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Abstract

The main and overarching objective of this research endeavor is to devise data-driven

soft modeling tools that can provide fast, fairly accurate and computationally efficient

predictions for: (1) the thermal conductivity of particulate composites (PC), and (2) the

level of shielding provided by a porous structure from a high-yield explosion. The com-

putational tools developed in this work constitute cheaper and faster alternatives to the rel-

atively large and cumbersome numerical simulations or experimental testing campaigns

that would otherwise be needed to make predictions of comparable accuracy.

Accurate and computationally efficient predictive models for the effective thermal

conductivity of composites are needed to accelerate the design of new materials with

improved properties and behavior. The predictive capabilities of previously developed

models for thermal conductivity of PCs apply to limited ranges of component properties

and proportions. Furthermore, existing material models that account for particle conti-

guity and filler-matrix thermal contact resistance fail to distinguish between those two

effects. In the first part of this work, two novel and complementary predictive models

for the effective thermal conductivity of two-phase isotropic PCs are derived: (i) a sim-

ple yet efficient analytical model for non-contiguous filler particles, and (ii) a generalized

semi-analytical model accounting for both filler particle contiguity and thermal resistance

at the filler-matrix interface. The latter model is powered by a thermal conduction grid

solver that allows the incorporation of an unlimited number of elements and components

to match increasingly complex particulate composite material configurations and behav-

iors. The models proposed match previously published experimental data fairly well. The

grid model is further leveraged to relate the effective thermal conductivity to filler parti-

cle size and size distribution. It is found that the formation of filler conduction chains is

favored by well-graded particle size distributions.
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Numerous and complex interactions occur between a blast wave originating from a

high-yield explosion and the typical elements of a dense urban topography. Fairly ac-

curate predictions of the blast loads experienced by structures in such context can be

only achieved through relatively large, potentially cumbersome and computationally ex-

pensive numerical simulations. Although many existing works address certain effects

resulting from blast-structure interactions, their scopes are mostly limited to small-scale

partially-confined explosions affecting a few buildings or streets. Furthermore, only few

studies touch on the effect of building porosity on the propagation of blast waves, while

none focuses on the specific influence of a building’s porosity on its shielding effect. The

second part of this work develops and implements a set of high-cost high-fidelity numer-

ical simulations to explore the influence of building porosity on the shielding effect. A

rich manifold of numerical solutions is thus obtained, including the overpressure and the

specific impulse over virtual facades shielded by buildings of different porosity, located

at various standoff distances from a large explosive charge. A suitable scaling and mod-

eling approaches including regression and machine learning techniques are then applied

to the numerical dataset to devise simplified, yet more general data-driven surrogate tools

that can provide fast and fairly accurate estimates of the blast wave shielding capacity

of porous buildings. Those tools can contribute in guiding design engineers through the

process of evaluating blast loads behind porous structures. This study also contributes to

furthering the current state of knowledge regarding the propagation of blast waves in and

around porous buildings. In general, the shielding effect wanes as the standoff distance

to the charge, or the distance behind the shielding structure, increases. Also generally,

the lower the building porosity, the longer the path taken by the wave and the more the

rise to peak overpressure is delayed. It is also observed for instance that the intensity of

a blast wave behind a highly porous structure can in fact increase. This counter-intuitive

outcome is attributed to a local channeling of the wave inside the building floors between

the parallel slabs and side-walls.
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Chapter 1

General introduction

The modeling of physical or biological phenomena, whether occurring naturally or artifi-

cially induced – including the behavior of materials and structures subjected to different

types of loading in various conditions – is a subject of constant need and interest. Indeed,

models are typically developed to replicate such phenomena virtually, at reduced costs

and with sufficient accuracy, for the purpose of performing predictions, exploring alterna-

tives, or designing suitable solutions to existing needs, while meeting certain requirements

and satisfying constraints, including those resulting from sustainable development goals.

An ideal model would hence perform perfectly accurate predictions at no cost, and in

zero time. This is not possible, unfortunately, and although the constant progress in infor-

mation storage and computing technologies, and the resulting increase in computational

power and resources available facilitate the development and implementation of more so-

phisticated modeling approaches, a suitable compromise must always be found between

modeling costs and prediction accuracy.

The pursuit of more development while simultaneously reducing its environmental

footprint and addressing the consequences of climate change are associated with the

constant and pressing need to develop safer and more efficient, resilient, environmental-

friendly and sustainable practices, processes, materials, tools, structures, transportation

vehicles and systems, etc. The latter clearly relies on design optimization, which of-

ten requires generating many forward predictions under varying design parameters. This
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highlights the need to develop and constantly improve efficient modeling tools, to make

cheaper, faster and more accurate predictions. A prominent approach in pursuing this goal

is to resort to the development of simplified modeling techniques, which essentially rely

on thoughtful and judicious reductions of model complexity to improve efficiency while

maintaining prediction accuracy.

