Towards an Automated Analysis of the
Quality of Source Code Comments

By
Mireille J. Haddad

Faculty of Natural and Applied Sciences
Department of Computer Science
Notre Dame University — Louaize

A thesis submitted in partial fulfillment of the requirements
for the Master of Science in Computer Science

June 2017

[GE]LIBRARY

27 JUN 2017
L RECEIVED ||

Towards an Automated Analysis of the Quality of Source Code Comments

By

Mireille J. Haddad

Approved by:

Dr. Pierre/A. Akiki: Assistant Professor of Computer Science
Advisor.

—
S By

Dr. Marie Khair: Associate Professor of Computer Science
Member of Committee,

AL

Dr. Nazi 1: AssOciate Professor of Computer Science
Me mittee.

Date of Thesis Defense:
June 22, 2017

Declaration

['hereby declare that this master thesis is completely my own work and that I used only the
cited sources.

Lebanon, June 2017

Mireille J. Haddad

Abstract

Maintenance is the most costly phase of the software life cycle. The maintenance cost of a
program is estimated to be over 80% of its total life cycle costs (Erlikh, 2000). Since most
of the maintenance time is devoted to understanding the program itself, program
comprehension becomes essential. Often, a large fraction of the maintenance time is spent

on reading code to understand what functionality of the program it implements.

An insufficiently documented source code can be challenging for developers to understand
and maintain. A clear and concise documentation can help developers to inspect and
understand their programs. Unfortunately, one of the major problems faced by developers

during maintenance is that documentation is often not available or not useful.

This thesis provides a heuristic approach for an automatic analysis and assessment of
source-code comments by parsing by using a parser generator tool called ANTLR. This
approach measures the semantic similarity between the comment content and its
corresponding entity identifier name. An algorithm was developed for splitting identifiers
into component terms and computes the similarity percentage between the useful content of
the comment and the identifier. The developed approach categorizes comments as follows:

Scary noise, noise, normal with minor similarity, probably meaningful, empty, and TODO.

A study was carried out to evaluate the ability of the proposed approach to adequately
assess source-code comments. In this study the source code of the Eclipse open source
Integrated Development Environment (IDE) was parsed. The results showed that more than
50% of the comments fall into the category of empty comments and spread over 62% of the
whole project files. Only 18% of the comments were of a high quality and around 20% of
the files contain noise comments. Most Class and Interface identifiers have comments

while more than 50% of the methods lack comments.

Keywords: software maintenance, program comprehension, source-code comments, source-

code parsing, ANTLR.

Table of Contents

Abstract iv
Table of Contents v
List of Figures viii
LIS OF L IBY oo pavnarneenvemeswessevsresssimsesmsssssisnsiaivonsissiessi e N o R e X
List of Abbreviations xi
Acknowledgments xii
Chapter 1: Introduction and Problem Definition : 1
1.1 Introduction to the General Problemc.ccoeomemeeeroesersesoseooeeooooooooeeo 1

1.2 Problem Definition........ccoivieioioiiieiecceiiece et 3

1.3 RESEArCh OBJECHIVESovvverrcercecteec ettt 4

1.4 Approach and Main ReSults............cc.cccoeuiririiinceresonsssorsensensssssessessessssssssssess e, 5

123 TCRI A ZE IO «-.cccvmiviitn iets ot S0 i aiiseio4vemrsensmorsmm memome R RS SRR e em s st 6
Chapter 2: Background and Motivation Soisesin T
2L IOOOUBTION . onsiioncissuisusssmanin o R T S B e aHsammrmn e mmerasrrar e 7

2.2 Parsing Source Code to Improve Maintainabilityooevvveveveremsresoseesonn, 9
2.2.1 Modernizing Legacy SOftware SYStemS...........oovvevrrvrreerersomsserssssssesoeseooon, 10

2.2.2 REFACIOTING ...ttt s st seese e st 10

2.3 Tools for Parsing SOUrce COde............c..curururreeiremerersesreeneseseesesesses e 11

By del BINTLI o sinemsoriossssssasmussiminminiss s o S R e e s 12

DR B JAVAE s covimsciinmvonnssnssieaioscsss b i s e e S Toa T e cemeay e 12

R L e 13

2.4 Another Tool for Language Recognition (ANTLR)ccoovveveveeeveereeereeeressesssenns 13
2.4.1 Lexical Rules IMplementation.ceeueceveeeeeesveesireeeeeeseeessesseessessessesessseessses 15

2.4.2 Syntactic Rules IMplementation...............c.eveverveveveneesiessessssesessesesssssssssmessens 16

2.4.3 Semantic Checking and Error Handling............ocovoveueiiieeeeimeeeeeeseereesesresens 17

2.5 Previous Work on Comment ANALYSISc.eeveveieereeeisesieseseeseessseressesssssssesassesens 18

210 JReSeaTel MOETVBIION o covmmriisnissimsaimmsasmsmasssirisss e s s S Tt 20
Chapter 3: Comment Parsing and Analysis 22
3.1 INTOAUCHION ...ttt ettt et enesneneneseseesennenesnsssnes 22

3.2.1 Documentation COMMENTSuusscsssisssssonssasssssamsesseressorsommmensossessessessns, 23
Sl @0 1 R0 S————— e 24
323 T8 COMMBIIS v suvssuiossioniosh esiaasas B85 wremermmrmnmmm smr s ensreeeesnsss el 24
3.3 Analysis Heuristics for Source Code COMMENtSc.ovorveoveeveereoosoooo] 24
3.3.1 Identifier Names Tokenization HEUriStico..ovovovrevevoeeooooooooooonn 24
3.3.2 Word Match and Similarity HEUTISHCovorrveroeemoseesoeoeoooooosod 25
3.3.3 LOCAtION HEUISHICccvrurrrrrerrenssrssimsessscnsenssenesssssssssessssmsnssssessesssessess s, 25
3.3.4 Lines Count HEUTISHIC.c.everueruereseseressemsseessesessesesses e e 25
3.4 Parsing SoUrCe COAEcvvuemmuerreeretineseeesiesesssssessess s ssesessee e 25
3.4.1 Parsing COMCEPLScuuvuuieeerierrieressone e estessessssenseseseesse e s e 26
3.4.2 Parsing AIZOTItRIMc.ovviiiuemmeieeectesee s es e e 28
3.4.3 PAISE TICEcvvvvvieriieiscnscteseamssasees e ss s aseesessnmesseesesssssesss s eese e e 28
3.5 Parser GENEIALOTcuurueieeerereieseciesesse s seeseesseesssses e s e s e eeeeeeeeses e 30
3.5.1 Generating Lexers and Parsers with ANTLRo.oo.ooovvovmemoomeooeoooooo 30
3,532 O OIITIBE WIETHID s.covvsnsssasisassst s st B oo e renncn e
3.5.3 Boilding GRamIar..... ..ot ito e e s 33
3.5.4 Parser of Java Languagecccoeuevcucveineeenneeesesessseneess s sessesse s 35
3.6 Interpreter IMplementation...........co..cveurvieeisisienceeeseessseeseesesses e esssseesesessnssn. 36
3.6.1 ANTLR Generated Files..........cueuurumueeerreeieeeeseseressessesesses e esoesss oo 37
3.6.2 INTEIPreter Fileouiviiiiiciicieieiiesecss st se s 37
3.6.3 Error HANAIING........cuviiceiicecice e et 39

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source

SOftWare......cccecvrerscruenenrasaerss cvne e |
AT INIOAUCTION ...ttt et ee st s e s 41

4.2 Retriew i IDTOPMATION .. cosovmmsssimisvncsssismmsinsvimssinteibissistson bsvesmintss Sest i 41

4.3 Semantic SImIAtIY APPROBOH «.c.uus i o st o iormesnmesessemasl 43
B3] PICP OCRSSING .euveiiisssissismsisiansichslesssianiiasisss ivosssssanensensmensossssansassaensosapsosssbansiont 43

432 SHBTIMMIINEG, isciii i35 0T 5o Ansmasnnrsnsemsasassnrsssssortmmomssosstassns Esosmsosesaesbeebsrarbis) 45

4.3.3 Computing SIMlAILYc.overerrereeeeseset et e essrassesens e ee e 45

4.4 Testing the Approach with an Open Source SOftWare............coovcvvvevevevereereresssens 47
4.4.1 Analyzing the Source COde.......cccoivrermririrruereeererieiensisesseseessesreseseresesesesssessens 47

4.4.2 RESUILS ...ttt sir st e e e e es et e s ensae e esnns 49

44,3 RESUIELISCUSSION oossnvesnvirsiosussvisuismsssssonsnsssiomivessstnsosssnbsnsssstiiis ssasamasssivivavsmisnssns 55

4.4.4 Threats to Validity and Limitations..........ccooivvinierereesiemieeeeeesseesesesssssssssssessens 56
Chapter 5: Conclusions and Future Workccoceucecevservenne §7
5.1 Main Problem Addressed in this ThesiS......ccccveieieervieiieeie s seesessese s eesse 57

5.2 CONMTIDULIONS ...cvicit et sa e sae s a e s es st st et st st sane s s eessanensenesseeseannens 58

5.3 FULUIE WOTK ..ottt e e e s esessasanenn 59

vi

Bibliography......

Appendix A: Grammar File

61
65

vii

List of Figures

Figure 2.1: The overall framework of ANTLR (Liu et al., 2008) covucinipaniss s 14
Figure 2.2 Abstract Syntax Tree (AST) Construction (Turuntaev, 2014, p. 44).....ccoccuu.. 14
Figure 2.3 Declaration of Identifier (Parr & Harwell, 2013).......ov.evcveoeeeoesesoooooo 16
Figure 2.4 Syntactic Rule of Java Interface (Parr & Harwell, 201)i 17
Figure 2.5 Calling ANTLR's Interface Functions (Parr, 2013, P-239) e 18
Figure 3.1 A Simple Java PrOgram...........coooovuuiiuiuorioemsesseeesesssesess e s e oo 26
Figure 3.2 Fragment 0f JaVa Grammar.............c..oveveueceoneoeseeses oo 26
Figure 3.3 Parse Tree Fragment Produced by a Parser.............oo.ovvevvvveoooeosoooooooonn 29

Figure 3.4 The Relationship between Characters, Tokens, and ASTs (Parr, 2013, p. 10)...31
Figure 3.5 Grammar File General OVErVIeWo.coooevrmereoreeresreeseeoeeeoosoooeeoeo. 33
Figure 3.6 HelloWorld Class EXaMPIeovcovveereeeeemseneeeseemsesseoeeeeoeeooeoeooeoseeoonn 34

Figure 3.7 ANTLR CONSOIE........ccociiiiiiiriiriiisiseeeeseeeesesessiesssesseesos e 36
Figure 3.8 Implementation Phases.................ovueueueieeecseeeeeseeeseeseee s ess oo 36
Figure 3.9 Grammar Global Variables Declaration.................ooooooeovoooooooooooooooooooooo 39
Figure 3.10 Example With SYNtax EITOTou.veoveeeeeeeeeeoes oo 40

Figure 3.11 Syntax EITOr MESSAZEcvvvurrrunremmrisesmeesesesssensssssesessssesssssessesessesess s 40

Figure 4.1 Retrieving Information upon Parsing............ccoocovvveevereeeeoseoooosoeooooo 43

Figure 4.2 Cleaning Messy COMMENLoooureveveeenseonssessseessses s eese oo eeeessoon, 45
Figure 4.3 Algorithm for Semantic Similarity Computation.................ooooooveveooooooo 46
Figure 4.4 Support Tool — Selecting the Target Projectcoeveveveversrveroseseressesesnsnen. 48
Figure 4.5 Support Tool — Showing the Output after Parsing and Analysis 49
Figure 4.6 Comment Category PErcentageocouevevvvveeeeeemmesereesrereeeeeeeesesssesseosessssn 49
Figure 4.7 Noise Comment EXAMPIE............cc.evuevriverecrrimeeineecsseessseseessessssssssssesessessesssesens 50
Figure 4.8 Scary Noise Comment EXample...........co.ovviurueeiicusiecceesessesesesssesssnesssssonssssssens 50
Figure 4.9 Empty Comment BXample ..o 51
Figure 4.10 Distribution of the Different Types of Comments across the Source-Code FlleSs2
Figure 4.11 Number of Each Type of Comment per Source-Code File.......c.c.cooveeevvvununnnn. 53

viii

Figure 4.12 Descriptive Statistics of Comment Types per File
Figure 4.13 Classes with/without Comments by Rereentapel.cuniaunmmnrmns .54
Figure 4.14 Interface with/without Comments by Percentageocooverererereinieevesenennnnnnns

Figure 4.15 Methods with/without Comments POrOEIRR .o mm s s s

54

55
55

List of Tables

Table 2.1 Strengths and Shortcomings of Previous Research on Code Comment Analysis 20
Table 3.1 ANTLR EBNF L2 o 1 RS R N .

Table 4.1 COMMENS CALEGOTIES..........covuerrivrerrirrissnesseeeeeseeeeseesseesse s sees s, 47

ANTLR
AST
BNF
EBNF
CFG
LL
LR
LALR
LHS
RHS
AWB
POS
IDE

GUI

List of Abbreviations

ANother Tool for Language Recognition
Abstract Syntax Tree

Backus Naur Form

Extended Backus—Naur Form
Context-Free Grammar

Leftmost derivation

Rightmost derivation

Look-Ahead LR

Left-Hand Side

Right-Hand Side

Architect’s Workbench

Part of Speech

Integrated Development Environment

Graphical User Interface

Xi

Acknowledgments

I would like to express my sincere gratitude and deep appreciation to Dr. Pierre Antoine
Akiki for his unlimited guidance, assistance, encouragement and tremendous patience
throughout this research. Besides my advisor, I would like to thank the other members of

my thesis committee for their constructive criticism and insight.

I am deeply and forever indebted to my husband for his endless love, support and
encouragement throughout my entire life. I would like to thank my sweet children, Natalia
and Sami, for their unconditional support and love. Finally, I wish to express my love and
gratitude to my beloved families who have shown unending understanding through the

duration of my studies.

Xii

Chapter 1: Introduction and Problem Definition

Chapter 1: Introduction and Problem Definition

A maintainable software system would have a competitive edge in the software market, due
to its ability to accommodate changes more efficiently. Maintainability is a critical property
that allows the continuity and growth of software systems. A wide range of metrics that
focus on different notions of complexity and code readability have been proposed for

measuring maintainability.

The complexity of software systems continues to grow. In order for maintainers to
accomplish their tasks, the software code should be readable and understandable. It would
be very difficult and exhaustive to understand code lacking good documentation.
Comments are an important source for software system documentation and are usually
written in natural language meant to provide a clear description of the implementation.
Good code comments can provide software developers with a better understanding of a

software system’s implementation, thus reducing the cost of maintenance.

In this chapter, the impact of program understanding on software maintenance is
introduced. Then the importance of source-code comments in enriching program
understandability is discussed. An approach to a detailed, quantitative and qualitative
analysis of source-code comments is proposed. A parsing technology using ANTLR in

analyzing comments is presented.

1.1 Introduction to the General Problem

Software engineering processes and tools have increasingly evolved over the past few
years. However, software maintenance is one of the software development life cycle phases
that still requires a lot of resources. Before the early 1990s, software maintenance required
almost half of the resources (Coleman et al., 1994). Studies showed that 80 to 95% of the
budget allocated to Information Systems is spent on maintenance activities (Erlikh, 2000).

Many software maintenance problems arise from having to spend a long time on

Chapter 1: Introduction and Problem Definition

comprehending the given system or program. This comprehension involves understanding
the basic ideas and the design of the affected parts of the system, and determining where
changes should be made. This is particularly evident if maintenance is not being carried out
by the software developer who originally wrote the code. Moreover, a code review process
is very expensive and hard. Developers spend a lot of time reviewing changes of others
(Bosu & Carver, 2013). It is not only a significant effort in terms of time spent but it also
forces the reviewer to switch context away from his or her current work. On the other hand,
source-code comments almost always remain unchanged during maintenance activities. As
a result, a comment may not properly describe the implementation—i.e., the information
provided in the comment of a method and in its corresponding implementation may not be
coherent with each other. Therefore, without prior knowledge of the system’s
implementation or the availability of suitable documentation, program understanding

becomes an extremely time-consuming process.

Program comprehension is a software engineering activity that helps in understanding how
a program solves a given problem to be able to fix errors or perform modifications.
Program comprehension is a study of techniques and tools that try to automatically extract
the needed information from a program providing necessary help to programmers who need
to understand it (Freitas et al., 2012). Semantic information extracted from source code is
not enough to fully understand a program. Hence, researchers started exploring the
importance of semantic information that can be found in source-code comments, which are
written in natural language. Comments vary according to programmers, thereby increasing
the difficulty of the analysis process. General trends and rules could be derived for the
commenting habit in order to be used in program documentation. Besides, not every
comment is useful and can be used for documentation or comprehension purposes (Haouari
et al, 2011). Additionally, in contrast to code, natural-language comments cannot be bound

and controlled by syntax conventions which hamper the analysis of source-code comments.

Many previous researches that worked on analyzing the quality of software systems either
totally ignore source-code comments or only results with quantitative claims (Oman &
Hagemeister, 1992). However, metrics such as counting the number of lines containing a

comment without differentiating between different types of comments seems too simple to

Chapter 1: Introduction and Problem Definition

be meaningful. It does not take into account that some comments such as copyrights, do not

add any value to system understandability or enhance the quality of system documentation,

1.2 Problem Definition

Even though programmers know the importance of good comments, commenting on the
source code is often neglected due to development pressure conducted by urgent delivery
dates and release deadlines (Van De Vanter, 2002). Without proper comments,
understanding a program becomes a very difficult and time-consumin g task that negatively

affects software maintenance, testing and debugging.

