THE FRAGMENTATION PROBLEM
IN

DISTRIBUTED DATABASES

By

Nazih E. Khahl

A thesis

Submitted in Partial Fulfillment of
the requirements for the Degree of
Master of Science in Computer Science

Department of Computer Science
Faculty of Natural and Applied Sciences

Notre Dame University — Louaize
Zouk Mosbeh, Lebanon

July 1999

THE FRAGMENTATION PROBLEM
IN

DISTRIBUTED DATABASES

Nazih E. Khalil

Approved:

Marie Khair, Assistant Professor of Computer Science.
Advisor.

Georges M. Eid, Professor of Mathematics,
Dean of Faculty of Natural and Applied Sciences.
Member of Committee.

Fouad Chedid: Associate Professor of Computer Science,
Chairperson of the Department of Computer Science.
Member of Committee.

Khaldoun El Khaldi, Assistant Professor of Computer Science.
Member of Committee.

Date of thesis defense: Tuesday July 6, 1999.

This thesis is dedicated to my family,

My parents Elias and Laurice,

My sister and her husband Lauretta and Alfred Maksoud,
My brother Sami.

ACKNOWLEDGMENT

For her patience and support, I am grateful to Dr. Marie Khair, Assistant Professor and my
advisor in achieving this work.

I would like also to thank Notre Dame University, Faculty of Natural and Applied Sciences
all its faculty and staff members, specially to Dr. Georges M. Eid, the Dean, Dr. Fouad
Chedid, Chairperson of the Department of Computer Science, and Dr. Jean Fares,
Chairperson of the Mathematics Department for their encouragement and support.

Colleagues really helped me, I hope they know how much I value that help. In particular are
Mr. Salam Chouery, my sister Mrs Loretta Khalil Maksoud and her husband Alfred, Dr. Fady
Said and his wife Rita who provided me some of the needed references from the United
States and Canada; Mr. Raymond Al Chabab, Mr. Dory Eid and Mr. Jean Mina who gave me
comments on my thesis.

Nazih E. Khalil

ABSTRACT

Data fragmentation is a heuristic problem in the design of a distributed database. Its
purpose is to maximize the locality of reference, minimize data access at remote site, and to
decrease the number of disk accesses in the system. In this thesis, we review the design a
homogeneous distributed database. As the design is a heunistic problem, we also review a
number of algorithms suggested as solutions to the three types of fragmentation: vertical,
horizontal or mixed. Next, we propose that a previously implemented routine entitled “a
transaction-based vertical partitioning algorithm” can be implemented when fragmenting the

database horizontally. Finally, a simulation of the proposed technique is presented.

An accepted paper, in the 10" International Conference and Workshop on Database and
Expert Systems Applications (DEXA’99) held in the University of Florence - Italy, entitled
“Availability and Reliability Issues in Distributed Databases Using Optimal Horizontal
Fragmentation” by Khair M., Khalil N. and Eid D.

TABLE OF CONTENTS

List of Abbreviationsccccceevuveeeieceveeeennnn,
List of Algorithms....

LASE OF FIGUIES. ..ottt baes s s s s b st saeesee e e e s erae e seeseeene s s seneneeseees

List of Tables......................
Chapter I- Defining the Problem......
Chapter II- Preliminarily Notions...........c.c.......

2.1 Notion of Databases...
2.2 Notions of D1stnbuted Databases

2.3 Comparison between Centralized and Dlstnbuted Database

Chapter I1I- Fragmentation Design Methodology.............

Chapter I'V- The Vertical Fragmentation Techniques...............ccc.............

s I B 3 (o 1 L R

A2 OVEIVIEW ...t ettt e ettt oot

Chapter V- The Horizontal Fragmentation TecChNiques............c.ceuevvrrersenesneressenns

5.1 DefIMITON ...t e e
D ZIOVEIIERD. . o cvsisrivo i s S e o R S S e e

Chapter VI- Algorithms for the Mixed Partitioning.....

6.1 DRIMIION .o st s e s
6.2 OVEIVIEW ...ttt et e e er e ee e e e e e e ee e ee e et et et et

w51

st
st
o 1

Chapter VII- A Proposed Horizontal Fragmentation Algorithmccccccveveueereeenennn.

7.1 Introduction... .
7.2 Solving the Proposal

7.3 Simulation of the Algonthm
T4 SUIMIMBLY ..ottt et es ettt ee st e e sea e eeeeee e eene

Chapter VIII- Conclusion and Future Work..........cccvvceeernnnnnen
RIPECIOH O scrivissinasisisssiiaonesiisising

Appendix - Source Code........ccouunnn

N I S R T

34
.34

... 44
.. 44

i 7
.58
veen 60

(=2

a a

-..16
.. 16

16
32

34
40

44
50

56

LIST OF ABBREVIATIONS

.. Attribute affinity matrix

... Attribute affinity graph
... Attribute usage matrnix
... Binary vertical partitioning

............................ Cluster attribute affinity matrix

o . Centralized database
Cluster prechcate affinity matrix

... Complex physical structure

... Database administrator

... Database management system

; ..Distributed database

. Distributed database management system
... Distributed directory management
... Global database administrator
... Local database administrator

... Non-overlapping partitions
...Overlapping partitioning

... Partition evaluator

"""ffﬁ...,....::Iﬁffﬁﬁﬁfffffﬁﬁffffﬁfﬁfffﬁffﬂ..ﬁﬁfffﬁfffﬁﬁﬁfﬁﬁﬁfffffﬁfﬁff'ﬁredicaxe affinity matrix

... Predicate usage matrix
ettt et s et eeaeenae s .. Relational database
Structured Query Language

Algo 1:

Algo 2:
Algo 3:
Algo 4:

Algo 5:
Algo 6:
Algo 7:
Algo 8:

LIST OF ALGORITHMS

Vertical graphical partitioning.......... NP Py Pl weredd
Non-overlapping partitioning ... w27
Cluster algorithm needed for NOV o A
Optimal vertical binary parlmonmg #30

Horizontal graphical fragmentahon
Bty HOreomtal DATBONIIE . .« oemsimsiss e s e s s i
Checking the completeness of a mixed fragmentation schema......................c.co.....
Proposed horizontal algonithim.............ccoiiiiiiiiiiiiecc e

11

.38

40

.49

LIST OF FIGURES

Figure 1: Centralized database network............... R R R D R s R T eres 3
Figure 2: Distributed database architecture.oocooviiiiviiiiiic e 4
Figure 3: Relationsiip among DDB OB ... rasimsssiv 9
Figure 4: Taxonomy of distributed data SyStems.ccc.oovevvviviiiiiicicieeccce e 9
Figure 5: A typical DDBMS ArChiteCture.voovivimiiiiiiiiieiiiiece e 11
Figure 6: DDB design methodology. ... R e e R S e S L
Figure 7: Divide and conquer tool envromnent S R e
Figure 8: An affinity graph of Table 3... S |
Figure 9: Result of the vertical graph algonthln ofF1gure 8 S A s L
Figure 10: A counter example to Algo 1 .. T 25
Figure 11: A connected graph example.... RO |
Figure 12: Methodology for the vertical fragmentatlon algonﬂlms .. 32
Figure 13: Clustering of predicates of Table 11 .. e 39
Figure 14: Methodology of horizontal ﬁagmentatton algonthrns e 1
Figure 15: Representation of grid Cells...........cccovvuiiiociiiiiicieiieicce e 45
Figure 16: Reasonable and unreasonable cuts of a relation.............c...cccooveviiiicercecccccnn, 52

Figure 17: Cost region for unreasonable Cut..............cccoovverieeiieicececee e 93

v

LIST OF TABLES

Table 1: Comparison between DDB and CDB................ccoovvomiieeeeeeeeeeeee oo, 12
Table 2: A typical attribute usage matrix and a site matriX.c.ccocovvvivieoeieeiese 17
Table 3: An attribote affnity AN .c...omainammmmani s 18
Table 4: A clustered attribute affinity matiixX ..o, 18
Table 5: Evaluation sets for the overlapping and non-overlapping fragments. 19
Table 6: BVP cut points for nonoverlapping and overlappingc.ccccooooevevevvnnenennnn, 20
Table 7: Calculating the weight for the objective functioncccooevoveeevvieeeeeen, 20
Table 8: Calculation of the cost index and segment SCaN.............cccevviveuiiveeiieeeeeieceieeeen. 21
Table 9: Comparison table of the vertical algorithms...................cocevveeeeciereeieieee oo 33
Table 10: A predicate usage matrix36
Table 11: A predicate affinity matrix of Table 10 w1th 2 symbols T
Table 12: A predicate term schematic table... . 39
Table 13: A predicate affinity matrix ofTable 10 mthout 2 symbols TN 4]
Table 14: Comparison table for the horizontal algorithmsccooeveeiivovisorereo . 43

CHAPTER I- DEFINING THE PROBLEM

Designing a distributed database (DDB) is an optimization task requiring solutions to
several interrelated problems including data fragmentation, data allocation and data access
optimization remotely and locally [8,9,22]. Divide and conquer techniques are adapted to
bring solutions to this problem.

Researchers provided suggestions to one or more of the mentioned problems namely
data fragmentation, data allocation and data access optimization remotely and locally. The
aim behind these suggestions is to improve the overall system performance. Data
fragmentation, if well handled, achieves this goal by increasing the locality of reference,
decreasing the data access at remote site and decreasing the number of disk accesses. Data
fragmentation 1s a heuristic optimization problem which splits a database into parts known as
fragments. The problem is to find an optimal number of fragments in order to keep the
specified aim. Researchers provided a set of perspectives and algorithms as solutions to the
three types of fragments vertical, horizontal or mixed.

A vertical algorithm having a complexity of O(?), having » number of transactions,
has been proven to provide an optimal number of fragments having a better performance
compared to the other suggested algorithms [12]. We propose that the application of this
algorithm can be implemented in case of a horizontal partitioning.

This thesis is composed of eight chapters. Chapter II is an evolution notion to the
implementation of DDB systems. Chapter III focuses on the design methodology of data
fragmentation. Chapters IV, V and VI review and discuss the different provided algonthms
to the vertical, horizontal and mixed partitioning, respectively. Chapter VII is a proposed
horizontal algorithm which provides an optimal number of fragments followed by a

simulation of the algorithm. The conclusion and future work are the essence of chapter VIIL.

CHAPTER II- PRELIMINARILY NOTIONS

2.1 NOTION OF DATABASES
2.1.1 Definition
Databases and database technology are having a great impact on the use of computers.

Databases are incorporated in different fields such as business, engineering, medicine, law,
education and others. As the importance of database is increasing, it is better to know the
meaning of the term. A database is a coherent collection of data with some inherent
meaning, 1.e., recorded facts. Thus, a random assortment of data cannot correctly be referred
to as a database. A database is designed, built and populated for a specific purpose. It has an
intended group of users and some preconceived applications in which these users are
interested. A database has some source from which data are derived, some degree of
interaction with events in the real world, and an audience that is actively interested in the

contents of the database [15,16,17].

2.1.2 Historical Background
Before the year 1960, data were read in a sequential order. Afterward, the non-

sequential access became feasible. Between the 1960 and 1980, the entity relationship model
was developed. During this era, the concept of data communication networks and centralized
databases (CDB) were implemented using some commercial database management systems
(DBMS) such as INGRES and the structured query language (SQL). After the 1980, the
client/server architecture for DDB models was implemented. Also in this period, powerful
commercial DBMS like DB2, Oracle, Informix were adopted. These architectures altered the
known meaning of database that contains not only data but also a complete definition of the
database. This definition is stored in the catalog. It contains information such as the
structure, the type and storage format of each data item. The information stored in the

catalog is called meta-data. Databases provide data independence, a separation between data

11

and programs, i.e., database access applications and data (including meta-data and data) are
written independently. Further, a database should support multiple views of data. It typically
has many users, each of whom requires a different perspective of view of the database. A
view may be a subset of the database and/or may contain virtual data that is derived from the
database but it is not explicitly stored. Obviously, it must allow multiple users to access the
database at the same time and share the data. This accessing process is controlled by
concurrency control software to ensure that if several users are trying to update the same data
then it is achieved in a controlled manner. These characteristics are easily achieved through
the use of a DBMS, a combination of the database and sets of software programs that handle
features of the data such as creation, insertion, update, deletion, query, concurrency control
according to a user request and data recovery [15,16,17].

Data communication topology, known as network, is required to access the data
stored at remote sites. A computer network is a collection of autonomous computers that are
capable of exchanging information. As the network topology is beyond the scope of this
study, we are sufficient to this definition. A more detailed explanation of computer network

topologies and their implementations can be found in [6,15,30].

2.1.3 Centralized Databases
CDB systems are first kinds of a

database system using a network

topology. Their components, accessed

Communication
Network

by Ranet: termmﬂls’ e hE sl Figure 1: Centralized database network.
single site. These components include

secondary storage, the DBMS, and the data. Figure 1 is a typical CDB having five sites
where the components are located at site 1. As CDB is a brand of database, not only it

inherits all the characteristics of a database mentioned in the previous section, but also it has

11

its own specifications. All users in a CDB environment access the latest update of the data. It
controls redundancy by reducing the duplication of data as much as possible. It enforces
consistency and integrity constraints on the database. Without forgetting the security
constraints, CDB confrols unauthorized accesses, i.e., the security on the database is
maintained and supervised by a database administrator (DBA). Further, CDB provides
backup and recovery of the database at least to the moment where the system has started

[15,16,17,28].

2.2 NOTIONS OF DISTRIBUTED DATABASES
DDB, a new trend of database, is evolving rapidly. It is a result of two opposite

concepts: database systems and computer network technologies. As mentioned earlier the
first states that data must be centralized. The second works against anything related to
centralization. It should be clear that the connection between these two methodologies is the
integration and not centralization. It is possible to achieve integration without centralization

and this is what DDB system attempts to achieve [28].

2.2.1 Definition
There 1s no unique definition related 8 Site 5

Site 1

to the concept of DDB. Authors [28] state

Site 4 Communication Network

' _ Site 3 Site 2 _%
logically, interrelated databases that belong

Figure 2: Distributed database architecture.

that DDB is a collection of multiple,

to the same system but are physically spread

over (distributed) the sites of a computer network. Notice the given citation is vague. It
emphasizes mainly the type of databases, their locations and the need of a computer network.
The authors [28)] have omitted other important components along with their interactions.
Therefore, Ceri ef. al. [6] elaborate the previous definitions and clarify that a distnbuted

database is a collection of related data which are distributed over different sites of a computer

iv

network. Each site of the network has autonomous processing that is capable of performing
local applications. Furthermore, each site participates in at least one global application,
which requires accessing data at several sites connected via a network topology [3,6,28].

