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ABSTRACT 
 
 
Purpose – The purpose of this thesis is to assess if natural disasters impact the volatility 

of 19 property-liability insurers in the United States of America (USA) and 3 stock 

indices over a 10-year period using GARCH (1,1), IGARCH (1,1), EGARCH (1,1) and 

GJR-GARCH (1,1). Additionally, we implement the Value at Risk (VaR) and Extreme 

Value Theory (EVT) method to generate the worst loss over a target horizon that will not 

be exceeded with a given level of confidence. In this regard, this thesis will be a pioneer 

in examining the performance of capital markets in a context of unusually high 

uncertainty and build upon existing mixed-viewed literature with regards to capital 

market behavior in such conditions. 

Design/methodology/approach – The daily closing prices for each property-liability 

insurer and stock index are collected over a sample period from January 1st 2010 till 

December 31st 2020. The sampled period is segregated into two sub-sample periods: the 

in-sample period extending from January 1st 2010 till December 31st 2017, and the out-

of-sample period extending from January 1st 2018 till December 31st 2020. Accordingly, 

in-sample returns are then calculated from daily closing prices and utilized to estimate the 

parameters of the selected volatility models, based on the constraints and assumptions of 

each model. Subsequently, the calculated in-sample parameters are implemented to 

forecast the volatilities for both periods (in-sample and out-of-sample). Next, the three 

chosen error metrics RMSE, MAE and MAPE are used to identify the optimal model for 

each stock during both the in-sample and out-of-sample periods. Next, a dummy variable 



IX 
 
was employed to measure the impact of natural disasters on the chosen stocks and 

indices. Afterwards, through the use of the Volatility Update Historical Simulation 

method, future return scenarios are generated for the Dow Jones U.S Property and 

Casualty Insurance Index (DJUSIP) on daily basis over the period December 6th 2018 till 

December 31st 2020. The Value at Risk (VaR) is then calculated for 250 days at four 

confidence levels (90%, 95%, 97.5% and 99% confidence levels). Eventually, in order to 

determine the accuracy of the underlying VaR model the Kupeic test is performed. 

Lastly, we incorporate Extreme Value Theory (EVT) into our calculations as it assumes a 

separate distribution for extreme losses in order to estimate the probability of extreme 

values. 

Findings – Results showed that the IGARCH (1,1) has proven to be the optimal model 

for the majority of the chosen insurance companies during the in-sample period. On the 

other hand, the EGARCH (1,1) model performed best for a substantial number of 

insurance companies, particularly, AFG, UFCS.O, GBLI.O, HALL.O and the chosen 

stock indices (SPX, IXIC and DJI). As for the remaining stocks, PGR, MSADY.PK, 

CINF.OQ, WRB, WTM, HMN and HCI the GARCH (1,1) and GJR-GARCH (1,1) 

proved to outperform other models. The same calculations applied for the in-sample 

period are applied to the out-sample period. The results reflect homogeneity among the 

indices, SPX, IXIC, DJI and two insurance companies, AFG and UFCS.O. In addition, 

the EGARCH model was also the most accurate model for RLI, SIGI.O, ARGO.K, UVE, 

DGICA.O and FNHC.O but only for the out-of-sample period. Among all of the chosen 

stocks, IGARCH out-performed other models for SAFT.O for both in-sample and out-



X 
 
sample periods. Alternatively, IGARCH performed best for the out-sample period of 

HMN and GBLI.O whereby. With regards to the remaining stocks, the GARCH (1,1) 

model proved to be the best performing model for both in-sample and out-sample period 

for PGR, WRB, WTM and HCI. Specifically, for the out-sample period, the GARCH 

model out-performed other models for CB, MSADY.PK and CINF.OQ while the 

IGARCH (1,1) and GJR-GARCH were chosen for the in-sample period, respectively. 

Lastly, the GJR-GARCH is the optimal model for HALL.O for the out-sample period. 

After determining the optimal model for the in-sample and out-sample periods, we set the 

pre-disaster period to 0 and to 1 for both the- one month and three-month post disaster 

periods. The outcome highlighted that that during the in-sample period, volatility is more 

likely to be negatively impacted by natural disasters and during the out-sample period, 

the majority of stocks’ volatility are positively impacted by natural disasters. 

Furthermore, using the Rolling Window procedure and by incorporating the optimal 

model into the Volatility-Weighted Historical Simulation method, the Value at Risk 

(VaR) was estimated for 250 days between 06/06/2018 till 03/06/2019 at 90%, 95%, 

97.5% and 99% confidence levels for Dow Jones Property & Casualty Insurance Index 

(DJUSIP:DJI). The computed VaR results were then compared to actual returns in order 

to determine the number of days/exceptions in which actual returns exceeded VaR 

estimates across the 250 days period. Lastly, the Kupiec Test was performed and the 

outcome reflected that VaR provides a very accurate measure in determining the level of 

downside risk at all confidence intervals. Lastly, we incorporate Extreme Value Theory 

(EVT) into our calculations at 95% and 99% confidence interval, the VaR was estimated 
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to be 2.33% and 7.79%. Based on the VaR, the Expected Shortfall (ES) was estimated to 

be 6.79% and 7.80%, respectively at 95% and 99% confidence level. When comparing 

the VaR obtained through EVT and the volatility adjusted model, we note that the 

volatility adjusted model yielded a higher VaR thus, we can conclude that the model is 

overestimating the loss.  

Research limitations/implications – This thesis has potential limitations. A particular 

limitation is that with the majority of research in this area the analysis on the impact of 

natural disasters has been made in segregation from other effects, such as 

macroeconomic, political and calendar announcements. While this simplifies research, it 

is tricky as natural disasters may be vulnerable to contamination caused by 

macroeconomic announcements independent of the disaster or catastrophe itself. For 

example, Shelor et al. (1992) analysis of the 1989 Loma Prieta earthquake compromised 

the outcome of the research as it failed to take into consideration the lowering of official 

US interest rates two days later. Moreover, multiple property-liability insurance 

companies were excluded from the dataset as there was no sufficient data for the chosen 

timeframe (01/01/2010 till 31/12/2020) andthere are many property-liability insurance 

companies that are private and thus, these could not be included. Therefore, the dataset 

used could have been wider and more inclusive. 

Originality/value – The findings of this thesis investigated the behavior of the 19 U.S 

insurance stocks, 3 U.S indices, a property-liability composite index for Value at Risk 

(VaR) and Extreme Value Theory (EVT) and 252 natural disasters, over the period 
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extending from 01/01/2010 till 31/12/2020, which makes its dataset comprehensive, 

exhaustive and novel to those of preceding research; 

Keywords – GARCH(1,1), IGARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1), property-

liability insurers, insurance, natural disasters, natural catastrophes, hurricanes, typhoons, 

flooding, earthquake volatility, GARCH models, in sample, out of sample, VaR, EVT, 

Value at Risk, Extreme Value Theory, realized volatility, Kupiec test, Chubb Limited, 

CB, Progressive Corp, PGR, MS&AD Insurance Group Holdings, MSADY.PK, 

Cincinnati Financial Corporation, CINF.OQ, W. R. Berkley Corp, WRB, American 

Financial Group, Inc., AFG, RLI Corp, RLI Selective Insurance Group Inc, SIGI.O, 

White Mountains Insurance Group Ltd, WTM, Horace Mann Educators Corporation, 

HMN, Argo Group International Holdings Ltd., ARGO.K, Safety Insurance Group, Inc., 

SAFT.O, United Fire Group, Inc., UFCS.O, Universal Insurance Holdings, Inc., UVE, 

HCI Group Inc, HCI, Donegal Group Inc., DGICA.O, Global Indemnity Group LLC, 

GBLI.O, FedNat Holding Company, FNHC.O, Hallmark Financial Services, Inc., 

HALL.O, S&P 500, SPX, Nasdaq Composite, IXIC, Dow Jones Industrial Average, DJI, 

dummy variable.  
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Chapter 1: Introduction 

1.1 General Background  

Historically, man-made risks such as Wall Street Crash and the subprime financial 

crisis posed the greatest threats to market continuity. However, natural disasters (for 

example storms, floods, hurricanes, fires, cyclones, earthquakes and tsunamis) continue 

to cause severe and increasing damage to global economies (Ritchi & Roser, 2019). Such 

financial losses from natural disasters are of grave concern to insurance companies and 

the industry as a whole as they customarily provide financial cover for the losses incurred 

from and are often responsible for providing financial coverage for damages incurred due 

to the above-mentioned natural disasters. 

As a starting point, it is important to reflect and examine definitions pertaining to 

natural disasters and catastrophes frequently used in contemporary works. Natural disasters 

are geophysical events (i.e., natural hazards) categorized by substantial variation from 

climatic trends. Such hazards may follow geographic/seasonal patterns and are considered 

predictable, i.e. typhoons and hurricanes, or they might follow an extremely irregular 

pattern in terms of reoccurrence, i.e. droughts and floods. Hence, natural disasters are 

described as rapid, instantaneous or profound impact of the natural environment upon the 

socio-economic system (Alexander, 2017). The property insurance industry has coined the 

term “catastrophe” to denote a man-made or natural disaster that is remarkably severe. An 

event is classified as a catastrophe by the insurance industry when claims are forecasted to 

reach a certain dollar threshold, currently set at USD 25 million, and more than a specific 
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number of insurance companies and policyholders are impacted (Spotlight on: 

Catastrophes - insurance issues). 

When it became obvious back in the 70s that exposure to insured losses from 

natural disasters was on an upward trend, insurers were swift to identify that greater 

knowledge and expertise were required in this area. Since then, seasoned insurance 

specialists and experienced scientists have been assessing and analyzing the entire 

spectrum of natural hazards through models based on geographical, seismographical and 

meteorological information to estimate the probabilities of catastrophes and the losses 

resulting therefrom (Hull, 2018). While this provides a basis for setting premiums, it does 

not alter the “all-or-nothing” nature of these risks for insurance companies (Hull, Risk 

Management and Financial Institutions, 2012). In traditional insurance markets, such as 

automotive insurance, the insurer faces a substantial number of independent risks that tend 

to follow a relatively predictable pattern through time. Thus, by charging a premium that 

is used by the insurance company to invest and earn a return prior to paying off the losses 

(claims) incurred, the company will be able to run a profitable business. However, from an 

insurer’s standpoint, catastrophic losses due to natural disasters are much more 

challenging. Instead of a large number of risks that are on the vicinity of a relatively 

predictable year-to-year pattern, catastrophic losses tend to be irregular. Therefore, natural 

disasters pose a wide spectrum of problems for insurers.  

To begin with, because catastrophic events are categorized as low frequency high 

severity events, the insurer may suffer losses in excess of the premiums charged for 
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coverage, thus, the firm may not have sufficient resources to compensate for the losses. 

Hence, the firm may have to exit states whereby there is a substantial exposure to 

catastrophic risks or to go bankrupt (Viscusi & Born, 2006). Secondly, the distribution of 

losses due to catastrophes may change over time for a variety of reasons. The hurricane 

season between 1971-1994 averaged 8.5 storms per year, however, in the subsequent 

decade, 1995-2005, the average increased to 15 storms per year. To the extent that 

insurers are rational Bayesian 1decision makers, one would expect them to update their 

risk beliefs over time when writing insurance coverage (Viscusi & Born, 2006). Lastly, 

catastrophic losses affect the rate structure even for firms that remain functional in the 

presence of natural disasters (Born & Viscusi, 2006). Suppose an insurer is writing 

policies in a high-risk state that is known to be prone to major disasters at least once 

every ten years. In the year that the disaster occurs, the company will suffer losses that 

exceed the premiums charged. Thus, for the company to realize a profit, the insurer will 

have to charge more for insurance in the upcoming years whereby there are no 

catastrophes in order to compensate for the loss. 

Based on the above, in recent years, economic forces have begun to accelerate 

convergence between financial markets and property-liability insurance. A vital driver of 

convergence is the increase in property values in geographical zones susceptible to 

catastrophic risk. Trillions of dollars in property exposure exist in disaster prone areas in 

the U.S.A, Asia and Europe resulting in significant increases in insured losses from 

                                                 
1 Statistical methods based on Bayes' theorem which describes the probability of an event, based on prior 
knowledge of conditions that might be related to the event 
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property catastrophes (Cummins & Weiss, 2009). Hurricane Andrew (1992) resulted in 

extraordinary losses amounting to $24 billion. This event was dwarfed by the losses 

incurred in 2005, when Hurricanes Katrina, Rita, and Wilma (KRW) and other events 

pooled to cause insured losses of USD 114 billion (At USD 144 billion, global insured 

losses from disaster events in 2017 were the highest ever, sigma study says, 2018). While 

these losses are enormous relative to the total equity capital of global reinsurers (Capital 

Markets: The Reinsurance Evolution Continues, 2014), they represent less than 1% of the 

value of U.S. stock and bond markets. The increased efficiency realized by financing this 

type of risk in securities market has led to the development of innovative financial 

instruments such as catastrophic risk (Cat) bonds and options to off-set the losses 

(Cummins & Weiss, 2009).  

It is now clear that natural disasters have established the potential to adversely affect 

financial activity. The above concerns have given rise to developing literature, which 

seeks to examine the impact of natural events on capital markets. Somewhat surprisingly, 

there is no recent analysis whatsoever that addresses aspects of how catastrophic risks 

affect insurance markets and capital markets. There have, of course, been extensive 

discussions of a conceptual nature as well as analyses of the potential role of reinsurance, 

but there has been no empirical examination of how catastrophic risks affect stock price 

volatility in capital markets.   
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1.2 Importance of the Study 

This thesis serves as a guide to examine and study catastrophic risks and their impact 

on insurer’s and overall capital market stock prices and volatility. Currently, the literature 

around the relationship between catastrophic risks and stock price volatility in capital 

markets is scarce and mixed. Despite the availability of literature on the impact of natural 

disasters on insurer’s stock price volatility, the most recent research was conducted in 

2017 whereby Michael Bourdeau-Briena and Lawrence Kryzanowskib examined the 

effect on volatility focusing on the stocks of local U.S firms. Yet, no research has been 

conducted recently following the surge in natural disasters due to climate change and 

increase in population in catastrophe prone areas. Taking into consideration the 

propensity of inclination for natural disasters to be addressed through capital markets and 

the importance to address the research gaps, an accurate forecast based on recent data of 

the impact of natural disasters on capital market volatility is essential. Accordingly, 

mixed literature and mounting importance of studying future risks in order to provide 

insurance against catastrophic loss at a reasonable price allows insurance companies to 

hedge against catastrophic risks and manage the impacts of projected climate change on 

future catastrophic risk in the United States.  

1.3 Purpose of the Study 

The purpose of this thesis is to assess if natural disasters positively or negatively 

impact the volatility of capital markets in the United States of America (USA) over a 10-

year period using some of the most popular forecasting models in estimating volatility. 
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The selected models are the GARCH (1,1), IGARCH (1,1), EGARCH (1,1) and GJR-

GARCH (1,1). Moreover, we will apply a dummy variable in order to check if natural 

disasters impact volatility. Lastly, we will implement the Value at Risk (VaR) and 

Extreme Value Theory (EVT) method to generate the worst loss over a target horizon that 

will not be exceeded with a given level of confidence. Daily stock prices of 19 property 

insurance companies will be used over a 10-year period from 2010 to 2020. In addition, 

the daily prices of 3 U.S stock indices, namely, S&P 500, Dow Jones Industrial Average 

and Nasdaq Composite will be used for the same period. Each of the stock indices used 

are comprised of the biggest companies within the U.S. economy and cover various 

sectors. In this regard, this thesis will be a pioneer in examining the performance of 

capital markets in a context of unusually high uncertainty and build upon existing mixed-

viewed literature with regards to capital market behavior in such conditions.  

To address the research gaps highlighted previously, the general research question can be 

expressed as follows: 

i. Do catastrophic losses arising from natural disasters impact the stock price 

volatility of U.S.A property-liability insurance companies and indices?  

The paper is organized as follows. Chapter 2 examines and discusses the available 

literature with regards to empirical evidence about the impact of natural disasters on 

insurer’s stock prices and empirical evidence about the impact of natural disasters on 

volatility. Chapter 3 proceeds by describing the GARCH-type models that will be used to 

model volatility. Then, estimation of value at risk (VaR) using the volatility updated 
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historical simulation method and subsequent back-testing methodology are highlighted. 

Lastly, an in-depth description and analysis of the data is presented. Chapter 4 highlights 

the findings of the research whereby we estimate the parameters of the chosen volatility 

models and forecast the volatility for each stock and index for the in-sample period and 

out of sample period. In addition, Value at Risk (VaR) is calculated and the model’s 

accuracy is subsequently assessed and the Extreme Value Theory (EVT) is presented and 

estimated. Accordingly, the empirical results are then presented and evaluated. Chapter 5 

concludes the thesis, presents the limitations, and provides future recommendations.
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Chapter 2: Literature Review 

Volatility in capital markets has been a constant and continuous concern for both 

academics and policymakers. In an era whereby natural disasters continuously cause 

severe damage to a disruption to financial activity, global economies and international 

trade, insurance companies have become acutely sensitive to volatility and downside 

risks. This aversion has only intensified following the gut-wrenching market swings and 

regulatory changes of recent years (Hargis & Marx, 2015). Thus, natural disasters have 

clearly established the potential to adversely affect financial activity. The above concerns 

have given rise to developing literature, which seeks to examine the impact of natural 

events on capital markets. However, until date, empirical evidence on the effect of natural 

disasters on insurer stock prices and volatility has been mixed. This chapter shall examine 

and segregate available literature into two subsections (1) Empirical evidence about the 

impact of Natural Disasters on insurer’s stock prices (2) Empirical evidence about the 

impact of Natural Disasters on volatility. 

2.1. Empirical evidence about the impact of Natural Disasters on insurer’s stock prices 

Although a multitude of studies examine the impact of natural disasters from an 

economic perspective, only a handful have examined the financial aspect (Panwar & Sen, 

2018). Contrary to the economic analysis of natural disasters, financial analysis is 

exclusively concerned with the financial impact on entities directly impacted, whereby 

market prices are utilized to collectively value all costs and benefits. Thus, it is within 

this confined context that most of the existing financial research related to natural 
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disasters is placed and has solely focused on the property-liability insurance industry. 

Nevertheless, there is still no consistent conclusion on whether or not the stock prices of 

insurance companies drop or rise after severe natural disasters. 

To begin with, due to the claim payments made to policyholders for damages, 

insurers incur large losses. While some of these losses are offset by reinsurance, usually, 

it is expected that these losses cause stock prices to decline amid the disaster. Lamb 

(1995) conducted an exposure-based analysis of property-liability insurer stock values 

around the time of Hurricane Andrew. The study classified property-liability insurers 

with regards to their loss exposure. Accordingly, the outcome indicated that insurers with 

policies written in the affected areas witnessed a negative stock price reaction and 

unexposed firms sustained no price response. Thus, the study proves that the market 

predicted information efficiently and discriminated amongst insurers based on their level 

of exposure (magnitude and existence). A year later, Angbazo & Narayanan (1996) 

conducted a similar study using the daily returns of 48 companies while utilizing two 

methodologies: generalized least squares and modified event study methodology. 

