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Abstract 

The internet has made room for lots of unwanted activity to propagate 

through computers. In response, many methods were established to detect a 

certain computer executable as malicious. However, there were still loopholes 

for hackers within traditional systems. Some methods use machine learning 

others use deep learning. There are some drawbacks to each method, such as 

reverse analysis and restricted simulation on different execution paths, as well 

as long execution time. Some methods cannot generalize well and cannot scale 

to large amounts of data. Moreover, anti-viruses, using signature-based 

classification, have proven to be insufficient in certain instances, as certain 

malware has been developed in a way to include a signature beyond the 

available malware datasets. For this reason, deep learning techniques with 

different architectures were introduced to select features automatically, 

identify and classify malware programs. Specifically, using transfer learning to 

classify malware binaries has proven to be an improvement on the current deep 

learning methods which take days to execute. Transfer learning speeds up the 

process by using much less epochs in fitting the models. 
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1 Introduction 

1.1 Overview 

We have reached an age where the internet has become an essential part of 

living. It is the driving force of all modern workflow, communication, organization 

and so on. Starting from the concept of existence of antimatter as opposed to 

matter, it is in the basic forms of creation that one recognizes that for every bit of 

evolution/innovation, there is some form of downside, or opposition to what is 

there. Stemming from this ideology, one pays attention to the fact that the internet 

has allowed malicious intent to propagate by causing unwanted activity to be 

executed through the said helpful means. For this reason, action is needed to be 

taken against malicious activity through cybersecurity systems with the intent to 

prevent, detect and/or combat malicious software; therefore, the need to evaluate 

the current established methods for malware detection has increased, for it is 

necessary to ensure the most efficient and optimal strategies are to be taken place 

to promote a more secure environment for our daily usage. Anti-viruses have 

proven to be insufficient with their signature-based means. Additionally, when it 
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comes to Artificial Intelligence methods, there were still limitations when it comes 

to the accuracy and/or insufficient data to train on, with the rapid increase of 

malware variants. Moreover, sometimes it is required for a rapid incident response 

to take place, if a system is under attack. Therefore, it is necessary for a deep 

learning system to run in a fast manner; however, this isn’t the case in some deep 

learning methods, where the execution time takes days. This is a problem from 

different angles that needs to be addressed to ensure security. 

1.2 Problem Description 

Anti-viruses aren’t enough nowadays, for malware has been adapted to evade 

classical detection techniques that use file signature matching. Another problem is 

that malware variants have increased using a variety of methods such as 

compressing and encrypting file data [4]. To counter these workarounds, several 

machine learning were proposed. For most of the deep learning methods proposed 

in the literature, training takes a long time. The purpose of this thesis is to improve 

on the training time of such methods. 
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1.3 Objectives 

The goal of this thesis is to use transfer learning to speedup the learning phase 

in the case of malware detection/classification.. Finding the right dataset is 

essential, since the method includes using a CNN architecture. For this reason, a 

dataset including data that is transformable to images is necessary. To be specific, 

uniformly transformable data is essential, meaning that binary files need to be 

uniformly considered if they are chosen. Malware data of different formats cannot 

be used for comparison in that case. Images are then to be placed as input to 

existing CNN models. By using publicly available pre-trained models from Keras to 

account for limited datasets and using different seeds for training, it is ensured that 

high accuracy levels are obtained, and fast training takes place. 

1.4 Limitations 

One of the limitations is finding enough datasets for malware detection. Since 

datasets exist in very different structures, the method proposed in this paper was 

tailored to fit the Microsoft Malware Classification Challenge dataset (BIG 2015), 

which includes binary and assembly files. Dataset size is another limitation, for 
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malware variants are ever-increasing and accounting for all of them is a never 

ending process. 