Notice the word ‘distributed’ is repeatedly used because it is important to distinguish
a DDB and a collection of files located at different locations. DDB is not a “collection’ of
files that can be stored at each site of a computer network. To form a DDB, data should be
logically related to the same system where the relation is defined according to a structural
schema e.g, relational model (Figure 2) [26,28]. Furthermore, distribution does not mean that
sites are geographically dispersed, processing units might be located in the same room each
having its own database connected via a network. If the database is located in a single
processing unit, the system becomes a CDB (Figure 1). Distribution is not restricted only to
data but also it involves the processing logic, the function of hardware and software, and the
control. In a word, distribution applies to the design and manipulation of the database
[3,6,7]. On the other hand, several models were suggested for the file problem to minimize
the overall cost function subject to the available secondary storage at each site. Further
details on the file allocation problem can be found in [1,11].

Two types distinguish the DDB: homogeneous and heterogeneous. The first type
resembles a CDB but instead of having the data stored at one site, they are distributed across
a number of sites in a network. The homogeneous design is developed using the top-down
model. The second type, heterogeneous DDB being as a recent trend is derived from
autonomous preexisting databases stored under different types of DBMS. The latter design
implements the bottom-up model. Such models have a certain degree of homogeneity
indicating the degree to which individual DBMS can operate independently [3,15]. It is

worth to mention that this study focuses on the first type, the homogeneous DDB.

2.2.2 Characteristics of Distributed Databases

Many aspects encourage the implementation of a DDB system due to the complex
problems that the CDBs are facing [1,3,6,15,26,27,28]. Nowadays, organizations are
naturally distributed over different locations. They keep on growing and becoming
decentralized. Thus implementing a DDB approach fits more naturally the structure of the
organization than a centralized system. The distribution aspects affect the system in its
different components including processing logic, the function, the control and the data. The
purpose 1s to improve the overall performance of the system.

Performance is achieved through a high degree of parallelism because of the existence
of autonomous processors. Autonomy means that all operations at a given site are controlled
by that site; no site X depends on some other site ¥ for its successful functioning. It also
implies that local data is owned and managed by the local DBA. All the data belong to the
local database even if it 1s accessible from remote site [15]. Bell et. a/. [3] expand this
concept and introduce four different types of autonomy. The design autonomy shows the
design and implementation of local sites (data, model, and storage structure). The
participation autonomy concerns how each site participates in a network topology and what is
the data to share. Such decisions are issued from the local sites independently.
Communication autonomy, dominated by the computer network, specifies the conditions to
communicate with other sites. The execution autonomy controls the basic local operations
(update, retrieve and insert) along with the abort operation of global transactions, which
conflict with the local ones.

It is clear that when parallelism is adopted, it also reduces the communication
overhead compared to centralized systems. Thus the communication cost is minimized

because processing is achieved locally. Further on the economic level, installing in a system,

small computers with an equivalent power of a single big machine reduces more the overall
cost of the DDB system [1,3,6,15,27,28].

The increase of availability and reliability of the system improves the overall
performance. This is achieved by replicating the same fragment on different sites. Both
properties have the goal to keep the system performing its task against different kinds of
failures as opposite to CDB. In the latter, if the main site fails, all the system goes down but
such cases rarely happen.

A good DDB design facilitates expandability with less impact on any existing
applications. Expandability refers to the smooth incremental database growth of an
organization. This is not easily feasible in a CDB environment unless the design from the
beginning has foreseen this expandability otherwise a major impact will occur not only on the
new applications but also on the existing ones. In brief, implementing DDB solves big and
complex problems faced today by the CDB using the divide and conquer rule.

The degree of distribution transparency is another characteristic in a DDB system. A
distribution transparency refers to the separation of the higher-level semantics of a system
from the lower-level implementation issues. In other words, a transparency system hides the
implementation details from users because programs are written as if the data is not
distributed. There exist different types of transparencies [6,15,26,27,28]. Fragmentation
transparency is when the user or application programmer works on the global relations as if
the data is not fragmented. The local mapping transparency refers to several problems in
distributed DBMS (DDBMS) without having to take into account the specific data models of
local DBMS. This problem of transparency exists mainly in heterogeneous DDBMS where it
is reduced in the homogeneous systems. The location transparency requires the user or
application programmer to work on fragments regardless of their locations instead of global

relation. Of course in DDB, some fragments are replicated to increase the reliability and

availability of the system. Replication transparency hides this duplication of fragments from
the user. Surely, site failures in a DDB system occur in a way or another. The system, in
such cases, is able to detect a failure, to reconfigure itself so that the processing may continue
and execute the necessary recovery when the link is repaired. The concurrency transparency
shows the concurrent transactions as if they are processed in a serial order. Because users are
manipulating (updating) the data on different sites, data integrity has a high potential degree
to be violated especially when the system runs many transactions concumrently. No matter
which type is referred to, transparency hides the distribution features of the DDB from the
user. The system is revealed to him as ifitis a CDB.

Even though DDB is very useful, it has also many disadvantages. Researchers lack
the experience for such development. DDB design has new problems added to the unsolved
ones of CDB. Beginning with the fragmentation of data, this issue is discussed in the coming
sections of this paper due to its importance. Next comes the distributed concurrency control.
Its role is maintaining not only the database integrity by synchronizing the accesses to the
DDB but also the coordination among sites. Since data is dispersed on several sites, security
stays more problematic. Local security is implemented with the same degree of efficiency
similar to the centralized system. Global security merely exists due to the autonomy of each
site. If the global security is high and efficient then there will be no local independence and
the system will be considered as a CDB. From a different point of view, the distributed query
processing will be slow in performance and the cost of communication increases as long as
the data is not found on the lookup site. Another disadvantage of DDB is the distributed
directory management (DDM) which keeps tracks of the data. The DDM by itself may be
global or local at each site, one or multiple copies, and distributed over several sites or stored
on a single location. Further, the distributed deadlock management is the same as for the

centralized operating system resulting from the competition among users to access the same

data. For the heterogeneous DDB system, a translation mechanism is also needed. This
usually occurs when designing a DDB system from existing centralized ones. It should be
clear that the above-provoked problems are considered as interconnected instead of

independent issues (Figure 3) [6,26,27,28].

/__I Directory Management |
l Query i’rocessing DDB Design Reliability
v
Concurrency

Control

¥
Deadlock

Management

Figure 3: Relationship among DDB modules

2.2.3 Distributed Database Management System Concept
It is necessary to have an also idea about DDBMS which handles a DDB. A DDBMS

controls, supports and manages the creation and maintenance of DDB. In addition to this, it
coordinates the access to data at various sites knowing that each site may have its own
DBMS to manage its local data. Many types of DDBMS are determined. These types are

ordered in a tree form shown in Figure 4.

DD!ISMS
[
Homogeneous Heterogeneous
[| l
Autonomous Non-Autonomous Integra.tionllvia Systems Inte;&Ltion via Gateways
I -
Integration via Systems Integration via Gateways
Full ﬂBMS Partial DBMg Functionality
Functionality (Multi-DIatabase)
Unfecl;rated Fede'fated
Loose Integ[ration (e.g Tight IntIegration

using Export Schema) (Using Global Schema)

Single Multi
Figure 4: Taxonomy of distributed data systems.

DDBMS provides additional features to the DBMS of a CDB. The ability to send
transactions and queries to remote sites and access the data in more than one site in order to
accomplish the request. Next, the ability to keep track of the data distribution and replication
in the DDBMS catalog and to decide which replication copy to use and to maintain the
consistencies of the copies and which copy to access. Also, the DDBMS must have the
ability to recover from site or other failure and make the necessary updates. On the hardware
level, multiple computers (considered as sites) and using a communication network
distinguishes it from a centralized one. Figure 5 on the next page is a typical DDBMS
architecture. Several commercial database management are developed and even used in the
market to accomplish the needs of a DDB systems such as SDD-1, R*, BUBBA, DB2,
INGRES and ORACLE. In brief, A DDBMS is characterized by local autonomy, location
transparency, fragmentation and replication transparency, no central site, i.e., no DBMS on a
site is more important than another and continuous operation meaning that no planned
activity should require a shutdown. Also a DDBMS must provide data management
functions such as security, concurrency control, deadlock control, query optimization and
failure recovery. Also there exist independence among hardware, operating system, network
and the DBMS. Without forgetting, it should translate the request from one site using a local

DBMS to another site having a different local DBMS [3,6,15,20,26].

Distributed/Data

(to other sites) reposito

¢ DDBMS DDBMS ¢ l:]
=7 b L]
Application Communications Communications Application
. Programs | | controller controller | Programs .
' Local DBMS Local DBMS :
L] - o L
User Database Database User
Terminals Site 1 Site n Terminals
- o

Figure 5: A typical DDBMS Architecture.

2.3 COMPARISON BETWEEN CENTRALIZED AND DISTRIBUTED DATABASES

As a conclusion of this section, Table 1 on the next page emphasizes on some of the

important differences between CDB and DDB that [have grouped.

"HAD PUE FAQ WIMP | uosLreduio) (] J[qe L,

"SI0 pue ‘SaFU] paInqUISIA A TOV IO 21 103eW o
uo are SINF [ersamwmod ‘moN sadfjojorxd w pajsixa 31 ‘spg 2y Surangg

S8 2Yj 20us I8IXH uotrejuswardun Aureay
eTep oy Suigeorjdox Aq paaalyae st i sonss1 Ajunoag pue dndpeg Jo asn oy yFnop AU Anniqejreay % Anpiqery
‘san|rey aJ1s jusnbarg Aprey saJn[req

‘Juiod yeam e si wajqoud uoIEITUNIIWO.)
"u019910.1d BIEp UMO JI9Y} IOW 9210JUs Awouojne Jo aa1Sap ySiy + vaAT

"pPapaau am saanpasold josjuo)
"S3S59008 BIEP 1]} S[O.[UO0D eI V(I 21 uo Surpuada(y

Kunoss pue LoeALg

‘PAZIfRNULD ST WIISAS 2] JI SB oy

swa[qo.d 3531} JO UOTIN|OS 3T} T8 SUOTIIBSURI],

[o[uod
Kousuimouos pue A19A09a1 ‘AjLiSajuy

BIEP 3} 0] SS309€ JUIIDILJD 2A31E 0] [00} IYSLI 31 Jou S1 J] uoieziunido
[ed0] pue [eqo[§ os[e apnjour sue[d SS90 PAINGLYSIP S[00] JUSIDIIP PIIN

BIEp 91} 0] $53008 JUAIDI[JP URIqo ‘N yInosy], SN
a1 Jo ped Jofew e are sutRYD S[11SJUI ‘SIXIPUT ATEPU0IIG

SS90 JUAIDILJD
pue aunjonugs eoarsiyd xaduton

'Pa7edt|da STRIEp J1 J[qR[reAR ST
daa ‘[reyapse j1 Suissa00d dois 10U S0P YOTYM WISAS 1) JO AN[IR[IRAY

‘aoeds aFe101s Suiaes ‘erep [eoiS0] AuIES 21 JO SAIOUISISUCOUT

‘uotjestfdal ySnot a[qe[reAr WSS S SexRUW I 121MmEa) J[qeNsa(]| 2y 2onpal o} Ados auo Suaey :a[qissod se yonw sk padnpay Kouepunpay
< BWwayas [emdsouo)),, JewurerSoid uoresijdde
‘Kouaredsuen uonnquysip i 03 ppe jnq paddy a1p 0] Juaredsuer) s1eep Jo uonezivesio [enpe Yl souspuadopu BIR(]
*Autouojne Jo 32133p yFiy
apab ygqT Suissiw jsoune st yggo ‘1deouod uorezifenuas oy sesoddp Ve £q Uy e Jo uolfeuuoul [[e 0} [0.4U0d U [0LU0D PIZIRIua))
wsipa[ered Jo 22132p Y31y 2np paonpal Mo Jomiau a1y uo Juepuadap AbA YSIH PB3YISA0 UOIED IUNIUIO))
SIJIS [BJ3AIS JIAO pasiadsiq 315 U0 B PaJeooT BREP JO UOIE0T]
saseqerep
Surjsixe 91 UOTRIAPISUOD 0JUI SUINR) WIISAS pazifenuad saseqeyep
ugisap dn-woyjoq asn JSng|Mau € FUIRaId JoPISU0d 0] I[qeIagald S i] IASIYOE 0] JoJIq| SUIISIXd UIIM]IIQ UOII3UL0IIANU]
a]qiseajun sawijawos pue suoiesijdde (ymos3

suorporjdde Sunsixa uo joedurr ou jsoufe yim juswaldun o) Aser

Susixe uo pedun ue SUIARY INOYIM 2AIYR 0] JNOTEH (]

[eIUd WR.0UT IsBqRIEp) Aijiqepuedxy

A[eanreu syg

a[qeuorisanb sawosag

SUOSBalI UoHRZIUEZI)

4dda

aadn

UOsEd /P Imea |

CHAPTER III- FRAGMENTATION DESIGN METHODOLOGY

DDB design can be achieved in two ways. The homogeneous (top-down) design
processes beginning with the requirement analysis and logical design to the conceptual
design and reaching the physical design on each site. In the case of heterogeneous DDB
(Figure 4), the process is achieved bottom-up design, which involves the integration of
existing database to reach a conceptual schema [6,27].

—l Users

_.IRequirement collection '

Requirement specification
-—bIView analysis and integration

Enterprise ransaction [Distribution
schema efinition requirements picribution D esign_
Data Acquisition Vertical Partitioning
= ¢‘ Horizontal Partitioning
> Partitioning . e .
T Mixed Partitioning

{Allocation and Replication

}

Local Optimization

Feedback

lDistn'bulion of the entreprise schema into local logical schemas
—plPhysica.I database design for each local database

Implementation schema

v

——blOperaiiona.l system l

Figure 6: DDB design methodology.

This thesis focuses on the homogeneous design. Figure 6 sketches an overall top-
down distribution methodology [4.8,9,22]. The user requirement is collected and analyzed.
The views are integrated from the requirement specification [15]. Three inputs are required
to achieve the distribution design phase. The enterprise schema known also as the global
schema [6,28] describes the relation as if the database is not fragmented. The transaction
definition is concemned with the frequency of transactions to be processed in the DDB design.