Accordingly, their study yielded abnormally significant negative returns on day 0 (day 

Hurricane Andrew occurred), a greater negative return on day +1 as investors began to 

assess the damage and lastly negative return on day -3 (days prior to occurrence date) 

which may be due, according to the authors, to the fact that the market anticipated the 

hurricane. In summary the authors found that natural disasters negatively influence 

insurance stocks and the effect is only slightly offset by the consequent premium 

increases. Similarly, Cagle (1996) re-examined the impact of natural disasters on 
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insurers’ stock prices: the case of Hurricane Hugo. The author hypothesized that 

following a natural disaster, there may be demand or supply changes that increase 

premiums.  The net effect of the premium increase and damage claims could be examined 

through insurers' stock price performance following a natural disaster. Regardless of 

which effect dominates, the stock prices of insurers exposed to damage claims from the 

natural disaster should be adversely affected relative to unexposed insurers. Accordingly, 

to quantify this, stock price reactions to Hurricane Hugo are projected through market 

model prediction errors for equally weighted portfolios of property- liability and multi-

line insurers. The portfolio was constructed of high and low exposure insurers; high 

exposure insurers had direct premium written of at least USD 100,000 or greater. High 

exposure portfolio included 16 insurers. Whereas, low exposure insurers had direct 

premium written less than USD 100,000. Low exposure portfolio included 15 insurers. 

Moreover, regression analysis was utilized to highlight the connection between insurers’ 

exposure to claims and stock price reaction to the hurricane. A major concern that is 

highlighted in this study is the cross-sectional dependence. This is essential as the event 

affects various insurers within the same line of business and at the same time. Having 

said the above, empirical results for Hurricane Hugo indicated that insurers with high 

exposure to claims witnessed a substantial negative stock price reaction, while the stock 

prices of those with low exposure were unaffected. The researcher concluded that 

following South Carolina’s Hurricane Hugo [insured loss USD4.2 billion], insurers with 

high exposure witness substantial negative price however, insurers with low exposure 

remained unaffected.  



11 
 

While the above literature argued the negative impact of natural disasters on 

insurer stock prices, it is stated that insurers will benefit from catastrophic events, as there 

will be an increase in required coverage and subsequently additional premium earnings. 

A research conducted by Slania (2018) highlighted that, immediately after a natural 

disaster, property and casualty insurers’ stock prices take a hit. Accordingly, as investors 

assess damages within the first two to four weeks, stock prices lag and Earnings per 

Share (EPS) go on a downward trend. However, the expectation of premium increase 

tends to drive stock prices back up. Thus, within a few months following the natural 

disaster, stock prices reach levels high than they were prior to the natural disaster. Shelor 

et al. (1992) studied the impact of the 1989 Loma Prieta (California) earthquake on 

property-liability insurer stock values. The researchers focused on two samples: i) forty-

seven property-liability insurance companies and ii) thirty-two multiline (life, health, 

property, liability...) insurance companies. Accordingly, the daily return data was used to 

establish the financial impact of the earthquake of the firms’ value. Moving a step further, 

the authors also examined the connection between stock price reaction and California and 

total earthquake net premium written using a multiple regression cross sectional analysis. 

Lastly, the authors concluded that the Loma Prieta earthquake in California caused a 

significant positive stock value response for both multi-line and property-liability 

insurers. Noting that investors' expectations of increased demand for coverage had offset 

the losses caused by the earthquake. Likewise, Aiuppa et al. (1993) established that, 

following Loma Prieta earthquake in California [insured loss USD 2.5 billion] insurer’s 

stock values increased. The methodology used by the authors was based on cumulative 
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abnormal returns (CARs) examined under a two-index model. To determine whether the 

earthquake had a positive/negative impact on insurance companies with/without 

earthquake coverage, the sample of insurance companies was divided into two groups 

(based on the availability of earthquake coverage or lack thereof). The results revealed 

that while none of the cumulative abnormal returns for non-earthquake insurers is 

significant, cumulative abnormal returns for earthquake insurers are positive and 

significant.  

It is now clear that within the property insurance industry, two opposing views 

exist. With the essentially narrow focus of financial analysis into natural disasters and 

numerous limitations faced by existing research, Worthington & Valaddakani (2004) 

examined the impact of natural disasters on the Australian equity market. The data set 

used was comprised of the daily price and returns over the period extending from the 31st 

of December 1982 to the 1st of January 2002 for the All-Ordinaries Index (AOI), an 

index of shares in Australia made up of 500 of the largest companies listed on the 

Australian Securities Exchange, and a record of forty-two severe floods, storms, 

earthquakes, wildfires and cyclones during this period with an insured exceeding AUD 5 

mil. and/or total loss exceeding AUD100 mil. Given that the time series data on price and 

returns are available in consistently spaced intervals and the fact that the timings of the 

natural disasters is known with certainty, intervention analysis was applied to measure 

both the duration and impact of natural disasters on the Australian capital market. 

Intervention analysis is based on the Box-Jenkins methodology whereby an 

autoregressive moving average (ARMA) model is supplemented by dummy variables to 
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evaluate the impact of abnormal events. Since first proposed by Box & Tiao (1975), this 

technique has been employed in a variety of financial contexts. To further emphasize the 

importance, Ho & Wan (2002) utilized intervention analysis to examine structural breaks 

after the 1997 Asian financial crisis and St. Pierre (1998) and Bhar (2001) used 

intervention analysis to test the volatility impacts of introducing option contracts and the 

volatility and return dynamics of the Australian spot and futures markets respectively. 

Likewise, intervention analysis has also been utilized in research related to natural 

disasters with Fox (1995, 1996) examination of the impact of Hurricane Hugo on 

business environments. Consequently, Worthington &Valaddakani (2004) conclude that 

cyclones, bushfires and earthquakes have a significant impact on market returns, unlike 

severe floods and storms. The net effects can be positive and/or negative with most 

effects being felt on the day of the event and with some adjustment in the days that 

follow. The obvious argument is that the information represented by these events and 

disasters is relatively incomplete at the time of the event and, depending on the type of 

natural disaster, may take some days before a fuller information set is obtained. 

Lastly, contrary to what has been stated previously, multiple studies conclude that 

major natural catastrophes have had minimal/insignificant impact on the markets. The 

costliest natural catastrophe recorded to date is the 2005 landfall of Hurricane Katrina in 

Louisiana, with an estimated destructive cost of around USD 150 billion, of which $62 

billion was covered by the insurance industry; this was less than a single percentage point 

of movement on the New York Stock Exchange. The markets were generally unmoved 

by the Hurricane Katrina loss; the S&P500 index saw an eight-day 3% rally in the days 
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following the hurricane. The second most expensive natural catastrophe in history, at 

around USD 122 billion reconstruction cost, was the 2011 Tohoku earthquake, tsunami, 

and subsequent nuclear power plant meltdown in Japan. The events caused initial market 

turbulence; the Tokyo Nikkei index declined 1.7% on the same day though it rallied later 

on. While international markets across the world dipped slightly with European stocks 

down 1%, US markets trended upwards and continued doing so after the earthquake. 

Other major natural catastrophes have tended to have similarly minimal impacts on the 

markets (Mahalingam, et al., 2018). Major natural disasters have had similarly minimal 

impacts on capital markets. The most destructive tsunami historically that occurred in 

2004 around the Indian Ocean had no clear impact on stock markets; 20 days later, the 

S&P decreased by 3.8%. 

2.2. Empirical evidence about the impact of Natural Disaster on Volatility 

Volatility is undeniably an important and fundamental concept in the field of 

finance. The availability of extensive studies and research indicate the significance of 

measuring volatility in multiple fields, such as risk management and finance among 

others. An incorrect estimation of future volatility may cause substantial impact on 

financial decisions. An overstated volatility may cause a loss of opportunity, whereas, an 

underestimated volatility may lead to greater risk exposure (Naimy & Hayek, 2018). For 

the past decade, forecast of volatility has been the subject of a wide scope of studies, 

many of which aim to evaluate the ability between different forecasting models and 
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assess their predictive abilities across different financial assets however, studies assessing 

the impact of natural disasters on stock price volatility remains limited.  

Worthington (2008) was among the pioneers to utilize ARCH modelling to study 

the impact of natural disasters; the study modeled financial market effects of all recent 

historical record of natural disasters in Australia.  The author employed two data sets in 

his analysis; the first set is the daily closing price for the Australian Stock Exchange All 

Ordinaries index over a 23-year period ranging from 01/01/1980 till 30/06/2003. The 

second data set was sourced from Emergency Management Australia, a database 

containing records of Australian natural disasters compiled using estimates from 

published disaster articles and reports and insurance industry bodies. Given that the 

emphasis in this study is focused solely on the market effects irrespective of magnitude, 

the data used to categorize each natural disaster is limited to its duration, timing and 

broad geographic location. In order to evaluate the volatility, numerous GARCH-M (p,q) 

models were initially fitted to the data and compared based on the Schwarz Criterion 

Akaike and Information Criteria whereby a GARCH(1,1) model was considered the most 

appropriate for modelling the market returns. Methodology incorporating GARCH(p,q) 

can quantify both short and long-term memory in returns and permits all lags to exert an 

impact thus constituting a longer-term memory model. This is an essential characteristic 

of asset returns where there is a tendency for volatility clustering is observed. An 

implication caused by volatility clustering is that volatility shocks today will influence 

the expectation of future volatility and GARCH(p,q) quantifies this degree of 

persistence/continuity in volatility. Nevertheless, this particular specification has largely 
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shown to be a parsimonious representation of conditional variance that adequately fits 

most financial time series. The author concludes that intraday return volatility in the 

Australian market is most appropriately described by a GARCH-M (1,1) model and that 

the inclusion of natural disasters in the mean equation does not account for any of the 

variation observed in daily market returns. Hence, natural disasters have no significant 

impact on returns.  

Five years later, Thomann (2013) investigated the impact of natural disasters and 

9/11 attacks on the volatility of insurance stocks and the correlation of insurance stocks 

with the market. The study was constructed based on two hypothesis; volatility 

hypothesis whereby new information pertaining to the occurrence of a natural disaster 

causes a surge in insurers' stock price volatility and that subsequently leads to significant 

volatility peaks and correlation hypothesis whereby news about the occurrence of a 

catastrophe increases the volatility of insurance stocks. We expect these catastrophe 

related share price changes, which should not affect the overall stock market.  The dataset 

used included the daily return data of property-casualty insurance companies from 

01/1988 till 12/2006 along with the data for the ten largest insured natural disasters 

within the same timeframe. The author fit two multivariate Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) models, a Conditional Correlation (CC) 

GARCH model and a Dynamic Conditional Correlation (DCC) GARCH model, to the 

data. The research is supplemented by calculating the effect of natural disasters on the 

Value at Risk (VaR) of a portfolio consisting of insurance stocks. The outcome obtained 

supports the author’s hypotheses. Natural disasters resulted in increases in insurer stock 
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volatility. Moreover, it may take up to a few days following the natural disaster for the 

catastrophe-induced volatility peak is reached. It was also concluded that hurricane 

season led to a decrease in the correlation between insurer stocks and the overall stock 

market.  

With increasing damages to two of the world’s largest economies, U.S.A and 

Japan, due to natural disasters, Wang and Kutan (2013) examined the impact of natural 

disasters on U.S and Japan stock market volatility. The authors’ data included the daily 

prices of Nikkei 225 Stock Average, S&P 500 Composite Price Index, 10-year U.S bond 

yield, 10-year Japan bond yield and US Dollar-Japanese Yen exchange rate over a 22-

year period. Since it is likely that natural disasters may happen on holidays /weekends, 

during which stock markets are closed, disasters were accorded with the most recent 

trading day after the disaster. Accordingly, four individual natural disaster dummy 

variables were employed to represent each event separately in estimations based on the 

date of occurrence. The authors concluded that the conditional volatility of returns of U.S 

and Japanese insurance sector are affected by natural disasters whereas, only the Japanese 

composite market is insusceptible to natural disasters. Wang and Kutan (2013)’s paper is 

one of the few studies to address whether or not natural disasters increase the volatility of 

stock returns. Employing GARCH dummy variable methodology, they provide evidence 

that disasters increase volatility on the U.S. market but have no impact on the Japanese 

market. However, they offer no explanation for the opposing conclusions.  
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Most recently, Michael Bourdeau-Briena and Lawrence Kryzanowskib (2017) re-

examined the effect on volatility by once again focusing on the stocks of local firms 

instead of the whole market.  While Wang and Kutan (2013) did find evidence consistent 

with an increase of conditional volatility in the first few days following a natural disaster 

in the U.S, they notice no such increase in Japan, but the authors provide no explanation 

for the conflicting results. Accordingly, the authors revisit the issue of disaster-induced 

volatility but employ a different methodology. Previous research examining the GARCH 

dummy variable model through Monte Carlo simulation validated that the distribution 

properties of the maximum likelihood estimator for the variance dummy variable 

coefficient in GARCH models may create misrepresentative inferences in event studies 

with short-event timeframes. In this regard, Lu and Chen (2011) recommended including 

a minimum of 100 observations in the event timeframe when using the GARCH dummy 

variable methodology to ensure reliable statistical inference. Given that the scope of the 

study was over a short period of time, the authors opted for the alternative approach 

suggested by Bialkowski et al. (2008) who fundamentally compare the conditional 

volatility estimated using a GARCH model to the variation in the residuals observed 

during the event period. Their test statistic represents the multiplicative effect of an event 

on volatility. Finally, the authors set aside the ARMA structure for the conditional mean 

equation and opted for a parsimonious GARCH(1,1) model with normally distributed 

standardized residuals for the conditional variance equation in order to reduce the number 

of parameters to estimate and obtain more accurate cumulative abnormal volatility 

(CAV) forecasts. In conclusion, Michael Bourdeau-Briena and Lawrence Kryzanowskib 
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establish that following floods, hurricanes and extreme weather conditions, conditional 

volatility increases. Yet, no change in volatility is detected for other major storm-like 

events. It is still unclear why some firms experience negative consequences from natural 

events while others face positive impact.  

In light of the foregoing and with the ever-growing impact of natural disasters and 

their impact on capital markets, there is a crucial need to study the impact of natural 

disasters on property-liability insurer stock price volatility. However, despite growing 

importance and interest, the most relevant study was conducted decades ago, most recent 

literature focus on various types of catastrophes such as terrorism and artificial disasters 

and lastly, there is no consolidated view as to the impact of natural disasters on volatility. 

Therefore, it is now apparent that a study analyzing the impact of natural disasters on 

property-liability insurer stock price volatility is inevitable with questions being raised 

concerning the strength of these opposing views. Chapter 3 continues by first presenting 

and defining the basic structure and assumptions of each volatility model. It then unravels 

the implemented procedures and methodology and subsequently analyzes the employed 

data while underlining the required specificities to model the impact on capital markets. 
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Chapter 3: Methodology and Procedure 

3.1 Introduction 

The literature review in the aforementioned section reveals a lack of consolidated 

view and current literature studying the impact of natural disasters on property-liability 

insurer stock price volatility and overall market volatility. In this chapter, first, we 

include a general description and justification of the GARCH-type models that will be 

used to model volatility of property-liability insurers and overall U.S market stock prices 

following natural disasters. Next, the method for parameter estimation is identified. 

Third, in order to evaluate the forecasting ability of the models, the estimated volatility 

should be compared to the realized volatility. Subsequently, the selection criteria that will 

be utilized to identify the most appropriate model is described. Once the ideal GARCH-

type model is selected, it is used to forecast the one-day ahead conditional variance for all 

stocks chosen. Accordingly, after determining the optimal model and in order to capture 

whether natural disasters have changed the volatility structure of the selected data series, 

a dummy variable will be added to the selected GARCH-type model. Then, estimation of 

value at risk (VaR) using the volatility updated historical simulation method and 

subsequent back-testing methodology are highlighted. Lastly, an in-depth description and 

analysis of the data is presented in order to identify whether or not the examined models 

can be applied.  
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3.2. Daily Returns 

The notion St denotes the daily stock price observations of the respective 

insurance company and U.S indices data series at time t whereby t = 1,2,…,n. Hull (2012) 

defined volatility as “the standard deviation of the proportional change in the variable 

during a day” (Hull, Risk Management and Financial Institutions, 2012). Hence, we 

converted daily observations extracted into daily returns using the below formula: 

𝑢        (1) 

Whereby 𝑢  is the return at day t, 𝑆 𝑆  are respectively the stock prices at the end of 

day t and at the end of the previous day t – 1. Thus, the GARCH models can be specified 

as:  

𝑋  𝑢  𝜎𝑍      (2) 

Where, 𝜇𝑡 and 𝜎𝑡 denote the conditional mean and volatility process, respectively.  

Fundamentally, we utilize GARCH (1,1), IGARCH(1,1), EGARCH and GJR-

GARCH(1,1) to model the impact of natural disasters on volatility. The following section 

will provide a description of the applied models. 
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3.3 Models  

3.3.1 Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

Robert F. Engle (1982) introduced the “Autoregressive Conditional 

Heteroskedasticity (ARCH)” model. The model was a pioneer in modeling conditional 

heteroskedasticity in volatility through allowing the conditional variance to vary over 

time as a function of historical errors leaving the unconditional variance unchanged by 

allocating equal weights to the squared residuals solely and overlooking past variances. 

The model was modest and instinctive however, it had limitations and usually required 

multiple parameters to adequately capture its volatility process. Bollerslev (1986) built 

upon the ARCH process by addressing the weaknesses identified in Engle’s model, and 

proposed a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

framework allowing a more adaptable lag structure and longer memory (Naimy, Haddad, 

Fernández-Avilés, & El Khoury, 2021). Given that GARCH incorporates an extra 

parameter, which is the long term mean variance, it permits tracking the persistence of 

the variance around the mean. Hence, the conditional variance pertaining to the standard 

GARCH (1, 1) process, introduced by Bollerslev, is represented as: 

𝜎  𝜔  𝛼𝑢  𝛽𝜎     (3) 

𝜔 = 𝛾𝑉        (4) 

Based on the above, 𝜎 represents the variance estimate at day t, 𝛼 and 𝛽 represent the 

weights given to the associated return (𝑢 ) and variance on the previous day (𝜎 , 
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respectively.𝑉 , the long run variance and 𝛾 is the weight assigned to 𝑉 . When applying 

equation (4) above, the parameters 𝜔, 𝛼 and 𝛽 can be projected using the Maximum 

Likelihood Method (MLE) whereby 𝛾 will be calculated using: 

    γ 1  𝛼  𝛽     (5) 

Accordingly, 𝑉  will be set as: 

    𝑉        (6) 

In order to guarantee a stable GARCH process and uphold a positive weight allocated 

to 𝑉 , it is essential that 𝛼  𝛽 1. It is worth mentioning that GARCH models integrate 

the volatility clustering phenomenon which is a distinguishing feature of market 

behavior. 

3.3.2 Integrated Generalized Autoregressive Conditional Heteroskedasticity (IGARCH) 

Engle and Bollerslev (1986) subsequently revealed a specific class of GARCH 

models termed Integrated GARCH (IGARCH) whereby unconditional variance is non-

existent. This happens when the weights 𝛼 and 𝛽 sum up to 1. Given that 𝛽 is now 

defined as 1- 𝛼 with restrictions 𝜔 ≥ 0, 𝛼 ≥ 0, 1 - 𝛼 ≥ 0 accordingly, IGARCH (1, 1) is 

represented as:  

         𝜎  𝜔 𝛼𝑢 1 𝛼 𝜎    (7)  
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A fundamental aspect of the IGARCH model is that the model indicates infinite 

persistence of the conditional variance to a shock in squared returns. Consequently, in the 

majority of empirical studies, the volatility process is found to be mean reverting. Hence, 

the IGARCH model seems to be too restrictive as it implies infinite persistence of a 

volatility shock (Tayefi & Ramanathan, 2016).  

3.3.3 Exponential Generalized Autoregressive Conditional Heteroskedasticity 

(EGARCH) 

Nelson (1991) presented the Exponential Generalized Autoregressive Conditional 

Heteroskedasticity (EGARCH) model which is an extended version of GARCH that 

incorporates the asymmetric effect on volatility caused by positive and negative news. 

