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Preliminaries:

We need the following definitions:

1) An integral domain is a commutative unitary ring with no zero
divisors.

2) A principal ideal domain (PID) is an integral domain in which every
ideal can be generated by one element.

3) A unique factorization domain (UFD) is an integral domain in which
factorization of integers into primes is unique. (more details later)

4) An integral domain R is said to be a Euclidean ring if for every a # 0
in R there is a defined integer d (a) such that:

• For all a, b E R, both non zero, d(a) :!^ d(ab).
• For all a, b E R, both non zero, there exists t, r E R such that

a = tb + r where either r = 0 or d(r) <d(b).
5) A subfield of C is called a Euclidean field if its set of integers (to be

defined later) is a Euclidean ring.
6) Let n be an integer. n is said to be square free if n is not divisible by

the square of an integer.

Note that:

a) Every Euclidean ring is a PID, but the converse is false.
b) Every PID is a UFD, but the converse is false.
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Introduction:
In this work Q denotes the field of rational numbers, Z the set of integers,
and C the set of complex numbers.

A quadratic field is the set of numbers associated with a square free integer
d (0,1) and given by Q(-sId) = [a + bVi: a, b E Q ). In this study, we
try to determine the complex quadratic fields in which integers have the
unique factorization property. For example, the set of integers in Q (\f) is
not a UFD, whereas the set of integers in Q (Vi) is a UFD. It is well
known that every Euclidean ring is a PID, but the converse is false. An
example is Q (V- 19) in which the set of integers is a PID, but not a
Euclidean ring. It is also known that every PID is a UFD, but the converse is
false. However, in complex quadratic fields every UFD is a PID. Refer to a
seminar given by George T. Gilbert, Department of Mathematics, Texas
Christian University, November 10, 17, and 29, 2011. We know much less
ibout real quadratic fields than the complex ones. Still, we are able to
determine all Euclidean fields and UFDs in the range 2 :!E^, d < 100.
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I. Quadratic Fields

Definition: Let d E Z. Suppose d is square free integer. We define Q (f) to

be the set [a+bVd: a,bEQ}.

Q (Ii) is called a quadratic field.

Remarks: 1) If d>1 then Q (V'-d-) is called a real quadratic field.

2) If d <0 then Q (Ja) is called a complex quadratic field.

Example:Q(I) = [a+bV : a,bEQ}.

Note that:

' If d is a square free integer then Q is properly contained in Q (VJ).

' If sJi E Z then Q = Q(Vi).

The following properties are easy to prove:

i) a+bVi=c+es/d iffa=c,b=e

ii) a+bVd=Oiffa=b=O.

iii) Let a, f3 E Q (sId) then

• a+f3EQ(Ji)

• a-f3EQ(Ii)

• af3EQ(Vi)

• If 13#0 then E Q (Vi)

Thus i), ii) and iii) imply that Q (Va) is a subfield of C.
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Conjugates of elements in Q (VTh

Let a = a + b'fi E Q(Vi). Then, a is a root of the equation:

Ix — (a + b V—d)] [x — (a — bV—d)] = 0 (1).
Expanding the left hand side of equation (1) we get:

x2 -2ax+a2 —b 2 d=O (2)
This is a quadratic equation with rational coefficients. Multiply equation
(2) by the 1cm of the denominators of 2a and (a2 - b 2 

d ) to obtain:
MX  +nx+p = 0 (3) where m, n, p E 7Z.We may assume that m>O.
Equation (3) is called the defining equation for a.

Let a = a - bJi. Then, a and a are the roots of equation (3) . is called
the conjugate of a.

Theorem 1: Let a, /3 E Q (SR), then
a)ä=a
b) (a + f3) = a +

c) (a—/fl =a—f3

d) (af.?) = dfl

e) (a) = where VO

0 a=äiffaEQ

Proof: Obvious

Theorem 2: If d * d1 , then Q(v) n QW) = Q.

Proof: Let a E Q(IW) fl Q(f), then Ja, b, c, e E Q such that

a =a+b\fi=c+e\[. Thus a—c =ei— b\fandhence
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e,ld—, - bVi E Q. Since d1 and d are square free and d1 # d, then

e = b = 0. Therefore, ci = a = c E Q . Hence, Q(\I i) fl Q(f) = Q.

Definition: Let a E Q(-sId). We define the norm of ci by N(ci) = ad.

N(a) has the following properties:

1) If a E Q, then N(a) = a2.

2) If ci E Q(Vi), then N(ci) E Q.
3)N(ci) = Oiffa=O.

4) If  < 0, then N(a) ^ 0.

5) If ci, f3 E Q(/a), then N(afl) = N(cr)N(/3).

6)Ifa,f3EQ(V' ) and fl *O, then N()=.
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II. Integers in Quadratic Fields

In this section, we specify the members of Q (V'), which we call

integers.

Definition: A number a E Q (Va) is called a quadratic integer or

simply an integer if either a E Z or a E Q (Vi) - and the defining
equation of a has leading coefficient 1.

Notation: The integers z E Z are called rational integers. The term

"integer" means quadratic integer.

Remarks:

1) Since a and a have the same defining equation then a

is an integer if a is an integer.

2) The set of integers in Q (v') is closed under addition,

subtraction, multiplication. Before proving this we need the

following theorem.

Theorem 3:

If d 1 (mod 4), then the integers in Q (J) are exactly the

numbers a + b-/d-- where a, b E Z.
• If d H 1 (mod 4), then the integers in Q (V'd) are of the form

+ Ji where a and b are rational integers both even or both

odd.

6



Proof:

• We show that if a satisfies Theorem 3, then a is an integer.

Suppose d 1 (mod4) and a = a + b'/2i where a, b E Z.

Then, a satisfies the equation x 2 - 2ax + a2 - b 2 d = 0 (1) where —2a

and a2 - b 2 d belong to Z. Therefore, (1) is the defining equation for a.
Hence, a is an integer.

Suppose d 1 (mod4) and a = a + b vr d where a and b are rational

integers both even or both odd. Then, a satisfies the equation

a
x2—ax+2 

—b 2 
d =0 (2).

We show that a 2 —b 2 d
E Z.

4

There are two cases a and b are both odd or both even. We prove only

the first case . The second is trivial.

If a and b are both odd then a 2 1(mod 4) and b 2 1 (mod 4).

Hence, a 2 - b 2 d 0 (mod 4). Thus, 4 Ia 2 - b 2 d. Therefore

a2—b2d
E Z. Hence (2) is the defining equation for a.