Comments may reveal important information such as the reason for adding new lines to the
source code, knowing about the progress of a collective task, or even why relevant changes
were performed. Thus, comments may be used to describe issues that may require work in
the future, and give notice about emerging problems and which decisions need to be taken
(Maalej & Happel, 2010; Shokripour et al., 2013). These descriptions give us human
readability and provide additional information that summarizes the developer context. Code
comments and the source code itself are an important documentation to help us understand
a system (de Souza et al., 2006). A survey of professional programmers found that the
source code itself is the primary documentary artifact, with comments being the second

most used one when seeking to understand a source code (de Souza et al., 2005).

Comments add a kind of refreshment to the source code. While good comments impact the
readability of source code, adding an excessive amount of comments is discouraged
(Fowler, 1999; Kernighan & Pike, 1999). If a source-code file needs a lot of comments to
improve its readability, it might contain code fragments that are complex and hard to
understand—i.e., bad code. Fowler mentioned that thickly commented code can be a sign
of “code smell” to be refactored (Fowler, 1999, p. 71). Therefore, many comments are
recommended to make a code more stable, but frequently adding describing comments is

discouraged in terms of the code stability (Aman & Okazaki, 2008).

Ideally speaking, what cannot be determined by reading the source code should be

commented. Unfortunately, while code comments are frequently used as a crutch,

Chapter 1: Introduction and Problem Definition

programmers do not always maintain the related code comments while maintaining the
source code itself. This results in outdated and fuzzy comments that badly and inaccurately
describe the corresponding code. Such out-of-sync comments fall into the bad-comments
category (Martin, 2008, p. 59) that need to be analyzed and optimized. Martin emphasized
the fact that comments are a certain sign of bad code (Martin, 2008, p. 53). Hence, instead
of commenting on bad code, developers should try to rewrite the code by enhancing its
understandability. But comments are nevertheless indispensable. Commenting code is a

necessity even when the code is clean.

Many of the existing techniques for measuring the quality of software systems do not take
into consideration the quality of source-code comments. This might be due to several
reasons; some are related to the fact that developers comment out their code for debugging
purposes or as noting marks for later reuse, which might not be distinguishable from the
real comments. Others are related to the fact that some types of comments such as
copyrights do not facilitate system understandability or enhance comment quality.
Additionally, developers expect comments to give them deep insights about the
functionality or implementation details behind the source code, but some types of
comments are useless as they are no clearer than the code. Others are noise and scary noise

that add nothing to the source code (Martin, 2008, p. 64).

1.3 Research Objectives

Each programming language has its own coding conventions or standards. However, there
are several general points that the developer should follow to ensure that his or her code is
well organized so that it can be easily understood by others. Comments represent the main
source for system documentation and hence a key for source-code understanding with
respect to development and maintenance. They are parts of the code that are ignored by the
compiler and are in no way mandatory but seek to make reading, reusing and maintaining
the code easier. Comments play an important role in the design, maintenance, and use of

software programs (Tan et al., 2007).

Writing high-quality source-code comments requires succinct technical writing and a deep

understanding of the source code. When confronted with large programs, it is easier to read

Chapter 1: Introduction and Problem Definition

a well-written comment than it is to trawl through the lines of code trying to understand the
function of every piece of code. Comments should not be too thick or long. If the developer
had followed a coding standard through the development phase, it should not be too
difficult for other developers to read his or her own code. Otherwise, the code will look

messy.

Comments should not be too little, nor should they be on every line. Most coding standards
recommend commenting functions and objects rather than loops, variable assignments or

every single line,

Comments also should not be too complicated or useless. It is important to keep the

comments short, simple and to the point.

Hence, as part of a software quality audit, an analytical study is conducted by analyzing the
existence of various types of comments of identifiers (classes, methods, types, variables,
etc.) in the source code. This work presents a heuristic approach for comment classification
and categorization that provides better insights about system documentation quality (Steidl
et al.,, 2013). Based on comment classification, a quantitative and qualitative evaluation of
comment quality will be provided. Such a comment quality model looks like the quality
models in maintenance (Deissenboeck et al., 2007). Regarding coherence with source code
and usefulness to the reader, our aim is to provide an assessment of comment quality and
detect comments that are confusing and not helpful. Hence, for a better comment quality
analysis an automatic approach will be provided based on heuristics to enforce the model in

practice and test the results on open-source projects.

1.4 Approach and Main Results

This work presents an approach towards an automated analysis and assessment of the

quality of source-code comments. It is considered as part of a software quality audit.

First, comment categorization based on a heuristic approach is performed. By
differentiating between different comments categories, quantitative claims about how many
comments potentially contribute to system understanding and how many comments are

missed or serve other purposes are discussed. A comprehensive quality model for source-

(&1

Chapter 1: Introduction and Problem Definition

code comments is also defined, with the main goal of capturing the semantic similarity
between the comment content and its corresponding entity-identifier name. The model
reveals the direct impact of source-code comments in helping software engineers

understand and improve their products.

Second, decoding the source code by parsing is the major task of the used analysis tool.
The resulting parse trees expose the syntactic structure of the source-code comments,

making this information available for further analysis.

Third, for an assessment of comment quality, a heuristic approach is implemented and the
results of the applied approach to an open-source project for detecting confusing or

unhelpful comments are evaluated.

1.5 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2: gives an overview of software maintenance and program comprehension. A
review on parsing source code for improving maintainability is conducted. The adopted
parser generator tool (ANTLR) and other alternatives are presented. The related work

pertaining to comment parsing and analysis is also presented and discussed.

Error! Reference source not found. describes different comment categories and analysis
heuristics. The relevant parsing concepts and algorithms are presented. A description of a

parser generator approach and its implementation using ANTLR are discussed.

Chapter 4: explains the proposed approach for analyzing source code. The results of a study
that applies the proposed approach to existing open-source software are presented. The
viability of the approach is tested, and insights that help in understanding how developers

use comments are given.

Chapter 5: summarizes this work and provides directions for future research.

Chapter 2: Background and Motivation

Chapter 2: Background and Motivation

After development, a program enters a maintenance phase in order to keep its functionality
up-to-date and conformant to various changes. In order for the maintenance to be carried
out efficiently and effectively, the code should be maintainable. Hence, the internal quality

of software systems is an important area of research in software engineering.

Software engineers are constantly trying to improve the practice of software development
by enhancing the readability of source code. Readable source code allows programmers to
quickly and accurately obtain critical information about a program. Therefore, readable
programs are easier to maintain. Source-code documentation is an important artifact that

helps software developers comprehend and maintain software systems.

This chapter primarily addresses the importance of source-code readability and
understandability throughout the long-term phase of software’s life cycle. Software
maintenance is introduced in Section 2.1. Section 2.2 highlights the use of parsing in
analyzing source code and improving software maintainability by providing examples
about modernization and refactoring. Section 2.3 provides some examples of automatic
parser generator tools while the used tool in this thesis is described in detail in Section 2.4.
Previous works on comment analysis are presented in Section 2.5, whereas the motivation

behind this work is shown in Section 2.6.

2.1 Introduction

As software systems are becoming larger and more complicated, a major part of the
software life-cycle resources are dedicated to maintenance (Erlikh, 2000). Thus, there is a
serious need for advanced tools that aid exploration and comprehension of today’s software
in order to reduce the cost of maintenance. One of the prerequisites of successful
development and maintenance of any software product is its source-code readability. In an

effort to achieve this, programmers try to make the code more understandable and logical

Chapter 2: Background and Motivation

by properly documenting variables, methods, types, and classes using comments.
Therefore, documentation represented by natural-language comments plays a major role in
program identifiers to improve software maintainability (Shepherd et al., 2007). The work
presented in this thesis particularly focuses on locating and analyzing comments on

identifiers (e.g., classes, methods, types, and variables).

As mentioned earlier, maintenance is a long-term phase in software’s life cycle.
Maintenance tends to have a relatively longer duration than all the previous life-cycle

phases combined, thereby requiring much more effort.

Software maintainability is the facility with which a software system or component can be
modified to correct faults, improve performance or other attributes, or adapt to a changed
environment (IEEE1219, 1998). Hence, producing software that is not flexible enough to
adapt to changes could result in a loss of time and resources. Maintainability is affected by
the readability and understandability of both source code and documentation. A high level
of software maintainability indicates that less effort would be required during the
maintenance phase. Despite the fact that software maintenance is essential and challenging,
it varies from one software system to another based on various measurement criteria and it
might be poorly managed. One reason for poor management is the absence of a good
measure of software maintainability. There is a need for standard rules or protocols for
measuring software maintainability (Aggarwal et al., 2002). During maintenance, changes
are made to the source code to fix bugs or upgrade functionalities. Today programs consist
of thousands or even millions of lines of code. Hence, it can be difficult to modify such
code especially if it is written by someone clse. The assimilation and understanding of
source code is almost impossible if it is not well supported by meaningful comments.
Writing comments on source code became a standard practice in programming, because
comments improve software maintainability by helping developers understand code.
Nevertheless, the source code of many software systems lacks adequate comments (de
Souza et al., 2005). Comments are important as they are used to convey the main intent
behind design decisions, along with some implementation details. Therefore, comments are
critical aspects to comprehensibility and maintainability of source code. Green and Petre
mention the importance of supporting a secondary notation—e.g., comments—in

programming languages to convey meaning to the human reader (Green & Petre, 1996).

Chapter 2: Background and Motivation

Maintainability is related to understandability, modifiability, and testability. A good
measurement of maintainability is a good measure of those concepts. Although the quality
of code comments plays a minor role in assessing software maintainability, it is commonly
agreed that poor documentation negatively affects maintainability (Hartzman & Austin,
1993). For example, the number of lines of comments is an understandability measure.
While the original developers are not always the people who maintain the software, poor
documentation increases the time of understanding and maintaining the software where the
maintainer might find it easier to rewrite the code than to understand or modify the existing
one. Like the source code, the maintenance activities will degrade comments unless they

are treated properly and not allowed to become inaccurate.

The main goal of commenting source code is making it easier to understand by someone
who did not write it (Kernighan & Pike, 1999, p. 23) or for the original developers who
want to modify and reuse their own code later on. Although code comments are necessary
even when the code is clean, the existence of some types of comments or their frequency in
the code might be a strong indicator of low code quality. Even Martin (Martin, 2008, p. 55),
who asserts that the only good comment is the comment you found a way not to write,
admits that good comments exist when they explain the developers’ intentions, emphasize
the importance of something, or warn of consequences. Also in his work on comment
analysis, Raskin (Raskin, 2005) concludes that self-documenting code and automatic
documentation are not enough, and that inline comments on the same line as the code are

too brief and that several lines should be used.

Thus, for the purpose of code quality analysis and assessment, a parsing tool can be used to
extract the needed information from the program by parsing the code and producing an
Abstract Syntax Tree (AST) (Strein et al., 2007).

2.2 Parsing Source Code to Improve Maintainability

Software engineering is supported by various program analysis tools that can be used in
software maintenance tasks. Such tasks include: refactoring, program comprehension for
understanding unknown code, bug fixing or enhancement based on change requests made

by the user, code quality assessment during code reviews, and reverse engineering. For this

Chapter 2: Background and Motivation

purpose, computer scientists have developed a wide range of declarative languages based
on context-free grammar (CFG) formalism, and parser generators that produce efficient
parsers for their descriptions. An essential part of software engineering research and
practice is the ability to parse the source code in order to extract information from it using
analysis tools (Binkley, 2007). Parsing is a process whereby a given program is matched
against grammar rules to determine whether or not it is syntactically correct. Hence, source-
code analysis plays an important role in the quality assessment of software projects. Two

examples are the modernizing of legacy software systems and refactoring,

2.2.1 Modernizing Legacy Software Systems

Today, many companies around the world still use production software that is written in
COBOL, Pascal, and other legacy computer programming languages. These organizations
are highly motivated to renovate their software systems for many reasons including the
difficulties of maintaining the legacy systems and in hiring developers who are skilled in
legacy programming languages (Mitchel & Keef, 2012). However, this renovation or
migration process is often either unaffordable or produces poorly eligible software with
maintenance difficulties (McAllister, 2010). Hence, one of the major maintenance concerns
is the problem of porting and adapting the existing applications into modern technologies.
Therefore, tools and techniques for parsing legacy languages play an important role in

modernizing legacy systems while preserving their functional integrity.

2.2.2 Refactoring

Software must be designed to be resilient or easily changeable in order to meet new
requirements. As the software is frequently changed, it becomes increasingly difficult to
add new features without rethinking its design. Refactoring is a way of restructuring code
in order to improve its design while preserving the original functionality (Fowler, 1999).
Invisible Java Compiler Compiler (IJACC) is an example of a refactoring parser tool for
Java source files, which is used to scan the code for compiler construction (“Invisible Jacc
Version 1.1,” 1997). Moreover, software reusability is an important prerequisite for
improving software quality and reducing maintenance cost. For example, measuring the

coupling level between system modules is one of the essential aspects where heavy

10

Chapter 2: Background and Motivation

coupling decreases the reusability. Hence, for analyzing the coupling measures of object-
oriented systems, a parser called “Design Analyzer” has been developed to define the
design patterns of the system (Hasan & Hasan, 2010). Additionally, developers frequently
reuse fragments of source code by performing “copy and paste” during the development
phase. Therefore, code parsing is also used in detecting such code clones that are annoying

during maintenance (Maeda, 2009).

Descriptive naming conventions that programmers should use for methods, fields, and
classes help newcomers to capture the functionality of a method or field more precisely and
better understand what the code does. The Software Word Usage Model (SWUM) is a
lexical approach that captures the conceptual information about a program through both its
natural language identifiers and program structure (Hill, 2010). But using extremely
descriptive identifier names that accurately describe an entity lead to very long identifier
names. Longer names can actually reduce code readability rather than increase it (Liblit et
al., 2006). For this purpose, Relf implemented the naming style guidelines in a tool to help
programmers create high-quality identifiers and to refactor existing identifiers (Relf, 2005)i
By following the Java conventions, identifier names begin with a lower-case character and
consist of one or more words, and use internal capitalization to mark the beginning of every
second word. For accessing the quality of identifier names, Butler et al. provide an
approach for improving the tokenization algorithm (Butler et al., 2011). Fowler, in his
original list of refactoring, includes the renaming of method where the name does not
reflect the purpose of the method (Fowler, 1999). Abebe et al. developed a system to
recognize “lexicon bad smells” in identifiers, thereby identifying a wide range of identifier

names for possible refactoring (Abebe et al., 2009).

2.3 Tools for Parsing Source Code

In order to help software engineers understand and improve their products, several tools
and techniques have been implemented for acquiring and delivering software information.
Since software is written in a programming language, it is necessary to decode the source
code by parsing for its further analysis. A parser implements the mapping from source code

in string representation to a tree representation; it splits the input into tokens and finds a

11

Chapter 2: Background and Motivation

hierarchical structure of the input. The implementation of any programming language
usually begins with a description of the syntax of the language in any form. A language is
defined by a grammar that contains all the information needed to develop a parser for that

language.

Parsers can be developed manually, but this is a time-consuming process for programming
languages with complex grammars. Alternatively, existing automatic parser generators can
be used for more complex parsing algorithms. Several context-free parsing algorithms exist,
the most widely used being the pure top-down Earley’s parser (Earley, 1970, pp. 94-102).
Parsing algorithms could be differentiated based on the way they implement the problem of
parsing whether in the direction they read the input or whether they construct parse trees
from the top down or the bottom up. Hence, for parsing purposes the LL (Left to
right/Leftmost derivation => top down) or LR (Left to right/Rightmost derivation =>
bottom up) grammars are often used (Sippu & Soisalon-Soininen, 2013). For constructing
such grammars, language-specific lexical and syntactic analyzers can be automatically

performed by means of a suitable tool.

Some examples of automatic parser generator tools are:

2.3.1 ANTLR

Another Tool for Language Recognition (ANTLR) is a robust and popular generator tool
which supports several programming languages such as: C, Java, C #, Python, and Ruby
(Parr, 2013). It is used specifically in this thesis as a parser generator tool in achieving the

main goal and is discussed in more detail in Section 2.4.

2.3.2 JavaCC

JavaCC (JavaComplierCompiler) is a top-down parser generator tool (Kodaganallur, 2004).
It is used in many applications and much like ANTLR, but it has few features. The AST
tree has a separate tool called JJtree which is combined with JavaCC tool. However, it is
only a Java generator tool. Furthermore, the documentation is poor when compared to

ANTLR.