Moreover, the author elaborated that negative shocks can have a greater impact on 

volatility than positive shocks with the same magnitude. Accordingly, EGARCH (1,1) 

can be defined as per the below: 

ln σ  ω  βln(σ  γ  α
| |

   (8) 

Whereby ω is the long-term average value,  β signifies the persistence parameter, α 

represents the size effect and lastly, γ captures the sign (leverage) effect. An asymmetric 

effect is demonstrated when 𝛾 ≠ 0. To better demonstrate this, when γ negative, positive 

news will impact volatility less than negative news. Additionally, the above equation 

presumes that errors are normally distributed with a mean equivalent to .  
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3.3.4 Glosten-Jagannathan-Runkle Generalized Autoregressive Conditional 

Heteroskedasticity (GJR-GARCH) 

Glosten et al. (1993) introduced GJR-GARCH which models negative and 

positive shocks on the conditional variance asymmetrically through the usage of an 

indicator function, I. The model is akin to the previously discussed EGARCH (1,1) as 

both models incorporate the asymmetric effect of negative and positive shocks. 

Nonetheless, GJR-GARCH is expressed as: 

𝜎  ω 𝛼  𝛾𝐼 𝑢 𝛽𝜎   (9) 

Whereby, if 𝑢 < 0 then 𝐼  = 1 and 0 otherwise. It is worth mentioning that 

negative shocks impact volatility by 𝛼 + 𝛾  while positive shocks impact volatility by 𝑎 . 

Contrary to EGARCH, the leverage effect is present whenever 𝛾 > 0 thus, bad news have 

a more prevalent effect on volatility than good news and vice versa. Parameter 

restrictions are reminiscent of GARCH such that 𝜔, 𝛼 and 𝛽 0 and the persistence in 

this model relies on 𝛼, 𝛽 and 𝛾 with k reflecting the average value of standardized errors.  

3.4. Parameter Estimation using Maximum Likelihood Methodology  

The maximum likelihood estimation (MLE) is a technique used to estimate the 

parameters of a statistical model by means of fitting the model to the observed data. 

Generally speaking, the likelihood of observed data is the probability of obtaining that 

specific set of data given the chosen probability model. The MLE approach will be 
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applied in this thesis to estimate the parameters of the GARCH (1,1), IGARCH (1,1), 

EGARCH (1,1) and GJR-GARCH (1,1) models used in this thesis.  

 The likelihood function is expressed as per the below: 

𝐿∗  ∏ 𝑓 𝑦 , 𝑦 , … , 𝑦 , 𝜃 , 𝜃 , … , 𝜃        (10) 

However, in finance the likelihood function is frequently substituted with the log 

likelihood function (LLF) which is the preferred method as it is efficient, reliable and 

consistent. LLF equation expressed below:  

ln𝐿∗  ∏ ln𝑓 𝑦 , 𝑦 , … , 𝑦 , 𝜃 , 𝜃 , … , 𝜃      (11) 

Whereby 𝑓 is the conditional probability density function, 𝑦  and 𝜃  are the value of the 

time series and model parameters, respectively.  

3.5. Realized Volatility  

To begin with, it is important to compare the estimated volatility to the realized 

volatility in order to evaluate the accuracy of the model used. Accordingly, Merton 

(1980) recommended a model to compute the realized volatility based on the asset’s 

returns. The model was simple and proposed that when the sampled variable contained 

several observations, the sum squared returns is a precise estimation of volatility (Naimy, 

Haddad, Fernández-Avilés, & El Khoury, 2021). Hence, the equation that will be 

implemented to obtain the annual realized volatility “𝜎 ” is defined as follows: 
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                                              𝜎   ∑ 𝑢                                                                     (12) 

Based on the above, t embodies the day of observation and  𝑢  is the return on day i 

whereby t-22 < i < t-1. Consequently, this specifies that the monthly realized volatility 

“𝜎 ” is obtained as per the most recent 22 daily returns and in order to annualize the 

outcome, monthly results are multiplied by 252/22. 

3.6. Distribution and Model Selection 

Selecting the most appropriate model to describe the observed data is a crucial 

part of research and thus, various statistical approaches have been recommended for 

dealing with this issue. Accordingly, for the purpose of this thesis the goodness of fit test 

will be based on two of the most widely used model selection criteria: Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC).   

The Akaike Information, Akaike (1974) is expressed as:  

𝐴𝐼𝐶  2ln 𝐿 2𝑘        (13)  

The Bayesian Information Criterion, Schwarz (1978), is expressed as: 

𝐵𝐼𝐶  2ln 𝐿 𝑘𝑙𝑛 𝑛                     (14) 

Whereby 𝐿 denotes the likelihood of the model given the data, k is the number of 

unknown parameters and n is the number of observations. Additionally, the forecasting 
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ability of models is assessed using three test statistics; the Mean Absolute Error (MAE), 

the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE). 

To begin with, the Mean Absolute Error (MAE) calculates the average scale of errors in a 

set of data without taking into consideration the direction. MAE is simply the average of 

the absolute difference between predicted data and actual observation whereby all 

differences have equal weights.    

𝑀𝐴𝐸  ∑ |𝑒 |        (15) 

Whereby, 𝑒  is expressed as: 

𝑒  𝑦  𝑦          (16) 

With 𝑦  representing the predicted value and 𝑦  the actual observation.  

Moving one step forward, the Root Mean Square Error (RMSE) is the squared root of 

average squared errors, expressed as:  

  𝑅𝑀𝑆𝐸  ∑ 𝑒         (17) 

Given that the errors are squared before they ae averaged, the model allocates 

comparatively high weights to large errors. Thus, the RMSE is more useful when data 

contains large errors which are detrimental. 

Lastly, the Mean Absolute Percentage Error (MAPE), expressed below, scales residuals 

against actual values:  
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𝑀𝐴𝑃𝐸   ∑
| |

| |
     (18) 

The lower the measure of these test statistics, the better the performance. A lower 

measure indicates a better performance. Accordingly, ranks obtained through the various 

evaluation methods will be presented. Thus, the optimal GARCH model will be 

employed to formulate VaR projections. 

3.7 Employing Dummy Variables to the Optimal Model 

After determining the optimal model, we move to answer whether natural 

disasters impact the volatility structure of the selected insurance companies and indices. 

The idea is to add a dummy variable (D) to the chosen GARCH-type model for the next 

trading date after the occurrence of the disaster. The dummy is equal to 0 for the pre-

disaster period and 1 for post-disaster period. Subsequently, we estimate the GARCH-

type model while adding the dummy variable to the variance equation as 𝜙𝐷 . A positive 

sign of 𝜙 parameter implies that the volatility has increased post-disaster period, whereas 

a negative sign of 𝜙 sign suggests that the volatility has decreased post-disaster period. It 

is important to check whether the 𝜙 parameter is statistically significant, otherwise the 

dummy variable is incapable of delivering robust results. 

Considering the importance of market risk, and in order to complement the above-

mentioned methodology and present well-rounded risk estimations, we will proceed with 

calculating the Value at Risk (VaR). 
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3.8. Value at Risk (VaR) 

The term ‘risk management’ has exploded in popularity with millennials. Out of 

all the methods that fall under the risk management umbrella, Value at Risk (VaR) may 

be regarded as one of the key measures established to quantify financial market risk. In 

this regard, Jorion (2001) defined the term as “the worst expected loss over a given 

horizon under normal market conditions at a given level of confidence. For instance, a 

bank might say that the daily VaR of its trading portfolio is $1 million at the 99 percent 

confidence level. In other words, under normal market conditions, only one percent of the 

time, the daily loss will exceed $1 million2.” (p.22) Accordingly, VaR is a standard risk 

measure that is regularly used in risk management to measure and quantify the level of 

downside risk as a sole value. 

The VaR estimate for GARCH-type models depends on the one-day-ahead 

forecast conditional variance 𝜎  and mean 𝜇  of the volatility model given the 

information available at time t. Accordingly, the one-day-ahead VaR forecast is 

calculated as: 

𝑉𝑎𝑅 𝑎 𝜇  𝐹 𝑎 𝜎        (19) 

Where 𝐹 𝑎  is the corresponding 𝑎 - quantile (1% or 5%) of the distribution. 

Consequently, once the optimal volatility model has been calculated for the dataset, their 

corresponding VaR will be forecasted.  

                                                 
2 Jorion, P. (2001) Value at Risk: The New Benchmark for Managing Financial Risk. 2nd Edition, McGraw‐Hill, United States of America 
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3.8.1 Historical Simulation Methodology 

Over the last decade, various approaches have been suggested to model VaR. The 

simplest and most straightforward model is the basic historical simulation. The model 

involves using “n” day-to-day variations in stock prices observed in the past as a roadmap 

to estimate the probability distribution of the change in the value of these assets between 

today and tomorrow thereby providing “n-1” alternate scenarios of what could be the 

resulting value of those assets on the succeeding day using the following expression: 

𝑉𝑎𝑙𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑖𝑡ℎ 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  𝑣   (20) 

Whereby 𝑣𝑛 is the fixed value reflecting the asset’s price on the most recent 

trading day of the selected time series, 𝑣  reflects stock values of day i, and 𝑣𝑖−1 represents 

the stock value n day i-1 and. While the above historical simulation methodology is 

simple to implement, it has its limitations. The main limitation is the assumption that the 

market returns are independent, identically-distributed (IID) something which is often far 

from reality. In reality, market returns often exhibit autocorrelation whereby the market 

return of today is partially dependent on yesterday’s return  (Ding, Granger, & Engle, 

1993). 

To limit the impact of autocorrelation, Hull and White (1998) proposed a 

modification to the above-mentioned model to capture market returns, which reflect 

volatility changes during the period the data covers. Furthermore, the authors suggested 

an additional adjustment by integrating “volatility updating” to the original methodology. 
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Accordingly, when this approach is implemented, the equation for the value of each stock 

under the ith scenario becomes: 

𝑉𝑎𝑙𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝑖𝑡ℎ 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜  𝑣 /
 (21)  

As reflected above, the chief modification to the basing model is identified 

through the volatility parameters “𝜎 ” and “𝜎 ” signifying the most recent volatility 

estimate and volatility estimated at day i. Accordingly, the proposed modification by Hull 

and White (1998) captures volatility changes in a spontaneous technique thereby 

producing VaR estimations that incorporate new information. 

Based on the above, we will compute the VaR for the index Dow Jones U.S Property and 

Casualty Insurance Index (DJUSIP) for the period spanning from January 1st 2018 till 

December 31st 2020 at the 1%, 5% and 10% levels of significance. DJUSIP was chosen 

as it includes a wide spectrum of property-casualty insurance companies in one index, 

thus encompassing the majority of the data.  

3.9 Back-Testing Value at Risk (VaR) 

Value at Risk (VaR) models are considered valuable if their ability to predict 

future risks is accurate.  Therefore, VaR models should always be back-tested through 

proper methodology to ensure that the obtained VaR outcomes are reliable and 

consistent. Back-testing involves comparing projected VaR projections to actual 

profits/losses. Jorion (2001) denotes tests as ‘reality checks’. Hence, if a VaR estimate is 

accurate when it precisely conveys the level of coverage in line with its confidence level, 
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then for the (1-x)th  percentile VaR,  the failure rate across the whole sample will be 

equivalent to x.  

In order to assess the accuracy of the estimated VaR in projecting returns, the 

actual realized returns should be compared to the out-of-sample VaR forecasts for the 

same timeframe whereby this is quantified as a violation ratio (Naimy & Bou Zeidan, 

2019) . For instance, if violations occur on x % of the days, we can thereby presume that 

the methodology used to calculate VaR is sensible. Conversely, if the actual losses 

exceed the VaR estimation, across the same timeframe, then the VaR limit is believed to 

have been violated whereby an exception is recorded. Moreover, if the number of 

exceptions recorded are less than expectations, thereby this indicates an excessively 

conservative VaR estimate. Alternatively, if the number of exceptions recorded exceed 

expectations, thereby the estimated VaR thoroughly understates the asset’s real level of 

risk (Naimy, Haddad, Fernández-Avilés, & El Khoury, 2021). 

Having said the above, we should examine if the observed number of exceptions 

is sensible compared to the estimated forecasts in order to evaluate the accuracy of the 

model. Hence, a range of different testing methodologies have been recommended for 

back-testing, however, for the purpose of this thesis, we will perform Kupiec’s 

Unconditional Coverage Test suggested by Kupiec (1995) to conclude whether or not the 

VaR model used should be accepted. 
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3.9.1 Unconditional Coverage Test 

Kupiec’s test, also referred to as the proportion of failures (POF) test, is the most 

commonly acknowledged test based of failure rates proposed by Kupiec (1995). Kupiec’s 

test measures if the number of exceptions is consistent with the confidence level 

(Iorgulescu, 2012). Alternatively, Kupiec’s test will reject the VaR estimate if it 

understates/overstates the actual VaR. The null hypothesis for the POF-test is expressed 

as:  

𝐻 : 𝑝  �̂�     (22) 

Whereby:  

𝑝 - The failure rate suggested by the confidence level. 

�̂� - The observed failure rate. 

x - Number of exceptions/violations. 

𝑇- Number of trials. 

In line with Kupiec (1995), the likelihood-ratio (LR) takes the form of:  

𝐿𝑅  2 ln ~𝑋     (23) 

Based on the above, if the value of 𝐿𝑅  surpasses the critical value of the χ² 

distribution, the model will be deemed inaccurate and thus, the null hypothesis will be 

rejected. As previously highlighted, the number of violations, expressed as “x”, is 
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computed by recording the number of times the actual/real loss surpasses estimated VaR, 

alternatively, this the number of exceptions recorded once all days are accounted for.  

The following subsection shall present and analyze the data pertaining to stock prices of 

the insurance companies and indices chosen. 

3.10 Data and Descriptive Statistics 

3.10.1. Data on natural disasters 

The data pertaining to natural disasters was obtained from Centre for Research on 

the Epidemiology of Disasters (CRED)’s EM-DAT, the international disaster database. 

CRED is a World Health Organization Collaborating Centre and the database includes all 

declared disasters. The database highlights the beginning and end date of each natural 

disaster, disaster group, disaster subgroup, disaster type and subtype. Moreover, the 

disaster damages and insured damages are identified.  The full sample ranging from 

01/01/2010 till 31/12/2020 contains 251 events. The disaster types identified include: 

Drought, Earthquake, Extreme Temperature, Flood, Landslide, Storm, Volcanic Activity 

and Wildfires. However, there are 21 disasters with no financial information regarding the 

total damages therefore, these disasters shall be excluded from our dataset. After 

implementing the above criterion, 230 events remain. Moreover, a lot of these disasters 

might not be severe enough to impact the stock market. Therefore, we shall consider a 

disaster as “major” when damage exceeds USD 25 million, as identified by the insurance 

industry as the threshold whereby an event is classified as a catastrophe (Spotlight on: 

Catastrophes - insurance issues). After implementing this benchmark, 216 events meet our 
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major disaster threshold. Lastly, event papers that study the short-term effects of natural 

disasters experience implementation challenges as natural disasters are heterogeneous 

events with inconstant event durations and inexact start dates. Thus, in order to alleviate 

the impact of such limitation we use the “Incident Start Date” as extracted from EM-DAT 

as the event date. When the date falls on a market holiday or weekend, we use the next 

trading day as the event date. 

It is worth mentioning that damages caused by storms (tornado, winter storm, 

blizzard, lightning, thunderstorms) amount to 78% of the overall damage caused by natural 

disasters. Additionally, storms have the highest frequency of occurrence, with 151 storms 

witnessed across the chosen timeframe. Thus, we can deduce that storms are high 

frequency and high severity natural disasters.  The second largest share is damage caused 

by floods, comprising 7.86%. Fundamentally, the remaining disaster types make up merely 

a combined share of 14%. Accordingly, a summary of the data by damage caused (‘000, 

USD) is reflected in the below table and illustrated graphically in Figure 1: 

 

Disaster Type Sum of Total Damages ('000 

US$) 

Percentage (%) of 

Total Damages 

Frequency 

Disasters 

Volcanic 

activity 

500,000.00 0.067% 1 

Earthquake 900,000.00 0.120% 2 

Landslide 900,000.00 0.120% 1 

Extreme 

temperature 

4,100,000.00 0.546% 3 

Drought 42,200,000.00 5.616% 7 
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Wildfire 56,933,000.00 7.577% 23 

Flood 59,114,000.00 7.867% 28 

Storm 586,754,300.00 78.088% 151 

Total 751,401,300.00 100% 216 

Table 1: The relative USD (‘000), % and disaster frequency distribution of damages caused by natural disasters 
between 2010 and 2020.  Data gathered using Centre for Research on the Epidemiology of Disasters (CRED)’s EM-
DAT, the international disaster database

Figure 1: The relative USD (‘000), % and disaster frequency distribution of damages caused by natural disasters 
between 2010 and 2020.   

3.10.2. Data on stock prices 

In order to answer the research questions, two data sets related to stock prices are 

identified: U.S Property-Liability Insurers and major U.S Stock Indices. To begin with, 

using an equity stock screener, we curated a list of 62 small-to-mega cap property-

liability insurance companies in the U.S. Secondly, we collect daily historical stock price 

1 2 1 3 7
23 28

151

Volcanic
activity

Earthquake Landslide Extreme
temperature

Drought Wildfire Flood Storm

Frequency of Disasters

Volcanic activity Earthquake Landslide Extreme temperature Drought Wildfire Flood Storm
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data for the above-mentioned insurance companies from 01/01/2010 till 31/12/2020 using 

the Reuters platform. Accordingly, we only consider stocks with continuous 10-year data 

between January 2010 and December 2020, thus reducing the dataset to 19 insurance 

companies yielding a total of 2,769 daily observations per company (see table 2 for list of 

stocks included in data).  

Insurance Company Ticker 

Chubb Limited CB 

Progressive Corp PGR 

MS&AD Insurance Group Holdings MSADY.PK

Cincinnati Financial Corporation CINF.OQ 

W. R. Berkley Corp WRB 

American Financial Group, Inc. AFG 

RLI Corp RLI 

Selective Insurance Group Inc SIGI.O 

White Mountains Insurance Group Ltd WTM 

Horace Mann Educators Corporation

  

HMN 

Argo Group International Holdings Ltd. ARGO.K 

Safety Insurance Group, Inc. SAFT.O 

United Fire Group, Inc. UFCS.O 

Universal Insurance Holdings, Inc. UVE 

HCI Group Inc HCI 

Donegal Group Inc. DGICA.O 

Global Indemnity Group LLC GBLI.O 
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FedNat Holding Company FNHC.O 

Hallmark Financial Services, Inc. HALL.O 

  Table 2: The chosen list of insurance companies included in our dataset. 

Our second dataset includes the daily stock prices of 3 U.S stock indices, S&P 

500, Dow Jones Industrial Average and Nasdaq Composite for the same time range. The 

S&P 500, one of the most commonly followed equity indices, is a stock-market 

index that measures the stock price performance of 500 large companies listed on U.S. 

stock exchanges.  The Dow Jones Industrial Average is a stock market index that 

captures the stock performance of 30 large cap companies listed on U.S stock exchanges. 

While it is a commonly trailed stock index, it is not considered an adequate 

representation of the overall market as it only contains 30 companies and does not use 

weighted arithmetic mean. Lastly, the Nasdaq Composite is a stock market index that 

includes nearly all stocks listed on the NASDAQ stock market and its composition is 

significantly weighted to companies in the information technology (IT) sector. 

Accordingly, the three chosen stock indices are considered to be the 3 most followed 

stock market indices in the U.S. We collect daily historical stock price data for the above-

mentioned stock indices from 01/01/2010 till 31/12/2020 using Reuters platform yielding 

a total of 2,769 daily observations per index.   

