
Notre Dame University
Faculty of Natural and Applied Sciences

Department of Computer Science

On-the-fly Algorithm for the Service Composition Problem

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Joint Degree of the Master of

Sciences in Computer Science - Computer Information Systems

LIM

Ceaser Younes

NDU-Lebanon
2014

LIBR

05 AUG 2014

Thesis Release Form

cAic	 , authorize Notre Dame University-
Louaize to supply copies of my thesis to libraries or individuals on request.

E I	 do not authorize Notre Dame
University-Louaize to supply copies of my thesis to libraries or individuals on request.

(1
Signature

el	 Zy-
Date

On-the-fly Algorithm for the Service Composition Problem

Ceaser Younes

Approved by:

-ft1--r
Hikmat Farhat: Associate Professor of Computer Science
Advisor

Khalil Cha11i1a: Assistant Professor of Computer Science
Member of Committee

Khaldoun Kha1di: Associate Professor of Computer Science
Member of Committee

Date of Thesis Defense: June 25th 2014

Abstract

Web services are a form of middleware to exchange information between systems over a

network. With the advent of the age of mobile devices and their diversity, the importance of web

services became all the more apparent. Every web service grants certain functionality and can

utilize other web services to gain more functionality and more robustness. Such a service that

combines the functionality of other services is called a composite service and the process of

designing such a service is called a composition. This thesis studies an on-the-fly algorithm, that

efficiently checks for the possibility of matching a target composition from a community of

services. The algorithm proposes that a match for the target service can be found on-the-fly by

visiting a select number of service states instead of having to parse the entire state space.

Furthermore, On-the-fly can be paired with some heuristics or business rules for faster

implementation and higher quality of service. The correctness of the algorithm was proven and

the complexity was shown to be optimal. The implementation on test cases is very promising.

2

Table of Contents

Abstract	 2

Tableof Contents.. 	 3

List of Figures 4

Listof Abbreviations ... 	 5

Acknowledgements...6

Chapter 1:	 Introduction, Problem Definition, and Approach..7

	1.1	 Introduction to Web Services ...7

	

1.2	 Composition, Orchestration, and BPEL...11

	

1.3	 Service Composition ... 17

	

1.4	 Approach and Main Results..18

	

1.5	 Thesis Organization...18

Chapter 2:	 Model and On-the-Fly Algorithm..19

	

2.1	 Available Services..19

	

2.2	 Target Service... 	 20

	

2.3	 Service Composition .. 	 23

	

2.4	 On-the-fly Algorithm.. 	 27

	

2.5	 Correctness and Complexity...33

Chapter3:	 Implementation ..36

	

3.1
	 BasicData Structures..

	

3.2
	 Implementation..38

	

3.3
	 FixedPoint Algorithm..43

	

3.4
	 Simulation Results and Interpretation..46

Chapter4:	 Conclusions ... 50

	

4.1	 Summary of the main results..50

References 51

List of Figures

Figure 1.1. Web Services Business Architecture	 .	 9
Figure 1.2. Business case graph ...	 11

Figure 1.3 Orchestration Diagram .. 	 13
Figure1.4 Scope of the .. 	 14
Figure 1.5 Orchestration in BPEL .. 	 15

Figure 2.1 Target Service ... 	 21

Figure 2.2 User Authentication .. 	 22

Figure2.3 Sales .. 	 22

Figure2.4 Accounting .. 	 22

Figure2.5 State space ... 	 26

Figure 3.1 Simple Test Case ... 	 40

Figure 3.3 On-the-fly result .. 	 46

Figure 3.4 Fixed Point Result..	 47

Figure 3.5 Running time comparison for small community....................... 	 48

Figure 3.6 Running time vs number of services ... 	 49

4

List of Abbreviations

W3C: World Wide Web Consortium

LAN: Local Area Network

XML: eXtensible Markup Language

SOAP: Simple Object Access Protocol

WSDL: Web Services Description Language

UDDI: Universal Description, Discovery and Integration

BPEL: Business Process Execution Language

OASIS: Organization for the Advancement of Structured Information Standards

JYM: Java Virtual Machine

JIT: Just In Time Compilation

Acknowledgements

The masters thesis is the culmination of three years of hard work and the result of which one

person takes a degree. Several people are due credit and yet none is given. With the completion

of my masters I would like to extend a warm thank you to these people.

To Dr. }iikmat Farhat, my thesis advisor and mentor, thank you for always being patient and

always being there to lend a helping hand.

To Dr. Hoda Maalouf, Chairperson of the department, thank you for your guidance throughout

the years it would not have been possible without you.

To my professors, thank you for all the knowledge you've given. Sir Isaac Newton once

famously said "If I have seen further it is by standing on the shoulders of giants" and I can only

extend the same kind words to you.

To my family, girlfriend, and God thank you for your continued support and belief in me.

Chapter 1:	 Introduction, Problem Definition, and Approach

Technology is converging towards networking, connectivity, and the Internet. Software as a

service, service oriented applications, and cloud services are all words that describe the spirit of

the times in the domain of 'information technology. Web services played a major role in getting

us here and, from their inception, were developed for satisfying such goals. Web services are an

evolution of iniddleware in an attempt to make use of the connectivity provided by the Internet.

From a business stand point they were meant to facilitate Enterprise Application Integration or

EAI for short. We will discuss a brief history of how and why they were created, bringing us to

the standards followed and what the On-the-fly algorithm aims to improve.

1.1 Introduction to Web Services

1.1.1 The need for Web Services

All companies of all sizes are comprised of several departments. Each department has its own

business flow implemented in the software it uses to accomplish its tasks. As companies grow

they spread to bigger or sometimes geographically numerous locations. The term Enterprise

Application Integration refers to integrating the existing systems within the enterprise in order to

share or replicate data and to execute business processes that require interaction between several

departments in several branches.

With data being decentralized and distributed there was only one obvious solution; middleware.

There had to be some software that would act as a mediary especially when retrieving data from

or writing to legacy systems while maintaining the business process. Web services were used as

a form of iniddleware because they added an extra layer of abstraction. This simplified the

design of the clients by accessing the underlying resources and fetching the data from the source

readily. Effectively the web services acted as wrappers that provided an interface to

communicate with any system. This leveraged the power of the internet and made a company's

resources available beyond the reach of its Local Area Network (LAN).

7

For automation and interoperability among heterogeneous systems to work there were some

issues that had to be addressed. There had to be a generic interface for calling the service and a

standard syntax in which the information returned could be understood.

Before going into the standards and modus operandi of web services we must establish what a

web service is. According to the World Wide Web Consortium (W3C) a Web Service is "a

software application identified by a URI, whose interfaces and bindings are capable of being

defined, described, and discovered as XML artifacts. A Web service supports direct interactions

with other software agents using XML-based messages exchanged via Internet-based protocols".

The definition mentions three important properties of Web Services; they should be capable of

being defined, described, and discovered. These three properties are what make Web Services

superior to other middleware. They indicate that Web Services are described and advertised thus

giving them the possibility to be publicly advertised and used to create more complex services

and distributed applications.

For interaction to occur among different companies and different systems within a company,

standardization was a must. Standardization had to occur at the level of architecture and

protocols as well as at the level of syntax and language. As with the web itself, standardization is

the key to progress but that does not mean there is one approach or specification for every aspect.