12

Chapter 2: Background and Motivation

2.3.3 SableCC

SableCC (SableCompilerCompiler) is a bottom-up LALR(1)-based compiler-compiler
parser generator which takes object-oriented methodology for constructing parsers (Gagnon
& Hendren, 1998). SableCC is different from the other tools in that it does not allow any
semantic actions in the input specification, only syntax. It maintains easy code for
generated parser as a result. However, SableCC has some performance issues. It generates

or supports C++ and Java,

2.4 Another Tool for Language Recognition (ANTLR)

ANTLR is a language-based tool that allows designing compilers, interpreters, recognizers
and translators generated in any one of a variety of formal languages (Yu et al., 2008) based
on self-written grammar rules similar to Extended Backus—Naur Form (EBNF) expression
(Garshol, 2008; Parr, 2007). ANTLR can automatically generate a program that parses an
input stream of symbols and determines whether that input conforms to a grammar.
Moreover, it provides support for building abstract syntax trees (ASTs), tree walking and
translation. It also provides a convenient means for automatic error recovery and reporting.
ANTLR uses LL (k) grammar, and the generated program is very intuitive and easy to
debug (Parr, 2007). By using ANTLR as a compiler, it provides an appropriate syntax for
specifying lexers, parsers, and tree parsers through three class templates: Lexer, Parser, and
TreeParser. The overall framework of ANTLR is shown in Figure 2.1 (Liu et al., 2008).

ANTLR generates the corresponding lexical analyzer (Lexer) and the parser (Parser) from
customized lexical and parser grammar rules. A lexer’s role is to perform lexical analysis—
i.e., scanning and decomposing the input stream into individual symbols called Tokens.
Then, the lexer classifies and organizes the tokens into a unified format. Consequently, the
parser feeds off this token stream and tries to recognize the input structure (class, function,
variable, etc.). Hence, it is mainly used for the inspection of proper grammar rules that

match the input.

There are many types of translators. Some are simple and immediately execute actions to

get results. Others are more complicated and use the parser for AST construction (Parr,

13

Chapter 2: Background and Motivation 14

2005). The procedure of input stream analysis for AST construction is shown in Figure 2.2
(Turuntaev, 2014, p. 44). AST traversal is a defined TreeParser in ANTLR. A TreeParser

works from left to right and uses depth-first rules in the AST traversal (tokens as nodes).

EBNF Grammars

Source Program

with Java actions/code

. 4 O B
class L ;- -
cxtands iaer [P ANTLR - wrieses s]

ﬁﬁdﬁf ;_E A”?NTI'.!ﬂ' » MyParser.java j
ko

. o & m———— rce walker, e.g.
1 H P " vy by .
:x:::ds yTree! :“e‘" ANTLR]—-p qﬂxaeg;ser.jg‘?_l kN - context analyzer

el

- cade generator

. .
Object code

Figure 2.1: The overall framework of ANTLR (Liu et al., 2008)

/ ;‘Eﬁ; HANTLRStringSueam l Lexer

Parser l CommonTokenStream

Figure 2.2 Abstract Syntax Tree (AST) Construction (Turuntaev, 2014, p. 44)

With ANTLR, an input Java file can be broken down into lexical analysis, syntax analysis,
and semantic checking (to be discussed later in detail). The lexer breaks up the input stream

into tokens based on the lexical rules pre-defined in the grammar document. Then, the

Chapter 2: Background and Motivation

parser feeds off this token stream and tries to recognize the input structure (Parr, 2007)
based on the pre-defined parser rules of the grammar. Finally, the semantic checking tests
the validity of the results generated by the parser. After performing the three above-

mentioned steps, the input file can be implemented.

More precisely, lexical analysis scans input source-code (e.g., Java) file entered by the
users from left to right, and generates a stream of tokens in order as inputs to the syntax
analysis (Parr, 2005). In other words, Lexer translates input streams into tokens according
to the lexical rules defined in the ANTLR grammar file. The tokens recognized by the
Lexer are as follows: keywords, identifiers, operators, separators, NULL, literals, etc.
Additionally, lexical analysis removes blank spaces from a source-code file. Lexical
analysis is ANTLR’s interface with external clients. If a character stream cannot be

recognized as one of the defined tokens, the lexer will generate error messages.

Syntax analysis determines whether the syntax of the input files corresponds to the defined
grammar rules on the basis of tokens of Lexer. These grammar rules are written based on
EBNF expressions. The ISO standard “ISO/IEC14977” enacted the international standard
of EBNF in 1997. ANTLR automatically generates a parser according to a grammar rules
file. Thus, syntactic analysis—e.g., JavaParser—gets the words or tokens from lexical
analysis, and it checks the grammatical correctness of token sequences according to the
syntactic rules defined in an ANTLR grammar file. If the input file can be totally parsed by
a sequence of the defined grammar rules starting from a specific token, then the syntactic
analysis is successful, otherwise the JavaParser will generate syntactic error messages.
Syntactic analysis and lexical analysis complement each other. When the parser needs more
tokens, the lexical analyzer sequentially scans the current input to identify the next token
and then returns it to the parser. Finally, after the syntax analysis succeeds, the parser

performs a semantic checking of the input file’s integrity and correctness.

2.4.1 Lexical Rules Implementation

According to ANTLR programming specification, the lexical rules and syntactic rules are
written in a grammar file (.g4 file extension) in which the lexical rules and syntactic rules
are represented in upper-case and lower-case letters, respectively. The grammar file

generally includes a header block, an options block, a parser (Parser), and a lexical scanner

15

Chapter 2: Background and Motivation

(Lexer) as stated in order. According to the defined grammar file, ANTLR automatically
generates an executable lexical analyzer (JavaLexerjava) and syntactic parser

(JavaParser.java).

The main task of the lexical analysis part is to recognize the words of the input file and
identify the correspondent stream of tokens. In other words, the lexer’s job is to transform a
meaningless stream of characters into tokens that would have meaning when processed by
the parser. For example, according to our grammatical syntax of ANTLR, the key
identifiers are defined using the regular expression where the defined lexical rules are
shown in Figure 2.3 (Parr & Harwell, 2013).

1832 // §3.8 Identifiers (must appear after all keywords in the grammar)

Lese

g2l Identifier

les2 i Javoletter JavoletterOrDigit®
L1243 H

fess

10455 Fragment
1846 Jovaletter

1847 : [a-zA-Z$_] // these are the “jeva letters” below @xfF

Le4g | 7/ covers all cheracters above @xfF which are not a surrogate

iesa ~[\ueeee-\uearF\uDa0e- \ubDBFF]

Lesa {Character.isJavaldentifierStart({_input.LA(-1))}?

Les1 | // covers UTF-1B surrogate pairs encedings for U+18€06 to U+1BFFFF

1052 [\uDBBe-\uDBFF] [\uDCBB-\uDFFF]

HE53 {Character.isJavaldentifierStart(Character.toCcdePoint((char)_input.LA(-2), (char)_input.LA(-1)))}?
1654 ;

1855

L8356 fragment

1857 JovaletterOrDigit
1858 ¢ [a-zA-20-95_] // these are the "java letters or digits" below 8xFE
Les9 | /7 covers all characters above BxFF which are not a surrogate

1860 ~[\ueeee-\uearr\uDaee- \uDBFF]

tesl {Character.isJavaldentifierPart(_input.LlA(-1)}}?

1262 | // covers UTF-16 surrogate pairs encodings for U4+1868@ to U+IGFFFF

1e63 [\uD38@-\uDBFF] [\uDC@e-\uDFFF]

tese {Character.isJavaldentifierPart(Character.toCodePoint((char)_input.LA(-2), (char)_input.LA(-1)})}?
1865 H

lanea

Figure 2.3 Declaration of Identifier (Parr & Harwell, 2013)

This definition of an “Identifier” lexical rule can be directly used to identify any word in
the syntactic analysis. The Lexer also has the following alternative names: scanner, lexical

analyzer, and tokenizer.

2.4.2 Syntactic Rules Implementation

The Parser, also called a syntactical analyzer, checks to see if the tokens conform to the
syntax of the language defined by the grammar. Similar to the lexical rules, syntactic rules

are also implemented by defining each syntactic block using EBNF. For example,

16

Chapter 2: Background and Motivation

according to the Java interface declaration each of the keywords is defined as an EBNF,
and each EBNF of the keywords can be expressed by one or more sub-paradigms as shown
in Figure 2.4 (Parr & Harwell, 2013). Starting from the top, every EBNF is defined layer by
layer. Finally, all of the EBNFs are built into a complete syntax tree, which defines the Java
interface. So syntactic analysis recognizes the input tokens as any correct sequence of

EBNFs to complete a syntax tree.

63 interfaceDeclaration

164 : "interface’ typeParameters? ('extends' typeList)? interfaceBody
L65 4

66

67 typeList

L68 ¢ type (°," type)*

63 :

]

Figure 2.4 Syntactic Rule of Java Interface (Parr & Harwell, 2013)

As Figure 2.4 shows, the interface declaration is defined by the lexical rule “Identifier” and
the sub-rules: “typeParameters,” “typeList” and “interfaceBody.” Similarly, the three sub-
rules are defined by other lexical and syntactic rules. Therefore, according to the syntactic

tree top-down analysis approach, the rules are defined one by one from the top.

2.4.3 Semantic Checking and Error Handling

While defining rules, ANTLR supports embedding programming language—e.g., Java—
code to perform semantic actions. These codes are used to generate the error handling
procedures. The codes are implemented by the ANTLRWORKS tool (Parr, 2005), which is

the ANTLR graphical development environment.

Based on the above discussion, Java grammar rules are defined by EBNF and a Java parser
is implemented based on ANTLR technology, which is made of lexical analysis, syntax
analysis, and semantic checking. Then, through the interface functions provided by
ANTLR as shown in Figure 2.5 (Parr, 2013, p. 239), the lexical and syntactic analyzer can
be easily called, in order to preclude repetitive coding and improve the reliability and

reusability of the software.

17

Chapter 2: Background and Motivation

ANTLRFileStream stream = new ANTLRFileStream(resultFilelist.get(f));
Javalexer lexer = new Javalexer(stream);

CommonTokenStream tokens = new CommonTokenStream(lexer);

JavaParser parser = new JavaParser(tckens);

string result = [Brogr GuR ACEMEES J expr ;

Figure 2.5 Calling ANTLR's Interface Functions (Parr, 2013, p. 239)

2.5 Previous Work on Comment Analysis

Although there is no consensus about what constitutes a good/bad comment, in his book
“Clean Code” Martin agrees that the only source of truly accurate information is the code
itself (Martin, 2008, p. 53). However, he claimed that sometimes comments are beneficial,
and he classified the comments into two categories: good and bad. Accordingly, good code
comments are the legal comments (e.g., copyright and authorship statements), informative
comments, explanation of intent that provides the intent behind a decision, clarification
comments that translate the meaning of some obscure, TODO comments, or a well-
described javadocs public API. On the other hand, examples of bad comments include:

mumbling, redundant, misleading, mandated, noise. and scary noise comments.

Several approaches proposed models, metrics, and tools to analyze and assess source-code

comments for improving understandability, modifiability, and testability.

Code comments and documentation help testers to carry out the desired tests without
having to perform an extensive reading of the source code. Therefore, parsing code and
finding comments was used to promote a better understanding of the source code and

improve software testing based on existing documentation (Arrington, 2009).

JavadocMiner is a tool for analyzing the quality of inline documentation (Khamis et al.,
2010). This tool mainly targets inline-documentation in the form of Javadoc comments by
evaluating the quality of the language and the consistency between source code and its
comments, based on a set of heuristics. For measuring the quality of the language,
heuristics such as counting the number of tokens, verbs and nouns, calculating the average
number of words, or counting the number of abbreviations are used. Additionally, Fog
index or the Flesch reading ease level heuristics are used for measuring the readability of

comments. Moreover, for the purpose of analyzing the consistency between source code

18

Chapter 2: Background and Motivation

and its comments, this approach provides heuristics for ascertaining that all aspects are
documented (for example, aspects of a method such as parameter or return type) and for
computing the ratio of identifiers with Javadoc comments to the total number of identifiers.
SYNC (Boolean indicating synchronization) is a heuristic that finds return types,
parameters, and thrown exceptions that are no longer up-to-date—e.g., due to changes in
the code. Finally, the authors observed in a case study of JavadocMiner on different
releases of ArgoUML and the IDE Eclipse that the modules with the highest quality of code

comments contain the least amount of bugs and vice versa.

An empirical study was also conducted to explore the role of task annotations in source
code (Storey et al., 2008). After surveying software developers, analyzing the code of open-
source projects, and gathering data from personal interviews, the authors found out that
most task comments are those that contain @TODO tags. Although “TODO” comments are
often used for documenting small tasks to be completed in the future, there is a big risk that
the developers will forget to revisit them. Therefore, the authors in their analysis suggested
several implications for tool designers such as supporting metadata within task comments,
introducing ad-hoc task cleanup wizards or providing a filtering mechanism for task views.
Additionally, a preliminary study was performed by manually analyzing task comments in
Architect’s Workbench (AWBY), an internal IBM code base (Ying et al., 2005). The authors
came up with a detailed categorization of task comments such as tasks used for
communication, pointers to change requests, bookmarks on past tasks, current tasks, or

future tasks. However, there is no automatic assessment of task comment quality.

Nurvitadhi et al. investigated whether class comments or method comments were more
helpful in comprehending a Java program (Nurvitadhi et al., 2003). In a study of 103
people beginning to learn programming, they found that class comments did not help in
fostering a high-level understanding of the program. However, method comments did help

in understanding the functionality of the methods.

Furthermore, according to Tan et al. a significant percentage of comments relates to hot
topics—e.g., memory allocation and synchronization (Tan et al., 2007). With a simple
keyword search (“lock,” “alloc,” “signal,” “thread"), the authors detected hot comments in

different Linux modules. They also conducted a preliminary study that analyzes the

19

Chapter 2: Background and Motivation

synchronization-related comments in Linux based on a combination of natural language
processing and some heuristics (i.e., keyword searches). With their technique, the authors
were able to detect 12 bugs in Linux, two of them being confirmed by developers. As a
result, the authors explored the feasibility and benefits of an automatic analysis of

comments to detect bugs in code and bad comments.

2.6 Research Motivation

Since no all-encompassing quality model of code comments has been developed so far, the
above-mentioned works give an overview of previous research about source-code

comments.

Although JavadocMiner attempts to measure the quality of code comments, which is also
the target of this thesis, it uses very basic heuristics that do not differentiate between

different comment types (Khamis et al., 2010).

Storey et al. specifically target task comments (Storey et al., 2008). However, in this thesis
our aim is to provide a general assessment of comment quality and categorization of

multiple types of comments including those that are related to tasks.

The study of Tan el al. is tailored to the specific topic of synchronization and memory
allocation (Tan et al., 2007). In contrast, our approach analyzes comments independent of
the context.

The strengths and shortcomings of the previous research about code comment analysis are

shown in Table 2.1.

Table 2.1 Strengths and Shortcomings of Previous Research on Code Comment Analysis

Existing Research Strengths Shortcomings

e measures the quality of ® uses very basic heuristics

JavadocMiner code comments by * does not differentiate
(Khamis et al., 2010) analyzing the quality of between different
inline documentation comment types
¢ explore‘the r'o]e of task ¢ particularly focus on task
Task comments @ TODO angotations WLIonee comments

(Storey et al., 2008) e ¢ no automatic assessment

e result in a detailed

W of task-comment qualit
categorization of task ety

20

Chapter 2: Comment Parsing and Analysis

comments

Hot Comments
(Tan et al., 2007)

¢ tailored to the specific
topic of synchronization
comments

context specific (keyword
searches)

no automatic comment
analysis

21

Chapter 3: Comment Parsing and Analysis

Chapter 3: Comment Parsing and Analysis

This chapter provides an accessible exposition of our work towards an automated analysis
of the quality of source-code comments. Different comment categories are described based
on semantic assumption in addition to the heuristics used in assessing the usefulness of the
comments. Relevant parsing concepts and the suitable parsing algorithm are also presented

alongside a parser generator approach that is based on ANTLR.

3.1 Introduction

In order to analyze and assess the quality of source-code comments, there is a need for a
precise definition of comment quality. Most of the previous researches attempt to give
recommendations on how to write good code comments, without specifying the quality
model of code comments. One motivation for the focus on identifier names in analyzing
comments is that most of the application-domain knowledge that programmers possess
when writing code is captured by identifier names’ mnemonics (Antoniol et al., 2002). In
computer programs, Knuth noted that descriptive identifiers are a clear indicator of code

quality and comprehensibility (Knuth, 2003).

The main goal behind source-code commenting is to improve its understandability. In this
work, a quality model in maintenance will be introduced to specify the usefulness behind
the existence of each type of comment in helping the developer understand code. With the
same underlying syntax of the different comment categories, no parser or compiler can
perform comment classification based on grammar rules. Therefore, a heuristic approach is

required.

Chapter 3: Comment Parsing and Analysis

3.2 Categorization of Comments

For the purpose of this work, comments are grouped into different categories by evaluating
the actual content of their textual information. Syntactically, comments in Java are written
either between the delimiters “/*” and “*/” and are declared as block comments or after the
delimiter *//” and are known as single-line comments. In this thesis, only block comments
are analyzed and single-line comments (except TODO comments) are left for future work.
In order to analyze and assess the quality of source-code comments, a quality model is
defined based on the semantics (i.e., the information conveyed by the comments) for
classifying comments. The assumption is that if the code is of good quality, the comments
provide a good description of the code particularly of the identifier name (i.e., comments
share many similar terms with the identifier names). Therefore, different types of comments

are distinguished as the following.

