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Abstract

In today's world, protecting information has become one of the most difficult tasks. Cyber
security events and data breaches continue to be expensive events that affect people and businesses
all around the world. A breach occurs when sensitive information is accessed. Moreover, cyber
threats are constantly evolving in order to take advantage of online behavior and trends, especially
when teleworking has become a necessity due to the global invasion and prevalence of the
Coronavirus disease 2019 during the past two years. Therefore, the necessity for cyber insurance,
which covers the liability for a cyber-breach, becomes more evident as more business activities
are automated and an increasing number of computers are used to hold sensitive information.
Unfortunately, research on cyber risk modeling has been fragmented and uncoordinated till date
due to the lack of historical data available on cyber incidents which does not allow insurance
premiums to be accurately priced, in addition to the constantly changing nature of cyber risk which
makes the data easily become out-of-date. Hence, the aim of this thesis was the ratemaking of
aggregate cyber loss. The VERIS dataset, one of the most extensive and publicly available datasets
for global incident breaches, was used in this study. The main variables in the VERIS dataset are:
type of breach, amount of a breach, timeline of the breach, Actors, Motive, Country, Variety,
Assets, and Attributes.

Since the loss amounts are available in contrast to the loss frequency, we modeled, in this
research, only the cyber risk severity, as a first step toward pricing cyber insurance coverage
policies which require both the severity and the frequency distribution of cyber losses using the R
programming language; R studio 4.0.3. First, the severity distribution was estimated using the loss
distribution approach. Second, using machine learning, the Random Forest algorithm was applied
to the data in order to select the most important variables that have the highest significant impact
on cyber risk losses. Next, we applied the Generalized Linear Model using the most important
variables selected by the Random Forest and the fitted distribution, in order to estimate the future
loss amount. Last, we used the classical credibility theory to estimate the minimum number of
observations required to reach 95% level of accuracy I modeling cyber risk.

Keywords: Cyber risk, Cyber security, Cyber insurance, Ratemaking, Loss Distribution Approach,
Machine Learning, Random Forest, Generalized Linear Model, Classical credibility theory, R
Studio.
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Chapter 1: Cyber Risk Insurance

1.1 Cyber Risk

1.1.1 Definition of Cyber Risk

The Geneva Association (2016), the leading international insurance think tank for strategically
important insurance and risk management issues, defines cyber risk as any risk resulting from the
use of information and communication technology (ICT) that threatens the confidentiality,
availability, or credibility of data or services. The OECD (2017) stated that the insurance industry
associations have put forward a couple of definitions because there is no specific definition for

Cyber risk used broadly within the insurance sector.

1.1.2 Types of Cyber incidents and losses

The OECD (2017) presents a description of the different types of cyber incidents as well as the
types of losses that can happen. Concerning Cyber incidents, four broad categories are included:

(i) Data confidentiality breach:

Among the most common types of cyber accidents are incidents involving the
compromise of sensitive data. The most common cause of data confidentiality accidents
has historically been the release of confidential data through employee error. Also,
incidents caused by malicious attacks have accounted for an increasing share of data
confidentiality incidents, particularly portable device encryption that has become more
prevalent.

(i1)) System malfunction and issues:

There are five sub-categories of system malfunction/issue:
1. Own system malfunction

Own system affected by malware

Network communication malfunction

Inadvertent disruption of third-party system

AN

Disruption of external digital infrastructure.
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(ii1)) Data integrity and availability:

In this category, the classification of an incident is based on the identification of deleted,
lost or encrypted data, rather than the underlying cause.

(iv) Malicious activity:

There are three sub-categories of malicious activity:
1. System misuse such as digital system misuse to transmit defamatory or
embarrassing messages.
2. Targeted malicious communication such as phishing attempts to secure sensitive
information.
3. Cyber fraud, cyber theft such as unauthorized transfer of financial information.
Cyber incident can potentially lead to a variety of different types of damage, including damage to
tangible and intangible properties, business interruption and theft-related damages, as well as

multiple forms of consumer, retailer, employee and shareholder liability.

1.2 Cyber Security

1.2.1 Definition of Cyber Security

According to Cyber Security & Infrastructure Security Agency (CISA), Cyber security is the art
of protecting networks, computers and data from unapproved access or criminal usage, and the
practice of ensuring that information is confidential, integral and accessible. Nowadays, in addition
to communication, entertainment, transportation, and shopping, work also rely on the internet for

exchange of information and etc.

1.2.2 Problems of Cyber Security

The most significant impediment to the management of cyber risk is the lack of data on cyber
incidents (OECD, 2017). Cyber risk information is not publicly accessible because it is not
reported by organizations with security breaches or who have been targeted. Also, the lack of a
clear-cut concept of cyber risk is another impediment to the collection of cyber risk data (Martin

and Jan, 2018).
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1.3 Cyber Insurance

1.3.1 Definition of Cyber Insurance

According to the Association of British Insurers (2020), Cyber Insurance can protect businesses
from cyber-attacks by covering losses relating to the loss of information from information
technology (IT) systems and networks. Cyber insurance is one of the fastest growing lines of
insurance business and it is becoming a primary component of companies risk management
(Andrew et al., 2018). Any business of any size, relying on information technology (IT)
infrastructure, will be under the risk of business interruption, income loss, damage management
and repair, and possibly reputational damage (Association of British Insurers, 2020). Many

companies buy a cyber insurance policy to protect themselves against cyber loss (Andrew et al.,

2018).

1.3.2 Contents of Cyber Insurance Policy

As stated by the Federal Trade Commission (FTC), Cyber Insurance Policy must include coverage
for cyber-attacks that occur anywhere in the world, such as breaches of the policy holder’s
network, breaches of the policy holder’s data held by vendors and other third parties, incidents
involving theft of personal information and terrorist acts. Also, Cyber Insurance Policy should
defend the policy holder in a lawsuit or regulatory investigation, provide coverage in excess of any
other applicable insurance that the policy holder’s has and offer a breach hotline that is available
every day of the year at all times. The OECD (2017) stated that the insurance market has a main
role to play in providing greater information about the coverage available for cyber risk and which
policies provide that coverage. As stated by the Association of British Insurers (2020), cyber

insurance generally provides coverage for the theft or loss of “first party” and “third party”.

11



First-party insurance covers the policy holder’s business’s own assets. As to the “First-party”
coverage, an insurer may cover loss or damage to digital assets such as data or software programs,
business interruption from network intermission, cyber exhortation where third parties threaten to
spoil or unleash data if money is not paid to them, customer notification expenses when there is a
legal requirement to inform them of a security or privacy breach, reputational damage originating
from a breach of data resulting in loss of intellectual property, theft of money or digital assets

through theft of equipment or electronic theft, etc...

Third-party insurance covers the assets of others. Usually, this type of Cyber Insurance protects
businesses that are responsible for a client's cyber security. “Third-party” coverage may include
security and privacy breaches, and all the costs associated with them, such as investigation, defense
costs and civil damages. Also, it may include multi-media liability to cover investigation, defense
costs and civil damages arising from defamation. Moreover, it can include loss of third-party data,
including payment of compensation to customers for denial of access, and failure of software or

systems, etc...

1.3.3 Types of Cyber Insurance coverage

There are different types of cyber insurance available (Andrew et al., 2018):

= Stand-alone cyber insurance (or affirmative cyber insurance): covers a company’s costs it
would incur as a result of a cyber-attack. The stand-alone cyber insurance market is rapidly
growing.

» Errors and Omissions (E&O) insurance: covers a company’s liability to a third party. It is
one of the oldest types of cyber insurance.

= Commercial property all-risk insurance: covers physical damage and business interruption
resulting from a cyber-attack.

= Personal line insurance: covers a loss resulting from a cyber-attack on home computers or
compensation for family members who have personal or financial data compromises. Some

homeowners

12



1.3.4 Market challenges of Cyber insurance:

The OECD (2017) mentioned that a risk is insurable only when certain principles of insurability

are met. These principles of insurability include:

Risks must be quantifiable: the probability of a given risk, its severity and its impact in
terms of harm and losses must be assessable.

Risks must be mutual: the risk must be shared by a sufficiently large community with assets
at risk.

Risks must occur randomly: the time and the placement of an insured risk must be

unpredictable.

The price at which insurance companies are willing to cover a given risk is affected by many

factors including the level of uncertainty in estimating expected losses (quantifiability), the size of

expected losses (economic viability) and the diversity of the pool of risks covered (limited

correlation) (OECD, 2017).

In the case of cyber insurance, the most critical challenges in underwriting cyber risk are the

difficulties in quantifying a newly emerging risk (quantifiability), and the potential for significant

correlation across policyholders (accumulation risk).

A-Factors affecting the price of cyber insurance:

Quantifiability of cyber risk:

In terms of cyber risk quantification, there are three key challenges:
i. Limited availability of historical data on cyber incidents:
This lack of information is compounded by the general unwillingness of cyber incident
victims to share information about these incidents and their impacts (unless required) out
of concern about future reputational impacts (CRO Forum, 2014). The lack of historical
data does not allow insurance premiums to be accurately priced.
ii. Changing nature of cyber risk:
A potentially more critical problem is that, even though more information is available, the
data will easily become out-of-date as a result of the constantly changing nature of cyber

risk (CRO Forum, 2014).
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II.

I1I.

iii.  Access to corporate security information:
The lack of transparency regarding security procedures and past accidents has been
described by a number of insurance providers as a major barrier to underwriting coverage
OECD (2017)

Accumulation risk:

As stated by the OECD (2017), building a broad pool of diversified risks (independent and

randomly-occurring losses) helps insurers to distribute losses over a large number of
policyholders and mitigates the risk for losses to be affected concurrently by a large share
of the pool. All things being equal, a smaller pool, or a pool with greater reliance on the
risks covered, would lead to higher premiums being required by insurers. In the case of
cyber risk, the potential for losses to be associated across policyholders and across various
types of coverage given to a single policyholder (‘accumulation risk') is important. Also,
building a diversified risk pool based on geography or even industry is also more difficult,
given the reliance on the same infrastructure, software and services.

Therefore, the potential for risk accumulation across policyholders is, according to some
studies, the primary reason why insurers limit the coverage available for cyber risk (OECD,
2017).

Reinsurance availability:

The availability of cyber risk reinsurance coverage is affected by the lack of historical
experience, the changing risk environment and in particular the potential for risk
accumulation OECD (2017).

Some reports have indicated that there is limited availability of reinsurance for cyber
threats, that this could hinder primary insurers' ability to offer coverage, and that a

devastating cyber incident could involve a government backstop OECD (2017).

B-Factors affecting the willingness-to-pay for cyber insurance coverage:

L.
II.
I1I.

Lack of awareness of potential cyber losses
Misunderstandings about coverage

Coverage that is not suited to the needs of policyholders
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Chapter 2: Modeling of Cyber Risk

Over the past years, cyber risk has gotten a lot of attention from academics, industry, and
governments. Unfortunately, scientific progress has been slow and insufficient. Industry and
academic research on cyber risk modeling has been fragmented and uncoordinated till date due to
the lack of historical data available on cyber incidents which does not allow insurance premiums
to be accurately priced, in addition to the constantly changing nature of cyber risk which makes

the data easily become out-of-date.