And the distribution requirement emphasizes how the data is needed (distributed) knowing

that the user must have a good idea how to achieve it. The physical DDB design for each
local database is how to organize the database locally. All these mentioned phases are
processed in the same manner as in CDB. The distribution design of Figure 6 is an
optimization problem that requires understanding and solutions to several interrelated
problems including data fragmentation, allocation and local optimization. Data
fragmentation clearly identified in Figure 6 is a problem in the design of DDB [4,7,8,9,22].
Other methodologies are suggested including synthesized extended entity relationship
with a distributed transaction scheme known as SEER-DTS [10] and the semantic meta-
model [2]. The SEER is an extension of the entity relationship model. Its modeling is
object-based. The DTS is transaction modeling based on earlier modeling. Thus the SEER-
DTS combined together, results and facilitates the DDB design schema design. The semantic
meta model for DDB is suggested. Its purpose is to achieve fragmentation using the SQL.
The authors assume a command statement:
FRAGMENT <name of fragment> IS <relation>

[WHERE <condition>] |
[WHERE <var> IN SELECT statement]

Different alternatives have suggested as a way to solve the distribution design phase.
In [1], Apers considered data fragmentation and allocation as a single problem and it must be
solve accordingly. In [9], Charkavarthy et al considered the alternative where data
fragmentation is directly followed by allocation and replication, thus these issues are loosely
coupled. These two alternatives are not the only ones; others were taken into account by
many resarchers but are less important in this thesis. Considering the loosely coupled case,
the definition of data fragmentation can now be easily established. Data fragmentation 1s the
process of dividing global relations into subsets known as fragments which are classified into

three categories: the horizontal fragments, the vertical fragments and the mixed fragments.

Then these fragments are distributed over different sites [7,23]. Data fragmentation also
increases the locality of reference so that the overall system performance is improved [21]
and decreases the number of disk accesses in the system [12,13,14]. Furthermore, while (or
after) fragmenting a database two important features must be maintained. The completeness
ensures that no data item is lost. Data items means a vertical domain, a horizontal tuple or a
simple item value of the database as a result of a mixture of the last two ones. This is
somehow a difficult task and needs more attention when considering the mixed partitioning.
The reconstruction feature insures that the global relations must be reconstructed based on
the given the fragments [2,16,21]. But the question remains how to fragment while/after
maintaining these two features? How to create an optimal number of fragments in order to
improve the system performance through the increase of locality of reference and the
decrease of remote data access? Researchers have sets of algorithms that deals with each of

the mentioned of types of fragmentation.

XV

CHAPTERIV- THE VERTICAL FRAGMENTATION TECHNIQUES

This chapter begins with the identification of the vertical partitioning. Next, an
overview of suggested algorithms for solving this issue is presented. The chapter is
concluded with a summary that I have grouped showing the relationships among different
algorithms and another summary showing the most important criteria in the studied

algorithms.

4.1 DEFINITION
Vertical fragmentation is the projection of the global relations onto subsets of

attributes, which form the fragment. However, once these relations are vertically partitioned,
their reconstructions are impossible to achieve and thus a complete tuple cannot be obtained
unless the primary key of each relation (or a system identifier) is appended to each fragment.

Many algorithms are suggested for dividing attributes into fragments [15,16,20,28].

4.2 OVERVIEW
In [23], a binary vertical partitioning is implemented based on an empirical objective

function. It begins by selecting the transactions having a high degree of occurrences and
their respective attributes that are grouped in a matrix form called Attribute Usage Matrix
(AUM) where the rows represent the transactions and the columns the attributes. The

elements of the matrix are either 1 or O (Table 2). The value is 1 if transaction 7, is
accessing attribute 4, otherwiseitis 0. Two additional columns are added to the AUM. The

first column is the type of operations that have the value u for Update or r for Retrieval. The
second is the access column that shows the number of occurrences each transaction accessing
the attributes (Table 2a) from a single site. In case of multiple-site, a site matrix is used

instead of the access column of the mentioned table. This Table 2b has as rows the

respective transactions and as columns the sites from where these transactions are issued.

The elements of this matrix are how many times a transaction 7 is issued from site S, .

(a) Attribute Usage Matrix (b) Site Matrix
Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 Ty Access S1 S2 S3 sS4
TnH 1 o 0 0 1 0 1 0 0 0 r 25 T1 10 15 0 0
T 0 1 1 0 0 0 0 1 1 0 r 50 T2 10 20 10 10
3 0 0 0 1 0 1 0 o0 O 1 r 25 T3 0 0 15 10
T4 0 1 0 0 0 0 1 1 0 0 r 35 T4 10 15 0 10
Ty) = T o0 1 0 1 1 1 0 u 25 55 10 5 5
¢ 1 0 0 0 1 0 0 0 O 0 wu 25 T6 10 5 5 5
7 0 0 1 0 0 0 0 0 1 0 u 25 T7 § 10 5 5
7 0 0 1 1 0 1 0 0 1 1 u 15 T8 5 5 2 3
Attribute length
10 8 4 6 15 14 3 5 9 12

Table 2: A typical attribute usage matrix and a site matrix.

The difference between using access column and site matnx is in the calculation of
the attribute affinity matrix (AAM) which a symmetric matrix having for rows and columns
the attributes (Table 3). The calculated number is known as the affinity value that shows how
strong is the bond among a pair attributes. The affinity number is calculated using the
equation

aff,= Y acc M)

kpg=lnug=1

where aff;; is the affinity value among two attribute @; and a;. It is the summation of accesses
of all transactions accessing the respective two attributes. uy and u; are the elements in the
AUM for transaction ¥ and attribute 7/ and j respectively; zx=1 if transaction & uses attribute

a;, else it is equal to 0, similarly to uy. accy is the number of accesses of transaction &

accessing both for attributes 7 and j. For a single site, acc, = n, freq, (n is the number of

accesses to object instances for one occurrence of transaction %, freg; is the frequency of

occurrence of transaction %), for example in Table 2a, acc, =25 for /=1, n, =1 and

Jfreg, =25 and so on. For multiple sites, acc, = Zn',g Jfreq,, (my is the number of accesses
J

to object instances for one occurrence of transaction 4 at site j, fregy is the frequency of

Xvil

occurrence of transaction & at site j). For example in Table 2, acc,=10+15+0+0=25 where
ny, =1 for all £ and j and therefore the matrix site is converted to a single access column in

the purpose of calculating the AAM. For example, the AAM of the AUM (Table 2a) using

the access column 1s shown in Table 3.

1 2 3 4 5 6 7 8 9 10
1 75 25 25 0 75 0 50 25 25 0
2 25 110 75 0 25 0 60 110 75 0
3 25 75 115 15 25 14 25 75 115 15
4 0 0 15 40 0 40 0 0 15 40
5 75 23 25 0 75 0 50 25 25 0
6 0 0 15 40 0 40 0 0 15 40
7 50 60 25 0 50 0 85 60 25 0
8 50 60 25 0 50 o0 8 60 110 75
9 25 75 115 15 25 15 23 75 115 15
10 0 0 15 40 0 40 0 0 15 40

Table 3: An attribute affinity matrix

5 1 7 2 8 3 9 10
75 75 50 25 25 25 25 0
75 75 50 25 25 25 25 0
25 50 85 60 60 25 25 0
25 25 60 110 110 75 75 0
25 25 60 110 110 75 75 0
25 25 75 75 115 115 15 15 15
0 25 25 75 75 115 115 15 15 15
0 0 0 0 0 15 15 40 40 40
0 0 0 0 0 15 15 40 40 40
0 0 0 0 0 15 15 40 40 40
Table 4: A clustered attribute affinity matrix

== == R = T T -
o T Y = I = Y

-~ - NI
[
Lh
[==]
L=

Next the AAM is clustered grouping the high affinity values together in an upper left
block and smaller affinity values in the lower block. Thus the clustered attribute affinity
matrix (CAAM) is a semi block diagram grouping the large values with large ones and small
values with small ones. The grouping is achieved by implementing a CLUSTER algorithm,
which permutes the rows and columns maximizing equation (2). The CAAM of AAM in

Table 3 is Table 4.

za Jj(a ij=1 +a~0?,)+1 +a-ﬂ;—1,; +a.ﬂ:+l,1) (2)

ij

Xviii

Now the partitioning process begins. There are two types of partitioning
nonoverlapping and overlapping fragments. The nonoverlapping fragments are chosen by
placing a cut point x on the CAAM along the main diagonal such that the objective function

z=CLxCU -CI" is maximized &)

where CL= } acc,, CU=) acc,,and CI =) acc, . Using A(k)={i|u, =1} as a set
keLT kelUT kell

of attributes used by transaction &. 7={k|k is a transaction}, U represents the attributes in the
upper block and L for lower block that are identified after the cut x on the CAAM is
specified. There are n—1 possible positions for the cut point x; where # is the number of
attributes (Table 6). The same process is achieved for the overlapping using two cut points x;

and x, on the CAAM with a nonempty intersection and maximizing the same object function

z (Table 6). In this case there are n(nzm 1) possible positions on the matrix for the two cut

points. The difference between a nonoverlapping and a overlapping fragmentation, shown in

Table 5, i1s the evaluation sets parameters that are used to calculate CL,CUandC/, the

parameters of the objective function.

Evaluation sets | NON-OVERLAP SPLIT_OVERLAP

LT {klagyc L} | {|(ope, = Pradk) c L)v (ppe, ='u'nA(k) = (L- 1))}
vt (kAU c Uy | T |(bpe, ="rAA(k) cU)v (pe, =und(l) c(U-1)}
IT T-{LT LUT} T-{LTOLUT}

Table 5: Evaluation sets for the overlapping and non-overlapping fragments.

5 1 7 2 8 | 3 9 | 10 4 6

5 75 75 50 25 25 | 25 25 | 0 0 0

1 75 75 50 25 25 | 25 25 | 0 0 0

7 25 50 85 60 60 | 25 25 | 0 0 0

2 25 25 60 110 110 | 75 75 | 0 0 0

8 25 25 60 110 110 [75 75 | 0 0 0

%2
3 25 25 25 75 75 | 115 115 | 15° 15 15
9 0 25 25 75 75 | 115 115 | 15 15 15
X1

10 0 0 0 0 0 | 15 15 | 40 40 40

4 0 0 0 0 0 | 15 15 | 40 40 40

6 0 0 0 0 0 | 15 15 | 40 40 40

Table 6: BVP cut points for nonoverlapping and overlapping

A further research shows that these fragments can be allocated to physical sites by
refining the objective function and adding cost evaluation constraints. Four types of costs
constraints exist. C; is the cost of irrelevant attributes accessed within a fragment (per byte).
C; 1s the cost of accessing fragments for retrieval and updates (per access). Cjis the storage

cost (per byte). And Cj is the transmission cost (per byte). The objective function becomes

minz = zw,c, . C; are the previously mentioned cost factors; w; refers to the weight

1si<4
calculated according to:
W !
Multiple sites ace] CL+CU+2xCI
Nonreplicated Allocation Z’ £ ng [;eﬁ),«%g;(k))
Mult_lple sites _ Irrelevant z n, freq,,
Replicated Allocation kpypey="u)n(AGK)NF9)
W, W,
Multiple sites _ 2k > 2 > mgfregy i
Nonreplicated Allocation % FeS, jhllocy#; 1e{ FAACK)
Multiple sites Ziaikx‘FIZIf Z Zn Jreq,, 24
Replicated Allocation ek fer; kLA(k)(\F:MUSa}b«rf b.‘e(FnA(k))

Table 7: Calculating the weight for the objective function

Note that in Table 7, /, is length of attribute i, TL="1/ is the total length of the object,

UL=7%"1, is the length of the attributes in the upper block. The set S, = L} if ke LT, or

el

S, ={U}if keUT ,or S, ={L,U}if keIl .

The authors of [13,14] extend the algorithm of [23] taking into consideration the
physical aspects of minimizing the disk accesses and the type of scans each transaction is
applying on the relation. The scans are obtained from the query optimizer DBMS. The

calculation of the cost is based on the average number of disk accesses and tuple retrieved.

The expected number of tuple retrieved can be estimated as the cardinality of the relation.

The number of disk accesses 1s related to the type of scan as shown in Table 8.

Index scan Segment scan
Clustered Unclustered
of disk | Cardinalityx Selectivity x len of tuple | Cardinality x | Cardinality x len of tuple
access page size Selectivity (page size)x n

Table 8: Calculation of the cost index and segment scan

where n is the prefetch factor, i.e., number of pages read in each disk access. The selectivity
1s the average number of pages read by a particular type of transaction. An algorithm for
vertical partitioning to minimize disk accesses is presented through the usage of decision

variables X, =1 if attribute / is assigned on site jor O otherwise. The number of disk
accesses f(X p)=I] +7, where 7, is the number of disk accesses required to retrieve the

scanned segment and 7, is the number of disk accesses required to retrieve the remainder of
the original tuples for those transactions which require it. N is the number of attributes in a

relation. @, is the attribute has the smallest expected value of selectivity of type j
transaction. If attribute k ethe same segment S/a, €S =X, X, +X, X, =1.

Equation (4) is the tuple size of the primary segment for type j transaction.

- : . @)
> (Xaj,]X“ + X, 0%)(s:ze of attribute)+ L
k

where L is the length of tuple identifier or primary key. Equation (5) is the number of disk
accesses to retrieve the segment scanned per scan.

(tuple size)(cardinality) ®)

T =
' " (page size)(prefetched blocking factor)

And equation (6) is for the index scan.

T/ = cardinality x selectiviy of scarmed attribute ©)

The equation (7) is the number of disk accesses to retrieve attributes not in the primary

segment being scanned.

T} = Ax Cardinalityx Selectivity of scanned attribute x
(1— (Xa_ 1 Xy gy X, X
i i2 e i

9

X)))

22
where A4 1s the number of additional disk accesses. All the equations (4), (5) and (6)
depending on the type of scan with equation (7) are used in equation (8), the objective
function to be minimized.

ST +17) ®)
J

where A() is the scanned frequency of type j transaction.

The divide and conquer algorithm of [7] is used to solve large and small problems.
The divide implements the same techniques of [23]. Its purpose is to solve large problems
for data fragmentation, data allocation using a simple cost evaluation scheme. The conquer
tool (Figure 7) not only uses the same modules for large problems but also it takes into
consideration the application optimization, the operation allocation and it has a detailed cost
evaluation for smaller problems. In other words, The vertical fragmentation, data allocation
and simple cost evaluation modules in Figure 7 are reviewed in [23]. The application
optimization module selects the needed logical fragments to achieve the query and selects
also the best operation tree among various equivalent ones. The operation allocation is
concerned with the physical aspects of the fragment. It selects the physical fragments and the
sites where each operation is executed. The results are evaluated upon the problem size. If
the latter is large a simple performance is applied otherwise the evaluator module is
processed (Figure 7), which increases the complexity of the vertical partitioning problem. At
each process two subproblems are created and thus for each problem the same process is

applied recursively until optimal solution is reached.

