 3.3.16. Let (X, F~, u) be a fuzzy measure space, f € F. We call
a fuzzy integrable w.r.t u if and only if - fdu < oe.
If we write L'(u) = £/ €F, f is fuzzy integrable w.r.t 2 then we have

the following theorem.

Theorem 3.3.17. Let A € F, u be uniformly autocontinuous. If £, 3 £ on

A, then

1. -, fdu= oo < 3dny such that -, f,du = oo for any n = ng
2. -, fdu < o0 < 3dny such that -, f,du < oo for any n = ng

When A = X, we can rewrite the above propositions as

1. F €LY (y) < 3ng such that £, £L"(u) for any n = ng

2. FE€LY(y) < 3n, such that f,, € L'(u) for any n = n,

Proof. Without any loss of generality, we canassume A = X.

1. &) Since the uniform autocontinuity implies the autocontinuity from

f, 5 f by using Theorem 3.3.13, we have - £,,dy = - fdy. So,if Ino
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such that - £,du = eofor any n = nq, we get - fdu = oo,

=) Conversely, if - fdu = o9, by Lemma 3.2.6,

pX NFq) = p(Fa) = 9

Ya €10, o, and in particular for a + 1, so u(Fq+) = eofor any a €

[0, ©9).. Since £, £ £ and y is uniformly autocontinuous, Jng such that

U(Fas1 = &/ [Fr(x) — F(x)] 21 = o9,

for any a €[0, o) whenever n = nq. From

F 3 Fari — £/ [fr(X) = F(x)] 2 1}

for any a €[0, o), we have
[J(F;) 2 U(Fae1 = &/ [Fo(x) —F(x)[ 21 = o9

for any a €[0, o) whenever n = ny. Consequently, we have - f,duy = oo

for any n = ny.

2. An application of reduction to absurdity can show the implication ” <.

As to the implication “ =” ,we cangetit from - f,dy = - fdu < o©
O

The symbol £, = £ on A will denotethat #,* converges to £ on A

uniformly.
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Theorem 3.3.18. [ Uniform Convergence Theorem] Let A € F. If
f, B fonA, then

= fpdy = — fdy
A A

Proof. For any given ¢ > 0, since £,, £ f on A, 3n, such that
Card(f, — 1) <,

on A whenever n = ngy. Using Lemma 3.2.4, we have

Card = f,du—-fdu =c,
A A

for any n = no. This shows that -, f,du = -, fdu O

3.4 Transformation Theorem for Fuzzy Inte-
grals

In this section, we will discuss how to transform a fuzzy integral -, Fdu which
is defined on a fuzzy measure space (X, F~, u) into another fuzzy integral - gdm
defined on the Lebesgue measure space ([0, o9, B+, m) where B_+ is the class

of all Borel sets in [0, 9 and m is the Lebesgue measure.

Theorem 3.4.1. For any A € FF.Then,

= fdu= —u(A N Fy)dm,
A

where F, = x/f(x) = a}and m is the Lebesque measure.
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Proof. Denote g(a) = u(A N F,). From Lemma3.1.2, we know that g(a) is

decreasing w.r.t a. For any a €]0, o9, denote
B, = {E/SupE =aqa, E EB_+}.

Then, B./a €0, o9 Fis a partition of B. and sup m(E) = a. Thus, from
EcBq

Theorem 3.1.3,

— U(A NF)dm

= =g(a)dm

= sup[inf g(B) A m(E)]

EeB+

= sup sup [|nf 9(B) A m(E)].
a0, o] E€EBq B

Since g(B) is decreasing, we have g(a~) = infz£ 9(B8) = g(a) forany E € B,

where g(a™) = limg_4-9g(B). So, on one hand, we have

—u(A NF)dm = sup [g(a) A sup m(E)]
a€0, o] Ee
= S [9(a) Ad]

= sup [a A (A NFy)]
ad0, o]

= = fdu
A
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On the other hand, for any givenc > 0,

—uA NFy)dm < sup [g(a”) A sup m(E)]
a€0, «] EeBa
= sup [g(a”)Ad]
ad0, o]
sup [aAg(a™)] Ve
a€f , o]
sup [a Ag(a —c)] Ve
ainf , o]
sup [(a —c)Ag(a —c) +c¢
(a— )elo, 0]
= sup [(@a-c)ApANF, )] +c
(a— )elo, 0]

1A

1A

1A

= =fdu+c
A

As ¢ =0, we get - u(A NFq)dm = -, fdu O

3.5 Fuzzy Measures Defined by Fuzzy Inte-

grals

In this section, we discuss how to define a fuzzy measure by using the fuzzy

integral of a given measurable function w.r.t another given fuzzy measure.