Web services are fragmented with different specifications developed by different companies. As

the different standards get adopted by the big companies the number of standards will get smaller

and sometimes converge to one.

11.2 Web Service Specifications

There are many views for web services architecture but the most popular one currently in use

was proposed by IBM which is comprised of three elements; service requestor, service provider,

and service registry. It follows the most commonly used specifications which are SOAP, WSDL,

and UDDI. First we have a service requester who is the potential user of a service. He would be

looking for services published by a service provider, the entity that implements the service and

offers to carry it out on behalf of the requester. The services would be published in a service

8

registry, a place where available services are listed and which allows providers to advertise their

services and requesters to query for services.

SERVICE
/ REGISTRY

FIND	 PUBLISH

Figure 1.1. Web Services Business

Architecture

/ SERVICE
PROVIDER

9^gj
Servke lTIItTtt

I	 I /
SERVICE

REQUBSTER /	 BIND

Web services are more of a field of study rather than a set of specifications. There are many

aspects to them with competing specifications for each aspect.

First and foremost a common language is needed as the basis for specifying all the languages

necessary to describe the different aspects of a service. XML is used for this puipose, both

because it is a widely adopted and commonly accepted standard and because its syntax is flexible

enough to enable the definition of service description languages and protocols.

The Simple Object Access Protocol (SOAP) was initiated by W3C in 1999. SOAP covers the

message fonuat for one-way communication describing how a message can be packed into an

XML document. It includes a set of rules that must be followed when processing a SOAP

message and a simple classification of the entities involved 'in processing a SOAP message. It

also specifies what parts of the messages should be read by whom and how to react in case the

content is not understood [2].

WSDL discusses how to describe the different parts that comprise a Web service. It encompasses

an abstract description containing the type system used to describe the messages (based on XIvIL

Schema), the messages involved in invoking the service, the individual operations composed of

9

different message exchange patterns, and an interface that groups the operations that constitute

an abstract service.

It also explicitly defines a binding the interface to a transport protocol, the endpoint or network

address of the binding, and a service as a collection of all bindings of the same interface [2].

The UDDI specification is probably the one that has evolved the most from all specifications we

have seen so far. Originally, UDDI was conceived as a "Universal Business Registry" similar to

search engines (e.g.. Google) which will be used as the main mechanism to find electronic

services provided by companies worldwide. This triggered a significant amount of activity

around very advanced and complex scenarios like Semantic Web, dynamic binding to partners,

runtime/automatic partner selection and others. Nowadays UDDI is far more pragmatic and

recognizes the realities of B2B interactions: it presents itself as the "infrastructure for Web

services", meaning the same role as a name and directory service (i.e., binder in RPC) but

applied to Web services and mostly used 'in constrained environments (internally within a

company or among a predefined set of business partners) [2].

10

1.2 Composition, Orchestration, and BPEL

1.2.1 Web service composition

To put the problem into perspective we will take a business case. Consider a store that sells some

goods and a certain item is running low in stock or a new item needs to be added to the store.

The standard procedure would be to contact multiple suppliers and request quotes, select the

supplier that offers the best deal, request approval for a purchase amount, and finally order the

goods from the supplier

requestQuote
Figure 1.2. Business case

graph

This is essentially a business workflow composed of several operations. For web services to

achieve the above workflow the operations of several web services will have to be combined

giving us a web service composition. An important thing to note, however, is that a service

composition is not equal to the sum of its parts. In enterprise applications a composition of

components would be to add the components to the application and utilize the functionality of

each. Web services are interfaces that defme an input, output, and action performed. The

composition would specify what services to call, in what order, and how to handle error

exceptions. The components themselves remain separate and external to the application.

Composition started out as hard-coding in traditional languages like Java or C#. This was the

approach implemented by previous middleware and naturally web services were modeled to

11

what was already familiar. Composite web services were used as a way to bridge heterogeneous

middleware platforms. The problem with this approach is that it makes a composition essentially

the same as a non-composite service. Thus composition as an activity is not supported,

abstraction is not possible, and the infrastructure is static and restricting [2].

1.2.2 Orchestration

An orchestration defines the sequence and conditions in which one Web service invokes other

Web services in order to achieve some useful function. I.e., an orchestration is the pattern of

interactions that a Web service agent must follow in order to achieve its goal. In orchestration,

which is usually used in private business processes, a central process (which can be another Web

service) takes control of the involved Web services and coordinates the execution of different

operations on the Web services involved in the operation. The involved Web services do not

"know" (and do not need to know) that they are involved in a composition process and that they

are taking part in a higher-level business process. Only the central coordinator of the

orchestration is aware of this goal, so the orchestration is centralized with explicit definitions of

operations and the order of invocation of Web services [2].

Web Service	 Web Service

`1^5: Reply

	Receive	 2: Invo,,	 3

Orchestration
(coordinator)

4: Invoke

Web Service
	

/3- nvoke
	 Web Service

2
	

4

Figure 1.3 Orchestration Diagram

12

The result of an orchestration is a composition. Coincidentally it seems the pun in the names was

intended. An orchestra is a group of musicians each playing his own instrument. An

orchestration in music terms is arranging these musical instruments to play a piece together

harmoniously. Different instruments will be playing different notes but they come together to

deliver a bigger piece. This musical piece is called a composition and it is lead by an orchestra

conductor; an orchestrator. The instruments are the web services, conductor is the orchestrator,

and the orchestration or the composition has the same name in both web services and music.

Similar to how an orchestra conductor maintains the lead an orchestrator in orchestration is the

central authority on how the process is run.

13

1.2.3 1JPEL

Business Process Execution Language (BPEL) defines a notation for specifying business process

behavior based on Web services. It has been proposed as a way to model and program the

composition by combining services whose interfaces are specified in WSDL. It does not directly

deal with an implementation of the language but only with the semantics of the primitives it

provides. The emphasis is on the interoperability between systems rather than portability of

specifications.

It was initially proposed by IBM, Microsoft, and BEA and is now being standardized by OASIS.

The language reflects in many ways the characteristics of earlier attempts, which are WSFL and

XLANG, proposed by the same vendors.

roles
	 port types

receive ordrGood:

invoke

customer
	 chcId..ocaStock

warehouse

offered by the

invoke ccelOrdc
	

invoke confOrder

ier

Figure 1.4 Scope of the BPEL

14

In a nutshell, BPEL specifications are XML documents that define the following aspects of a

process:

• The different roles that take part in the message exchanges with the process

• The port types that must be supported by the different roles and by the process itself

• The orchestration and the other different aspects that are part of a process definition

Correlation information, defining how messages can be routed to the correct composition

instances

As stated in the third point BPEL supports orchestration in a manner that combines the activity

diagram and the activity hierarchy approaches. An example of this would be similar to the

following:

receive omer400dz	 invoke chckLocIStok I
I	 switch

erchExtcil	 I	 invoke confirmOrdc'
sequence.

invoke checkS	 choExtcnaII	 switch

inv1cccnfb'mOrdcr I I inwkcccclQrd

Figure 1.5 Orchestration 'in BPEL

In use, service composition is equated with orchestration and the tools described for the business

process are used internally within a company.