Conquer Tool

Selection of a
Global Relation

Divide Tool ?

Approximate cost Vertical

Fragmentation
Simple (heuristic)
performance
evaluator y R
Data allocation
T (exhaustive)

7

Application
optimization
[2
Operation
Allocation Detailed

cost

Figure 7: Divide and conquer tool environment.

In [25], a graphical vertical algonithm is developed. This algorithm has a less
computation than the previous techniques. The algorithm uses an attribute affinity graph
(AAG). It is a graph interpretation of the AAM. The nodes of the graph represent the
attributes, whereas the edges are the non-zero affinity values. The zero values in the AAM
are disregarded in the AAG. Thus, the graph of the affinity matrix of Table 3 is represented
in Figure 8. Next, a linearly connected spanning free is constructed. The purpose of the
algorithm is to generate all meaningful fragments in one iteration by considering every cycle
as a fragment. Before going into the steps of the algorithm, the authors define the following
notations: A primitive cycle denotes any cycle in the affinity graph. Affinity cycle denotes a
pamitive cycle that contains a cycle node (unless otherwise mentioned every cycle is
considered as affinity cycle). Cycle completing edge denotes a “to be selected” edge that
would complete a cycle. Cycle node is that node of the cycle completing edge, which was

selected earlier. Former edge denotes an edge selected between the last cut and the cycle

node. Cycle edge denotes any of the edges forming a cycle. Extension of a cycle refers to a

cycle being extended by pivoting at the cycle node.

Figure 8: An affinity graph of Table 3

50

Figure 9: Result of the vertical graph algorithm of Figure 8

Algo 1 describes the graphical algorithm. The routine is achieved in 5 steps.

Xxiv

Construct the affinity graph from the affinity matrix. (Disregard the 0 edge value, and
the main diagonal).
Start from any node.
Select an edge linearly connected to the tree and have the large value among the
possible choices at each end of the tree.
The iteration will end when all nodes are used for tree constructions.
When the next edge selected form a primitive cycle.
o If a cycle node exists then disregards this edge, go to 3.
. If a cycle does not exist then look for the possibility of extension of a cycle? If
okay mark the cycle as affinity cycle and consider it as a candidate partition, go to 3.
When the next edge selected does not form a cycle and a candidate partition exists.
If no former edge is found, check the possibility of extension? If also not found then cut
this edge and let the cycle be a partition, go to 3.
If a former edge is found, change the cycle node, check the possibility of extension? If
also not found then cut this edge and let the cycle be a partition, go to 3.

Algo 1: Vertical graphical partitioning

Creating all meaningful fragments in one-iteration is the efficiency of Algo 1.
However, it has also deficiencies relative to its claim that states “all pairs of attributes in a
fragments, have high affinity within fragment affinity but low between fragment
affinity”[25]. According to [18,19] the deficiencies are that the produced output does not
necessarily satisfy the claim: the Algo 1 generates solutions independent from the input
order. A simple counter example supplied by [18,19] proved that what it has been said is

true.

S0

50
50

Figure 10: A counter example to Algo 1

When applying Algo 1 on the graph of Figure 10, the resulting fragments are
§B,F,D,C}{H} {4, I,K Y. Ttis difficult to justify the fragment with only one attribute {H}
where it is easy to observe that the graph of Figure 10 produces two fragments

{{H B, F.D, C},{A, I, K}} Therefore, a new graphical algorithm based on a clustering

(@)

()

technique is suggested in [18,19]. It replaces the unnecessary restriction of an affinity cycle
[25] by the requirement of 2-connectivity.

Here are some basic definitions needed for the new graphical algorithm defined in
[18,19]. An affinity graph is formed by a positive weighted graph noted as G=(V, £, p)
where V is the set of vertices and £ is the set of edges. For each edge e, p(e) is its affinity
value. Also, in a graph (/,E), (u,v)e E is incident to and v. A graph (', E') is a
subgraph of (V, £) if V' <V and E'c E . Further, (V, E) is connected if for each pair #,v
of distinct vertices, there is a path connecting zand v. (¥, £) is 2-connected if [/| >3, and if
after the removal of an arbitrary vertex, the resultant graph is still connected. Let V'V . A
subgraph (', E') is induced by ¥’ if £’ is the set of those edges which are incident to a pair
of vertices in ¥'. A connected component of (V, £) is a connected subgraph (', £') such
that for each vertex % of 7" and each vertex v of ¥ — V' there is no path from u to v. A vertex
uof (V, E) isisolated if there is no edge incident to z. Using these notations and settings, the
authors of [18,19] defines a cluster ¥’ of an affinity graph G=(V, E, p) as a subset of Vif
either

[/ >1 and there is a connected subgraph (", £') such that for each e of £', p(e) is
larger than the affinity values of those edges going out from ¥’ ,(e.g. in Figure 11, (8,H),
(C,B), (D,B) go out from {C, H, D}), or

V' consists of an isolated vertex of G.

Figure 11: A connected graph example

The non-overlapping fragmentation (NOV) algorithm clusters (groups) the vertices of
the affinity graph G (Algo 2). Each cluster is a subgraph S of G. The grouping technique is
achieved in a manner that the affinities in S are greater than the ones existed on edges that are

going out from S. For example in Figure 11, {4, B,C,D,H} {B,C,D,H}{C, D, H}{D, H}

Algorithm NOV(Gvar F) /" Gis a graph having V set of vertices and E set of edges */
Input G: affinity graph;
Output F: set of fragments;
Begin
F=¢;i=0; SORT(GM,k) M={M:1<i<k});
Vo=V,Eg=M,
While V= ¢ do begin
CLUSTER((V,,V,,p),T);
OBTAIN(T,S(T)); /* retum the affinity indices */
CHOOSE(T,S(T),9);
F=F O f;[31T=9, V;=V+f,
Delete the edges incident to a vertex of f from E; to form E;;
End
End

are clusters.

Algo 2: Non-overlapping partitioning
The NOV implements a slight modification of the CLUSTER algorithm by removing
the SORT in step 1 of Algo 3. The procedure OBTAIN returns the S(7) of affinity indices of

the elements of 7. The CHOOSE procedure selects an element f with the highest affinity

index from 7.

Algorithm CLUSTER(G,var T)

Input G(V,E,p): affinity graph;

Output T: set of clusters V;

Step 1:Sort on E to generate a list M of subsets E (M,...,M,) such that all edges in the same
M; have the same value of p(e), and if e, M,, e, M, i<j then p(e)>p(e));

Step 2:For I=1 to k begin

i
Let G, = {V,UMJJ;
j=1
Find all connected components of G;
End;
Step 3:Let T; be the set of the vertex sets of all elements with at least 2 vertices generated at
Step 2;
Let T, consist ofthe isolated vertices;
T=T; U Ty;
End

Algo 3: Cluster algorithm needed for NOV

For the affinity indices in the CHOOSE procedure of Algo 2, the following defintions
are used. Let G=(V,E,p) and Let V' a cluster of G. If [V'|>1 then let E(V')=({e: e is
incident to two vertices of ¥’ and p(e) is larger than affimity values of the edges going out
from ¥’} or E(V')=¢. The quadruple a=(c(V"")x(V*),d(V'), w(V')) denotes an affinity

index of ¥’ where c(V')=2 if the graph G(V') is 2-connected otherwise c(V’')=l.

> ple)

x(V')=l;_,|. d(y'):hf—z,‘q‘g?(’;%j. w(V')="‘|EE(‘(’;,] and if ['|=1 then c(V')=1, x(V"")=0,

d(V')=0, and w(V’')=0. From these, two quadruples a,>a; if (a) ¢1>c; or (b) ¢1=¢; and x;>x;
or (¢) ¢1=c; and x;=x; and d;>d, or (d) c¢1=c, and x,=x; and d,=d) and w1=w,. Further in [18],
an overlapping partitioning (OVP) algorithm 1s developed using as input the set of fragment

F={f :1<i<1} where /is the number of fragments from NOV (Algo 2). The idea is to
extend the fragments f by adding some attributes v as follows: the summation of the

transactions 7' accessing v is greater than the summation of transactions 7> updating v.

In [12], the algorithm solves the vertical partitioning problem on a different scale.

Previously and according to [8,9,18,19,22,23,25], the AAM is the important factor for

solving the vertical partitioning problem. However, because affinity shows how strong a
bond is among two attributes, restrictions exist when more than two attributes is the issue. So
the calculation of the AAM fails. The optimal binary partitioning of [12] uses instead the
AUM that not only solves the affinity problem but also it uses the transaction notion, an
important aspects in DDB which was almost missing in the AAM. The purpose of a vertical
partitioning is to minimize the total number of disk accesses of equation (9) by partitioning
relations into several fragments.

Minimize total costs = i i 7 ([([+F,)) ®

il el
Such that » is number of transactions, d is number of fragments generated by the partitioning
algorithm. 7 is primary key (or tuple identifier), /(/+F)) is the sum of the length of the
fragment of F; and /7, and f ({/+F))) is the cost of accessing a given fragment F; by a
transaction 7. Next, the notion of reasonable and unreasonable cuts that are a fundamental
concept in this vertical partitioning, are defined. A self-contained fragment is the set of
attributes that a transaction accesses. A contained fragment is the union of such self-
contained fragments. A reasonable cut divides a relation to two parts (binary) having one of

the fragments as being a contained fragment. Further, all binary cuts that are not reasonable

are called unreasonable cuts. In a relation of » transactions, there are 2" —1 possible

reasonable cuts grouped according to [n] for #=1...n. In reality, both reasonable and

1

unreasonable cuts exist. As the algorithm of [12] works only in a space having only
reasonable cuts, a proved theorem (Theorem 1, p. 805 [12]) states that for any unreasonable
cut there is a reasonable one that costs less or equal to the unreasonable cut. From theorem 1,
the optimal binary partitioning based on the branch and bound algorithm can be implemented

(Algo 4). The search tree is constructed as follows. Each node of the tree represents a

XXX

transaction in the AUM. The left branch represents the attributes accessed by the transaction
that are included in the reasonable cut. The right branch represents the remaining attributes

accessed by the transaction that are excluded. The terminal nodes are expanded as more

Algonthm OBP(F,F1,F2)
Mincost=evaluate_cost(F); better= ‘no better’;E-node=root.
Construct the pool of unassigned lransactlons for the path
If the pool is empty goto 6;
Select a transaction from the pool and expand the E-node.
Explore the left-branch
Ifthe lower bound cost including all the attributes accessed by this transaction in the T-
ﬁ'agmzentqnincost then let the terminal node of the left branch be the new E-node and
goto 2;

5. Temminate this branch and backtrack to explore the right branch. Let the terminal
node of the right branch be the new E-node. Goto 2;

6. TempF1=T-fragment; tempF2=F-tempF1;
cumrentcost=evaluate_cost(tempF1)+evaluate(tempF2); if currentcost>=mincost
then goto 7; F1=tempF1;F2=tempF2;mincost=currentcost;better= ‘better’;

7. Letthe new E-node be the terminal node of the right branch of the closest ancestor
from the E-node with a right branch that has not been explored and goto 2;
If no such ancestor exists then retum(better).

transactions are considered, thus the tree grows as the processing of the algorithm progresses.

Lol 2 S e

Algo 4: Optimal vertical binary partitioning

Where the E-node is the terminal node currently being expanded. The Path is the arc
connected from the root to the E-node. The T-fragment is the union of all the attributes

accessed by the transactions included in the reasonable cut on the path.

Each of the mentioned vertical algorithms has its specific objective function or way to
be implemented, therefore they cannot be compared. In [89,22], A common objective
function entitled the partition evaluator (PE) is developed. The purpose is to find common
aspects among the different algorithms for comparison. Recall from [8,9,18,19,22,23,25], the
AAM finds only a bond among a pair of attributes. This means the AAM is limited when the
issue is to consider more than two. For this reason, the PE is based on the AUM and not
AAM. Another issue helped in the development of the PE is as follows. Local fragments

hold the attributes required by transactions, but this is not always the case. These fragments

might also include unneeded attributes by the same transactions but needed by others.
Furthermore, some required attributes by the same transactions are stored remotely at other
sites. The objective of vertical partitioning is to maximize local accessibility and minimize
data access at remote sites. Therefore, the PE that measures the goodness of a vertical
partitioning scheme has two corresponding terms (refer to equation (10)).

PE=E} +E} 10
Where E; is the “irrelevant local attribute access cost” and £; is the “relevant remote

attribute access cost”. Equation (11) shows how to calculate E; and equation (12) is for E.

£ =§i{qﬁ xls,,;x(JSnIB an

i=1 t=l n,

¥ S 12)
Ex=% 802, [9':2 X |8 % (1 2 L:eﬂ H
t=1

k=t itk

where A is an operator that computes either the average, the minimum, or the maximum
relevant remote attribute cost over all 7. 7 is the total number of transactions that are under
consideration. g, represents the frequency of transactions # for =1, 2, 3, ..., I M s for the
total number of fragments of a partition. #, is the number of attributes in fragment 7. n;"1s
the total number of attributes that are in fragment & accessed remotely with respect to
fragment i by 2. S, is the set of attributes contained in fragment 7 that transaction 7 access.
|S,| is the number of attributes contained in fragment i that transaction access. R, is the
set of relevant attributes contained in fragment & accessed remotely with respect to fragment 7
by transaction £. |R,| is number of relevant attributes contained in fragment & accessed
remotely with respect to fragment 7 by transaction 7. PE is tested in different manners. The

example in this article uses the exhausted enumeration. The minimum number of fragments

is 1 and the maximum is »n (where » is the number of attributes). Having AUM, PE is

calculated for fragments varying from 1 to #». Then the optimal number of fragments is the
one having the minimum PE value. The authors also implemented the PE objective function
on BVP [23], and graphical algorithm [25]. An example of 20 attributes and 15 transactions
used in BVP [23] and graphical [25] algorithms resulted into 4 fragments and 5 fragments
respective. The PE reveals that 4-fragment result is more optimal than 5-fragment result.
This example highlights the usefulness of the PE to evaluate the results of the different

partitioning algorithms and select the appropriate partitioning algorithm [8,9,22].

4.3 SUMMARY
Figure 12 shows the phases needed to be achieved before implementing one or more

of the mentioned vertical techniques.