1.5 Outline 

First, a theoretical background will be mentioned, including overviews and 

definitions per the keywords mentioned in the text, such as malware, machine 

learning and deep learning techniques. Next, some related work will be presented 

based on previous findings and implementations, right before a discussion on the 

proposed method will be mentioned. A description of the dataset used, as well as 

the implementation strategy for the experimental simulations and the architectures 

used. Then, the stage is set for the results of the proposed method, including overall 

performance of each model used. Finally, the paper is concluded with analysis and 

conclusions of the study undertaken. 
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2 Theoretical Background 

2.1 Malware 

Malware (malicious software) is any computer program that compromises any 

of the levels of architecture of a computer (physical level, data transfer layer, 

network layer by hijacking packets for instance, or application layer etc.) Different 

types of malware include Trojans, Spyware, Adware, Rootkits, Ransomware, 

Worms, Key loggers, Grayware, fileless malware, Adware, Malvertising, Botnet, 

Backdoor, and so on. The method of malware propagation differs, like the extracted 

malware data formats. Malware can be extracted as binary files, assembly code, and 

Portable Executables. 

2.2 Machine Learning 

Machine learning (ML) is a branch of Artificial Intelligence (AI) that enables 

computers to learn from patterns in data, extracting useful knowledge that would 

predict a specific outcome from learned data – a white box model; a pre-

programmed one. ML has facilitated the prediction process by learning from 
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gathered data and improving itself. However, in some cases, the machine learning 

process is rather ineffective in the face of huge datasets and time consumption, as 

well as it includes its weaknesses in specific cases. 

2.2.1 Classification 

Classification is a supervised ML method, and there are various algorithms to 

achieve this use case, such as Logistic Regression, Naive Bayes, K-Nearest 

Neighbors (KNN), Decision Trees, and Support Vector Machines (SVM). Some ML 

methods introduced by various researchers, as traditional methods, are 

characterized as static and dynamic methods. 

Static Methods 

Static methods have relied on feature extraction from disassembly code, 

bytecode, file structure, file signatures etc. 

Compared to dynamic analysis, static analysis has the advantage of efficiency 

and fast performance since there is no execution to be taken place. Relative work 

was that of Anderson and Roth in 2018, who have created the labeled benchmark 

EMBER dataset used for the models for malware classification, specifically static 

analysis of Windows portable executable (PE) files [1]. The dataset was a product of 

extraction of 1.1 million malware binary PE files, which included 81% training 
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samples and 19% test samples. Training samples included 30% benign labels, 30% 

malignant and 30% unlabeled data whereas test data included 50% benign by 50% 

malignant only. Their work has allowed for the experimenting of static analysis by 

many others whose work will be listed. 

All in all, static analysis refers to the unpacking and/or decryption of the 

executable in question, then checking whether the code contains malicious patterns 

in control flow. However, this entails problems like code obfuscation in many 

instances. 

Dynamic Analysis 

Dynamic analysis consists of running executable code in what is called 

a ”sandbox environment.” The dynamic method is different than the static method 

in the sense that it saves the time of unpacking and decryption by not requiring to 

do so. Thus, time is saved but not at the expense of scalability, where the issue of 

intensive resource consumption is in question. Additionally, this type of analysis 

has its problems as well; In some cases, it cannot trigger the malicious behavior to 

surface, for it needs to set the right conditions for it, which isn’t always feasible.[8] 
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2.3 Deep Learning 

Deep learning is a complex structure of algorithms inspired by the human 

brain, as the structure is formed of Neural Networks. Deep learning allows for the 

processing of unstructured data, such as image, text, and so on. It is a subset of 

machine learning. This method has solved lots of problems, including malware 

classification. However, the performance of proposed deep learning methods for 

malware classification still consume a lot of time. 

Artificial Neural Networks are defined as “a mathematical model that is based 

on biological neural networks and therefore is an emulation of a biological neural 

system”, as stated by Singh and Chauhan [9]. 

Deep learning uses the Neural Network architecture (NN) to learn and train on 

specific data to be able to predict specific outcomes; however, it’s rather a black box 

model. The NN architecture is inspired by the human brain, as it is formed 

of ”neurons”, namely fully connected layers which take data in a tailored format as 

input. The NN structure is comprised of an input layer which is connected to hidden 

layer(s) that include weights and biases to set probabilities for the data. 
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The hidden layer(s) are fully connected to output layers which depict the outcome 

of the prediction. The layers require a specific format for the data to be accepted 

uniformly and lead to the desired outcome. For example, if it is intended to classify 

dog images according to their breed, the input layers, which accept images of a pre-

defined size, for example, require specific dimensions for the images for the 

learning procedure to take place from layer to layer, as well as classified in the 

output layer, which includes output nodes according to the number of dog breeds 

that exist. The output, for instance, may include “one-hot encoded” values, 

indicating a value of 1 next to the predicted breed and a 0 from the other nodes that 

indicate different breeds. In general, when using NNs data can be text, image, PDFs, 

audio and so on. As per the scope of this thesis, the intent is to use images as input, 

thus requiring the architecture of Convolutional Neural Networks (CNNs) which 

will be discussed in the following paragraph. 