15

1.2.4 Problem Definition

Orchestration and BPEL help an enterprise manage its business process within a department and

among the different departments. Within large organizations there may hundreds or maybe even

thousands of set business processes each serving a purpose. There may be times when a certain

target is not satisfied by one singular process or has no specified solution. It would be possible,

through composition, to have more than one business process combined in part or in whole to

satisfy this target. Parsing the different processes and matching the target can be a cumbersome

effort possibly requiring an exponentially large number of matches. The composition problem is

therefore an attempt to find a combination of services, an orchestrator, that can produce the

behavior required by the target.

16

1.3 Service Composition

When a target service behavior is not matched by any of the services specified in an

organization, the solution is to create a composition fi-om the available services or at the very

least check if such a composition is possible.

There are many approaches for the composition problem, ranging from model checking [4],

agent planning [5], satisfiability solving [6], and theorem proving [7].

The framework implemented in this paper, first proposed in [9], and usually referred to as the

"Roman Model", has been dealt with in many works [10]{l 1}[12]. This framework can model

two main aspects [10] of service composition: functional requirements and behavioral

constraints. There is a third aspect, which is non-functional requirements that can also be

incorporated in the framework as explained later. Most solutions, to date, that are based on this

fiarnework have either an elevated complexity (e.g. [9]) or used a global approach (e.g. [14]) in

which the whole state space, which is exponential in the number of services, needs to be

generated beforehand. The fixed point algontlim is such an implementation where the state is

generated and then iterated. In each iteration the result is checked for states that do not match the

target and they are pruned till a fixed point solution is reached.

On-the-fly algorithm builds a solution incrementally visiting only the relevant state space. While

its worst-case complexity is also exponential in the number of services (this is a lower bound, see

[15]), in the average case it is much better. On-the-fly improves on previous approaches to the

problem and advances the state of the art in service composition by proposing an algorithm that:

1) visits states as needed, which allows it to deal efficiently with systems containing a large

number of complex services

2) is self-contained and can be easily incoipora ted in any other model.

3) can address concerns about quality of service or quality of experience

17

14 Approach and Main Results

The main approach was to compare the performance of the two algorithms under the same

conditions. After being implemented and run the computation time and resource consumption

could be noted, graphed, and compared. Both algorithms were implemented in Java. The fixed

point algorithm has a fixed running time that changes only if the size of the input changes. For a

comprehensive result several scenarios were taken into perspective to produce the best and worst

cases On-the-fly algorithm might encounter.

For each algorithm and for every scenario a thousand runs were performed and the results were

recorded. In every scenario On-the-fly showed significantly faster results without significant

overhead. The fixed point algorithm on the other hand was time consuming and resource

intensive.

1.5 Thesis Organization

The objective is to build up to the comparison between On-the-fly and fixed point algorithm.

Chapter 1 covered the basics of Web Services and the technologies involved. It also broadly

defined the web service composition problem, the proposed solutions, and what On-the-fly tries

to accomplish.

Chapter 2 formally defines the background for the framework and the solution.

Chapter 3 goes through the code logic and Java implementation.

Chapter 4 wraps up the paper with result interpretation, conclusion, and future work.

18

Chapter 2:	 Model and On-the-Fly Algorithm

Before the algorithm is formally set and described we must establish the components of the

framework. This section will present the necessary definitions of the components and how they

fit together. The line of reasoning followed was studied in [14][17], originally proposed in [9].

The needed components are a target service, a set available services, and an environment. Note

that the environment is used in the framework but is omitted from the implementation for

simplicity.

Informally we can describe the service composition problem as the following: given a target

service and a set of available services, find an orchestrator, if one exists, that delegates requested

actions to suitably chosen available services, such that the system will have the same behavior as

the target service.

Next we give the formal definition of all components as well as the composition problem.

2. 1 Available Services

Environment

First we define the environment:

Definition 1: An environment E is a tuple E = (E, Z, e°, 8E) where:

•	 E is a finite set of states.
•	 e0 is the initial state.
•Z is the set of actions that can be performed.

•6E 9 E x x E is the transition relation.

It is convenient to write (e1, a, e2) E 8. as e1 -'* e2 . Such transition means that when the

environment is in state e1 and an action a is pemformed it will move to a new stat e2.

The available services are a set of components that can be partially controlled by the orchestrator

and interact with the environment,

19

Each service is defined formally as:

Definition 2: An available service S over an environment E is a tuple S = (S. E, s°, G, 8) where:

•	 S is a finite set of states.
•	 E is a finite set of actions.
•	 s° is the initial state.
•	 G is a set of boolean flmctions that are used to impose constraints on some

actions: g: E -* [true, false) where E is the set of environment states.
•	 S c S x G x x S is the transition relation.

When (s, ,q, a, s') E S we write s
ga 1 1 s'. A service can make a transition only if the state of

the environment allows it. So if the environment is 'in state e then the service can make the

transition only if g(e) = true. Given a service .S = (S. L s°, G, 5) and environment

S = (E, Z, e 0 , SE) a trace of S on S is a, possibly infinite, sequence of the form
1	 2o 0a	 ii a(s , e) -* (s , e) -	 where s e S. e E F , a , and for all i if

1+1 .	 -	 .	 i+1
(sl,eL)C__, (s',e' 1) then sL g,...g. gt+l in with g(e 1) = true for some g e G and

i+1
e	 e". Thus a service can make a transition only if the environment can make the same

transition, and is in the appropriate state e. A history is a finite prefix of a trace, ending in a state.

Given history h = (s°, e°) -* - (s 1, e) the last state in the history is denoted by

last(h) = (s e, e') and the length the history, denoted by I hi = i, is the number of actions

performed. The reason we say the set of services is partially controllable is because of non-

detenninism. When a service does an "& transition there could be many possibilities so we are

not sure in which state the service will be in after the "a"-transition

Community of Services

A community of services is the set C = [Si, ... ,	 5) containing all available services together

with the environment. The target service to be satisfied as described in the following section will

be checked against this community

2.2 Target Service

The target service is the service requested by the client and which the community tries to satisfy

by composing a behaviorally equivalent service from the available services. The target service,

20

request
quotation logout	 logout

timake
__-payment

request
quotation

denoted by S, is defined like any other service over the same environment, except that it is

deterministic. As an example we will take the business case mentioned in sections 1.2.1 and

1.2.3 which is called procurement. Suppose a business wants to purchase some goods from a

supplier online. Note that when a business buys from a supplier it does so in bulk to acquire

special prices and offers. The example to be described will be a watered down version for

simplicity.

The first party that wants to purchase will be referred to as the business and the second party

offering the items for sale will be referred to as the supplier.

The target to satisfy is the following:

• The business logs into the supplier's online portal.

• The business requests quotes for certain goods.

• The business makes payment for those goods.

• The business logs out of the online portal.

The target would then look like the following:

Figure 2.1 Target Service

21

following:

UO

login

logout

Figure 2.2 User
authentication

Va

request
quotation

Figure 2.3 Sales
payment	 payment

Wi

Figure 2.4
Accounting

make	 make

Naturally the process starts with login. Then the business can request a quotation. At this point

which is t 1 the business can request another quotation or make a payment for the one it requested

previously. We are assuming that the quotation is similar to a bill in that a business cannot make

a payment if no quotation was previously requested. This may not be the case normally but again

this was made so for the sake of the example. After at least one quotation requestrequest is sent a

payment can be made for it. At t.2 the user can make more purchases to buy more of the item

quoted or logout if the purchased quantity suffices. This flow can be interrupted by the user at

any point by logging out. In case of logging out the transaction is terminated and can only be

restarted by logging in, requesting a quotation and so on and so forth.