The descriptive statistics of the daily stock returns for both insurance companies 

and indices are reflected in Table 3 and 4 below. All statistics were performed using the 

E-Views tool.  Due to space consideration, the outcome is reflected on the next page. 

When going over the outcome obtained, we note that the average return is approximately 
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0%. Additionally, insurance stocks reflect a higher standard deviation than the chosen 

stock indices due to their lower volatility nature. Moreover, the high kurtosis observed 

for all of the chosen data suggests that the series follows a heavy-tailed leptokurtic 

distribution paired with significantly high probability of outlier values and a peak larger 

than that of a normal distribution. Lastly, in order to validate the outcome, the Jarque-

Bera test, based on Jarque & Bera (1987), rejects the null hypothesis of a normal 

distribution for all series given that the calculated test statistics are higher than the critical 

values. 
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  Observations Mean Median Max. Min. Std. Dev. Variance Std. 

Error 

Skewness Kurtosis Jarque-Bera Probability Sum Sum Sq. 

Dev. 

CB 2,768 0.0007 0.0012 0.2129 -0.2629 0.0170 0.0003 0.0003 -1.0960 55.8817 323080.4000 0.000 1.8223 0.7983 

PGR 2,768 0.0004 0.0003 0.1123 -0.1155 0.0172 0.0003 0.0003 -0.1225 10.0710 5773.5180 0.000 1.2186 0.8199 

MSADY.PK 2,768 0.0005 0.0005 0.0887 -0.1677 0.0141 0.0002 0.0003 -0.5369 17.3115 23755.3600 0.000 1.4167 0.5511 

CINF.OQ 2,768 0.0006 0.0008 0.1683 -0.1331 0.0159 0.0003 0.0003 0.1444 20.6538 35953.9100 0.000 1.5585 0.7016 

WRB 2,768 0.0001 0.0000 0.1927 -0.0954 0.0180 0.0003 0.0003 0.6715 12.6192 10879.6800 0.000 0.3362 0.8961 

AFG 2,768 0.0005 0.0000 0.1617 -0.1689 0.0267 0.0007 0.0005 0.1326 8.7532 3825.5940 0.000 1.3517 1.9768 

RLI 2,768 0.0005 0.0000 0.3661 -0.2559 0.0239 0.0006 0.0005 0.8897 33.4009 106957.9000 0.000 1.3571 1.5827 

SIGI.O 2,768 0.0002 0.0000 0.4704 -0.5665 0.0319 0.0010 0.0006 -0.2927 71.5391 541829.8000 0.000 0.6782 2.8100 

WTM 2,768 0.0010 0.0008 0.2739 -0.2001 0.0251 0.0006 0.0005 0.7000 17.5442 24622.7700 0.000 2.7168 1.7364 

HMN 2,768 0.0006 0.0007 0.1361 -0.1443 0.0181 0.0003 0.0003 0.1972 10.5920 6665.6140 0.000 1.6358 0.9048 

ARGO.K 2,768 0.0002 0.0000 0.1322 -0.0936 0.0181 0.0003 0.0003 0.0119 6.0608 1080.5580 0.000 0.6187 0.9083 

SAFT.O 2,768 0.0007 0.0008 0.1214 -0.0948 0.0138 0.0002 0.0003 0.0841 10.0944 5808.0630 0.000 2.0071 0.5273 

UFCS.O 2,768 0.0007 0.0007 0.1573 -0.1367 0.0159 0.0003 0.0003 0.0904 18.2614 26866.0300 0.000 1.9177 0.6967 

UVE 2,768 0.0004 0.0005 0.1195 -0.0954 0.0145 0.0002 0.0003 0.1109 9.7171 5209.4390 0.000 1.0327 0.5780 

HCI 2,768 0.0006 0.0006 0.1448 -0.1971 0.0168 0.0003 0.0003 -0.2552 15.6687 18540.4800 0.000 1.7733 0.7763 

DGICA.O 2,768 0.0004 0.0002 0.2019 -0.1858 0.0232 0.0005 0.0004 0.3140 14.4520 15171.3600 0.000 1.0985 1.4861 

GBLI.O 2,768 0.0007 0.0000 0.1674 -0.3073 0.0266 0.0007 0.0005 -0.7621 16.3205 20732.3400 0.000 1.9462 1.9541 

FNHC.O 2,768 0.0006 0.0008 0.1196 -0.1543 0.0136 0.0002 0.0003 -0.1390 20.8563 36782.7900 0.000 1.7503 0.5145 

HALL.O 2,768 0.0005 0.0003 0.1667 -0.1156 0.0131 0.0002 0.0002 1.3324 28.2825 74540.4200 0.000 1.3295 0.4777 

SPX 2,768 0.0005 0.0007 0.0938 -0.1198 0.0110 0.0001 0.0002 -0.5781 18.1640 26674.5900 0.000 1.3676 0.3361 
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IXIC 2,768 0.0007 0.0011 0.0935 -0.1232 0.0123 0.0002 0.0002 -0.5655 12.8986 11448.2400 0.000 1.9294 0.4162 

DJI 2,768 0.0004 0.0007 0.1137 -0.1293 0.0110 0.0001 0.0002 -0.5828 23.4238 48265.8400 0.000 1.2301 0.3323 

Table 3: Summary Statistics of the daily returns of the chosen insurance companies’ and stock indices over the sample period Jan 4th 2010– December 31st 2020. 
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Going a step further analyzing historical returns, Figure 2 below confirms a 

distinctive feature of leptokurtosis that emerges due to patterns of volatility clustering 

(changes in volatility over time) in the market whereby there are periods of high (low) 

volatility followed by periods of high (low) volatility. Consequently, based on the plot 

of returns below, persistence and volatility clustering are visible, which implies that 

volatility can be forecasted. 
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Figure 2: Time series plot of the daily simple returns of the chosen stocks and indices over the sample period Jan 
4th, 2010– December 31st 2020. 

Successively, the Durbin-Watson statistics test, Durbin-Watson (1950, 1951), 

a test statistic utilized to identify the presence of autocorrelation in the residuals of a 

regression, confirmed that there is no serial correlation in the residuals of all series. 

Given that no autocorrelation is identified, no corrective measures are required. Thus, 

our series does not exhibit an AR, MA or ARMA process; our data series is more 

likely to show an ARCH effect. The outcome of the Durbin-Watson test are reflected 

in the below Table 4.  

Durbin-Watson Test Statistics 

Ticker Statistics

CB 2.25 

PGR 2.254 

MSADY.P
K 

2.134 

CINF.OQ 2.265 

WRB 2.263 

AFG 2.208 

RLI 2.289 

SIGI.O 2.304 

WTM 2.226 

HMN 2.335 

ARGO.K 2.051 

SAFT.O 2.325 

UFCS.O 2.38 

UVE 2.184 

HCI 2.168 

DGICA.O 2.37 
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GBLI.O 2.382 

FNHC.O 2.117 

HALL.O 2.084 

SPX 2.305 

IXIC 2.255 

DJI 2.201 

Table 4:Durbin-Watson Test Statistics confirming no serial correlation in the residuals of all series over the 
sample period Jan 4th 2010– December 31st 2020 

 
Lastly, the Augmented Dickey-Fuller (ADF) test statistic, suggested by 

Dickey & Fuller (1979), was computed. Table 5 reflects the results and corresponding 

P-Values for both data series. Based on the below outcome, we reject the null 

hypothesis of non-stationarity and affirm that returns are stationary, signifying that no 

remediation in the return series is required. 

Augmented Dickey-Fuller Test Statistics

Ticker Statistics P-Value 

CB -19.77411 0 

PGR -29.01706 0 

MSADY.PK -56.26255 0.0001 

CINF.OQ -16.18459 0 

WRB -19.47089 0 

AFG -26.55926 0 

RLI -20.01478 0 

SIGI.O -61.25953 0.0001 

WTM -36.73296 0 

HMN -62.34835 0 

ARGO.K -54.03127 0.0001 

SAFT.O -62.04331 0.0001 

UFCS.O -32.25076 0 

UVE -36.66628 0 

HCI -57.09415 0.0001 
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DGICA.O -63.33413 0.0001 

GBLI.O -31.16197 0 

FNHC.O -55.75972 0.0001 

HALL.O -20.91346 0 

 

 

 

 

 

 

Table 5: Augmented Dickey-Fuller Test Statistics confirming the stationarity of the chosen data series over the 
sample period Jan 4th 2010– December 31st 2020 

Lastly, prior to estimating volatility, using E-Views, we conducted the 

heteroskadicity test for ARCH effect of the squared residuals. Accordingly, the 

outcome yielded a Chi-Square less than 5% therefore, the null hypothesis is rejected 

certifying that there is an ARCH effect. We now have the complete validation to 

proceed with applying GARCH-type models.  

To conclude, Chapter 3 has meticulously and systematically described the 

models employed. Additionally, for Value at Risk (VaR), evaluation techniques were 

also described. Lastly, the chapter highlighted a thorough description and statistical 

analysis of the chosen data and ensured that the full justification to apply GARCH 

volatility models was covered. Chapter 4 continues by presenting the findings under 

each of the volatility models. 

 

 

 

 

Augmented Dickey-Fuller Test Statistics

Ticker Statistics P-Value 

SPX -20.11686 0 

IXIC -20.49317 0 

DJI -17.52443 0 
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Chapter 4: Findings 
 

Following the theoretical description of the adopted methods introduced in the 

previous chapter, Chapter 4 reports and presents the study’s detailed findings under 

each of the chosen volatility models, GARCH (1,1), IGARCH (1,1), EGARCH (1,1) 

and GJR-GARCH (1,1) for the in-sample period. After calculating the volatilities of 

all the stocks and indices within the in-sample data using the chosen models, we 

proceed to compute the realized volatility. Subsequently, the same calculations 

applied for the in-sample period are applied to the out-sample period, however, the in-

sample parameters obtained are used to forecast the conditional volatilities for the out-

sample period.  Subsequently, the optimal model is chosen based on the outcome of 

three error metrics selected for both the in-sample and out-sample periods. Next, after 

determining the optimal model and in order to capture whether natural disasters have 

changed the volatility structure of the selected data series, a dummy variable will be 

added to the selected GARCH-type model. Moving a step further, Value at Risk 

(VaR) is calculated and the model’s accuracy is assessed using Kupiec Test. Lastly, in 

order to provide well-rounded risk measures, we incorporate Extreme Value Theory 

(EVT) into our calculations as it assumes a separate distribution for extreme losses in 

order to estimate the probability of extreme values. 

 4.1. In-Sample Modeling 

Upon extracting the historical daily stock prices for each of the three chosen 

indices and nineteen insurance companies for the chosen dataset and subsequently 

computing the respective daily returns, the daily conditional variance for each 

historical observation is calculated for each of the GARCH (1,1), IGARCH (1,1), 

EGARCH (1,1) and GJR-GARCH (1,1) models using equations (3), (7), (8) and (9), 
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respectively. Successively, results are annualized supposing 250 trading days/year and 

thus, by taking the square root of the annualized variance, the annualized volatility is 

obtained.  

4.1.1 In-Sample Parameters’ Estimation 

First, each volatility model parameter estimation is undertaken for the in-

sample dataset period extending from 01/01/2010 till 29/12/2017.  In order to select 

the most appropriate model to describe the observed data, it is important to begin with 

fitting the GARCH model’s distribution of the error term. Accordingly, assuming 

three error distributions (Normal Distribution, Student’s T Distribution and 

Generalized Error Distribution), we applied the GARCH (1,1) model for the entire 

sampled period ranging from 01/01/2010 till 31/12/2020. Based on the outcome 

highlighted in Table 6, the use of heavy-tailed/ highly skewed tails is warranted as 

they provide better results when applying goodness of fit measures. The Generalized 

Error Distribution (GED) exhibits preeminence as it has the lowest AIC and BIC 

along with the highest log-likelihood value. Accordingly, GED is selected for all 

stocks within the sample except for RLI whereby it is demonstrated that Student’s T 

distribution is the best-selected model. Accordingly, the sum of the log likelihood 

estimates is maximized using the “Solver” function on excel conditional on the 

constraints and conditions defined previously in section 3.3. Once the likelihood 

function is maximized, the resulting parameters attained are the ones used to estimate 

the conditional volatilities for the chosen period.  
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Table 6: Goodness-of-Fit of the GARCH (1,1) Model assuming three innovation term distributions and 
covering the overall sampled period for each of the chosen stocks. 

4.1.2. Model Selection – In-Sample Period 

The below subsections specify the model parameters estimated when using the 

maximum likelihood function across the in-sample period for each of the chosen 

stocks and indices. 

 4.1.2.1 GARCH (1,1)  

GARCH (1,1)

𝝎 α β α + β ϒ VL LLF 

Chubb Limited 
(CB) 

0.0000041
5 

0.1100350
4 

0.8613483
9 

0.9713834
3 

- 19.05% 8197.9334 

Progressive 
Corp (PGR) 

0.0000027
3 

0.0573293
6 

0.9240806
5 

0.9814100
2 

- 19.156% 8041.16487 

MS&AD 
Insurance Group 

Holdings 
(MSADY.PK) 

0.0000076
5 

0.0666955
3 

0.9157058
6 

0.9824013
9 

- 32.975% 7022.50309 

Cincinnati 
Financial 

Corporation 
(CINF.OQ) 

0.0000065
1 

0.0988628
7 

0.8618143
3 

0.9606772
0 

- 20.35% 8067.28270 

Ticker AIC BIC LLF AIC BIC LLF AIC BIC LLF

CB ‐6.097553 ‐6.088992 8446.062 ‐6.09651 ‐6.085809 8445.618 ‐6.426566 ‐6.415865 8902.581

PGR ‐5.573898 ‐5.565337 7721.061 ‐5.667655 ‐5.656954 7851.869 ‐5.80197 ‐5.791269 8037.827

MSADY.PK ‐4.831363 ‐4.822802 6693.022 ‐4.833928 ‐4.823227 6697.574 ‐4.91366 ‐4.902959 6807.962

CINF.OQ ‐6.089007 ‐6.080446 8434.23 ‐6.088103 ‐6.077402 8433.978 ‐6.280912 ‐6.270211 8700.922

WRB ‐6.762176 ‐6.753615 9366.233 ‐6.761381 ‐6.75068 9366.132 ‐7.023618 ‐7.012917 9729.199

AFG ‐6.193219 ‐6.184658 8578.511 ‐6.1933 ‐6.182599 8579.624 ‐6.489046 ‐6.478345 8989.084

RLI ‐6.031599 ‐6.023039 8354.749 ‐6.074792 ‐6.064091 8415.55 ‐6.060739 ‐6.050038 8396.093

SIGI.O ‐6.15418 ‐6.14562 8524.463 ‐6.192192 ‐6.181491 8578.091 ‐6.366592 ‐6.355891 8819.547

WTM ‐6.296368 ‐6.287807 8721.322 ‐6.304883 ‐6.294182 8734.111 ‐6.358921 ‐6.34822 8808.926

HMN ‐5.599451 ‐5.59089 7756.44 ‐5.598534 ‐5.587833 7756.17 ‐5.800822 ‐5.790121 8036.239

ARGO.K ‐5.883461 ‐5.8749 8149.652 ‐5.930778 ‐5.920077 8216.162 ‐6.172204 ‐6.161503 8550.417

SAFT.O ‐6.565313 ‐6.556753 9093.676 ‐6.564528 ‐6.553826 9093.588 ‐6.754815 ‐6.744114 9357.041

UFCS.O ‐4.354506 ‐4.345945 6032.814 ‐4.353728 ‐4.343027 6032.736 ‐4.719226 ‐4.708525 6538.768

UVE ‐3.972487 ‐3.963926 5503.908 ‐3.972015 ‐3.961314 5504.255 ‐4.160339 ‐4.149638 5764.99

HCI ‐4.073476 ‐4.064915 5643.727 ‐4.098062 ‐4.087361 5678.767 ‐4.152397 ‐4.141696 5753.994

DGICA.O ‐5.08982 ‐5.081259 7050.855 ‐5.074624 ‐5.063923 7030.817 ‐5.217793 ‐5.207092 7229.034

GBLI.O ‐4.419118 ‐4.410557 6122.268 ‐4.417771 ‐4.40707 6121.404 ‐4.706926 ‐4.696225 6521.739

FNHC.O ‐4.695499 ‐4.686939 6504.919 ‐4.694768 ‐4.684067 6504.906 ‐4.823956 ‐4.813255 6683.768

HALL.O ‐4.193702 ‐4.185141 5810.18 ‐4.19686 ‐4.186159 5815.553 ‐4.496316 ‐4.485615 6230.149

Normal Distribution Student's T Distribution Generalized Error Distribution  (GED)

Ticker AIC BIC LLF AIC BIC LLF AIC BIC LLF

SPX ‐6.50075 ‐6.492187 9001.038 ‐6.500003 ‐6.489299 9001.005 ‐6.890773 ‐6.880069 9541.831

IXIC ‐6.160378 ‐6.151815 8529.964 ‐6.159376 ‐6.148671 8529.576 ‐6.581988 ‐6.571284 9114.472

DJI ‐6.635023 ‐6.62646 9186.872 ‐6.634276 ‐6.623572 9186.838 ‐6.938314 ‐6.92761 9607.627

Normal Distribution Student's T Distribution Generalized Error Distribution  (GED)
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W. R. Berkley 
Corp (WRB) 

0.0000031
2 

0.1626757
6 

0.8373242
4 

0.9999999
9 

- 20.345% 8293.7912 

American 
Financial Group, 

Inc. (AFG) 

0.0000009
4 

0.0060248
2 

0.9866398
4 

0.9926646
6 

- 17.864% 8159.772 

RLI Corp (RLI) 0.0000014
0 

0.0060164
8 

0.9867194
1 

0.9927358
9 

- 21.96% 7641.26934 

Selective 
Insurance Group 

Inc (SIGI.O) 

0.0000014
2 

0.0061175
6 

0.9867138
2 

0.9928313
8 

- 22.23% 7540.87645 

White Mountains 
Insurance Group 

Ltd (WTM) 

0.0000011
4 

0.0534317
9 

0.9388091
3 

0.9922409
1 

- 19.13% 8164.698964 

Horace Mann 
Educators 

Corporation 
(HMN) 

0.0000014
0 

0.0063253
6 

0.9867014
6 

0.9930268
2 

- 22.39% 7361.57776 

Argo Group 
International 
Holdings Ltd. 

(ARGO.K) 

0.0000011
7 

0.0062324
9 

0.9867275
0 

0.9929599
9 

- 20.42% 7663.23149 

Safety Insurance 
Group, Inc. 
(SAFT.O) 

0.0000010
6 

0.0060255
0 

0.9867291
8 

0.9927546
8 

- 19.16% 7826.370417 

United Fire 
Group, Inc. 
(UFCS.O) 

0.0000015
3 

0.0094279
7 

0.9865060
4 

0.9959340
1 

- 30.65% 6836.130589
11 

Universal 
Insurance 

Holdings, Inc. 
(UVE) 

0.0000047
2 

0.0060735
9 

0.9867159
4 

0.9927895
3 

- 40.45% 6314.193772
12 

HCI Group Inc 
(HCI) 

0.0000045
4 

0.0060152
0 

0.9867197
1 

0.9927349
1 

- 39.53% 6389.875428
94 

Donegal Group 
Inc. (DGICA.O) 

0.0000013
8 

0.0063506
7 

0.9866995
4 

0.9930502
1 

- 22.27% 7282.722972
38 

Global Indemnity 
Group LLC 
(GBLI.O) 

0.0000012
8 

0.0093211
8 

0.9865704
8 

0.9958916
7 

- 27.94% 6894.087550
67 

FedNat Holding 
Company 
(FNHC.O) 

0.0000051
7 

0.0060352
8 

0.9867185
4 

0.9927538
2 

- 42.22% 6282.350539
62 

Hallmark 
Financial 

Services, Inc. 
(HALL.O) 

0.0000012
5 

0.0100830
3 

0.9863751
9 

0.9964582
2 

- 29.74% 6895.504417
04 

S&P 500 (SPX) 0.0000006
5 

0.0060000
0 

0.9867200
0 

0.9927200
0 

0.007
3 

14.979% 8537.03 

Nasdaq 
Composite (IXIC) 

0.0000007
5 

0.0060000
0 

0.9867200
0 

0.9927200
0 

0.007
3 

16.084% 8261.50 

Dow Jones 
Industrial 

Average (DJI) 

0.0000005
5 

0.0060000
0 

0.9867200
0 

0.9927200
0 

0.007
3 

13.785% 8669.19 

Table 7: GARCH (1,1) Model parameters estimation when maximum likelihood function is maximized 
across the in-sample period for each of the chosen stocks and indices. 