2.3.1 Convolution Neural Networks 

Convolution Neural Networks (CNNs) are a type of deep learning network 

architecture. Note that the images are to be in uniform shape, namely normalized in 
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order to be accepted and provide an objective prediction as an outcome. The 

process of building the CNN architecture, as shown in Figure 1, requires several 

layers to be structured. The layers include an input layer taking an image of a set 

size, Max-Pooling layers, convolution layers and fully connected layers for the 

output, which consist of a finite set of nodes denoting the finite number of 

outcomes we can have for the prediction. The fully connected layer must also 

include an activation function, depending on the problem at hand. 

 

Figure 1: A CNN sequence to classify handwritten digits 

Convolution Neural Networks use Kernel Convolution, which is used in a variety 

of image processing applications. Kernel convolution denotes a small matrix of 
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numbers, which is also called the kernel or filter that transforms the images based 

on the filter values and mapped as features according to the following formula 

G[m,n] = (f ∗ h)[m,n] = ∑∑h[j,k]f[m − j,n − k] 
                                                                                                            j   k 

where f is the input image, h is the kernel, and m and n being the indexes of the 

rows and columns of the matrix obtained, respectively. With each convolution, the 

image shrinks. Therefore, the number of passes done by the filter should be limited. 

Moreover, the loss of information should be accounted for, using the following 

equation to pad the image 

p = (f − 1)/2 

where f is the filter dimension and p is the padding. Depending on each image’s 

size, it is decided whether the original image is kept or one with a border, to ensure 

all images are of equal sizes. 

The Convolution Neural Network consists of a forward propagation, 

backpropagation and a gradient descent. Forward propagation is characterized by 

calculating an intermediate Z value obtained by the convolution with W filters and 

bias b. A non-linear activation function g is then applied. 
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Z[I] = W[I] ∗ A[I−1] + b[I] 

A[I] = g[I] (Z[I]) 

Backpropagation then occurs within the neural network by calculating 

derivatives to ensure the parameters are updated during gradient descent. A 

simplified version of the notation is represented as follows. 

 

dW and db are associated with the current layer. dA-1 is passed to the previous 

layer and dA is the input. Note that dW, db, W, b, dA and A are of the same 

dimension. By applying a derivative of the activation function to the input, we 

obtain the intermediate. 

∂Z[I] = ∂A[I] ∗ g0(Z[I]) 

Full convolution then takes place. The matrix operation 
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nh nw 

∂A+ = ∑∑w ∗ ∂Z[m,n] 
m=0 n=0 

is then used, after a 180 degree rotation of the kernel to handle the 

backpropagation, where dZ[m,n] is obtained from the previous layer. 

Then, pooling layers are used to reduce tensor sizes including forward 

propagation and backpropagation to distibute the gradients. 

2.3.2 Transfer Learning 

With different pre-trained neural network architectures, there is room for 

editing the architecture according to the requirements. For instance, the last 

classification layer might need removal to add a layer that fits the number of 

outcomes that are related to the dataset. The neural network models are then 

considered to be “recyclable.” For this reason, Keras has deployed a library of pre-

trained models of very deep neural networks to be used publicly for a variety of AI 

applications. The models used, which are available through Keras, help with a 

variety of classification use cases. This thesis aims to improve on the current 
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methods of malware classification using Transfer Learning by using several pre-

trained models. Transfer learning proves to be helpful for small dataset sizes as the 

models already contain some information to aid in the learning procedure. 

In the proposed method, the following pre-trained models were used and 

evaluated; MobileNetV2, VGG16, ResNet101, ResNet152, ResNet50, 

InceptionResNetV2 and InceptionV3.  
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3 Related Work 

Various methods for malware classification were proposed and established 

using static and dynamic features as stated in [11] and defined in 2.2.1. Despite 

their effective results while being classical techniques, more accurate methods have 

been achieved to accommodate for the large amount of malware variants as well as 

performance, as discussed further ahead. 