We assume that such a flow is not readily available. Since it cannot be satisfied by one service an

orchestration is required that can replicate this target from the available services which are the

The supplier is making the services offered in his departments available to his clients to facilitate

online transactions. He is using a service to authenticate the users requesting quotations and with

this service allowing them to stay logged in and proceed with business as required before logging

22

out. A separate service is offered by the sales department that can take as many quotation

requests as required by the clients. Finally the accounting can take payments for quotations. It is,

however, required by the internal business flow of the accounting that these payments be

recorded in a certain way to allow for special offers for recurring customers at every other

payment.

It is worth mentioning that the enviromnent, although not mentioned above and not taken into

consideration in the code implementation, is still effective here. All services have access to the

environment where they can store and retrieve data, it is possible for one service to perform

authentication, store the results in the environment, and the other services will read the result of

the login. The Sales department can then take quotations and store this information for

accounting to know the offered amount. Finally the accounting department can take payment for

the quotation offered.

2. 3 Service Composition

Let C = [Si' ,S,, E) be a community of services. A community trace is a sequence of the form

	

k 1a1 1	 1 1 k
2 a 2

(Si" ,s7 , e°) -p (si , .. 5n, e) - ... such that for all

i>Oif(s,...,$	 z,e1) k111(S;
,..., s

i+1 , i+') then1+1

i+1g,a	 i+1•	 and g(e) = true for some g.
•	 i+1ci• eL _4 e'41.

• g+l5L for all k*kuhi.

Community histories are finite prefixes of community traces, ending in a state. Given a

community history h, we denote by last(h) the last state in history h. The set of all histories of a

community is denoted by 1-(.

23

2.3.1 Orchestrator

Given a set of available services the orchestrator is a function P: J-(x Z - [1, ..., ii, u} that

selects a given service k e [1, , nj, to delegate action a E Z to it. The special value it

represents the fact that no service can perform the requested action.

Definition 3: [14] The community histories induced by controller P on trace r is the set

= U 1 IM71Y where

•	 = (se, ..., p, e°).
b 1+1
1tL	 / i+1	 1+1 i+1• /(1 is the set of all i + 1 length histories of the form Ii —i	 , ..., s,. ' e i such

that:

> h e IC,,p with last(h) = (si, ...,s1,eL).

> P(h, a L +l) = k. This means that at history Ii, action a11 in trace T is assigned to

behavior Sk.
i+I

> s 1 '--* sk audg(e i)= true for some g.

> 41=4 forj*k.

Definition 4: We say an orchestrator realizes a target trace r if for all h e If,,p if IhI < ftI then
k IhI+1P(h, a*11) = k and Iast(h)	 (si'. ..., sn', e') for some k

where the length of an infinite trace is infinite. Basically, an orchestrator realizes a trace if it can

always match the target action regardless of the how the system evolved We say that an

orchestrator P realizes a target St if and only if realizes all the traces of S.

In [14] it is shown that a necessary and sufficient condition for the existence of an orchestrator is

the existence of a relation between the community and the target service, called an ND-

simulation, which we define next.

Definition 5: [14] Let C = (Si.	 E) be a community of services and S = (Se, s, L

the target service over the same environment- We say that C and St are ND-similar if there exist

a relation Z SxExS1 X	 such that:

24

&0, 0	 0) E Z.

• If (se, s1, .., s, e) E Z then for all a E the following holds:
a	 g,aif (.s, e) - (st', e') then 3k such that sk -f Sk ' with g(e) = true for some ,q

and (St' . e', S1, '5k' , s) E Z.

> for all Sk 	 5k such that g(e) = true it is the case that
It

(st ', e 	
F,

,sl,...,Sk	 EZ.

Theorem 1: [14] A composition exists if and only if the initial states are ND-similar

Since the union of two ND-simulations is also an ND-simulation then there exists a largest ND-

simulation, defined as the union of all ND-simulations. Given a relation R c St x E x S x ... x

S1r we define a function F over the set of relations over St x E x S1 x x S as follows:

kaF(R) = [(t, e, p) Va, (t, e) -- (t', e ')	 (3k, p'. (p. e) - (p'. e') A (t', e', p') e R
ka

A(p -* p	 (t,e',p")ER))}

Where t, e are target and environment states. The state of the n services are represented

collectively with p. It is easy to see that a relation R is an ND-simulation iff R = F(R). A typical

procedure, similar to the one for classical equivalences and preorders [18], for computing the

largest ND-simulation would be to define the set of relations:

R0 =SxE'xS1 x ... xS

R• 1 = F(R1)	
(1)

Since the transitions systems S under study are finite then there exists a] such that R1 = F(R).

The largest fixed point, R1 , is the largest ND-simulation one is seeking. Henceforth, this

procedure for computing the largest ND-simulation is referred to as "global". The important

point to note is that one always starts with R0 , which is, being the product of all the states,

exponential in the number of services. This means one always has to visit all the states in R0 , the

full state space, and more importantly, process all transitions. Clearly this is an expensive

25

I	 make
make payment

1

operation and, as will be shown later, unnecessary. In [14] it is shown that after obtaining R1 one

can generate all compositions. This is not really necessary since what is usually needed is one

composition. It is worth mentioning that other methods solving the composition problem without

the use of the concept of ND-simulation also start from the full state space and remove, one by

one, non matching states to obtain a solution. In this respect they also are considered "global"

algorithms.

2.3.2 Full State Space and ND-Simulation

request
quotation

/ Uo,Vo,Wo	 make

	

/	 -request	
payment

/
quotation

-	 make

make --	 Ui,Vo,Wo	
payment	 Uo,Vo,Wi

payment	 -	 -	

request

make	
quotation	

login

request

L
U1,VOW1

quotation	 logou

request	 -
quotation

10 gout

U2,Vo,Wo

request
quotation

request
uotation

Figure 2.5 State space

26

The figure above shows the entire state space in all its possibilities. The transitions marked in red

are the composition. The existence of a composition indicates that the relation is an ND-

simulation. One can see that in this case a fraction of the state space is visited whereas in the

global algorithms all the state space, which includes testing all the transitions, will be visited. It

is important to note that the environment is not taken into account. With the environment taken

should be taken into consideration that the make payment transition from (u 1 ,vo,wo) to (u1,vowi)

and all similar ones can be prevented if at least one request quote transition hasn't been made

yet. This would be enforced by the environment where the request quote transition result would

be stored.

Furthermore some business rules can be added to the algorithm in finding the ND-simulation to

get more preferable business results (better Quality of Service).

2.4 On-the-fly Algorithm

Before delving into the Java code we will examine the code logic and approach of on-the-fly

algorithm to find an ND-simulation, if one exists.

Let 5L be the set of states of available service I, H be the set of environment states and St

the set of states of the target service. The algorithm maintains two relations 4 and B, both

initially empty.

