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Abstract  

Chronic sleep restriction (CSR) has been implicated in higher risk of insulin resistance (IR) 

and immune-metabolic dysfunction.  No studies investigated the effect of CSR on macrophage 

differentiation in vWAT in relation to leptin synthesis and glucose homeostasis. Therefore, this 

study aimed at assessing blood glucose levels and vWAT expression of leptin, CD38, and 

CD163 following CSR. 

Adult male C57BL/6 mice were housed under 12:12 L/D cycle (lights on at 0700 hrs) with 

free access to food. Following a two-week acclimatization period, animals were divided into 2 

groups: 1) control (C, N=8) with normal sleep and 2) experimental/sleep restricted (SR, N=7) 

subjected to 11 days of sleep restriction. All animals underwent timed weekly measurements of 

body weight (BW), food consumption, and fasting blood sugar (BS) for the duration of the 

experiment.  They were sacrificed at the end of the study (at 2400 hrs): BW, vWAT weight, and 

BS were measured; vWAT was processed for leptin, CD38, and CD163 immunocytochemistry. 

Compared to C, SR mice had a significantly lower BW (21.42±1.72 g vs 19.77±1.14 g, 

respectively; P=0.006) and vWAT weight (4.25±0.77 % vs 2.35±0.39 %, respectively; P=0.000), 

and higher BS (105±2 mg/dl vs 150±4 mg/dl, respectively; P=0.000) at the end of the 

experiment.  There was no significant difference in mean food consumption between the 2 

groups, even though SR ate more.  Qualitative protein analysis of experimental vWAT revealed 

the presence of CD38-immunoreactive cells, but not leptin or CD163.  In contrast, control 

vWAT showed both leptin- and CD163-, but not CD38-, immunoreactivity.  

These findings suggest that 1) CSR is associated with a rise in BS, BW loss, absence of 

leptin synthesis, and expression of M1 (inflammatory) macrophages in vWAT, 2) the elevation 
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in BS and decrease in BW are probably related to disrupted insulin signaling rather than leptin 

dysregulation, and 3) the possible metabolic dysfunction accompanying CSR is probably related 

to leptin inhibition and/or inflammation-dependent pathways in vWAT.  Although this study 

could not establish a cause-effect relationship between inflammation and adipoinsular 

physiology in CSR, its basic findings may lend useful information to prospective studies in this 

area that may have important medical implications.  

Keywords: CD163, CD38, hyperglycemia, insulin resistance, macrophage differentiation. 
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I. INTRODUCTION



 1  
 

 

Sleep is a basic biological need that, like any other, is indispensable for the maintenance 

of overall health and well-being.  The fact that humans spend about one-third of their life 

sleeping (or, at least, attempting to) reflects the neurophysiological significance of adequate 

sleep on the central pathways implicated in immune-endocrine regulation and energy 

homeostasis.  Yet, sleep problems, manifest as altered quality and/or quantity, remain a real 

culprit and major public health concern of modern societies that have traded off sleep to 

`accommodate social and work schedules.  Studies have shown that the worldwide nocturnal 

sleep duration has decreased by 1-2 hours during the second half of the 20th century (Van Cauter 

et al., 2008) and the incidence of obesity has concurrently doubled (Flegal et al., 2002).  

Furthermore, compelling evidence in the scientific literature links sleep disturbances in both 

quality and quantity (for example poor and/or shortened sleep duration) to increased morbidity 

and mortality from cardiometabolic complications and immune disturbances  (Irwin et al., 2016).  

Associated metabolic deragement includes impaired glucose and lipid metabolism (hyperglyemia 

and dyslipidemia, respectively) secondary to insulin resistance (IR), thus increasing the risk of 

developing diabetes mellitus type II (T2D), obesity, and metabolic syndrome (MetS) 

(Trouwborst et al., 2018; Grundy et al., 2005).  The prevalence of MetS is progressively rising 

such that, comorbid with sleep deprivation, it has become the major cause of mortality in 

developed and underdeveloped countries; studies show that the main driver of MetS is 

inflammation (Kassi et al., 2011; Chan et al., 2019).  Altered immune responses; on the other 

hand, implicate both the innate and adaptive pathways that mediate inflammation and T cell 

activity, respectively (Ghanem et al., 2019; Janeway et al., 2001).  Examples of impaired 

immune cell activity include increased infiltration of macrophages into tissues, such as white 



2 
 

adipose tissue (WAT), and their differentiation into the inflammatory phenotype, as well as 

elevated levels of inflammatory cytokines (e.g. Il-1  and IFN-), and acute phase proteins all of 

which play a major role in the modulation of sleep (O'Rourke et al., 2011; Fujisaka et al., 2013; 

Janciauskiene et al., 2011).  Noteworthy, the functional relationship between sleep and immunity 

is bi-directionally, that is inflammation causes sleep loss and vice versa.      

Visceral white adipose tissue (vWAT) plays a significant role in the pathogenesis of 

MetS and its physiology appears to be highly affected by sleep. The functional significance of 

vWAT lies in its leptin-mediated endocrine control of  the metabolic pathways that underlie 

energy homeostasis, such as regulation of insulin sensitivity and glucose homeostasis, as well as 

the secretion of pro- and anti-inflammatory mediators and complement proteins that mediate 

immune responses (Coelho et al., 2013; Paz-Filho et al., 2012).  In obese individuals and those 

exhibiting abnormal glucose metabolism, such as T2D, the cellular cross-talk between 

adipocytes and macrophages in vWAT is disrupted.  Obesity is associated with enlargement of 

adipocytes and resultant increase in the distance between these cells and vWAT vasculature, 

thereby inducing a state of tissue hypoxia (Liu, and Nikolajczyk, 2019; Lee et al., 2014; 

Trayhurn, 2013).  This hypoxic condition induces the expression of hypoxia-inducible factor 1 

(HIF-1) by adipocytes that, on long term, further intensify the metabolic and immune 

complications associated with obesity (Lee et al., 2014). In other words, chronic hypoxia has two 

major effects on vWAT: 1) it causes fibrosis of adipose tissues (Sun, K., et al., 2013) and 2) it 

results in increased infiltration of macrophages into adipose tissues in order to remove necrotic 

adipocytes, thus releasing in the process inflammatory cytokines (e.g. IL-6 and TNF-α) and 

increasing their inflammatory responses (O'Rourke et al., 2011; Fujisaka et al., 2013).  A 

remarkable shift or, in other words, differentiation of these macrophages into the inflammatory 
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(M1) rather than anti-inflammatory (M2) phenotype (Lumeng et al., 2007; Wentworth et al., 

2010). M1 phenotype is the most contributor to adipocyte inflammation in obese, because the 

numbers and frequencies of  this phenotype correlate with (IR) (Lumeng et al., 2007). In 

summary,  obese individuals and those exhibiting abnormal glucose metabolism, such as T2D, 

the cellular cross-talk between adipocytes and macrophages  in vWAT is disrupted due, in part, 

to increased macrophage infiltration into adipose tissue and biased differentiation into the 

inflammatory (M1) rather than anti-inflammatory (M2) phenotype.This, in turn, is believed to be 

linked to IR and abnormal carbohydrate metabolism. While findings link a potential role of 

altered macrophage differentiation to IR in metabolic pathologies, the implications of this in 

sleep restriction (SR) and, thus, the cellular mechanisms underlying the sleep-adipocyte axis are 

understudied. Whether insufficient sleep induces physiolgoical changes in the cellular activity of 

vWAT remains elusive.   

Several factors affect leptin synthesis and secretion by vWAT, including insulin and 

sleep.  There is an adipo-insular axis between adipose tissues and pancreatic β-cells via leptin 

and insulin, respectively: leptin inhibits insulin release while insulin stimulates adipocyte 

production of leptin (Kieffer and Habener, 2000; Kieffer et al., 1996).  This physiological axis 

appears to be disrupted in metabolic pathologies characterized by IR and inflammation.  

Furthermore, circulating leptin levels are decreased following acute SR in both humans and 

rodents (Spiegel et al., 2004), an effect that is partly attributed to the associated inhibitory effects 

of enhanced sympathetic outflow on adipocytes (Rayner and Trayhurn, 2001; Caron et al., 2018; 

Trayhurn et al., 1996). Sympathetic activation of adipocytes also results in increased release of 

free fatty acids (FFA) into the bloodstream, eventually leading to dyslipidemia and subsequent 
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development of peripheral IR and increased morbidity from cardiovascular complications (Caron 

et al., 2018).  

vWAT constitutes an important physiological link between immune and endocrine 

factors. Both immune and endocrine factors appear to interact with inadequate sleep to bring 

about metabolic dysfunction; however, the exact mechanisms by which sleep quantity affects 

adipocyte physiology is unclear.  Noteworthy, most of the studies done in this area considered 

acute, rather than chronic, SR paradigms that carried for 5 days at most and which did not 

examine the physiological interlink between macrophage phenotypic differentiation and 

adipokine expression.  For example, in healthy men, one night of acute sleep deprivation caused 

a reduction in the daily energy expenditure and increased postprandial plasma glucose which was 

attributed to impaired  insulin-mediated glucose uptake by tissues following sleep deprivation 

(Benedict et al., 2011).  The reduction in energy expenditure observed following one or 2 nights 

of sleep restriction was explained as due to an aleration in the body's sensitivity to catabolic 

signals, such as increased sympathetic outflow (Kato et al., 2000).   Decreased insulin sensitivity 

of tissues, including subcutaneous adipocytes, was also reported in non-obese individuals 

following 3 and 4 nights of restricted sleep (Klingenberg, et al., 2013; Broussard et al., 2012).  In 

addition, acute and chronic sleep restriction were shown to be associated with reduced leptin 

levels in girls and adolescent males, respectively, as well as elevated free fatty acid 

concentrations (Boeke et al., 2014; Spiegel et al., 2004; Donga et al., 2010). 