Conversely, we show that every integer in Q (Vi) - satisfies

Theorem 3. Let a be an integer in Q (v'd) - Z. Then, a satisfies a

quadratic equation x 2 + bx + c = 0 where b, c E 7Z.There are two

cases: b is even, b is odd.

i)	 If b is even then 3  E Z such that b = 2a.

7



-2a+V4a 2 —4c
Then, a =	 = —a + Va2 - c. Let a 2 - c = e22	 d'-
where d' is square free. Since a E Z, then Id'I E [0,1). Then,

a = —a ± 
e's/iJ = —2a±2ejdT

2	
where a, e E L Then, a satisfies

Theorem 3.

ii) If b is odd, then b2 1 (mod 4). Also b 2 - 4c l(mod 4). We
—b+b-4c	 2	 2'have a 

=	 2	
. Let b - 4c = e d where d is square

free. Since a E Z, then Id'I iZ [0, 1}. Since b is odd then, b 2 - 4c

is odd. Then, e is odd and e 2 1 (mod 4).

Therefore, d' e2 d' b 2 - 4c 1(mod 4).

If a = - 
__2e	 where b and e are both odd rational integers

then a is irrational and a E Q (Va) fl Q (/), then d = d'.

Therefore, a satisfies Theorem 3.

Corollary:

If d 1(mod 4), then a member of Q(Vd) - is an integer if it can

be written as a + b 
(1I where a, b E Z.

Proof:

Suppose that d 1(mod 4). Let a = a + b 
(1+) = (2a+b)+b

2	 2

where a, b E Z. Since 2a + b b (mod 2),

then a' = 2a + b and b' = b are both even or both odd. Hence,

a'+b'Vda 
= 2 

where a' and b' are both even or both odd.
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Therefore, by Theorem 3, a is an integer.

i (-M-)Conversely, let a = 2
a+bV

be an integer n Q 	 with a and b

both even or both odd rational integers.

a+bJd	 a b b(1+V'd)Then, a = 2 =	 + 2	 Since a and b are both even or

both odd, then ab 
E2

Theorem 4:

If a and /3 are integers in Q(Ii), then a + /3, a - /3 and cr/3 are

integers in Q (\f).

Proof:

If d 1(mod 4) then

a = a + b/d- and 8 = c + e/ where a, b, c and e E Z. Thus

a+f3 =(a+c)+(b+e)hi, a— fl- =(a—c)+(b—e)V,and

((/3 = ac + bed + (ae + bc)sfJ. Therefore, a + /3, a - /3 and af3 are

integers in Q (Va). If d 1(mod 4), then

_____	 (1+/d)a= a+ b	 E/3 = C + e 2 where a, b, c, e Z. Then,2

(i+fd)
a+/3=(a+c)+(b+e) 2 and

= (a —c) + (b—e) (I 2

9



Therefore, a + f and a - j3 are integers in Q (Vi). Now

fd-1\	 (1+/af3=ac+be( )+(ae+bc+be) 
2 )'

Since d 1(mod 4), then	 E Z. Let a ' ac + be (-).

Then, a' E Z. Let b ' = ae + bc + 1. Then, b' E L

Thus, a/3 = a+ b'	 is an integer in Q(Vi).
Theorem 5:

[f a is an integer in Q (Vi), then N (a) is a rational integer.

Proof:

N(a) = aä. Since a is an integer, then ii is an integer.

c and a are the roots of an equation x 2 + bx + c = 0 with integral

coefficients such that. N(a) = aã = c E L

10



III. Divisibility in Quadratic Fields

In this section, we extend the theory of divisibility in Z to the set of

integers in Q (Ii).

Definition: Let a, /3 be integers in Q (v'1) with a # 0. We say that a

divides /3 and write at fl if there exists an integer y in Q (iJ) such

that /3 = ay.

Notation: From now on, when we write at /3 we mean

that a and /3 are integers in Q (/d) with a * 0 and fl an integer in

Theorem 6:

a) a 113 iffatf3.
b) If at /3 and a  y, then for any integers 8 and E in Q(V'd),

af((5f3 + Ey).

c) If at /3 and 13 I y , then aly.

Proof:

a) Suppose al /3. We show that af 3. There exist integers a 1 such that

/3 = aa 1 .Then, /3 = aa1 . Since a is an integer, so is ã. Hence, ä

b) Suppose at /3 and at y. We show that a I(S/3 + Ey).

11



There exist integers a1 and a2 such that 1L? = aa1 and y = aa2.

Let 6 and E be integers in Q(/i). We have: 8/3 = Saa1 and

Ey = E2. Then, 8f3 + E = a(a1 8 + a2 10 where cr1 S + a2 Ic is an
integer. Therefore, a 1(81? + Ey).

c) Suppose al /3 and f?Iy. We show that a l y . There exist

integers cr1 and a2 such that /3 = aa1 and y = /3a2 . Then,

y = (aci1 )a2 = a(a1 a2 ) where a1 a2 is an integer. Therefore aly.

Remark: Divisibility in Q (V' -d-) generalizes divisibility in Z and has the

same basic properties.

Remarks:

1) It is well known that if n is a rational positive integer then any two

factorizations of n into a product of positive rational primes are

identical.

2) It is also well known that if n is a nonzero rational integer, then

any two factorizations of n into primes are identical except possibly

for the order of the primes, or the replacement of some primes by

their negatives. In Z, a number and its additive inverse are called

associates.

e. g. 12 = (2)(2)(3) = (-2)(2)(-3) = (3)(2)(2)

12



IV. Units in Quadratic Fields

To define factorization in Q(Vi), we need to define units and associates

in Q(Vi).
Definition: An integer E in Q (Vi) is said to be a unit if E 1 1. In

particular, 1 and -1 are units in Q (v').

Here are some useful facts about units.

Theorem 7:

a) If Li and £2 are units in Q (v a ) , then El , El £2 and are units in
£2

b) Let L be an integer in Q(V'i).Then, £ is a unit iffN(L) = ±1.

Proof:

a) Suppose El and £2 are units in Q (Vii). We show that

El , L1 E2 and t are units in Q(/d). Since El 11 then EiI i = 1.
£2

Therefore j is a unit. Suppose there exist integers a 1 and a2 such that

1 = a, El and 1 = a2 . Then 1 = (a1 E1 )(a2 E2 ) =(a1a2) (El L2 ) where

a1 a2 is an integer. Hence, Li £21 1. Therefore Li £2 is a unit.