Theorem 3.5.1. Let (X, F, u) be a fuzzy measure space, f € F. Then, the

set function v defined by

v(A) = = fdy,
A

for any A € F is a lower semi-continuous fuzzy measure on (X, ). Further-

more, if u is finite, then v is a finite fuzzy measure on (X, F)

Proof. From Theorem 3.2.1, we know that v(2) = 0, v is monotone. We only
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need to prove that v is continuous from below. Let /E, /be an increasing set

sequence in F,E, E € F. Then,we have

f X, f XEe.
From Theorem 3.3.2 , we have

limv(E,) =lim = fdu=Ilim = f.xg,du= —Ff.xedu= — fdu= v(E)
n n En n E

Furthermore, suppose that u is finite. For any given decreasing set sequence
E,/}in F with E, |,. E € F. From f.xg, |,. f.xg and Theorem 3.3.2, we
have alsolim, v(E,) = v(E). That is, v is continuous from above. Conse-

quently, v is a fuzzy measure. The finiteness of v follows from

viX)==fdu=puX) < oo

O

The following example shows that the set function v may not be continuous

from above.

Example 3.5.2. Let X =0, o) and F be the class of all Borel sets in [0, )
and u be the Lebesgue measure. Define the function £ by f(x) = 1 for all

x €EX. Taking E, =[n,o0),n=1,2,---, we have E, |,. 0 and

V(E,) = — f(x)dx = = 1du=1,
En [0, )

forn =1,2,---. But v(9) = - f(x)du = 0. So, v is not continuous from
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above.
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Chapter 4

Application of Fuzzy Measure
and Fuzzy Integral in Students

Failure Decision Making

Fuzzy Integrals, in general, and Sugeno Integrals, in particular, are well-known
aggregation operators. They can be used in a great variety of decision making
applications. In real life problems, most of the criteria have independent or
interactive characteristics, which cannot be evaluated using additive measures
(see [2]). The student failure is one of the issues that all academic institutes
face, and there are many reasons for this failure. Some major reasons are given

in Table 1 and Table 2.
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Table 1: Failure Reasons and Criteria

Sr. No. Failure Beasons Criteria

Intelligence Quotient (IQ) or Leaming

1) Lack of concentration Ability (Cr)

2}  Poor Classroom Attendance or iregular due to Travelling or Financial problemete.  Attendance or Regulanity (Cy)

3)  Lack of Motivation, Wrong teaching habits etc Subject Liking (Cs)

9 Careless behavior of students, Lack of Time- Responsibility (C,)
Management and willingness. Lack of matunity, Peer Relationships ete. P ty (s
Examination Phobia, Overconfidence, Wrong reading and Wnifing habits, Mental . i

%) Stress, Accident, Tiness, Sudden death of fimily member .

Table 2: Linguistic Scales for the Importance Weight
Exiremely 0.0
Highly 0.1
If the eriteriais less Very 2
Strongly 03
%’ : 04
Medmm Medium 0.3
Quite 0.6
Strongly 0.7
If the criteria is more Very 03
Highly 09
Exiremely 1.0

Let #A, B, C,...J # be the set of 10 students observed for the five criteria
C4, Gy, C3, C4, Cs. Here grades are given to each student for different criteria
by taking their IQ test (for C,), attendance report (for C,), by giving ques-
tionnaire (for C3), and by discussing with the students, their friends, parents,

and teachers (for C4 and Cs).
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Table 3: Criteria Wise Students Grades

Criterin.  ——
Students cl Q a 4 s
|

A l 09 02 07 02 08
B 0.1 09 08 02 08
C 0.1 02 09 08 02
D 02 01 06 08 02
E 04 08 01 03 03
F 06 07 08 03 03
G 0.6 02 03 04 05
H 07 05 08 08 01
I 04 02 01 03 03
1 04 02 01 03 09

Example: For student D the value of the criteria C, 15 0.2 means the student D has very less IQ or leaming
ability Where,

C;: Intelligence Quotient (IQ) or Learnmg Ability

C,: Attendance or Regulanty

Cs: Subject Liking

Cy: Responstbility

Cs: Unavoidable condition

First, we construct A-fuzzy measure as a set of criteria. Let X = #C4, C,, Cs, C4, Cs 2
Now, experts were asked to rate the degree of importance of these five criteria
(passing grades) in a short survey. Table 4 gives the judgement of relative

importance of passing grades by experts.