AUM
Transaction-Based Algorithm [12] Calculate AAM
Convertto AAG Cluster the affinity values (CAAM)
/\ Bond Energy Algorithm [23]
New Craghical Alge i{agh[‘;;; Binary Vertical Partitioning (BVP)
& Algorithm [23]
Cluster Algo. /\
Nonoverlapping BVP is Divide Algo. [23] Apply [23] on Relational
Algo [18,19] Conquer Algo. [7] Database by decreasing the #
l of disk accesses [13,14]
Overlapping Algo
[18]

Figure 12: Methodology for the vertical fragmentation algorithms

(#)o 3o st sawSey jo saqunN
OVYV 21 Ul $98p3 Jo Joquunp
WI9ISAS A1) UT SIINQLITE JO JSqUINN
WOISAS 31J] UI SUOIIIBSURT) JO JaQUINN
UOIRJOPISUOD OJUT USYBIION & D

ZERT ~

"wRISAs 9y Jo Axajdwiod au saseasour
SIY], ‘UONEN[EA? J91}9Q PUE SI[NPOW [BUONIPPE SIPISU0d 3 Ing £ a.m31,] ut [¢Z] Jo anpow Sutuonnred [eanmA 3y} 35ueyd jou s3op [00] Bnbuod AT, .
‘ydei3 & 01 WYV 211 Jo uonepidiaur a1y st OVY
.HmﬂA :&Q JO Japlo 3y uo st (WYY Jo Anxaiduwod ayy ‘Ayurge 9inqroe asn .y swyiioS|e Sutuonned [edrusa Jog
“u JO 19pJo U Aq YV Jo A3xa[duwiod ayy pasealdul WYVD JANY Suisn pajenofes s1 1.yl VY paIsisnd 8 WVVD

910N
SUNIIoSE [EIN.PA 1) Jo a[q¥) uospredwio)) 6 a[qe],

s0% s9x ON SOX v 1 ON (u+wio | gon [81] dAO
SOX ON OIN oA v I ON (wen)o VYV [61'811AON]
SOX oN sziundo S9A z Auepy ON ? vo WOV | [T1] paseg-suei]
SIL SOL sziumdo SIX z Kuen] S9A ﬁ q:uO Bﬁ %&O WVVD [£] »nbuo)

pundo-eoN| oN ON ON v I oN (o OVV [s] ydesg)
& SOA ON S04 z Kuepy s9A (“Soro | mvvo [€2] dAg]

S|Wge “uorjouny
sjuswsey | Suiddepeso pasa] | ‘uonelaN T YR papaau 2A1931q0 JapuRRd
J[qeUOSEYY Suneard [s9ss200e NSICY| WasAS [eay | SjuowSeiJoy | uoRINJO# | UR paaN Ayxapdwop ndug w0y

"UNRUIOB[E PIMATASI OB JO BUSILD AU S)ST] 6 A[qBL PUV

CHAPTER V- THE HORIZONTAL FRAGMENTATION TECHNIQUES

The horizontal fragmentation is another form to partition a relation. This chapter
focuses on different algorithms to solve this type of fragmentation. It begins with the
identification of the horizontal partitioning. Next an overview of different algorithms for
solving this issue is suggested. The chapter is concluded with a summary that [have grouped
showing the relationships among different algorithms and another summary showing the

most important criteria in the studied routines.

5.1 DEFINITION
Horizontal fragmentation consists of selecting subsets of tuples from the global

relation according to some predicates. Each subset forms a fragment. Thus, each fragment
has the same schema as the global relation. A predicate is used as the basis of any horizontal
partitioning. It is a boolean function made up of clause <domain><oprator><value>. The
<domain> 1is the attribute domain on which the condition is applied, <operator> may be one

of the elements in the set {=, #,<= <, >=, >} and the <value> is any admissible value for the

domain [15,16,20,21,28].

5.2 OVERVIEW
In [5), horizontal fragmentation is achieved by creating minterm fragments. A

minterm is the conjunction of all simple predicates taken either in the normal or negated

form, i.e., the set Y(X) of minterm predicates y,,...,y, associated to set X of simple

predicates is defined in equation (13).

W= A X RS X O Ry Sk SO = X N ARy 13)
x;eX
In other words,

34

N =E AR A (=))A-Ax, A (=x,)
¥ = A DA, A= DA A (3, A (=,)

Im = (5 A2))A 3y A (2 DA A (3, A (=5,)
¥, is aminterm. Obviously the number of minterms m= 2", having 7 the number of simple
predicate. A minterm fragment is defined as a subset of records of file F such that y; is true.

The designer before using this type of fragmentation must be aware of the allocated sites

where the fragments should be found.

In [4], an optimization model is developed for the horizontal partitioning using the
DDB design methodology of Figure 6. The user is required to specify the information about
(a) the data (attribute size, relationship size, cardinality), (b) the tabulation of transactions
(frequencies, site of origin), and (c) the distribution requirement as mentioned in Figure 6 on
page 13. Two types of horizontal fragmentation are identified. The first is the primary
partitioning where the fragmentation is directly applied on the relations and the second is the
derived partitioning where the fragmentation is indirectly applied on relations via one or
more links. An objective function (equation (14)) in the form of a linear integer zero-one
programming is developed for the nonreplicated distributed database based on the transaction

given occurrences. The function to be minimized is:
minz=Y C,X,+> DY, -> AW, -5 BV, as
ip i h.p hJ

having C the cost of transaction related to the decision of partitioning object 7 according to
partition p. D is the cost of transaction related to the decision of allocation object 7 according
to partition p. A is the cost of transmissions that can be saved because of the use of the same
partitioning critena p on the owner and the member of the link 4 B is the cost of

transmissions that can be saved because both the owner and the member of the link A are

35

stored on the same site j as a whole. X=1 if candidate partitioning p is selected for object 7,
else =0. ¥=1 if the object 7 is allocated on the site j as a whole, =0 otherwise. W=l iflink A
1s used for deriving a partition in the hierarchy of partitioning p, =0 otherwise. V=1 iflink 4

1s local to site j, =0 otherwise.

In [29], A horizontal graph-based partitioning is adopted in order to find all
meaningful horizontal fragments. The process begins by selecting the transactions having
high number of occurrences. Each transaction is using one or more predicates. These
transactions and their used respective predicates are grouped in a matrix form known as the
predicate usage matrix (PUM). The structure of the matrix is the same as the AUM.
Meaning that the transactions are written at the row level and the predicates at the column

level. The elements of the PUM are 1 if the transaction 7, is accessing a predicate P,

otherwise it is O (Table 10). An additional column is added to the ones of predicates showing
the number of accesses of each transaction. As an example, consider the following

transactions on a relation including the attributes D#, SAL and AGE among others:

T1l: D#<10 (PI), SAL>40000 (P7)

T2: D#<20 (P2), SAL>40000 (P7)

T3: D#>20 (P3), SAL>40000 (P7), AGE<30 (P9)
T4: 30<D#<50 (P4), SAL<40000 (P8), AGE<30
T5: D#<15 (P5), SAL<40000 (P8)

T6: D#>40 (P6), SAL<40000, AGE>30 (PI0)

T7: D#<15 (P5), SAL<40000 (P7)

T8: D#<10 (P6), SAL<40000, AGE>30

The PUM of the previous example is:

P1 P2 P3 P4 PS P6 P7 P8 P9 P10 Access
W 1 0 0 0 0 0 1 0 0 0 25
T2 0 1 0 0 0 O 1 0 0 0 50
3 0 0 1 0 0 ©O0 1 0 1 0 25
T™ 0 0 0 1 0 0 0 1 1 0 15
s ¢ 0 o 0 1 ©0 0 1 O 0 25
™ 0 0 0 0 0 1 0 1 O 1 25
7 0 0 0 0 1 0 0 1 0 0 25
T8 0 0 0 0 0 1 0 1 o0 1 15

Table 10: A predicate usage matrix

36

Next, the predicate affinity matrix (PAM) is calculated using the same equation (1) as
to calculate the AAM on page 17. The difference is that acc represents the number of
accesses of transaction & accessing both predicates 7 and j. Thus, the resultant PAM of Table

10 will be in Table 11.

1 2 3 B 5 6 7 8 9 10
1
2 <=t
3 * *
4 0 0 == Symmetric
5 0 0 0 -
6 0 0 0 » *
7 25 50 25 0 0 0
8 0 0 0 15 50 40 %
9 0 0 25 15 0 0 25 15
10 0 0 0 0 0 40 0 40 0

Table 11: A predicate affinity matrix of Table 10 with 2 symbols

However, the PAM is a symmetric matrix that includes two additional notations

‘=>" and “*’. The value ‘=>" of the element (i) indicates that predicates ; implies
predicate j. The value ‘** represents that predicates / and j are in a way close together
although they do not necessary implies implication. Two predicates are close if (a) / and j
must be defined on the same attribute, (b) 7 and j must be used jointly with some common
predicate 4 and (¢) predicate % is defined using another attribute than the one used of 7 and ;.
For example, P2 and P3 in the previous example are close. Next, the Algo 1 is implemented
with a slight modification as shown in Algo 5. The changes are done in way to take into

account the two additional notations using the following heuristic rules (a) Any non-zero

value have higher priority than ‘*” and ‘=>" when selecting the next edge. (b) When

checking for a possible edge, the edges with these notations are ignored. (c) The value ‘=>’
has a higher priority than **’. These rules can be easily incorporated in Algo 1 if we consider
all affinity values greater than 2 because 1 and 2 are assigned to ‘** and ‘==>’ respectively.

Obviously, since the algorithm considers only the important transactions with high

37

occurrences, the affinity value must be greater than 2. Thus, the Algo 1 is modified

Construct the predicate usage matrix.
Construct the predicate affinity matrix. It includes two additional symbols the
and ‘=",
Construct the predicate affinity graph.
From the affinity graph, construct the spanning tree:
Begin with any node.
Select an edge having the highest value. Note: any value is considered as
high then *' and ‘="
When checking for a cycle the value ', ‘>’ are ignored.
The value of - is considered of having a high value as .
A set of clustered is determined. Optimize the clustered predicates.
Compose predicate terms using predicate term schematic table.
Place in the 1% column the chosen attribute with the appropriate ranges to
cover that attribute exhaustively
Place in the 2" column the next least common attribute and write its
appropriate ranges that appear in the cluster sets against the 1 column
If the considering least common attribute is opened to the attribute that is
in the left column, the considering predicate must be written as many times as the
number of predicates in the left column

providing a horizontal fragments to Algo 5.
Algo S: Horizontal graphical fragmentation

The optimization process in step 5 of Algo 5 is done just to reduce the number of

predicates. If necessary the set of clusters of Table 11 is shown in Figure 13.

38

Cluster 1

cut

Cluster 2

Cluster 3

Figure 13: Clustering of predicates of Table 11

The 3 clusters of Figure 13 are: cluster 1={D#<20,SAL>40000}, -cluster
2={D#>20,AGE<30} and cluster 3={D#<15,D#>40,SAL<40000,AGE>30}. The schematic

table of these three clusters is 1llustrated in Table 12

SAL>40000 (P7) AGE <30 (P9) D#<20 (P1,P2)
D#>20 (P3,P4)
AGE=30 (P10) D#<15 or D#>40
SAL<40000 (P8) ®5) (P6)
AGE=<30 (P9) D#>30 (P3,P4)
ELSE

Table 12: A predicate term schematic table

Each predicate term represents a fragment, i.e, Table 12 shows five different
fragments including {SAL>40000 AND AGE<30 AND D#<20} and {SAL<40000 AND
AGE=>30 AND (D#<15 OR D#>40)}, and others. The ELSE fragments in Table 12 is added

to insure the completeness of the horizontal fragmentation.

In [31], a similar algorithm to the BVP of [23] is developed and implemented to

obtain horizontal fragments. The PAM is calculated through the PUM using the same

39

equation (1) as in [29]. But the PAM does not include the two symbols “** and ‘==>". Thus

the PAM of Table 11 of the same example becomes Table 13.

1 2 3 4 5 6 7 8 9 10
1 25 0 0 0 0 0 25 0 0 0
2 0 50 0 0 0 0 50 0 0 0
3 0 0 25 0 0 0 25 0 25 0
4 0 0 0 15 0 0 0 15 15 0
5 0 0 0 0 50 0 0 50 0 0
6 0 0 0 0 0 40 0 40 0 40
7 25 50 25 0 0 0 100 0 25 0
8 0 0 0 15 50 40 0 105 15 40
9 0 0 25 15 0 0 235 15 40 0
10 0 0 0 0 0 40 0 40 0 40

Table 13: A predicate affinity matrix of Table 10 without 2 symbols

Next, the PAM is clustered in the same manner of CAAM creating the clustered
predicated affinity matrix (CPAM). Same as previously, two cases pops up. For the
nonoverlapping, a single point x is placed on the on the CPAM such that the equation (1) is
maximized. The parameters CL, CU and CI are calculated as previously on page 19. For the
overlapping the same objective function is maximized but the parameters CL, CU and C7 are
calculated taking into consideration the update and retrieval transactions of Table 5. Algo 6

shows the different steps needed for the development of the binary horizontal partitioning

Input a PUM

Construct PAM

Transform PAM to CPAM

Optimize the predicates (using the inclusion
and refinements) to minimize the number of
predicates

Construct horizontal fragment using either

PR, paf et SIS

algorithm.

Algo 6: Binary horizontal partitioning

5.3 SUMMARY
Figure 14 of this chapter shows the phases needed to be achieved before

implementing one or more of the mentioned vertical techniques.

40

Input:

Data about schema.
Tabulation of transactions
(Primary & Derived)

——

Minterm
fragmentation
[5]

Optimization model
Using linear integer
0-1 programming
(4]

Figure 14: Methodology of horizontal fragmentation algorithms

Construct
PUM
; Construct
Ol?tlmal PAM
Binary
Horizontal
Partitioning X
(Chapter 7) Horizontal CPAM
Affinity
Graph l
[29] ,
Binary
Horizontal
Partitioning
31]

41

Optimal binary horizontal partitioning is a proposed horizontal fragmentation based
on the PUM because affinity value has a deficiency, it finds the bond only among two
predicates. Thus calculating affinity value for more than two predicates fails. To solve this
problem, a new horizontal algorithm is proposed in chapter 7 using the vertical partitioning

algorithm of [12].