3.2.1 Documentation Comments

Documentation comments describe and provide information about the neighboring entities
of the source code. Most of the existing comments in any program are documentation
comments, which may be block or single-line comments. They may appear before or after
the referred identifier or even in the same line. These comments may either repeat the code
verbatim or compactly summarize it. For example, consider the following code of variable
declaration:

 fies
* The page number
x/
public int pageNumber;
Its documentation comment essentially repeats the code which is a kind of noise comment
type (Martin, 2008, p. 64). A more useful type of documentation comment is a summary
comment which describes the code in a concise manner as the following:
/%*
* This method is used to add two integers.
* @param numA This is the first paramter to addNum method

* @param numB This is the second parameter to addNum method
* @return int This returns sum of numA and numB.

23

Chapter 3: Comment Parsing and Analysis

et

public int addNum(int numA, int numB) {
return numA + numB;

}

3.2.2 Copyright Comments

Due to coding conventions, every file should begin with a copyright comment that provides

a brief description on what the file does and a short extract of the license.

3.2.3 Task Comments

Task comments are a note for the developer about an unfulfilled task and usually begin
with “//TODO.”

3.3 Analysis Heuristics for Source Code Comments

Different types of comments are used for documenting the existing identifiers inside a file.
For example, a class comment should provide insight on the high-level knowledge of a
program—e.g., which services are provided by the class, and which other classes make use
of these services (Nurvitadhi et al., 2003). On the other hand, a method comment should
provide a low-level understanding of its implementation (Nurvitadhi et al., 2003). For the
purpose of software quality assessment, the similarity between comments and the
accompanying identifier names is measured. Hence, a heuristic approach is required and a

set of heuristics were implemented for assessing the quality of every comment.

3.3.1 Identifier Names Tokenization Heuristic

Every programming language has conventions that constrain the content and form of
identifier names. Java follows Camel Case syntax for naming the identifier. If the name is
combined with several words, every second word will always start with uppercase letter—
e.g., pageNumber. Another way is to delimit separate words using an underscore (“)
character. This heuristic means of splitting conventionally constructed identifier names is

based on internal capitalization and special characters to indicate word boundaries.

Chapter 3: Comment Parsing and Analysis

3.3.2 Word Match and Similarity Heuristic

This heuristic detects the number of words matching (longest match) by comparing the
identifier name (after tokenizing, if needed) with its corresponding comment content. A
similarity percentage will also be calculated for a more precise evaluation of comment
semantics. To quantify the similarity ranking scale, the highest rank is assigned to 1.0 and
the lowest to 0.0. For example, given the comment /* The page number */ for
pageNumber variable declaration, 2 matching words (“page” and “number”) are found and
the similarity factor is 0.8. Such a high similarity factor indicates that the comment adds

nothing but noise.

3.3.3 Location Heuristic

Where is the comment located? Comments can be written at different locations in the code,
such as for a class, a field, a method, a parameter, an exception or a subset of statements

within a method. This heuristic extracts the identifier to which the comment is related.

3.3.4 Lines Count Heuristic

This heuristic means pertains to detecting the use of well-formed sentences within the

comment. It counts the total number of lines within the comment.

3.4 Parsing Source Code

Parsing is a technique that is used to convert software source code from text files into a
form that facilitates automated analysis. It is a process of analyzing the source code of a
program in order to determine its grammatical structure. There are many ways to parse a
sentence using a computer, most of which involve the use of grammar rules. More
specifically, a parser implements the mapping from source code in string representation to a
tree representation. In this section, our main goal is to provide an exposition of the relevant
ideas, rather than detailing the parsing theory. Sub-Section 3.4.1 reviews the relevant
parsing concepts while the suitable parsing algorithm is described in Sub-Section 3.4.2.
Sub-Section 3.4.3 shows the mapping of input tokens into a parse tree based on the parsing

algorithm.

25

Chapter 3: Comment Parsing and Analysis

3.4.1 Parsing Concepts

In this section, different parsing-related concepts are briefly covered. A very simple Java
program is shown in Figure 3.1, and a fragment of the Java grammar used to parse the
given program and construct its parse tree is shown in Figure 3.2. The complete grammar

defines the entire syntax of the Java programming language.

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!™);
¥

Figure 3.1 A Simple Java Program

typeDeclaration classBody
: classOrInterfaceModifier* classDeclaration i "{" classBodyDeclaration® '}’
classOrInterfaceModifier™ enumDeclaration
classOrInterfacedeodifier™ interfaceDeclaration
classOrinterfacetodifier® annotationTypeDeclaraticn classBodyDeclaration
a

R —

| static'? block
| modifier* memberDeclaration

classDeclaraticn ;
'class’ Identifier typeParameters?
("extends' typeType)? memberDeclaration
('implements' typelist)? : methodDeclaration
classBody | genericHethodDeclaration
; | fieldpeclaraticn
| constructorDeclaration
zlassOrinterfacetiodifier | genericConstructerDeclaration
annotation // class or interface | interfaceDeclaration
! | (‘public’ /! class or interface | annotationTypeDeclaration
| ‘'protected’ // class or interface | elassDeclaratien
| ‘private’ / class or interface | enumDeclaration
| ‘static’ / class or interface i
| ‘abstract' // class or interface
| ‘final’ // class only -- does not apply to interfaces
| ‘strictfp’ / class er interface
)

Figure 3.2 Fragment of Java Grammar
Like most programming language grammars, our grammar belongs to a class known as
context-free grammars (CFGs) or Backus Naur Form (BNF). CFGs consist of a set of rules
in which each rule has a left-hand side (LHS) consisting of a single nonterminal, and a
right-hand side (RHS) that consists of several symbols, where a symbol is either a terminal
or a nonterminal. It is important here to distinguish between terminals that are found in a
grammar, and tokens that are the lexical units to be parsed. Each token in the input string

corresponds to one terminal in the grammar.

Chapter 3: Comment Parsing and Analysis

The set of all terminals used in a language is known as the language’s alphabet. These
terminals are the text between quotation marks (’) that must match a token of the input
stream. In our case, the alphabet of Java includes the terminals: public, class, implements,
etc. The grammar rules define the set of ways in which the terminals may be composed to

produce a meaningful sentence in the Java programming language.

Extended BNF (EBNF) syntax provides more extensions to BNF typically by allowing
optional clauses and repeated (zero-or-more or one-or-more) clauses on the RHS. Hence,
the main difference is that EBNF is more expressive and is therefore used more often by
language designers. The Java grammar fragment in Figure 3.2 makes use of two features of
EBNF syntax (the “?” character) to specify the optional symbol and (the “*” character) to
specify the repeated zero or more times symbol. Though it is not mentioned in this
example, the (“+7 character) denotes that the preceding rule is repeated one or more times.
The (“” character) denotes a choice between rules and brackets that is used for grouping
syntax rules. The operators that ANTLR uses in its EBNF syntax are summarized in Table
3.1

One and only one nonterminal in a grammar is denoted as the start symbol. By convention,
it is the first nonterminal symbol, which is the LHS symbol of the first grammar rule. The

start symbol represents the root of all parse trees for that grammar.

For any programming language, a well-formed CFG could be defined based on the
following restrictions:

e Every RHS nonterminal of a grammar rule must appear as an LHS of another
grammar rule.

* Every LHS nonterminal must appear at least once either on the RHS of a grammar
rule or it must be the start symbol.

® The grammar is not cyclic. It must not contain any useless rules that allow an LHS
to be the same as an RHS resulting in an infinite number of parse trees for a given
input.
e Every single nonterminal must be resolved to a terminal.
Table 3.1 ANTLR EBNF Operators

ANTLR / EBNF Explanation

AB Matches A followed by B.

27

Chapter 3: Comment Parsing and Analysis

A|B Matches A or B.
A? Matches zero or one occurrences of A.
A+ Matches one or more occurrences of A.
A* Maiches zero or more occurrences of A.
() Parenthesis can be used to group several elements
and can be treated as one single token.

3.4.2 Parsing Algorithm

The parser scans the input going from left to right. It identifies whether it is a leftmost or
rightmost derivation. The parser uses the grammar rules for finding the appropriate
derivation. In our study, a context-free grammar is utilized and the lefimost top-down

processing strategy is used.

The top-down parser begins with the single start symbol. The parser starts to expand the
start symbol into a stream of symbols using any applicable rule from the grammar. It
continues to expand each nonterminal symbol in the string until the string consists of only
terminal symbols. This resulting string is compared to the words of the input stream, and if
they match the input is a legal construct. Otherwise, the parser backtracks and tries new
expansions of the nonterminal until the given input parses or an error arises, meaning the
input is semantically incorrect. Top-down parsers are sometimes called predictive parsers

because of the way they predict the rules to use in a derivation.

Concerning our work on comment parsing, comments with their location information from
the source code are extracted. This is done based on a top-down leftmost parsing algorithm.
Then, the comments are analyzed by grouping them into categories based on the
classification described in Section 3.2 and by implementing the set of heuristics described

in Section 3.3.

3.4.3 Parse Tree

A parser determines whether a given input belongs to a grammar by outputting a Boolean
result. It constructs a parse tree that spans the entire sequence of input tokens. The leaf

nodes of a parse tree contain the tokens of the input, and the branch nodes contain sub-trees

28

Chapter 3: Comment Parsing and Analysis

that match the RHS of a grammar rule. Thus, each branch node corresponds to one LHS
nonterminal that has been recognized. The root node is a branch containing the start
symbol. Hence, a parse tree diagrammatically shows how the start symbol of a grammar

derives an input stream of tokens.

An Abstract Syntax Tree (AST) is a hierarchical representation of the syntactic structure of
the program. It is constructed by grouping the input tokens according to a grammar, A
parse tree groups together adjacent words or phrases to form longer phrases, until a
sentence that spans the entire input is found. The legal groupings, and consequently the
possible structures of parse trees, are defined by a grammar. A fragment of a parse tree is
illustrated in Figure 3.3. This parse tree was constructed from the tokens that were

extracted by parsing the example shown in Figure 3.1 using the grammar rules shown in

Figure 3.2.
—I classOrinterfaceM odifier I classDeclaration

| classBody '

' classBodyDeclaration I
|

| |
I modifier | | modifier —l lmemberDechratlonl

' classOrinterfaceM adifier " classOrinterfaceModifier II methodDeclaration I

[public " class I Identifier | {I l public | static I_vuid | identifier

Helloworld main

Figure 3.3 Parse Tree Fragment Produced by a Parser

29

Chapter 3: Comment Parsing and Analysis

When the parser receives its first token, it will try to match this token with a start rule of the
EBNF. In this example, the start rule is the fypeDeclaration rule. When entering the
typeDeclaration rule the parser will first have to match one of the RHSs shown in F igure
3.2. The parser will match the RHS classOrInterfaceModifier * classDeclaration. Then, the
parser applies the classOrinterfaceModifier rule to match the ‘public’ token. When the
parser reaches the end of the classOrinterfaceModifier rule, it applies the classDeclaration
rule. According to EBNF the next token should be ‘class’ which matches the given input,
Identifier rule and classBody rule (the optional clauses in the RHS of the classDeclaration
rule do not match the given example). The parser will match the ‘HelloWorld’ token with
the Identifier rule, which ends here and the parser continues with the classBody rule.
According to EBNF the next token should be ‘{’ which matches the given input,
classBodyDeclaration rule and the ‘}’ token that is the closing braces of the given class.
Now the parser continues with the classBodyDeclaration rule in a similar way as the

previous rules until reaching the terminal tokens.

3.5 Parser Generator

In this thesis, a parser generator called Another Tool for Language Recognition (ANTLR)
is used. One of the key features of ANTLR is that it uses a syntax very similar to EBNF to
specify the syntax of a language. This section briefly introduces ANTLR and provides an

overview on how to write grammar rules for it.

3.5.1 Generating Lexers and Parsers with ANTLR

The principles and techniques of writing compilers are quite diverse. Conceptually, the
compilation process includes the following phases:

e Lexical analysis: sequence of code symbols converted into a sequence of tokens

e Syntactic analysis: sequence of tokens converted into a parse tree

e Semantic analysis: parse tree processed for establishing its semantics (meaning)

e Optimization
The process of building a parser by hand is a very time-consuming task and does not

always guarantee a good result. A parser is usually a large-scale system making it difficult

30

Chapter 3: Comment Parsing and Analysis

to debug even for a simple input language. There are a number of tools to help in this

process, and ANTLR is the one that is used in this thesis.

ANother Tool for Language Recognition (ANTLR) is an open-source framework written in
Java. It allows designing compilers, interpreters, and translators with a variety of
programming languages (e.g., Java, C++, and C#) based on self-written grammar rules
similar to Extended Backus—Naur Form (EBNF) (Garshol, 2008). ANTLR uses a top-

down parser generator that uses LL(*) parsing algorithm with EBNF notation.

An interesting feature of ANTLR is that it provides a convenient means of error recovery
and reporting systems. Moreover, ANTLR has many advantages including: an object-
oriented design, an integrated lexical and syntactic analysis, and the ability to generate

readable and maintainable code.

The work conducted in this thesis is based on ANTLR 4.4. The customized lexical analysis
(lexer) and syntax analysis (parser) rules are written in a grammar document, which is a
text file with (.g4) extension. Based on this grammar document, ANTLR’s workflow is
defined as follows: a Lexer class containing the tokens is initially created, a Parser class
containing various grammar rules recursively defined using EBNF expressions, and an
optional TreeParser class defined based on the AST generated by the Parser class. The

relationship between characters, tokens, and ASTs is shown in Figure 3.4.

parse tree
chars tokens
=100, [pLEXeR P sw-100: [parser ’ Sp/ﬂsw\
: = eapr B
S Language recognizer m

Figure 3.4 The Relationship between Characters, Tokens, and ASTs (Parr, 2013, p. 10)
Lexers and parsers are generated with ANTLR as follows:

1. A text file named ‘Java.g4’ is created. The file’s contents include Java-class lexical
analysis and syntax analysis rules defined by EBNF. A snippet of this file is shown

in Figure 3.2.

31

Chapter 3: Comment Parsing and Analysis

2. ANTLR is used to generate Java source code of Lexer, Parser, and TreeParser

(Listener) classes according to ‘Java.g4.’

3. A management system is designed and implemented by calling the starting parser
rule and taking lexical analysis, syntax analysis and semantic checking,

respectively, by the use of Lexer, Parser, and TreeParser classes in that system.

3.5.2 Grammar Writing

A grammar file (GrammarName.g4) always begins with the statement “grammar
GrammarName;.” The GrammarName is the name of the filename. In other words, the

filename containing grammar X must be called X.g4.

Except for the statement “grammar GrammarName;”, the rest of the grammar file defined
below this line such as rules and patterns is fully functional. An ANTLR grammar consists
of two logical parts: a header and a body. In the header, there is the meta-data about the
grammar and details that help the code generator. The body consists of the lexical and

syntactic rules of the grammar.

The header is the user-defined code section otherwise known as named global actions (Parr,
2013, p. 175). It consists of header and member actions. To specify a header action,
@header {...} is used in our grammar where package/import statements are injected. To
inject fields or methods into the generated code, @members {...} is used. These named

actions apply to both the parser and the lexer in the grammar.

The body is the set of rules which are written in an EBNF-like syntax and defined

recursively. The format of an EBNF rule is as follows:

a:b;

The symbol *:* separates the LHS from the RHS and the semi-colon *;> appears at the end
of every statement/rule of the grammar file. The above rule representation denotes that the
symbol ‘b’ on the RHS can be placed instead of the symbol ‘a’. This replacement process is

repeated until there is no LHS symbol referencing a rule in the grammar. All the symbols

are denoted as tokens. The symbols on the RHS may be unlimited—for example:

32

Chapter 3: Comment Parsing and Analysis

a:b|c, (either the symbol ‘b’ or symbol ‘c’ is chosen to be replaced in the place of

symbol ‘a’).

The ANTLR tool generates recursive parsers from the grammar rules beginning with the
start symbol. The start symbol becomes the root of the generated parse tree. The parsing
begins at the root of the parse tree and proceeds towards the leaves (tokens). This type of
parsing is called top-down parsing. Parser rule names must start with a lower-case letter,
and lexer rules must start with a capital or upper-case letter. To denote the end of file token
inside the ANTLR rules, simply use EOF, which means the parsing ends once all the input

has been matched.

As a summary of what is stated in this section, any grammar file will look like Figure 3.5.

grammar GrammarName;

@header {
// package/import statements
}

imembers {
// variables and methods declaration
}

// parser rules

startRule : rulelame; // startRule is the start symbol
ruleName : EndRule EOF;

// LEXER rules

EndRule : 'end' ;

Figure 3.5 Grammar File General Overview

3.5.3 Building Grammar

By following the syntax described in Section 3.5.2, here in the thesis the filename is given
as Java. Hence, our grammar file (Java.g4) should begin with a “grammar Java;”
statement. In the header action, some standard Java utility classes such as HashMap for
storing (key, value) pairs to implement identifier-comment analysis need to be imported

whereas the HashMap field declaration will be put in the members action as the following:

grammar Java;

@header {
import java.util.HashMap;

33

Chapter 3: Comment Parsing and Analysis 34

}
@members {

public HashMap<String,String> classCollectorCmnt = new HashMap<String,
String>();

3
In our case ‘compilationUnir’ is the start symbol, which is the root of the generated parse

tree. The start rule comes as follows:

compilationUnit
packageDeclaration? importDeclaration* typeDeclaration* EOF

H
Here, the characters ‘?” (zero or one time) and “*’ (zero or more times) means that the

symbol to the left of the operator is optional.

Let us take the simple example shown in Figure 3.6 after adding a comment to the
previously parsed Java class in Section 3.4.1 and see how to add/update the grammar rules

for parsing the block comment of the given class.

f‘lﬂ

* The HelloWorld class implements an application that
* simply prints "Hello World!"™ to standard output.