Table 4: Judgment of Relative Importance of Passing Grades by Experts

C1 Ca C3 Cs Cs
03 0ng 06 06 05
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We assume that

IA(£C1.H = 0.5,94(£C..H = 0.8, gx(£C3.H = 0.6, gx(£Cs.H = 0.6, gx(£Cs.H = 0.5,

where A is to be determined. Here Sugeno’s A-fuzzy measure is used to com-
pute the interdependency between the selected criteria. We calculate the pa-
rameter A using Equation in in Theorem 1.2.13. There are 5 roots but since
A € (-1, 99), the accepted roots are 0 and -0.991368. If A = 0, then g,
becomes additive measure which means there is no relation between the cri-
teria Cq, Cy, Cs, C4, Cs Which is not the reality. Therefore, A = —0.991368 €
(=1, @9). Now let’s calculate the interdependencies between two or more cri-

teria. For example,

IN(ZC1, CoH = gA({C1 A+ gu(LC2 A + Aga(LC1 Aga(£C2. D

0.5+ 0.8 + (—0.991368)(0.5)(0.8) = 0.9034.

Similarly, one can calculate the other values. Table 5 and 6 shows the cal-
culated values, which indicates the interdependencies between two or more

criteria.
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Table 5: The Interdependencies measures among C;’s

Between two Interdependencies measure Among three Interdependencies measure

criteria or -Measure criteria or A-Measure
C,G 05034 C1,Co, G 01,9660
C.C; 08026 €1, Cy, Cy 01,9660
C.Cy 0.8026 Cp, Cy, Cs 09363
C1,Cs 07521 C1,Cy, Gy 08852
C. G 09241 €1, Cy, Cs 05047
Ca, Gy 09241 C1,Cs, Cs 09047
G, Gs 09034 C5,C5,Cs 09745
C;,Cs 08431 Ca, G5, Cs (.9660
Cs, Cs 08026 Cy,Cq, Cs 01 9660
Cs, Cs 08026 C3,Cq, Cs 08852

Table 6: The Interdependencies Measures Among Four Criteria’s

Ameng four criteria Interdependencies measure

or A-Measure
G, G, G Gy 09913
C, G, G5, G5 09872
G, 0o, Ce G5 0037
Gy, C3,Cq, C5 01,9660
Cy, 03,04, Cs 09915

Based on the above tables, the pairs C,, C3, and C,, C, received the highest
interdependency measure whereas the pair Cq, Cs has the least degree of re-
lations. Also, from Table 5, we notice that C,, C;, C, received the highest
interdependency measure. From Table 6, we can see that C4, C,, C;, C4 and
C,, C3, C4, Cs have the highest interdependence measure. Now, we combine
the 5 criteria using Sugeno Integration with respect to A-fuzzy measure. Let's

calculate the aggregate values of criteria by using Sugeno integral for student
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A. We have
— fdgy = sup (F(c}) A ga(A)),

1<i=<n

where

F(c}) = Co =02, F(c}) = Cs = 0.2, F(c}) = C3 = 0.7, F(c}) = Cs = 0.8, F(c}) = C1 = 0.9.

Hence

—fdgy = sup (£(c3) Aga(£3, ¢35, ¢3, ¢4 Cs ), (F(C) A Ga(£75 ¢35 0% €D,
(F(c3) A ga(£L3, ¢z, ¢5P), (F(c3) A ga(£ €5A), (F(cs) A ga(£5H)
= sup[(0.2 A1), (0.2 A0.9915), (0.7 A 0.8852), (0.8 A 0.8026), (0.9 A 0.5)]
= sup[0.2,0.2,0.7,0.8,0.5]

= 0.8

So, this application presents the measures of relative importance and interde-
pendencies among the five main criteria for student’s failure prediction and it
shows that the regularity is one of the most important criteria in the exami-

nation.
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