42

T:VO Jo 1apIo ay uo Lrxerduwrod e sey yomm (Nvd) Xujeuwr frugje syeotpaid o1 uo paseq ae JHY pue ydein ayJ, 910N

SUOIDESURT] JO JoqQUINN i 1174
saeaipaad Jo saqunN u
UOIJBIAPISUOD OJUl UIXB] JON OMN
sunpLioSpE Euoziiony ayy} Joj a[qe) uostredwo)) 1y 2[qEL
A% oN SO& ON z Aue ON (ujo WNd (¢ ') 490
s9x oN ON S9K z Auey sox (o140 | mwvad [1€] dHE]
& oN ON s9X v 1 oN (H)o NNd [67) ydesp
SIX SIA O/N SAX «C Foury 1 ON T.:VO apeopaid [87°S] uuauIpy]
Sjusge.y ‘uonauny
Juawdey Suiddepisao P9 "UOITRIN , papaau 2A12[q0 JopuRReJ
3 qRUOSEAY Suness) [SIssa0oe S| WASAS B | LY SUawSel JO 4| UoNRIN JO #| UB PIIN Anxapdwop nduyg wyuos[y

sunpLoS[e PaTprys a1 UT erIejud Juwpiodurt a1 SISt 1 S[qeL,

CHAPTER VI- ALGORITHMS FOR THE MIXED PARTITIONING

In case where the vertical fragmentation is implemented on the horizontal fragments,
the result will be a mixed fragmentation, a third way of fragmenting a relation. Thus,
creating mixed fragments is an easy task when compared to check the completeness and
reconstruction features of the DDB fragmentation. This chapter shows the steps required
achieving a mixed partitioning. Next and because these steps are relatively an easy task to
used, the focus will be on how to maintain the two features of DDB fragmentation,

reconstruction and completeness in a mixed fragmentation.

6.1 DEFINITION
A mixed fragmentation is a combination of both horizontal and vertical partitioning.

A mixed fragment can be achieved in two steps. First, sets of tuples are selected from the
relation upon a given predicate. Next, the resulting relations are projected onto a set of
attributes. In other words, a mixed fragmentation is a combination of a selection and a

projection or vice versa [15,16,20,21,24]

6.2 OVERVIEW
Any vertical algorithm mentioned in chapter 4 combined with one of the horizontal

algorithm of chapter 5, results in the formation of mixed fragments. In [24], the graphical
vertical algorithm (Algo 1) and the graphical horizontal algorithm (Algo 5) are combined to
find all the meaningful mixed fragments. The resulting combination is 7x m sets of grid
cells where » is the number of vertical fragments and m is the number of horizontal
fragments. Mathematically, the vertical fragments of the horizontal partitioning represented

by (IP,ZP,...,nP) form horizontal grid cells. The horizontal fragment of a vertical
partitioning represented by (i,7,.,...,7,) for vertical grid cells (Figure 15). However,

considering each grid cell as a fragment is inconvenient because a transaction may always

4

access a certain number of grid cells repetitively. Thus the number of joins increases among
these cells. For this reason, the authors of [24] have merged these grids forming a regular
fragment. Next, they have proved that a transaction accesses only a regular fragment. To

reach this theorem including the explanation of a regular fragment, a set of criteria and

1, 2, 3a
Iy || 2 3y
1 2 3.
le || 24 || 34
L. 2 3,

definitions are established as follows.
Figure 15: Representation of grid cdls

Using the two representations (IP,QP,A.‘,np) and (i,,4,,..i,), two operations
concatenated (||) the horizontal merging operator and union (U) the vertical merging
operator are defined on the set of horizontal and vertical grid cells. Let two vertical grid cells
i,and i, the union is (ip_q):priq. Let two horizontal grid cells 7,and j, the
concatenation is (fp, i A): L H j,. The binary operations union and concatenation are

commutative and associative over the set of vertical and honzontal cells respectively.

Mathematically, a grid cell is represented as &, where a=12,..,n the column index and

B =a,b,....m the row index.

Def. 1: A well formed expression w is defined as follows:

w=a, is well formed expression represented by r(w): a,, where a=12,..,n

and g=a,b,..m.

45

4.

w=a, ||, is well formed if @, 2, and B, = B,. r(w)=(ay,,a,,) is its
representative. Also, w=¢,; Ua,,is well formed if o =a, and B = p,.
r(w)=(yyp,)) is its representative.

w'=a,||w is well formed if there exist a grid cell represented by «j, in r(w).
r(w')= r(w)U a, is its representative.

Any number of invocations of the above set of rules.
In other words, in forming a well formed expression, two cells are concatenated only if they
are both horizontal grid cells from the same horizontal fragment and two cells are unified
only if they are both of vertical grid cells of the same vertical fragment. In general a well
formed expression w is represented as (al PRLZYRE Y) where «, represent a vertical
fragment and A, represent a set of vertical grid cells.

Def. 2: A regular well formed expression is a well formed expression

W=

Izzzl;?{UﬁeAf (afﬁ)} Al :A2 :"':AP =4 (15)

in other words the set of vertical grids cells 4; in the formation of the fragment is the result of

aregular well formed expression over the set of grid cells.

Def. 3: A fragment is the result of a well-formed expression over a set of gnid cells. A
regular fragment is the result of a regular-formed expression over the set of gnd
cells.

For example, in Figure 15, 1,, 1y, 2., 2, form a regular fragment by merging the respective

grid cells, where as 1,, 1y, 2, are not regular. In this case null values are used to fill up the

gaps. Remember that a regular fragment is a table in the relational database.

Furthermore, a transaction projects a number of attributes to a relation and selects

tuples upon a predicate thus creating a mixed fragment. Using the above information and

46

definitions, the authors in [24] proved that transactions only access regular fragments as it

has been mentioned earlier.

In [21], the authors do not suggest how to create a mixed fragmentation because it is
an easy task but they emphasize on how to preserve the two features: completeness and
reconstruction. Thus, an algorithm is developed to check the completeness of a
fragmentation schema. (It is worth to mention that fragmentation means a mixed
fragmentation. However, this meaning does not exclude the vertical and the horzontal
partitionings, as they are considered special cases of a mixed fragmentation). Completeness
is defined: “all data are mapped onto some fragment so that no item is lost” [21]. And
reconstruction “requires that the global schema can be reformed from its derived
fragments™[21]. It is obvious from the definitions that if the completeness feature is satisfied
so 1s the reconstruction. Thus, the authors suggested an algorithm (Algo 7) to check the
completeness of a fragmentation design. However some preliminary background and
notations are required.

Completeness means no data loss. The type of data can be a complete tuple in case of
horizontal fragmentation. It can be an attribute and its domain in case of vertical partitioning.
Further the data can be either one of the mention partitioning or a combination of both
fragmentation, i.e., an item in case of mixed fragmentation. Checking the completeness of
either horizontal or vertical is straightforward. But it is difficult to achieve the request in the
mixed fragmentation. Mathematically, completeness can be defined as:

Def. 4: Given a fragmentation schema F, a fragmentation attribute is any attribute of s(r) on
which a simple predicate of a qualification is defined. The fragmentation set f5(r)

is the ordered set of the fragmentation attributes. The fragmentation domain C(r)

47

is the cartesian product of the domains of the fragmentation attributes, taken in the

order defined by f(r) (equation (16)).

C(r)= [dom(4,) (16)
AcB(r)

for any tuple of C(r), the image of #is the set of fragments whose qualification is satisfied
by i{t)=1{f, / p,(2)} p: partition
Def. 5: A set of fragments F ={f,, £,...., £, } is said to cover a list of attributes X if the union

of the attribute lists of the fragment in # is a superset X: X < | JZ, , from the above
JeF

definition it is easy to states the condition of completeness.
Postulate 1: the fragmentation schema of a global relation 7 is complete if and only if the
image of any tuple C(r) covers the relation schema s(r).
Three types of violations may occur to this postulate. (a) If for a tuple ¢in C(r), i(t) is empty
then there is a tuple loss for any tuple 7 of » whose fragmentation attributes values are those in
t. (b) If i(t) does not cover s(r) but is not empty then there is an item loss, in
correspondence with the attributes not covered by i(t). And (c) If the same attribute is
missing in #(t) for all £ C(r) then there is an attribute loss. Algo 7 is an efficient algorithm

to check the completeness of a mixed fragmentation.

48

Input: A fragmentation schema F
Output: “Yes” if £ is complete; otherwise a list of the tuples of C(r) that violate
completeness, with the associated image.

Begin

Set the violation list empty

For each tuple f of C(r), compute i(t) and check whether i(t) covers
s(r); ifnot add the pair (¢, (t)) to the violation list;

If the violation list is empty, then output “yes”; otherwise output the
violation list.

Algo 7: Checking the completeness of a mixed fragmentation schema

49

6.3 SUMMARY
In this chapter we have seen that the mixed fragmentation is achieved by applying the

vertical partiioning on the horizontal fragments or vice versa. Thus making the mixed
fragmentation task easier then the previous ones. Therefore and as we have reviewed, the
importance of such partitioning is how to preserve its completeness because while creating
mixed fragments, data may be lost.

However, an interesting point is to check which vertical algorithm to use with which

horizontal one to give an optimal number of mixed fragments.

50

CHAPTER VII- A PROPOSED HORIZONTAL FRAGMENTATION ALGORITHM
7.1 INTRODUCTION

Most of the horizontal partitioning algorithms namely the graphical algorithm and the
binary horizontal are based on the PAM. However the PAM by itself has its own
deficiencies. First, if finds the affinity value among two predicates only. The calculation of
PAM fails when the objective is to find a bond among more than two predicates. Second,
PAM lacks the semantic meaning of transactions. Therefore, the two algorithms have used as
input the predicate only. Because the transactions have the same importance as the
predicates, another horizontal algorithm is proposed in this chapter taking into consideration
both transactions and predicates into account as input. This means the input of the algorithm

is not anymore the PAM but the PUM. When considering the PUM, the complexity of the

problem is reduced from O(n”) where n is the number of predicates (complexity of the PAM
without forgetting the complexity of the fragmentation algorithm used) to O("’) having m

the number of transactions.

7.2 SOLVING THE PROPOSAL
Using the concept of minimizing the total number of disk accesses of page 29, things

are quite different in case of horizontal partitioning, such as a transaction accesses a set of
tuples as a whole as stated in the definition. Because the horizontal fragments have the same
schema as their derived global relations, the length of the tuple is always constant. Therefore
the cost equation (9) on page 29 will become irrelevant and thus, the space area cannot be
determined. However, to solve the horizontal problem and to be able to implement the
algorithm of [12], the equation 2 must be altered to equation (17).

minimize total cost=iij;(cj) an

jml jul

51

where ¢ is the cardinality of fragment j, f(c J) is the cost of accessing c, tuples of fragment

J by transaction 4, n is the number of transactions and d'is the number of fragments generated
by the partitioning algorithm. As a consequence, the theorem 1 on page 29 must be proved
using the cost equation (17). Remember that the algorithm of [12] works on reasonable cut

space area where the unreasonable cuts were reduced by the mentioned theorem.

Similarly to [12], Theorem 2: let c, be the cardinality of fragment j and let £ (c Jr) be
the cost of accessing ¢, tuples of fragment j by transaction 7. If the second derivative of

j;(c J), f,."(cJ)*:0 (concave downward) for all i then for a given unreasonable cut of a

relation, there exists at least one reasonable cut that yields less or equal than that of the

unreasonable cut.
Transaction Transaction Transaction
Type Type
U U
l"?"@ kL v C P1
! i
/~—""\Partition M

(b) (c)

Figure 16: Reasonable and unreasonable cuts of a relation

Proof. An unreasonable cut divides a relation in two parts as shown in Figure 16(a).
The tuples are subdivided into P! and P2. Let types U (Up) and D (Down) transactions
access the tuples only in P7 and P2 respectively. F1 is the set of tuples accessed by U and
F3 1s the set of tuples accessed by D. Let X be the set of tuples not accessed by U
transactions in P/ and F2-X is the one not accessed by D transactions in P2. Type M
(Middle) transactions access both partitions P/ and P2. Consider the Figure 16(b) where the
cut 1s moved to the boundary of 7. The cost (accessing a fragment) of type U transactions is

not affected. But the cost of type A transactions may decrease since some tuples are moved

52

from PI to P2. Those type M transactions that only access X no longer need to access tuples
in P1 after the partition is moved to the boundary #7. Let D' be this type of transactions.
Similar to U" in Figure 16(c) where U’ represents the type A of transactions that only
access F2-X which does no longer access P2 after the partition has been moved to the

boundary of 73 fragment.

Let C, be the cost of the unreasonable cut. Tcm

i C
r2
Let C, be the cost of the reasonable cut of Figure rf\
f‘_._“—-ﬁ"-u
16(b) (partition moved to the boundary of #7) and |, Cra
let C, be the cost of the reasonable cut of Figure
16(c) (partition moved to the boundary of F3). g
vl
Thus, from equation 17, we have: -
0 Unreasonable F2 %
cut range

Figure 17: Cost region for unreasonable cut

C,(0= Z-f.:(cl +x)+ Zf;(cs +(c, - %)) s

ielhoM ieMuD

such that x €[0..F2].

C,= 2hle)+ X hiles+e) a9
felhuM-1r feMuD
C,= Xhla+a)r 3 fle) @0)

Let C, represents the cost of C,(x)at the end point 0 of the interval [0..F2] and

C,: represent the costs for C,(x) at the end point F2 of the boundary of [0..F2] (Figure 17).

C,= 2 file)+ X fle+e)=C, Q1)
felhoM leMuD

C,= Y fla+e)+ 3 fle)=2C, 22)
felhon ieMuD

53

C; >C, because the first part of the function cost C, of equation (21) has the interval
UuM while the first part of the function cost C, of equation (19) has the interval
UuM-U'. This insures that C,: costs more than C, . Similarly, for C; > C, using the
equations (22) and (20) respectively. Furthermore, C; — C, is the reduction in access cost
by type U" transactions which do not require the access of P7 and C,: - C,, is the reduction

in access cost by type D’ transactions which do not require the access of P2 (refer Figure

17). Due to concavity of f (cJ), we have:

a'C, (x)=C’: &)= X fle,+x)+ S ey + (e, -x))<0 ¢

2
dx ielluM ieMuD

Therefore, C, (x)Zmin(C C,;). As C:I >C, from equation (21) and C; >C,

from equation (22) then C,(x)> min(Crl ,C,, J This result shows that there is a reasonable

cut having a cost smaller or equal to the unreasonable cut.