To begin with, we can observe that the ARCH term, “α”, which represents how 

volatility responds to new information, ranges between 0.6% and 16% with WRB having 

an “α” of 16%. The comparatively high disturbance observed for WRB, as compared 

to the rest of the dataset, is mainly due to the catastrophic loss left by Hurricane 

Sandy whereby WRB suffered a significant number of losses. Conversely, “α” 

pertaining to AFG, RLI, SIGI.O, HMN, ARGO.K, SAFT.O, UVE, HCI, DGICA.O, 
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FNHC.O and the chosen indices is approximately 0.6% suggesting new information 

has a relatively low effect on their volatilities.  

Next, a relatively high “β” is observed for all stocks and indices. A relatively high “β” 

suggests that the returns of the chosen stocks and indices are justifiable and have high 

importance in influencing future variance.  

Lastly, the “ω” term for all stocks and indices is minor and close to zero. The sum of 

α and β measures the persistence of shocks to conditional variance, meaning that the 

effect of a volatility shock vanishes over time at an exponential rate. It is worth 

mentioning that none of the stock’s summation of α + β is equal to 1, thereby 

demonstrating that the conditional variance is not strictly stationary. Moving a step 

further, the long-term volatilities of all stocks and indices range between 13% and 

42%. 

4.1.2.2 IGARCH (1,1)  

IGARCH (1,1) 
 𝝎 α β α + β ϒ VL LLF 

Chubb Limited (CB) 0.00000094 0.07287735 0.92712265 1.00000000 - - 8190.3413 
Progressive Corp 

(PGR) 
0.00000000 0.01859002 0.98140998 1.00000000 - - 8028.08800 

MS&AD Insurance 
Group Holdings 

(MSADY.PK) 
0.00000000 0.01859418 0.98140582 1.00000000 - - 7009.67847 

Cincinnati Financial 
Corporation 
(CINF.OQ) 

0.00000000 0.01859052 0.98140948 1.00000000 - - 8033.16432 

W. R. Berkley Corp 
(WRB) 

0.00000331 0.16778927 0.83221073 1.00000000 - - 8293.8085 

American Financial 
Group, Inc. (AFG) 

0.00000094 0.01859000 0.98141000 1.00000000 - - 8132.13560 

RLI Corp (RLI) 0.00000461 0.08731585 0.91268415 1.00000000 - - 7635.20822 
Selective Insurance 
Group Inc (SIGI.O) 

0.00000152 0.04986005 0.95013995 1.00000000 - - 7551.51118 

White Mountains 
Insurance Group Ltd 

(WTM) 
0.00000149 0.09855264 0.90144736 1.00000000 - - 

8169.17258
0 

Horace Mann 
Educators 

Corporation (HMN) 
0.00000713 0.14215333 0.85784667 1.00000000 - - 7390.21313 

Argo Group 
International 
Holdings Ltd. 

(ARGO.K) 

0.00000135 0.05361587 0.94638413 1.00000000 - - 7669.40699 

Safety Insurance 
Group, Inc. (SAFT.O) 

0.00000076 0.03962754 0.96037246 1.00000000 - - 
7840.98761

4 
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United Fire Group, 
Inc. (UFCS.O) 

0.00002574 0.20883166 0.79116834 1.00000000 - - 
6836.47023

860 
Universal Insurance 
Holdings, Inc. (UVE) 

0.00001754 0.09761230 0.90238770 1.00000000 - - 
6362.37187

756 

HCI Group Inc (HCI) 0.00025237 0.74658341 0.25341659 1.00000000 - - 
6400.50034

463 
Donegal Group Inc. 

(DGICA.O) 
0.00000102 0.04104358 0.95895642 1.00000000 - - 

7316.87599
486 

Global Indemnity 
Group LLC (GBLI.O) 

0.00003448 0.32825833 0.67174167 1.00000000 - - 
6955.62557

445 
FedNat Holding 

Company (FNHC.O) 
0.00000294 0.02752675 0.97247325 1.00000000 - - 

6261.64415
536 

Hallmark Financial 
Services, Inc. 

(HALL.O) 
0.00001798 0.18576645 0.81423355 1.00000000 - - 

6933.59162
928 

S&P 500 (SPX) 0.00000238 0.18664435 0.81335565 1.00000000 - - 8715.27 
Nasdaq Composite 

(IXIC) 
0.00000251 0.14258623 0.85741377 1.00000000 - - 8369.42 

Dow Jones Industrial 
Average (DJI) 

0.00000232 0.19827885 0.80172115 1.00000000 - - 8837.65 

Table 8: IGARCH (1,1) Model parameters estimation when maximum likelihood function is maximized across the 
in-sample period for each of the chosen stocks and indices. 

As previously highlighted, the IGARCH model validates the presumptions drawn 

from the GARCH model and provides further clarification with regards to persistence 

in variance as new information remains crucial for future forecasts across all horizons.  

Noticeably, “β”, the GARCH component, the estimate for all stocks and indices are 

approximately cognate in both models (GARCH and IGARCH). Given that the 

unconditional variance in the IGARCH model is not finite and no mean reversion is 

exhibited, “ω”, the omega term, is now a constant. Nonetheless, it is important to note 

that the “ω” term for PGR, MSADY.PK and CINF.OQ has a value of 0 whereas it is 

close to 0 for others. While this verifies that the IGARCH model provides a good fit 

for these stocks, this also draws attention towards advanced GARCH models as they 

may provide better explanation to volatility. Additionally, it is worth mentioning that 

as “ω” becomes zero, the IGARCH model becomes similar to the Exponentially 

Weighted Moving Average (EWMA) Model. 

4.1.2.3 EGARCH (1,1)  

EGARCH (1,1)

  𝝎 α β α + β ϒ VL LLF 
Chubb Limited (CB) -0.22952444 0.14675884 0.97432098 1.1211 -0.06394079 18.116% 8201.599 
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Table 9: EGARCH (1,1) Model parameters estimation when maximum likelihood function is maximized across the 
in-sample period for each of the chosen stocks and indices. 

EGARCH model is defined in terms of log of the conditional variance, which 

implies that  𝜎  maintains positivity and, thus, there are no restrictions on the sign of 

the model parameters. Hence, the leverage effect is exponential, rather than quadratic. 

The ARCH term “α” signifies the size (magnitude) of shocks to variance effects in 

future volatility in the returns.  Whereas the GARCH term, “β”, represents the 

persistence of past volatility and how it assists in predicting future volatility. 

However, the key parameter to observe is the leverage effect term “γ” as it describes 

how the sign of the shock affects the future volatility of returns. 

Progressive Corp 
(PGR) 

-0.17959649 0.09777924 0.97952804 1.0773 -0.04782667 19.678% 8052.13998 

MS&AD Insurance 
Group Holdings 

(MSADY.PK) 

-0.11145518 0.09846148 0.98556088 1.0840 -0.0335 33.328% 7031.04006 

Cincinnati Financial 
Corporation 
(CINF.OQ) 

-0.31698366 0.10062129 0.96448942 1.0651 -0.08777148 18.223% 8090.23062 

W. R. Berkley Corp 
(WRB) 

-0.57871201 0.24913625 0.93651139 1.1856 -0.03679596 16.58% 8312.8875 

American Financial 
Group, Inc. (AFG) 

-0.42456077 0.16280629 0.95347862 1.1163 -0.11868827 16.49% 8272.34329 

RLI Corp (RLI) -0.44888155 0.11536512 0.94660551 1.0620 -0.01802175 23.63% 7682.50522 

Selective Insurance 
Group Inc (SIGI.O) 

-0.35394750 0.09938312 0.95807403 1.0575 -0.08115148 23.22% 7595.35010 

White Mountains 
Insurance Group Ltd 

(WTM) 

-0.21172542 0.18369905 0.97575573 1.1595 -0.09407606 20.07% 8195.578942 

Horace Mann 
Educators 

Corporation (HMN) 

-0.48122143 0.20928531 0.94128124 1.1506 -0.04508170 26.26% 7409.19267 

Argo Group 
International 
Holdings Ltd. 

(ARGO.K) 

-1.00208949 0.20364651 0.88321138 1.0869 -0.08125953 21.67% 7701.15092 

Safety Insurance 
Group, Inc. 
(SAFT.O) 

-0.43681513 0.13586301 0.94962343 1.0855 -0.02279925 20.71% 7856.021706 

United Fire Group, 
Inc. (UFCS.O) 

-0.22949323 0.12698050 0.96921754 1.0962 0.01553349 38.02% 6864.98239844 

Universal Insurance 
Holdings, Inc. (UVE) 

-0.70935017 0.18759860 0.90103432 1.0886 -0.06722407 43.91% 6392.19281286 

HCI Group Inc (HCI) -2.70267743 0.39769761 0.62913962 1.0268 -0.05404685 41.35% 6448.95544168 

Donegal Group Inc. 
(DGICA.O) 

-0.08001172 0.10324398 0.98959698 1.0928 -0.03175773 33.79% 7325.20596115 

Global Indemnity 
Group LLC (GBLI.O) 

-0.59116205 0.29249351 0.92337381 1.2159 -0.07394043 33.40% 6974.49358518 

FedNat Holding 
Company (FNHC.O) 

-3.04306242 0.25439745 0.57911208 0.8335 -0.13032500 42.56% 6330.81939551 

Hallmark Financial 
Services, Inc. 

(HALL.O) 

-0.80347055 0.29820616 0.89535843 1.1936 -0.00871666 34.01% 6950.75171607 

S&P 500 (SPX) -0.44678933 0.14870663 0.9537 1.1024 -0.2053 12.645% 8787.88 

Nasdaq Composite 
(IXIC) 

-0.53401515 0.11053770 0.9429 1.0534 -0.1972 14.726% 8442.64 

Dow Jones 
Industrial Average 

(DJI) 

-0.51415643 0.15074629 0.9473 1.0981 -0.1938 12.003% 8905.69 
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The leverage coefficient “γ” ranges between -0.08% and 1%, whereby the parameter 

reflects a negative value for all stocks except UFCS.O. For negative leverage 

coefficient, this implies that negative shocks have a greater impact on volatility as 

opposed to positive shocks of the same magnitude. Hence, this indicates that the 

volatility spillover mechanism is asymmetric 

Secondly, the ARCH term “α” is positive for all insurance company stocks 

and indices whereby the highest values are displayed by HCI (39%) and HALL.O 

(29%). Accordingly, this indicates that the chosen stocks and indices commonly 

exhibit a positive relationship between their current variances and past variances, in 

absolute value, indicating that the greater the magnitude of shocks to their variance, 

the higher their volatility is. 

Thirdly, the GARCH term “β” is relatively significant for all stocks and indices, 

except FNHC and HCI, revealing the persistence of past volatility whereby past 

volatility explains current volatility.  

Lastly, the long-term volatility “VL” of the chosen stocks and indices ranges 

between 12% and 43.9%. Given that long-term volatility is an average level towards 

which variances revert to this further highlights the increased volatility. 

4.1.2.4 GJR-GARCH (1,1)  

GJR-GARCH (1,1) 

  𝝎 α β α + β ϒ VL LLF 

Chubb Limited (CB) 0.00000352 0.04682154 0.88048742 0.92730897 0.09455420 18.61% 8208.12097222 

Progressive Corp (PGR) 0.00000306 0.02681327 0.92441767 0.95123095 0.0551 18.989% 8049.38485 

MS&AD Insurance Group 
Holdings (MSADY.PK) 

0.00000598 0.05255365 0.92803894 0.98059260 0.0107 32.632% 7024.28879 

Cincinnati Financial 
Corporation (CINF.OQ) 

0.00000619 0.09067186 0.86779667 0.95846853 0.00655772 20.114% 8069.06767 

W. R. Berkley Corp (WRB) 0.00000094 0.00000000 0.98895000 0.98895001 0.00650000 17.362% 8200.5533 

American Financial Group, 
Inc. (AFG) 

0.00000089 0.00000000 0.98915940 0.98915940 0.00650001 17.119% 8145.629828 

RLI Corp (RLI) 0.00000144 0.00000000 0.98895000 0.98895000 0.00650000 21.51% 7631.57610 

Selective Insurance Group 
Inc (SIGI.O) 

0.00000151 0.00000000 0.98899970 0.98899970 0.00650000 22.08% 7543.27043 
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White Mountains Insurance 
Group Ltd (WTM) 

0.00000098 0.00000000 0.98895000 0.98895001 0.00650000 17.69% 8053.473913 

Horace Mann Educators 
Corporation (HMN) 

0.00000151 0.00000000 0.98945204 0.98945204 0.00650002 22.73% 7340.79618 

Argo Group International 
Holdings Ltd. (ARGO.K) 

0.00000128 0.00000000 0.98920390 0.98920390 0.00650001 20.61% 7658.18093 

Safety Insurance Group, Inc. 
(SAFT.O) 

0.00000112 0.00000001 0.98917369 0.98917370 0.00650001 19.25% 7820.973999 

United Fire Group, Inc. 
(UFCS.O) 

0.00000174 0.00000000 0.99173902 0.99173903 0.00650018 29.48% 6811.39861444 

Universal Insurance 
Holdings, Inc. (UVE) 

0.00006423 0.05140699 0.80775599 0.85916298 0.11856918 44.37% 6397.82606624 

HCI Group Inc (HCI) 0.00000482 0.00000000 0.98895000 0.98895001 0.00650000 39.30% 6382.70777664 

Donegal Group Inc. 
(DGICA.O) 

0.00000180 0.00000000 0.98932983 0.98932984 0.00650002 24.63% 7245.51084448 

Global Indemnity Group LLC 
(GBLI.O) 

0.00000096 0.00000000 0.99355129 0.99355129 0.00650037 27.39% 6878.80951373 

FedNat Holding Company 
(FNHC.O) 

0.00000560 0.00000000 0.98895000 0.98895001 0.00650000 42.38% 6278.66608784 

Hallmark Financial Services, 
Inc. (HALL.O) 

0.00000183 0.00000000 0.99155663 0.99155663 0.00650045 29.68% 6856.28561272 

S&P 500 (SPX) 0.00000083 0.00000000 0.9890 0.9890 0.0065 16.283% 8481.86 

Nasdaq Composite (IXIC) 0.00000053 0.00000000 0.9890 0.9890 0.0065 12.999% 8255.48 

Dow Jones Industrial 
Average (DJI) 

0.00000073 0.00000000 0.9890 0.9890 0.0065 15.267% 8614.66 

Table 10: IGARCH (1,1) Model parameters estimation when maximum likelihood function is maximized 
across the in-sample period for each of the chosen stocks and indices. 

Despite the fact that the GJR-GARCH model is much like the EGARCH 

model is that it reflects the asymmetry effects on volatility, the former integrates the 

non-negativity constraint on three parameters: ω, α, and β, thus, only the leverage 

term can be negative. Additionally, the GJR-GARCH model is different from the 

standard GARCH model as it introduces a dummy variable “𝐼 ” paving the way for 

the conditional variance to increase in response to bad shocks more than good shocks.  

To begin with, the lower beta of insurance company stocks evidences that 

stock price movements are relatively less explicable and are subject to more ‘spikes’. 

Whereas, the higher beta of observed in the stock indices evidences that stock price 

movements are relatively more explicable and are subject to less ‘spikes’. 

The leverage coefficient “γ” ranges between 0.65% and 11%. In this case, 

results are not consistent with what was obtained with the EGARCH model whereby 

negative leverage coefficients imply the absence of leverage effect. The outcome 

obtained through the GJR-GARCH model claims that positive news have a higher 

impact on volatility than negative news.  
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Lastly, the long-term volatility “VL” of the chosen stocks and indices ranges 

between 13% and 44%, similar to what was obtained through the standard GARCH 

model and EGARCH model.  