The relation	 St x E x S x ... x S, represents the ND-simulation relation that the

algorithm is trying to find between the states of the community and the target. Note that there

might be more than one ND-simulation relation.

During the execution of the algorithm states are added and removed from A. The second

relation, B St x H x S x ... x S represents the set of states that were found by the

algorithm to not be ND-similar. Because two states found to be not ND-similar cannot

become ND-similar at some later stage, states are added to B but never removed. The set

B is maintained so that a given state is not processed more than once. The algorithm is

composed of two mutually recursive functions, NDSIM and MATCH that are described next.

27

2.4.1 NDSIM

Given a target state (t, e), and a community state (s1 , ... , s, e) the function

NDSIM(t, e, s , ... ,$) returns true if and only if the states (t, e, s1 , ..., s) are ND-similar.

Basically, NDSIM performs a depth-first search over the state space. When a state is visited for

the first time, i.e. not in /l nor in D. it is assumed to be ND-similar and therefore added to A.

Then the state is processed by checking that every transition of the target can be matched by a

transition of the community.

After a state is processed, if it is found to be not ND-similar, then it is removed from dl and

added to B. Note that NDSJM visits (i.e. adds to dl) states in preorder and processes them in

postorder.

Given a target state (t, e) and a community state (s1, .., s, e), the function NDSIM tests

whether they are ND-similar. This is the case if and only if for every possible transition of the

target state (t, e) - (t', e') the community can match it with an "a" transition to a state that is

ND-similar to (t', e').

In other words, given (t, e) -4 (t', e') the algorithm needs to find for some k, a community

transition with the following properties:
g.a

1. (P1) There exists one S'k with Sk -' S 'k with g(e) = true for some g e Gk such
that (Si' ..., S ' k, ... , s, e') and (t', e') are ND-similar.

2. (P2) For every s"k, such that sk	 "k, it is the case that s1 , ... , S", ...,s, e')
and (t', e') are ND-similar.

28

c,NSIM(t,i,s,)

if

	

	 B thE?n
return false

if

	

	 EA th?n
return truc

A—AU	 si, * .
res=t rue
forc'ach a 6 £ do

freacIi (.t, e) --+ (t'. e') do

I k=MATCH	 ,	 —- e'. t _2 1')
if k=O theii

res= false
Coto Exit

Exit:
if res=faise thcu

=J(1,CI

changed = true
return res

29

2.4.2 MATCH

For every target transition, this function tries to find a community transition that matches it.

Given a state (t, e, s1, , s, and a target transition (t, e) -.* (t', e'),
a a

MATCH (s1, , s, e --* e', t -- t') tries to find a transition of the community such that

property (P1)in section 12.1 above is true. It is possible that there could be multiple services

that can make an "a" transitions from the current state of the community. The MATCH function

needs to try them one by one until it finds a match. To this end, MATCH maintains all potentially

valid system transitions in a queue.

MATCH ((i 	 ce -> '..t -- f')
if Qs dots not exist then

crcat e
for i =. 1 to ii do

if s .	 s A g, (e) = fru then
I ENQtJEU (Q..Ls)

false.
while Q j4 0 A res = false do

4 = DEQUEUE(Q)
res=NDSIM(t',.e.'1i.. 	 ,.s.
if -=false then
I !'=o

return k

30

The algorithm maintains a queue that holds all potential transitions of the system from state

(s1 , ... , s, e) that can potentially match a target transition (t, e) --* (t', e'). Since for every

system state (Si' ..., s, e) and target transition (t, e) --* (t', e') pair we have a different set of

possible transitions the algorithm maintains a different queue for each. Therefore the queue Q

used in the MATCH function, is indexed by s which is a shorthand for s ... stet'e'. Note that a

given Q is created when it is needed and keeps the state between different calls of MATCH.

Once we find that a transition does not match we discard it and dequeue the next possible-

transition. We keep doing this until a matching transition is found or the queue becomes empty.

If the queue becomes empty then there is no match and the fimction MATCH returns the value 0,

no matching service is found. In this work we use a FIFO queue but one can as well use a

priority queue where the priority is assigned for a given service according to some user

preference to implement non-functional requirements, or as a quality of service weight. Also, if

the algorithm uses a heuristic based on some already obtained information that makes one

transition more likely to succeed, it will be given higher weight. Finally, the queue is defined in

such a way that if there are, in a given service k, many S'k such that Sk - 'k then

ENQUE1JE(QS, k, s') will add the first such 'k only. This is because from the definition of ND-

simulation if (t, e) --+ (t', e') theim it is enough to find a single matching transition. The reverse,

namely property (P2) is checked in the function NDSIM.

The fact that the states are visited in a preorder traversal but processed in a postorder traversal

causes a problem, best illustrated with an example, that needs to be handled. Consider the two

states it1 = (t, e, s1 , ..., s) and 7t2 = (t', e', s' 1 , ... , s') with 7t1 , 7t2 E J1 and ir1a - 11'2. This

means that 7t2 serves as a part of a "proof' that 7t 1 is ND-similar. Since the algorithm visits the

states in preorder and process them in postorder it is possible that 7r is removed after 7t1 was

processed and used 7t2 as a proof For this reason the algorithm maintains a variable changed

that is set to true every time a state is found to be not ND-similar. If after the algorithm finishes

changed = true then there is a possibility that the aforementioned case occurred and the

algorithm should be run again:

31

while changed—true do
chang€d=faise

NDSIM(t1&e°, s. s)

Note that at the start of every run, or pass, the relation dl and the set of queues is destroyed. The

relation B that keeps track of all non ND-similar states is carried from one pass to the other. As

will be shown in the next section it is guaranteed that changed will eventually be false and the

algorithm will terminate.

32

2.5 Correctness and Complexity

Let n be the number of available services with each service having Ni states, Nt the number of

target service states, and Ne the number of environment states.

Let N=Nt XNe XN1 x ... XNn.

Theorem: The algorithm NDSIM terminates in a finite number of steps and when it does it

returns true if (t°, e°, s10, S.., s) are ND-similar.

Proof

First we prove the termination. Let NDS!M1 be the i' iteration of NDSIM (t°, e°, sg, ... , s) and

B1 the set of states that are not ND-similar after NDSIM1 finishes. The variable changed is set

to true iff during the run 2(t, e, s1 , ... ,$) E B1_1 and (t, e, s1, ..., s) E B1, meaning that

(t, e, s1, ..., s) was found to be not ND-similar during the execution of NDSJM1 . Recall that at

no point in the algorithm, states are removed from B. But if no new state is added to B then the

algorithm stops. This means the set B is strictly increasing. On the other hand, the total number

of states N is finite. Then there is an iteration j such that the variable change = false and at

that point the algorithm terminates.

Next we show that it yields the correct result. Observe that in a given iteration i of the algorithm,

we have that if NDSIM (t, e, s1 , .. ,$) returns true it means that it has finished processing the

state (t, e, s1 , ... ,$) and that (t, e, s1, ..., s) e A. Also, recall that it returns true iff for every a:

1. And for every transition (t, e)	 (t', e') there exists a community transition

(sl,...,sk,...,sfl,e)4(sl,...,s'k,...,sfl,e') such that

(t',e',s1, ... , Sk, ...,$) e

2. And for every S "k such that (Si' ... , sJ , ., s, e) -4 (s1,	 sif
	 ,s, e') it is the case

that (t, e, s1, ..., sk, ..., S) E c/i.