*/

public class Helloliorld {

public static void main(String[] args) {
System.out.println("Hello World!");
by

Figure 3.6 HelloWorld Class Example

First, new grammar rules (parser and lexer rules) for the comments, whether block or
TODO, have to be declared by taking into consideration that a comment might not exist (by

using the optional operator *). Such rules come as follows:

// parser rules
comments // handles block and TODO comment

: (TODO_COMMENT {todo = 1; theCmnt = $TODO_COMMENT.text;} | COMMENT {blockCmnt
= 1; theCmnt = $COMMENT. text;})*

>

// LEXER rules
COMMENT // handles nested comments
"/*' (COMMENT| .)*? ‘'#*/°

Chapter 3: Comment Parsing and Analysis

TODO_COMMENT
'// TODO" ~[\r\n]*

Second, by adding the LHS of the comments rule in front of the fypeDeclaration symbol in
the start rule compilationUnit, the parser will successfully parse any comment if it exists

prior to any class declaration.

compilationuUnit
packageDeclaration? importDeclaration* comments typeDeclaration* EOF

3.5.4 Parser of Java Language

To implement a language, an interpreter that reads and recognizes all the valid sentences,
phrases, sub-phrases and input symbols of that language should be implemented. Having
already defined the parsing concepts (Section 3.4) and made use of the ANTLR library
(Section 3.5), the parser should be developed. By following the structure of ANTLR, one
has to translate the syntax of the Java language into lexer and parser rules of ANTLR for

the purpose of the grammar file construction.

First, all the lexer rules that were to be used during the composition of the parser rules
should be defined. Most of these were keywords, separators or operators (e.g. “{”, (", and
“II"), while others were combinations of characters—for example, the definition of the

lexer rule for white spaces including space, new line, etc.

WS [\t\r\n\ugeec]+ -> skip
Having defined all the lexer rules, the parser rules should be defined. Given a simple Java
program, it can be composed of classes, inner classes, methods, method body, variables,
and so forth. Also, the method body can be further composed of various statement blocks.
Each statement block can be further composed of statements. Sample statements are

assignment statement, IF Statement, and For Statement.

To capture the entire structure of the Java source code, all the necessary parser rules in the
grammar file must be defined. Later, with the help of the compiler, the necessary

information can be retrieved and the Abstract Syntax Tree (AST) can be populated. The

Chapter 3: Comment Parsing and Analysis

Java grammar file from the ANTLR specification is provided by Parr and Harwell (Parr &
Harwell, 2013).

Comments are parts of the source-code that are ignored by the compiler. Once the grammar
file is defined for the Java source-code parsing, an update to the parser rules can be done
for capturing and parsing all of the comments. The next step is to build the actual compiler
to do the parsing of source-code comments, and build an interpreter for retrieving and

analyzing the necessary information.

3.6 Interpreter Implementation

After constructing the grammar, different files are automatically generated by ANTLR once
the grammar file (Java.g4) has been saved. A successful build of the workspace is seen on
the ANTLR console as shown in Figure 3.7. For invoking the implementation of the output
results, an interpreter is implemented using the Java programming language by calling the
“parseComments(String FILE_DIR, String OUTPUT_FILE)” method in a class called

JavaAnalyzeComments.java. The implementation phases are shown in Figure 3.8.

\[#7 Problems @ Javadoc [, Declaration | @ Console 52 ! :

'ANTLR Console
JANTLR Tool va4.4 (C:\Users\user\AppData\Local\Temp\antlr-4.4-complete.jar)
Java.g4 -o C:\Users\user\workspace\mireille.h\Antlr_First_Project\target\generate:

SUCCESSFEYL
Total time: 2 second(s)

i 4 T . .

Figure 3.7 ANTLR Console

(JavaAnalyzeComments.java)

grammar file {Java.gd4) AST
ANTLR INTERPRETER
Input Output

Figure 3.8 Implementation Phases

36

Chapter 3: Comment Parsing and Analysis

3.6.1 ANTLR Generated Files

From the grammar file Java.g4 in a Java project in Eclipse, ANTLR generates many files
with an extension .java, .tokens, .class such as: JavaParser.java, Javalexer.java,
JavaBaseListener.java, and Javalistener.java. The following sub-sections explain what

each file contains.

3.6.1.1 JavaParser.java
This file contains the parser class definition, which is specific to Java grammar which

recognizes the language syntax. It also contains a method for each rule in the grammar.

3.6.1.2 Javalexer.java
This file contains the lexer class definition generated for analyzing each and every lexical
rule and literal in the grammar. The lexer tokenizes the input breaking up into vocabulary

symbols.

3.6.1.3 Java.tokens
For each defined token, this file contains a token type number. These values are needed
when larger grammars must be split into multiple small grammars so that ANTLR can

synchronize all the token type numbers.

3.6.1.4 Javalistener.java and JavaBaseListener.java

By default, AST is automatically built up by ANTLR parsers. ANTLR has a walker class,
ParseTreeWalker, which knows how to walk these parse trees, triggers, events, or callbacks
in the listener implementation object that is created. The JavaListener is an interface
containing enter and exit methods for each rule in the parse grammar. JavaBasel istener is a

set of empty implementations of all listener interface methods.

3.6.2 Interpreter File

Referring to Figure 3.8, the next step is to implement the interpreter of the Java
programming language where an AST is given as an input with some of the methods of the

subclass JavaBaseListener are going to be called.

37

Chapter 3: Comment Parsing and Analysis

3.6.2.1 JavaAnalyzeComments.java

This file is created for integrating a generated parser into a Java program. The
“parseComments(String FILE_DIR, String OUTPUT_FILE)” method in this file invokes
parser initialization and prints out the results into an external output file (OUTPUT_FILE).

The most important contents of this file are as follows:
ANTLRFileStream stream = new ANTLRFileStream(resultFileList.get(f));

This line creates an InputStream of characters for the lexer that is used to read from the
standard input. In our case the input is a file ‘f from a list of directory files (FILE_DIR)

with an extension .java only.

Javalexer lexer = new Javalexer(stream);
CommonTokenStream tokens = new CommonTokenStream(lexer);
JavaParser parser = new JavaParser(tokens);

Next, through the above lines of code the lexer and parser objects are created derived from

the Java grammar file and a TokenStream Pipes between them.
parser.compilationUnit()

This line launches the parser that starts parsing from the start symbol rule of the Java

grammar file ‘compilationUnit .

An important step is writing the output results to an output file (OUTPUT _FILE). This
output text file summarizes the results with a comma (,) which serves as separation for
further statistical excel representation. Such representation illustrates information about:
directory location of the input file that was parsed, entity of the source code to which the
parsed comment is related, whether the parsed comment is a block or a TODO comment,
number of lines of a comment (LOC), number of words matched, similarity factor, and so

forth.

First, the lines of code shown below open the output file and write the headers inside it to
be filled with the parsed results.

FileOutputStream fos = new FileOutputStream(new File(OUTPUT_FILE));

String cvsTitles =
"FILE_PATH,CLASS_COPYRIGHT,CLASS_NAME, INTERFACE_NAME, METHOD_NAME , CONSTR_NAME , FIE
LD_NAME , ENUM_NAME , SL_COMMENT ,ML_COMMENT, LOC,WORDS_MATCH, SIMILARITY_FACTOR";

fos.write(cvsTitles.getBytes());

38

Chapter 3: Comment Parsing and Analysis

Second, global public variables are declared before any grammar rule in the Java grammar
file for hosting the acquired results. For every source code entity (class, constructor,
method, field, enumeration, etc.), one Hashmap (key, value) is declared for a block
comment type where the key is the entity name and the value is the comment itself *
comment */) to be used for counting the number of its lines or for any further analysis in
the interpreter file JavaAnalyzeComments.java. Another hashmap is created for the names
of the entities that do not have any comments. An example showing the global variables

that are declared for the class entity is given in Figure 3.9.

grammar Java;

@header {
import java.util.HashMap;

¥
@members {

public int blockCmnt = @;

"

public String theCmnt = "";

i* Class */
public HashMap<String,String> classCollectorCmnt = new HashMap<String, String>();

public HashMap<String,String> classCollectorNoCmnt = new HashMap<String, String>();

Figure 3.9 Grammar Global Variables Declaration
Calling such global variables is straightforward after launching the parser as follows:

HashMap<String, String> hClassMap = new HashMap<String,
String>(parser.classCollectorCmnt);

Given a key and a value stored in a Map object, it can be easily used to retrieve the values

using the Map method and to write the corresponding results into the output text file.

3.6.3 Error Handling

ANTLR is very flexible and capable of producing better error recovery messages. It usually
emits syntax error messages when it encounters a token mismatch. Such helpful error
messages provide detailed information by describing a specific error as much as possible.
This includes the line on which the variable is declared, the line(s) it is referenced to, the

lexical scope to which it belongs, and between which lines of the source code it is

39

Chapter 3: Applying Comment Parsing and Analysis to an Open-Source Software

encountered. ANTLR automatically stores that information on every token in the token
stream making it easy for the parser to extract the required details for faster semantic
analysis. Consider the example shown in Figure 3.10 where an error is recognized. The

error in this case is a missing semicolon at the end of line 8.

i
-~

*

*

* The HelloWorld class implements an application that
* simply prints "Hello World!" to standard output.
b

Bowon

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello World!™)
¥

O 00~ O
)

b=
o
e

Figure 3.10 Example with Syntax Error
Upon parsing the closing bracket of the “println” function call, ANTLR expects a
semicolon to end the statement. However, the next token in the stream is a brace “1. As
ANTLR has not found what it was looking for, it gathers the necessary information and

generates the error message shown in Figure 3.11.

(. ._ Ly ."' i '
Eﬂ' _Problems A Javagh____;_{:g) Dedaratlon | & Console 52 I i = by 5

o XK A EE ra-m-
<terminated> JavaAddComments [Java Application] C:\Program Fl!fj\}aua‘gdkl.ﬁ.ﬂ 45\bm\]ﬂvaw exe (Feb15, (]
|flz.ne 9:4 extraneous input '}' expecting {'instanceof', '(', '[', 3", '.', '=', "I a|
& : e

Figure 3.11 Syntax Error Message

40

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

Chapter 4: Applying Comment Parsing and
Analysis to an Open-Source Software

This chapter presents a broad overview of the semantic analysis approach proposed in the
present thesis with the technical details on its implementation. The source code of Eclipse,
an open-source Integrated Development Environment (IDE) written in Java, was used to

test the proposed approach.

4.1 Introduction

As a good practice, software programmers are required to select meaningful identifier
names. Identifiers constructed by developers may contain useful information that is often
the starting point for program comprehension activities. Identifiers are considered one of
the most important sources of information about system concepts (Caprile & Tonella,
2000). Furthermore, by writing comments, programmers attempt to describe the source
code with useful and meaningful information. Therefore, analyzing and matching the
similarity between the identifier names and comments in the Java classes can be used to
measure how effectively they facilitate program comprehension, testing, reusability, and

maintainability.

The approach presented in this thesis was developed using Java (JDK 1.8), Eclipse 4.4 (JEE
Luna), and ANTLR v4.4 (antlr-4.4-complete.jar). The Java language parser supports all
original source code of JDK 1.2 and higher. The graphical user interface (GUT) of the

supporting tool was implemented using Swing.

4.2 Retrieving Information

Before a meaningful semantic analysis can be performed on Java-file comments written in

_ natural language, the Java file first needs to be parsed. This process involves chunking the

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

sentences of the file and tagging the individual words of a given phrase with its
corresponding part-of-speech (POS). POS tagging means that every token is tagged with its

corresponding grammar rule.

A way of retrieving the necessary information upon parsing a Java source-code file is by
using HashMap data structures, where keys represent the identifier-names and values
represent the corresponding comments. Such HashMaps will be put in the member action

as was mentioned in Section 3.5.3,

For each type of identifier (Class, Interface, Constructor, Method, Field, or Enumeration), 2
HashMaps are declared. The first stores the identifier-comment pairs if the comment exists,
and the second stores the identifiers without comments for further warning about

uncommented identifiers.

For parsing and retrieving information about the existence of TODO comments (/TODO),
HashMaps are also used for storing the location of such comments within the Java file. The
location is the associated identifier that is revisited by the programmer later on to show that

there is still work to be done on the marked piece of code.

Therefore, in order to generate output and update data structures, actions have to be
embedded in the grammar. After the parser matches the entire grammar rule, the identifier-
comment pair is stored in the HashMap. For example, the action “$Identifier.text” refers to
the text matched by the Identifier reference and ANTLR translates it to getText(). The
snippet of the grammar file presented in Figure 4.1 shows how 2 HashMaps are used to

retrieve class-comment information.

To launch the parser, the usual code sequence is to create an input stream, attach a lexer to
it, create a token stream attached to the lexer, and then create a parser attached to the token
stream (as shown in Figure 2.5). Then, by simply calling the start symbol rule of the
grammar, the global HashMap variables can be directly loaded for invoking the
implementation of the semantic approach on the output results by performing some

computations based on our Java programming language knowledge.

42

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

@header {
impart java.util.HashMap;

fmembers {
public int blockCmnt = @;
public int todo = @;

public String theCmnt = "3

I* Class %2

public HashMap<String,String> :Ias#_gg;léctorcﬁﬁ; = new HashMap<String, String>();
public HashMap<String,String> :lassCollectorNoCmnt = new HashMap<String, String>();
}

1 (TODO_COMMENT {todo = 1; theCmnt = ETODO O EAT text;} | COMMENT {blockCint = 1; theCmnt -

3

typeDeclaration
i comnents classOrInterfaceModifier® classDeclaration
| comments classOrInterfaceModifier® enumBeclaration
| comments classOrInterfaceModifier® interfaceDeclaration
| classOrInterfacaModifier® annatationTypeDaclaration
I

classDeclaration -
‘class’ Identifier {if(blockCmnt==1) {classCollectorCmntiput(3ldurtiiiee Yuxt,theCmnt); blockCmnt = o}

else if(tcdo“l){:La‘istcl;_eggg\r_TOﬂo.put(Zdenti¥iee itext, theCont); todo=6;}
else classCollectorNoCmnt. put(fldentifiar Yaxt, "))

typeParameters? =

{‘extends’ type}?

("implements’ typelist)?

classBady

Figure 4.1 Retrieving Information upon Parsing

4.3 Semantic Similarity Approach

Computing the semantic similarity between the identifier name and its corresponding
comment is not a trivial task, due to the variance of natural language expressions. This

section explains the different steps that were used for computing this similarity.

4.3.1 Preprocessing

First, the output stream of tokens is obtained for both the identifier names and their
corresponding comment text. The main goal of this step is to reduce the forms of tokens to
a common base form for further analysis. In this section, the preprocessing steps are

discussed.

4.3.1.1 Tokenization
The tokenizer splits the identifier name into chunks. Different output token streams

(sequences of chunks of input text) are obtained depending upon the type of tokenizer that

43

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

is used. Camel case is a naming convention in which a name is formed of multiple words
that are joined together as a single word. The first letter of each word is capitalized so that
the words that make up the name can be easily read. For example, “getDayOfMonth” and

“GPSState” follow camel case rules.
For splitting the identifier names, there are two possible cases to consider:

1. Character at position i is lower case and character at position i+1 is upper case (e.g.,

getString)

2. Character at position i is upper case and character at position i+1 is lower case (e.g.,
IDNumber)

Case 1 is a straightforward Camel case, and the splitting occurs before the upper-case letter
where the output stream of tokens is as follows: (“get” and “String”). However, the
splitting in case 2 occurs before the last upper-case letter where the output stream of tokens

is as follows: (“ID” and “Number”).

(T 1)

The underscore (“_) character is also used as a word separator in the tokenization process.

4.3.1.2 Stop Words
Stop words such as: “the,” “at,” “is,” and “and” are removed to focus on the significant

semantic words in the context.

4.3.1.3 Normalization
After the first two steps, lower-case folding and alphabetical sorting is applied on the
obtained output stream of tokens of both the identifier names and their corresponding

comment text. This is done to achieve the highest similarity comparison.

4.3.1.4 Cleaning Messy Comment

All the idioms that do not add valuable semantic meaning to a comment are removed like
tags, all the lines that start with the character ‘@’, and so on. For example, the highlighted
parts shown on the comment presented in Figure 4.2 should be removed before any further

analysis.

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

“

Returns a new object of class 'Dawn Generator'.
<!-- begin-user-doc --> <!-- end-user-doc -->

@return a new object of class 'Dawn Generator'.
- @menerated
" @since 1.8

K K 4 % & %

S

Figure 4.2 Cleaning Messy Comment

4.3.2 Stemming

The process of reducing a word to its root is called stemming. This process is performed for
achieving the highest semantic similarity between the tokens. For example, words like
“search,” “searched,” and “searching” are semantically related to the word “search.” In this
phase, the greatest common prefix with at least 3 characters is matched when comparing

the tokens of both output streams.

4.3.3 Computing Similarity

With the first two phases, a tokenizer is used to produce tokens from the given input, apply
different normalization processes, and use stemmers to reduce the tokens. Hence, two sets
of keywords that truly represent the original text are produced. These keywords can be
treated as sets of unique tokens. To calculate the similarity between the two streams, it
would be better to represent the similarity in terms of a number that represents how similar
two contents are on a 0 (not similar) to 1 (completely similar) scale. The total number of
common words is also indicated as an additional semantic similarity measure. The
algorithm for computing similarity between identifier names and comments is illustrated in

Figure 4.3.