4.1.3 Realized Volatility  

After calculating the volatilities of all the stocks and indices within the in-

sample data using the chosen models, we proceed to compute the realized volatility 

using equation (12) listed under section 3.5. As highlighted previously, the annualized 

volatilities are calculated using the monthly volatilities multiplied by “trading months 

per trading year’’ or 252/22. Accordingly, the below plots demonstrate the realized 

volatility against the estimated GARCH volatilities for each of the chosen stock in the 

dataset during the in-sample period:  
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Figure 3:Realized Volatility plotted versus GARCH Models’ Volatilities for each stock and index across 
the chosen in-sample period. 
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regarded as the most accurate. The below table highlights the error statistics with the 

respective ranking for the chosen in-sample dataset under each of the selected models: 

  GARCH IGARCH EGARCH  GJR-GARCH 
C

B
 

MAE 0.02292 0.01737 0.02380 0.02423 
Ranking 2 1 3 4 
RMSE 0.03048 0.02198 0.03234 0.03201 
Ranking 2 1 4 3 
MAPE 0.15683 0.12687 0.16004 0.16434 
Ranking 2 1 3 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

P
G

R
 

MAE 0.01903 0.02626 0.02343 0.02151 
Ranking 1 4 3 2 
RMSE 0.02489 0.03658 0.03188 0.02811 
Ranking 1 4 3 2 
MAPE 0.12584 0.16046 0.14648 0.13893 
Ranking 1 4 3 2 

      

  GARCH IGARCH EGARCH GJR-GARCH  

M
S

A
D

Y
.P

K
 MAE 0.03077 0.04778 0.03655 0.02994 

Ranking 2 4 3 1 
RMSE 0.03867 0.05893 0.04610 0.03773 
Ranking 2 4 3 1 
MAPE 0.12378 0.17752 0.13911 0.12075 
Ranking 2 4 3 1 

 

  GARCH IGARCH EGARCH GJR-GARCH  

W
R

B
 

MAE 0.02874 0.02936 0.02963 0.04662 
Ranking 1 2 3 4 
RMSE 0.04081 0.04155 0.04252 0.05903 
Ranking 1 2 3 4 
MAPE 0.18699 0.19106 0.19066 0.34015 
Ranking 1 2 3 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

A F MAE 0.04618 0.05302 0.03567 0.04828 

GARCH IGARCH EGARCH GJR-GARCH 

C
IN

F
.O

Q
 MAE 0.02817 0.03087 0.03368 0.02774 

Ranking 2 3 4 1 
RMSE 0.03797 0.04200 0.04581 0.03740 
Ranking 2 3 4 1 
MAPE 0.18521 0.19433 0.20804 0.18247 
Ranking 2 3 4 1 
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Ranking 2 4 1 3 
RMSE 0.07075 0.07204 0.06056 0.07406 
Ranking 2 3 1 4 
MAPE 0.30271 0.38210 0.20820 0.31169 
Ranking 2 4 1 3 

 

  GARCH IGARCH EGARCH GJR-GARCH  

R
L

I 

MAE 0.06291 0.04584 0.05045 0.06648 
Ranking 3 1 2 4 
RMSE 0.09244 0.07348 0.08178 0.09525 
Ranking 3 1 2 4 
MAPE 0.3349 0.24557 0.25538 0.35621 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

S
IG

I.
O

 

MAE 0.04576 0.02650 0.03868 0.04784 
Ranking 3 1 2 4 
RMSE 0.06179 0.03252 0.05153 0.06551 
Ranking 3 1 2 4 
MAPE 0.21818 0.14116 0.18059 0.22481 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

W
T

M
 

MAE 0.01946 0.02158 0.02898 0.04840 
Ranking 1 2 3 4 
RMSE 0.02817 0.03054 0.04516 0.06911 
Ranking 1 2 3 4 
MAPE 0.13850 0.14497 0.18512 0.35032 
Ranking 1 2 3 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

H
M

N
 

MAE 0.05170 0.03807 0.04107 0.05664 
Ranking 1 4 3 2 
RMSE 0.07123 0.04794 0.05293 0.07953 
Ranking 1 4 3 2 
MAPE 0.22027 0.17258 0.17891 0.23820 
Ranking 1 4 3 2 

 

  GARCH IGARCH EGARCH GJR-GARCH  

A
R

G
O

.K
 

MAE 0.04241 0.02456 0.03929 0.04584 
Ranking 3 1 2 4 
RMSE 0.05479 0.02983 0.05058 0.05933 
Ranking 3 1 2 4 
MAPE 0.22028 0.14054 0.20133 0.23556 
Ranking 3 1 2 4 
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  GARCH IGARCH EGARCH GJR-GARCH  

S
A

F
T

.O
 

MAE 0.03833 0.02398 0.02999 0.04092 
Ranking 3 1 2 4 
RMSE 0.05122 0.03036 0.03926 0.05543 
Ranking 3 1 2 4 
MAPE 0.21495 0.14763 0.16704 0.22772 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

U
F

C
S

.O
 

MAE 0.07233 0.07366 0.05579 0.08342 
Ranking 2 3 1 4 
RMSE 0.09613 0.09678 0.07045 0.11427 
Ranking 2 3 1 4 
MAPE 0.28055 0.26618 0.21204 0.30925 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

U
V

E
 

MAE 0.11309 0.07866 0.09332 0.08964 
Ranking 4 1 3 2 
RMSE 0.16017 0.09637 0.139914 0.13168 
Ranking 4 1 3 2 
MAPE 0.33118 0.23904 0.26739 0.25542 
Ranking 4 1 3 2 

 

  GARCH IGARCH EGARCH GJR-GARCH  

H
C

I 

MAE 0.10245 0.14983 0.11014 0.11090 
Ranking 1 4 2 3 
RMSE 0.13365 0.22876 0.15200 0.14383 
Ranking 1 4 3 2 
MAPE 0.33953 0.43561 0.33891 0.36408 
Ranking 2 4 1 3 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

D
G

IC
A

.O
 MAE 0.05747 0.03364 0.03759 0.06764 

Ranking 3 1 2 4 
RMSE 0.07865 0.04374 0.04903 0.09078 
Ranking 3 1 2 4 
MAPE 0.23829 0.15750 0.16488 0.29127 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

G
B

L
I.

O
 MAE 0.06915 0.08260 0.06591 0.07726 

Ranking 2 4 1 3 
RMSE 0.09036 0.11579 0.08718 0.10407 
Ranking 2 4 1 3 
MAPE 0.24932 0.27924 0.22606 0.26995 
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Ranking 2 4 1 3 
 

  GARCH IGARCH EGARCH GJR-GARCH  

F
N

H
C

.O
 

MAE 0.10255 0.08032 0.10756 0.10997 
Ranking 2 1 3 4 
RMSE 0.12937 0.10219 0.14163 0.13810 
Ranking 2 1 4 3 
MAPE 0.30050 0.25219 0.30048 0.32378 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  

H
A

L
L

.O
 

MAE 0.07518 0.06383 0.06539 0.09083 
Ranking 3 1 2 4 
RMSE 0.09039 0.08216 0.08250 0.11024 
Ranking 3 1 2 4 
MAPE 0.30046 0.23747 0.24297 0.35725 
Ranking 3 1 2 4 

 

    GARCH IGARCH EGARCH 
GJR-

GARCH  

S
P

X
 

MAE 0.04279 0.04058 0.02176 0.04935 
Ranking 3 2 1 4 
RMSE 0.05455 0.05584 0.03151 0.05871 
Ranking 2 3 1 4 
MAPE 0.41661 0.26848 0.14452 0.46789 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  
GJR-

GARCH  

IX
IC

 

MAE 0.04084 0.03727 0.02664 0.03559 
Ranking 4 3 1 2 
RMSE 0.05399 0.05431 0.03828 0.04911 
Ranking 3 4 1 2 
MAPE 0.30720 0.22025 0.14906 0.23295 
Ranking 4 2 1 3 

 

  GARCH IGARCH EGARCH 
GJR-

GARCH  

D
JI

 

MAE 0.04028 0.03742 0.02069 0.04391 
Ranking 3 2 1 4 
RMSE 0.05250 0.05150 0.03033 0.05206 
Ranking 4 2 1 3 
MAPE 0.39491 0.26682 0.14656 0.44368 
Ranking 3 2 1 4 
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Table 11: Error Statistics under each Volatility Model for each stock and index across the in-sample 
period.  

4.1.4.2 Optimal Model Results 

Ticker Optimal Model 

CB IGARCH (1,1) 

PGR GARCH (1,1) 

MSADY.PK GJR- GARCH (1,1) 

CINF.OQ GJR- GARCH (1,1) 

WRB GARCH (1,1) 

AFG EGARCH (1,1) 

RLI IGARCH (1,1) 

SIGI.O IGARCH (1,1) 

WTM GARCH (1,1) 

HMN GARCH (1,1) 

ARGO.K IGARCH (1,1) 

SAFT.O IGARCH (1,1) 

UFCS.O EGARCH (1,1) 

UVE IGARCH (1,1) 

HCI GARCH (1,1) 

DGICA.O IGARCH (1,1) 

GBLI.O EGARCH (1,1) 

FNHC.O IGARCH (1,1) 

HALL.O EGARCH (1,1) 

 

Ticker Optimal Model 

SPX EGARCH (1,1) 

IXIC EGARCH (1,1) 

DJI EGARCH (1,1) 

Table 12: Summary of the optimal volatility model for each stock and index across the chosen in-sample 
period.  

As reflected in the table above, the Integrated-GARCH (1,1) has proven to be 

the optimal model for the majority of the chosen insurance companies. It is worth 

noting that although shocks to the volatility series are inclined to have long memories 

and, consequently, tend to influence future volatilities for a long horizon, Engle and 

Bollerslev (1986) proposed the IGARCH model to capture this schematic fact along 
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with making conditional volatility infinite and shocks permanent. Therefore, the 

prevalence of IGARCH may be due to the persistent variance whereby recent 

information remains significant when predicting volatility. 

Secondly, the EGARCH (1,1) model performed best for a substantial number 

of insurance companies, particularly, AFG, UFCS.O, GBLI.O, HALL.O, and for the 

three indices, SPX, IXIC and DJI. As obtained previously, the generalized error 

distribution (GED) is the prominent distribution for the chosen stocks. Following the 

same line of thought, Nelson (1991) suggested the use of EGARCH model with GED 

based on the fact that the GED accommodates more fat-tails than normal error 

distribution. Additionally, EGARCH permits the inclusion of asymmetry in the 

reaction of the conditional variance to the innovation term reliant on the magnitude of 

the shock and the positive/negative sign. As for the remaining stocks, PGR, WRB, 

WTM, HMN, HCI, MSADY.PK and CINF.OQ the GARCH (1,1) and GJR-GARCH 

(1,1) proved to outperform other models.  

Having said the above, the IGARCH has proven to be the prevalent model 

when modeling insurance company stocks. The rankings obtained (Table 12) are 

consistent with what can be visually witnessed in the plotted volatilities (Figures 3) 

whereby the majority of the volatilities estimated with IGARCH (1,1) appear to be, 

graphically, the best fit with regards realized volatilities.  

4.2 Out-Sample Modeling 

The same calculations applied for the in-sample period were applied to the out-sample 

period extending from 01/01/2018 till 31/12/2020. Accordingly, the sole change that 

is applied is that the in-sample parameters obtained in the previous section are utilized 
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to forecast the conditional volatilities for the out-sample period. Thus, the parameters 

are plugged into formulas rather than being re-estimated.  

4.2.1. Out-Sample Parameters’ Estimation 

Realized volatilities are calculated similar to section 4.1.3 and are subsequently 

compared to the calculated out-sample volatilities. The below figures plot the realized 

volatility in contrast to the calculated GARCH volatilities for each stock and index 

across the out-sample period. 
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Figure 4: Realized Volatility plotted versus GARCH Models’ Volatilities for each stock and index across the 
chosen out-sample period. 

Afterwards, the realized volatilities are compared to the calculated out-sample 

volatilities in order to identify the optimal model for forecasting each stock’s 

volatility for the out-sample period. The comparison is conducted using the three 

chosen error statistics: RMSE, MAPE and MAE. The below table highlights the out-

sample error statistics values in addition to their ranking under each of the selected 

models. 
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MAE 0.042337704 0.053304851 0.052325237 0.044443193 
Ranking 1 4 3 2 
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  GARCH IGARCH EGARCH  GJR-GARCH  

P
G

R
 

MAE 0.044581 0.070839 0.059265 0.048615 
Ranking 1 4 3 2 
RMSE 0.062415 0.091323 0.083841 0.067923 
Ranking 1 4 3 2 
MAPE 0.21033 0.329904 0.259663 0.220792 
Ranking 1 4 3 2 

   

  GARCH IGARCH EGARCH  GJR-GARCH  

M
S

A
D

Y
.P

K
 MAE 0.03054 0.042574 0.042032 0.030953896 

Ranking 1 4 3 2 
RMSE 0.040557 0.057027 0.058155 0.041484472 

Ranking 1 3 4 2 
MAPE 0.154151 0.207584 0.198219 0.155720995 
Ranking 1 4 3 2 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

C
IN

F
.O

Q
 

MAE 0.049497 0.093186 0.060783 0.053324625 
Ranking 1 4 3 2 
RMSE 0.070658 0.12817 0.090604 0.079413049 
Ranking 1 4 3 2 
MAPE 0.198316 0.394367 0.219359 0.203162891 
Ranking 1 4 3 2 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

W
R

B
 

MAE 0.0450865 0.0476182 0.0532576 0.1064408 
Ranking 1 2 3 4 
RMSE 0.0758494 0.0802967 0.097157 0.1612267 
Ranking 1 2 3 4 
MAPE 0.19527 0.2045155 0.2076484 0.5150622 
Ranking 1 2 3 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

A
F

G
 

MAE 0.117914 0.124682 0.066521 0.073660953 
Ranking 3 4 1 2 
RMSE 0.212217 0.182411 0.148547 0.15010228 
Ranking 4 3 1 2 
MAPE 0.515114 0.528543 0.219968 0.291412536 
Ranking 3 4 1 2 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

R
L

I 

MAE 0.0927241 0.0723766 0.0545452 0.114833373 
Ranking 3 2 1 4 
RMSE 0.1395603 0.1095485 0.0782464 0.159986873 
Ranking 3 2 1 4 
MAPE 0.4040147 0.2872637 0.2292512 0.533159003 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  
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SI
G

I.
O

 

MAE 0.0925 0.050922 0.049876 0.103363372 
Ranking 3 2 1 4 
RMSE 0.147407 0.083093 0.087632 0.159222992 
Ranking 3 1 2 4 
MAPE 0.359485 0.186815 0.174366 0.406050351 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH GJR-GARCH  
W

T
M

 

MAE 0.0302632 0.0476983 0.046738 0.037328678 
Ranking 1 4 3 2 
RMSE 0.0476187 0.0768974 0.077266 0.052776994 
Ranking 1 3 4 2 
MAPE 0.1979952 0.2625155 0.2454946 0.229679221 
Ranking 1 4 3 2 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

H
M

N
 

MAE 0.090024 0.049784 0.055351 0.104024705 
Ranking 3 1 2 4 
RMSE 0.145043 0.071052 0.083372 0.160707462 
Ranking 3 1 2 4 
MAPE 0.341499 0.184763 0.195941 0.398318657 
Ranking 3 1 2 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

A
R

G
O

.K
 

MAE 0.122497 0.109984 0.089775 0.125274868 
Ranking 3 2 1 4 
RMSE 0.148379 0.14771 0.117893 0.149601771 
Ranking 3 2 1 4 
MAPE 0.580351 0.491046 0.415537 0.601710977 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

S
A

F
T

.O
 

MAE 0.075641 0.0389 0.040903 0.084123172 
Ranking 3 1 2 4 
RMSE 0.117232 0.055791 0.0619 0.128430289 
Ranking 3 1 2 4 
MAPE 0.317767 0.166801 0.165778 0.355097737 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

U
F

C
S

.O
 

MAE 0.13652 0.118662 0.09911 0.16364887 
Ranking 3 2 1 4 
RMSE 0.188071 0.188295 0.148704 0.223568082 
Ranking 2 3 1 4 
MAPE 0.510878 0.354176 0.315314 0.617555201 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  
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U
V

E
 

MAE 0.135462 0.12614 0.119444 0.122904004 
Ranking 4 3 1 2 
RMSE 0.182562 0.185783 0.17596 0.187340627 
Ranking 2 3 1 4 
MAPE 0.42907 0.359883 0.337411 0.341616863 
Ranking 4 3 1 2 

 

  GARCH IGARCH EGARCH GJR-GARCH  
H

C
I 

MAE 0.127498818 0.135363785 0.141084004 0.131465214 
Ranking 1 3 4 2 
RMSE 0.161468466 0.200629528 0.485614207 0.169809279 
Ranking 1 3 4 2 
MAPE 0.480770848 0.44958771 0.428594009 0.485788589 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

D
G

IC
A

.O
 

MAE 0.077868 0.079978 0.049501 0.092205749 
Ranking 2 3 1 4 
RMSE 0.129974 0.134984 0.088273 0.148168776 

Ranking 2 3 1 4 
MAPE 0.32092 0.293032 0.184676 0.382050153 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

G
B

L
I.

O
 

MAE 0.107486524 0.101710832 0.112992252 0.191846438 
Ranking 2 1 3 4 
RMSE 0.189154776 0.173905381 0.216413657 0.264881905 

Ranking 2 1 3 4 
MAPE 0.270618135 0.255817575 0.275457931 0.577711452 
Ranking 2 1 3 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

F
N

H
C

.O
 

MAE 0.109624334 0.059692317 0.060627812 0.116639685 
Ranking 3 1 2 4 
RMSE 0.133690333 0.073356521 0.073031673 0.142287637 
Ranking 3 2 1 4 
MAPE 0.344738075 0.18277033 0.181312295 0.363700508 
Ranking 3 2 1 4 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

H
A

L
L

.O
 

MAE 0.197050368 0.20310072 0.197644128 0.154132907 
Ranking 2 4 3 1 
RMSE 0.419824642 0.433868125 0.427086684 0.295891554 
Ranking 2 4 3 1 
MAPE 0.310467276 0.318197245 0.321965249 0.315145272 
Ranking 1 3 4 2 

 

  GARCH IGARCH EGARCH  GJR-GARCH  



83 
 

S
P

X
 

MAE 0.073455 0.075334 0.034065 0.076240603 
Ranking 2 3 1 4 
RMSE 0.118549 0.126816 0.068407 0.100370298 
Ranking 3 4 1 2 
MAPE 0.521077 0.377235 0.14851 0.595531932 
Ranking 3 2 1 4 

 
  GARCH IGARCH EGARCH  GJR-GARCH  

IX
IC

 

MAE 0.072738 0.071704 0.047585 0.061204127 
Ranking 4 3 1 2 
RMSE 0.115343 0.119736 0.085979 0.085173483 
Ranking 3 4 1 2 
MAPE 0.383379 0.32682 0.17627 0.354720378 
Ranking 4 2 1 3 

 

  GARCH IGARCH EGARCH  GJR-GARCH  

D
JI

 

MAE 0.074539 0.076217 0.041317 0.073728504 
Ranking 3 4 1 2 
RMSE 0.12527 0.135916 0.083744 0.09823227 
Ranking 3 4 1 2 
MAPE 0.468724 0.37333 0.167112 0.569940677 
Ranking 3 2 1 4 

Table 13: Summary of the optimal volatility model for each stock and index across the chosen out-
sample period  

4.3 Optimal Model Results 

Ticker In-Sample Out-Sample 

CB IGARCH (1,1) GARCH (1,1) 

PGR GARCH (1,1) GARCH (1,1) 

MSADY.PK GJR- GARCH (1,1) GARCH (1,1) 

CINF.OQ GJR- GARCH (1,1) GARCH (1,1) 

WRB GARCH (1,1) GARCH (1,1) 

AFG EGARCH (1,1) EGARCH (1,1) 

RLI IGARCH (1,1) EGARCH (1,1) 

SIGI.O IGARCH (1,1) EGARCH (1,1) 

WTM GARCH (1,1) GARCH (1,1) 

HMN GARCH (1,1) IGARCH (1,1) 

ARGO.K IGARCH (1,1) EGARCH (1,1) 

SAFT.O IGARCH (1,1) IGARCH (1,1) 

UFCS.O EGARCH (1,1) EGARCH (1,1) 

UVE IGARCH (1,1) EGARCH (1,1) 

HCI GARCH (1,1) GARCH (1,1) 

DGICA.O IGARCH (1,1) EGARCH (1,1) 

GBLI.O EGARCH (1,1) IGARCH (1,1) 
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FNHC.O IGARCH (1,1) EGARCH (1,1) 

HALL.O EGARCH (1,1) GJR-GARCH (1,1) 

SPX EGARCH (1,1) EGARCH (1,1) 

IXIC EGARCH (1,1) EGARCH (1,1) 

DJI EGARCH (1,1) EGARCH (1,1) 

Table 14: Optimal Models for each stock and index under the In-Sample & Out-Sample Periods 

As highlighted in the table above, the results reflect homogeneity among the indices, 

S&P 500 (SPX), Nasdaq Composite (IXIC), Dow Jones Industrial Average (DJI), and 

two insurance companies, American Financial Group, Inc. (AFG) and United Fire 

Group, Inc. (UFCS.O) whereby the Exponential-GARCH (EGARCH) model has 

proven to perform best for both the in-sample and out-sample period. In addition, the 

EGARCH model was also the most accurate model for RLI Corp (RLI), Selective 

Insurance Group Inc (SIGI.O), Argo Group International Holdings Ltd. (ARGO.K), 

Universal Insurance Holdings, Inc. (UVE), Donegal Group Inc. (DGICA.O) and 

FedNat Holding Company (FNHC.O) but only for the out-of-sample period given that 

the Integrated-GARCH (IGARCH) performed better during the in-sample period.  

Remarkably among all of the chosen stocks, IGARCH out-performed other models 

for Safety Insurance Group, Inc. (SAFT.O) for both in-sample and out-sample 

periods. This may be caused by the lack of a long-run average variance in the 

IGARCH model highlighting that any disturbance in the market causes an everlasting 

change in SAFT.O’s volatility structure. Alternatively, IGARCH performed best for 

the out-sample period of Horace Mann Educators Corporation (HMN) and Global 

Indemnity Group LLC (GBLI.O) whereby, GARCH and EGARCH performed better 

during the in-sample period, respectively. 