The above two conditions hold in the filial iteration, when changed = false and therefore no

(t', e', s1, ...,	 ..., s) was removed from dl, imply that the relation dl is an ND-simulation.

Theorem: The algorithm NDSIM is polynomial in the number of states of a given service and

exponential in the number of services.

First recall that N = Nt x N. x N x N. x ... x N is the number of possible states of the

community and target combined. Since we are doing a worst-case analysis, we assume that all

the above states are reachable.

In a single run of NDSIM (t°, e°, so,..., so) each state is considered once. This is because after

the first visit it is either in iZ or in B. On any subsequent call it will not be visited again. This

means that each iteration of NDSIM(t°, e°, s, ..., s1) considers at most N states. Next we

compute the cost of visiting a single state.

I[(t,e)-4}IIMATCH(si,...,s,e-
a
--' e, , t—a -'t')t

a

>1{(t, e)	 {(si,...,se) 241I

The last equality is true because for a given (t, e)	 (t', e') the function MATCH will process

at most It(si' ...,sn, e) -*)I transitions. The above is the contribution of a single state.

Because every state is visited at most once the total cost of one iteration of NDSIM is

>
e	 t Si,...Sn a

e)}l) 	 I f(s, ... , s, e)	 }I)

a	 a

= I L IILI (1)

where Lt is the number of transitions of the target system synchronized with the environment and

L is the number of transitions of the asynchronous product of all the services, synchronized with

the environment. To get an idea about the complexity of the algorithm as a function of the

34

number of services, n, we note that for a given action a, if service i can make I Lai J transitions

then the asynchronous product can make 111 j Lia I . On the other hand, the system cannot make a

transition unless the environment does so then we get:

11 s I 	 I L	 I 1 iaI	 ILanI

In the worst-case every state has an "a" transition to every other state. Thus I Lia = 0 (NI),

where Ni is the number of states in service L Finally, the complexity of processing a single

iteration of NDSIM is

0(N?N•N ... Nf)

Since NDSIM is called at most O(N 'Ne N1 N) times on (t°, e°, s, ,s7), the total

complexity is 0(N? N N	 Na). Therefore, the algorithm is polynomial in the number of

states of target, environment, or a given services. It is exponential in the number of services.

Considering that the problem is EXPTTME-hard [15], this is optimal.

Chapter 3:	 Implementation

In order to gauge the performance of the algorithm in a real life scenario it had to be

implemented and tested in a simulation. Java is fast, highly adopted, and works on anything

where a J\TM can be installed and so naturally it was one of the top choices for the

implementation. Personally I had a background 'in developing Java Enterprise Applications and

could attest to its speed when hi gh performance is required which made it the obvious choice.

The implementation was started from scratch and so some basic data structures were required

before the algorithm could be implemented. Rather than start from absolute scratch I used some

code examples found in [19] and modified them according to what was needed.

3.1 Basic Data Structures

Going from business case to automata requires some transfonnation. Within a company the

available services would be implemented in BPEL. The new target to be matched would also be

implemented in BPEL but would have no orchestration. We assume that some transformation is

done so that each BPEL is converted into a graph and the operations transformed into edges.

After a transformation a real business case could be tested with real life data but for the purposes

of our simulation we discuss what the data structures to be transformed into should be.

3.1.1 Action

The Action class represents an edge in a Service with an action label. Each edge consists of two

integers which specify from where the edge starts and to where it goes and a String to specify the

action label. For our intents and purposes two actions are equal if their labels are equal

disregarding the "from" and "to" points. This was implemented in the class by overriding the

equalsO function and only testing the action label for equality.

36

3.1.2 Service

The Service class is essentially a directed graph with labeled edges. The vertices are

automatically assigned values from zero till "number of vertices" minus 1. Each directed edge is

of type Action and is assigned from, to, and label values upon graph creation from the input.

Parallel edges and self-loops are permitted. The implementation uses an adjacency-matrix

representation, which is an array of Lists of Actions. The integer value of each index represents a

vertex and the List at each index contains the neighbors of that vertex. Some variables, to be

described in the implementation later, were added for convenience but most notably an

adjacency function was added that returns all neighbors of a given vertex for quick iteration. This

eases and simplifies the code structure when parsing the adjacency-matrix.

3.1.3 Queue

The Queue class represents a first-in-first-out (FIFO) queue of generic items. Java Generics were

used to make the queue versatile for use with other object types later. The implementation

supports the usual enqueue and dequeue operations, along with methods for peeking at the first

item, testing if the queue is empty, and iterating through the items in FIFO order.

A static nested class labeled Node 'in the Queue class contains each node's value and points to

the next item. This allows for a linked-list of nodes with easy iteration.

3.1.4 Convenience Functions

Some utility functions and classes were implemented for the test case and are noteworthy. First

the services to he tested along with the target are being read from text files (.txt). The text require

there to be one service per file with the number of vertices, number of edges, and a listing of

from, to, and edge label triplets. A random service generator was also created which effectively

generates such text files with random Actions but with the number of vertices and edges taken as

arguments. Generating text files in bulk and reading from text files allows test cases to be

quickly constructed and documented.

3.2 Implementation

The implementation is a working skeleton of the code proposed. For simplicity the environment

was disregarded and a FIFO queue was used. Both can be changed to enforce some business

rules or conditions but the general implementation and speed of the algorithm would be

unaffected.

3.2.1 Basics

The community to be parsed is passed to the algorithm as a List of Services. An integer array is

created to serve as a form of encoding to keep track of the community state. The last index of

this array is reserved for the target. As an example let us assume we have two services in the

community labeled U and V and a Target. Upon initialization the array would be (0, 0, 0). This

indicates that all services have a marker at 0 telling us where each service is being processed. If

an action in service U going to node 1 matches an action in the target going to node 2 the state

saved in the array would be (1, 0, 2). Relations A and B used to store the solution states and the

non-solution states are lists that store arrays of such structure.

3.2.2 Code Breakdown

As stated in the previous section the algorithm mainly operates among two mutually recursive

fimctions. The first one is labeled ndsim and its main role is to loop over the target and call

match to match the target's action. The second is called match and it loops over the community

and replies to ndsim about whether a match was found.

The code important parts of the code will be interpreted line by line before demonstrating an

example of how it flows.

Note that the code starts with a function that initializes everything at state 0 and calls ndsim

expecting a Boolean result.

38

vate boolean ndsiin(int [] communityState, mt targetNode) {

for (mt x = 0; x < B.sizeO; x++) (
if (Arrays.equals(B.get(x), couminityState)) (

return false;

for (it x = 0; x < A.sizeO; x++) {
if (Arrays.equals(A.qet(x), conunityState)) (

return true;

}

A. add (cominunityState) ;

boolean ndsimResult = true;

for (Action a target.adj(targetNode)) {

mt k = match (cominunityState, a);

if (It = -1) (
ndsimResult = false;
break;

}

if (!ndsimResult) {
int[] nonllatch = A.get(A.size() - 1);

B. add (nonMatch)
A. remove (nonNatch);

Check if state has been visited
before and isfound in B.
Stop check if found because we
already found it non-match

Check if state has been visited
before and is found in A.
Stop check if found because it
wasfoundtobea match

Assume community state
isa match

Loop over actions performed by
current target node.
Send each tomatch to check if the
current community state can
match it. If no match found break.