When physical or biological phenomena or behaviors are governed by relatively sim-

ple processes, analytical solutions can typically be determined and leveraged to make

accurate predictions in limited time. In other cases, approximate analytical solutions

can often be derived following suitable simplifications of the underlying processes, such

as neglecting certain secondary aspects or dynamics of the problem at hand that would

have little impact on its solution. For example, analytical expressions modeling the brit-

tle thermal-cracking behavior of cylindrical and spherical shells encapsulating inclusions

were developed by Zéhil (2019) and Zéhil (2020). To this aim, the author considered

constant circumferential stresses in the cracked region assuming small crack openings,

which led to simple governing differential equations that were solved in closed form. The

analytical models proposed matched the actual behavior of the materials, estimated from

more cumbersome, significantly costlier and more time consuming high-fidelity numer-

ical simulations, fairly well. In the same vein, Zéhil and Gavin (2013a) proposed two

simplified approaches to estimate the rolling resistance of rigid spheres on a viscoelastic

material. Both approaches are based on the validated assumption that the contribution of

surface friction to the rolling resistance is negligible. In the first approach, the rolling

sphere is conceptually divided, along the width of the contact surface assumed perfectly

centered and circular, into a set of cylinders whose individual rolling resistances are com-

puted in two dimensions. The total rolling resistance is estimated as the sum of the rolling

resistances incurred by each of the cylinders. In the second approach, the rolling resis-

tance is expressed as a function of the Fourier series coefficients of the normal contact

stress, neglecting the effect of viscoeslacticity on the latter. The approaches proposed by

the authors provide accurate and fast predictions of the rolling resistance as an alterna-

tive to the challenging and computationally expensive task of modeling the viscoelasctic
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material and solving the contact problem at its interface (Zéhil & Gavin, 2013b, 2013c,

2014a, 2014b).

When the governing equations of the problem at hand are such that deriving an ex-

act or even an approximate analytical solution is impracticable, it is often possible to

design high-fidelity numerical models to resolve the governing equations and make accu-

rate predictions. Numerical models of this kind can however be complex, cumbersome

and/or computationally intensive, which often motivates resorting to numerical model

simplifications, including the removal of secondary or smaller-scale features – such as

holes, fillets, rounds, pockets, etc. that can degrade mesh quality and undermine simu-

lation efficiency – while only retaining significant and effective features and constraints.

For instance Zhu and Menq (2002) presented an approach to simplify the geometry of

a boundary representation (BREP) model by automatically removing unnecessary fillets

and rounds. A model’s size and/or dimensionality can often be reduced by also lever-

aging potential symmetries. Local static or adaptive mesh refinement (AMR) techniques

can furthermore be applied, including in time-dependent simulations. AMR approaches,

in particular, dynamically identify model regions requiring a higher precision discretiza-

tion and temporarily refine the mesh as needed in such regions, instead of doing so over

the whole domain and throughout the entire simulation time. Such approaches can of-

ten achieve a higher level of accuracy at a limited computational cost. Berger and Oliger

(1984) developed one of the first AMR algorithms for hyperbolic partial differential equa-

tions. When applied to one and two dimensional problems, this algorithm resulted in a

similar level of accuracy as that of a uniformly refined mesh for one fourth and one sixth

of the computational time, respectively.

In many cases however, the leveraging of all possible featural and numerical simplifi-

cations proves insufficient to bring the model’s performance to a suitable level. This has

led researchers to explore alternative soft modeling approaches such as regression and

machine learning techniques.

In regression-based modeling, a model of analytical or network form is devised by

fitting a set of parameters to experimental data, or alternatively, to data generated using
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more sophisticated approaches, such as high-fidelity numerical simulations. The param-

eters of the regression model are typically determined by minimizing the discrepancy

between the model’s predictions and the target data. This is typically achieved using

suitable optimization techniques, such as gradient descent, back-propagation and Tabu

Search (TS) methods. For instance, Dib and Zéhil (2021) proposed both analytical and

semi-analytical models to predict the effective thermal conductivity (ETC) of contiguous

and non-contiguous particulate composites, with and without thermal contact resistance,

based on the properties and proportions of their constituents. The models’ parameters

were determined by fitting the models to manifolds of high-fidelity numerical solutions

or experimental data. The models were deemed accurate over wide ranges of material

properties and fractions. Pannell et al. (2019) conducted a set of computational fluid

dynamics (CFD) simulations measuring the peak specific impulse generated on plane sur-

faces located at various distances close-in to a spherical explosive charge. The authors

noted that the spatial distribution of the peak specific impulse over the plane surfaces

followed a bell-shaped pattern. A non-linear regression technique was thus applied to

determine the parameters of a fitted Gaussian function in terms of the scaled distance to

the charge. Metaheuristic optimization approaches such as Tabu search (TS) can be used

to practically select a combination of analytical expressions (or monomials) that best fits

target data. Unlike other local search methods, TS can avoid entrapment in suboptimal

regions of the solution space, such as ‘flat areas’ and local minima, by implementing

a set of search rules such as: (i) vetoing previously encountered potential solutions to

avoid cycling, (ii) favoring the exploration of promising regions of the search space, and