As such and to our knowledge, no studies have investigated the potential involvement of 

vWAT macrophage phenotypic differentiation and/or the cellular expression of leptin in relation 

to IR and aberrant glucose metabolism following chronic SR. Therefore, the present study aimed 

at gaining insight into the effect of chronic SR on adipose tissue physiology by assessing the 
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relative expression of M1 and M2 type macrophages in relation to intracellular leptin expression 

and blood glucose levels. This stems from our speculation that the same vWAT factors 

implicated in obesity may also underlie the metabolic and immune complications seen in chronic 

SR. It is plausible that, in the presence of IR, SR may push macrophage differentiation into the 

inflammatory pathways in visceral WAT which may negatively affect leptin synthesis, further 

exacerbating pancreatic insulin release and precipitating peripheral IR. Visceral WAT was 

chosen because it is closely linked wih IR and cardiometaolic complications. Therefore, test 2 

hypotheses: 1) that chronic sleep restriction (CSR) may interact with IR (or may favor a state of 

IR) to favor macrophage differentiation toward the inflammatory (M1) phenotype in vWAT, 2) 

that macrophages polarization may be associated with reduced leptin expression by adipocytes. 

Gaining insight into the physiological mechanisms interlinking sleep, adipocyte physiology, and 

IR may have valuable clinical implications in the management and treatment of sleep-related 

metabolic disorders, such as cardiovascular diseases, obesity, and MetS.    
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A. An Overview of Sleep: Architecture and Neuroendocrine Regulation  

Sleep is part of a daily biological rhythm that is indispensable for survival.  It is an active 

state during which central neural networks are remodeled and constituted and the body conserves 

energy.  Several brain regions interact to regulate the many aspects of sleep, such as its timing, 

duration (amount), and depth, and these include the hypothalamus, thalamus, forebrain, and 

brainstem (Telias and Wilcox, 2019; Brown et al., 2012).  A two-process model was put forth to 

explain how the sleep/wake rhythm is regulated, namely through the intimate interaction 

between a circadian process and a homeostatic one (Borbely and Achermann, 1999; Saper et al., 

2005). The circadian process is regulated by a central time-keeping system which determines the 

arousal state, that is the timing of sleep; the homeostatic process is linked to metabolism (and 

accumulation of metabolites during activity period) and controls sleep need or propensity (i.e. 

sleep driver) that usually builds up with prolonged wakefulness (Koh et al., 2008).  Conversely, 

the latter decreases in sleep. 

Just like any other endogenously-generated biological rhythm, the circadian (near 24-hour) 

control of the sleep/wake rhythm is carried by a master oscillator which, in mammals, resides in 

the suprachiasmatic nuclei (SCN), also refered to as the master clock or circadian pacemaker 

(Kwon et al., 2011).  The SCN is a group of neurons and glia located in the anterior 

hypothalamus that, by keeping track of time, entrain the various endogenous rhythms to the 24-

hour light/dark cycle of the external environment.  This is made possible because a 

subpopulation of SCN neurons receives photic input from the retina via the retinohypothalamic 

tract; light information is then transduced by other SCN neurons which project to various brain 

regions/nuclei, one being the pineal gland, to control neuroendocrine activity (e.g. melatonin 

secretion) (Grivas and Savvidou, 2007; Brzezinski, 1997).  Furthermore, the SCN, via the 
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autonomic nervous system and hormones, synchronizes (i.e. temporally couples) the activity of 

the various peripheral oscillators or clocks distributed in peripheral tissues, such as the liver, 

kidney, skin, and heart, as well as non-SCN brain regions (Astiz et al., 2019;  Mohawk et al., 

2012; Ueyama et al., 1999;  Kalsbeek et al., 2010).  This allows the temporal alignment of the 

entire circadian clockwork (or biological time-keeping system) to the external light/dark cycle.   

The arousal system is turned off in sleep and on in wakefulness. This is explained by the flip-

flop model which is composed of two components: reticular activating system (RAS) and 

ventrolateral preoptic area (VLPO).  RAS is a component of the reticular formation located 

anteriorly in the brainstem that is implicated in the regulation of the sleep-wake cycle and 

wakefulness (Arguinchona and Tadi, 2020).  It is composed of 4 main components, each 

containing groups of serotonergic, cholinergic, histaminergic, and noradrinergic neurons that are 

activated by the lateral hypothalamus (LH).  The latter releases the neurotransmitter orexin in 

response to light hitting the retina and this allows the transition from sleep to wakefulness 

(Nishino, 2011). Further regulation of sleep/wake states is brought about by the VLPO:  

inhibition of VLPO neurons by GABA and galanin activate wakefulness; whereas activation of 

these neurons by adenosine that acculmulates over the course of a day promotes sleep (Brennan 

and Charles, 2009). Therefore, RAS promotes waking, whereas VLPO promotes sleep. 

 During sleep the brain cycles through two phases that are distinguished by the differential 

pattern and intensity of neuronal activity in the different brain regions: rapid eye movement 

(REM), also known as paradoxical or dream sleep, and non-REM which is quiet or deep sleep.  

Each sleep phase is regulated by a specific region in the brain, with non-REM and REM being 

controlled by the homeostatic and circadian systems, respectively (Besedovsky et al., 2019).  

Unlike REM, non-REM is composed of 4 stages: N1, N2, N3, and N4, with N1 and N2 being 
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referred to as light sleep, whereas N3 and N4 are deep sleep stages (Medic et al., 2017).  In 

addition to the distinctive pattern of neuronal activity characterizing each sleep phase, the 

activity of some biological processes are also different between REM and non-REM.  For 

example, the heart and breath rates are decreased during non-REM as compared to REM (Medic 

et al., 2017; Purves et al., 2001). 

A non-dialyzable substance that has a control over sleep was first elucidated by Legendre 

and Pieron (1913) through their study on sleep-deprived dogs.  This study gained much interest 

and was later reinvestigated by Schnedorf and Ivy (1939).  They stated that their trials gained 9 

positive tests for the substance when they transfused cerebrospinal fluid (CSF) from sleep-

deprived dogs into normal recipients.  Monnier et al. (1964,1965) showed electrical stimulation 

in the intralaminary thalamus of rabbits resulted in the release of a dialyzable nonapeptidic sleep-

promoting factor of about 849 kD into the cerebral venous blood.  Later, they synthetized it and 

named it delta-inducing peptide (DSIP).  Pappenheimer et al. (1967) did further research on this 

factor; they showed that the infusion of 1-3 ml of CSF of sleep-deprived goats into cats improved 

sleep in those cats to about 12 hours.  However, because cats sleep most of time, they were not 

suitable models for this laboratory assessment. For this reason, pappenheimer et al. (1967) 

repeated their experiment on rats and goats because the sleep/wake cycle could be easily altered 

in rats and the shape and thickness of the occipital bone in goats are suitable for frequent 

withdrawal of CSF in the absence of anesthesia. The infusion of CSF from normal goats into rats 

showed slight changes in rodent activity, whereas the infusion of CSF from sleep-deprived  goats 

reduced the rats’ motor activity for several hours.  The researchers concluded that there was a 

humoral factor that improved sleep in those rats and reduced their motor activity.  In addition, 

another study also showed that the infusion of 0.1 ml of CSF from sleep-deprived goats into the 
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cerebral ventricle of rats resulted in an increase in slow wave sleep (SWS) of the latter (Fencl et 

al., 1971).  Fencl et al. (1971) isolated a dialyzable low molecular weight molecule from CSF, 

which he named factor S, that was shown to induce sleep in rats by depressing their motor 

activities and increasing SWS. This humoral factor S also induced sleep in cats (Pappenheimer et 

al.,1967).  Noteworthy, factor S was shown to be only induced by sleep and none of the other 

CSF constituents, such as serotonin, GABA, and glutamic acid (Fencl et al., 1971).  Furthermore, 

Krueger et al. [1980] extracted from human urine a substance that resembled factor S and which 

they named urinary sleep-promoting factor (SPU).  SPU is an endogenous factor S, known as 

sleep-promoting factor (SPF), that presents in the cerebrospinal fluid as a low molecular weight 

bacterial cell wall peptidoglycan known as muramyl peptide (Pappenheimer et al., 1967; 

Pappenheimer, 1983).   

 

1. Sleep Restriction: Causes and Physiological Consequences 

The worldwide prevalence of sleep restriction (SR) among the different age groups is 

attributed to several factors, both socioeconomic and biological.  Studies based on sleep quality 

and efficiency in children and adolescents have reported that these tend to have delayed bedtimes 

and less total sleep time a night, particularly on weekdays, than what is recommended for their 

age groups (Carskadon, 1990).  Changes in adolescent sleep patterns are attributed to an 

alteration in the circadian timing system that occurs at puberty (Carskadon et al., 1993).   In 

addition to the developmental changes, the absence of parental awareness about the importance 

of regular bedtiming and nocturnal sleep adequacy, as well as the presence of electronic devices 

in the bedroom at night are shown to alter both sleep quality and quantity (Fuller et al., 2017).  