If no match found add community
state tot non-match list and
Remove it from match list.

I
I}
}
I

return ndsimResult;

39

T0

Figure 3.1 Simple Test Case

rivate mt match (IntEl conunityState Action targetAction)
boolean ndsi,nResult false;
iiit Ic	 -1;
BuainessQueue<Service> 0 = new BusinessQueue<Service> ;

for (mt j = 0: i < couni.ty.5izeO; i++) {
for (Action a counity.get(i).adj(counityState[i]))

if (a.action() .equals(targetAction.action))
Ic
cowLity .get (i) . setkctionPointer (a);
Q.enqueue(counity.get(i));

while (!Q.isEmpty() aa !ndsimResult)
mt j matchingCosuunityState

= Arrays.copyOf(coimminityState, communityState.length):
matchingConsminityState[Q.peek() .getlndex()]

Q.peek() .getActionPointer() .toO:
matchingCosunityState (inatchingCoamninityState. length - 11

= targetAction.toO;

0.dequeue;
ndsInesult = ndsin (matchingCominunityState, targetAction. to ();
if (!ndsimResult)

Ic -1;

ndsimResuft storesthe value from
} ndsimlateron.

kisthe answerreturnedto ndsim

}

}

InitializeQueue locally forthis run

Loop overcommunity.
Getthe actions of each node in each service.
lftheycan match the target enqueue them

Loop over queue filled from previous
for loop. Change the community according
tothe action specified in the top element

Dequeue the element as it is no longer needed.
send the altered community stateto ndsim to check
for previous match orfor actions that will come after
the current target action

}

}

return Ic:

Putting all possible actions that match the target in the queue also ensures recursion is matched.
As an example, if the target action has a node which performs an action "a" and loops back to
itself, the community can match it through a cycle of "a" actions stored in the queue.

As a small case study we will take the algorithm through two use cases, one where it will
succeed and one where it will fail.

Success case

40

ndsim((O,O,O),O) {

rnatch((0,0,0),O-a->1) {
I	 I

	

I	 enqueue 0-a->1 from U
I	 I

I	
I	 dequeue topI	 I

I	 I
I	 I
I	 I	 Tidsim((1,0,1),1){
I	 I
I	 I	 I
I	 I	 I
I	 I
I	 I	

I	 rnatch((1,O,l),1-b->1){
I	 I	 I	 I
I	 I	 I	 I
I	 I	 I	 I
I	 I	 I	 I	

enqueue 0-b->1 from V
I	 I	 I	 I
I	 I	 I	 I
I	 I	 I	 I
I	 I	 I	 I	

dequeue top
I	 I	 I	 I
I	 I	 I	 I

	

I	 I	 I
I	 I	 I	

ndsim((1,1,1),1){
I	 I	 I	 I	 I

	

I	 I	 I	 I
I	 I	 I	 I	 match((1,1,1),1-b->1){
	I 	 I	 I	 I	 I

I	 I	 I	 I	 I	 I

enqueue 1 -b->O from V
I	 I	 I	 I	 I	 I

	

I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I	 dequeue top	I 	 I	 I	 I	 I
I	 I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I	 ndsim((1,0,1),1){I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I
I	 I	 I	 I	 I	 I
I	 I	 I	 I	

I	 return true//found in Al
I	 I	 I	 I	 I	 I

	

I	 I	 I	 I

	

I	 I	 I	 I
I	 I	 I	 I	 I	 I	 ndsim result true
I	 I	 I	 I	 I	 I

	

I	 I	 I	 I

	

I	 I	 I	 I
I	 I	 I	 I	 I	 return l}
I	 I	 I	 I	 I
I	 I	 I	 I
I	 I	 I	 I	 I
I	 I	 I	 '	 match result 1
I	 I	 I	 I	 I

I	 I	 I

return true
	I 	 I	 I

I	 I	 I	 I
I	 I	 I	 ndsim result true
I	 I	 I
I	 I	 I	 I

'return l}
I	 I

match result 1
	I 	 I

return true}
I	 I

ndsim result trueI	 I
I	 I
I	 I

I return 01

match result 0

return true}

Result: A: U0 VO tO
Ui VO ti
Ui Vi ti

B: Empty

41

Failure Case
	

T
0
	

T0

Figure 3.2 Failure Test Case

ndsim((O,O,O),O) {

match((O,O,O),O-a-> 1) {

I	 I	 enqueue 0-a->1 from U
I	 I
I	 I

I	 dequeue top

I	 I	 ndsim((1,O,1),l){
I	 I
I	 I
I	 I	 I	 match((1,0,1),1-b->1){I	 I	 I
I	 I	 I
I	 I	 I
I	 I	 I
I	 I	 p	 enqueue 0-b->1 from V

I	 I	 p
I	 I
I	 I

I	 I	 dequeue top
I	 I

I	 I
I	 I
I	 I
I	 I

I	 I
I	 I	 I
I	 I
I	 I
I	 I
I	 I	 I
I	 I
I	 I
I	 I
I	 I
I	 I	 I
I	 I	 I	 I

I	 I
I	 I

I	 I	 I

ndsim result falseI	 I
I	 I

eturn-1}
I	 I

match result -1

I	
'	 eturn false}

I	 I

I	 '	 ndsim result false
I	 I

I	 return-1}

'match result -1

return false}

No Result Found!!

ndsim((1,l,1),l){

match((l,1,1),1-b->1){

return -1}

match result -1

return false}

42

3.3 Fixed Point Algorithm

The fixed point algorithm works in a manner similar to the approach described in [141. First

before the actual fixed point algorithm can be nm the entire state space must be generated. Then

the fixed point algorithm is run on the state space and works according to a set of rules to be

discussed next.

The fixed point algorithm runs in several iterations. Every community state will be compared to

every target node. The following rules determine if a comiminity state is kept or discarded:

1) Every target action must be matched by a community action

2) The resulting community and target state after the action must be present 'in the remaining

community from the last iteration

3.3.1 Fixed Point Implementation

The code logic first requires a Cartesian product between all the services and the target.

Taking as an example 3 services U, V, and W, the Cartesian product would be U x V x W x T.

Since the number of services is variable a solution is required that runs as long as the number of

services. The product would then have to be divided into iterations so that with each iteration one

service is multiplied with all the others.

UxVxWxT=(Ux(Vx(WxT)))

In every run an outer service is multiplied with the result of those inside.

This generates a Cartesian product of the state space x T.