One proposed architecture for malware classification using transfer learning, is 

the MalConv architecture used by Mohamad Al Kadri, Mohamed Nassar, and Haidar 

Safa [7]. MalConv has performed better than many other architectures including 

RNN. It was designed based on a few principles such as accounting for high 

generalization, large sequences, sparse features, and overfitting layers. The 

MalConv architecture is depicted in Figure 2. 
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Figure 2: High-Level Diagram of the MalConv Architecture 

As for some performed methods for image classification, several steps are 

taken for image texture analysis, such as using the (A)Gabor filtering or using the 

traditional methods, such as feature extraction, transformation and classification. 

The work in [5] suggests a Principal Component Analysis (PCA) for dimensionality 

reduction. It is a statistical method that converts a set of n possible correlated 

variables into uncorrelated values (m, where n ≤ m) using orthogonal 

transformation. The use of GIST descriptors including Gabor filtering, as well as 

Haralick method for image classification and Local Binary Pattern are also 

techniques to be used for texture analysis. 

As for other proposed methods for classification, the work in [4] suggests a 
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K-Fold Cross-Validation technique by dividing the dataset into K equal-sized folds. 

One of these samples is kept for validation and the whole process executes 

according to the number of folds. This method included similar limitations such as 

similarity of malware images and compressed files. 

Some methods for image visualizations, resorted to visualizing malware binary 

executable files as grayscale images, by reading the files as sequences of 8-bit 

unsigned integers, reshaped into 2D matrices using the equation 

A = a0 ∗ 20 + a1 ∗ 21 + a2 ∗ 22 + a3 ∗ 23 + a4 ∗ 24 + a5 ∗ 25 + a6 ∗ 26 + a7 ∗ 27 

as in [3]. 

Other work [10] for malware classification included the usage of deep 

autoencoders (DAEs) for digital signatures and notations, as well as features, each 

including different frameworks. The signatures are extracted using feed-forward 

neural networks. It is trained for 800 epochs, at a learning rate ranging between 0.1 

and 0.21. It achieves a near-100% accuracy. However 800 epochs is still a big 

number. 
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Additional work related to malware classification for Android [12], depicted a 

specific method by decompiling APK files and API feature vector construction using 

One-hot encoding for the classification. Deep Auto-Encoders were then used to 

reduce feature vector dimensions. A Logistic Regression binary classification model 

is then used as comparison, represented by the following function: 

h(x) = g(w ∗ x) = (1/1 + e−w∗x ) 

where x is the feature vector of the input and w is the trainable parameter. 

Other models, including a finite Gaussian Distribution and CNN model were used as 

comparison to the proposed method. The results showed that proposed method 

performed best, rating a high F1 score of 0.93 and 0.643, making it a remarkable 

approach. 

4 Proposed Method 

The proposed method dictates the transformation of binary files into grayscale 

images to be fed as input to the NN. By transforming the files to images, one can 

immediately observe how similar those ”malware visualizations” belonging to the 

same family are; this can be explained by the fact that malicious code is perhaps 

edited, reused and plugged into target files. 
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4.1 Dataset 

The selected dataset for malware classification used is Microsoft Malware 

Classification Dataset (BIG 2015) avaliable on Kaggle. This dataset is about half a 

terrabyte big. It includes raw binary malware files, representing 9 malware 

families, depicted in Table 1. Each malware sample has 2 associated files to it; 

an ’.asm’ file and a ’.byte’ file. The target files of the experiment conducted were 

those having a ’.byte’ extension. The binary files are chosen for visualization and 

normalization purposes. The identifiers of the binary files, uniformly, are strings 

composed of an ID, 20-character hash values, a class and an integer indicating one 

of the families that the file belongs to. Each binary file contains hexadecimal 

information about the file’s content. Portable Executable (PE) headers are excluded 

for normalization purposes. In this dataset, metadata is provided through a 

manifest of function calls, strings and other code-level information. As stated from 

the source, a reverse engineering tool was used to collect this data (IDA 

disassembler). 