Bohme and Kataria (2006) systematically investigate correlations on two levels: the first level is
when a cyber-event could affect several systems within a single entity (e.g. company) and the
second level is when there is correlation across different entities (e.g. an insurer’s portfolio of
policies). Bohme and Kataria (2006) suggested the t-copula to model the correlation of extreme
events. They used honeynet data from the “Leurre.com” project to empirically estimate the size of
the correlation. However, they employed the t-copula purely for simulation of random variables
exercises and highlighted that better data would be required in order to estimate suitable copulas

and parameters empirically.

Maillart and Sornette (2010) investigated personal data breaches such as credit card, social security
numbers, banking accounts, or medical files in their research. They focused on a specific
criminality, which is the theft of personal information (ID thefts), using a dataset from the Open
Security Foundation that contains 956 documented events reported mainly in the USA between
the years 2000 and 2008. The frequency of such incidents has been faster than exponentially
growing in the period from 2001 to 2006. Then, the development plateaued out by 2006.
Furthermore, they found that the severity per incident has an extremely heavy-tailed distribution
(Pareto index of 0.7) and the laws governing its distribution have been stable over time. Maillart
and Sornette (2010) argue that these findings are representative of other types of cyber risks

originating on the Internet, while personal data breaches are only one type of cyber risk.
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Herath and Herath (2011) developed a cyber-insurance pricing model, where the premiums depend
on the number of computers affected, the firm level dollar loss distribution, and the timing of the
breach event. They illustrated a copula-based Monte Carlo simulation model for pricing cyber
insurance using empirical loss distributions based on publicly available ICSA survey data. They
computed the premiums for first party losses using three types of insurance policy models: basic
policies, policies with a deductible and policies with a deductible and co-insurance. Herath and
Herath (2011) analyzed losses due to virus incidents and found that the marginal distributions are

not normal, and the risks are correlated in a non-linear fashion.

Mukhopadhyay et al. (2013) proposed a Copula-aided Bayesian Belief Network (CBBN) for
cyber-vulnerability assessment (C-VA), and expected loss computation using averaged log data
collected from a premier business management school in India, for a period of two years. They
concentrate only on malicious events. Mukhopadhyay et al. (2013) used the normal copula in order
to aggregate the number of failures (frequency) and the costs given loss (severity) in order to derive

the overall loss distribution on a cyber-risk portfolio.

Building on the work of Maillart and Sornette (2010), Wheatley et al. (2015) conduct a similar
analysis using an up-to-date and broader data set which is a combination between the dataset from
the Open Security Foundation and the dataset from the Privacy Rights Clearing House.

Wheatley et al. (2015) discovered that the number of breaches per incident have had an even more
heavy-tailed distribution since 2007 (Pareto index of 0.37 for 2015). Also, the breach size is

expected to double in the next five years from an estimated 2 billion personal items to 4 billion.

Similarly as Maillart and Sornette (2010) and Wheatley et al. (2015), Edwards et al. (2015)
investigate trends in data breaches between 2006 and 2015. They studied data obtained from a
publicly available dataset published by the Privacy Rights Clearinghouse (PRC) and develop
Bayesian Generalized Linear Models to investigate trends in data breaches. However, they find no
evidence for an increasing trend in frequency (Number of data breaches) or in severity (Number
of records per data breach). Edwards et al. (2015) found that the widespread intuition that the
frequency and severity of data breaches are increasing, can be explained by the heavy-tailed

statistical distributions underlying the dataset. They found that the severity of data breaches is best
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described by the log-normal family of distribution and the frequency data breaches follows a

negative binomial distribution.

Eling and Loperfido (2017) used multidimensional scaling and goodness-of-fit tests to analyze the
distribution of data breach information. They studied data obtained from a publicly available
dataset published by the Privacy Rights Clearinghouse (PRC). They showed that different types
of data breaches need to be modeled as distinct risk categories. For severity modeling, the log-
skew-normal distribution provides promising results. For frequency modeling, the Poisson

distribution or the negative binomial distribution provides promising results.

Fetterman (2019) developed a quantitative model from the management perspective to facilitate
understanding of how factors including human data analysis and resourcing affect the time-to-
detect an incident. Understanding the relationships of variables in cyber security incidents can
show how engineering managers can properly distribute and concentrate resources to improve the
detection time of incidents. In his research, Fetterman (2019) used the data from the VERIS
Community Database. The VERIS dataset is publicly available and contains over 7,000 records of
anonymized cyber security incidents, with 136 fields per record. Fetterman (2019) used multiple
forms of regression to measure the relationship between malware features, hacking techniques,

and milestones of the incident response timeline as reported in the VERIS dataset.

Farkas et al., (2020) analyzed cyber claims via regression trees in order to constitute clusters of
cyber incidents because Regression trees are good candidates to understand the origin of the
heterogeneity, since they allow performing regression and classification simultaneously. In their
research, they devoted special attention to large claims for which heavy tail distributions are fitted,
since the analysis of large claims raises the problem of risk insurability, and thus the clustering
technique may separate between type of events that can or cannot be covered without endangering
risk pooling. In their research, Farkas et al., (2020) used the Privacy Rights Clearinghouse (PRC)
database available for public download. Since the severity of cyber events is highly volatile, it
seems necessary to develop a specific approach for the tail of distribution. Therefore, Generalized

Pareto Distributions (GPD) naturally appears in the analysis of heavy-tailed variables.
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Title

Model

Data

Models and measures for
correlation in cyber-insurance

(Bohme and Kataria, 2006)

T-copula to model the
correlation of extreme

events.

Honeynet data from

Leurre.com project

Heavy-tailed distribution of
cyber-risks

(Maillart and Sornette, 2010)

Heavy-tailed distribution

Dataset from the Open

Security Foundation

Copula-based actuarial model
for pricing cyber-insurance
policies

(Herath and Herath, 2011)

Copula-based Monte Carlo

simulation model

Publicly available ICSA

survey data

Cyber-risk decision models:
to insure it or not?

(Mukhopadhyay et al., 2013)

Copula-aided Bayesian
Belief Network (CBBN)

Data collected from a premier
business management school

in India

The extreme risk of personal
data breaches & the erosion of
privacy

(Wheatley et al., 2015)

Heavy-tailed distribution

Combination between the
dataset from the Open
Security Foundation and the
dataset from the Privacy

Rights Clearing House (PRC)

Hype and heavy tails: a closer
look at data breaches

(Edwards et al., 2015)

Bayesian Generalized Linear

Models

Dataset from the Privacy

Rights Clearinghouse (PRC)

Data breaches: Goodness of
fit, pricing, and risk
measurement

(Eling and Loperfido, 2017)

The log-skew-normal
distribution for severity
modeling, and the Poisson
distribution or the negative
binomial distribution for

frequency modeling

Dataset from the Privacy

Rights Clearinghouse (PRC)

Regression-Based Attack
Chain Analysis and Staffing

Multiple forms of regression

VERIS Community Database.
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Optimization for Cyber Threat
Detection

(Fetterman, 2019)

Cyber claim analysis through
Generalized Pareto
Regression Trees with
applications to insurance
(Farkas, Lopez, & Thomas,
2020)

Generalized Pareto

Regression Trees

Dataset from the Privacy

Rights Clearinghouse (PRC)

Figure 1: Summary of the research papers on modeling Cyber Risk
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Chapter 3: Methodology

The aim of this chapter is to explain the Statistical and Machine learning methods used to model
and predict the loss amount of a cyber breach. In this study, the loss amount of a breach was fitted
to a parametric distribution and goodness of fit test was used to test the hypothesis of the fitness.
Credibility theory was also used in order to estimate minimum number of losses required to have
a certain level of accuracy. Then, the Random Forest was used to select the most important
variables affecting the loss amount of a breach. Finally, the Generalized Linear Model (GLM) of
the fitted distribution was applied on the most important variable provided by the Random Forest
in order to estimate and predict future loss amount due to cyber risk.
This chapter will explain in detail the following:

* Distribution fitting

* Random Forest

* Generalized linear model

* Credibility theory

3.1 Fitting a distribution

Distribution fitting is the process used to select a statistical distribution that best fits the data.
Fitting a distribution is done by finding the parameters of the fitted distribution and then testing
the hypothesis of the fitness using Goodness of fit test.

3.1.1 Parametric methods for fitting a distribution

There are several parametric methods for estimating the parameters of a probability distribution
such as the method of moments, the maximum spacing estimation, the method of L-moments and
the Maximum likelihood method. Maximum likelihood estimation is a method that is applied to
estimate the parameters in a parametric distribution. The parameter values are found such that they
maximize the likelihood that the process described by data that were actually observed

(Broverman, 2014).
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The first step in applying the maximum likelihood estimation is finding the log-likelihood function
L(0) where 0 is the parameter (or parameters) to be estimated in a distribution with probability
density function f(x, 0) and cumulative density function F(x, 0).

The likelihood function based on a random sample is as follow:
L(0) = [IjZ; f(x;, 8) ; where the random sample is X4, X5, ..., X

The objective is to find the value of 6 that maximizes L(0). Therefore, the natural log of the
likelihood function (log-likelihood), 1(6) = InL(0), is maximized and this results in the same

maximum likelihood estimate of 0.

In order to maximize the log-likelihood function, the following equation is set and solved for 6:

d
@ In L(G) =0

3.1.2 Goodness of fit test

Goodness-of-fit tests are statistical tests aiming to determine whether a set of observed values in a
sample comes from a specific distribution of a population. There are multiple types of goodness-
of-fit tests, such as the chi-square test and the Kolmogorov-Smirnov test used for large samples
(Broverman, 2014). Thus, the hypothesis are:

H,: The data comes from the estimated model.

H;: The data does not come from the estimated model.
In this study the Kolmogorov-Smirnov (KS) statistic Test is used to measure how well the
empirical distribution function of the sample agrees with the cumulative distribution function of a

pre-specified theoretical distribution (Broverman, 2014). The Kolmogorov-Smirnov (KS) test is:

D =maxx |Fn(x-) - F*(x]-)|

all xi )

Fiu (x]-) is the empirical distribution function.
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F*(x;) is the cumulative distribution function of the model based on the estimated parameter value.
Thus, the Kolmogorov-Smirnov statistic measures of how "far" the empirical and estimated
cumulative model distributions are from each other. If the value of the Kolmogorov-Smirnov (KS)
test D is greater than the critical value, the null hypothesis H, will be rejected.

The critical value depends on the significance level of the test and the sample size n:

Level of Significance 0.1 0.05 0.01
1.22 1.36 1.63
Critical Value Vn Vn Vn

3.1.3 Akaike information criterion (AIC)
The Akaike information criterion (AIC) is an information criterion that is commonly used for
model selection. The idea of AIC is to adjust the empirical risk to be an unbiased estimator of the

true risk in a parametric model (Dunn & Smyth, 2017).
Formally, the AIC is defined in terms of the log-likelihood as:

AIC = —21(0) + 2k

Where 1(0) = In L(0) is the log-likelihood evaluated at the MLE for the model under consideration

and K is the number of unknown parameters.

The AIC is a powerful tool for comparing models and estimating the quality of each model.