This result is passed to a flmctiori that takes care of the elimination process and recursively calls

itself till a fixed point is reached, i.e the result of the last iteration is the same as the current

iteration

43

3.3.2 Fixed Point Code Sample

private void cartesianProduct (i.nt [] currentState 1 mt servicelndex) {
if (servicelndex = comunity.size) {

cartesianResult. add (Arrays copyof(currentState, curreniState length));

} else

for (jut node = 0; node < cosnunity .get (servicelndex) .VQ; node++) {
currentState [service Index] = node;
cartesianProduct (currentState, servicelndex + 1);

Each call of function cartesianProduct calls cartesianProduct again recursively and passes to it

the next service until the innermost parenthesis, demonstrated above, is reached. Then the

function would work its way back through all the calls and register the Cartesian product at every

step.

e void fixedpointChec]c(List<int[]> latestResuit)

it solutionSize = late stResuit.sizeU;

Lst<int []> newResuit = new Arraytist<int []> :

r (jut x = 0 ; x< latestResult.size() ; x-H-){
for (tnt y = 0 ; y < iatestResuit.get(x).length-1 ; y++)

List<Action> targetActions = target. adj (latestResult.get (x) [latestResult.get (x) .length - 1]);
boolean[] actionMatch = new boolean[targetActions.size];
for(int z = 0 ; z < targetActions.size() ;

for(Action stateAction:conunity.get(y) .ad] (iatestResult.get(x) [y]))
if (stateAction.equals (targetActions .get (z)))

tnt [] neCosunityState = Arrays. copyOf (latestResuit.get (x), latestResuit.get (x) . length):
neComunityState[y] = stateAction.toO;
newCoisunityState [neiCoimsunityState. length - 11 = targetActions get (z) . to U;

for(int c=0;c<latestResult.sizeO;c++){
if (Arrays. equals (newCommunityState, latestResuit.get (c)))

actionNatch[z] = true;

if (areAliTrve(actionMatch))
newResuit. add (Arrays. copyof(latestResult.get (x), latestResuit.get (x) . length));

r(soiutionsize 1= newResuit.sizeO){
fixedPointcheck (newRe suit);

The second part is slightly more complex and also works recursively

First the result of the last iteration is taken note of so that after the elimination is over the result is

checked for a fixed point.

Then the for loops go through each action of each node in each community state in the entire

Cartesian product and try to match that community state to the target. If the target is matched that

community state is kept.

For the same input as On-the-fly algorithm:

T
0
	

T

0

Figure 3.1 Simple Test Case

The fixed point produces the following output:

uo vo to

Uo vo ti

uovi to

UOV1 ti

U! VOti

ui vi ti

45

a	 a

F.)

3.4 Simulation Results and Interpretation

3.4.1 On-the-fly Result

On the fly algorithm gave the following result which is highlighted in the community in red

UO VO to
Ui VOti
ui vi ti

Community	 T

T0

Figure 3.3 On-the-fly result

3.4.2 Fixed Point Result

On the fly algorithm gave the following result which is highlighted in the community in blue

UO VO to

UO VO ti

uo V1 to

Uo Vi ti

Ui VO ti

Ui vi ti

46

LI

a	 a

Community	 T

Figure 3.4 Fixed Point Result

On the fly algorithm gives the first result it find whereas the fixed point algorithm gives all
community states that can match the target and stay in valid state.

The fixed point algorithm produces the bigger result so intuitively it must take longer to execute.

For more extensive results some cases are taken with speed measurements to see the magnitude
of the difference.

47

0	 500000	 1000000	 1500000
Time (in Macroseconds)

2000000	 I

[]On-the-fly

0 Fixed Point

937
865
793
721
649
577
505
433
361
289
217
145
73

1

3.4.3 Extensive Results

For the first set of results the example used is the one demonstrated in sections 3.3.2, 3.4.2 and

shown above in the comparison. The results are based on 1000 runs per algorithm.

Number of
runs

Figure 3.5 Running time comparison for small community

Clearly On-the-fly produced consistently faster results. The x-axis that shows the running time is

of the nanoseconds time unit.

One might argue that the difference is ultimately in nanoseconds, the scale of the difference is

obviously great in magnitude.

One further thing noticeable is the decrease of the fixed point substantially in running time with

each run. This is due to the just-in-time (JIT) compiler that compiles the Java program into

machine code after several runs [20].

48

Time (in Macroseconds)

L2E+1O

1E+iO

8E1-09

6E+09

4E+09

2E+09

C
1	 2	 3

—Fixed Point

—On The Fly

Number of Services

Figure 3.6 Running time vs number of services

i-

1	 109	 25

2	 1200000+	 96

3	 Java heap error	 171

For the above graph, services of a fixed size were taken into consideration. The services were

created so that there would be the worst case of computation in On-the-fly algorithm.

The services are of size 5 nodes and 4 edges between them.

The Y-axis measurement is computation time in microseconds and the X-axis is the number of

services in the community (not counting the target).

On the first run the difference is noticeable although the community is small. On the second run

Fixed point took upwards of 20 minutes and did not get result but was stopped because the

difference was already large. On the third run Fixed point caused a Java heap error and did not

complete.

On-the-Fly consistently got a result and always got it faster. On-the-fly is also less resource

intensive and scales better with large problems.

49

Chapter 4:	 Conclusions

4. 1 Summary of the main results

The two algorithms have been implemented in a similar recursive coding style. In tests On-the-

fly produced more consistent results over longer testing and the result was obtained faster. On-

the-fly is computationally less demanding which makes it more suitable for more business

applications (suitable for applications with a weak client machine) as well as more scalable for

larger problems.

On-the-fly can also be combined with some heuristics to get better quality of service. The world

is converging toward service-oriented computing paradigms and On-the-fly fits the vision of

better performance for faster and more reliable results.

50

References
[1] "On-the-Fly Algorithm for the Service Composition Problem", Farhat H., Feuillade G.,

2013

[2] Gustave A., Fabio C., Harumi K., Vijay M., "Web Services - Concepts, Architectures and

Applications", Springer Press, 2004

[3] Giacomo, G.D., Patrizi, F., Sardina, S.. "Automatic behavior composition synthesis",

Artif, Intell, 196 (2013), 106-142

[4] Feng Y., Veeramani A., Kanagasabai R., Rho S., "Automatic service composition via

model checking. In: Services Computing Conference (APSCC)", 2011 IEEE Asia-

Pacific. (2011) 477-482

[5] De Giacomo G., Sardina S.,"Autornatic synthesis of new behaviors from a library of

available behaviors". In: Proceedings of the 20th international joint conference on

Aitifical intelligence. LJCAI'07, San Francisco, CA, USA, Morgan Kauflinann

Publishers Inc. (2007) 1866-1871

[6] Zahoor E., Penin 0., Godart C.,"Web services composition verification using

satisfiability solving". In: Web Services (ICWS). 2012 IEEE 19th International

Conference on. (2012) 242-249

[7] Papapanagiotou P., Fleuriot J.,"Formal verification of web services composition using

linear logic and the pi-calculus". In: Web Services (ECOWS), 2011 Ninth IEEE

European Conference on. (2011) 3 1-38

[8] Rae J., Su X.,"A survey of automated web service composition methods". In:

Proceedings of the First international conference on Semantic Web Services and Web

Process Composition". SWSWPC'04, Berlin, Heidelberg, Springer-Verlag (2005) 43-

54

[9] Berardi D., Calvanese D., Giacomo G.D., Lenzerini M., Mecella M. ,"Automatic

composition of e-services that export their behavior". In: ICSOC. (2003) 43-58

[10] Balbiani P., Cheikh F., Feuillade G. ,"Composition of interactive web services

based on controller synthesis". Congress on Services - Part I, 2008. SERVICES '08.

IEEE (July 2008) 521-528

51

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55