Similarly, sleep studies in adults showed that the percentage of those who sleep less than 6 hours 
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a day, as opposed to the recommended 7-8 hours on average (Brooks et al., 2012; Chin, 2017; 

Church, 2012), is increasing with time (Knutson et al., 2010) .  SR in adults is partly linked to 

lifestyle behaviors, such as the consumption of caffeine, smoking, long work hours, work shifts, 

and increased accessibility to media, as well as an individual’s chronotype (Kabrita et al., 2014; 

Caruso, 2014; Levenson et al., 2016).  Furthermore, patients suffering from certain psychiatric 

disorders, such as depression, have impaired sleep continuity and disturbed REM and non-REM 

sleep (Armitage, 2007; Reynolds and Kupfer, 1987;  Benca et al., 1997).  Noteworthy, the 

aforementioned behaviors result in misalignment between biological (circadian) and social time, 

also termed social jetlag (Erin, 2011), which have adverse consequences on daytime performance 

and overall health in humans, particularly young adults (Nobis, 2016) .     

Among the adverse health consequences of restricted sleep is the increased risk of chronic 

diseases such as obesity, diabetes T2D, hypertension, and heart disease (Wu et al., 2014; Shan et 

al., 2015; Wang et al., 2015; Wang et al., 2016).  Some studies found an association between 

short sleep duration and the development and severity of T2D, along with the prevalence of 

cardiovascular diseases and mortality (Gangwisch et al., 2007; Cappuccio et al., 2011; 

Gangwisch et al., 2007; Knutson et al., 2006).  This association; however, cannot be reported as 

cause-effect relationship (Gangwisch et al., 2007; Knutson et al., 2006).  In addition, both animal 

and human studies show that long-term sleep deprivation or restriction weakens the immune 

system, thereby rendering the body more prone to infections and low-grade inflammation 

(Besedovsky et al., 2019).  For example, chronic sleep restriction in rats led to systemic bacterial 

invasion (Everson and Toth, 2000). The disruption of intestinal defenses and systemic invasion 

by the intestinal flora caused fatal sepsis in sleep-deprived rats (Besedovsky et al., 2019; Everson 

et al.. 1993).  SR has been also associated with mortality caused by an elevation of certain pro-
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inflammatory markers, such as IL-6, TNF α, IFN γ (Yehuda et al., 2009; Zager et al., 2007; 

Hurtado-Alvarado et al., 2013).  

 

2. Sleep Restriction is a Potential Risk Factor for Metabolic Syndrome 

Metabolic syndrome, named earlier Syndrome X by Raven [1988], is defined by a group 

of interconnected factors that immediately augment the risk of heart disease and T2D by 

resistance of target tissues to insulin action (Kassi et al., 2011; Reaven, 1988).  It is characterized 

by dyslipidemia, such as high triglyceride (TG) and apo lipoprotein B (apoB) and low high-

density lipoprotein (HDL) levels, in addition to hypertension and dysregulation in glucose 

homeostasis.  As such, there are two main components which are considered as core clinical 

manifestations of MetS: visceral obesity and IR (Kassi et al., 2011).  Because of differences in 

the definitions and components of MetS that were elucidated by various organizations, along 

with associated diseases and disorders, no exact definition and accepted pathogenic mechanism 

are set for this disorder. Pro-inflammatory diseases and sleep problems are shown to be 

associated with MetS, making the description even more sophisticated (Kassi et al., 2011).  

Whether MetS appears as a particular syndrome or a surrogate of combined risk factors is still 

unclear. 

The prevalence of MetS is progressively rising such that it has become the major cause of 

morbidity and mortality in developed and underdeveloped countries, especially with comorbid 

sleep deprivation.  As MetS is shown to be associated with many diseases, such as polycystic 

ovarian syndrome (PCOS), fatty liver, cardiovascular diseases, skin conditions (psoriasis), and 

others (Stefanadi et al., 2018; Mikolasevic et al., 2016; Yao et al., 2017; Amato et al., 2015;  
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Diamanti-Kandarakis and Dunaif, 2012; Qiao et al., 2007), it appears that a common 

denominator to these pathologies, and thus the major driver of MetS, is inflammation (Chan et 

al., 2019).  Both constitutional (non-modifable) and environmental lifestyle (modifiable) factors 

contribute to the pathogenesis of MetS.  These include genetic predisposition, age, sex, over 

and/or under nutrition, unhealthy diet, obesity, family history of diabetes, sedentary lifestyle, 

inflammation, stress, smoking, alcohol abuse, and sleep deprivation (Cameron et al., 2004; Gupta 

and Gupta, 2010; Swarup et al., 2014; Raikkonen et al., 2007; Chan et al., 2019).   

 

B. Low-Grade Inflammation is a Major Physiological Culprit in MetS 

Low-grade inflammation is characteristic of many diseases and disorders including 

neuropsychiatric, neurological, degenerative, cardiovascular, metabolic, T2D, sleep disorders, 

and chronic pain conditions (Donath and Shoelson, 2011; Libby et al., 2013; Bauer and Teixeira, 

2019; Mullington et al., 2010; McGeer and McGeer, 2004).  Inflammation, which is an 

immediate innate immune response, is induced by pathogen-associated molecular patterns 

(PAMPs) from bacteria or viruses, damage-associated molecular patterns (DAMPs) which are 

released from stressed or injured cells, autoreactive antibodies against self, normal flora, stressor 

under central nervous system control, cellular dysfunction, obesity, and/or some nutrients and 

metabolites (Besedovsky et al., 2019; Bianchi, 2007; Chu and Mazmanian, 2013; Matzinger, 

2007; Mackey and McFall, 2006).  Accumulating body of evidence links an altered immune 

system activity to the pathology of metabolic disease.  That is, chronic inflammation is shown to 

be the most significant factor in the occurrence of MetS (Sharma, 2011), as well as in the 

development of diabetes and atherosclerosis (Kanter et al., 2008; Maiti and Agrawal, 2007).  In 

such pathologies, the clinical features of the acute phase (systemic) response to inflammation 
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includes altered hepatic production of acute-phase proteins and leukocyte activity.   Leukocyte 

activity is skewed toward more inflammatory cytokine and tumor necrosis factor release.  That 

is, there is a decrease in the level of anti-inflammatory cytokines (e.g. IL-10 and IL-4) and an 

increase in the pro-inflammatory ones (e.g. IL-1, IL-6, TNF-α, and β, IFN γ) (Xie et al., 2006; 

Gabay, 2006; Kushner, 1993).  Importantly, low circulating levels of IL-10, a strong anti-

inflammatory cytokine that antagonizes IL-6 and TNF-α, are strongly associated with MetS, 

especially T2D in elderly, obese, and non-obese women (van Exel et al., 2002; Esposito et al., 

2003).  Some studies reported elevated blood levels of IL-6 to be associated with IR in obese 

males and females and hyperandrogenic females (Xu et al., 2014; Peng et al., 2016; Bruun et al., 

2003; Lin et al., 2011; Escobar-Morreale et al., 2003).  In addition, high levels of TNF-α are 

associated with IR via a direct action on the insulin receptor substrate 1 (IRS-1); binding of TNF-

α to IRS-1 diminishes its intrinsic tyrosine kinase activity and, hence, the associated intracellular 

signaling pathways (Plomgaard et al., 2005).  Furthermore, increased hepatic production of acute 

phase proteins in response to high levels of pro-inflammatory cytokines, such as C-reactive 

protein (CRP), is also shown to be associated with low-grade inflammation in MetS (Jain et al., 

2011; Devaraj et al., 2009; Ridker et al., 2000).  This can be attributed, in part, to the resistance 

of hepatocytes to insulin’s normal action in suppressing the synthesis and release of acute phase 

proteins which highlights its anti-inflammatory role (Tessari et al., 2006; Festa et al., 2000).  

This is supported by a cohort of the Women Health Study which showed that CRP levels were 

powerful biomarkers of T2D and inflammation (Donath and Shoelson, 2011; Wang et al., 2013).  
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1. Sleep Restriction, Inflammation, and Metabolic Syndrome are Physiologically 

Interlinked by Complex Neuroendocrine and Metabolic Pathways  

The functional relationship between sleep and immunity is bi-directionally, that is 

inflammation causes sleep loss and vice versa.  Sleep loss causes inflammation by modifying 

both the innate and adaptive immune responses and, thus, the synthesis and release of circulating 

cytokines (Besedovsky et al., 2019).  The imbalance in the proportion of inflammatory to anti-

inflammatory cytokines, coupled with endocrine dysfunction, is believed to be among the root 

causes of the increased risk of developing metabolic disorders upon SR.    