Now suppose £2 # 0. Then L, =	 = £1 a. Hence	 is an integer.
£2	 £ 2 a 2	 £2

Now Ll E2 a1 = 1 then El Ii. Therefore	 is a unit.
£2	 £2

b) Suppose £ is a unit. We show that N(E) = ± 1.

13



There exists an integer a such that Ea = 1. Now

N(i) = 1 = N(a)N(E). Since N(a) and N(E) are rational integers, then
N(E) = ±1. Conversely, suppose E is an integer such that N(E) = ±1.
We show that E is a unit. Since N(E) = ±1, then EE = ±1 . Since E is an
integer then E and - are integers. If Ef = 1 then E l i. Therefore E is a
unit.

If	 —1. Then, s(—e) = 1. Hence Eli. Therefore, e is a unit.

Theorem 8:

a) If d < 0 and dø(-1, —3), then Q(fii)has exactly two units: ±1.

b)Q (Vi) has exactly 4 units: ±1 and ±Vi.
c) Q (I) has exactly 6 units: ± 1, ±	 and ±

d) If d > 0, then Q (Va) has infinitely many units.

- Proof:

a) i) Suppose d :5 —2 and d * 1 (mod 4).

Let a be a unit in Q(Vi). Then, a = a + b/d where a, b E Z and

N(cr) = a2 - b 2 d = 1. We show that a = ±1.

Since —d ^! 2, we have: N(a) ^ a2 + 2b2.

If b * 0, then b 2 >— 1, and N(a) >- a 2 + 2 ^! 2. This is a contradiction.
Hence, b = 0. Therefore, a = a and N(a) = a2 = 1. Thus, a = ±1.

ii) Suppose d < —3 and d 1 (mod 4). Then. d :!!^ —7.

14



(1+/d)Let a be a unit in Q(/i). Then, a = a + b 2 where a, b E Z and
2	 b 2 d	 b 2	 7b2N(a)=(a+) --

4 
Since —d >7,we have N(a)>(a+-) + - --.

If b * 0, then b 2 >— 1. Then, N(a) > 1. This is a contradiction.

Hence, b = 0. Therefore, a = a = ±1.

b) Suppose d = —1. Since —1 1 (mod 4), then a = a + b/i
where a, b E L

Therefore, N(a) = a2 - b 2 (-1) = a2 + b 2 . Thus, a2 + b 2 1. The
only possible choices for a and b are a2 = 1 or b 2 1. Therefore,
either a = 0 and b = ±1 or a = ±1 and b 0.

Hence, a = ±1 or a = ±Ji. Therefore, the only units of

are ±1 and ±sIii = ±t.

c) Suppose d = —3.

-.	 a	 bbet a be a unit. Then, a = + —3 where a and b are both even or

both odd rational integers. Then, N(a) = a2±3b2 = 1. Then,

(2 +3b 2 41f1b1^ 2, then a 2 +3b 2 >—a 2 +12 > 12. This isa

contradiction. Hence, b = ±1 or b = 0.

If b = 0, then a = ±2.Then, a = ±1.

If b = 1,then a2 + 3 = 4.Hence, a 2 = land a = ±1.

±1+v'].hen, a=	
2

15



If b = —1, then a = ±1. Hence, a =

Therefore, the units of Q(T) are: ±1, 
2 

and	
2

d) Next, suppose d > 0.

We show that there are infinitely many units of the form

a = a + bVwhere a,b E Z.

Suppose a is a unit of the form a = a + bId where a, b E Z and

N(a) = 1.Then, a2 - db 2 = 1. This is the Pell equation

where \fi 0 Q. It has infinitely many integral solutions[2].

Therefore Q (\f) has infinitely many units.
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V. Primes in Quadratic Fields

Definition:

1)An integer it in Q(v'), which is neither 0 nor a unit, is prime if
for every decomposition of it into a product of two integers
it = a,G, either a or f is a unit.

2) An integer a in Q(sJ) is said to be composite if a # 0,a is a
nonunit, and a is not a prime.

Remarks:

1)The primes in Z are referred to as rational primes.
2) An integer a # 0 is a nonunit iff IN(a)I ^i 2.
3) A rational prime is not necessarily a prime in Q (Vi).

Example 1:

In Q (V) the rational prime 5 is no longer a prime because

= (1 + \/)(—i + /) and (i +	 (-1 + /) are both nonzero,

nonunits in Q(/).

Theorem 9:

If a is an integer in Q (v'i) and N (a) is a rational prime, then a is prime.

Proof:

Let a be an integer such that N(a) is a rational prime. Let y and f be
integers such that a = yfl . Since a, /3 and y are integers, then
N(a), N(j9) and N(y) are rational integers and N(a) = N(f3)N(y). Since

17



N(a) is a rational prime, then N(/?) = ±1 or N(y) ±1.Hence, y is a
unit or f3 is a unit. Therefore, a is prime.

Example 2:

1) If a = . + V- 163, then a is an integer in Q (-V- 163).  Now

N(a) = 43 is a rational prime. Therefore, a is prime in Q(V-163).

2) If a = + ri, then N(a) = 5 is a prime in Z, but a is not a

prime in Q (V---l) because a is not an integer.

Remark:

There are cases where a is prime in Q (fii) but N (a) is not a rational

prime.

xample 3:

7 is prime in Q(V), yet N(7) = 49 is not a rational prime.

To prove this, suppose 7 = a/3 where a and /3 are nonunits, nonzero

inìtegers in Q(V). Then N(7) = N(a)N(/3) = 49. Since N(a) and N(f3)
are

rational integers of absolute value greater or equal to 2 7 then

IN(a)I = IN(/3)I = 7.

We show that there is no integer in Q (f) whose norm is ±7.

Suppose that a = a + bV-6 with a, b E Z is an integer in Q(V) such

that N(a) = a2 - 6b 2 = ±7. In modulo 7, the equation becomes:

18



a2 +b 2 a2 —6b 2 E±7E0 (mod 7).

Since 7 is a rational prime such that 7 3 (mod 4), then the equation
a2 + b 2 E 0 (mod 7) has the unique solution a b 0 (mod 7)[1].

Hence,71a and 71b. Therefore 491a 2 and 491b2.

Then, 491(a2 - 6b 2 ). Therefore, 49 1 ± 7.

This is a contradiction. Therefore, 7 is prime in Q (V).

Definition: If a and /3 are nonzero integers in Q (v') such that

a = /?E where E is a unit, then a is said to be an associate of /?.

For example, 2 and 2 i are associates in Q (Vi).