Smaller values of the AIC represent better models (Dunn & Smyth, 2017).
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3.2 Random Forest

Random forests are a statistical learning method used in many fields of application and are adapted
to both supervised classifications (categorical response variable) problems and regressions
(continuous response variable) problems for qualitative and quantitative explanatory variables
together without preprocessing (Genuer & Poggi, 2020). The general principle of random forests
is to aggregate a collection of random decision trees. Since individual trees are randomly perturbed,
the forest benefits from a more wide exploration of the space of all possible tree predictors, which,

in practice, results in better predictive performance (Genuer & Poggi, 2020).
3.2.1 Definition of Random forests

Let (h (.,0;), ... ,h (.0g)) be a collection of tree predictors, with 04,..., 04 q i.i.d. random

variables. The random forest predictor hgp is obtained by aggregating this collection of random

trees. The aggregation is done as follows:

e Inregression: hyp(x) = é21q=1 h(x, ©)) (average of individual tree predictions).
e In classification: hyp(x) = arg max. >, 1hxep=c (majority vote among individual tree
<c< !

predictions)
There are two main objective of using Random Forest (Genuer & Poggi, 2020):

1. The first main learning objective is prediction:
Random Forest can be used to construct a predictor, using the learning sample, which
associates a prediction y of the response variable corresponding to any given input
observation.

2. The second main objective is selection of important variable:
Random forest involves determining a subset of the input variables that are important and
active in explaining the input—output relationship. It helps in constructing a hierarchy of
input variables based on a quantification of the importance of the effects on the output
variable. Thus, Random Forest provides a ranking of variables, from the most important to

the least important.
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3.2.2 Selection Variable importance “VI (X))”

Definition 3.2.2: Bootstrap sample:

A bootstrap sample of a learning sample L, of size n is obtained by randomly drawing n
observations from L, with replacement, each observation (X; , Y;) of L, having a probability 1/n

of being selected in each draw (Genuer & Poggi, 2020).

Definition 3.2.3: Out Of Bag error “OOB error”

According to Genuer and Poggi (2020), the main idea of an Out Of Bag error estimator is to use
observations (X, rY;) that were not selected in a bootstrap sample as test data. In other word, an
Out Of Bag error must be understood as out of the Bootstrap error. To predict the ith observation
X;, we only aggregate predictors built on bootstrap samples not containing (X;, Y;). This provides

a prediction Y1 for the output of the ith observation. The OOB error is then calculated as follows:
e Inregression: % Y o(Y1 — Yi)?

e 1
e In classification: = }iL; 1vi. o
n

Definition 3.2.4: Variable importance “VI (X})”

Letj € {I,...,p}, then the importance index VI(X) ) of variable X/ is calculated as following (Genuer
& Poggi, 2020):
» Consider a bootstrap sample L?ll n and the associated OOB, sample, that is, all observations

0
that do not belong to L.

» Calculate errOOB;, the error made on OOB, by the tree built on L?ll (mean square error or
misclassification rate).

 Then randomly permute the values of variable X/ in the OOB; sample. This gives a

)
perturbed sample, noted OOB; .

* Finally, calculate errOOB{ , the error made on OOB{ by the tree built on L?,l .
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«  Repeat these operations for all bootstrap samples. The importance of the variable X , VI(X)
), 1s then defined by the difference between the average error of a tree on the perturbed

OOB sample and that on the OOB sample:
q
. 1 —
VI(X)) = HZ(errOOB1 — err00B,,)
1

Hence the higher the error increase originating from the random permutations of the variable, the

more important is the variable XJ.

3.2.3 Influence of Parameters on Variable Importance

The main parameters of the Random Forest function in machine learning are:
« The number of variables randomly selected at each node, which by default is \p in
classification and p/3 in regression where p refers to the number of input variables.
» The number of trees in the forest, denoted as q in this chapter, which by default is 500.
* The minimum number of observations that a leaf of a tree must contain, which by default
is 1 in classification and 5 in regression.
When we wish to have information on the variables, or even to select variables, we must try to
adjust the Random Forest parameters by looking at their impact on Variable Importance VI. For
instance, increasing the number of trees has the effect of stabilizing the Variable Importance VI,

and the default value 500 seems large enough in this study (Genuer & Poggi, 2020).

3.2.4 Radom Forest Algorithm
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The random forest is based on an aggregation of decision trees which are independently developed
on different sample bags taken from the training set. The importance estimation of a variable is
calculated as the loss of classification accuracy caused by a random permutation of variable values
of cases. First, the loss of classification accuracy is computed individually for all decision trees in
the forest which make use of a given feature to classify cases and then the average and standard
deviation of the loss of classification accuracy are computed.

Accuracy of Radom Forest:

Let h; (x), h,(x),..., hx(x), be an ensemble of classifiers:

¢ The margin function is: mg(X,Y) = avyI(hx(x) =Y) — rlnizilx avil(hy(x) =j)
Where I(.) is the indicator function. The larger the margin, the more confidence in the classification
of the Random Forest.

* The generalization error is:

PE* = Probabilityx yy(mg(X,Y) < 0) = Pxy)(mg(X,Y) <0)

Where the probability of mg(X,Y) < 0 is over the X, Y space.
As the number of trees increases, for all ®,, PE*converges to:

Pxy)(Pey(X0)=Y)— max Pe)((h(X,8) =j) <0)

Strength and correlation:

As mentioned previously, the margin function for Random Forest is:

mr(X,Y) = Pixy)(P@)(X,0) =Y ) — max Pe)((h(X,0) =j) < 0)

The strength of the set of classifiers h(X, ©)is: s = Ex ymr(X,Y)

The mean value of the correlation p is:

Eg e (p(©,0)sd(0)sd(0")
Eg e/ (sd(0©)sd(0"))

5:
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3.3 Generalized Linear Models

A Generalized Linear Models (GLM) is a generalized form of a linear model that is used to express
the relationship between an observed response variable Y, and a number of covariates or predictor
variables X. In a GLM, the response variable Y is assumed to be a member of the exponential
dispersion model family (EDM), the variance is permitted to vary with the mean of the distribution
and finally the additive effects of the covariates on the response variable Y is taken into

consideration (Dunn & Smyth, 2017).

3.3.1 Components of Generalized Linear Models

There are two components of Generalized Linear Model:

1. Random component of the model: What probability distribution is appropriate?
2. Systematic component of the model: How are the explanatory variables related to the mean

of the response p?

* The Random Component: Exponential Dispersion Models (EDM):

In a GLM, the response variable Y is assumed to be a member of the exponential dispersion
model family (EDM). Continuous exponential dispersion model families include the normal
and gamma distributions. Discrete exponential dispersion model families include the Poisson,
binomial and negative binomial distributions (Dunn & Smyth, 2017).

The exponential dispersion model family (EDM), have a probability distribution function of

the form:
i0i — b(0i
f(yi; 0i,0) = exp {%@)(1) + c(yi, (Z))}
0 — k(6
P(y,0,0) = a(y, @) exp {YT‘)}
Where

* 0 is called the canonical parameter related to the mean.
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k(0) is a known function, and is called the cumulant function.

@ > 0 is the dispersion parameter or a scale parameter related to the variance.

a(y, @) is a normalizing function ensuring that P(y, 6, @) is a probability function.
The mean p is a known function of the canonical parameter 6

The variance of an Exponential Family of Distribution of Yi is a function of its mean:

Var (Yi) = @.V(ui)

* The Systematic Component: Exponential Dispersion Models (EDM):
In GLM, in addition to assuming that the response variable Y is assumed to be a member of
the exponential dispersion model family (EDM), GLM assume a specific form for the

systematic component where the linear predictor:
p
N =0;i+ Bo+ z BiXii
j

is linked to the mean p through a link function g(.) so that g(i) =n. The link function g(.) is a

monotonic, differentiable function relating the fitted values p to the linear predictor 1.
In a simplest way, the general equation for GLM is as following:

M =Y = Bo+ BiXy+ BXp+ -+ BiXi
Where, By in a GLM are coefficients or weights assigned to the predictor variables X.
Bo , the intercept, is the predicted value of Y when all of the Xy, equal 0.

In a more specific terms, By gives the predicted change in Y for a one unit change in the Xy,

given that everything else constant (Dunn & Smyth, 2017).
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3.3.2 Examples of Exponential Dispersion Models with their link function (EDM)

i.  Normal Distribution:

The probability density function for the Normal distribution with mean p and variance o2

1S:

2
1 (y — w)? 1 yH — (”7) y?
e P B 2 =P -

2y —

2mo?
* 0 = pis the canonical parameter.
pu? 02\ . .
« k(0) = (7) = (7) is the cumulant function.
* @ = o2 is the dispersion parameter.
. _ 1 ¥y } . . . .
a(y,0) = Wexp{ Sozfisa normalizing function.

1i.  Gamma Distribution:

The probability density function for the Gamma distribution is:

a—1

f(y,a,0) = 8T (o) exp {— %}

1. :
* 0 = —-is the canonical parameter.
n

* k(0) = log(p) = —log(— 6) is the cumulant function.

* @ = 0@ is the dispersion parameter.

. _ _ y y—u) . .. .
a(y, @) 2{ log ( ®) + 0 } is a normalizing function.

3.3.3 Generalized Linear Model Assumptions

The GLM assumptions are as follows:
GLMI1: Random Component: Each component of the response variable Y is independent and is

assumed to be a member of the exponential family of distributions (EDM).
Yi ~ EDM(py;, =) fori=12,....n.

The W; are non-negative prior weights, or credibility, that weight each observation 1 and are all

equal to one.
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GLM2: Systematic Component: The p covariates are combined to give the linear predictor n:
p
N =0;i+ Po+ ZBiji
j

o; are offsets that are usually equal to zero.
GLM3: Link function: The relationship between the random and systematic components is

specified via a known, monotonic, differentiable link function:

g(u) = n;
W= g '(m)

Thus the GLM is GLM (EDM; Link function):

?
Yi ~ EDM <ui, —)
W.

lg(ui) =n;=0;+ Bo+ zp:ﬁj Xji
j

Hence the GLM is dependent of the choice of distribution from the EDM class and the choice of

link function.

3.3.4 Fisher scoring iteration

The Fisher scoring algorithm provides an important method for computing and estimating the
maximum likelihood estimates (MLEs) of the coefficients or weights {3; assigned to the predictor
variables Xj.

The Fisher scoring algorithm computes the B]\ by iteratively refining the working estimates until
convergence.

The working response of the Fisher scoring algorithm is defined as:

dny
dp;

Each iteration of the Fisher scoring algorithm is equivalent to the least squares regression of the

zi =mi+ i — W)

working responses z; on the covariates X;; using the working weights W; .
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Thus, at each iteration, the z; and W; are updated, and the regression is repeated to obtain new

coefficients G]\ )

Moreover, since at each repetition of the Fisher scoring iteration the linear predictor n; is updated

from the working coefficients, the fitted values p; = g~1(n;) are also updated.

A high number of iterations of the Fisher scoring may be indicating that the algorithm is not

converging properly. Thus, the lower the number of iterations of the Fisher scoring the better the

model fits (Dunn & Smyth, 2017).

3.3.5 Diagnostics for Generalized Linear Models

Diagnostics for Generalized Linear Models are tools for detecting violations of the assumptions in

a GLM, and then discussing possible solutions. The assumptions of the GLM are as the following:

Lack of outliers.

The correct link function is used.

All important explanatory variables are included on the correct.
The correct variance function V (p) is used.

The dispersion parameter @ is constant.

The responses Y; are independent of each other.

The main tool for diagnostic analysis is residuals. Pearson, deviance and quantil residuals. Quantile

residuals are highly recommended for discrete EDMs while Pearson and deviance residuals are

highly recommended for contiuous EDMs (Dunn & Smyth, 2017).

11.