Systemic inflammation affects sleep and tissue metabolism via several physiolgocial 

pathways implicating the neuro-endocrine-immune axis.  Modulation in immune cell activity,  

such as leukocytosis, increased infiltration of macrophages into tissues (e.g. adipose tissue) and 

altered differentiation into the inflammatory phenotype, elevated levels of  pro-inflammatory 

mediators, and acute phase proteins play a major role in the modulation of sleep. Studies in both 

humans and laboratory animals show that inflammatory cytokines, such as IL-1β, IL-2, IL-4, IL-

6, IL-8, IL-10, TNF-α/β, IFN-α/β, and IFN-γ, affect sleep (Imeri and Opp, 2009).  Pro-

inflammatory cytokines (e.g. IL-6,IL-1β, TNF-α, IL-2, and IFN-γ,) induce sleep, whereas anti-

inflammatory cytokines (e.g. IL-4 and IL-10) inhibit sleep or do not alter its regulation 

(Weschenfelder et al., 2012). These cytokines interact with neurochemical systems, such as 

serotoninergic, cholinergic, and glutamatergic pathways, to regulate normal sleep (Imeri and 

Opp, 2009; Grazia de Simoni et al., 1995). Various studies emphasized the involvement of IL-1 

β and TNF-α in the regulation of sleep because the receptors for these cytokines are present in 

the hypothalamus, brainstem, hippocampus, and cerebral cortex that involved in sleep regulation 

(Imeri and Opp, 2009; Gemma et al., 1997). Microinjections of IL-1β and TNF-α increased the 
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duration of NREMS in many species including humans (Obal and Krueger, 2003).  Whether IL-

1β promoted or inhibited NREMs depended on the time of day, dose, and route of administration 

(Susic and Totic, 1989; Opp et al., 1992; Gaykema et al., 2000).  For exapmle, IL1-β injection is 

shown to enhance sleep in humans, mice, rats, rabbits, monkeys, and cats (Obal and Krueger, 

2003; Opp and Krueger, 1994; Susić and Totić, 1989; Friedman et al., 1995; Fang et al., 1998; 

Tobler et al., 1984; Dinarello, 1991). In rats and cats, low doses of IL1-β promoted sleep, 

whereas relatively higher doses inhibited it.  Furtheremore, a microinjection of this cytokine at 

night enhaced non-REM sleep, while the same dose given during the day inhibited it (Obal and 

Krueger, 2003; Opp et al., 1991; Krueger et al., 1984).  Along with the enhacement of the 

duration  of non-REMs, it also improved SWS during this phase depending on the route of 

administarion (Obal and Krueger, 2003; Hansen and Krueger, 1997). That is, the microinjection 

of IL-1β  intracerebroventricularly (i.c.v.) or intravenously (i.v.) improved EEG delta waves, 

while the microinjection of this cytokine intraperitoneally (ip) in rats and mice decreased EEG 

delta waves (Obal and Krueger, 2003; Hansen and Krueger, 1997). These cytokines enter the 

brain through the blood brain barrier (BBB) and regulate sleep (Besedovsky et al,. 2012). 

Furthermore, inflammation and sleep problems, such as insomnia, REM sleep behavior 

disorder, hypersomnia, and somniloquy, have been observed in individuals with autoimmune 

conditions as a result of auto-reactive antibodies produced against neuronal voltage-gated 

potassium channel complexes (VGKC)  (Cornelius et al., 2011; Iranzo et al., 2006).  This 

includes human immunodeficiency virus (HIV)-infected individuals who experience sleep 

problems, such as insomnia and obstructive sleep apnea (OSA) (Taibi, 2013).  Immunotherapy in 

some autoimmue cases has been shown to improve sleep (Cornelius et al., 2011).   
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There is no clear cause-effect relationship between inflammation and sleep problems. It is a 

vicious cycle whereby inflammation is shown to cause sleep disturbance which, in turn, causes 

further inflammation that develops into a chronic condition, leading to the development of some 

components of MetS.  In other words, inadequate sleep can worsen inflammation, thus leading to 

deranged metabolism.  Many laboratory studies reported that SR alters the levels of hormones 

implicated in metabolism and energy homeostatis, such as decreased leptin and increased ghrelin 

and cortisol levels, in addition to increasing sympathetic tone, increasing IR, and reducing 

glucose clearance (Chaput et al., 2007; Spiegel et al., 1999).  These neuroendocrine changes 

appear to be interconnected because, based on some studies, the intravenous administration of 

glucocorticoids (e.g. dexamethasone) to human subjects caused an increase in the level of leptin, 

suggesting a regulatory role of glucocorticoids on leptin secretion (Udden et al., 2003; Laferrère 

et al., 2000, 2002).  This is supported by the observation that glucocorticoid deficiency resulting 

from adrenalectomy in leptin-deficient mice caused reduction of body weight which implicated 

the role of glucocorticoids in regulating leptin synthesis and secretion (Udden et al., 2003; Dubuc 

and Wilden, 1986).  

 

a. Sleep Loss Causes Low-Grade Inflammation and Metabolic Disturbances 

Sleep loss induces low-grade inflammation which increases the risk of developing  MetS 

and vulnerability to infectious diseases in both human and experimental animals.  Several 

measures have been undertaken to assess low-grade inflammation following sleep disturbance in 

humans and animas, such as levels of inflammatory markers (CRP, IL-6, IL-1β, and TNFα), 

white blood cell counts (especially neutrophil counts), and platelet counts.  SR for one week 

leads to an increase in IL-6 levels in healthy males (Pejovic et al., 2013).  In addition, SR for 5 
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nights in humans is also shown to result in an elevation in the heart rate along with variation in 

pro-inflammatory cytokines, such as IL-1β, IL-6, IL-17A, and TNFα (Irwin et al., 2006; Van 

Leeuwen et al., 2009).  The  upregulation of pro-inflammatory cytokines following SR was 

linked to NF-kB activation.   Furthermore, sleep deprivation for a whole night results in 

increased high-sensitivity C-reactive protein (hsCRP) levels, which is a stable marker of 

inflammation (Meier-Ewert et al., 2004), probably reminiscent to increased levels of IL-6 which 

stimulates hepatic CRP production (Van Leeuwen et al., 2009).  Similarly, Besedovsky et al. 

(2019) reported an elevation in IL-6 mRNA levels following 36 hours of sleep deprivation in 

mice  and chronic SR for several days in humans.  In addition, TNF-α levels increased after 

several days of restricted sleep in C57BL6 mice (Besedovsky et al., 2019; Hurtado-Alvarado et 

al., 2018).  

Epidemiologic studies show that insufficient sleep is a risk factor for obesity, diabetes, 

cardiovascular disease, and metabolic syndrome (Grandner et al., 2016; Beccuti and Pannain, 

2011; Kim et al., 2018).  For example, chronic SR is associated with high blood pressure in 

children and adolescents (Wells et al., 2008; Archbold et al., 2012).  Poor sleep quality is also 

shown to be associated with the development of hypertension in obese adolescents (Hannon et al. 

, 2014).  Furthermore, a strong association between partial SR and impaired glucose tolerance 

has been reported.  This is supported by human studies that showed that individuals who slept 4 

hours per night for one week exhibited impaired glucose tolerance (Spiegel et al., 1999; Buxton 

et al., 2010).  One of the plausible mechanisms underlying SR’s cardiometabolic effects are 

linked to autonomic neural control, namely the associated increase in sympathetic nervous 

system (SNS) activity a subsequent increase in catecholamine release (Spiegel et al., 1999; Irwin 

et al., 1999; Gottlieb et al., 2006; Vgontzas et al., 2009). Catecholamines bind to 3-adrenergic 
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receptors on adipocytes and stimulate these cells to initiate lipolysis and, thus, the release of free 

fatty acids (FFA) and glycerol into the bloodstream (Xu et al., 2009; Londos et al., 1999; Arner, 

2002).  This results in the accumulation of FFA and glycerol in other cell types, such as the liver 

and skeletal muscles, which become resistant to insulin action as well as impair insulin 

production by pancreatic  cells (Sears and Perry, 2015; Arner, 2002).  This, with comorbid 

inflammation, increases the risk of developing obesity, namely visceral obesity.  The latter is 

correlated with  excessive release of FA by adipocytes and their accumulation in other cell types, 

including the liver, which become resistant to insulin action and production (Sears et al., 2015).  

Thus, the local reduction of insulin signaling in adipocytes, along with their increased 

susceptibility to inflammation and increased production of inflammatory cytokines, can exert 

huge impact on the global energy metabolism through the disruption of insulin signaling in other 

peripheral tissues (Broussard and Brady, 2010). 

 

b. Sleep Restriction and Neuroendocrine Regulation of Metabolism: The Effect on 

Leptin Secretion by White Adipose Tissue 

Visceral adipose tissue plays a significant role in the pathogenesis of MetS.  Adipose 

tissue is classified as white, brown, and beige , with the last two types being morphologically and 

functionally different from white adipose tissue (WAT) (Zoico et al., 2019).  The physiological 

significance of WAT lies in its endocrine role; it is the source of hormones, known as adipokines 

(e.g. leptin and adiponectin), that play a key role in the metabolic pathways implicated in energy 

homeostasis (Coelho et al., 2013).  Adipokines affect appetite, satiety, and energy balance which, 

in turn, have implications on body fat mass and overall body weight.  For example, leptin 

suppresses appetite and its absence causes obesity, while adiponectin has the opposite effect to 
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that of leptin.  Furthermore, in addition to adipocytes, adipose tissue is composed of many other 

cell populations, such as pre-adipocytes, fibroblasts, vascular endothelial cells, mast 

cells, eosinophils, B cells, T cells, and adipose tissue macrophages (ATMs) (Sorisky et al., 2013; 

van Harmelen et al., 2005; Gesta et al., 2007).  This cellular heterogeneity accounts for the 

different secretions of, adipose tissue , such as growth factors, pro- and anti-inflammatory 

mediators, and complement proteins, in addition to adipokines (Coelho et al., 2013).  