45

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

g
® returns the grsatest prefix match between 2 strings
'

public String greatestCommonPrefix(String a, String b) {

int minLength = Math.min{a.length(}, b.length());
for (int i = 8; 1 < minLength; i++) {
if (a.charat(i) != b.charat(i)) {
return a.substring(e, i);

return a.substring(e, minLength);

}

7

" Create a arcay of words (lowerpese) #nd sort them in alphabeticeal order
* gpuram str

= @Breturn

g

public String[] normalize(String str)

string[] result = str.split(" ");

for (int i = 8; i ¢ result.length; i++)
result[i] = result[i].toLowerCase();

Arrays.sort(result);

return result;

1§

public String[] compare(String comment, String identifier) {
int nbWordsMatch = @;
float simFactor = @;
// Hormalize comment
String[] commentArray = normalize(comment);
// Hormalize Identifier
String[] identifierarray = normalize(identifier);

int p@ = 8, pl = 8;
while (p@ < commentarray.length &8 pl < identifierarray.length)
{

String comPref = greatestCommonPrefix(commentirray[pe], identifierarray[p1]);
if(comPraf.length() > 2) // if at least 2 cheracters are matched; stemming
{

commentirray[p8] = comPref;

identifierArray[pl] = comPref;

}
int comp = commentArray[p@]. compareTo(identifierarray[pl]);

if (comp == @) { // same word
nbkordzMatchss;
pe++;
Plt;

else if (comp < @) { // commentirray word is before identifierarray word
pe++;

else if (comp > @) { // commentirray word is after identifierArray word
plt+;

}

2

simfactor = (2.8f * nbuWordsMetch) / (commentéArray.length + identifierArray.length);
string[] returnResult = new String[2];

returnResult[8] = Integer.toString(nbWordsMatch);

returnResult[1] = String.valueQf(simFactor);

return returnfesult;

Figure 4.3 Algorithm for Semantic Similarity Computation

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

4.4 Testing the Approach with an Open Source Software

This section presents a study that was carried out to test the approach presented in the
present thesis. Comment parsing and analysis was applied to the source code of Eclipse, an

open-source IDE.

4.4.1 Analyzing the Source Code

In order to analyze the quality of source-code comments and evaluate the similarity
measures, the source code of Eclipse was downloaded from one of the online repositories
(Stepper, 2015), and the Java files were extracted to a local folder. The content of every
Java file (*java) of the Eclipse project was analyzed, based on the retrieval algorithm
described in Section 4.2 and the semantic similarity approach described in Section 4.3. The
output results were exported to an Excel workbook for producing charts. To evaluate the
results, comments were grouped into 6 categories based on the similarity match value as

shown in Table 4.1.

Table 4.1 Comments Categories

Category Similarity Factor Value Description
1 >= (.8 Scary Noise comment
2 >=0.4 and <= 0.79 Noise comment
3 >=0.01 and <= 0.39 ﬁ?ﬁa;iﬁfiﬁm"t vt
4 -0 Proba})]){ M.eaningful

(0% similarity)

5 =-1 Empty comment
6 TODO comments

Note that the “Empty” comments are the ones that do not offer a semantic explanation
regarding the functionality of the method or class, but can offer other details (using the
annotations that start with @). Such details can include the version, the parameter list, the

return values, the thrown exception or the generated annotation as shown in Figure 4.9.

47

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

Therefore, this type of comment is empty of any semantic information to be compared with
its corresponding identifier name and thus its similarity factor value is set to a constant

equal to -1.

The tool that was developed for parsing and analyzing the comments is shown in Figure
4.4. The “Browse...” button is clicked for selectin g the folder of the target project and the
“Save File...” button is clicked for selecting the file where the output results are to be
stored. Then, the “Start” button is pressed to generate the output results in the grid. The
rows in the results grid are colored based on the value of the last column
“SIMILARITY_FACTOR?” highlighting the comment categories mentioned in Table 4.1 as
shown in Figure 4.5. Scary noise and noise comments are colored in RED, probably
meaningful comments in ORANGE and empty comments in GREY. The total time to run
and parse the selected Eclipse open-source project (744 Java files) is around 10 seconds.

. i l=iEra |

([orgecipsd.emi
e eclipsaemiy | 4
ﬂugtﬂbﬁlm.i 1 _i
[org edipsammty

1| Slorpecioseemrcsncans EJorgeckpseamts i B2
4! =3 orpecipse smi.cootawncodegen (Horpactiosesmty (4

et d 8

S N e 3

Figure 4.4 Support Tool — Selecting the Target Project

48

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

T S S

- 1}
4

il

k!'?. BT, ND_CuN
ChtT ¥ T] ! =
I_O L 40T,

Figure 4.5 Support Tool — Showing the Output after Parsing and Analysis
4.4.2 Results

The distributions percentages of the previously defined comment categories (Table 4.1) are

presented in Figure 4.6 for all of Eclipse’s source code.

TODO, 0.28% H_Scarv Noise,
1.03%

_Noise, 8.47%

Normal,
18.32%
Empty,
50.53%
Probably
Meaningful,
21.37%

Figure 4.6 Comment Category Percentage

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

The percentage was determined by the proportion of comments in the data set that are
covered by the calculated similarity factor bounds. As indicated in the chart shown in
Figure 4.6, more than 8% of the comments were categorized as noise comments. This is not
a good quality indicator, especially if it is considered that the selected Eclipse distribution
is a small version with only 744 Java files. The code snippets shown in Figure 4.7 and
Figure 4.8 demonstrate examples of noise and scary noise comments, respectively. These

comments seem to have been automatically generated by a tool and neglected afterwards.

/J”i
* Get the file frem the page. <!-- begin-user-doc --» <!-- end-user-doc -->
-
* @generated
7
public IFile getModelFile{)

{
return newFileCreationPage.getModelFile() ;

H

Figure 4.7 Noise Comment Example

‘f‘v»
“ Runs the wizard in a dialog.
* Egeneraced
or
public static veid runWizard({Shell shell, Wizard wizazd, String settingsiey)
{
IDialogSertings pluginDialogSettings = EcoreDiagramEdictorPlugin.gecInstance () .gecDialogSettinga():
IDialogSetcings wizardDialegSettings = pluginDialogSettings.getSection(settingsKey):
if (wizardDiezlogSettings == null)

wizardDizlogSettings = pluginDialogSettings.addNews ioni{secci Key}) :
)
wizard,setDialcgSettings (wizardDialogSettings);
WizerdDialog dialog = new WizardDialogishell, wizerd);
dialog.creacei):
diamlog.getShell() .secSize {Meth.max (500, dialog.getShell().gecSize().x), 500):
dislog.openi}:

Figure 4.8 Scary Noise Comment Example

Moreover, a significant rate of more than 50% of the comments fall into the category of
empty comments. Hence, more than half of the existing comments do not add any helpful
or meaningful semantic explanation for the implementation of their corresponding entities.
The code snippet presented in Figure 4.9 demonstrates examples of empty comments. The
first comment only mentions that the method has been part of the software since version

4.4, the second comment only rewrites the parameter and the thrown exception, and the

50

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

third comment only contains the generated annotation. But none of the three comments add

an explanation regarding what the function does.

(AJ!
* Esince 4.4
~f
public static CDOBranchPoint normalizeBranchPoint (CDOBranchPoint branchPoint)
I
leng timeStamp = branchPoint.getTimeScampl() ;
if (timeStamp == CDOB:anchPoin:.UNSPEC!FIED_D&TE}
{
return branchPoint;
¥

CDOBranch branch = branchPoint.getBranch():
return deNormalizeBranchPoint (bzanch, timeStamp):
H

J,Pnnr
* Eparam javaProject
* @throws JavaModalException
*f
private void addJREContainerToProject (IJavaProject javaPrcject) throws JavaModelException
{
addToClasspath(javaPrcject, JavaRuntime.getDefaultJREContainerEntry());
H
frex
* @gensrated
*f
public RescurceSetInfc getResocurceSetInfo{Cbject editorInput)

{
return [ResgurceSetInfo)super.getElementinfo (editorinput};

4

Figure 4.9 Empty Comment Example

A deeper analysis for the high rate of empty comments is represented by the number of
files where these comments exist. As shown in Figure 4.10, empty comments exist in 466
out of 744 files. This indicates that empty comments span more than 62% of all the project
files. Additionally, there is a rate of around 20% (148 files) of the files containing noise
comments and a rate of more than 4% (32 files) of scary noise comments. These numbers
provide important insights and highlight the importance of having a tool that can

automatically analyze the quality of source-code comments.

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

Number of Files

Sm SOt AT S| G o T S v — ._1'55
450 -
350

300 41—
200
150 ‘,l ..
100 —

Scary Noise Noise Normal Probably Empty TODO
Meaningful

Comment Category

Figure 4.10 Distribution of the Different Types of Comments across the Source-Code Files

For a better interpretation of comments’ dispersion across source-code files, a boxplot was
used for representing the number of each type of comment per file. The results shown in
Figure 4.11 only cover the files that have comments. A primary analysis shows a majority
of extreme outliers in all of the empty, noise, normal and probably meaningful comments.

Outliers are often bad data points that merit careful investigation.

52

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

100
*
o 80
ic
|
L4
(=% *
2
C 60
)
=
£
5 ' i
e il
S 40 *
2 *
*
: ; *
- S x :
20 * ¥
* *
8
% é %
! L -
T T T T 1
Noise Normal Probahl Scary Noise TODO
Meaningful
Comment Category

Figure 4.11 Number of Each Type of Comment per Source-Code File

Descriptive statistics of the data presented in Figure 4.11 are reported in the table of Figure
4.12. Obviously, an excessive number of bad comments (23 noise or 9 scary noise) in
particular files is simply noisy and provides no meaningful documentation. Moreover, an
average (Mean) of 3 noise comments and 2 scary noise comments per file needs
improvement. On the other hand, a redundant amount of 92 or 67 empty comments (all
only with @generated annotation) in a single file highlights the importance of having a tool
that can automatically remove all these empty comments and leave/create that of the main
class to differentiate user-written code from the whole class-file generated code.
Additionally, by analyzing the 43 probably meaningful comments in a single file, it was

observed that more than 50% of the comments are totally meaningless.

53

Chapter 4: Applying Comment Parsing and Analysis to an Opan-Source Software

Comment Category WMean Median Std. Deviation Minimum Masimum N % of Total N
L. ... SO .| S .. 46 415%
_Noise 258 100 3673 123 a8 132%

Normal 348 200 4516 ES 30 239 21.3%

433 | 1.00 6935 1 43 226 200%
147 100 143 1 9. 3 | 2.9%
S . R . T 1 13 12%
4.05 1.00 7.191 1 s 1122 1000%

Figure 4.12 Descriptive Statistics of Comment Types per File

Finally, as shown in Figure 4.11, most of the class identifiers have comments.

Classes
without
Comments,
5.10%

Classes with
Comments,
94.90%

Figure 4.13 Classes with/without Comments by Percentage

Similarly, most interface identifiers have comments as shown in Figure 4.]2.

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

Interfaces
without
Comments,
16.50%

Interfaces
with
Comments,
83.50%

Figure 4.14 Interface with/without Comments by Percentage

On the other hand, more than 50% of the methods lack comments as shown in Figure 4.13.

Methods ____

Mathods Methods

without 2
with
Comments,
53.04% Comments,
: 46.74%

Figure 4.15 Methods with/without Comments Percentage

4.4.3 Result Discussion

After observing the results, one can see that although comments are used extensively
throughout the project, as shown in Figure 4.10 to Figure 4.15, the quality of these

comments requires improvement. Hence, to improve the software’s maintainability, it

Chapter 4: Applying Comment Parsing and Analysis to an Open-Source Software

would be better to remove empty comments that do not convey any meaning, It would also
be better if the identifier names are made more meaningful instead of using noise or scary
noise comments. Giving a warning about the lack of comments could be helpful in making

the source-code more understandable.

4.4.4 Threats to Validity and Limitations

Threats to validity concern the relation between the theory and the observation. In this
thesis, a threat to validity lies in discerning the developers’ intent while writing source-code
comments. Therefore, the proposed analysis approach is based on extracting semantic
information from the corresponding identifiers for the possibility of deducing the
developers’ likely intent.

The diversity of developers’ skills and different code styles also produces a limitation in
constructing and splitting the identifiers. The proposed approach is limited to a simple
string matching based on a Camel case splitter. Yet identifiers could have been split in

different ways by the developers who originally created them.

The outcome of the study presented in this thesis could be used for analyzing developers’
behavior and practices when using comments. However, the results of this analysis cannot
be generalized because the study only considered one software project. If the approach is
applied to the source code of other software projects in the future, such as an analysis could

be conducted and the results would be more generalizable.

56

Chapter 5: Conclusions and Future Work

Chapter 5: Conclusions and Future Work

To conclude this thesis, the present chapter recalls the main problem tackled herein. It also
gives a summary of the results and contributions as well as an overview of the possible

future work.

5.1 Main Problem Addressed in this Thesis

Software systems may typically contain thousands and even millions of lines of code.
These systems are developed and maintained by a large number of developers. The person
performing the maintenance is not always the developer who originally wrote the code.
Therefore, without proper documentation of the source code, software maintenance
becomes prohibitively expensive. Generally, software maintenance is defined as the
adaptation and modification of a software product after delivery for a number of motives.
Without exaggeration, 80% to 95% of the budget allocated to software is spent on its
maintenance (Erlikh, 2000). Programmers spend more time reading and understanding code
(often written by others) than writing it. Following the release and delivery of the product
to the end users, software developers keep maintaining the software by updating it based on
change requests and changes occurring in the environment, in order to keep it up to date.
Well-written code comments help in reducing the effort of understanding software’s source

code.

Comments are crucial for understanding software programs. Comments can preserve the
intentions behind the source code and highlight the implementation details. On the other
hand, sometimes a comment just does not mean anything. Such comments may contain
repeated and meaningless information and hence do not promote source-code
understanding. Moreover, identifiers in the code are a rich source of information. The
proper choice of identifiers improves software understandability and evolution. If carefully

chosen, identifiers reflect the semantics and role of the named entities (Lawrie et al., 2007).

Chapter 5: Conclusions and Future Work

Thus, the analysis of source-code comments with the identifier names can help in capturing

information that represents the developers’ knowledge while writing the code.

5.2 Contributions

This thesis presents an approach for the analysis of the quality of source-code comments by

using the ANTLR parser generator.

ANTLR is a powerful tool that takes the grammar of a programming language—e.g.,
Java—as input and produces an output containing selected information from the source
code. As part of the proposed approach, comments were categorized primarily based on the
level of semantic similarity between them and their corresponding identifier names. This
categorization serves as a heuristic for automated analysis of the quality of source-code
comments. The proposed approach employs the semantic information extracted from the
comment and its corresponding identifier name to realize a set of heuristics for a quality

assessment model.

The proposed comment parsing and analysis approach is supported by a tool that is

explained in detail in Appendix A:

The proposed approach was evaluated by analyzing the source code of the open-source IDE
Eclipse. The results showed that most classes and interfaces, and half the methods had
comments. However, more than 50% of the existing comments are empty. These comments
were spread over 62% of the source-code files. On the other hand, only 18% of the
comments were of a high quality. Furthermore, 8% of the comments were very low-quality

noise comments, which are not a good quality comment indicator.

As software continues to increase in size and complexity, software engineers need better
source-code documentation to help them understand and maintain their products. This work
constitutes an approach towards a detailed, quantitative, and qualitative analysis and
assessment of source-code comments. Such assessment of comment quality plays a part in
auditing software quality. Enriching the source-code comments with meaningful
descriptive information and eliminating useless comments improves program

comprehension.

58

Chapter 5: Conclusions and Future Work

The results of the study demonstrate the importance of having an automated approach for
analyzing the quality of source-code comments. This approach has significant potential in

improving code quality and thereby facilitating software imaintenance.

5.3 Future Work

Additional heuristics can be realized in the future to enhance the automated quality analysis

of source-code comments. Some examples include the following;

¢ Comparing the number of lines in each comment to the number of lines of code in
their corresponding entity could help in determining whether a comment is too long
or too short. For example, writing very long comments for a few lines of code might

result in low-quality comment.

e It is possible to analyze more types of low-quality comments based on Martin’s

classification (Martin, 2008, p. 59).

* Single-line comment analysis was not part of the case study conducted in this thesis

and could be an interesting addition in the future.

* Inline comment analysis could be added in the future by identifying these comments
and relating them to the corresponding entity name. Only block comments were

analyzed in this thesis.

* More complex strategies other than Camel case for splitting identifier names could be

implemented. One example could be Samurai (Enslen et al., 2009).

Moreover, the proposed tool can be enhanced to automatically remove low-guality source-
code comments or modify comments and identifier rames to make tham more
understandable and helpful. This tool could also be integrated in an existing IDE such as

Eclipse or Visual Studio to make it more directly accessible to developers.

Code refactoring activities can be another way to improve the quality of source-code
comments. Hence, the tool can be enhanced to automatically refactor thickly commented
code by applying activities such as Extract Method, Introduce Assertion, Replace

Parameter with Method and others.

59

Chapter 5: Conclusions and Future Work

The work presented in this thesis analyzed source-code comments in Java code files. It will

be interesting to see how this assessment transfers to different programming languages.