Pearson residual:

The Pearson residual can be used to handle the non-constant variance in EDMs by dividing
out the effect of non-constant variance (Dunn & Smyth, 2017).
y— i

V(i
W

I'p=

—/

Deviance residual:
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The deviance residuals can be used to check the model fit at each observation for
generalized linear models. The deviance residuals rp is defined as the signed square root

of the unit deviance (Dunn & Smyth, 2017).

rp = sign(y — y/wd(y, i)
The function sign(y — i) equals 1 if (y — fi) >0 and —1if (y — i) <0and 0 if x =0.
3.3.6 Outliers and Influential Observations

Outliers are observations incompatible with the rest of the data, and influential observations are
outliers that substantially modify the fitted model when removed from the data set. Influential
observations are outliers with high leverage. The measures of influence used for generalized linear
models are Cook’s distance D, DFFITS, DFBETAS and the covariance ratio (Dunn & Smyth,
2017).

The approximation to Cook’s distance for GLM is:

3.3.7 Assessing the model

In this study, to evaluate the quality of the developed prediction model, the coefficient of variance

root mean square error (CV RMSE) and the mean absolute percentage error (MAPE), were used.

\/ n (Yi — ?1)2
m=1 Yi

CV RMSE = _ .100%
m=1Yi
n ~
1Y -Y,
MAPE = - Z .100%
n Yi

According to ASHRAE Guideline 14 criteria, for the model to be considered well calibrated, the

value of the evaluation indices should not exceed:
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* CV RMSE index 15%
*+  MAPE INDEX: 0% to 10% High Accuracy.

3.4 Credibility Theory

The credibility Theory helps actuaries in determining the risks associated with providing coverage
and allows insurance firms to reduce their claims and losses exposure. Credibility theory provides
tools to deal with the randomness of data that is used for predicting future events or costs
(Broverman, 2014).
The basic formula for calculating credibility weighted estimates is:
Estimate = Z.[Observation] + (1 — Z).[Other Information]

Where:

» Zis the credibility assigned to the observationand 0 < Z < 1

* (1 — Z)isreferred to as the complement of credibility.

There are three credibility model that are used to calculate the credibility weight Z:

* The classical credibility model:
It is also referred to the limited fluctuation credibility since it attempts to limit the effect of
random fluctuations on the estimates.

* The Buhlmann credibility model:
It is also referred to the least squares credibility. The goal with this approach is the
minimization of the square of the error between the estimate and the true expected value
of the quantity being estimated.

* Bayesian credibility theory:

The Bayes Theorem is the foundation for this analysis.

In this study, the classical credibility model is used in order to determine number of data needed
in order to assign to it P% credibility. The number of observations of X needed is calculated as

follows:



ng =

~l<

Where:
» K is the range parameter and is often 5% ( but other values are also possible, such as 2%
or 1%)
» P is the probability level associated with y and is often 90% (but other values are also
possible, such as 95%)

Table 1 provides an example of the y-values in the case of normal distribution

Probability level 90% 95% 98%

y Value 1.645 1.96 2.326

Table 1: The classical credibility y-values for the case of the normal distribution
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Chapter 4: Modeling and prediction of Loss amount of Breaches

4.1 VERIS dataset and schema

The Vocabulary for Event Recording and Incident Sharing (VERIS) database is a publicly

available database for global incident breaches and includes the following main variables:

4.1.1 Actors: whose actions affected the asset?

There can be more than one actor involved in any particular incident, and their actions can be
malicious or non-malicious, intentional or unintentional, causal or contributory.

There are three primary categories of threat actors:

a. External: external threats initiate from sources outside of the organization and its network of

partners.
i. Motive: what motives drove the external actor(s) to act? ( financial, fear, ...)
ii. Variety: what varieties of external actors were involved? (competitor, terrorist, ...)
iii.  Origin (country): what are the geographic origins of the external actor(s)?
b. Internal: internal threats are those originating from within the organization.
i. Motive: what motives drove the internal actor(s) to act?
ii. Variety: what varieties of internal actors were involved?

c. Partner: partners include any third party sharing a business relationship with the organization.
1. Motive: what motives drove the partner's actor(s) to act?

ii. Industry: which industry best describes the services provided by the partner(s)?
1ii.  Origin (country): what is the partner's country of operation?
4.1.2 Actions: what actions affected the asset?

a. Malware: malware is any malicious software, script, or code that is specifically designed to
disrupt, damage, or gain unauthorized access to a computer system such as viruses, worms,
spyware, etc.

1. Variety: what varieties or functions of malware were involved?
ii. Vector: what were the vectors or paths of infection?

iii.  Vulnerabilities: enter any cves exploited by this malware.
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b. Hacking: according to VERIS, hacking is defined as all attempts to intentionally access or
harm information assets without (or exceeding) authorization by circumventing or
thwarting logical security mechanisms.

1. Variety: what varieties or methods of hacking were involved?
ii. Vector: what was the vector or path of attack?
iii. Vulnerabilities: enter any caves exploited through hacking.

c. Social: social tactics employ deception, manipulation, intimidation, etc to exploit the
human element, or users, of information assets.

1. Variety: what varieties of social tactics were involved?
ii. Vector: what vectors or communication channels were used?
iii. Target: who was the target of these social tactics?

d. Misuse: misuse is defined as the use of entrusted organizational resources or privileges for
any purpose or manner contrary to that which was intended.
i. Variety: what varieties of misuse were involved?

ii. Vector: what vectors or access methods were misused?

o

Physical: physical actions contain threats that involve proximity, possession, or force.
1. Variety: what varieties of physical attacks were involved?

ii. Vector: how was access gained to the location(s)?

iii. Location: where did these physical attacks occur?

f.  Error: error broadly encompasses anything done (or left undone) incorrectly or

inadvertently

1. Variety: what varieties of errors were involved?

ii. Vector: why did these errors occur?

g. Environmental: the environmental category not only includes natural events such as

earthquakes and floods, but also hazards associated with the immediate environment or
infrastructure in which assets are located.
i. Variety: what varieties of environmental events were involved?

4.1.3 Assets: which assets were affected?

i. Variety: what varieties (and number) of assets were compromised during this incident?
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4.1.4 Attributes: how the asset was affected?

4.1.5 Incident timeline: The incident timeline is the timeline of events leading up to and
following an incident.
Furthermore, there are six primary security attribute used in the VERIS database:
- Confidentiality: refers to limited observation and confession of an asset or a data.
- Possession: refers to the owner holding possession and control of an asset or a data.
- Integrity: refers to an asset or a data being complete and unmodified from the original or
authorized state, content, and function.
- Authenticity: refers to the validity, conformance, correspondence to intent, and
genuineness of the asset or the data.
- Availability: refers to an asset or a data being present, accessible, and ready for use when
needed.

- Utility: refers to the usefulness or fitness of the asset or the data for a purpose
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4.2 Descriptive Statistics

In this study, we used a sample data consisting of 276 observations from the publically available
VERIS data for cyber breaches. The frequency and the percentage distribution of type of breaches
are represented in Table 2 and Figure 2. The type of breach “Misuse” recorded the highest number
breaches of 26%.

Type of Breach Error Hacking Malware Misuse Physical Social Unknown
Number of breaches 54 67 14 73 52 14 2
Percentage of breaches 20% 24% 5% 26% 19% 5% 1%

Table 2: Total number and Percentage distribution for each Type of Breach
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Figure 2: Percentage distribution for each Type of Breach
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The frequency distribution of breach from the year 2013 till 2016 is presented in Table 3 and
Figure 3. Year 2013 recorded the highest number breaches of 59 breaches.

Type of Breach 2013 2014 2015 2016
Error 8 14 6 2
Hacking 11 9 9 6
Malware 5 2 0 5
Misuse 13 8 9 6
Physical 18 5 7 6
Social 2 2 4 2
Unknown 2 0 0 0
Total 59 40 35 27

Table 3: Total number of breaches for each Type of Breach for year 2013, 2014, 2015 and 2016.
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Figure 3: Total number of breaches for year 2013, 2014, 2015 and 2016

The Mean, Median and Standard Deviance of the loss amount for type of breach are presented in
Table 4. The type of breach “Hacking” recorded the highest average mean loss of breaches of
13.77. The type of breach “Malware” recorded the highest standard deviation loss of 3.51.
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The average mean loss of the overall data is 12.51 and the standard deviation loss is 2.05.

Type of Breach Mean Loss Median Loss Standard deviation Loss
Error 11.84 12.01 2.31
Hacking 13.77 13.53 3.36
Malware 9.50 8.17 3.51
Misuse 12.53 12.21 2.94
Physical 12.07 12.43 2.84
Social 13.72 13.72 2.72
Overall data 12.51 12.44 2.05

Table 4: Results of the Mean, Median and Standard Deviance of the loss amount per type of

breach.

The Mean, Median and Standard Deviance of the loss amount for each year are presented in
Table 5. The average mean loss of breaches is approximately similar for all years. The year 2016

recorded the highest standard deviation loss of 4.45.

Year Mean Loss Median Loss Mode Loss Variance Loss Sd loss
2013 12.14 12.51 11.56 10.15 3.19
2014 12.18 12.39 17.86 9.88 3.14
2015 12.48 12.21 14.77 9.05 3.01
2016 11.67 11.54 17.50 19.82 4.45

Table 5: Results of the Mean, Median, Mode, Variance and Standard Deviance of the loss

amount per year.
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4.3 Fitting distributions

4.3.1 Introduction to Fitting distributions

Fitting a distribution to data entails selecting an appropriate probability distribution for modeling
the random variable as well as estimating the distribution's parameters. Several distributions such

as normal, weibull, lognormal, and gamma distributions are used in this study.

First, their parameter estimates, estimated standard errors, log likelihood and akaike information
criteria AIC are calculated. Then, the following plots will be presented:
e Q-Q plot of the empirical quantiles on the y-axis against the theoretical quantiles on the
X-axis.
e P-P plot of the empirical distribution function evaluated at each data point on the y-axis

against the fitted distribution function on the x-axis.

Noting that the Q-Q plot emphasizes the lack-of-fit at the distribution tails whereas the p-p plot

emphasizes the lack-of-fit at the distribution center.

Finally, the P-value of the Kolmogorov-Smirnov (KS) test is calculated for each distribution. If
the p-value is less than 0.05, we reject the null hypothesis Ho. Thus, we have sufficient evidence
to say that the sample data does not come from the pre-specified theoretical distribution under
the null hypothesis Ho.
This procedure is performed to fit the distribution of the loss amount as follows:

1. On all data set

2. On each year
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4.3.2 Fitting distribution on all data set

Table 6 presents the fitted parameter, AIC, KS p-value of the fitting distribution procedure on all

data set.

Fitted distribution Parameter 1  Parameter 2 AIC KS p-value Decision
Normal distribution 12.51 3.07 1407.08 0.060547 Accept
Lognormal distribution 2.49 0.27 1437.32  0.000491 Reject
Weibull distribution 4.17 13.68 1425.67 0.00825 Reject
Gamma distribution 15.27 1.22 141732 0.005126 Reject

Table 6: Results of the fitted distributions of the overall impact loss amount of breaches.

The overall data of the loss amount of breaches in the VERIS dataset may fit a normal distribution
since its P-value is greater than 0.05. Thus, in this study the normal distribution is chosen as the

fitted distribution since it has the lowest AIC.