Leptin is a peptide hormone which belongs to the cytokine family and is primarily 

produced by WAT.  It plays a key role in the metabolic pathways that regulate food intake and 

energy expenditure, as well as the circadian rhythmic activity of the gonadotropic, thyrotropic 

and adrenal axes (Paz-Filho et al., 2012; Berglund et al., 2012).  It is also involved in bone 

formation, tissue remodeling, inflammation, insulin sensitivity, and the regulation of glucose 

homeostasis (Paz-Filho et al., 2012; Kelesidis et al., 2010).  The central effect of leptin is 

mediated by its receptors-B  (LepR-B) expressed in two hypothalamic neuronal populations: the 

medially-located nuclei coexpress agouti-related peptide (AgRP) and neuropeptide Y (NPY), 

while the laterally-located nuclei coexpress cocaine and amphetamine-related transcript (CART) 

and pro-opiomelanocortin (POMC).  The latter neurons comprise a subpopulation of the arcuate 

nucleus (ARC) of the hypothalamus that play a role in regulating food intake and energy 

expenditure (Friedman and Halaas, 1998; Paz-Filho et al., 2012).  The high expression of 

NPY/AgRP  and the low expression of POMC/CART promote hunger (in energy deficient 

states), whereas the low expression of NPY/AgRP and the high expression of POMC/CART 

promote satiety (in energy sufficient/abundant states) (Pinto et al., 2004; Ziotopoulou et al., 

2000). Therefore, the NPY/AgRP  neurons are orexigenic (i.e. they stimulate appetite);whereas, 

the POMC/CART neurons are anorexigenic (i.e.they suppress appetite) (Pinto, S., et al., 2004). 

https://en.wikipedia.org/wiki/Mast_cells
https://en.wikipedia.org/wiki/Mast_cells
https://en.wikipedia.org/wiki/Eosinophils
https://en.wikipedia.org/wiki/B_cells
https://en.wikipedia.org/wiki/T_cells
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In one study on mice, animals which were leptin-deficient or leptin-resistant showed excessive 

eating behavior and developed obesity (Paz-Filho et al., 2012). Other similar studies showed that 

the administration of leptin reversed obesity in the leptin-deficient mice (Myers et al., 2008).  

Similar observations have been reported in humans, whereby low leptin levels were correlated 

with higher body weights over a short period of time (Ravussin et al., 1997). Thus, leptin plays a 

pivotal role in energy homeostasis. 

Leptin and insulin interact to regulate metabolism and maintain energy balance.  Insulin 

plays a chronic role in the regulation of leptin gene expression and production by white adipose 

tissue (Rechtschaffen and Bergmann, 1995).  For example, increased plasma insulin 

concentration, such as in insulinoma, is shown to increase circulating leptin levels and gene 

expression in WAT in both rodents and humans (Kieffer and Habener, 2000; Vidal et al., 1996; 

Utriainen et al., 1996; Saladin et al., 1995; Saad et al., 1998; Malmström et al., 1996; 

Kolaczynski et al., 1996).  Conversely, leptin has a negative feedback on insulin gene 

expression, thereby decreasing its synthesis and secretion by pancreatic beta cells (Fu et al.. 

2013).  This suppressive effect is mediated by the autonomic nervous system (ANS) and by the 

direct actions of leptin on its membrane receptors present on β-cells (Kieffer and Habener, 2000).  

There is an adipo-insular axis between adipose tissues and pancreatic β-cells via leptin and 

insulin, respectively (Kieffer and Habener, 2000; Kieffer et al., 1996).  Moreover, cytokines, 

cortisol, catecholamines, fatty acids, and glucose affect leptin synthesis and secretion by WAT 

(Fried et al., 2000).  Insulin also acts in synergy with cortisol to regulate leptin production 

(Spiegel et al., 2004).   

In addition to the peripheral neural and endocrine control on leptin synthesis and release, 

the suprachiasmatic nucleus plays a central role in regulating the daily timing of leptin release.  



22 
 

Circulating leptin has a circadian profile with a characteristic nocturnal peak in both humans and 

rodents in a response to daytime meal ingestion (Schoeller et al., 1997; Simon et al., 1998).  At 

night (during sleep), leptin levels increase to signal to the brain the abundance of energy stores 

during this phase, thus suppressing hunger (feeding behavior) (Sinha et al., 1996; Schoeller et al., 

1997).  Its levels in the blood are proportional to adipose tissue mass (Maffei et al.. 1995).  Its 

elevation during daytime persists in sleeping patients receiving continuous enteral nutrition, 

indicating that sleep itself affects leptin regulation (Simon et al., 1998).  Low leptin levels 

reminiscent to insufficient sleep result in wrong signaling to central (hypothalamic) regulators of 

energy hemeostasis about the body’s energy status, thus promoting feeding behaviors at wrong 

times of the day (or circadian phase), slowing down metabolism, and favoring energy storage.  In 

rats and mice, food deficiency and/or starvation cause sleep problems; whereas, total sleep 

deprivation leads to excessive eating behavior (Knutson et al., 2007; Danguir and Nicolaidis, 

1979; Rechtschaffen and Bergmann, 1995).  Since SR causes reduction in leptin, this reflects a 

normal adaptation to the increased caloric need during extended wakefulness. These observations 

confirm that the regulation of leptin by sleep is paralleled by changes in appetite regulation.  

The effect of sleep loss on leptin levels involve several mechanisms, such as an elevation in 

sympathetic nervous system outflow (Akerstedt and Froberg, 1979).  Adipocytes receive SNS 

innervation which activation has broad effects on leptin synthesis, lipolysis, and macrophage 

infiltration into adipose tissue (Caron et al., 2018).  First, activation of sympathetic nerves 

inhibits the transcription and secretion of leptin from adipocytes (Caron et al., 2018; Li et al., 

1997; Mantzoros et al., 1996).  Several studies on sleep loss reported an increase in plasma 

catecholamine levels in both animals and humans (Everson, 1995; Muller et al., 1993; Irwin et 

al., 1999; Lusardi et al., 1999).  Therefore, the decrease in leptin levels upon sleep loss are 
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attributed, at least in part, to the inhibitory effects of enhanced SNS outflow (Rayner and 

Trayhurn, 2001).  In other words, the activation of SNS releases catecholamines which bind to 

their β3-adrenergic receptors on adipocytes to reduce leptin release (Caron et al., 2018; Li et al., 

1997; Trayhurn et al., 1996; Gettys et al., 1996) .  Therefore, low leptin relieves the inhibition on 

insulin synthesis, thus leading to hyperinsulinemia.  Second, SNS activation of adipocytes 

enhances lipolysis and the release of FFA and glycerol into the bloodstream, eventually leading 

to accumulation of fat in other cells and the subsequent development of insulin resistance (Caron 

et al., 2018).  Decreased insulin sensitivity of peripheral tissues, including WAT, leads to 

hyperglycemia and increased lipolysis by adipose tissue that increases the risk of developing 

cardiovascular complications. 

 

2. Visceral Adiposity, Insulin Resistance, and Macrophage Differentiation in White 

Adipose Tissue 

Macrophages have gained an attention as important contributors to adipose tissue 

functioning. Macrophages constitute about 5% of the cells in adipose tissues of lean mice and 

humans (Boutens and Stienstra, 2016). Macrophages have the capacity to adapt to a changing 

environment, causing them to differentiate into either anti-inflammatory or pro-inflammatory 

phenotypes. Their role in adipose tissue is to maintain tissue homeostasis by clearing debris, 

participate in tissue immune surveillance, and resolve inflammation (Boutens and Stienstra, 

2016; Murray and Wynn, 2011).  The bone marrow-derived monocytes and yolk-sac progenitors 

give rise to macrophages (Russo and Lumeng, 2018).  Studies in mice have shown that 

macrophages differentiate into either M1 or M2 depending on the stimulus (Russo and Lumeng, 

2018).  M1 or CAM is a classical/Pro-inflammatory macrophage that enhances hepatic steatosis 
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and adipogenesis, while alternative/anti-inflammatory macrophages (M2 or AAM) do the 

opposite (Saklayen, 2018).  M1 macrophages secrete TNFα, IL-6, IL-1β, and reactive oxygen 

species (ROS), while M2 cells secrete IL-10, IL-4, and TGF-β (Atri et al., 2018).   

Inflammation causes the infiltration of M1 macrophages into WAT (Sears and Perry, 2015).  

Studies show a strong association between adipocyte size and adipose tissue macrophage (ATM) 

accumulation in obese and non-obese humans and rodents (Kosteli et al., 2010; Ortega Martinez 

de Victoria et al., 2009).  In addition, visceral adiposity has been shown to increase the rate of 

lipolysis and infiltration of ATMs into adipose tissues (Kosteli et al., 2010).  Since obesity and 

visceral fat increase adipocyte size and, therefore, the rate of lipolysis and ATM accumulation, it 

could be possible that the increase in SNS activity and resultant increase in the rate of lipolysis 

may favor accumulation of ATMs in adipose tissues. 