Since this work only focuses on comments, other Java coding conventions such as naming

consistency of identifiers may also be assessed in the future.

The case study conducted in this thesis involved parsing the source-code of a single
software project. Parsing additional open-source projects could reveal different comment-

quality benchmarks and help in further understanding how developers use comments.

60

Bibliography 61

Bibliography

Abebe, S. L., Haiduc, S., Tonella, P., & Marcus, A. (2009). Lexicon Bad Smells in
Software. In JEEE 16th Working Conference on Reverse Engineering (pp. 95-99).

Aggarwal, K. K., Singh, Y., & Chhabra, J. K. (2002). An Integrated Measure of Software
Maintainability (pp. 235-241). Annual Reliability and Maintainability Symposiuin.

Aman, H., & Okazaki, H. (2008). Impact of Comment Statement on Cods Stability in Opezn
Source Development (pp. 415-419). Knowledge-Based Software Engineering, M.
Virvou and T. Nakamura (Eds). IOS Press.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering
Traceability Links Between Code and Documentation. JEEE Transactions on
Software Engineering, 28(10), 970-983.

Arrington, C. L. (2009). Improving Software Testing through Code Parsing. Hampton
University, 5.

Binkley, D. (2007). Source Code Analysis: A Road Map (pp. 104-119). Future of Software
Engineering, 2007. FOSE *07.

Bosu, A., & Carver, J. C. (2013). Impact of Peer Code Review on Peer Impression
Formation: A Survey. In 7th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (pp. 133-142).

Butler, S., Wermelinger, M., Yu, Y., & Sharp, H. (2011). Improving the Tokenisation of
Identifier Names (pp. 130—154). Presented at the 25th European Conference on
Object-Oriented Programming.

Caprile, B., & Tonella, P. (2000). Restructuring Program Identifier Names. In International
Conference on Software Maintenance.

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using Metrics to Evaluate
Software System Maintainability. Computer, 27(8), 44-49.

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., & Girard, J.-F. (2007). An Activity-
Based Quality Model for Maintainability (pp. 184—-193). IEEE International
Conference on Software Maintenance.

de Souza, S. C. B., Anquetil, N., & de Oliveira, K. M. (2005). A Study of the
Documentation Essential to Software Maintenance. In International Conference on
Design of Communication: Documenting and Designing for Pervasive Information
(pp. 68-75).

de Souza, S. C. B, Anquetil, N., & de Oliveira, K. M. (2006). Which Documentation for
Software Maintenance?, /2(3), 31-44.

Earley, J. (1970). An Efficient Context-Free Parsing Algorithm (Vol. 13). Communications
of the ACM.

Enslen, E., Hill, E.,.Pollock, L., & Vijay-Shanrker, K. (2009). Mining Source Code to
Automatically Split Identifiers for Software Analysis. IEEE 6th International
Working Conference on Mining Software Repositories.

Erlikh, L. (2000). Leveraging Legacy System Dollars for E-Business. IT Profzssional, 2(3),
17-23.

Bibliography 62

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Boston, MA:
Addison-Wesley Longman.

Freitas, J. L., da Cruz, D., & Henriques, P. R. (2012). A Comment Analysis Approach for
Program Comprehension (pp. 11-20). 35th Annual IEEE Software Engineering
Workshop.

Gagnon, E. M., & Hendren, L. J. (1998). SableCC, an Object-Oriented Compiler
Framework. In Technology of Object-Oriented Languages. TOOLS 26 (Cat.
No.98EX176) (pp. 140-154).

Garshol, L. M. (2008). BNF and EBNF: What are they and how do they work? Retrieved
from http://www.garshol.priv.no/download/text/bnf.html

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming
Environments : A “Cognitive Dimensions” Framework, 7, 131-174.

Haouari, D., Sahraoui, H., & Langlais, P. (2011). How Good is your Comment? A study of
Comments in Java Programs. International Symposium on Empirical Software
Engineering and Measurement.

Hartzman, C. S., & Austin, C. F. (1993). Maintenance Productivity: Observations Based on
an Experience in a Large System Environment. In Conference of the Centre for
Advanced Studies on Collaborative Research: Software Engineering (Vol. 1, pp.
138-170).

Hasan, K. M., & Hasan, M. S. (2010). A Parsing Scheme for Finding the Design Pattern
and Reducing the Development Cost of Reusable Object Oriented Software.
International Journal of Computer Science & Information Technology (1JCSIT),
2(3), 40-54.

Hill, E. (2010). Integrating Natural Language and Program Structure Information to
Improve Software Search and Exploration (PhD thesis). University of Delaware.

IEEE1219 (1998). IEEE STD 1219: Standard for Software Maintenance.

Invisible Jacc Version 1.1. (1997). Retrieved from http://swwww.invisiblesoft.com/jacc

Kernighan, B. W., & Pike, R. (1999). The Practice of Programming. Boston, MA:
Addison-Wesley Longman.

Khamis, N., Witte, R., & Rilling, J. (2010). Automatic Quality Assessment of Source Code
Comments: The JavadocMiner (pp. 68—79). Presented at the 15th International
Conference on Applications of Natural Language to Information Systems,
Concordia University, Montreal, Canada.

Knuth, E. (2003). Selected Papers on Computer Languages. Presented at the CSLI Lecture
Notes, no. 139, Stanford, California: Center for the Study of Language and
Information.

Kodaganallur, V. (2004). Incorporating Language Processing into Java Applications: A
JavaCC Tutorial. /[EEE Software, 21(4), 70-77.

Lawrie, D., Morrell, C., Feild, H., & Binkley, D. (2007). Effective Identifier Names for
Comprehension and Memory, 3(4), 303-318.

Liblit, B., Begel, A., & Sweetser, E. (2006). Cognitive Perspectives on the Role of Naming
in Computer Programs. Presented at the 18th Annual Psychology of Programming
Workshop.

Liu, S., Zhang, R., Wang, D., Sun, H., Chen, Y., & Li, L. (2008). Implementing of
Gaussian Syntax-Analyzer Using ANTLR.

Maalej, W., & Happel, H. J. (2010). Can Development Work Describe Itself? (pp. 191—
200). 7th IEEE Working Conference on Mining Software Repositories (MSR).

Bibliography

Maeda, K. (2009). Code Clone Detection Using Parsing Actions (pp. 762-763). 9th
International Symposium on Communications and Information Technology.

Martin, R. (2008). Clean Code.

McAllister, A. J. (2010). Automation-Enabled Code Conversion. In International
Conference on Software Engineering Research and Practice (pp. 11-17).

Mitchel, R. L., & Keef, M. (2012). The Cobol Brain Drain,ComputerWorld, 46,(10), 18—
25.

Nurvitadhi, E., Leung, W. W., & Cook, C. (2003). Do Class Comments Aid Java Program
Understanding? (Vol. 1, pp. T3C~13 — T3C-17). Presented at the 33rd Annual
Frontiers in Education,

Oman, P., & Hagemeister, J. (1992). Metrics for Assessing a Software System’s
Maintainability. In Conference on Software Maintenance (pp. 337-344).

Parr, T. (2005). ANTLRWorks. Retrieved from http://www.antlr3.org/works/

Parr, T. (2007). The Definitive Antlr Reference. Oveilly & Associates Inc.

Parr, T. (2013). The Definitive ANTLR 4 Reference.

Parr, T., & Harwell, S. (2013). antlr/grammars-v4. Retrieved from
https://github.com/antlr/grammars-v4/blob/master/java/Java.g4

Raskin, J. (2005). Comments Are More Important Than Code, 3(2), 62—64.

Relf, P. A. (2005). Tool Assisted Identifier Naming for Improved Software Readability: An
Empirical Study (pp. 53—62). Presented at the IEEE International Symposium on
Empirical Software Engineering.

Shepherd, D., Pollock, L., & Vijay-Shanker, K. (2007). Case Study: Supplementing
Program Analysis with Natural Language Analysis to Improve a Reverse
Engineering Task. In 7th ACM SIGPLAN-SIGSOFT workshop on program analysis
Jor software tools and engineering (pp. 49-54).

Shokripour, R., Anvik, J., Kasirun, Z. M., & Zamani, S. (2013). Why So Complicated?
Simple Term Filtering and Weighting for Location-Based Bug Report Assignment
Recommendation (pp. 2-11). 10th Working Conference on Mining Software
Repositories.

Sippu, S., & Soisalon-Soininen, E. (2013). Parsing Theory: Volume I LR(k) and LL(k)
Parsing.

Steidl, D., Hummel, B., & Juergens, E. (2013). Quality Analysis of Source Code
Comments (pp. 83-92). San Francisco, CA, USA, 2013 IEEE 21st International
Conference.

Stepper, E. (2015). Eclipse CDO Project. Retrieved from
https://git.eclipse.org/c/cdo/cdo.git/

Storey, M. A., Ryall, J., Bull, R. I, & Myers, D. (2008). TODO or To Bug: Exploring How
Task Annotations Play a Role in the Work Practices of Software Developers (pp.
251-260).

Strein, D., Lincke, R., Lundberg, 7., & Lowe, W. (2007). An Extensible Metamodel for
Program Analysis. IEEE Transactions on Software Engineering, 33(9).

Tan, L., Yuan, D., & Zhou, Y. (2007). HotComments: How to Make Program Comments
More Useful? In 11th Workshop on Hot Topics in Operating Systems (HOTOS).

Turuntaev, 1. S. (2014). Upgrading the Computational Core of the Distance Learning
System. Retrieved from
https://www.google.com.lb/?gfe_rd=cr&ei=FpgQWceOGczA8gfWébioAw&gws r
d=ssl#q=ISTuruntaev_Diploma_Full

63

Bibliography

Van De Vanter, M. L. (2002). The Documentary Structure of Source Code. Information
and Software Technology, 44(13), 767-782.

Ying, A. T. T., Wright, J. L., & Abrams, S. (2005). Source Code that Talks: An Exploration
of Eclipse Task Comments and their Implication to Repository Mining. In
International Workshop on Mining Software Repositories (pp. 1-5).

Yu, D, Yan, H., & Wang, J. (2008). Design and Implementation of NC Code Compiler
Based on ANTLR. Computer Applications, 28(2), 522-527.

64

Appendix

Appendix A: Grammar File

This appendix presents the grammar (Java.g4) of the Java language (Parr & Harwell, 2013),

which is used with ANTLR. The highlighted parts were added to the grammar as part of the

work done in this thesis on parsing source-code comments.

grammar Java;

@header {
import java.util.HashMap;
import java.util.Arraylist;
import java.util.List;

}

@members {
/* flags */
public int blockCmnt = @;
public int todo = 8;

/* the below variable is used locally for multiple constructors,methods,....

with different parameters*/
public int cmnt_var = @;

public String theCmnt = "*;

public List<String> myList = new ArrayList<Strings();
/*Copyright*/) o
public List<String> classCopyrightCmnt = new ArrayList<String>();

/* Class */ R B I i
public HashMap<string,String> classCollectorCmnt = new HashMap<Stri

ng, Stﬁiﬁg>()i

public HashMap<String,String> classCollectorNeCmnt = new Hashﬂép<$ﬁring, String>();
public HashMap<String,String> classCollectorTODO = new HashMap<String, String>();

/* Interface */

public HashMap<String,String> interfaceCollectorCmnt = new HashMap<String, String>();
public HashMap<String,String> interfaceCollectorNoCmnt = new HashMap<String, String>();
public HashMap<String,String> interfaceCollectorTODO = hew HashMap<String, String>();

/* Method */

public HashMap<String,String> methodCollectorCmnt = new HashMap<String, string>();
public HashMap<String,String> methodCollectorNoCmnt = new HashMap<String, String>();
public HashMap<String,String> methodCollectorTODO = new HashMap<String, String>();

/* Constructor */

public HashMap<String,String> classConstructorCmnt = new HashMap<String, String>();

/* Field */

public HashMap<String,String>: fieldCollectorCmnt = new HashMap<String, String>();

/* Enumeration */

‘public HashMap<¢String,String> enumCollectorCmnt = new HashMap<String, Strings();

}

comments

(TODO_COMMENT {todo = 1; ‘theCmnt = $TODO_COMMENT.text;} |° CCMMENT {blockCmnt =

$COMMENT . text; })*

El
commentToPassBy : (COMMENT | TODO_COMMENT)*;

// starting point for parsing a java file
compilationUnit

;. theCmnt <

Appendix 66

¢ Comments packageDeclaration? commentToPassBy importDeclaration*
{if(blockCmnt==1) {classCopyrightCmnt.add(theCmnt); blockcmnt = 0;}}
typeDeclaration* EOF

packageDeclaration
H annotation * 'package' qualifiedName ';'

H '

importDeclaration
i ‘import' ‘static'? qualifiedName ('.' '*')? ';’

Fl

typeDeclaration

¢ comments classOrInterfaceModifier* classDeclaration

| comments classOrInterfaceModifier* enumDeclaration

| comments classOrInterfaceModifier* interfaceDeclaration
| classOrInterfaceModifier* annotationTypeDeclaration
[

;

Lt
3

modifier
i classOrInterfaceModifier
| (‘'native’
| *synchronized'
| ‘'transient’
| 'volatile®
)

»

classOrInterfaceModifier

¢ annotation // class or interface

| (‘'public® // class or interface
| ‘protected' // class or interface
| 'private’ // class or interface
| ‘static’ // class or interface
| ‘abstract’ // class or interface
| 'final"' // class only -- does not apply to interfaces
| ‘strictfp' // class or interface
)

H

variableModifier
i 'final'

| annotation
H

classDeclaration N .y
: ‘class’ Identifier {if(blockCmnt==1) '{classCollectorCmnt.put($Identifiér.text,theCmnt);
blockCmnt = @;} :
: else suniy
if(todo==1){classCollectorTODO.put($Identifier.text,theCmnt); todo=8;}
else

classCollectorNoCmnt.put($Identifier.text,"");}

typeParameters?

('extends’ type)?

('implements' typelist)?

classBody

2

typeParameters
'¢' typeParameter (',

typeParameter)* '»'

H

typeParameter
Identifier ('extends’' typeBound)?

]

typeBound

Appendix 67

type ('&' type)*

3

enumDeclaration
i ENUM Identifier wif(blogkcﬁnEEQEE“'f{epdmtéiiEéﬁﬁtﬁthlE@¥Z§Edéﬁ¥i¥1¥?lféif;ih}éﬁﬁ%jP
Blockemnt = 83} Ler.xex Jasulth
(*implements’ typelList)?
'{"' enumConstants? ','? enumBodyDeclarations? k5 B

r

enumConstants) R .
commentToPassBy enumConstant (',' commentToPassBy enumConstant)*

[T

enumConstant
¢ annotation* Identifier arguments? classBody?

H
enumBodyDeclarations

;' classBodyDeclaration*

% e

interfaceDeclaration
e . ..interface’ Identifier {if(blockCmnt==1)
{interfaceCcllectorCmnt.put{sldentifier.text,thecmnt); blockCmnt = @;}

; else
if(todo==1){interfaceCollectorTODO.put($Identifier.text,theCmnt); todo=6;}
' else

interfaceCollectorNoCmnt.put($Identifier.text,"");}
typeParameters? ('extends' typelist)? interfaceBody

Kl

typelList
i type (',

]

type)*

classBody
H "{' classBodyDeclaration* commentToPassBy '}’

2

interfaceBody
‘{' interfaceBodyDeclaration* '}’

2

classBodyDeclaration
¥ it
| commentToPassBy 'static'? block
| comments modifier* memberDeclaration

memberDeclaration
: methodDeclaration

| genericMethodDeclaration

| fieldDeclaration

| constructorDeclaration

| genericConstructorDeclaration
| interfaceDeclaration

| annotationTypeDeclaration

| classDeclaration

| enumbDeclaration

>

/* We use rule this even for void methods which cannot have [] after parameters.
This simplifies grammar and we can consider void to be a type, which
renders the [] matching as a context-sensitive issue or a semantic check
for invalid return type after parsing.

*/
methodDeclaration) Sy,
1 (type |'void') Identifier {if(blockCmnt==1) {cmnt_var = 1; blockCmnt

Appendix

formalParameters {if(cmit var==1)
{method:ollecturtmnt.put(SIdentiFier.text+$formalParhmetErs.téxt}fhECmntﬁjidﬁntnﬁ%r =0;}
if(todo==1){methodCollectorT0DO. put($Identifier. text+$fornalParaneters. text, thecmnt); todo=0%}
. else
methodCollectorNoCmnt.put($Identifier. text+$formalParameters.text, ");}
¢ [(R } Ty

('throws' qualifiedNameList)?
(methodBody
|
)

pen
Kl

H

genericMethodDeclaration
typeParameters methodDeclaration

*

canstructorDeclaration s e
i comments Identifier {if(blockCmnt==1) { cmnt_var = 1; blockCmnt = @;)}
\oww. fOrmalParameters = I . ___ {if(cont_va
{classConstructorCmnt.put($Identifier. text+§formalPanameters. text,thecmnt); cmnt.var =
('throws' qualifiedNameList)?
constructorBody

genericConstructorDeclaration
: typeParameters constructorDeclaration

F

fieldDeclaration
¢ type variableDeclarators °;

3

interfaceBodyDeclaration
: comments modifier* interfaceMemberDeclaration

I L
3
Kl

interfaceMemberDeclaration
constDeclaration
interfaceMethodDeclaration
genericInterfaceMethodDeclaration

|
|
| interfaceDeclaration
| annotationTypeDeclaration
| classDeclaration
| enumDeclaration
3
constDeclaration

¢ type constantDeclarator (', constantDeclarator)* ';'

;

constantDeclarator
i Identifier ('[" ']')* '=" variableInitializer
H

// see matching of [] comment in methodDeclaratorRest
interfaceMethodDeclaration B
: (type|'void') Identifier {if(blockCmnt==1) {cmnt_var = 1; blockCmnt =@y
~ formalParameters) . _ {if(cmnt_var==1)
{methodCollectorCmnt.put($Identifier.text+$formalParameters.text, theCmnt); cmnt_var = @;}
J else
if(todo==1){methodCollectorTODO.put($ldentifier.text+$formalParameters.text,theCmnt); todo=8;}
g _else
methodCollectorNoCmnt.put($Identifier.text+$formalParameters.text,"");}
¢t
('throws' gqualifiedNamelList)?