Figure 4 presents the Q-Q plot of the normal, lognormal, weibull and gamma distributions, on the

loss amount of the breaches.

@-Q Plot for the overall data

Empirical quantiles
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Theoretical quartiles
Figure 4: Q-Q plot of the overall impact loss amount of breaches.
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The points of the normal distributions are the closer to the diagonal line in the g-q plot indicating

that is the best fit in line with the KS test.

Figure 5 presents the P-P plot of the normal, lognormal weibull and gamma on the loss amount of

the breaches

P-P Plot for the overall data
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Figure 5: P-P plot of the overall impact loss amount of breaches.
The points of the normal distributions are the closer to the diagonal line in the P-P plot indicating

that is the best fit in line with the KS test.

Figure 6 presents the Probability density function of the overall Impact loss amount of a breach.
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Figure 6: Probability density function of the overall Impact loss amount of a breach

The shape of the Probability density function of the overall Impact loss amount of a breach is

similar to the shape of the Probability density function of the normal distribution.

4.3.3 Fitting distribution on the data set of each year

4.3.3.1 Fitting distribution on the data set of year 2013

Table 7 presents the fitted parameter, AIC, KS p-value of the fitting distribution procedure on the
data set of year 2013.

Fitted distribution Parameter 1  Parameter 2 AlC KS p-value Decision
Normal distribution 12.14 3.16 307.15 0.652375  Accept
Lognormal distribution 2.45 0.32 326.68 0.112922  Accept
Weibull distribution 4.45 13.30 306.04 0.662046  Accept
Gamma distribution 11.64 0.96 317.77 0.232882  Accept

Table 7: Results of the fitted distributions of the impact loss amount of breaches for year 2013.
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The data of the loss amount of breaches for year 2013 in the VERIS dataset may fit a normal,
lognormal, weibull or a gamma distribution since their P-values are greater than 0.05. In this study

the weibull distribution is chosen as the fitted distribution since it has the lowest AIC.

Figure 7 presents the Q-Q plot of the normal, lognormal, weibull and gamma, on the loss amount

of the breaches for year 2013.

Q-Q Plot for the data of year 2013
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Figure 7: Q-Q plot of the impact loss amount of breaches for year 2013.

The points of the weibull distributions are the closer to the diagonal line in the Q-Q plot indicating

that is the best fit in line with the KS test.

Figure 8 presents the P-P plot of the normal, lognormal weibull and gamma on the loss amount of

the breaches for year 2013.
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P-P Plot for the data of year 2013
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Figure 8: P-P plot of the impact loss amount of breaches for year 2013.

The points of the weibull distributions are the closer to the diagonal line in the P-P plot indicating

it is the best fit in line with the KS test.

4.3.3.2 Fitting distribution on the data set of year 2014

Table 8 presents the fitted parameter, AIC, KS p-value of the fitting distribution procedure on the

data set of year 2014.

Fitted distribution Parameter 1  Parameter 2 AlC KS p-value Decision
Normal distribution 12.18 3.10 208.12 0.764426  Accept

Lognormal distribution 2.46 0.28 212.85 0.493206  Accept

Weibull distribution 427 13.36 208.85 0.602672  Accept

Gamma distribution 13.94 1.14 210.15 0.688467  Accept

Table 8: Results of the fitted distributions of the impact loss amount of breaches for year 2014.
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The data of the impact loss amount of breaches for year 2014 in the VERIS dataset may fit a
normal, lognormal, weibull or a gamma distribution since their P-values are greater than 0.05. In
this study the normal distribution is chosen as the fitted distribution since it have the lowest AIC.
Figure 9 presents the Q-Q plot of the normal, lognormal, weibull and gamma, on the loss amount

of the breaches for year 2014.
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Figure 9: Q-Q plot of the impact loss amount of breaches for year 2014.

The points of the normal distribution are the closer to the diagonal line in the Q-Q plot indicating

that they are the best fit in line with the KS test.

Figure 10 presents the P-P plot of the normal, lognormal weibull and gamma on the loss amount

of the breaches for year 2014.
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P-P Plot for the data of year 2014
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Figure 10: P-P plot of the impact loss amount of breaches for year 2014.

The points of the normal distribution are the closer to the diagonal line in the P-P plot indicating

that they are the best fit in line with the KS test.

4.3.3.3 Fitting distribution on the data set of year 2015

Table 9 presents the fitted parameter, AIC, KS p-value of the fitting distribution procedure on the

data set of year 2015.

Fitted distribution Parameter 1  Parameter 2 AIC KS p-value Decision
Normal distribution 12.48004 2.964725 179.4006 0.799368  Accept
Lognormal distribution 2.492501 0.261067  183.7924 0.34054  Accept
Weibull distribution 4.756898 13.63097 179.2093 0.683601  Accept
Gamma distribution 15.97903 1.280195  181.5496 0.489348  Accept

Table 9: Results of the fitted distributions of the impact loss amount of breaches for year 2015.
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The data of the loss amount of breaches for year 2015 in the VERIS dataset may fit a normal,
lognormal, weibull or a gamma distribution since their P-values are greater than 0.05. In this study

the weibull distribution are chosen as the fitted distribution since it has the lowest AIC.

Figure 11 presents the Q-Q plot of the normal, lognormal, weibull and gamma, on the loss amount

of the breaches for year 2015.
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Figure 11: Q-Q plot of the impact loss amount of breaches for year 2015.

The points of the weibull distributions are the closer to the diagonal line in the Q-Q plot indicating

that it is the best fit in line with the KS test.

Figure 12 presents the P-P plot of the normal, lognormal weibull and gamma on the loss amount

of the breaches for year 2015.
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P-P Plot for the data of year 2015
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Figure 12: P-P plot of the impact loss amount of breaches for year 2015.

The points of the weibull distributions are the closer to the diagonal line in the P-P plot indicating

that it is the best fit in line with the KS test.

4.3.3.4 Fitting distribution on the data set of year 2016

Table 10 presents the fitted parameter, AIC, KS p-value of the fitting distribution procedure on the

data set of year 2016.

Fitted distribution Parameter 1  Parameter 2 AlIC KS p-value Decision
Normal distribution 11.66 4.36 160.24 0.551959  Accept
Lognormal distribution 2.39 0.34 153.08 0.672962  Accept
Weibull distribution 2.70 13.08 159.41 0.590899  Accept
Gamma distribution 8.22 0.70 154.15 0.864803  Accept

Table 10: Results of the fitted distributions of the impact loss amount of breaches for year 2016.
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The data of the loss amount of breaches for year 2016 in the VERIS dataset may fit a normal,
lognormal, weibull or a gamma distribution since their P-values are greater than 0.05. In this study

the lognormal distribution is chosen as the fitted distribution since it has the lowest AIC.

Figure 13 presents the Q-Q plot of the normal, lognormal, weibull and gamma, on the loss amount

of the breaches for year 2016.
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Figure 13: Q-Q plot of the impact loss amount of breaches for year 2016.

The points of the lognormal distribution are the closer to the diagonal line in the Q-Q plot
indicating that it is the best fit in line with the KS test.

Figure 14 presents the P-P plot of the normal, lognormal weibull and gamma on the loss amount

of the breaches for year 2016.
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P-P Plot for the data of year 2016
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Figure 14: P-P plot of the impact loss amount of breaches for year 2016.

The points of the lognormal distributions are the closer to the diagonal line in the P-P plot

indicating that it is the best fit in line with the KS test.

4.3.4 Conclusion

In section 4.1, we fitted the distribution on the overall data and yearly data for two purposes:

1. Calculate the probability density function
2. Apply the Generalized Linear model

The fitted distribution are:

* For overall data: Normal distribution
» For year 2013: Weibull distribution
» For year 2014: Normal distribution
* For year 2015: Weibull distribution

» For year 2016: Lognormal distribution
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However, since the Generalized Linear model is applied only to the distribution that belong to the
exponential dispersion family(EDM), since the Weibull distribution does not belong to the EDM
family, thus we will apply the GLM to the distribution that belong to the EDM family and have
the lowest AIC. Thus, the fitted distribution to the GLM are the following:

» For overall data: Normal distribution
* For year 2013: Normal distribution
» For year 2014: Normal distribution
* For year 2015: Normal distribution

* For year 2016: Lognormal distribution
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4.4 Radom Forest

Random forests are a statistical learning method used in many fields of application and are adapted
to both supervised classifications problems and regressions problems for qualitative and
quantitative explanatory variables together without preprocessing. Moreover, Random forest
involves determining a subset of the input variables that are important and active in explaining the
input—output relationship. Thus, in this study, we used random forest for the purpose of ranking

the variables, from the most important to the least important and selecting the important variables.

We applied the Random forests algorithm in this study to select and rank relevant the variables. In
addition to generation of the feature ranking, the Random forests algorithm classifies features into

three types: Confirmed, Tentative, Rejected.

In this study, in order to determine the most important variables associated to the Impact loss

amount of breaches, Radom Forest was applied:

1. On the overall data set

2. On each year

4.4.1 Radom Forest on the overall data

The most important variables associated to the Impact loss amount of breaches in the overall

VERIS data are: Action, Actor Motive, Asset Variety and Impact overall rating of breach.

The results of the important variable selection process using Random forests for the overall data
in Table 11 show that, out of 12 variables, four features are confirmed, four of them are rejected

and four features are marked tentative.

Attributes of all data Mean Imp Median Imp MinImp MaxImp Norm Hits  Decision
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Action

Actor

Actor Job change
Actor Motive
Asset Variety
Actor Country
Vector

Variety

Actor Variety
Victim country
Victim Employee Count

Impact overall rating

1.939564
1.486202
-1.43487
3.023557
2.941667
1.530922
1.600348
0.603957
1.471256
1.190812
0.119336
2.030967

1.98204
1.627141
-1.91509
3.135606
3.073702
1.567441
1.676884
0.69382
1.597318
1.321239
0.455071
2.106408

-1.16234
-1.90815
-3.71758
-2.6976
-1.58557
-1.2412
-1.83772
-2.61614
-1.95171
-1.41697
-1.71535
-1.21446

4.17727
4.015203
1.364827
7.622461
6.110115
3.295682
3.949662
2.667121
4.862392
3.383747
0.915919
4.364237

0.60521
0.462926
0
0.797595
0.815631
0.460922
0.472946
0.012024
0.430862
0.072144
0.002004
0.635271

Confirmed
Tentative
Rejected

Confirmed

Confirmed
Tentative
Tentative
Rejected
Tentative
Rejected
Rejected

Confirmed

Table 11: Results of the important variable selection process using Random forests for the

overall data

Table 11, the meaning of columns is as follows:

- Mean Imp: the mean of the importance.

- Median Imp: the median of the importance.

- Min Imp: the minimum of the importance.

- Max Imp: the maximum of the importance.

- Norm Hits: the number of hits normalized to number of importance source runs, where

important variables is the importance measure computed over multiple iterations.

The resulting graph in Figure 15 generated using the Random forests package in the R program,

indicates the level of importance of each variable on the vertical Y axis of the analyzed variables

on the horizontal X axis by ranking them.

Figure 15 shows the ranking of the variables of the overall data from the least important variable

to the most important variable.
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Figure 15: Variable importance selection graph using the Random forests algorithm on the overall

data

4.4.2 Radom Forest on each year

4.4.2.1 Radom Forest on year 2013

The most important variables associated to the loss amount of breaches in year 2013 are: Action

and Actor Country.