  

Despite the growing number of studies that have investigated the physiological interplay 

between the adipo-insular signaling pathways implicated in energy homeostasis, their role in SR 

when extended over more than a week (the latter being the maximal experimental period 

considered by studies in this area) and how they may interact to bring about metabolic and 

immune dysfunction remains elusive.  To our knowledge, no study has looked at macrophage 

activity in vWAT as a potential mediator of disrupted leptin synthesis by adipocytes under 

chronic SR paradigms, knowing that inadequate sleep is associated with elevated levels of 

inflammatory cytokines that lead to inflammation.  Therefore, the present study aimed at gaining 

insight into the effect of chronic SR on adipose tissue physiology by assessing the relative 

expression of M1 and M2 type macrophages in relation to intracellular leptin expression and 

blood glucose levels. This stems from our speculation that the same vWAT factors implicated in 
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obesity may also underlie the metabolic and immune complications seen in chronic SR. It is 

plausible that, in the presence of IR, SR may push macrophage differntiation into the 

inflammatory pathways in visceral WAT which may negatively affect leptin synthesis, further 

exacerbating pancreatic insulin release and precipitating peripheral IR. Visceral WAT was 

chosen because it is closely linked wih IR and cardiometaolic complications. This was to test 2 

hypotheses: 1) that chronic sleep restriction (CSR) may interact with IR (or may favor a state of 

IR) to favor macrophage differentiation toward the inflammatory (M1) phenotype in vWAT, 2) 

that macrophages polarization may be associated with reduced leptin expression by adipocytes. 

Gaining insight into the physiological mechanisms interlinking sleep, adipocyte physiology and 

IR may have valuable clinical implications in the management and treatment of  sleep-related 

metabolic disorders, such as cardiovascular diseases, obesity, and MetS.   
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1. Animals  

Fifteen male C57BL/6 mice were purchased from Lebanese American University. They 

were aged 3 months (upon arrival) to 4 months (at the end of experiment), and had an average 

weight of 2.12 g during the course of the experiment.  Animals were acclimatized to the housing 

conditions in the Science Lab. animal facility for 2 weeks before the start of the experiment and 

were housed in individual cages under constant environmental conditions [23 ± 2°C, 50% 

humidity, 12:12 light/dark cycle with lights on at 07:00 hrs [correspondimg to Zeitgeber time 

(ZT) 0)] with ad libitum access to food and water.  

The study was approved by NDU-University Institutional Review Board (UIRB).  Mice 

were treated in accordance with the guidelines dictated by the “Guide for the care and Use of 

Laboratory Animals (National Research Council of the National Academies, 2011). 

 

2. Experimental Procedure 

a. Animal Groups and Sleep Restriction 

Following the acclimatization period, mice were randomly distributed into two groups:  

control (C, n=8)  and experimental (sleep restricted, SR; n=8). Sleep restriction was carried for 18 

consecutive hours (starting at ZT9) using the multiple platform method, the experimental design 

is shown in figure 1.  The body weight, fasting blood sugar, and food consumption were measured 

weekly throughout the duration of the experiment (including the acclimatization period). 
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Figure 1. Schematic representation of the experimental procedure. 

A) Shows both control and experimental groups that were acclimated to housing conditions for 2 

weeks prior to the experimental period; C and SR mice were sacrificed on day 11 (at ZT17) at 

the end of the experiment. B) Shows the daily rest-activity schedule in C (horizontal dashed 

arrow; rest period ZT0 - ZT12) and SR groups (horizontal solid arrows; rest period, ZT9– ZT3).  

The asterisk denotes the time point when both C and SR mice were sacrificed. The blue arrow 

(B) shows the time point of BW and BS measurements that were measured weekly at the same 

time (ZT11) in both groups. 

Abbreviations: C, control; SR, sleep restricted; BS, blood sugar; BW, body weight. 
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b. Tissue Collection and Histological Processing 

Mice of both groups were anesthetized with isoflurane and sacrificed on week 4 around 

2400 hrs (ZT17- ZT18).  Prior to tissue collection, the bodies were fixed with 10% formalin 

through intracardial perfusion.  Visceral white adipose tissues and livers were removed and 

weighed before storing then in the same fixative overnight at 4oC.  This was followed by 

dehydrating tissues in ascending ethanol concentrations (2 washes each) and clearing with 3 

washes of xylene, with the last xylene immersion carried in a 60oC oven for 30 minutes.  Tissue 

infiltration with paraffin was done gradually, over 30-minute intervals, in the oven until a 1:1 

xylene-to-paraffin ratio was attained.  At this point, the tissues were transferred to pure paraffin 

and incubated in the oven overnight. Tissues were embedded in paraffin blocks using a 

histoembedder (Medite TES 99, Germany) and cut into thin 10m sections using a microtome 

(Leica, Germany). 

c. Immunohistochemical Analysis of Collected Tissues 

Tissue sections were deparaffinized 2 times in xylene and subsequently rehydrated in 

decreasing concentrations of ethanol (100%, 95%, and 70%; 10 minutes each). Sections were 

incubated 3 times for 5 minutes in 1X TBS (50mM Tris-Cl, 150mMNaCl, pH 7.6). Heat induced 

epitope retrieval (HIER) was performed by placing the sections horizontally in coplin jars, 

containing 100 ml of Tris-EDTA buffer (10mM Tris base, 1mM EDTA solutions, 0.05% Tween 

20, pH 9) at 60oC in a water bath overnight. Slides were removed from antigen retriever solution 

and placed in sodium citrate buffer (10mM sodium citrate, 0.05% Tween 20, pH 6) for more than 

20 minutes to cool at room temperature. Sections were incubated 3 times for 5 minutes in TBS. 

Endogenous peroxidase activity was then blocked with 0.3% H2O2 for 15 minutes. Sections were 

incubated 3 times for 5 minutes in TBS. Subsequently the sections were incubated in normal 
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blocking serum for one hour at room temperature to block non-specific antibody binding. This 

was followed by separating the slides into 3 batches and incubating each batch in one of the 

following primary antibody solutions (containing the specific antibody diluted in 1X TBS 

containing 0.3% Triton X-100): anti-leptin (ab16227, diluted 1:500), anti-CD38 (ab216343, 

diluted 1:1000), and anti-CD-163 (ab182422, diluted 1:20000).  All tissues were incubated in the 

primary antibody solution overnight at 4°C.   

The following day, the sections were allowed to reach room temperature before they were 

washed 3 times in TBS followed by incubation with horseradish peroxidase secondary antibodies 

(ab205718) diluted at 1:20000 in TBS with 0.3% Triton X-100 for 1h at RT. Sections were 

incubated 3 times for 5 minutes in TBS. Peroxidase activity was detected (15 min incubation at 

RT) using diaminobenzidine (DAB) substrate kit (ab64238), resulting in brown color. 

Afterwards, sections were rinsed in TBS for 45 minutes, and then slides were counterstained in 

Harris Hematoxylin for 2 minutes. After that, slides were washed with acid alcohol differentiator 

(HCl-ethanol solution, 0.1 % HCl in 70% ethanol) for 5 seconds to remove excess stain and to 

improve contrast, followed by rinsing with distilled water for 2-3 seconds. Slides were washed 

with bluing agent (ammonium water, 5 ml ammonium hydroxide, 1000 ml distilled water) for 2 

seconds to enable fast and accurate bluing of the nucleus, then with distilled water for 2-3 

seconds. Dehydration was performed by 2 times 5 min incubation in 70%, 95% and 100% 

ethanol followed by 2 times 5 min in xylene before coverslips were finally mounted using DPX. 

For each C and SR mouse, the paraffin-embbeded mesenteric fat depot was sectioned at 

10 µm and three consecutive sections of this depot were examined for tissue expression of each 

of leptin-, CD38-, and CD163- immunoreactivity using the light microscope (Leica DM500).   
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Regarding the intensity of the stain, labelled cells for either antibody showed variability 

in the intensity of staining in both animal groups, ranging from strong and easy to identify in 

some tissues while extremey weak and barely visible in some others. That is, for a number of 

tissue examined, some cells were weakly labelled and it was difficult to get a count of. 

Therefore, tissues in which weakly stained cells were difficult to depict were considered as 

“absent” for the signal; only cells which showed strong immunoreactivity and were clearly 

visible were referred to as “present” for the signal. 

Adipose tissue weight was expressed as percentage of body weight.  For the identification 

of leptin-, CD38-, and CD163-immunoreactive cells in vWAT, the respective liver from each 

mouse was used as a positive control in comparison.  For each protein marker, data was reported 

as the percentage of animals within the group which showed the presence of the signal in their 

vWAT. 

3. Statistical analysis 

Data was analyzed using the Statistical Package for Social Sciences version 26 for 

windows (SPSS Inc., Chicago, II, USA). Independent t-test was used to compare the means of 

BW and BS between control and SR groups, one-way ANOVA was used to compare the means 

of BW and BS within groups, and paired t-test was used to compare if there is a statistical 

difference in means of BW and BS between the ends of the baseline and experimental periods in 

each group.  Independent t-test was also used to compare the means of adipose tissue weight 

(actual and as percentage of body weight) between C and SR groups; and to compare the means 

of food consumption between C and SR groups. In addition, Chi-square test was used to compare 

protein tissue expression between C and experimental groups. 
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All values were reported as means ± standard deviation. P-values < 0.05 were considered 

significant. 
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IV. Results 
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1. Body Weight, Blood Sugar, Adipose Tissue Weight, and Food Consumption 

Body weight, blood sugar, and adipose tissue weight were measured in control and 

experimental groups. The mean body weight of control was 21.42±1.72 g  at the end of the 

experiment. In comparison to C, the mean body weight in SR was significantly lower 

(19.77±1.14 g, P=0.006) following 11 days of sleep restriction (table 1).  As shown in table 1, 

when compared to baseline values, the mean BW of C did not change at the end of the 

experiment, while that of SR showed a significant decline of 12.9% (p=0.001) post 

experimentation.   