With regards to the remaining stocks, the GARCH model proved to be the best 

performing model for both in-sample and out-sample period for Progressive Corp 

(PGR), W. R. Berkley Corp (WRB), White Mountains Insurance Group Ltd (WTM), 
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and HCI Group Inc (HCI). Specifically, for the out-sample period, the GARCH model 

out-performed other models for Chubb Limited (CB), MS&AD Insurance Group 

Holdings (MSADY.PK) and Cincinnati Financial Corporation (CINF.OQ) while the 

IGARCH (1,1), GJR- GARCH (1,1) and GJR-GARCH (1,1) were chosen for the in-

sample period, respectively. Lastly, the GJR- GARCH is the optimal model for 

Hallmark Financial Services, Inc. (HALL.O) for the out-sample period.  

4.4 Employing Dummy Variables to the Optimal Model 

After determining the optimal model for the in-sample and out-sample 

periods, we set the pre-disaster period to 0 and to 1 for both the- one month and three-

month post disaster periods. The one-month and three-month periods were chosen as 

usually the effects of a natural disaster are not immediately felt due to loss adjusters 

collecting data, forms filled, insurance companies valuating the claims and payment. 

Thus, the chosen period is crucial as it may take up to a few months following the 

natural disaster for the catastrophe-induced volatility peak is reached. Subsequently, 

using the software E-Views, we estimate the GARCH-type model while adding the 

dummy variable to the variance equation as 𝜙𝐷 . As previously highlighted, we are 

using daily observations, hence, we inputted 1 to daily observations one day after the 

disaster until 1 month, and 0 otherwise following each and every event. A positive 

sign of 𝜙 parameter implies that the volatility has increased post-disaster period, 

whereas a negative sign of 𝜙 sign suggests that the volatility has decreased post-

disaster period. Additionally, we check the p-value to identify whether the 𝜙 

parameter is statistically significant, otherwise the dummy variable is incapable of 

delivering robust results. It is worth mentioning that we used the optimal GARCH 

model for each of the chosen stock and indices in the in-sample and out-sample 
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period, even though the out-sample models are based on estimates. The below tables 

highlight the outcome of the impact of dummy variable on insurance companies and  

indices for in-sample and out-sample period: 

Table 15: Outcome of implementing one-month post disaster dummy variable into the volatility equation 
along with the P-Value for both in-sample and out-sample periods. 

 

Dummy Variable - 1 Month Period Post Disaster 

Ticker  

Coefficient 
Value  
(In-

Sample) 

P-Value 
(In-

Sample) 

Statistically 
Significant 

(Y/N)  
(In-Sample) 

Coefficient 
Value (Out-

Sample) 

P-Value  
(Out-

Sample) 

Statistically 
Significant 

(Y/N)  
(Out-

Sample) 
AFG 0.002782 0.0002 Y -0.012356 0.0000 Y 

ARGO.K -0.010157 0.0000 Y -0.016397 0.0000 Y 

CB 0.001098 0.0000 Y 0.000852 0.0002 Y 

CINF.OQ 0.003707 0.0000 Y 0.21695 0.0000 Y 

DGICA.O 0.002209 0.0000 Y 0.028127 0.0000 Y 

FNHC.O 0.00211 0.0000 Y 0.011883 0.0000 Y 

GBLI.O -0.013535 0.0000 Y 0.007214 0.0466 Y 

HALL.O -0.023165 0.0000 Y 0.016304 0.0000 Y 

HCI -0.003863 0.0000 Y -0.007361 0.0000 Y 

HMN -0.001421 0.0000 Y 0.014493 0.0000 Y 

MSADY.PK 0.004422 0.0000 Y 0.00996 0.0000 Y 

PGR -0.02227 0.0000 Y 0.010534 0.0000 Y 

RLI -0.000996 0.0483 Y 0.006267 0.0005 Y 

SAFT.O -0.010124 0.0000 Y 0.026974 0.0000 Y 

SIGI.O -0.003131 0.0000 Y 0.016049 0.0000 Y 

UFCS.O -0.011187 0.0000 Y 0.01724 0.0000 Y 

UVE -0.002312 0.0001 Y 0.017596 0.0000 Y 

WTM -0.011489 0.0000 Y -0.009343 0.0000 Y 

WRB -0.005378 0.0000 Y 0.002763 0.2356 N 
    

IXIC 0.010099 0.0000 Y -0.017020 0.0000 Y 

DJI -0.0081040 0.0001 Y -0.0058690 0.0210 Y 

SPX 0.005122 0.0000 Y -0.017456 0.0000 Y 
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Table 16: Outcome of implementing three-month post disaster dummy variable into the volatility 
equation along with the P-Value for both in-sample and out-sample periods. 

Based on the above results, we observe that approximately 64% of the stocks 

witnessed a decrease in volatility when applying one-month post-disaster dummy 

variable for the in-sample period. When investigating the changes, we note that this 

phenomenon is due to multiple scenarios. To begin with, reinsurance coverage offsets 

losses incurred by insurance companies. For example, in 2011 ARGO.K started to 

market its first catastrophe bond, allowing the company to cover itself against losses 

due to natural disasters specifically, event losses from hurricanes and earthquakes in 

the United States. Hence, the company became well positioned to provide coverage 

following natural disasters without witnessing adverse changes in market prices 

following disasters. Similarly, HCI, announced a comprehensive reinsurance program 

that provides cover against hurricanes and other catastrophic losses up to USD 968 

million with coverage increasing up to USD 1.93 billion in 2020. In summary, as long 

Dummy Variable - 3 Month Period Post Disaster 

Ticker  

Coefficient 
Value  
(In-

Sample) 

P-Value 
(In-

Sample) 

Statistically 
Significant 

(Y/N)  
(In-

Sample) 

Coefficient 
Value (Out-

Sample) 

P-Value  
(Out-

Sample) 

Statistically 
Significant 

(Y/N)  
(Out-

Sample) 

AFG 0.006564 0.0192 Y 0.041913 0.0992 N 

ARGO.K -0.042967 0.0000 Y 0.0102 0.7592 N 

CB -0.010679 0.0000 Y 0.041301 0.0000 Y 

CINF.OQ -0.002526 0.1193 N 0.092518 0.2116 N 

DGICA.O -0.018072 0.0000 Y 0.025601 0.9291 N 

FNHC.O 0.090005 0.0000 Y -0.061851 0.9762 N 

GBLI.O 0.009075 0.4105 N -0.228573 0.8770 N 

HALL.O 0.033114 0.0000 Y 0.068799 0.3734 N 

HCI 0.008815 0.0000 Y 0.019844 0.0000 Y 

HMN -0.00791 0.0000 Y -0.016638 0.0000 Y 

MSADY.PK -0.025048 0.0000 Y 0.014811 0.0000 Y 

PGR -0.025225 0.0000 Y 0.049551 0.0426 Y 

RLI -0.002015 0.2162 N 0.037256 0.8055 N 

SAFT.O -0.000527 0.3162 N 0.016847 0.0000 Y 

SIGI.O -0.005845 0.0000 Y 0.009847 0.9741 N 

UFCS.O 0.001617 0.5447 N 0.015236 0.8801 N 

UVE 0.057387 0.0000 Y 0.028094 0.0000 Y 

WTM -0.011661 0.0000 Y -0.007942 0.0000 Y 

WRB 0.009236 0.0166 Y 0.083442 0.0461 Y 
   

IXIC 0.007792 0.1774 N 0.036177 0.7093 N 

DJI -0.0037810 0.0000 Y 0.0247010 0.9033 N 

SPX -0.001374 0.7233 N 0.025828 0.6280 N 
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as catastrophic losses remain within the insurance company’s reinsurance plan, they 

don’t impact the company financially. Secondly, several of the chosen insurance 

companies did not have insured losses where catastrophes hit. For example, WTM, 

had no coverage in the area where Tropical Storm Lee hit. Likewise, SAFT.O 

provides coverage in a limited number of U.S states namely, Massachusetts, Maine, 

and New Hampshire whereby only 18 natural disasters out of the chosen 164 affected 

these states during the chosen timeframe.  

Conversely, 64% of the stocks witnessed positive change in volatility when 

applying one-month post-disaster dummy variable for the out-sample period. The 

increase in volatility observed is in line with the studies conducted by Thomann 

(2013), Wang and Kutan (2013) and Bourdeau-Briena and Kryzanowskib (2017) and 

this can be explained through a multitude of factors. First and foremost, claims 

incurred due to natural disasters influence insurers’ financial liabilities hence, 

impacting the insurer’s solvency. To illustrate, as a result of the concentration of 

natural disasters in the Midwest area during Q1 2020, both the net income and 

property-casualty underwriting income of CINF.OQ, in addition, their stock prices 

decreased by approximately 25%. Similarly, due to consecutive storms in April 2020 

and while SIGI.O observed high net premium written, these earnings were offset by 

higher catastrophe losses. Thus, the insurer observed a 65% decrease in their bottom 

line. Specifically with regards to floods, due the high number of floods, WRB had to 

pay significant claims due to "business interruption" insurance as it is difficult to get a 

flooded plant, factory or business operational. Secondly, following a natural disaster, 

we might witness supply/demand shifts related to increase in premiums. Thus, the net 

effect of the claims incurred and increase in premium might be studied through the 

resulting insurer stock price performance after a natural disaster. Irrespective which effect 
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dominates, the stock prices related to exposed insurers are more likely to be adversely 

impacted relative to unexposed insurers. To exemplify, in 2020 with the increase in 

wildfires, hurricanes and tornadoes, CB, FNHC.O and CINF.OQ have all had 

premium increases and cutting coverage on less profitable policies in order to sustain 

their stock price performance.  

Lastly, when applying a 3-month post-disaster dummy variable, 41% of stocks 

witnessed a decrease in volatility during the in-sample period whereas 27% observed 

a positive change in volatility. As for the out-sample period, 9% of stocks witnessed a 

decrease in volatility during the out-sample period as opposed to 36% witnessing a 

positive change in volatility. Thus, in summary the results when applying the 3-month 

dummy variable are coherent with the one-month dummy variable whereby during the 

in-sample period, volatility is more likely to be negatively impacted by natural 

disasters and during the out-sample period, the majority of stocks’ volatility are 

positively impacted by natural disasters. 

4.5. Value at Risk (VaR) and Back Testing  

The following section highlights the estimation of the value at risk (VaR) for 

Dow Jones U.S Property and Casualty Insurance Index (DJUSIP) at various 

confidence levels (90%, 95%, 97.5% and 99% CLs) and in subsequently applying the 

related Kupiec Likelihood Ratio Test, which is used to check the model’s efficiency 

by back testing the estimated VaR results. 

 4.5.1. Estimating the Variance Using Rolling Window 

The number of simulated VaR chosen is 250 days however since the rolling 

window procedure is performed for each and ever time interval of 400 days, we are 



90 
 

required to obtain an additional 400 days of incremental data of the index’s daily 

price. Thus, the the rolling window chosen extends from 06/06/2018 till 03/06/2019 

leading to 650 daily prices ranging from 06/06/2018 till 31/12/2020. The rolling 

window was chosen based on the out-sample period, 01/01/2018 to 31/12/2020, 

whereby we chose the most recent 650 trading days in the out-sample. Subsequently, 

the ‘rolling returns’ for the chosen index are calculated based on the previously 

obtained ‘rolling prices’ leading to a total of 399 returns. Consequently, the daily 

variances are estimated 399 times using the ‘rolled returns’ and the selected 

parameters. 

Similar to the calculation applied within sections 4.1 and 4.2 in order to 

identify the optimal model, the same steps were followed for DJUSIP. The outcome 

yielded IGARCH (1,1) as the optimal model. Therefore, the optimal volatility model 

for the index is integrated into the rolling window procedure to compute the variance 

99,750 times (399 x 250). Particularly, the parameters from the IGARCH (1,1) model 

are used to compute the variances. It is worth mentioning that we re-estimated the 

parameters to perform the calculations within this section. The resulting volatilities 

are obtained by taking the square root of the variance. 

4.5.2. Adjusting the Value of DJUSIP 

As proposed by Hull and White (1998), the “rolled” values obtained in the 

preceding subsection are updated using equation (20) from section 3.8.1 in order to 

adjust for volatility variations witnessed in the market. Accordingly, we generate 399 

scenarios for the dates between 06/06/2018 till 03/06/2019. Based on that, return 

scenarios are generated from the values computed. To illustrate, the return scenarios 

for the date 12/06/2018 is calculated as per equation (21):  
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Return on 12/06/2018 under 𝑖𝑡ℎ scenario = . .

. .
 

Whereby “𝑉  ” constitutes 1 of the 399 adjusted values noting that the 

scenario number “i” corresponds to 1 < i < 399. In order to obtain the percentage 

change in price, or the return in other words, the actual value of the DJUSIP on 

12/06/2018 is represented by “𝑉 . . ”, is subtracted from each of the obtained 399 

adjusted values and thus the results are divided by “𝑉 . . ”. 

4.5.3. VaR Calculation and Comparison with Actual Returns 

Once all return scenarios are generated for the period extending from 

06/06/2018 until 03/06/2019, the 90th, 95th, 97.5th and 99th percentiles of the loss 

distribution are calculated leading to 250 VaR estimates at each confidence level. 

Table 17 below presents the daily actual returns, the VaR estimates and number of 

exceptions at each confidence level. 

DJUSIP 

Day 1 2 3 4 5 → 246 247 248 249 250 

Date 06/06/20

18 

07/06/2

018 

08/06/2

018 

09/06/2

018 

10/06/2018 → 

28/05/2019 

29/05/2

019 

30/05/2

019 

31/05/20

19 

03/06/20

19 

VaR at 90% 

CL 

-0.902% -

0.854% 

-

0.934% 

-

0.936% 

… -1.29% -1.22% -1.19% -1.22% 

Exceptions  1 1 1 1 27 1 1 1 1 

VaR at 95% 

CL 

-1.21% -1.18% -1.27% -1.27% … -1.73% -1.68% -1.64% -1.67% 

Exceptions  1 1 1 1 12 1 1 1 1 

VaR at 

97.5% CL 

-1.49% -1.36% -1.56% -1.46% … -2.15% -2.11% -2.06% -2.10% 

Exceptions  1 1 1 1 10 1 1 1 1 

VaR at 99% 

CL 

-1.77% -1.72% -1.82% -1.85% … -2.57% -2.43% -2.38% -2.42% 

Exceptions 1 1 1 1 5 1 1 1 1 

Actual 

Returns 

0.01% 1.11% -0.89% 0.49% … -0.56% 0.51% 1.24% 0.00% 

Table 17: Illustration of the Actual Returns, Value at Risk, and Number of Exceptions Estimates for 
DJUSIP at the Different Levels of Significance between 06/06/2018 until 03/06/2019. 
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  The VaR results reflected in the table above, whereby “α” is 10%, 5%, 2.5% 

and 1%, related to the 90th, 95th, 97.5th and 99th percentile, respectively. The function 

used is calculated 250 times at each confidence level in order to determine the VaR at 

each of the 250 days included in the dataset. As illustrated in the table, it is evident 

that the VaR increases with each increase in the related confidence level. 

Subsequently, the actual return is then compared to each VaR estimated under each of 

the chosen confidence levels. On dates whereby the actual return exceeded the VaR, 

we recorded an exception. Figure 4 illustrates the outcome graphically comparing the 

actual returns with the VaR estimates across the entire 250-day sample period. 

 
Figure 5: DJUSIP Value at Risk vs Actual Returns for over the entire 250 days sampled  

4.5.4. Kupiec Test Results 

Complementary to what was defined in section 3.9.1, in order to evaluate the 

accuracy of the applied VaR model in estimating returns, we implement back-testing 

procedures, in this case the Kupiec Test. Accordingly, the level of accuracy is 

encapsulated in a single number known as the Likelihood Ratio (LRK) (refer to 

equation 23). The parameters required to estimate the LRK can be summed up as 

follows: the number of exceptions, probability of failure and number of VaR trials. 

‐20.000%
‐15.000%
‐10.000%
‐5.000%
0.000%
5.000%

10.000%
15.000%

DJUSIP: Actual Returns vs VaR (IGARCH(1,1) Volatility Weighted Historical 
Simulation)

Actual Returns 90% VaR 95% VaR 97.5% VaR 99% VaR
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The total number of exceptions, otherwise known as “X”, is calculated four times, 

once at each confidence level. Whereas, the failure rate “𝑝” refers to 10%, 5%, 2.5% 

and 1% for a 90%, 95%, 97.5% and 99% VaR respectively. Lastly, the total number 

of trials “T”, is 250. 

Seeing as the cumulative number of exceptions for the index at the 90% VaR 

confidence level is 27, thus, the respective 𝐿𝑅  can be calculated as:  

DJUSIP 𝐿𝑅  at 90% CL = -2ln 1 0.1 𝑥 0.1 2 ln 1  𝑥

40.88243 

Similar calculations are performed at each confidence level following the computation 

of the number of exceptions. The Kupiec Test results are illustrated in Table 18. 

Index 

Model 

Integrated 

into the 

Volatility 

Weighted 

Historical 

Simulation 

Method 

VaR 

Confidence 

Level 

Number of 

Exceptions 

Non-

Rejection 

Interval 

LRK 
Critical 

Value 
Outcome 

DJUSIP IGARCH(1,1) 

90% 27 [17 , 35] 0.173727 3.84 Accept 

95% 12 [7 , 20] 0.021324 3.84 Accept 

97.50% 10 [2 , 11] 1.958063 3.84 Accept 

99% 5 [0 , 5] 1.95681 3.84 Accept 

Table 18: The Kupiec Test Results of DJUSIP. 

The Kupiec Test outcome shows that the VaR provides a very accurate 

measure for the level of downside risk at all the confidence intervals, 90%, 95%, 

97.5% and 99% whereby the number of exceptions was within expectations. In order 

to further accurately quantify risk, the following subsection will apply further 
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elaborated tools such as the Extreme Value Theory (EVT). EVT was first used in the 

1920s and it provides better-fit distributions to fit extreme events. As opposed to VaR 

methodologies, no assumptions are made about the identity of the distribution of 

observations. Given that EVT aims to rectify downfalls faced by applying VaR, it can 

be very useful for predicting extreme-loss situations and crashes. 

4.6. Extreme Value Theory (EVT) 

Our aim is to illustrate the tail distribution estimation of DJUSIP’s daily 

returns for the period 01/01/2018 till 31/12/2020 and use the results to quantify 

market risk. The application has been executed using Stata. We will implement the 

peak-over-threshold methodology which involves following these steps: select the 

threshold u, fit the Generalized Pareto Distribution (GPD) function to the exceedances 

over u, compute interval estimates and lastly perform diagnostic checks.  

4.6.1. Selecting the threshold µ 

In order to begin applying the EVT estimation procedure, the first step is 

selecting the appropriate threshold u as it implies a proper balance between bias and 

variance. To illustrate, a value for u that is too small will lead to bias as the 

asymptotic assumption behind the estimation might not be satisfied.  Similarly, too 

high u will bring about a model categorized by large variance given that only few 

observations will be used to fit it. Having said that, to support the choice of u, we 

employ the mean excess plot, a graphical tool used in the selection of a threshold and 

we perform statistical analysis of the data in order to choose a u close to the 95th 

percentile of the empirical distribution. From a closer inspection of the figure 6 and 

the statistical data obtained we select a value of u= 0.0216354  
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Figure 6: DJUSIP mean excess plot to select the appropriate threshold.   