 

 



20 

Family Samples Type 

Gatak 1013 Backdoor 

Kellihos 

ver1 
398 Backdoor 

Kellihos 

ver3 
2942 Backdoor 

Lollipop 2478 Adware 

Obfuscator 1228 
Obfuscator 

Malware 

Ramnit 1541 Worm 

Simda 42 Backdoor 

Tracur 751 Trojan 

Vundo 475 Trojan 

Table 1: Microsoft Malware Classification Dataset (BIG 2015) Samples 

 

There are lots of datasets which are plausible for the same experiment, due to 

similar structures, such as IoTPOT [6] and Drebin [2] dataset. 
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4.2 Strategy 

The strategy proposed is as follows. First, to get some meaning out of the 

binary files, they are labeled and structured according to each file’s name - which 

includes an identifier in the file name’s string - and assigned a category, one of the 9 

malware families. Then, each binary file is parsed using its hexadecimal content, 

then resized to a uniform, fixed size of 256x256 grayscale image to fit the input 

layer of the NN architecture. 

The architectures used were pre-trained on the ImageNet dataset and were 

modified for the sake of the experiment. The last classification layer of the models 

used was removed, and the whole other part was used connected to another set of 

layers, consisting of a fully connected layer having 1024 neurons and a 

classification layer of 9 nodes for each class of malware samples. 

The image set is split into training and testing sets through Keras’s functions. 

As a test before the transfer learning, the Yuan model [11]is built and trained, then 

used to predict the unclassified images in the testing dataset. The performance is 

then evaluated and the model is saved. 
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After this procedure transfer learning phase takes place using the different 

models from Keras (InceptionV3, VGG16, InceptionResNetV2, ResNet50, 

ResNet101, ResNet152, and MobilenetV2), which are loaded, frozen, and run for 15 

epochs, with only the two added layers optimized. The same data is split into 90% 

training and 10% validation, loaded as RGB input to be normalized for the imported 

models and given a different seed - one of 10 different ones, to make sure the whole 

variety of classes are shuffled in experimentation. An activation function (ReLU) for 

the dense layer is then used, with a softmax activation for the prediction layer. The 

model is then trained, evaluated and unfrozen, respectively. It is then retrained to 

ensure the fine-tuning operation, lasting for 10 epochs with a 

batch size of 32 and learning rate of 10 −5 . 

All the results are recorded and will be brought to light further ahead and 

evaluated. 

4.2.1 Classification through Base Model 

The base model is structured as follows: it is a sequential model consisting of a 

256x256 input layer with a grayscale color channel, two Conv2D layers of size 64, a 

MaxPooling2D layer, two Conv2D layers of size 128, another MaxPooling2D, then an 
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additional three sets of 3 layers of Conv2D of size 256 and 256 then 512 respectively, 

followed by a MaxPooling2D layer. A flattening layer is then introduced followed by 

a dense layer using the Relu activation then another dense layer using softmax 

activation for the output. The model is then optimized using the Adam optimizer - an 

adaptive gradient descent algorithm. A Sparse categorical Crossentropy computation 

is used for the loss since the output is categorical, and not one-hot encoded. The 

optimization is set to not compute from logits for the reason that it would then occur 

after the softmax computation. The model is then trained and evaluated. 

4.2.2 Classification through Transfer Learning 

For the transfer learning phase, images are prepared using the same method as 

that of the base model. From Tensorflow, different models are imported and the 

seed for each training and testing dataset is 1 of 10 different ones, for each model 

training to be simulated. Since the color channel of Keras models’ input is RGB, we 

parse the grayscale images to be read in an RGB fashion. Each model is frozen, 

trained, Adam-optimized, unfrozen, fine tuned and evaluated. 
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4.3 Experiment Technology Ecosystem 

The environment used to run the conducted experiments was through Kaggle’s 

workspace, which includes an NVIDIA Tesla P100 GPU having 16GB of RAM. 

Python language was used, with the major library Tensorflow being used. 