The results of the important variable selection process using Random Forest for Year 2013 in Table

12 shows that, out of 11 variables, two features are confirmed, eight of them are rejected and one

features are marked tentative.

Attributes 2013 Mean Imp MedianImp MinImp MaxImp Norm Hits  Decision
Action 2.772174 2.718084 -2.98117 7.894898  0.645291  Confirmed
Actor 0.26029 0.525724 -1.54013  1.922371  0.004008  Rejected
Actor Job change 0.567141 1.00189 -1.001  1.419496 0.006012  Rejected
Actor Motive 0.915077 0.870481 -0.52696 2.585596  0.004008  Rejected
Asset Variety 0.544866 0.487726 -0.63335  2.124574 0 Rejected

56



Actor Country 3.71067 3.750664 -1.69535
Variety 2.139153 2.261745 -3.58676
Actor Variety 0.561011 0.627709 -3.58037
Victim country 1.124575 1.366718 -2.53966
Victim Employee Count  1.063677 0.80201 -1.57359
Impact overall rating 1.241235 1.378603 -1.87723

7.587299
6.970542
3.017593
4.279988
5.341147
3.911378

0.771543
0.531062
0.008016
0.032064
0.022044
0.04008

Confirmed
Tentative
Rejected
Rejected
Rejected
Rejected

Table 12: Results of the important variable selection process using Random Forest for Year

2013.

Figure 16 shows the ranking of the variables of the year 2013 from the least important variable to

the most important variable.
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Figure 16: Variable importance selection graph using the Random Forest algorithm Year 2013.

4.4.2.2 Radom Forest on year 2014

Impact Overall Rating _|

adowMax
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The most important variables associated to the Impact loss amount of breaches in year 2014 are:

Action, Actor, Actor Country, Actor Motive, and Actor Variety.

The results of the important variable selection process using Random Forest for Year 2014 in Table

13 show that, out of 11 variables, five features are confirmed, four of them are rejected and two

features are marked tentative.
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Attributes 2014 Mean Imp Median Imp MinImp Max Imp Norm Hits  Decision
Action 5.103649 5.186105 2.008472 7.408126 0.961924 Confirmed
Actor 2.544368 2.567243 -1.51704 4.57887 0.693387 Confirmed
Actor Job change 0.051995 0 -1.04644 1.573751 0 Rejected
Actor Motive 4.090782 4.115516 -0.56373 7.161377 0.913828 Confirmed
Asset Variety 0.941943 1.011781 -1.15224 2.795975 0.014028 Rejected
Actor Country 3.346285 3.467217 -0.83229 6.172511 0.795591 Confirmed
Variety 2.222895 2.161499 -1.84683 7.415378 0.539078 Tentative
Actor Variety 3.476779 3.492707 -0.33372 6.322986 0.819639 Confirmed
Victim country 1.665043 1.701127 -1.59042 4.379066 0.43487 Tentative
Victim Employee Count  0.569568 0.425989 -0.91326 2.429987 0.002004 Rejected
Impact overall rating 0.554755 0.98537 -1.28611 2.242005 0.006012 Rejected

Table 13: Results of the important variable selection process using Random Forest for Year

2014.

Figure 17 shows the ranking of the variables of the year 2014 from the least important variable to

the most important variable.
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Figure 17: Variable importance selection graph using the Random Forest algorithm Year 2014.

58



4.4.2.3 Radom Forest on year 2015

The most important variables associated to the Impact loss amount of breaches in year 2015 are:

Actor Motive.

The results of the important variable selection process using Random Forest for Year 2015 in Table
14 show that, out of 11 variables, one feature is confirmed, ten of them are rejected and one features

are marked tentative.

Attributes 2015 Mean Imp Median Imp MinImp MaxImp Norm Hits Decision
Action 2.378927 2479711 -4.35712  8.609157  0.52505  Tentative
Actor -0.34847 -0.26746 -1.64255  0.749827 0 Rejected
Actor Job change -0.55714 -1.00097 -2.04472  0.995632 0 Rejected
Actor Motive 3.067028 3.053289 -2.4134  7.763122  0.633267 Confirmed
Asset Variety -1.03736 -0.79127 -3.56242  0.6839 0 Rejected
Actor Country -0.01228 -0.18766 -3.07782 2.578567 0.008016  Rejected
Variety -0.86821 -1.34774 -2.55969 1.869778 0 Rejected
Actor Variety -0.63845 -0.77023 -3.45912  1.909605 0.002004  Rejected
Victim country -0.60404 -0.78216 -1.33652  0.72033 0 Rejected
Victim Employee Count  -0.97049 -0.76682 -4.05697 0.972634 0 Rejected
Impact overall rating -0.43765 -1.11981 -2.40771  1.596163  0.002004  Rejected

Table 14: Results of the important variable selection process using Random Forest for Year

2015.

Figure 18 shows the ranking of the variables of the year 2015 from the least important variable to

the most important variable.
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Figure 18: Variable importance selection graph using the Random Forest algorithm Year 2015.

4.4.2.4 Radom Forest on year 2016

The most important variables associated to the Impact loss amount of breaches in year 2016 are:

Action, Actor, Actor Variety, Asset Variety and Variety.

The results of the important variable selection process using Random Forest for Year 2015 in Table

15 show that, out of 11 variables, five features are confirmed, six of them are rejected.

Attributes 2016 Mean Imp Median Imp MinImp Max Imp Norm Hits Decision
Action 2.140336 2.161116  -0.62456  4.014966 0.691406 Confirmed
Actor 1.761744 1.816274  -1.00426 3.537311 0.601563 Confirmed
Actor Job change 0.18119 0.998319  -1.19765 1.6774 0 Rejected
Actor Motive 0.282092 0.225222  -1.76466 1.974021 0.003906 Rejected
Asset Variety 4.734954 4.902964  -0.7805 8.267939 0.953125 Confirmed
Actor Country 0.037695 1.001 -2.61832  1.675678 0.011719 Rejected
Variety 1.961308 2.05836  -1.82558 5.035086 0.628906 Confirmed
Actor Variety 5.034025 5.122577  0.271975 8.267894 0.976563 Confirmed
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Victim country

Victim Employee Count

Impact overall rating

0.0335
-0.67647
-0.61151

0.433942
-0.51122
-1.001

-1.4349
-2.53438
-1.38539

1.212316
1.831339
1.000997

0 Rejected
0 Rejected
0 Rejected

Table 15: Results of the important variable selection process using Random Forest for Year

2016.
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Figure 19: Variable importance selection graph using the Random Forest algorithm Year 2016.
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Table 16 summarizes all the results of the important variable selection process using Radom forest

for Year 2013, 2014, 2015 and 2016.

Year Most Important Variables

2013 Action and Actor Country

2014 Action, Actor, Actor Country, Actor Motive, Actor Variety
2015 Actor Motive

2016 Action, Actor, Actor Variety, Asset Variety and Variety

Table 16: Results of the important variable selection process using Random Forest for Year

2013, 2014, 2015 and 2016

45 Generalized Linear Model

In this study, the Generalized Linear Model (GLM) of the fitted distribution in section 4.1 was
applied on the most important variable provided by the Random Forest in section 4.2 in order to

estimate and predict loss amount due to cyber risk.

4.5.1 Generalized Linear Model on the overall data

In section 4.1, the best fitted model of the overall impact loss amount is the normal distribution.
In section 4.2, the most important Action, Actor Motive, Asset Variety, and the Impact overall
rating. Therefore, we applied the Generalized Linear Model to the normal distribution. We
excluded the outliers and influential points from the data using the cook’s distance in order to get

a high accuracy of the predicted model.

a. Coefficients estimates and variable significance

Table 17 provides the estimated values of the parameters in the fitted Gaussian Model and their
significance level. The most significant variables are: the intercept, Action Hacking, Asset Variety

Authentication,
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Coefficients Estimate Std. Error tvalue Pr(>|t))  Significance
(Intercept) 15.0629 1.70783 8.82 8.68E-16  ***
Action Hacking 2.63141 0.65735 4.003 9.06E-05  *#*
Action Malware 0.09927 1.32888 0.075 0.94053

Action Misuse 1.67289 0.64427 2.597 0.01018  *
Action Physical 1.18617 0.82238 1.442 0.1509

Action Social 0.36908 3.26081 0.113 0.91001

Action Unknown -0.10215  2.88771 -0.035 0.97182

Actor Motive Espionage -0.15748 1.95903 -0.08 0.93602

Actor Motive Financial -3.27337 1.41753 -2.309 0.02204  *
Actor Motive Fun -0.91409 1.84748 -0.495 0.62135

Actor Motive Grudge -6.27307  2.00487 -3.129 0.00204  **
Actor Motive Ideology -1.28256  2.69588 -0.476 0.63482

Actor Motive NA -2.54857 2.7306 -0.933 0.35187

Actor Motive Other -4.70035 2.1531 -2.183 0.0303 *
Actor Motive Unknown -2.15814  1.38189 -1.562 0.12007

Asset Variety ATM 0.46241 1.00298 0.461 0.64532

Asset Variety Authentication 11.83177  2.74551 4.309 2.66E-05  ***
Asset Variety Call -1.02836  2.34586 -0.438 0.66163

Asset Variety Cashier 3.12402 4.22559 0.739 0.46066

Asset Variety Customer 3.75105 1.28906 291 0.00406  **
Asset Variety Database 0.49298 0.69244 0.712 0.4774

Asset Variety Desktop 1.42933 0.89411 1.599 0.11162

Asset Variety Disk -1.11924  2.71836 -0.412 0.68101

Asset Variety Documents 0.67359 0.72109 0.934 0.35146

Asset Variety End-user -3.85543 1.30737 -2.949 0.0036 ok
Asset Variety Executive 0.36644 2.35005 0.156 0.87626

Asset Variety File 4.02253 2.35005 1.712 0.08864

Asset Variety Finance 3.63171 3.33197 1.09 0.27716

Asset Variety Flash -0.85537  1.73458 -0.493 0.62251
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Asset Variety Gas

Asset Variety Kiosk
Asset Variety Mail
Asset Variety Mainframe
Asset Variety Partner
Asset Variety Payment
Asset Variety PBX
Asset Variety Peripheral
Asset Variety POS
Asset Variety Router
Asset Variety System
Asset Variety Tapes
Asset Variety Unknown
Asset Variety Web

Impact overall rating Distracting
Impact overall rating Insignificant
Impact overall rating Painful

Impact overall rating Unknown

1.03406
-1.11149
0.93354
5.45501
1.0268
-2.32256
5.09037
2.83066
0.35915
1.21393
6.65362
2.48582
0.87056
0.16332
-2.5479
-2.16139
-0.90918
-1.73759

1.8095
2.41428
2.36768
2.76366
2.35005
1.05483
2.76366
2.36768
1.72547
2.35005
2.35005
2.36768
0.87487
0.71604
1.09921
1.84384
1.33027
0.85833

0.571
-0.46
0.394
1.974
0.437
-2.202
1.842
1.196
0.208
0.517
2.831

1.05
0.995
0.228
-2.318
-1.172
-0.683
-2.024

0.56839
0.64579
0.69383
0.0499
0.66268
0.02892
0.0671
0.23341
0.83534
0.60609
0.00515
0.29514
0.32101
0.81983
0.02155
0.24262
0.49518
0.04438

k3k

Table 17: Results of the coefficient for the Gaussian GLM on the overall data

b. Deviance Residuals for GLM:

The Null Deviance model in Table 18 refers to the model in which all of the terms are excluded,

except the intercept. The degrees of freedom for this model are the number of data points n minus

1 if an intercept is fitted.