'Theorem 10: Leta and /3 be integers in Q(sIi).

a) a is an associate of /3 1ff fl is an associate of a. (a and fl are called

associates.)

b) a and /3 are associates if a 113 and /3Icr.

c) If a and /3 are associates and 8 is an integer such that cr16 then

/316.
d) a is prime 1ff every associate of a is prime.

Proof:

a) Suppose a is an associate of /3. Then, there exists a unit E such

that a = /3E. Since E is a unit, then there exists an integer 6 such

that E6 = 1. Then, 6a = 6f3E. Hence /3 = 6a where 6 is a unit.

Therefore, /3 is an associate of a. It can be shown similarly that a is

an associate of /3.

19



b) Suppose a and 8 are associates. Then, there exist units E1 and
E2 such that a = E1 f3 and f3 = E2 cr .Then cr113 and [3Ja.
Conversely, Suppose that cr113 and 131cr. Then, there exist
integers 61 and 62 such that a = /38k

and ? = cr62 . Then, f3 = 1361 62 . Then 61 82 = 1. Consequently

Si and 62 are units. Therefore, a and f3 are associates.

c) Suppose a and f3 are associates and S is integer such that cr 1 8. We
show that 8 l 8. Since a I S , then there exists an integer 81 such

that 8 = (51 a. Since a is an associate of 8, then there exists a unit e
such that a = El f3. Therefore, S = 813. Hence, 13J8.

d) Let a be a prime and 13 an associate of a. We show that /3 is prime.

There exixts a unit El such that a = /3 . If /3 is not prime, then

there exixt two nonzero, nonunit integers /3 and ,2 in Q (Vii) such

that /3 = f1 f32 . Then, El f3 = (E1 131 )132 . Then, a = (El f31 )f32 . Since

i/3 and f2 are nonzero and nonunits, then a is not prime. This is

a contradiction. Therefore, /3 is prime. Conversely, suppose 6 is a

composite integer and an associate of a.We show that a is

composite. There exists a unit E such that a = ES. Since 8 is

composite, then there exist two nonzero, nonunit integers fl, and

132 such that S = /31/32 .Thus, a = E/31 /32 .We also have

IN(a)I	 IN((5)I ^ 2. Therefore, a is not zero, not a unit, and not a

prime. Hence, a is composite.

20



Theorem 11:

If a is not a unit, then a can be written as a product of

a finite number of primes in Q (Vii).
Proof:

Suppose a is a nonzero, nonunit integer in Q (Vi). We
show by induction on IN (a) I that a can be written as a product of
finitely many primes.

If IN(a)I = 2, then a is a prime and we are done. Suppose
theorem 11 holds for all integers a such that IN (a) I < k. We show
that theorem 11 holds for an integer a such that
IN(a)I = k.
If a is prime, then we are done. If a is composite, then a =

where the integers a1 and )3 are not units and are such that
IN (cr1 ) I < IN (a) I and I N (j3) I < IN (a) I. Since a1 and fl, can be
written as products of primes, then so can a.

Remark: This theorem shows that every nonzero, nonunit integer in

Q (Vii) can be written as a finite product of primes.
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VI. Unique Factorization Domains

Definition: Suppose Q (Ji) is such that if a is a nonzero, nonunit integer

in Q (Vd) and there are two factorizations of a, say

a - 	 itr and a =E' it'1 1r' 2 it ' 5 where ec and E ' are units and

1, it2, itr' it' l,	 it's are primes not necessarily distinct, then

l)r=s

2) The primes 7t'1, it'2, 7t'5 can be rearranged in

such a way that itj and it'j are associates for each j E (1, , r}.

Then, we say that the set of integers in Q (Vii) is a unique

factorization domain (UFD).

The following statements are equivalent:

1) The set of integers in Q (Vi) is a UFD.

2)Q (Jd) has the unique factorization property.

The next theorem gives a necessary and sufficient condition

for Q (Ii) to have the unique factorization property.

Theorem 12: The set of integers in Q (/i) is a UFD if Q (V' ) is such that

if 7ra/1? where it is prime and a,/ are integers then, itl a or irIf.
Proof:

Necessary Condition:

Suppose the integers in Q (V'i) form a UFD and suppose
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ni aI? where it is prime and a, fl are integers.We show that 7r a or n113.

Since Tr i al? , there exists an integer 8 such that a/9 = Sir.

Note that af3 is not a unit. Otherwise, it would be a unit. Therefore,

a and j9 cannot both be units.

By writing a prime factorization of 8, a and /1?, we get:

8 = Eit11r2 ... ira , a =	 ... ir and f3 = E21r1"1r2" ... n" where:

1) E, El and E2 are units.

'2) it1, 7T2, ... , ira , ir, it, ... , ir, it, rr, ... , ir. are primes.

3)n, r, and s are natural numbers which might be zero in case 8, a or

/9 isaunit.

If  is a unit, then n = 0 and 6 = E. Then, a/9E1r and hence, af3Iir. Since

it is prime, then either a or ,G is a unit.

If a is a unit, then fl is not a unit and it = E1 f3. Therefore it and /9 are

associates. Thus, in !?. Similarly, if /9 is a unit, TrIa.

If 6 is not a unit, then n ^ 1. Let E = 1. We have:

irit1 7T2 ... ir = E162itit ... irit nr' ... ir . Since a and /3 are not

both units, then one of the primes on the right hand side of

the equation say itj divides it. Hence it and in, are associates and 7r7r1.

If 7ri is a factor of a, then in Ia.

If 7r i is a factor of fl, then 7T !?.
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Sufficient condition:

Suppose Q (V'-d--) is such that if it I afl where it is prime and a, fl are

integers, then irla or itIfL Suppose a is a nonunit integer in Q(Vd) such
that a-"= E7T11t2 ... it = £1t1 its (1)

We show that r = s and for any i E [1,2, ... r}, it1 and it ' 1 are associates.
Either r !^; s or s < r.We may assume that r :5 s. Since 7t1 divides a and
consequently all associates of a, then 7t1 I(it •.. ir_ 1 )ir' 5 . Thus
it1 Jit ... ir_ 1 or it1 Iit'. If it1 Iit' . , then it1 and it's are associates.
Otherwise 7T1 I(it ... it_2)7T ' 5_1. Similarly, if it1 and it'_ are not
associates then 7T1 I(it ... 7T_3 )7r ' 5_2 . We continue in the same way.
Hence, 7t1 is an associate of one of the primes it, it ... it. By
renumbering the 7r'1 s, we prove that 7t1 and Tt'i are associates. Thus,
7r 1 = E171 where El is a unit. Hence (1) becomes

L7T2 ... itr = (E'E1)it... it, where E ' El is a unit. We now repeat the
process with 7T2 and show that 7t2 and 7T'2 are associates. We repeat the
process for all it 1 , i E [1,2, ... r - 1) and we get that it1 and 7t' 1 are
associates. Then, (1) becomes Eitr = (E'E1 ... L_i)1r... ir where

Er_i is a unit. If r <s, then it... it is a composite number.
Hence itr is a composite number. This is a contradiction. Therefore r = s
and Eltr = E"it'r where E" is a unit. This completes the proof.