The theorem 2 facilitates the implementation of OBP for vertical partitioning (page
29) on horizontal partitioning using the predicates instead of attributes. The OBP algorithm
Algo 4 is applied exactly the same way as in [12] listed on page 30 with only a slight
modification while constructing a search tree. The PUM is used as input for reasonable cuts
instead of AUM and the lower bound cost includes all the tuples selected by a predicate
accessed by the transaction. Thus the algorithm Algo 4 based on the branch and bound
concept becomes Algo 8. Of course the optimal binary horizontal partitioning produce two
fragments. To obtain the desired fragments, the same algorithm is implemented recursively

on each two sub-fragments separately.

54

Algorithm OBP(F,F1,F2)

; Mincost=evaluate_cost(F); better= ‘no better’;E-node=root.
Construct the pool of unassigned transactions for the path
If the pool is empty goto 6;
Select a transaction from the pool and expand the E-node.
Explore the left-branch
if the lower bound cost including all the tuples selected by a predicate accessed by this
transaction in the T-fragment<mincost then let the terminal node of the left branch be
the new E-node and goto 2;

5. Terminate this branch and backtrack to explore the right branch. Let the terminal
node of the right branch be the new E-node. Goto 2;

6. TempF1=T-fragment; tempF2=F-tempF1;
currentcost=evaluate_cost(tempF 1)+evaluate(tempF2); if currentcost>=mincost
then goto 7; F1=tempF1;F2=tempF2;mincost=curmrentcost;better= ‘better’;

7. Letthe new E-node be the terminal node of the right branch of the closest ancestor
from the E-node with a right branch that has not been explored and goto 2;
If no such ancestor exists then retum(better).

Algo 8: Proposed horizontal algorithm

Ll e

7.3 SIMULATION OF THE ALGORITHM
A simulation of the algorithm is developed using the C++ language for DOS. Even

though the algorithm Algo 8 is well explained but it can not be implemented as is. Several
issues must be taken into consideration. The first task of course is to determine the set of
variables needed for the simulation. These variables include the root, Enode used for the
construction of the tree, they have the tree data type, the Ifrag, F1, F2, TempF1, TempF2 are
used for the fragmentation process. The latter variables are of type arrays having as size the
number of predicates involved in the simulation because in worst case there can be at most pr
fragments where pr is the number of predicates. A stack data type is also to achieve the steps
6 and 7 of Algo 8. The second task, which is the most important one, is to evaluate the cost.
The calculation of the cost is used in steps 1, 4 and 6 (Algo 8). Thus, it is an important factor
is the mentioned algorithm. In order to be able to continue the simulation, I have to
determine the inputs required calculating the cost function. Recall that it is an f1 (c)
(equation (17)) where c is the cardinality of the fragment. The user supplies the number of
predicates, the number of transactions and the PUM in a file DATA.TXT. The frequencies of
each transactions are randomly generated from 0.OCCURRENCES where the user supplies

OCCURRENCES value in DATATXT along with the CARDINALITY of the relation.

55

Furthermore, an additional input in an array data type showing the cardinality of each
predicate. I consider that if a transaction uses more than one predicate the number of tuples
is the sum of both cardinalities. Thus, the cost function will be the cardinality multiplied by
the frequency of the transaction involved. Further, if a predicate is used by, let’s say two
transactions and they are both assigned thus the frequency is the summation of both
frequencies multiplied by the cardinality involved. For example, As a typical DATA TXT

file:

(=]

COoO00O0O0O KW
ocooocOoOrHOO
00000!—'008
cooCcOoOHOOO®
OROHHOOO O -
HOHDOODDO
coocoorHLS
HHEHEARREOOO

cooocorOO

HORrODODOoOOoOO

where 30000 is the cardinality, 8 is the number of transactions, 10 is the number of
predicates, 50 1s OCCURRENCES. And the ‘1’ and ‘0’ are the elements of the PUM. A
complete code of the simulation written in C++ language is provided in the Appendix at the
end the thesis. Finally, the simulation is repeated 50 times showing the resulted first two
fragments. These results saved RESULT.TXT file are highly dependent on the generated

number.

7.4 SUMMARY
In this chapter, we have proved that a vertical fragmentation algorithm using the

AUM can be implemented for the horizontal partitioning using of course the PUM instead of

the AUM. A further study can be done on the cost evaluation function in order to include

additional parameters and thus refining the fragmentation process.

56

CHAPTER VIII- CONCLUSION AND FUTURE WORK

In this thesis, we have presented the data fragmentation problem in homogeneous
DDB that aims to increase the locality of reference and decrease the data remote accesses.
We reviewed different algorithms that are suggested to solve the issue of vertical, horizontal
or mixed, the three types of database partitioning. I have supplied at the end of each chapter
for the first two types, a comparative table showing their criteria of the algorithms involved.
Next, I have developed an optimal binary horizontal partitioning with a complexity of 0(2")
where 7 is number of transactions. Last, I have implemented a simulation of optimal binary
partitioning using the C++ language for DOS. However, A further study can be done on the
cost evaluation function used in the simulation in order to include additional parameters and
thus refining the fragmentation process.

As an optimal binary vertical partitioning [12] and an optimal binary horizontal
partitioning algorithms (Chapter 7) are developed, a further study can be continued to see the
effect of creating a mixed partitioned fragments and check if their number is also optimal.

Further, as a common objective function [8,9,22] is developed for the vertical
fragmentation problem, which evaluates the different vertical techniques, a similar issue can
be done for the horizontal. We saw that each horizontal technique has its own objective
function or a way to be implemented that cannot be used on any other algorithm, a common
horizontal objective function can be developed to evaluate the different horizontal
techniques.

The database involved in this thesis is focused on relational type only. As the
database concept is evolving rapidly and turns out to involve others types including objects,
multimedia, like sound, voice images, animation, etc., studies can go into deeper quest to find

solutions to the fragmentation problem for these issues.

57

REFERENCES

(1]
(2]
(3]
(4]

5]
[6]
[7]

(8]

(%]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

Peter M. G. Apers, “Data Allocation in Distributed Database systems”, ACM
Transactions on Database Systems, vol. 13, no. 3, pp. 263-304, 1988.

J.A. Bakker, “A Semantic Approach to Enforce Correctness of Data Distribution
Schemes”, The Computer Journal, vol. 37, no. 7, pp. 563-575, 1994.

David Bell, Jane Grimson, Distributed Database Systems, Addison-Wesley Pub,
1992.

Stefano Ceri, Shamkant Navathe, and Gio Wiederhold, “Distribution Design of
Logical Database Schemas™, /EEE Transactions on Software Engineering, vol. SE-9,
no. 4, pp. 487-503, July 1983.

S. Ceri, M. Negri, G. Pelagatti, “Horizontal Data Partitioning in Database Design”,
ACM, pp. 128-136, 1982.

Stefano Ceri, Giuseppe Pelagatti, Distributed Databases Principles and Systems,
McGraw-Hill, Inc., 1985.

3. Ceri, B. Pernici and G. Wiederhold, “Optimization Problems and Solution Methods
in the Design of Data Distribution”, /nformation Systems, vol. 14, no. 3, pp 261-272,
1989.

Sharma Chakravarthy, Jaykumar Muthuraj, Shamkant B. Navathe, “An Objective
Function for Vertically Partitioning Relations in Distributed Databases and Its
Analysis”, Distributed and Parallel Databases, vol. 2, pp. 183-207, 1994,

Sharma Chakravarthy, Jaykumar Muthuraj, Ravi Varadarajan, Shamkant B. Navathe,
“An Objective Function for Vertical Partitioning Relations in Distributed Databases
and its Analysis”, University of Florida Department of Computer and Information
Sciences Technical Report, 1992.

Hong-Mei Chen Garcia and Olivia R. Sheng, “An Entity-Relationship-Based
Methodology for Distributed Database Design: an Integrated Approach Towards
Combined Logical and Distribution Designs”, Lecture Notes in Computer Science,
vol. 645, pp. 179-193, 1992.

Wesley W. Chu, “Optimal File Allocation in a Multiple Computer System”, JEEE
Transactions on Computer, pp. 414-418, 1969.

Wesley W. Chu and Ion Tim Ieong, “A Transaction-Based Approach to Vertical
Partitioning for Relational Database Systems”, /EEE Transactions on Software
Engineering, vol. 19, no. 8, pp. 804-812, Aug. 1993.

Douglas W. Cornell and Philip S. Yu, “A Vertical Partitioning Algorithm for
Relational Databases”, JEEE, pp. 30-35, 1987.

Douglas W. Cornell and Philip S. Yu, “An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases”, /EEE Transactions on
Software Engineering, vol. 16, no. 2, pp. 248-258, Feb. 1990.

Ramez ElMasri, Shamkant B. Navathe, Fundamentals of Database Systems, 2™ ed.,
The Benjamin/Cummings Publishing Company, Inc., 1994.

Gary W. Hansen, James W. Hansen, Database Management and Design, 2*° ed., The
Prentice-Hall International, Inc., 1996.

Henry F. Korth, Abraham Salberschatz, Database System Concepts, 2™ ed. McGraw
Hill International Edition, 1991.

Xuemin Lin, Maria Orlawska and Yanchun Zhang, “A Graph Based Cluster
Approach for Vertical Partitioning in Database Design™, Data and Knowledge
Engineering, vol. 11, pp. 151-169, 1993.

58

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
(29]
(30]

[31]

Xuemin Lin and Yanchun Zhang, “A New Graphical Method for Vertical Partitioning
in Database Design”, Australian Database Conference: Brisbane, pp. 131-144, 1993,
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, 3 ed.
Benjamin/Cummings Pub. Co., 1991.

C. Meghini and C. Thanos, “The Complexity of Operations on a Fragmented
Relation”, ACM Transaction on Database Systems, vol. 16, no. 1, pp. 56-87, Mar.
1991.

J. Muthuraj, S. Chakravarthy, R. Varadarajan, S. B. Navathe, “A Formal Approach to
the Vertical Partitioning Problem in Distributed Database Design”, University of
Florida Technical Report, 1992.

Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou, “Vertical
Partitioning Algorithms for Database Design”, ACM Transactions on Database
Systems, vol. 9, no. 4, pp. 680-710, Dec. 1984.

S. B. Navathe, K. Karlapalem and M. Ra, “A Mixed Fragmentation Methodology for
Initial Distributed Database Design”, Journal of Computer and Software Engineering,
forthcoming vol. 3, no. 4, pp. 395-426, 1995.

Shamkant B. Navathe and Minyoung Ra, “Vertical Partitioning for database Design: a
Graphical Algorithm”, ACM SIGMOD, pp. 440-450, June 1989.

M. T. Ozsu, P. Valduriez, “Distributed and Parallel Database Systems”, /n Handbook
of Computer Science and Engineering, A. Tucker (ed.), CRC Press, pp. 1093-1111
(Ch. 48), 1997.

M. T. Oszu, P. Valduriez, “Distributed Database Systems: Where Are We Now?”,
IEEE Computer, vol. 24, no. 8, pp. 68-78, Aug. 1991.

Tamer M. Ozsu, Patrick Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1991.

Minyoung Ra, “Horizontal Partitioning for Distributed Database Design: a Graph-
Based Approach”, Australian Database Conference Brisbane, pp. 101-120, 1993.
Andrew S. Tanenbaum, Computer Networks, 2" ed., Prentice Hall International
Editions, 1989.

Yanchun Zhang, “On Horizontal Fragmentation of Distributed Database Design”,
Australian Database Conference Brisbane, pp. 121-130, 1993.

2

59

APPENDIX - SOURCE CODE

RERFEEEIEARRRTEREARNAR NN FTETRAAR rwETEE

s
HOBP CPP file
This main file defines all the required implementations identified in
the HOBP H classes. It also includes the main function

b |
#include "hobp.h"

void main(void)

class hobp h;
for (int count=0; count<50; count++) { h LoadData(count); h.Algo();

}
}
\{roid hobp::Algo()

cout << 'The results for evaluating the sum cost” << end|;
MinCost=EvaluateCost(Frag);
ExpandNodes();
cout << "st fragment: ",
for (int i=0,i<PREDICATES;i++)
if (F1[i]1=ZERW)
cout << "P" <<+ e ™
cout << endl,
cout << "2nd fragment:”;
for (i=0,i<PREDICATES;i++)
if (F2[)]I=ZERW)
cout << P e<jr] <"
cout << endl << end!;
SaveResultToFile();

}
void hobp: ExpandNodes(void)
{

inti;
struct node *tmp;
for (i=0, i<=TRANSACTIONS,; i++} {
if (root==0) {
root=GetNode();
root->TransNums=i;
E_node=root;

else {
AssTrans(i- 1]=1;
AddPredicatesTfrag(i- 1);
cost=CalCost{i-1), //Step 4.
tmp=GetNode(),
tmp->Transhums=i;
NodeStack push{E_node),
if (cost < MinCost) { E_node->left=tmp; E_node=tmp; }
else { E_node->right=tmp; PopTfrag(); }
Vi Else
Wifor
{IStep 6
for (int j=0,j<PREDICATES;j++) TempF 1[j]=Tfrag[j]
{TempF1=Tfrag
for (j=0,j<PRECICATES j+ +)
if (TempF1[j]==ZERW) TempF 2[]=ONE,
else TempF 2(j]=ZERW, /TempF2=F-TempF1
CurrentCost=EvaluateCost(TempF 1)+EvaluateCost{TempF2);
if (CurrentCost <= MinCost) {
MinCost=CurrentCost,
for {j=0, j<PREDICATES; j++) {
F1[]=TempF1i[j)
F2[=TempF2[j).

}

else { /f Step 7. of the algorithm

if {INodeStack isStackEmpty()) { //pop the closest ancestor
NodeStack pop(E_nods);
E_node=E_node->right; /go to the right

ExpandNodes(); /irepeat the algorithm
}

}
}

void hobp:: PopTfrag{void) ffused to exclude the recently added
predicates

{
if (IFragStack.isStackEmpty()) {
FragStack pop{tmpElement);
for (int j=0,j<PREDICATESj++)
Tfrag(j]=tmpElement. frag(j];

}
void hobp::PushTfrag{void)
{

for (int j=0,j<PREDICATES;j++) tmpElement.frag[j]=Tfrag(],
]FragStack.push(tmpEIement);

void hobp:: AddPredicatesTfrag(int tr)

{

PushTfrag();

for (int j=0,j<PREDICATES;j++)
) if (PUM[tr][i] = 0) Tfrag[j)=ONE;

CALVALUE hobp::CalCost{int tc)

{
CALVALUE ¢=0.0;
for (int j=0; j<PREDICATES; j++) {
if (Tfrag(j] '=ZERW)
c+=(PUMItc][i] " freq(tc] * card(j]);

return(c);

struct node *hobp:: GetNode()
{

struct node *n,
n=new struct node;
assert(nl=0);
n->TransNum=0;
n->left=0;
n->right=0;

return n;

void hobp:: LoadData(int ¢)
{

inti, j;

ifstream inData("Data txt", ios::in);

If {inData) {
cout << "Error in Opening file" << end;
exit(1);

cout << "Loading data for turn " << ¢ <<", please wait. " << end <<
end;
inData >> CARDINALITY >> TRANSACTIONS >> PREDICATES
>> OCCURRENCES;
cout << "The cardinality of the relation is " << CARDINALITY <<
end,
cout << "The number of transactions is " << TRANSACTIONS <<
end;
cout << "The number of predicates is " << PREDICATES << endl,
cout << "The maximum number of occurences is " <<
OCCURRENCES << endl;
for (j=0,j<PREDICATES j++) {

Tfrag[jl=ZERW.