The Residual Deviance model in Table 18 refers to the fitted model. The degrees of freedom for

this model are equal to n minus p, where p is the number of parameters including any intercept.

The dispersion parameter @ is a measure of how much a sample fluctuates around its mean value

and it is calculated by dividing the Residual deviance by its corresponding degrees of freedom.
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In Table 18, the Residual Deviance has been reduced by 945.08 with a loss of 46 degrees of
freedom when we added all the parameters to the model including the intercept.

The Residual Deviance is 940.04 on 184 degrees of freedom, thus the dispersion parameter @ is

equal to 5.108901.

Null deviance 1885.12 on 230 degrees of freedom
Residual deviance 940.04 on 184 degrees of freedom

Table 18: Results of the Deviance for the Gaussian GLM applied on the overall data

Table 19 illustrates the values of the Minimum, Maximum, Median, First and Third Quantile for

the Gaussian GLM applied to the loss amount of the overall data.

Minimum First Quantile Median Third Quantile Maximum

-6.5424 -0.9802 0 0.9907 6.818

Table 19: Results of the Minimum, Maximum, Median, First and Second Quantile for the GLM

of overall data.

Table 20 presents the value of the AIC and the Fisher Scoring for the Gaussian GLM applied on
the overall data. The lower the AIC and the Fisher Scoring, the better the model fits.

AIC 1075.8
Number of Fisher Scoring iterations 2

Table 20: Results of the AIC and Fisher Scoring for the Gaussian GLM applied on the overall data.
Table 21 presents the value of the MAPE and RMSE for the Gaussian GLM applied on the overall

data. The lower the MAPE and the RMSE, the higher the accuracy of the forecast of the model.
The MAPE is 12.706322% which indicate a high accurate forecast of the model.
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MAPE 12.7063226445
RMSE 2.819E-13
Table 21: Results of the MAPE and RMSE for the Gaussian GLM applied on the overall data.

¢. Residuals Plots for GLM:

The Pearson residual plot is a graph that shows the residuals on the vertical axis and the fitted
variables on the horizontal axis. If the model fits well, the residuals should show no pattern, just

constant variability around zero for all values of the covariates X;.

The Pearson residual plot in Figure 20 shows the residuals on the vertical axis and the fitted
variables on the horizontal axis of the loss amount of the overall data. The more the variability of

the residuals is constant around zero for all values of the covariates X;, the better the model fits.

Pearson residuals

[
T

10 15 20 25

Linear Predicior

Figure 20: Pearson Residual Plot for Gaussian GLM applied on the overall data

d. Boxplots for GLM:

A boxplot is a graph that shows the Minimum, Maximum, Median, First and Third Quantile for

each variable.
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Pearson residuals

In the boxplots of Figure 21, outliers are denoted with an asterisk. The bottom whisker extends to

the lowest value that is not an outlier and the upper whisker extends to the highest value that is not

an outlier. The box represents the middle of observations with the lower end of the box at the 251

percentile (First Quantile) and the upper end of the box at the 75th percentile (Third Quantile). The

line in the middle of the box represents the median.
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Pearsonresiduals

Asset Variely Impact_overal_rating

Figure 21: Boxplots of the important variables used in fitting the Gaussian GLM to the overall data

4.5.2 Generalized Linear Model on each year

45.2.1 Generalized Linear Model on each year 2013

In section 4.1, the best fitted model of the loss amount for year 2013 is the weibull distribution.
However, the weibull distribution does not belong to the exponential dispersion family (EDM),
thus the GLM cannot be applied to the weibull distribution. Therefore, in this case the GLM is
applied to the Normal distribution since it has the lower AIC among the fitted distribution
belonging to the exponential dispersion family (EDM) and the closer AIC to the AIC of the
Weibull distribution.

In section 4.2, the most important variables selected for year 2013 are: Action and Actor Motive.
Therefore, for year 2013, we applied the Generalized Linear Model to the normal distribution. We
excluded the outliers and influential points from the data using the cook’s distance in order to get

a high accuracy of the predicted model.
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a. Coefficients estimates and variable significance:

Table 22 provides the estimated values of the parameters in the fitted Gaussian Model applied on
the loss amount of year 2013 and their significance level. The most significant variables are: the

intercept, Actor Motive.

Coefficient Estimate Std Error  t value Pr(>|t]) Significance
(Intercept) 15.037 2.387 6.3 7.02E-07  ***

Action Hacking 1.238 1.334 0.928 0.3609

Action Misuse -1.07 1.712 -0.625 0.5368

Action Physical -1.136 1.629 -0.697 0.4911

Actor Motive Financial ~ -1.733 1.796 -0.965 0.3427

Actor Motive Fun 5.096 2.352 2.167 0.0386 *

Actor Motive Unknown  -2.44 2.303 -1.06 0.2981

Table 22: Results of the coefficient for the GLM applied on the loss amount of year 2014

b. Deviance Residuals for GLM:

In Table 23, the Residual Deviance has been reduced by 62.939 with a loss of 6 degrees of freedom
when we added all the parameters to the model including the intercept.

The Residual Deviance is 80.219 on 29 degrees of freedom, thus the dispersion parameter @ is

equal to 2.76617.

Null deviance 143.158 on 35 degrees of freedom

Residual deviance 80.219 on 29 degrees of freedom

Table 23: Results of the Deviance for the GLM applied on the loss amount of year 2013

Table 24 illustrates the values of the Minimum, Maximum, Median, First and Third Quantile for

the Gaussian GLM applied to the loss amount for 2013.

Minimum First Quantile Median Third Quantile Maximum
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-4.1612 -0.6547 -0.084 1.3965 2.6595

Table 24: Results of the Min, Max, Median, First and Thirsd Quantile for the GLM applied on the

loss amount of year 2013.

Table 25 presents the value of the AIC and the Fisher Scoring for the Gaussian GLM applied on
the loss amount of year 2013. The lower the AIC and the Fisher Scoring, the better the model fits.

AIC 147.01

Number of Fisher Scoring iterations 2

Table 25: Results of the AIC and Fisher Scoring for the Gaussian GLM applied on the loss amount
of year 2013

Table 26 presents the value of the MAPE and RMSE for the Gaussian GLM applied on the loss
amount of year 2013. The lower the MAPE and the RMSE, the higher the accuracy of the forecast
of the model. The MAPE is 9.9555% which indicate a high accurate forecast of the model.

MAPE 9.95550339
RMSE 1.67766432

Table 26: Results of the MAPE and RMSE for the Gaussian GLM applied on the loss amount of
year 2013

c. Residuals Plots for GLM:

The Pearson residual in Figure 22 shows the residuals on the vertical axis and the fitted variables

on the horizontal axis of the loss amount of year 2013. The more the variability of the residuals is

constant around zero for all values of the covariates X;, the better the model fits.
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Figure 22: Pearson Residual plot of the GLM applied on the loss amount of year 2013.
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4.5.2.2 Generalized Linear Model on each year 2014:

In section 4.1, the best fitted model of the loss amount for year 2014 is the Normal distribution.

In section 4.2, the most important variables selected for year 2014 are: Action, Actor, Actor

Country, Actor Motive, Actor Variety and Vector. Therefore, for year 2014, we applied the

Generalized Linear Model to the normal distribution. We excluded the outliers and influential

points from the data using the cook’s distance to get a high accuracy of the predicted model.

a. Coefficients estimates and variable significance:

Table 27 provides the estimated values of the parameters in the fitted Gaussian Model applied on

the loss amount of year 2014 and their significance level. The most significant variables are: the

intercept, Action Hacking, Actor Motive Financial, Actor Motive Other, Action Social and Actor

Motive Unknown.

Coefficient Estimate  Std Error  t value Pr(>|t)) Significance
(Intercept) 16.959 2.779 6.102 0.000115 ook
Action Hacking 4.868 1.437 3.386 0.006929 ko
Action Misuse 2.141 1.429 1.498 0.164914

Action Physical 2.073 1.599 1.296 0.224133

Action Social 5.113 1.856 2.755 0.0203 *
Actor Internal 2.131 1.087 1.961 0.078342

Actor Partner 1.946 1.437 1.354 0.205622

Actor Country CN -2.655 2.305 -1.152 0.276214

Actor Country RU 3.846 2.15 1.788 0.104005

Actor Country Unknown  -1.826 1.802 -1.013 0.334894

Actor Country US -1.791 1.76 -1.017 0.333059

Actor Motive Financial -6.336 1.437 -4.408 0.001319 *x
Actor Motive Other -7.917 1.856 -4.267 0.001646 ok
Actor Motive Unknown — -5.23 1.856 -2.818 0.018208 *

Table 27: Results of the coefficient for the GLM applied on the loss amount of year 2014
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b. Deviance Residuals for GLM:

In Table 28, the Residual Deviance has been reduced by 112.142 with a loss of 13 degrees of
freedom when we added all the parameters to the model including the intercept.

The Residual Deviance is 10.331 on 10 degrees of freedom, thus the dispersion parameter @ is

equal to 1.033103.

Null deviance 122.473 on 23 degrees of freedom
Residual deviance 10.331 on 10 degrees of freedom

Table 28: Results of the Deviance for the GLM applied on the loss amount of year 2014

Table 29 illustrates the values of the Minimum, Maximum, Median, First and Third Quantile for

the Gaussian GLM applied to the loss amount for 2014.

Minimum First Quantile  Median Third Quantile  Maximum

-1.43737 -0.06939 0 0.25322 1.15129

Table 29: Results of the Min, Max, Median, First and Thirsd Quantile for the GLM applied on the

loss amount of year 2014.

Table 30 presents the value of the AIC and the Fisher Scoring for the Gaussian GLM applied on
the loss amount of year 2014. The lower the AIC and the Fisher Scoring, the better the model fits.

AIC 77.879
Number of Fisher Scoring iterations 2

Table 30: Results of the AIC and Fisher Scoring for the Gaussian GLM applied on the loss amount
of year 2014

Table 31 presents the value of the MAPE and RMSE for the Gaussian GLM applied on the overall
data. The lower the MAPE and the RMSE, the higher the accuracy of the forecast of the model.
The MAPE is 3.6105% which indicate a high accurate forecast of the model.

MAPE 3.610515222
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RMSE 7.40153E-15

Table 31: Results of the MAPE and RMSE for the Gaussian GLM applied on the loss amount of
year 2014

c. Residuals Plots for GLM:

The Pearson residual plot in Figure 23 shows the residuals on the vertical axis and the fitted

variables on the horizontal axis of the loss amount of year 2014. The more the variability of the

residuals is constant around zero for all values of the covariates X, the better the model fits.
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Figure 23: Pearson Residual plot of the GLM applied on the loss amount of year 2014.
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4.5.2.3 Generalized Linear Model on each year 2015:

In section 4.1, the best fitted model of the loss amount for year 2015 is the Weibull distribution.
However, the Weibull distribution does not belong to the exponential dispersion family (EDM),
thus the GLM cannot be applied to the weibull distribution. Therefore, in this case the GLM is
applied to the Normal distribution since it has the lower AIC among the fitted distribution
belonging to the exponential dispersion family (EDM) and the closer AIC to the AIC of the
Weibull distribution.