Recall that if a and b are relatively prime positive rational integers such

that ab = c where c is a positive rational integer, then there exist

positive rational integers d and e such that a = dnl and b = eti.
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We generalize this theorem to Q (v').
Theorem 13:

Suppose the set of integers in Q (\fa) is a UFD.

Suppose also that a, /3 and y are integers and E is a unit in Q (v'i) such

that a and /3 have no common factors other than units.

If af3 = ey 71 , then there exist units E ' and E " and integers 8 and ' in

Q(sld) such that a = Z8 and /3 =

Proof:

• If y is a unit, then aj9 is a unit. Thus, a and /3 are units. In this case the
theorem is trivial: We put E ' = a, E" = /3 and 8 = = 1.

• If y 0, then a = 0 or /3 = 0. Since every integer in Q(Ii) divides 0, the
only way a unit divide a is that /3 is a unit and vice versa. The theorem is
trivial in this case with one of 8 and ' equal to zero and the other equal to
one.

• Thus, we may assume y is not zero and not a unit. Hence, we may write
= 1T1 1T2 itr where 7T1, 7t2 , ... 7ur are primes some of which may be

associates. We show that a is a unit multiplied by an nth power. The proof
for /3 is identical. If a is a unit then set = a and 6 = 1. Thus, we may
assume a is not a unit. Since y # 0 then a # 0. Hence, we factor a into a
product of primes say a = ii l 2 ...	 . We get 7T ,17T 2	 f3 =

By the unique factorization property, it ' 1 is an associate of
one of the 7t1 s and the it s can be renumbered so that it 1 is an associate of

it1 .Now, if any associate of 7t1 divides /3, then so do it1 and it'1. Thus, it'1
divides a and /3. This is impossible. Thus, it1 or its associates must show up
n times among the primes 7E'1, 7[' 2, ... ir' . By renumbering, if necessary, we
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may assume 7t
1
1, 7t2, ... it ' are associates of m 1 .This also means that s ^! n.

Hence, there are units Li, £2, ...	 such that
7T  = El 7T1, 7T2 = E2 7T1 , ... 1t j = En itl and thus
itif2 ... it' = (2 ... £)7t1 (1)
Ifs = n, then we are done since the left hand side of (1) is a. Ifs > n, we
divide both sides of (1) by 7r 1 and get

(El E2... E)it n+1 it n+2	 s13 =	 Tr (2).

We now repeat the above process. By the unique factorization property one
of the itj s is an associate of it' n+1 By renumbering, if necessary, we may

assume it2 is an associate of it' +. No associate of 72 divides /3, then
7T n+1 divides /3 as well as a. Thus, 7t2 or its associates must show up n
times among the primes 7r n+1 n+2,... it ' and these may be renumbered
so that it n+1' 7T n+2' 7T2n are associates of 7t2. It follows from this that
s 2! 2n. It also follows that there are units En +1' E +2' E2n such that

lt'n+l = En+1 1t2, it2 = En+2 it2, 7T 2n = E2n7T2 and thus

7t n+1 7T n+2 Jt fl = (Efl +i Efl+2 ... 37r2 (1). Ifs = 2n, then
En) (iriit2) and we are done. Ifs> 2n, then we divide both sides

of (2) by it2 and repeat the process a third time. Since there is a finite
number of primes in the factorization of a, the repetitions of this process
must eventually come to an end. When we have gone through this process k
times, we will have fdund s = kn and we will have reached the it ' s and the
it s and found the units Li, £2, £kn such that
a = it l 2 it ' kn = (El E2 Ekn)(itlit2

This completes the proof.

Theorem 14:
Let a and b be rational integers not both zero such that gcd(a, b) = k.

If a is an integer in Q(Vi) such that ala and aib then alk.
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Proof:
Ifgcd(a,b) = k, then 3 e,f E Z such that k = ea + fb. Since e and f
are rational integers, then they are integers in Q(Vi). Since ala and alb,
then a l ea + fb. Therefore, alk.

Example 4:

We show that the set of integers in Q (v') is not a UFD.

We have: 21 = (3)(7) = (i + 2/i)(1 - 2J).

a) We show that 3 is prime in Q (%I) . Suppose 3 = af? where
N(a) > 1 and N(fl) > 1. Since 9 = N(a)N(f.fl , then
N(a) = N(f3) = 3. If a = a + b'/ where a, b E Z, then
N(a) = a 2 + 5b 2 = 3.
If b 0, then a 2 + 5b 2 > 3. This is impossible.
If b = 0, then a 2 = 3. This is impossible for a E Z. Hence, 3 is prime

in Q(V).

b) We show that 7 is prime in Q (Vd). Suppose 7 = af3 where N (a)> 1

and N (ffl> 1 . Ifa=a +bV  where a,bE,then
N(a) = a2 + 5b 2 = 7. If a> 1 and b # 0 then N(a) > 7. Thus,

a = 1 or b = 0. If a= 1, then b 2 = 6 . This is impossible for b E Z.

If b = 0, then a2 = 7. This is impossible for a E L Thus, 7 is prime

in Q(si).
c) We show that 1 ± 2iI are primes in Q (V). Suppose

1 ± 2f = af3 where N(a)> 1 and N(f3) > 1. Since

N(1 ± 2V) = 21 = N(a)N(f3), then N(a) = 3 or N(13) = 3.

This is impossible. Thus, 1 ± 2v' 	 are primes in Q(T).

Therefore, the set of integers in Q (I) is not a UFD.
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VII. Euclidean Fields

Definition:
A quadratic field is said to be a Euclidean field if it has the following
property:

Given integers a and 13 in Q (Vii) with 13 * 0, there exist integers
y and 6 such that a = yf3 + 6 with IN(6)1 < INCLOI or 6 = 0.