Regarding blood sugar measurements, the mean BS of control mice at the end of the 

experiment was 105±2 mg/dl (refer to table 1). This value was significantly lower than that in SR 

following 11 days of restricted sleep (105±2 mg/dl vs 150±4 mg/dl , respectively, P=0.000).   

As reported in table 1, there was no change in the mean BS of C at the end of the experiment 

relative to baseline values, while the SR group showed a significant increase of 36.4% (p=0.01) 

in BS levels at the end of the study priod when compared to pre-experimental values.   

Figure 2 is a graphical representation of BW and BS levels in both animal groups as 

measured throughout the course of the experiment.  In C, there was no significant change in 

either BW or BS throughout the study (one-way ANOVA: F(3,28)=0.036, P=0.991 and 

F(2,21)=1.673, P=0.212, respectively) (figure 2.A and 2.B).  SR animals; however, had a 

significant decrease in BW and increase in BS in the last two weeks (one-way ANOVA: 

F(3,24)=22.145, P=0.000 and F(2,18)=97.400, P=0.000,l respectively) (figure 2.A and 2.B).   

 Regarding adipose tissue (refer to table 2), the mean adipose tissue weight of control was 

4.25±0.77 % of BW at the end of the experiment. In comparison to control, the mean adipose 
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tissue weight in SR was significantly lower (2.35±0.39 %, P=0.000) following 11 days of sleep 

restriction. 

As shown in table 3, there was no significant difference in the mean weekly food 

consumption between C and SR mice (31.41±0.11 g vs 37.82±7.66 g , respectively; P=0.145).  

The weekly food consumption is also graphically shown in figure 3.  

 

2. Leptin, CD38, and CD163 Immunoreactivity  

The liver was used as positive control to detect cellular immunoreactivity to anti-leptin, anti-

CD38, and anti-CD163 in both C group (fig.4 A & B) and SR groups (fig.5 A-D). Qualitative 

analysis of the expression of leptin in vWAT revealed the presence of leptin-labelled cells in 

control group (fig.4, C, D) and their absence in SR group (fig.4.E & F). A significant difference 

was observed in anti-leptin immunoreactivity between C and SR group, in which leptin present 

in each individual mouse in C group and absent in all mice of SR group (refer to table 4).  

Qualitative analysis of the expression of CD38, a marker of M1 macrophages, in vWAT 

revealed its presence in the SR (fig. 5.G), but not in the control group (fig. 5.E).  As shown in 

table 4, a significant difference was also observed in anti-CD38 immunoreactivity between C and 

SR group, in which M1 was absent in each individual mouse in the C group, but present in all 

mice of SR group.  

As for M2 phenoptype, qualitative analysis of the expression of CD163, a marker of M2 

macrophage, in vWAT revealed its overall presence in C group (fig.5.F) but its absence in SR 

group (fig.5.H). A significant difference was observed in anti-CD-163 immunoreactivity 

between C and SR group, in which M2 present in each individual mouse in C group, but absent 

in all mice of SR group (as reported in table 4). 
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Table 1.  Table showing mean body weight and blood sugar of control and experimental 

mice at the end of each of baseline and experimental periods.  

Body Weight (g) Blood Sugar (mg/dl) 

Animals Before After ²P-

value 

Before After ²P-

value 

C 21.46±1.52 21.42±1.72 0.732 109±5 105±2 0.159 

SR 22.71±0.70 19.77±1.14 0.001 110±7 150±4 0.010 

¹P-value 
                  

   0.000  

The reported values show means + standard deviation; p<0.05 denotes statistical significance.  

¹Independent sample t-test. 

²Paired t-test. 

Abbreviations: C, control; SR, sleep restriction. 
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Table 2. Measurement of adipose tissue weight at the end of the experiment in control and 

SR mice. 

 

 

 

 

The reported values represent mean + standard deviation; P<0.05 denotes statistical difference 

between the means. 

Abbreviations: C, control; SR, sleep restriction; BW, body weight. 

 

 

 

 

 

 

 

 

 

Animals Adipose Tissue 

Weight (g) 

Adipose Tissue 

Weight (% of BW) 

C 0.90±0.13 4.25±0.77 

SR 0.44±0.08* 2.35±0.39* 

P-value 0.000 0.000 
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Table 3. table showing mean weekly food consumption of control and experimental mice 

throughout the experiment. 

 

 

 

 

 

 

 

 

The reported values show means + standard deviation; p<0.05 denotes statistical significance.  

Abbreviations: C, control; SR, sleep restriction. 

 

 

 

 

 

 

 

Animals 

 

Food Consumption (g) 

 

C 

 

31.41±0.11 

 

SR 

 

37.82±7.66 

 

P-value 

 

0.145 
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Table 4. Table showing the presence or absence of each of letpin, CD38-, and CD163-

immunoreactive cells in white adipose tissue of control and sleep restricted mice. 

 

 

   

 

 

 

 

 

 

Chi-square test was used to compare the presence of protein-labeled cells between control and 

experimental groups.  

Abbreviations: C, control; SR, sleep restriction. 

 

 

 

Protein 

Signal 

C SR P-value 

 % 

Leptin 

Yes 

NO 

 

100 (8) 

0 (80) 

 

0 (7) 

100 (7) 

 

0.000 

% CD-

38 

Yes 

No 

 

0 (8) 

100 (8) 

 

100 (7) 

0 (7) 

 

0.000 

% CD-

163 

Yes 

No 

 

100 (8) 

0 (8) 

 

0 (7) 

100 (8) 

 

0.000 
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Figure 2.  Graph showing variations of body weight and blood sugar in mice. A) the body 

weight in control mice remained the same throughout the course of the experiment, while the SR 

mice showed a significant decline in mean body weight. B) The blood sugar in control the 

remained same throughout the course of the experiment, while SR mice showed a significant 

increase in blood sugar. 

Values show means±SD  

*P<0.05 shows significant difference. 

-1.5

0.5
2.5

4.5
6.5
8.5

10.5
12.5
14.5

16.5
18.5

20.5
22.5

-1 0 1 2

M
ea

n
 B

o
d

y 
w

ei
gh

t 
(g

)

Time (weeks) 

C SR

* 
* 

A 

-0.5

14.5

29.5

44.5

59.5

74.5

89.5

104.5

119.5

134.5

149.5

0 1 2

M
ea

n
 B

lo
o

d
 S

u
ga

r 
(m

g/
d

l)

Time (weeks) 

C SR

* 
* B 



41 
 

Figure 3.  Graph showing variations of weekly food consumption in mice. The weekly food 

consumption in control mice remained the same throughout the course of the experiment, while 

the SR mice showed an elevation in mean weekly food consumption.  

Values show means±SD  
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Figure 4. Light photomicrographs showing the localization of anti-leptin immunoreactivity in 

adipose tissue and liver in controlled and SR mice. A) positive control of liver showing anti-leptin 

localization in controlled mice and B) positive control of liver showing anti-leptin localization in sleep-

restricted mice.; (C & D) showing anti-leptin localization in adipose tissues in cotrolled mice; (E & F) 

showing absence of anti-leptin localization in adipose tissues in sleep-restricted mice. All 

photomicrographs were captured at 40X. 
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Figure 5. Light photomicrographs showing the localization of anti-CD38 and anti-CD163 

immunoreactivity in adipose tissue and liver in control and SR mice. (A & B) positive 

control (liver tissue) showing anti-CD38 and anti-CD163 localization in control mice, 

respectively; (C & D) positive control (liver tissue) showing the localization of anti-CD38 and 

anti-CD163 in sleep-restricted mice, respectively; (E & F) depict the vWAT that show the 

absence of anti-CD38 and the presence of anti-CD163 immunoreactive cells in adipose tissues in 

control mice, respectively; (G & H) depict the vWAT that show the presence of anti-CD38 and 

the absence of anti-CD163 immunoreactive cells in adipose tissues in sleep-restricted mice, 

respectively. All photomicrographs were captured at 40X. 
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V. Discussion and Conclusion 
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This study is the first to investigate the link between leptin expression in vWAT and 

possible skeweness of macrophages toward M1 (inflammatory) phenotype following chronic 

sleep restriction. To our knowledge, most of the studies conducted in this area considered acute 

SR paradigms an did not investigate the effect of sleep restriction in general, and chronic 

disruption in particular, on macrophage differentiation and leptin expression in vWAT.  In the 

present study, animals were restricted from sleeping for 18 consecutive hrs, beginning day 1 after 

the acclimatization period, in order to determine whether BS, BW, adipose tissue weight, leptin, 

M1, and M2 expression were significantly modified after 11 days of sleep restriction. At the end 

of the experiment, SR mice exhibited a higher BS (by 36 %) and vWAT weight (by 45 %), but 

had lower BW (by 13%), than control. Unlike control, SR showed only M1, but not M2 or leptin, 

expression in vWAT.  