4.6.2. Model Fitting 

After selecting the appropriate threshold, it is now possible to fit the 

Generalized Pareto Distribution (GPD). There are numerous methods for estimating 

the scale parameter (𝜎), and shape parameter (𝜉) such as, Moment method, 

Probability Weighted Moments method, Pickands estimator and Maximum 

Likelihood method. However, the only method that extends directly to models 

incorporating non-stationarity and combines theoretical efficiency is the maximum 

likelihood method (ML). Accordingly, the ML estimates for the scale parameter (𝜎), 

shape parameter (𝜉) and the 95% confidence intervals are revealed in table 19 below: 

 

Parameter 
95% Lower 

Confidence Interval 
Estimate 

95% Upper Confidence 

Interval 

𝜉 -5.003474 -4.408875 -3.814276 

𝜎 -0.2601662 0.2484567 0.7570796 

Table 19: Maximum Likelihood estimates for fitting the Generalized Pareto Distribution (GPD) along 
with the 95% confidence intervals.  
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The scale parameter (𝜎) should always satisfy the condition 𝜎>0, thus based 

on the above, 𝜎 = 0.2484567. Additionally, the shape parameter ξ is associated with 

the behavior of the tail of the distribution and is associated with the rate of decay of 

the tail of the distribution. Having said that, the GPD comprises three known 

distribution types, depending on the value of parameter 𝜉. Based on the results 

obtained, when 𝜉< 0, the function is equivalent to a short-tailed Pareto distribution 

whereby the tail of the distribution is heavier than the normal distribution.   

4.6.3. Diagnostic Plots 

We then proceed to perform diagnostic checks on the accuracy of the fitted 

GPD at the selected threshold. Figure 7 presents the probability–probability (PP), 

quantile–quantile (QQ) plot, density plot and return plot. The PP plot exhibits a 

generally linear trend. Moreover, the QQ plot shows that the points of the 

exceedances do not diverge significantly from the linear trend except after the 

selected threshold. Additionally, a convex-shaped QQ plot (i.e starting bottom left and 

curving round to the right) indicates a thinner tail with 𝜉 < 0, coherent with the 

outcome achieved. With regards to the density plot, it is consistent to the fitted 

histogram particularly at the extreme tail. The return level plot reflects a graph of the 

empirical estimates of the return level function plotted against the estimated return 

levels from the fitted model. Accordingly, it can be observed there are no significant 

departures from the curve and the majority of the points lie approximately on the line. 

In general, we can conclude that the diagnostic plots show satisfactory support for the 

fitted GP distributions.  
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Figure 7: Diagnostic check using probability–probability (PP), quantile–quantile (QQ) plot, density plot and 
return plot. 

4.6.4. Estimating Value at Risk (VaR) and Expected Shortfall (ES)  

EVT is integrated into our thesis in order to remedy deficiencies observed in 

VaR, as it estimates the likelihood of extreme values by assuming a separate 

distribution for extreme losses. In addition, we incorporated expected shortfall (ES) as 

it is the expectation of loss that is beyond the VaR level. To calculate VaR using EVT 

we use the below equation:  

𝑉𝑎𝑅 𝜇  1 𝑞 1   (24) 

Whereby, 𝜇 is the threshold selected, 𝜎 is the scale parameter, 𝜉 is the shape 

parameter, n is the sample size, 𝑛  is the number of observations above the threshold 

and q is the chosen confidence interval. Accordingly, at 95% and 99% confidence 
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interval, the VaR was estimated to be 2.33% and 7.79%, respectively. Thus, we are 

95% (99%) confident that our loss will not exceed 2.33% (7.79%) within the given 

time horizon.  

According to Hull (2012), ES estimates “if things do get bad, how much can 

the company expect to lose?”. Hence, in order to calculate the ES, equation (25) is 

applied: 

𝐸𝑆
 ∗  

  
   (25) 

Based on the VaR, the ES was estimated to be 6.79% and 7.80%, respectively at 95% 

and 99% confidence level. Table 20 below summarizes all parameters used to 

calculate the VaR and ES at both interval levels:  

Parameter Scenario 1 (95% 
Confidence Level)

Scenario 2 (99% 
Confidence Level)

𝜇 0.0216 0.0216 

𝜎 0.248457 0.248457 

𝜉 -4.408875 -4.408875 

𝑛 755 755 

𝑛  38 38 

𝑞 95% 99% 

VaR 2.33% 7.79% 

ES 6.79% 7.80% 

Table 20: Value at Risk (VaR) and Expected Shortfall (ES) parameters used at 95% and 99% confident 
level, respectively.   

Having said the above, when comparing the VaR estimated using EVT, we 

note that the values are lower. As estimated in the previously, VaR is 9.833% and 

15.29% at 95% and 99% confidence interval, respectively. Given that the volatility 

adjusted VaR is higher, we can conclude that the model is overestimating the loss. 
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To conclude, Chapter 4 had systematically presented the study’s detailed 

findings under each of the chosen volatility models, for the chosen periods. Next, a 

dummy variable was employed to measure the impact of natural disasters on the 

chosen stocks and indices. Furthermore, VaR was calculated, and the model’s 

accuracy was assessed using Kupiec Test. Lastly, in order to provide well-rounded 

risk measures, we incorporated Extreme Value Theory (EVT) into our calculations as 

it assumes a separate distribution for extreme losses in order to estimate the 

probability of extreme values and estimate VaR and ES. Chapter 5 concludes and 

provides the related recommendations.  
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Chapter 5: Conclusion and Recommendations 

5.1 Summary and Review of Results 

Given the highly destructive, costly and impactful nature of natural disasters, 

coupled with their growing importance in capital markets, the need to forecast their 

impact on volatility has become increasingly imperative. Thus, the significance of a 

wide study encompassing the behavior of capital markets with respect to natural 

disasters has become climacteric as it unveils unknown characteristics and improves 

existing findings. Hence, this thesis contributes to existing literature by bringing up to 

date the current research around modeling the impact of natural disasters on U.S 

Insurance Companies and Indices stock price volatility through a spectrum of 

GARCH-type volatility models. It also aims to calculate the maximum loss at various 

confidence intervals using Value at Risk and Extreme Value Theory using up to date 

data for both stock prices and natural disasters.  

To begin with, this thesis assessed and presented the detailed findings under 

each of the chosen volatility models, GARCH (1,1), IGARCH (1,1), EGARCH (1,1) 

and GJR-GARCH (1,1) for the in-sample period ranging between 01/01/2010 till 

31/12/2017. After calculating the volatilities of nineteen U.S insurance stocks (Chubb 

Limited, Progressive Corp, MS&AD Insurance Group Holdings, Cincinnati Financial 

Corporation, W. R. Berkley Corp, American Financial Group, Inc., RLI Corp, 

Selective Insurance Group Inc, White Mountains Insurance Group Ltd, Horace Mann 

Educators Corporation, Argo Group International Holdings Ltd., Safety Insurance 

Group, Inc., United Fire Group, Inc., Universal Insurance Holdings, Inc., HCI Group 

Inc., Donegal Group Inc., Global Indemnity Group LLC, FedNat Holding Company 

and Hallmark Financial Services, Inc.) and three U.S stock indices (S&P 500, Dow 
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Jones Industrial Average and Nasdaq Composite) within the in-sample period using 

the volatility models, we proceed to compute the realized volatility. Subsequently, the 

forecasted volatilities under each of the chosen volatility models were compared to 

the realized volatilities using three error metrics MAE, RMSE and MAPE in order to 

determine the optimal model for each insurance company and index.  

Results showed that the Integrated-GARCH (1,1) has proven to be the optimal 

model for the majority of the chosen insurance companies, CB, RLI, SIGI.O, 

ARGO.K, SAFT.O, UVE, DGICA.O and FNHC.O. On the other hand, the 

Exponential-GARCH (1,1) model performed best for a substantial number of 

insurance companies, particularly, AFG, UFCS.O, GBLI.O, HALL.O and the chosen 

stock indices (SPX, IXIC and DJI). As for the remaining stocks, PGR, MSADY.PK, 

CINF.OQ, WRB, WTM, HMN and HCI, the GARCH (1,1) and GJR-GARCH (1,1) 

proved to outperform other models.  

Moving forward, the same calculations applied for the in-sample period were 

applied to the out-sample period which ranges between 01/01/2018 till 31/12/2020.  

The sole change that was applied is that the in-sample parameters obtained were used 

to forecast the conditional volatilities for the out-sample period.  Subsequently, the 

optimal model was chosen based on the outcome of error metrics selected for both the 

in-sample and out-sample periods. The results reflected homogeneity among the 

indices, SPX, IXIC, DJI and two insurance companies, AFG and UFCS.O whereby 

the EGARCH model was proven to perform best for both the in-sample and out-

sample period. In addition, the EGARCH model was also the most accurate model for 

RLI, SIGI.O, ARGO.K, UVE, DGICA.O and FNHC.O but only for the out-of-sample 

period given that the IGARCH performed better during the in-sample period. Among 
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all of the chosen stocks, IGARCH out-performed other models for SAFT.O for both 

in-sample and out-sample periods. Alternatively, IGARCH performed best for the 

out-sample period of HMN and GBLI.O whereby GARCH and EGARCH performed 

better during the in-sample period, respectively. With regards to the remaining stocks, 

the GARCH (1,1) model proved to be the best performing model for both in-sample 

and out-sample period for PGR, WRB, WTM and HCI. Specifically, for the out-

sample period, the GARCH model out-performed other models for CB, MSADY.PK 

and CINF.OQ while the IGARCH (1,1) and GJR-GARCH were chosen for the in-

sample period, respectively. Lastly, the GJR-GARCH is the optimal model for 

HALL.O for the out-sample period.  

Next, after determining the optimal model for the in-sample and out-sample 

periods, we set the pre-disaster period to 0 and to 1 for both the- one month and three-

month post disaster periods. The chosen period is crucial as it may take up to a few 

months following the natural disaster for the catastrophe-induced volatility peak is 

reached. It is worth mentioning that we used the optimal GARCH model for each of 

the chosen stock and indices in the in-sample and out-sample period. The outcome 

obtained highlighted the fact that during the in-sample period, volatility was more 

likely to be negatively impacted by natural disasters and during the out-sample period, 

the majority of stocks’ volatility were positively impacted by natural disasters. When 

investigating the changes, we note that the negative impact on volatility is due to the 

fact that reinsurance coverage offsets losses incurred by insurance companies and the 

fact that several of the chosen insurance companies did not have insured losses where 

catastrophes hit. On the other hand, positive impacts on volatility are mainly because 

claims incurred due to natural disasters influence insurers’ financial liabilities hence, 

impacting the insurer’s solvency. Moreover, following a natural disaster, we might 
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witness supply/demand shifts related to increase in premiums. Thus, the net effect of 

the claims incurred and increase in premium might be studied through the resulting insurer 

stock price performance after a natural disaster. Irrespective which effect dominates, the 

stock prices related to exposed insurers were more likely to be adversely impacted relative 

to unexposed insurers.  

Furthermore, using the Rolling Window procedure and by incorporating the 

optimal model into the Volatility-Weighted Historical Simulation method, the Value 

at Risk (VaR) was estimated for 250 days between 06/06/2018 till 03/06/2019 at four 

confidence levels (90%, 95%, 97.5% and 99% confidence levels) for Dow Jones 

Property & Casualty Insurance Index (DJUSIP:DJI). The computed VaR results were 

then compared to actual returns in order to determine the number of days/exceptions 

in which actual returns exceeded VaR estimates across the 250 days period. Lastly, 

the Kupiec Test was performed using the number of exceptions produced to assess the 

accuracy of the VaR model in estimating the returns of the chosen index at each 

confidence level. The outcome of The Kupiec Test reflected that VaR provides a very 

accurate measure in determining the level of downside risk at all confidence intervals 

90, 95% 97.5% and 99% whereby the LRK values were below the critical value of 

“3.84”. Lastly, in order to provide well-rounded risk measures, we incorporated 

Extreme Value Theory (EVT) into our calculations as it assumes a separate 

distribution for extreme losses in order to estimate the probability of extreme values. 

Accordingly, at 95% and 99% confidence interval, the VaR was estimated to be 

2.33% and 7.79%. Based on the VaR, the Expected Shortfall (ES) was estimated to be 

6.79% and 7.80%, respectively at 95% and 99% confidence level. When comparing 

the VaR obtained through EVT and the volatility adjusted model, we note that the 
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volatility adjusted model yielded a higher VaR thus, we can conclude that the model 

is overestimating the loss.  

5.2. Outcome of the Research 

Recent literature examines the short-term impacts of natural disasters on 

capital markets and reaches opposing conclusions. While some studies maintain that 

returns are not affected by these events (e.g., Worthington, 2008; Wang & Kutan, 

2013), others conclude that natural disasters remarkably affect stock returns (e.g., 

Worthington & Valadkhani, 2004). Thus, the findings of this thesis are 

unconventional to those of previous research, as this thesis is the first and most recent 

to examine the volatility of nineteen U.S insurance companies and three U.S stock 

indices along with the Value at Risk for the Dow Jones Property & Casualty 

Insurance Index all together, specifically with the application of multiple GARCH 

Models and the Volatility Updating Historical Simulation Method for VaR in addition 

to incorporating EVT into our calculations.  

Most recently, Michael Bourdeau-Briena and Lawrence Kryzanowskib (2017) 

concluded that conditional volatility increases following floods, hurricanes, severe 

winter weather and episodes of extreme temperature and opted for a parsimonious 

GARCH(1,1) model. In addition, Wang and Kutan (2013) employed GARCH dummy 

variable methodology, and provided evidence that disasters increase volatility on the 

U.S. market but have no impact on the Japanese market and chose EGARCH as the 

optimal model for their dataset, based on the highest log-likelihood value. However, 

as per the outcome of this thesis, after employing the dummy variable one-month and 

three-month after the date of occurrence of the disaster, it was observed that volatility 

is more likely to be negatively impacted by natural disasters during the in-sample 
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period, while the majority of stocks’ volatility are positively impacted by natural 

disasters during the out-sample period. Additionally, the best performing model for 

this thesis was the IGARCH during the in-sample and out-sample periods. 

Subsequently, the EGARCH model performed best for a number of insurance 

companies, particularly, AFG, UFCS.O, GBLI.O, HALL.O and the chosen stock 

indices (SPX, IXIC and DJI) during the in-sample period and the results reflected 

homogeneity among the indices (SPX, IXIC, DJI) and two insurance companies 

(AFG and UFCS.O) whereby the EGARCH model was proven to perform best for 

both the in-sample and out-sample period. In addition, the EGARCH model was also 

the most accurate model for RLI, SIGI.O, ARGO.K, UVE, DGICA.O and FNHC.O 

during the out-sample period. 

Based on the above, it is remarkable to note that till date, no study has 

investigated the impact of natural disasters on the behavior of U.S insurance 

companies and indices stock volatility along with their Value at Risk. Therefore, this 

thesis complemented previous research and built upon them by adding the Value at 

Risk model to calculate the worst possible loss at various confidence intervals. Based 

on the results obtained, it is evident that the VaR increases with each increase in the 

related confidence level.  

It is expected to observe certain discrepancies in outcomes given the 

unexpected nature of natural disasters. The outcome is also affected by the number of 

stocks considered and models employed in the research. As evidenced from the 

available review of literature, minimal to no effort has been devoted for the U.S 

property liability insurance industry as most of the previous research focused solely 

on the market as a whole or companies outside the insurance industry, whereby the 



106 
 

majority of the papers integrated no more than two volatility models. A different 

justification may be linked to the time frame employed, as most of the previous 

research were conducted no less than 4 years ago and from which various periods 

were chosen. Worthington (2008) examined the behavior of Australian Stock 

Exchange All Ordinaries index over a 23-year period ranging from 01/01/1980 till 

30/06/2003. Wang and Kutan (2013) considered the period from 11/09/1989 till 

08/04/2011. Lastly, Bourdeau-Briena and Lawrence Kryzanowskib (2017) used the 

data for the period extending from 01/01/1990 till 30/06/2015. Therefore, this thesis 

has investigated the behavior of the 19 U.S insurance stocks, 3 U.S indices, a 

property-liability composite index for VaR and EVT and 252 natural disasters, over 

the period extending from 01/01/2010 till 31/12/2020, which makes its dataset 

comprehensive, exhaustive and novel. 

Based on previous research, it remains vague why certain firms experience a 

positive impact from natural disasters while others experience negative consequences. 

However, when we employed the dummy variable and investigated the reasons, we 

note that the decrease in volatility following a natural disaster is due to the fact that 

reinsurance coverage offsets losses incurred by insurance companies. Hence, the 

company becomes well positioned to provide coverage following natural disasters 

without witnessing adverse changes in market prices following disasters. Moreover, 

several of the chosen insurance companies did not have insured losses where 

catastrophes hit. On the other hand, volatility increases following natural disasters due 

to multiple reasons. First and foremost, claims incurred due to natural disasters 

influence insurers’ financial liabilities hence, impacting the insurer’s solvency. 

Additionally, following a natural disaster, we might witness supply/demand shifts 

related to increase in premiums. Thus, the net effect of the claims incurred and increase 
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in premium might be studied through the resulting insurer stock price performance after a 

natural disaster. Irrespective which effect dominates, the stock prices related to exposed 

insurers are more likely to be adversely impacted relative to unexposed insurers. 

5.3 Limitations  

This thesis has potential limitations. A particular limitation is that with the 

majority of research in this area, the analysis on the impact of natural disasters has 

been made in segregation from other effects, such as macroeconomic, political and 

calendar announcements. While this simplifies research, it is tricky as natural 

disasters may be vulnerable to contamination caused by macroeconomic 

announcements independent of the disaster or catastrophe itself. For example, Shelor 

et al. (1992) analysis of the 1989 Loma Prieta earthquake compromised the outcome 

of the research as it failed to take into consideration the lowering of official US 

interest rates two days later.  

Moreover, multiple property-liability insurance companies were excluded 

from the dataset as there was no sufficient data for the chosen timeframe (01/01/2010 

till 31/12/2020) and there are many property-liability insurance companies that are 

private and thus, these could not be included. Therefore, the dataset used could have 

been wider and more inclusive. 

5.4 Future Recommendations 

In an era whereby natural disasters continuously cause severe damage to 

disruption to financial activity, global economies and international trade, insurance 

companies have become acutely sensitive to volatility and downside risks. 

Throughout the various sections of this thesis, several questions can be raised that 
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could be of interest for future research with regards to the impact of natural disasters 

on capital markets. 

The first involves the comparison of the impact of natural disasters across 

international markets. A considerable amount of literature already exists for U.S 

markets however, a comparison between national and international markets, such as 

Australia, EU countries, United Kingdom and Japan, would stipulate whether or not 

natural disaster effects are confined to national markets or have the ability to impact 

global economies. 

Another captivating area for future research would be to use the outcome of 

this thesis to pave the way for better hedging techniques. The increasing demand for 

borrowing to cope with the increasing cost of losses due to natural disasters paired 

with stagnant budgets create a liquidity squeeze for all the institutions involved once a 

natural disaster hits.  Accordingly, the possible use of catastrophe hedges, such as 

catastrophe bonds, can provide post-disaster reconstruction financing.  

A concluding recommendation for potential areas of study in this field would 

include a comprehensive analysis of the catastrophe modelling tools utilized by 

insurers and reinsurers. While currently, there are no standardized risk modelling 

techniques, it would be intriguing to examine the tools being used to pinpoint 

impending risks and how the risk assumptions within these models are updated based 

on climate change threats. It is now as crucial as ever to create better meteorological 

forecasting tools along with emergency management plans in order to mitigate the 

adverse effects of natural disasters that are significantly increasing in frequency and 

severity. Thus, it is important for financial policymakers and regulators, to unite, 
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communicate and generate disaster recovery plans that can be implemented to provide 

quick, flexible and effective contingency plans/responses to these events.  
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