Theorem 15:

Let Q (Vi) be a Euclidean Field. If a and fl are integers not both zero

then there is an integer 6 in Q (Va) such that;

a) SIa and 6113.

b) If y is an integer such that yla and v1/3 then yf&
c) An integer 6' has the above two properties iff 6' is an associate of

6.

d) If 6 has properties (a) and (b), then there are two integers

ç7 and il such that 6 = a' + 137j.
6 is called the greatest common divisor if a and /3, and we write
S =gcd(a,f3).

Proof:

Since a and /3 are not both zero, we may assume /9 * 0. Since

Q (V) is a Euclidean field, then J integers 81 and i?i such that

a = Sj ft + fl, with IN(fl) l > IN(/31 )l. If /1 = 0, take 6 = 9 and we

are done. Otherwise, there are integers 82 and f2 such that
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13 = 62fll+132 with I N (13k) I > I N (132)1 . If 132 = 0, take 8 = 13i and we
are done. Otherwise, there are integers63and fl3 such that )9 =

63132 +133 with IN(ft2 )I > IN(133)I.

Now continuing in this way, we obtain a sequence f3, /32,133 ... of

integers such that IN(/3) I > IN(P1 ) I > IN(/32 ) I...

Then, (IN (f3) I) is a strictly decreasing sequence of positive

rational integers.

Thus, this sequence is finite and has a last term say IN (f3,) I.

If f # 0, then	 + i such that I N (/3) f > IN (13 + 1)1 . This is

impossible. Hence, fl = 0.

Thus, we get the following n equations:

a=81 f3+f31	 (1)

/3 =82/31+132	 (2)

131=83132+133	 (3)

= 6fl_2f3fl_3 + 13n-2 ---(n - 2)

13n-3 = 8fl _1/3fl _2 +	 ---(n - 1)

/3n-2 = 8nfln-1 ---(n)
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Let 8 = fin—i.

Equation (n) implies fin-i 113n-2

Equation (n - 1) implies fl, -i 1 fin-3

Equation (n - 2) implies fin—i 1 fin-4

By going up from Equation (n) to (1),we get a l a and SIP.

Next, we show that 8 is a linear combination of a and fl.

Equation (n - 1) implies fin-j= fin-3 - 6n-1fin_2.

Equation (n - 2) implies fin-2 = fin-4 - Sn2fin_3. Replacing fin-2 in

the first equation, we get

fin—i = fin-3 - Sn_i (fin-4 - (57l-2f1l-3)

= 8n1fin4 + (1 + (5fl_2)fifl_3 . Therefore, fin-1 is a linear

combination of fln-4 and fin By using equations (n - 2) to (1) in

succession, we see that 8 = fl,, -, is a linear combination of a and fl.

Therefore, there are integers ' and ij such that S = a' + /3ij. Clearly,

any divisor of a and fl divides S. Thus, 8 = gcd(a, fl).

We still need to prove Property (c):

Note that any associate of S has Properties (a) and (b).

Conversely, suppose 8' has Properties (a) and (b).

We show that:

8' is an associate of S.
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We have: 61a, 6 1/3 , 8a and 6, 113. By using Property (b) we get

8 1 6' and S' 1 6. Hence, 8 and 6' are associates. This proves Property
(c). Next, we show that 8' is a linear combination of a and 13.
Since 8 and 6' are associates, then there exist a unit E such that
6' = ES. Let 6 = at' + fhj.Then 8' = a(E) + 13(E). Hence, S'can be
written as a linear combination of a and /3. This completes the proof.

Theorem 16:

A Euclidean quadratic field has the unique factorization property.

Proof:

Let R be the set of integers in the Euclidean field Q (V1).
Since R is a Euclidian ring, then R is a PID . Therefore, R is a UFD.

Remark: There are quadratic fields with the unique factorization

property which are not Euclidean, for example, the set

R = ta + b 1+: a, b e ZI is a PID that is not Euclidean. This will be

proved later in Theorems 19 and 22.

Theorem 17:

If d E (-11, —7, —3, —2, —1,2,3,5), then Q(Vi) is Euclidean.

Proof:

1) Suppose d E f-2,-1,2,31. Then, d 1 (mod 4).
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Let a and /3 be integers in Q(Ii) with /3 # 0. Then, = x + Y's/-
fl

where x,y EQ.

There exist integers r, s E Z such that I  - r  	 and I -sI <

Let y=r+siJ and 8=fl[(x—r)+(y—s)\1d]=fl(—y)=

a - fly. Then a = fly + 8. Since r, s E Z, then y is an integer in

Q(v'd). Since S = a - fly, then 8 is also an integer in Q(Vd).
Now IN(8)I = IN(fl)IIN[(x - r) + (y - s)iJd]I

= IN(fl)II(x—r)2—d(y—s)2I.

But I(x—r)2 —d(y—s) 2 I Ix — rI + I—dIIy—s2
(1)2(1)2

The above inequality becomes an equality iff

d=3 and Ix—rI=ly—sI=.

In this case, I (x - r) 2 - d (y - S)2 1 =- G) I = < 1.Thus,

for all values ofd we have I(x —r) 2 - d(y — s) 2 1 < 1.

Hence, IN((5) I < IN(fl) 1, proving that Q (v') is Euclidean.

2) Suppose d E [-11, —7,-3, 51, then d 1 (mod 4).

Let a and /3 be integers in Q(V) with /3 # O.Then,	 x + ys/
fl

where x,y E Q. There exist r, s E

such that 1 2y - s  :!!^ and KX  - ) - r 

Let y r + s	 .This is an integer in Q (v'a) since

dEl (mod 4).
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Let6=/3[(x_r_)+(y_M1=/3(_y)=a_y/3,

then a = y,8 + 8.Since y is an integer, then S = a - yf3 is also an

integer. Now I N (8)I = I N (fflI (x _r_j)2 - d(y_)I

< IN(8)I(+ii(jg))

= IN(13)I 
(

1 ' )
 < IN(fl)j.

Hence, Q (Va) is Euclidean. Therefore, Q (v') has the unique

factorization property.

Theorem 18:

Suppose d < 0 then Q(Ii) is Euclidean iff d E [—ii, —7, —3, —2, —1).

Proof:

If d E {-11, —7, —3, —2,—i), then Q(v'a) is Euclidean by Theorem 17.

We show that if d < 0 and d iZ [—ii, —7, —3, —2,—i), then Q(v'i) is not

Euclidean.