Consequently, subjecting animals to weeks of sleep restriction appeared to result in 

elevated blood glucose as shown in the present study. Noteworthy, the level of circulating insulin 

was not measured to further assess the possibility of insulin insensitivity of tissues that might 

have characterized the SR group. However, the reported rises in fasting blood sugar in the SR 

group may be explained by the possible disruption in insulin secretion and/or tissue insensitivity 

to insulin. Shigiyama et al. (2018) reported that 6 h of sleep deprivation in male C57BL/6J mice 

significantly resulted in higher plasma glucose level than that of control, thereby suffering from 

impaired glucose tolerance. In addition to hyperglycemia, an elevated hepatic glucose production 

was observed which indicated a state of hepatic insulin resistance.  Another study in humans also 

showed that individuals who slept 4 hours per night for one week exhibited impaired glucose 

tolerance (Spiegel et al., 1999; Buxton et al., 2010).  According to related studies, CSR activates 

SNS outflow to vWAT thus leading to a reduction in leptin synthesis and secretion; a decrease in 
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circulating leptin subsequently relieves the inhibition on insulin synthesis, thus leading to 

hyperinsulinemia (Rayner and Trayhurn, 2001). Comparatively, in this study the absence of 

leptin expression in vWAT of SR may possibly link to the respective observations on 

hyperglycemia (and potential impact on insulin secretion) that are documented in the scientific 

literature (Chaput et al., 2007; Spiegel et al., 1999; Buxton et al., 2010; Caron et al., 2018). In the 

absence of quantitative data; however, such conclusions cannot be drawn and further 

quantitative-type of investigations are required.  

Regarding body weight changes, sleep restriction for about 11 days revealed significant 

alterations in the mean BW between C and SR groups at the end of the experiment.  A significant 

decrease in the mean BW was also observed in the SR group before and after the experimental 

period, but not in control. Furthermuore, a significant decline of 44.65 % was observed in the 

mean adipose tissue weight in SR group relative to control. The unexpected weight loss in SR 

mice might be possibly due to the abnormal metabolic milieu and associated physiological 

complications, as manifest by the elevated blood sugar, which might predispose to a prediatbetic 

or diabetic state with prolonged sleep disturbance.  The metabolic disturbances associated with 

sleep restriction have been explained by many studies.  For example, sleep restriction is 

associated with sympathetic activation of adipocytes which enhance lipolysis and, therefore, the 

release of free fatty acids and glycerol into the bloodstream, thus leading to dyslipidemia and 

subsequent development of IR in peripheral tissues; IR, in parallel, causes or precipitatres 

hyperglycemia (Caron et al., 2018; Xu et al., 2009; Londos et al., 1999; Arner, 2002).  It should 

be noted; however, that the exact cause-effect relationship between IR and abnormal lipid and 

carbohydrate metabolism seen following sleep restricrion is still unclear.  Other studies reported 

by researchers stated that sleep restriction causes insulin resistance and impaired glucose 
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tolerance (Van Cauter, 2011; Van Cauter et al., 2008; Wilcox, 2005). Therefore, it is plausible to 

think that the alteration in glucose homeostasis following CSR in this present research may be 

attributed to the possible development of tissue resistance to insulin and that, if prolonged, CSR 

can eventually lead to hyperglycemia and diabetes-like complications. Despite the absence of 

leptin expression in SR group, paradoxically both BW and adipose tissue weight were decreased 

in this study. This contrasts other studies which reported that the absence of leptin caused an 

increase in body weight and adiposity (Paz-Filho et al., 2012; Ravussin et al., 1997).  Thus, 

leptin dysregulation seen in SR animals in this study cannot explain the concomitant decrease in 

BW loss and adipose tissue weight in this group.  Rather, the abnormal metabolic milieu created 

by insulin resistance, namely the disrupted glucose homeostasis and increased fat breakdown by 

peripheral tissues, may contribute, in part, to the observed weight loss in SR animals. 

Furtheremore, the experimental mice had 20.4 % higher consumption of food than that of control 

during the experimental period even though it was not statistically significant. As well, the 

experimental mice that ate more showed significant decrease in BW at the end of the 

experimental period. This observation could be supported by Rechtschaffen et al. 1983] who 

stated that sleep deprivation in rats resulted in a greater weight loss in sleep-deprived compared 

to control animals even though the former ate more. They reported that the weight loss in 

deprived rats could be attributed to an increased ratio of catabolism to anabolism and an impaired 

fluid retention. Moreover, Kant et al. (1984) reported that 72 h of sleep deprivation in humans 

caused an increase in urea excretion (an end product of protein catabolism) that could be caused 

by high consumption of proteins during the study. In the same study, a decrease in urinary 

glucose levels were observed in sleep-deprived humans. Another study conducted by Lamon et 

al. (2021) showed that a single night of  total sleep deprivation in healthy adults was sufficient to 
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induce anabolic resistance by reducing postprandial muscle protein synthesis and a procatabolic 

environment. Thus, the unexpected weight loss in this present research might be possibly 

attributed to dehydration and increased catabolism of proteins.  

Leptin, often referred to as the satiety hormone, is primarily secreted by WAT, with the 

main role being to balance energy expenditure, and caloric intake of the body. Qualitative 

analysis of the expression of leptin in vWAT revealed its overall presence in C group (see fig.3.C 

& D) and its absence in SR group (see fig.3.E & F). These results show that SR may possibly 

negatively affect leptin expression in vWAT, at least at the time point that were selected in this 

study. Therefore, SR may possibly have an effect over the expression of leptin in vWAT. Some 

studies reported that the increase in the sympathetic nervous system activity elevates urinary and 

plasma catecholamine levels which, in turn, decrease leptin release in both sustained sleep-

deprived rats and partial sleep-deprived human, respectively (Everson, 1995; Müller et al., 1993; 

Rayner and Trayhurn, 2001; Spiegel et al., 2004).  Other scientific studies revealed that acute 

and chronic sleep deprivation in healthy men dropped leptin levels in the blood (Mullington et 

al., 2003; Spiegel et al., 2004). However, in this present study, CSR resulted in total absence of 

leptin expression in vWAT.  Furthermore, the absence of leptin expression in SR mice could be 

attributed to a change in the circadian rhythm of leptin from chronic forced arousals during the 

supposedly rest period (light phase).  

Noteworthy, in order to maintain a normal adipose tissue function, an anti-inflammatory 

milieu provided by M2 macrophages is indispensible. In this study, CSR seemed to disrupt the 

normal function of adipose tissue by probably favoring pro-inflammatory phenotype M1 over 

anti-inflammatory phenotype M2 (seen in SR mice; figure 3). ATMs, derived from circulating 

monocytes or renewal of tissue-resident macrophages (yolk-sac progenitors), offer this anti-
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inflammatory milieu through M2 phenotype expression that was seen in C group and not in SR 

group in this research (Hassnain Waqas et al., 2017; Liang et al., 2020). In other words, CSR 

might drive the expression of M1 phenotype which indicates inflammatory responses in vWAT 

of SR mice, whereas its absence in non-sleep deprived mice indicates no inflammatory responses 

in these tissues. Moreover, pro-inflammatory macrophage (M1) were previously reported in SR 

(Castoldi et al., 2016), so it is may be the macrophages in this present study has shifted toward 

M1 phenotype over M2 phenotype in SR group.  Thus, CSR may have resulted in a negative 

effect on CD163 expression; ; however, with the limitations of the study this would require 

further investigation.  

When leptin is expressed in vWAT in non-sleep restricted group the macrophage 

phenotype is M2, while it is M1 in SR group in the absence of leptin. These results might 

elucidate that expression of M2 phenotype and the absence of the expression of M1 phenotype in 

non-sleep restricted mice may play a role in maintaining normal vWAT function in the absence 

of inflammation and, thus, leptin expression in adipocytes remain intact. In contrast, the 

expression of M1 phenotypes and the absence of the expression of M2 phenotypes in sleep-

restricted mice that has been caused by inflammation might disrupt vWAT function and block 

leptin expression in adipocytes. Thus, these interpretations possibly give an insight that 

macrophage phenotype expression or differentiation pathway might possibly have an effect on 

leptin expression in vWAT.  

In summary, chronic sleep restriction appeared to result in elevated fasting blood sugar 

which may be explained by the possible disruption of insulin secretion and/or tissue sensitivity, 

in addition to the absence of leptin expression in vWAT and the reduction in BW and adipose 

tissue weight. The latter may be attributed to the abnormal metabolic milieu (i.e. elevated blood 
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glucose and the possible switch of peripheral tissues from glucose to fatty acid metabolism), as 

well as the effects on urea excretion and protein catabolism. In addition, it is possible that CSR, 

through modulating the WAT microenvironment, may affect the differentiation pathways of 

infiltrating macrophages, probably favoring pro-inflammatory phenotype M1 over anti-

inflammatory phenotype M2 along with the absence of leptin expression. Thus, it is possible that 

macrophage polarization in vWAT puts an extra inhibitory effect on leptin, in addition to that 

exerted by SNS. 

The reported glycemic rise in the SR group that showed no leptin signal in vWAT may be 

explained by the potential impact of inadequate sleep on insulin secretion and/or tissue 

insensitivity.  In the latter case, one would expect the development of a state of hyperinsulinemia 

that would be attributed, at least in part, to the possible loss of the negative feedback control of 

leptin on insulin secretion.  Such interpretations; however, cannot be drawn from this study since 

the levels of insulin in the blood were not measured and,therefore, the answers to these 

speculations need further quantitative type of investigations. Despite the results provided in this 

research that stated a possible skewness of macrophages into M1 phenotypes which, in turn, 

might exert an extra inhibitory effect on leptin expression in vWAT, the detailed role of 

macrophage polarization on leptin expression and insulin resistance in chronic sleep restriction 

require further investigations.  
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