In section 4.2, the most important variables selected for year 2015 are: Actor Motive. Therefore,
for year 2015, we applied the Generalized Linear Model to the normal distribution. We excluded
the outliers and influential points from the data using the cook’s distance in order to get a high

accuracy of the predicted model.

a. Coefficients estimates and variable significance:

Table 32provides the estimated values of the parameters in the fitted Gaussian Model applied on
the loss amount of year 2015 and their significance level. The most significant variables are: the

intercept and Actor Motive Unknown.

Coefficient Estimate  Std Error  tvalue  Pr(>t|) Significance
(Intercept) 9.616 1.228 7.832 3.31E-07  ***

Actor Motive Financial — 2.544 1.271 2.001 0.0607

Actor Motive Grudge 2.12 1.736 1.221 0.2378

Actor Motive Unknown  3.552 1.326 2.678 0.0153 *

Table 32: Results of the coefficient for the GLM applied on the loss amount of year 2015

b. Deviance Residuals for GLM applied on the loss amount of year 2015:

In Table 33, the Residual Deviance has been reduced by 12.314 with a loss of 3 degrees of freedom

when we added all the parameters to the model including the intercept.
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The Residual Deviance is 27.134 on 18 degrees of freedom, thus the dispersion parameter @ is

equal to 1.50744.

Null deviance 39.448 on 21 degrees of freedom
Residual deviance 27.134 on 18 degrees of freedom

Table 33: Results of the Deviance for the GLM applied on the loss amount of year 2015

Table 34 illustrates the values of the Minimum, Maximum, Median, First and Third Quantile for

the Gaussian GLM applied to the loss amount for 2015.

Minimum First Quantile  Median Third Quantile  Maximum

-2.5435 -0.7772 0 0.7608 2.6117

Table 34: Results of the Min, Max, Median, First and Thirsd Quantile for the GLM applied on the

loss amount of year 2015.

Table 35 presents the value of the AIC and the Fisher Scoring for the Gaussian GLM applied on
the loss amount of year 2014. The lower the AIC and the Fisher Scoring, the better the model fits.

AlC 77.048

Number of Fisher Scoring iterations 2

Table 35: Results of the AIC and Fisher Scoring for the Gaussian GLM applied on the loss amount
of year 2015

Table 36 presents the value of the MAPE and RMSE for the Gaussian GLM applied on the overall
data. The lower the MAPE and the RMSE, the higher the accuracy of the forecast of the model.
The MAPE is 6.90056% which indicate a high accurate forecast of the model.

MAPE 6.900596
RMSE 1.33E-15

Table 36: Results of the MAPE and RMSE for the Gaussian GLM applied on the loss amount of
year 2015
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c. Residuals Plots for GLM:

The Pearson residual plot in Figure 24 that shows the residuals on the vertical axis and the fitted

variables on the horizontal axis of the loss amount of year 2015. The more the variability of the

residuals is constant around zero for all values of the covariates X, the better the model fits.

Pearson residuals
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Figure 24: Pearson Residual plot of the GLM applied on the loss amount of year 2015.

77



45.2.4 Generalized Linear Model on each year 2016:

In section 4.1, the best fitted model of the loss amount for year 2016 is the lognormal distribution.

In section 4.2, the most important variables selected for year 2016 are: Action, Actor, Actor

Variety, Asset Variety and Variety. Therefore, for year 2016, we applied the Generalized Linear

Model to the lognormal distribution. We excluded the outliers and influential points from the data

using the cook’s distance to get a high accuracy of the predicted model.

a. Coefficients estimates and variable significance:

Table 37 provides the estimated values of the parameters in the fitted Gaussian Model applied on

the loss amount of year 2016 and their significance level. The most significant variable is: the

intercept.
Coefficient Estimate  Std Error  t value Pr(>|t)) Significance
(Intercept) 1.93551 0.69286 2.794 0.0162 *
Action Hacking 0.3491 0.62073 0.562 0.5842
Action Malware 0.66086  0.6164 1.072 0.3047
Action Misuse 0.6357 0.64727 0.982 0.3454
Action Physical 0.33076  0.57637 0.574 0.5766
Action Social 0.63121 0.61385 1.028 0.3241
Actor Internal -0.06591  0.35693 -0.185 0.8566
Actor Partner 0.37975  0.64513 0.589 0.567
Actor Variety End-user 0.06305  0.73464 0.086 0.933
Actor Variety Espionage -0.71247  0.6916 -1.03 0.3232
Actor Variety Nation-state 0.7823 0.40839 1.916 0.0795
Actor Variety Organized crime  -0.31992  0.42228 -0.758 0.4633
Actor Variety Other -0.34202  0.57153 -0.598 0.5607
Actor Variety Unaffiliated -0.06833  0.31004 -0.22 0.8293
Actor Variety Unknown 0.20917 0.37765 0.554 0.5898

Table 37: Results of the coefficient for the GLM applied on the loss amount of year 2016
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b. Deviance Residuals for GLM:

In Table 38, the Residual Deviance has been reduced by 389.94 with a loss of 14 degrees of
freedom when we added all the parameters to the model including the intercept.
The Residual Deviance is 125.47 on 12 degrees of freedom, thus the dispersion parameter @ is

equal to 10.4557.

Null deviance 515.41 on 26 degrees of freedom

Residual deviance 125.47 on 12 degrees of freedom

Table 38: Results of the Deviance for the GLM applied on the loss amount of year 2016

Table 39 illustrates the values of the Minimum, Maximum, Median, First and Third Quantile for

the Gaussian GLM applied to the loss amount for 2016.

Minimum First Quantile  Median Third Quantile  Maximum

-6.1557 -0.8045 0 0.4428 6.1557

Table 39: Results of the Min, Max, Median, First and Third Quantile for the GLM applied on the

loss amount of year 2016.

Table 40 presents the value of the AIC and the Fisher Scoring for the Gaussian GLM applied on
the loss amount of year 2016. The lower the AIC and the Fisher Scoring, the better the model fits.

AlC 150.1

Number of Fisher Scoring iterations 5

Table 40: Results of the AIC and Fisher Scoring for the Gaussian GLM applied on the loss amount
of year 2016

Table 41 presents the value of the MAPE and RMSE for the Gaussian GLM applied on the loss
amount of year 2016. The lower the MAPE and the RMSE, the higher the accuracy of the forecast
of the model. The MAPE is 3.6105% which indicate a high accurate forecast of the model.
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MAPE 4.59791759
RMSE 9.25869186

Table 41: Results of the MAPE and RMSE for the Gaussian GLM applied on the loss amount of
year 2016

¢c. Residuals Plots for GLM:

The Pearson residual plot is graph that shows the residuals on the vertical axis and the fitted

variables on the horizontal axis of the loss amount of year 2016. The more the variability of the

residuals is constant around zero for all values of the covariates X;, the better the model fits.
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Figure 25: Pearson Residual plot of the GLM applied on the loss amount of year 2016.

4.6 Credibility Theory
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In this section we applied the Classical credibility theory in order to estimate minimum number of

losses required to have a certain level of accuracy.
4.6.1 Credibility theory on the overall data
Table 42 shows that the estimated minimum number of total losses required to have a 95% level

of accuracy is approximately 94. Since the number of losses in the sample data of the VERIS data

1s 276, we can conclude that the fitted model on the overall data is accurate.

Probability level 90% 95% 98%

Y value 1.645 1.96 2.326
k value 5% 5% 5%
Number of observation needed 65.57 93.08 131.09

Table 42: Results of the Classical credibility Theory applied on the overall data.

4.6.2 Credibility theory on each year

4.6.2.1 Credibility theory on year 2013

Table 43 shows that the estimated minimum number of losses for year required to have a 95%
level of accuracy is approximately 106. Since the number of losses in the sample data of the VERIS
data for year 2013 is 59, we can conclude that we need a larger sample for 2013 in order to get a

high level of accuracy.

Probability level 90% 95% 98%
Y value 1.645 1.96 2.326
k value 5% 5% 5%
Number of observation needed 74.53 105.81 149.01

Table 43: Results of the Classical credibility Theory applied for year 2013.
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4.6.2.2 Credibility theory on year 2014

Table 44 shows that the estimated minimum number of losses for year required to have a 95%

level of accuracy is approximately 103. Since the number of losses in the sample data of the VERIS

data for year 2014 is 40, we can conclude that we need a larger sample for 2014 in order to get a

high level of accuracy.

Probability level 90% 95% 98%
Y value 1.645 1.96 2.326
k value 5% 5% 5%
Number of observation needed 72.08 102.32 144.11

Table 44: Results of the Classical credibility Theory applied for year 2014.

4.6.2.3 Credibility theory on year 2015

Table 45 shows that the estimated minimum number of losses for year required to have a 95%

level of accuracy is approximately 90. Since the number of losses in the sample data of the VERIS

data for year 2015 is 35, we can conclude that we need a larger sample of data for year 2015 in

order to get a high level of accuracy.

Probability level 90% 95% 98%

Y value 1.645 1.96 2.326
k value 5% 5% 5%
Number of observation needed 62.88 89.27 125.72

Table 45: Results of the Classical credibility Theory applied for year 2015.

82



4.6.2.4 Credibility theory on year 2016

Table 46 shows that the estimated minimum number of losses for year required to have a 95%
level of accuracy is approximately 224. Since the number of losses in the sample data of the VERIS
data for year 2016 is 27, we can conclude that we need a larger sample of data for year 2016 in

order to get a high level of accuracy.

Probability level 90% 95% 98%

Y value 1.645 1.96 2.326
k value 5% 5% 5%
Number of observation needed 157.63 223.78 315.16

Table 46: Results of the Classical credibility Theory applied for year 2016.
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Conclusion

Cyber-attacks can lead to different types of losses, such as loss of information or loss of
revenue. Therefore, cyber insurance policies have become a necessity in order to protect policy
holders from catastrophic losses and liabilities due to cyber breaches. This thesis makes a
significant contribution to modeling cyber security insurance. The overall data of the loss amount
of breaches in the VERIS dataset fit a normal distribution since its P-value of the Kolmogorov-
Smirnov test is greater than 0.05 and it has the lowest AIC. Moreover, the Random Forest applied
to the loss amount of breaches in the overall VERIS data indicated that the most important
variables associated are: Action, Actor Motive, Asset Variety and Impact overall rating of breach.
Then, the Generalized Linear Model applied to the most important variable provided by the
Random Forest, lead to the conclusion that the normal distribution is a good candidate for fitting
the severity distribution of the VERIS dataset with a high level of accuracy indicated by the mean
absolute percentage error (MAPE) of 12.70%. Also, the classical credibility theory indicated that
the fitted model on the overall data is 95% accurate. However, the classical credibility theory
applied to the loss amount of each year indicated that a larger sample of data needs to be fitted in
order to get a high level of accuracy. Thus, this study discovered some weaknesses and gaps in the
VERIS reporting schema which may be obscuring accurate reporting of all related, detectable
adversary activity linked to these attacks. Therefore, a worldwide collaboration must take place in
order to contribute to a larger database that allows actuaries and statisticians to model the severity
and frequency of the loss amount for future breaches with a high level of accuracy. As per the
future work, it will be essential to fit the frequency based on the timeline event of a cyber risk loss
using a larger and worldwide database in order to predict the aggregate loss distribution and

estimate the price of a cyber-insurance policy coverage.
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