Suppose d :5 —5 and d i(mod 4). Let a = i + Ii and /3 = 2 be

integers in Q (Vd). If Q (v'd) is Euclidean, then there exist integers

y = a+b'Jt and ij = c+eVinQ(V) with a,b,c and erational

integers and N(ij) <4. Now, we have 5 :5 c 2 + 5e 2 <c2 - de  <4. This

is a contradiction. Therefore, Q (/) is not Euclidean.

Suppose d	 15 and d i(mod 4). Let a = +	 and /3 = 2 be

two integers in Q (Ji). If Q (J) is Euclidean, then there exist integers

Y = + J1 and rj = + \fJ in Q (Vi) with a, b, c and e rational
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integers both even or both odd and N(ij) <4. Now, we have 4 = +

+ 
ise2	

-	 <4. This is a contradiction. Therefore, Q (Vi) is not

Euclidean.

Lemma 1: (Criterion of Dedekind and Hasse)

Let R be an integral domain and f a function from R - {O} to 7Z
satisfying f(a) > 0 for a # 0. Suppose that f satisfies the condition:

If ci, /3 E R - (0) such that f(f3) :!^, f(a) then /3 divides a in R or there
exist s, t E R such that 0 <f(sa - tf?) <f(f3). Then R is a PID.

Proof:

Let I be a non zero ideal in R. Since 0C f (1) C N, then by the well

ordering principle f(I) has a least element. Thus, we can choose 0 # /3 E

I such that f(f3) is minimal. Then, for every a E R - [0), f(f3) < f(a).

If /3 does not divide a, then there exist s, t E R such that

0 <f(sa - tf3) <f(f3), this is a contradiction. Thus, /3 divides a. Thus

I=Rfl.

This completes the proof.

Theorem 19:

If d E [-1, —2,-3,-7,-11,-19,-43,-67,-163j, then the set of

integers in Q (Ji) is a UFD.
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Proof:

If d E (-1, —2,-3,-7, —11), then by theorem 18 Q(Vi) is Euclidean

and thus a UFD.

For d E t-19,-43,-67,-1631, we show that Q(V-19) is a PID and

hence a UFD. For d E (-43, —67, —163) , the proof that Q(V1) is a PID

is much more complicated.

The set of integers of Q(V-19) is R = ta + b	 a, b E Zj. We

show that the norm function N from R to Z satisfies the function f
stated in the criterion of Dedekind and Hasse. First, for every

a E R - (0), N(a) # 0. Second suppose a and f3 are non zero elements

in R such that fl does not divide a in R. Hence,

E Q (\I-19) - R. Since N is multiplicative, the condition

0 < N(sa - tf3) <N(13) is equivalent to 0 <N ( s - t) <1 (1). Tofl
show that R is a PID it is enough to prove (1) for a and fl and for some

s, t E R. Since fl does not divide a in R, we write
a =	

C

a+b

Ii'	 E Q(V-19)

with a, b, c E Z such that gcd(a, b, c) = 1 and c> 1. Then, there exist

x,y,z E Z such that ax + by + cz = 1. We have 4 cases to examine:

Casel: For c > 5

By the Euclidean division of integers, there exist q, r E Z such that

ay— 19bx=cq+randIrf< .Lets=y+xVi9and

t = q - zV-19, then N G s - t) 
= (r)2 

+19(') 2.

If c = 5, then r :!^ 2. Hence, N (s - t) 
()2 

+ 19 
() 2 = 

<1
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If c> 5, then N (—a s - t) 
:!^ (,)2 

+ 19 
()2 

<1.

In both case N ( s - t) > 0 since s - t # 0. Thus (1) holds for c ^!! 5.

Case 2: For c =2
a a+bVT	 a—b	 i+JTfSince =	 2	 = 2 

+ b 2	 R, then a and b are of opposite

panty. Let s = 1 and t = 
a—i+bV T	 a—b-1

 2	 = 2 
+ b 

2

Since a and b are of opposite parity, then 2 divides a - b - 1. Hence,

S' t E R and then N( s - t) = N (1) = <1.

Case 3: for c = 3
First, we notice that for all x E Z, x 2 0(mod3) or

x2 1(mod3). Then, a2 + b 2 0(mod3) iff a2 0(mod3) and

b 2 0(mod3) iff a O(inod3) and b O(mod3). Then 3gcd(a, b, c).
This is impossible since gcd(a, b, c) = 1. Therefore, a2 + 19b 2 a2 +

0(mod3).Then, there exist q, r E Z such that a 2 + 19b 2 = 3q + r

such that r E (1,2). Let s = a - bV-19 and t 9, then N (s - t) =
fl

N() =E{}. Thus, N(s_t) <1.

Case 4: for c = 4
Since gcd(a, b, c) = 1, then a and b are not both even. We have two

cases:

i) If a is even and b is odd, then

a2 + 19b 2 a2 —b 2 0(mod4). Then, there exist q,r E ?Zsuch

that a2 +19b 2 =4q+rando<r<4.Letsa—IW-19 and

t = q. Then, N(s - t) = N (r) = .Therefore (1) holds since

0 <r <4. A similar proof is done in the case a is odd and b is even.
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ii) If a and b are both odd then a ±1 or ±3(mod8). Hence a2

1(mod8). Similarly, b 2 1(mod8). Thus, a2 + 19b2
a 2 + 3b 2 (mod8) 4(mod8). Then, there exists q E 7Z such that

a2 + 19b 2 = 8q + 4. Let s a 	 9	 (a

2	
and t = q, then N	 - t) =

fl

N
() = . This completes the proof.

This proves that N satisfies Lemma 1 and hence R is a PID.

Consequently R is a UFD. Therefore, Q(V-19) has the unique

factorization property.

Theorem 20:

Suppose d < 0 then the set of integers in Q (Va) is a UFD iff

d E t-1,-2,-3,-7,-19,-43,-67,-163j.

The Sufficient condition is proved in theorem 20. The proof of the

necessary condition is so lengthy that Stark omitted it from his book "An

Introduction to Number Theory" Chapter 8 page 295. We show later that

if d 1 (mod 4) and d <0, then the set of integers in Q (Vii) is a UFD

if d E [-1, —21. But first, we need the following definition.

Definition:

Let z4J] denote the set of all numbers in Q (Va) of the form

a + bIwhere a,b EL

i.e. 4V] = [a + bsfJ E Q(V): a, b E
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We note the following assertions whose proof is trivial.