Appendix

genericInterfaceMethodDeclaration
] typeParameters interfaceMethodDeclaration

H
variableDeclarators
s variableDeclarator (',' variableDeclarator)*

3

variableDeclarator
' variableDeclaratorld ('s' variablelnitializer)?

r

variableDeclaratorld

CHIP G GRS L

variableInitializer
arrayInitializer
| expression

3

arraylInitializer

. '{" (variableInitializer (',' variableInitializer)* (G T T A

enumConstantName
: Identifier

K

type
: classOrInterfaceType ('[' ']')*
| primitiveType ('[' ']")*

classOrInterfaceType

1 Identifier (typeArguments)? ('.' Identifier (typeArguments)?)*

2

primitiveType
: ‘boolean’
| ‘'char'

| 'byte’

| ‘'short’

| tint

| ‘leng’

| float’

| ‘double’
;

typeArguments
¥ '<' typeArgument (',' typeArgument)* '>'

i
typeArgument

type
| '?' (('extends' | 'super') type)?

qualifiedNamelList
: qualifiedName (', qualifiedName)®*
formalParameters

‘(' (formalParameterList)? ')’

Fl

formalParameterList

[

¢ Identifier {if(bIocKCmnt=s1)H({F181dCo11EctoRCmnEYput Ut($Identifienytextrchecnnt) Wb

o

cK

w—
n

=

69

Appendix

Fl

formalPa

formalParameter (',' formalParameter)* (',' lastFormalParameter)?
lastFormalParameter

rameter
variableModifier* type variableDeclaratorId

lastFormalParameter

methodBo

Kl

construc

e oan

variableModifier* type '...' variableDeclaratorld

dy
block

torBody
block

qualifiedName

3

literal

|
|
l
|
|

Identifier ('.' Identifier)*

IntegerLiteral
FloatingPointLiteral
CharacterLiteral
StringLiteral
BooleanLiteral
‘null’

// ANNOTATIONS

annotati

Fl

annotati

on
'@ annotationName ('(' (elementValuePairs | elementvalue)? ')’)?

onName : gualifiedName ;

elementValuePairs

H

elementValuePair (', 'elementValuePair)*

elementValuePair

Identifier '="elementValue

elementValue

3

elementV.
i
annotati

H

annotati

(S

expression
annotation
elementValueArrayInitializer

alueArraylnitializer
‘{" (elementvalue (',' elementValue)*)? (',')? '}’

onTypeDeclaration
'@ 'interface' Identifier annotationTypeBody

onTypeBody
'{" (annotationTypeElementDeclaration)* '}’

annotationTypeElementDeclaration

modifier* annotationTypeElementRest

70

Appendix

| ';' // this is not allowed by the grammar, but apparently allowed by the actual compiler

H

annotationTypeElementRest
type annotationMethodOrConstantRest ';'
] classDeclaration ';'?
| interfaceDeclaration ';'?
| enumDeclaration *;'?
| annotationTypeDeclaration ';‘?
>

annotationMethodOrConstantRest
3 annotationMethodRest
| annotationConstantRest
;

annotationMethodRest
. Identifier '(' ')’ defaultValue?

e

annotationConstantRest
variableDeclarators

Il

defaultValue
s 'default’ elementValue

Fl

// STATEMENTS / BLOCKS

block
¥ '{" (blockStatement)* '}
H
blockstatement
comments localVariableDeclarationStatement
statement

|
| typeDeclaration
H

localVariableDeclarationStatement
3 localVariableDeclaration *;'

2

localvariableDeclaration
5 (variableModifier)* type variableDeclarators

]

statement
: block
comments {myList = new ArrayList<String>();} ASSERT expression (':' expression)?
if(blockCmnt==1) {methodcollectchmnt put(myList.get(@),theCmnt); blockCmnt = 8;)
commentToPassBy *if’ parExpressmon statement ('else' statement)?
‘for' ‘(' forControl ')' statement
commentToPassBy ‘while' parExpression statement
'do statement 'while' parExpression ';'
cnmmentTaPassBy ‘try' block (catchClause+ finallyBlock? | finallyBlock)
‘try' resourceSpecification block catchClause* finallyBlock?
‘switch' parExpression ‘{' switchBlockStatementGroup* switchLabel* ‘'}'
commentToPassBy ‘synchronized' parExpression block
commentToPassBy 'return’ expression? ';'
commentToPassBy 'throw' expression ';'
'break’' Identifier? ';'
commentToPassBy 'continue’ Identifier? ;'
comments {myList = new ArrayL15t<str1ng>() } statementExpression

{methodCollectorCmnt.put(myList.get(8), theCmnt); blockCmnt = @;}}

Identifier ":' statement

3

|;i ‘{

3 { if(blockCmnt==1)

Appendix

catchClause
] ‘catch' ‘(' variableModifier* catchType Identifier ')’ block
H
catchType
: qualifiedName ('|' qualifiedName)*
finallyBlock
'finally' block

N e

resourceSpecification
H '{' resources ';'? ')’
H
resources
2 resource (';" resource)*

3

resource

¢ variableModifier* classOrInterfaceType variableDeclaratorId '=' expression

2
/** Matches cases then statements, both of which are mandatory.
* To handle empty cases at the end, we add switchLabel* to statement.
*/
switchBlockStatementGroup
- switchLabel+ blockStatement+

2

switchLabel
: ‘case’ constantExpression ':'
| 'case' enumConstantName ':'
| ‘default' ':'
3
forControl
enhancedForControl
| forInit? ';' expression? ';' forUpdate?
H
forInit

H localvariableDeclaration
| expressionList
;

enhancedForControl
H variableModifier* type variableDeclaratorId ':' expression

2

forUpdate
expressionList

H
// EXPRESSIONS

parExpression
'(' expression ')’

e oas

expressionList
- expression (',

Fl

expression)*

statementExpression
; expression

2

72

Appendix

constantExpression
3 expression
H
expression
: primary
expression °'.' Identifier
expression ',' 'this’'
expression '.' ‘new’ nonWildcardTypeArguments? innerCreator
expression '.' 'super' superSuffix
expression '.' explicitGenericInveocation
expression '[' expression ']'
expression '(' expressionList? ')’

F

primary
|
|
|
|
i
I
I

creator

K}

'new' creator
‘(' type ')' expression

expression ('++' | '--")
("+']"-"|"++"|'--") expression
('~"|'!") expression

expression ('*'|'/'['%') expression

expression ('+'|'-') expression
expression ("<’ "<’ | '>' '»' '>' | '>' '3') expression
expression ('<="' | '>=' | '>" | '¢') expression
expression 'instanceof' type
expression ('==' | 'l=') expression
expression '&' expression
expression '~' expression
expression '|' expression
expression "B&' expression
expression '||' expression
expression '?' expression ':' expression
<assoc=right> expression
(ol

Vi

AP

Y=

s

|I=|

tagt

e

‘3=’

“eim!

T
)
expression

‘(' expression ')’

"this’

'super’'

literal)

Identifier {myl'ist.add($Identifier’text)}}

type '." ‘class’

‘void® .’

nonWildcardTypeArguments (explicitGenericInvocationSuffix | 'this' arguments)

‘class’

nonWildcardTypeArguments createdName classCreatorRest
createdName (arrayCreatorRest | classCreatorRest)

createdName

Identifier typeArgumentsOrDiamond? ('.' Identifier typeArgumentsOrDiamond?)*
primitiveType

73

Appendix

innerCreator
Identifier nonWildcardTypeArgumentsOrDiamond? classCreatorRest

[P

arrayCreatorRest
: I[I
('1" ('[" '1")* arrayInitializer
; expression '] ('[' expression ']')* ('[' ']')*

K

classCreatorRest
z arguments classBody?

explicitGenericInvocation
¢ nonWildcardTypeArguments explicitGenericInvocationSuffix

3

nonWildcardTypeArguments
: ‘¢' typelList ">’
N
typeArgumentsOrDiamond
: gt g
| typeArguments
H

nonWildcardTypeArgumentsOrDiamond
z TEn Tyt
| nonWildcardTypeArguments
H
supersSuffix
arguments
| '.' Identifier arguments?
H
explicitGenericInvocationSuffix
‘super' superSuffix
| Identifier arguments
i
arguments
"(' expressionList? ')’

e s

// LEXER

/! §3.9 Keywords

ABSTRACT ¢ "abstract’;
ASSERT : 'assert’';
BOOLEAN : 'boolean';
BREAK : 'break';
BYTE : ‘byte’;
CASE : 'case';
CATCH : 'catch’';
CHAR : 'char’;
CLASS : 'class’';
CONST : 'const’;
CONTINUE : ‘continue’;
DEFAULT : 'default’;
Do : 'do';
DOUBLE : 'double’;
ELSE : 'else’;
ENUM : 'enum';
EXTENDS i 'extends’;

FINAL : 'final';

74

Appendix

FINALLY : "finally’';
FLOAT : 'float*;

FOR : 'for';

IF D if

GOTO : 'goto’;
IMPLEMENTS ¢ 'implements';
IMPORT : 'import';
INSTANCEOF : 'instanceof';
INT RS 1)y
INTERFACE + "interface’;
LONG : 'long’;
NATIVE : "native’;
NEW ¢ o'new';
PACKAGE : 'package';
PRIVATE : ‘private’;
PROTECTED i 'protected’;
PUBLIC : 'public’;
RETURN ¢ 'return’;
SHORT : 'short’;
STATIC : 'static’;
STRICTFP : "strictfp';
SUPER : 'super’;
SWITCH : switch’';
SYNCHRONIZED : 'synchronized';
THIS : "this';
THROW : "throw';
THROWS : "throws';
TRANSIENT : 'transient’;
TRY : try';

VoID : 'woid';
VOLATILE : 'volatile';
WHILE : 'while';

// §3.18.1 Integer Literals

IntegerLiteral
: DecimallntegerlLiteral
| HexIntegerLiteral
| OctallntegerLiteral
| BinaryIntegerLiteral
’

fragment
DecimalIntegerLiteral
DecimalNumeral IntegerTypeSuffix?

)

fragment
HexIntegerlLiteral
! HexNumeral IntegerTypeSuffix?

)

fragment
OctalIntegerLiteral
: OctalNumeral IntegerTypeSuffix?

»

fragment
BinaryIntegerLiteral
¢ BinaryNumeral IntegerTypeSuffix?

3

fragment
IntegerTypeSuffix
o [1L)

Bl

fragment
DecimalNumeral

75

Appendix 76

‘o
NonZeroDigit (Digits? | Underscores Digits)

Nk

fragment
Digits
Digit (DigitOrUnderscore* Digit)?

Fl

fragment

Digit
4 ‘e’
| NonZeroDigit
»

fragment
NonZeroDigit
[1-9]

e as

fragment
DigitOrUnderscore
¢ Digit

3

fragment
Underscores
. L |+

2

fragment
HexNumeral
: '@" [xX] HexDigits
H
fragment
HexDigits
HexDigit (HexDigitOrUnderscore* HexDigit)?

fragment
HexDigit
[8-9a-fA-F]

(P

fragment
HexDigitOrUnderscore
HexDigit

I (!
F}

fragment
OctalNumeral
% ‘8" Underscores? OctalDigits

2

fragment
OctalDigits
OctalDigit (OctalDigitOrUnderscore* OctalDigit)?

2

fragment
OctalDigit
¢ [e-7]

K

fragment
OctalDigitOruUnderscore

Appendix

OctalDigit
. L}

K

fragment
BinaryNumeral
'e' [bB] BinaryDigits

fragment
BinaryDigits
BinaryDigit (BinaryDigitOrUnderscore* BinaryDigit)?

fragment
BinaryDigit
i [e1]

K

fragment
BinaryDigitOrUnderscore
BinaryDigit

H
// §3.108.2 Floating-Point Literals

FloatingPointLiteral
DecimalFloatingPointLiteral
| HexadecimalFloatingPointLiteral

]

fragment
DecimalFloatingPointLiteral
Digits '.' Digits? ExponentPart? FloatTypeSuffix?
| '.' Digits ExponentPart? FloatTypeSuffix?
| Digits ExponentPart FloatTypeSuffix?
| Digits FloatTypeSuffix
»

fragment
ExponentPart
ExponentIndicator SignedInteger

2

fragment
ExponentIndicator
[eE]

I

fragment
SignedInteger
Sign? Digits

»

fragment
Sign
fo[+-]

fragment
FloatTypeSuffix
[fFdD]

;
fragment

HexadecimalFloatingPointLiteral
HexSignificand BinaryExponent FloatTypeSuffix?

Appendix ' 78

fragment
HexSignificand
HexNumeral *,'?
| ‘@' [xX] HexDigits? '.' HexDigits
fragment
BinaryExponent

BinaryExponentIndicator SignedInteger

i

fragment
BinaryExponentIndicator
[pP]

3

// §3.18.3 Boolean Literals

BooleanLiteral
'true’
| 'false'

»
// §3.18.4 Character Literals

CharacterLiteral
. '\'" SingleCharacter '\'"'
| '\'' EscapeSequence "'\''

3

fragment
SingleCharacter
~["\\]

// §3.18.5 String Literals
StringLiteral
i """ stringCharacters? '"'

H
fragment
StringCharacters
StringCharacter+

>
fragment
StringCharacter

: =[]

| EscapeSequence

// §3.18.6 Escape Sequences for Character and String Literals
fragment
EscapeSequence
MO [btnfrt 'AN]
| OctalEscape
| UnicodeEscape

F}

fragment
OctalEscape
"\\' Octalpigit
| *\\' OctalDigit OctalDigit
| '"\\" ZeroToThree OctalDigit OctalDigit

Fl

fragment
UnicodeEscape
"\\" 'u" HexDigit HexDigit HexDigit HexDigit

3

fragment

Appendix 79

ZeroToThree
[e-3]

H
// §3.18.7 The Null Literal

NullLiteral
"null’

2

// §3.11 Separators

LPAREN T
RPAREN Lyt
LBRACE iy
RBRACE '}';
LBRACK b
RBRACK G
SEMI s
COMMA L
DoT b 1k
// §3.12 Operators
ASSIGN =ty
GT i T
LT e
BANG RS
TILDE T Tty
QUESTION 7 Sty
COLON t hats
EQUAL s Vomhi
LE HIRE ¢ 3
GE IR £
NOTEQUAL L
AND T 'R&';
OR s K115
INC HE
DEC HE
ADD LR
SuB Pt
MUL T
DIV T
BITAND HE -
BITOR e K
CARET DA
MOD Hil 45
ADD_ASSIGN]
SUB_ASSIGN i
MUL_ASSIGN 3 MEmlia
DIV_ASSIGN Hil -
AND_ASSIGN HE
OR_ASSIGN Y=
XOR_ASSIGN iy Vi)
MOD_ASSIGN : '%=";

LSHIFT_ASSIGN 1 '¢k=";
RSHIFT_ASSIGN 1 Tanet;
URSHIFT_ASSIGN : '333=";

// §3.8 Identifiers (must appear after all keywords in the grammar)

Identifier
Javaletter JavalLetterOrDigit*

H
fragment

Javaletter
[a-zA-2Z%_] // these are the "java letters" below @xFF

Appendix

| // covers all characters above @xFF which are not a surrogate
~[\UGBBB—\HGQFF\UDBGB—\UDBFF]
{Character.isJavaIdentifierstart(_input.LA(-l))}?
| // covers UTF-16 surrogate pairs encodings for U+100e8 to U+18FFFF
[\uD868-\uDBFF] [\uDC@®-\uDFFF]
(Character.is]avaIdentifierStart(Character.tOCGdePaint((char)_input.LA(-z},
(char)_input.LA(-1)))}?

r}

fragment
JavalLetterOrDigit
: [a-2A-Z@-93_] // these are the "java letters or digits" below OxFF
| // covers all characters above @xFF which are not a surrogate
~[\uaaa@—\uGGFF\uDSﬂB—\uDBFF]
{Character.isJavaldentifierPart(_input.LA(-1))}?
| // covers UTF-16 surrogate pairs encodings for U+1e@e8 to U+18FFFF
[\uD8@e-\ubDBFF] [\uDCe®-\ubDFFF]
{Character.isJavaIdentifierPart(Character.toCodePoint((char)_input.LA(-Z), (char)_input.LA(-
1N}
H

!/

// Additional symbols not defined in the lexical specification
1

AT . '@';

ELLIPSIS ¢ *.eu)

//

// Whitespace and comments

1/

WS 1 [\t\r\n\u@gacC]+ -> skip

o

Kip

LINE_COMMENT
/1Y ~[\r\n]* -> skip

80