5 Results 

When fitting the pre-trained models, and right after freezing, 15 epochs were 

used with a sparse categorical cross entropy loss. Then, after fine-tuning the model, 

the prediction score is recorded and the results are shown in confusion matrices 

below for the seed 254, per model. An interpretation is then stated along with 

discussions on the accuracy recorded per epoch of fine-tuning. 
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5.1 True vs. Predicted Class 

 

Figure 3: Inception V3 Confusion Matrix 
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Figure 4: ResNet 50 Confusion Matrix 
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5.2 Training Accuracy per Epoch and Model 

 

Figure 5: Training Accuracy Plot 
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5.3 Fine-Tuning Accuracy per Epoch and Model 

 

Figure 6: Fine-Tuning Accuracy Plot 
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6 Discussion and Analysis 

6.1 True vs. Predicted class 

It is observed in Figure 3 and Figure 4 that InceptionV3 and ResNet50 have a 

generally accurate prediction for most classes. 

For InceptionV3, we can see that the diagonal portrays a true positive instance 

in 100% of cases for the classes Gatak, Kelihos ver1, Kelohis ver3, Lollipop, and 

Vundo. As for Obfuscator and Tracur, there was a 95% accuracy for the prediction. 

Ramnit was true in 99% of cases. However, the lowest recorded accuracy was for 

Simda, which was 67% accurate. As for the rest of the matrix, Simda was falsely 

identified as Obfuscator and Ramnit in 17% of cases and only 1% of cases for a few 

other classes were false. 

All in all, InceptionV3 was able to predict 5 classes with a 100% accuracy, 2 

classes with 95% accuracy, 1 class with 99% and one least identified in 83% of 

predictions. We can also deduce that the worst accuracy was recorded for the class 

Simda. 

As for ResNet50, we can see that the classes Kelihos ver1, Kelihos ver3, 

Lollipop, and Vundo were 100% correctly predicted. Obfuscator and Tracur 

recorded 96%, Gatak was 99% and Ramnit was 98%. Also, for this model, Simda 
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showed the lowest accuracy result of 83%. However, in this model, it was falsely 

identified as Ramnit in 17% of cases, but not for Obfuscator. We analyze that 

ResNet50 showed similar results to InceptionV3, but a better prediction for Simda. 

Simda has shown low true prediction rates. This makes sense because the dataset 

does not contain many samples for this malware class. Overall, the heatmaps show 

an overall satisfactory prediction across the diagonals as well as the surroundings, 

where false predictions were somewhat negligible. 

6.2 Training Accuracy per Epoch and Model 

In figure 5, during the first epoch, we can observe that all models’ performance 

curves spike upwards, with that of ResNet152 starting the highest at approximately 

96.5% accuracy, ResNet101 at 96%, MobileNetV2 at 95.5% and 

InceptionResNetV2 at 95%. InceptionResNetV2’s curve gradually increases to 

97.56% between epochs 2 and 5, while those of MobileNetV2 and ResNet101 

decrease slightly, with ResNet152’s performance curve fluctuating more sharply 

downwards. MobileNetV2’s curve decreases sharply to 96% during epoch 6, then 

spikes upwards until 98.3%, similar to that of ResNet101. From epoch 4 till 10, 

ResNet152’s accuracy increases, reaching 99.2%, making it the highest reached 

value of all models, during all epochs. However, it decreases slightly and ends at 
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98.3%. MobileNetV2 decreaes sharply at epoch 12 but increases again, ending at 

97.6%. ResNet101 reaches an accuracy of 98% at epoch 15. InceptionResNetV2 

shows a significant decrease from epoch 5 to 9, reaching 96.4%, but increases again 

to 97.8% at epoch 12, decreases again to 96.5% at epoch 13 but ends at 97.4% in 

the last epoch. 

It is clearly observed that the overall range of accuracy recorded is quite 

favorable, considering the number of epochs it took to train the Keras models. The 

end range of accuracy for all models is within the percentages 97.4 and 98.3, which 

is high, indicating good performance. 

6.3 Fine-Tuning Accuracy per Epoch and Model 

We can observe in Figure 6 that there were a few fluctuations when the models 

were being tested. A few remarkable points in the plot will be analyzed and 

interpreted for each model across the 10 epochs. 