Frag[j]=ZERW,;

60

F1[j]l=ZERW,
F2Aj)=ZERW.
TempF1[j]=ZERW,
TempF 2{j|=ZERW;
AssTrans[j)=ZERW:
card[j]=0;

}

for (i=0,i<sTRANSACTIONS,i++) {
freq[i]=0;
AssTrans[i]=ZERW,

for(i=0,i<TRANSACTIONS;i++)
for(int j=0,j<PREDICATES;j++)
PUMIIL)=0;

/f the PUM shows which transaction accessing which predcate
cout << "Loading Predicate Usage Matrix ..." << endl;
for (i=0,i<TRANSACTIONS;i++)
for (j=0; j<PREDICATES j++) {
if (inData.eof()) break;
inData >> PUMI();

cout << "Loading Frequency of each transaction" << endl;
for(i=0;i<TRANSACTIONS;i++)
freq(il=random(OCCURRENCES) + 10, // a transaction is issued
at least once
cout << "Loading cardinality of each transaction when *
cout << "accessed to each predicate” << endl;
for (j=0, j<PREDICATES j++) {
card[j]=(random(100) * 0.01 * CARDINALITY) + 1.// number of
tuples returned when each predicates is applied (at least 1)
Frag[j]=1, /fthe entire relation as a fragment

}

cout << end! << "Data Loaded" << end| << "Ready to run
simulation"”;

cout << endl << endl;

SaveDataToFile{c);

void hobp: SaveDataT oFile(int c)
{

inti,j;
ofstream OutData("Result TXT", ios::app);
if (IOutData) {
cout << "Could not open file" << end|;
exit(1);

OutData << "Loading data for tumn " << ¢ << endl;
OutData << "The cardinality of the relation is " << CARDINALITY
<< end!;
OutData << "The number of transactions is " << TRANSACTIONS
<< endl,
QutData << "The number of predicates is " << PREDICATES <<
endl;
OutData << "The maximum number of occurences is " <<
OCCURRENCES << endl;
OutData << '"The Predicate Usage Matrix. " << endl;
OQutData << "it",
for (j=0,j<PREDICATES j+ +)
OutData << "P" << j+1 << "™

OutData << end,
for (i=0,i<TRANSACTIONS;i++) {

OutData << '"T" << i+1 << "it"

for(j=0;j<PREDICATES;j++)

OutData << PUM[I[]] << "\t";

OutData << end;
}
OutData << end|;
OutData << "Frequency of each transaction:” << endl;
for (i=0,i<TRANSACTIONS;i++) OutData << "T" << j+1 << "t*
OutData << endi,
for(i=0;i<TRANSACTIONS;i++) OutData << freq[i] << "it";
OutData << endl << endl;
OutData << "Cardinality of each predicate" << endi;
for (j=0j<PREDICATES;j++) OutData <<'"P" << j+1 <<"\t";

QutData << end|,

for(j=0j<PREDICATES;j++) QutData << cardf] << '\t".
QOutData << endl;

}

void hobp:: SaveResultT oFile(void)
{

inti, j;
ofstream OutData("Result TXT", ios: app);
if (I0OutData) {
cout << "Could not open file" << end;
exit{1);

}
OutData << endl ,
OutData << "The results for evaluating the cost” << end!;
QutData << "1st fragment "
for (j=0,j<PREDICATES j++)
if (F1[]I=ZERW)
OutData << "P" << j+1 <<" ™
OutData << end|;
OutData << "2nd fragment. ",
for (j=0,)<PREDICATES;j++)
if (F2[]I=ZERW)
OutData << 'P" << j+1 <"
OutData << endl << end];
}

CALVALUE hobp: EvaluateCost{FRAGMENTS *frag)

{
CALVALUE ho=00;
for {int j=0, j<PREDICATES; j++)
if (frag[)] I= ZERW) ho+=(ReturnFreq(j) * card[]).
return (hoj;
}

float hobp:: RetumFreq(int pr)

{
float rf=0.0,
for {inti=0,i<TRANSACTIONS;i++)
if (AssTrans[i]==ONE) rf+=(PUM][i](pr] = freq[i]);
return(rf);
}

void hobp:: DelTree(struct node *t)

{

if (t==0) return;
DelTree(t->left);
DelTree(t-=right);
delete t,

}

hobp: hobp() ffinitialize the variables
{

PUM=0;
Frag=Tfrag=F1=F2=AssTrans=TempF1=TempF2=0,
root=E_node=0;
ofstream QutData("Result. TXT", ios: out),
if (IOutData) {

cout << "Could not open file" << endl;

exit(1),

randomize(); /f for the random generator

clrser();

nti, J,

ifstream inData("Data bxt", ios::in);

if (linData) { cout << "Error in Opening file" << end:; exit(1), }
inData >> CARDINALITY >> TRANSACTIONS >> PREDICATES
>> OCCURRENCES,

cout << "The cardinality of the relation is * << CARDINALITY <<
end);

cout << "The number of transactions is " << TRANSACTIONS <<
end;

cout << "The number of predicates is " << PREDICATES << endl,
cout << "The maximum number of occurencesis " <<
OCCURRENCES << endl;

61

/! Allocate single dimensional arrays

Tfrag = new FRAGMENTS[PREDICATES); assert(Tfrag I= 0};
Frag = new FRAGMENT S[PREDICATES],

assert(Frag 1= 0);

F1 = new FRAGMENTS[PREDICATES];

assert(F1 |= 0);

F2 = new FRAGMENTS[PREDICATES], assert{F2 I= 0);
c'iliempF1 = new FRAGMENTS[PREDICATES); assert(TempF1 I=
TempF2 = new FRAGMENTS[PREDICATES], assert{TempF2 |=
Q).

card =new int[PREDICATES];

assert(card 1=0);

freq = new int[TRANSACTIONS],

assert(freq I= 0);

AssTrans = new FRAGMENTS[TRANSACTIONS]:
assert(AssTrans |= 0);

Il Allocate two dmensional arrays

*PUM =new int[TRANSACTIONS]; assert(("PUM) 1=0);

for (=0 i< TRANSACTIONS; i++) { PUM[i)=new int{ PREDICATES];
assert(PUM[I] 1=0); }

}

hobp::~hobp()

for (int i=0,i<TRANSACTIONS;i++) { delete [] PUM[I]; }

delete [| PUM. delete] card, delete [Tfrag, delete [] Frag;
delete] F1,
delete [J F2;
freq;

delete [] AssTrans,
DelTree(root);

delete | TempF1; delete] TempF2 delete []

Vi ** rrnny TETTEETERRRTTIEE ARRAR

HOBP H file
This header files defines all the reguired classes (variables and
interfaces) used for the simulation

TARANEER I"Jr

#include "stack h"

#include <conio.h>

#include <string.h>

#include <stdlib h>

#include <values.h>

#nclude <time.h> //for the randomize fct
#include <fstream h>

#include «dos h>

#define CALVALUE float
#define FRAGMENTS char
#define ZERW ‘0
#define ONE b

/iNumber of transactions, predicates, cardinality of the relation and
the frequencies of each transaction in the simulation
int TRANSACTIONS, PREDICATES, CARDINALITY,
OCCURRENCES;
struct node { /#The element in the binary tree

int TransNum;

node *left, *right;
¥

/farecord is used instead to be used in the stack
//Can not push an array to the stack but a structure it is feasable
struct element {
FRAGMENTS frag[30];
¥

class hobp {

public:
hobp(); /initialize the variables
~hobp();
void Algo(void);
void LoadData(int), /oad the data

private:
void AddPredicatesTfrag(int), //copy predicates to transaction i

void ExpandNodes(void);

CALVALUE CalCost{int); f/icalculate the cost of including the
predicates of transaction t¢

vold SaveDataToFile(int);

void SaveResuUltT oFile(void),

void DelTree(struct node *);

CALVALUE EvaluateCost{FRAGMENTS %),

float RetumFreg(int),

int *“twoDimint(int, int);

float **twoDimFloat(int, int);

struct node *GetNode();

CALVALUE cost, CurrentCost, MinCost; /fused for calculating
the cost

struct node "root, *E_node, *LeftNode, *RightNode; /for the
construction of the tree

fithe Tfrag, final fragments F 1, F2 and temporary fragments used in
the
/fsimulation and frag represents the entire relation. AssTrans is
assigned transactions
FRAGMENTS *Tfrag. "F1, *F2, *Frag,
*TempF 1, *TempF2, /size of PREDICATES
"AssTrans, //size of transactions

HStructures used for the simulating en example

int *"PUM, # predicate usage matrix

int *freq /ffrequencies of each transaction in an array
TRANSACTIONS

int "card; ffcardinality of each predicate

/A stack is used in the simulation

void PushTfrag(void) #sets the element structure to be pushed
in stack

vold PopTfrag{void)/pop the element from stack and sets the

lirespective values

struct element tmpElement,

Stacksstruct element> FragStack; //for restoring previous state
of Tfrag

Stacksstruct node *> NodeStack; /ffor the backtracking in the
tree
¥

[FARRRERIREEAARTERRR SRRERARS

STACK Hfile

Stack h data type uses the class list in Listh to be implemented
R N R AN N AN T R A RN AN TR RN ARTTNEERNTRANRT lill‘{
#ifndef STACK_H

#define STACK_H

#include "ist h"

template <class STACKTYPE>
class Stack : private List<STACKTYPE> {
public:
void push{const STACKTYPE &d) { insertAtFront(d); }
int pop{STACKTYPE &d) { return removeFromFront(d); }
int isStackEmpty() const { return isEmpty(); }

S R R R SRR TR RN AR R SR TR A RN EEXXERTXEERATY

LIST Hfile

The basic interfaces and implentations routines used for the stack
are defined in this file

AR EENNTEERAAIRNNNANAAANENET Itt]lxl!‘ttt'ltl‘ttttt!tt“lttttt‘lIittttﬁtlt*lf
#ifndef LIST_H

#define LIST_H

#include <iostream h>

#include <assert h>

template <class NODETYPE>
class ListNode {
friend class ListsNODETYPE>; /fimake List a friend
public:
ListNode({const NODETYPE &), /fconstructor
NODETYPE getData() const, /freturn the data in the node

62

private:
NODETYPE data
ListNode "nextPtr;
¥

template <class NODETYPE>
class List {
public:
List();
~List().
void insertAtFront(const NODETYPE &)
void insertAtBack{const NODETYPE &),
int removeFromFront(NODETYPE &)
int removeFromBack{NODETYPE &);
int IsEmpty() const;
private:
ListNode<NODETYPE> *firstPtr, *lastPtr, ipointer to first and
last node
ListNode<NODETYPE> " getNewNode(const NODETYPE &);
Hutility
5

template <class NODETY PE> //constructor
ListNode<NODETYPE>:: ListNode(const NODETYPE &info)

{
data=info,
nextPtr=0;
}

template <class NODETYPE=>
NODETYPE ListNode<NODETYPE>:.getData() const { return data;

}

template<class NODETYPE> /fConstructor
ListsNODETYPE=: List() {firstPtr=lastPtr=0; }

template<class NODETYPE> //Destructor
ListsNODETYPE=: :~List{)

{
if (lisEmpty()) { #/List is not empty
ListNode<NODETYPE> *currentPtr = firstPtr, *tempPlr;
while (currentPtr 1=0) { //delete remaining nodes
tempPtr=currentPtr;
currentPtr=currentPtr->nextPtr;
delete tempPtr,

}
}

template<class NODETYPE=> /insert a node at the front of the list
void ListeNODETY PE=>:insert AtFront(const NODETYPE &value)

{
ListNode<NODETYPE> "newPtr = getNewNode(value);
if (iSEmpty()) // list is empty
firstPtr=lastPtr=newftr,
else {
newPtr-=nextPtr=firstPtr,
firstPtr=newftr,

}

}

template<class NODETYPE> ffInsert a node at the back of the list
void ListsNODETY PE>"insert AtBack{const NODETYPE &value)

{
ListNode<NODETY PE> "newPtr=getNewNode{value),
if (isEmpty()) // listis empty
firstPtr=|astPir=newplr,
else {
lastPtr->nextPtr=newrtr;
lastPtr=newPtr,
}
}

template<class NODETY PE> //delete a node from the front of the
list
int List<NODETY PE=::removeFromFront(NODETYPE &value}

{
if (isSEmpty()) return 0;
else {

ListNode<NODETYPE> "tempPtr=firstPtr;
if {firstPtr==lastPtr)
firstPtr=lastPtr=0;
else
firstPtr=firstPtr->nextPtr;
value=tempPtr->data;
delete tempPtr,
return 1,
}
}

template<class NODETYPE> //delete a node from the back of the
list
int ListeNODETY PE>: removeFromBack(NODETY PE &valug)

i

if (isEmpty()) return 0, //delete successful
else {
ListNode<NQODETYPE> *tempPtr=lastPtr,
if (firstPtr==lastPtr)
firstPtr=lastFtr=0;
else {
ListNode<NODETYPE> *currentPtr=firstPtr;
while (currentPtr->nextPtr I= lastPtr)
currentPtr=currentPtr->nextFr,
lastPtr=currentPtr;
currentPtr->nextPtr=0;

value=tempPtr->data,
delete tempPtr;
return 1, //delete successful

}
}
template<class NODETYPE> /fis the list empty?

int ListeNODETY PE>::isEmpty() const { return firstPtr == 0; }

template<ciass NODETY PE> //Return a pointer to a newly
allocated pointer

ListNode<NODETYPE> *ListeNODETYPE>: getNewNode(const
NODETYPE &value)

{

ListNode<NODETY PE> *ptr= new ListNode<NODETYPE>(value),
assert(ptr 1= 0);

return pir,

}

#endit

63