1) If d i4 1 (mod4), then Z [Nfd-] is simply the set of integers in Q (Vi).
2) If d 1 (mod4), then Z 2 is simply the set of integers in

Q().
3) If a, fl E 7L[V], then a± fl, af3 E 7Z[I].
4) Let a, 1 E Z [Id] and a # 0. We say that a divides f in zz[J] if

there exist 8 E Z [Vi] such that f = 8a . Equivalently, - E 7Z[Ji].

For example, 2 1( 1 + /) in Q (V) but 2 does not divide

(1+I)in4I].

5) A unit in 7Z[V] is a number that divides 1.Thus,

E is a unit in ZZ[v'd] if N(E) = ±1.

6) The definition of primes and associates are similar to those in

Q(V).

7)Ifa=a+b/E7Z[iJ], then N(a)=aä=a2—db2E'L

8) If d > 0, then [v'd] has infinitely many units.

9) A nonzero nonunit element of z[Vd] can be factored into a

finite product of primes.

10)zz[Vd] is a UFD if factorization into primes is unique up the

order and associates.

11)Theorem 14 is valid in 7Z[\f.Thus,

7Z[\f ] is a UFD if ?Z[V] has the following property:

If it I a/9 where it is prime and a, fl E Z [v'], then it I a or it I f3.
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Theorem 21:

If [V-d] is a UFD, then 2 is not prime in 7Z[Vd].

Proof:

Either d or (d - 1) is even. Then, 21d(d - 1).Now

(d+f)(d—/d) d2 —d = d(d-1).Thus,2I(d+vi)(d—'J)

but 2 does not divide neither (d + /i) nor (d -

Since [/] is a UFD, then 2 is not prime in ZZ[Vd].

Theorem 22:

If d <0, then 41] is a UFD iff d = —1 or d = —2.

Proof:

We will show that if d :!^ —3 or d 1(inod 4), then 2 is prime in

zz[I]. Note that we already know that [sJi] and zz[V] are UFD's.

Suppose Z [J] is ä UFD. Then, 2 is not prime in Z [/d]. Then,

there exist a, fl E Z [/] such that 2 = af and IN(cr)I > 1

and IN (fl) > 1.

N(2) = 4 = N(cr). N(f3) . Since N(a) and N(/3) are rational integers of

absolute value greater than 1, then IN(a)I = 2 IN(P)l = 2.

Thus, if 2 is not prime in [ViI, then there exists

a = a + b/—d E 4s./iI such that N(a) = a2 - db 2 = ±2.
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Case 1: Suppose d < —3.

If  *0, then a 2 —db 2 = a2 +(—d)b 2 >— 0+3(1) = 3> ±2. This isa
contradiction.

If b 0, then a2 - db 2 = a2 = ± 2. This is a contradiction since a E Z.

Case 2: Suppose d 1 (mod 4).Thus,N(a) = a2 - db 2 = ±2 .Thus,

a2 - db 2 a2 - b2 ±2 2 (mod 4) . The square of a number

modulo 4 is either 0 or 1. Then, a2 - b2 0,1 or —1(mod4). Thus, the
equation N(a) = ±2 has no solution.

Therefore, 2 is prime and Z[V] is not a UFD.

Lemma 2:

Let R = a+ b 1 	 a,b E	 Then, 2 and 3 are primes in R.

Proof:

a) We show that 2 is prime. Suppose there exist elements a and f in R
such that 2 = af3 and N(a) > 1 and N(f3) > 1. We have
4 = N(a)N(f3). Since N(a) and N(ffl are rational integers greater

than 1, then N(a) = N(f3) = 2. There exist a, b E such that

a = a + b	 Then, N(a) (a + b)2 + 1%2 
If b * 0, then

N(a) > 19 . This is a contradiction. If b = 0, then N(a) = a2 = 2.

This is impossible for a E Z. Therefore 2 is prime.
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2
a = a + b	

bThen, N(a) = (a +	 +
22)

.Ifb *Othen
19b2

4

b) We show that 3 is prime. Suppose there exist elements a and 9 in R
such that 3 = af3 and N(a) > 1 and N(f3) > 1. We have
9 = N(a)N(/9). Since N(a) and N(j9) are rational integers greater
than 1, then N(cr) = N(f3) = 3. There exist a, b E Z such that

N(a) > 19 . This is a contradiction. If b = 0, then N(a) = a 2 = 3.

This is impossible for a (-= L Therefore, 3 is prime.

Theorem 23:

The set of integers R in Q(V-19) is not a Euclidean Domain.

Proof:

Note that:

1)The set of integers of Q(V-19) is R = ta + b 2	 a, b E

2) The only units in R are ±1.
3) 2 and 3 are primes in R.

Suppose there exists a Euclidean function d on R. Choose m E R such

that d (m) is as small as possible and such that m is not a unit and not
zero. First, we divide 2 by m and get a quotient q E R and a remainder

rER:

2 = mq +r with d(r) <d(m) or r = 0. Then, r E f0,1, —11. If r = 0,

then m divides 2 and hence m = ±2. Similarly, if r = —1, then m = ±3.

If r = 1, then m is a unit and this cannot be. Let 6 = (1 + V-19).
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Next, we divide 8 by in and we get: 8 = mq ' + r' with d(r ' ) <d(m) or
= 0 . Then, r ' E to, 1, —1). Thus, either 8,8 + 1 or 6 - 1 is divisible

by m. This is a contradiction since m E (-2,2, —3,3).

For real quadratic fields, we state the following theorem without proof.

Theorem 24:[l]

Let 2 :!^ d < 100. Then,

a) If d E (14,22,23,31,38,43,46,47,53,59,61,

62,67,69,71,77,83,86,89,93,94,97), then the set of integers in

Q (/i) is a UFD but not Euclidean.

b)Q (iJ) is Euclidean if

d E (2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73).
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Conclusion:

As a result of this study, we are able to classify the quadratic fields as
follows:

1) The complex quadratic fields which are Euclidean are the ones that
correspond to d E [-11, —7, —3, —2, —11.

2) The complex quadratic fields which are PIDs but not Euclidean are the
ones that correspond to d E (-19, —43, —67, —163).

3) The real quadratic fields which are Euclidean with 2 :!^ d < 100 are
the ones that correspond to
d E (2,3,5,6,7,11,13,17,19,21,29,22,27,41,57,73).

4) The real quadratic fields which are UFDs but not Euclidean with
2 :!^ d < 100 are the ones that correspond to
d E [14,21,22,23,31,38,43,46,47,53,59,61,62,67,69,
71,77,83,86,89,93,94,97).

The problem of finding all real quadratic fields which are UFDs is still

wide open.
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