For InceptionResNetV2, there was a brief incline in accuracy during the 15th 

epoch, a rectilinear record until the third epoch, then we observe a spike between 

epoch 18 and 20. Afterwards, a smooth increase, reaching a 98.7% accuracy in the 

final epoch is achieved.  
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For MobileNetV2, a start from ~= 98.2% increases then drops to 97.7% in the 

19th epoch. A spike then occurs to reach 98.8% in the 20th epoch then a minor 

increase then drop to 98.7% in the final epoch. 

ResNet152 records the highest of model prediction starts at ~= 98.5% 

accuracy, spikes to 99% at epoch 16 then drops to 98.1% at epoch 19. It reaches 

98.8% during epoch 21, then drops to 98.5% at the end. 

ResNet101 accuracy fluctuates between 98.4% and 98.7% from start till epoch 

20, where it gradually increases and ends at 98.7%.  

We can observe that InceptionResNetV2, MobileNetV2 and ResNet101 all meet 

at an end of 98.7%. ResNet152, on the other hand, ends at 98.5%. all the models 

encountered fluctuations, but overall, it can be seen in the graph that from epoch 20 

till the last, all models tended towards an increase. Therefore, 10 epochs have 

proven to be enough for improving accuracy. 
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6.4 Method Evaluation 

The proposed method seems to be suitable for the malware classification use 

case and leaves room for a lot of optimization and improvement as a starting point. 

However, it is important to take into account other types of datasets and being able 

to accommodate for different types of input. A need to check for generalization is 

raised as a concern that must be tackled to ensure that the proposed method is 

more reliable and scalable across different datasets. 

The obtained results beyond this paper were based on 10 different seeds for 

each of 7 different models from Keras for iteration of training, testing and fine-

tuning to ensure there is no bias in the output metrics. 

Based on the previous discussions, Transfer learning has indeed proven its 

effectiveness, yet it still includes some weaknesses when it comes to accurate 

predictions of some classes, such as Simda and test performance. Moreover, the 

models performed well during the final phases of testing, as they have shown an 

increase in the plots and the ratio of accuracy to epoch is remarkable as it solves 

the problem of long running time. 
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7 Closing remarks 

7.1 Conclusion 

In conclusion, the proposed method has proven to be effective in the use case 

of malware classification of binary files. The ratio of accuracy to epoch is 

remarkable. Transfer learning is indeed helpful when a dataset is relatively small; 

However, the dataset needs to be prepared and normalized according to the input 

layer of the neural network. The overall performance is adequate and the strategy 

used is straightforward. Transfer learning has saved a lot of time by using less 

epochs than usual to obtain an optimal accuracy. To each method its weaknesses; in 

this case some classes were predicted better than others, mainly due to sample size. 

Overall, this method is a step forward towards faster classification. 

7.2 Future work 

Where there is a contribution, there is always a door for further investigation 

and improvement; Therefore, future possible work extending from this research 

may include finding different variants and formats of malware and parsing them for 

classification. Other possible work worth looking into would be checking if 

normalizing the input image files does affect training when it comes to loss of data 
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by compression. Furthermore, another starting point would be further optimization 

and development of neural network architectures to achieve top-tier performance 

levels. 
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Appendix 

A Gabor Filtering 

The Gabor filter method is a computer vision use case inspired by mammals’ 

visual cortex cells. It is characterized by a sinusoidal signal, having its own 

frequency and orientation and regulated by a Gaussian signal. A bank of Gabor 

filters is denoted by a matrix of different recorded orientations, which are used to 

identify different textures and/or orientations in a given image. 

 

Figure 7: Feature Representation Detected by Gabor filters 
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The Gabor filtering technique relies two components, representing orthogonal 

directions by real and imaginary equations as follows, and a complex number 

formation is optional: 

Real: g(x,y;λ,θ,ψ,σ,γ) = exp(−(x02 + γ2y02 )/2σ2)exp(i(2πx0/λ + ψ)) 

Complex: g(x,y;λ,θ,ψ,σ,γ) = exp(−(x02 + γ2y02 )/2σ2)cos(2πx0/λ + ψ) 

Imaginary: g(x,y;λ,θ,ψ,σ,γ) = exp(−(x02 + γ2y02 )/2σ2)sin(2πx0/λ + ψ) 

where 

x0 = xcosθ + ysinθ 

and 

y0 = −xsinθ + ycosθ 
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