(iii) executing disruptive search measures (e.g. resets) if and when the search is caught

in a plateau or a local optimum. For example, Zéhil et al. (2020) followed a TS ap-

proach to determine a suitable analytical expression combining monomials selected from

a predefined set, for the best prediction of the homogenized elastic behavior of inclusion-

modified concrete mixtures from their component properties and proportions. The search

was conducted based on data generated using high fidelity finite element simulations ac-

counting for randomness in the spatial distributions of aggregates and inclusions. The TS
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model’s predictions were compared to those generated by other analytical models of lin-

ear, quadratic and exponential forms and by an Artificial Neural Network (ANN), derived

by the same authors. All simplified models matched the numerical data fairly well.

Artificial Neural Networks (ANN), Support Vector Regressions (SVR), and Physics

Guided Neural Networks (PGNN) are examples of machine learning techniques that are

successfully used to model many processes, phenomena and behaviors, including in the

various fields of engineering. An ANN is a computational model, inspired by the brain’s

neural network, consisting of neurons (nodes) connected by weighted links and activation

functions. An ANN typically comprises an input layer, an output layer and one or more

intermediate (hidden) layers. The number of nodes in the input and output layers is de-

termined by the number of inputs and outputs, respectively, while the number of hidden

nodes, the type of activation functions, the weights and the biases are determined through

learning and training methods (Awad & Khanna, 2015a). In SVRs the relationship be-

tween the inputs and the outputs is represented by a hyperplane characterized by support

vectors. The hyperplane is surrounded by an insensitive region, called the ε-tube, over

which the predictions are not penalized as they lie less than ε away from the target data.

The optimal hyperplane minimizes the prediction error subject to regularization. The lat-

ter is a constraint limiting the model’s complexity determined from the magnitude of the

hyperplane’s parameters (Awad & Khanna, 2015b). Non-linear regression problems can

also be addressed using an SVR by transforming the training set of data into a higher

dimensional space, known as the kernel space, where the relationships can be represented

linearly. As opposed to a classical ANN, a Physics Guided Neural Network (PGNN)

typically leverages some preliminary knowledge of the governing physics of a particular

phenomenon to improve the model’s reliability and robustness, while avoiding the over-

fitting of small data sets. To this aim, a physics-based loss function is typically added to

the learning objective of the neural network to insure that the model’s predictions do not

only show high accuracy on the target data but also conform to the underlying physics

that have generated them.

Machine learning approaches have been used extensively to devise simplified predic-
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tive models in different areas of engineering. For instance, Shahmansouri et al. (2021)

designed a three-layer ANN to efficiently predict the compressive strength of modified

Geopolymer Concrete (GPC) in which the ground granulated blast-furnace slag (GGBS)

is partially replaced by silica fume (SF) and natural zeolite (NZ). The ANN, trained on

experimental data, takes the concrete age, the NaOH concentration, the contents of SF, NZ

and GGBS as inputs, and provides accurate predictions of the compressive strength with

a correlation coefficient R of 0.98. Pasolli et al. (2011) used the support vector regres-

sion technique to estimate the soil’s moisture content based on microwave data acquired

through a scatterometer. Their SVR model provided greater estimation accuracy than an

ANN, trained on the same set of data, while being three times faster to train. Dennis et al.

(2021) trained a five-layer ANN to predict the peak specific impulse resulting from an ex-

plosive charge at specific locations in a confined space. The ANN was trained on a set of

numerical solutions generated by a validated high-fidelity computational tool. A PGNN

was recently developed by R. Zhang et al. (2020) to predict the structural displacement

response of buildings to an earthquake, based on the ground’s acceleration. The PGNN

was trained to minimize the prediction error while conforming to the equations of motion.

Li et al. (2021) trained several PGNNs to predict the displacement field of elastic square

plates under different loading conditions: (i) in-plane nonuniform stretching, (ii) in-plane

uniaxial central-hole tension, (iii) out-of-plane bending under uniform load, and (iv) buck-

ling under in-plane uniaxial compressive load. The authors investigated the use of loss

functions incorporating either the residuals of the governing equation and boundary con-

ditions, or the total potential energy in the plate. The PGNNs trained using either of the

loss functions provided satisfactory predictions that were fairly close to those generated

by high-fidelity finite elements simulations.

To further reduce the size and complexity of simplified models while facilitating and

expediting both their design and their training, model order reduction techniques, such

as Principal Component Analysis (PCA), Sensitivity Analysis (SA) and Proper General-

ized Decomposition (PGD) can be applied, often beforehand, to reduce the dimension-

ality of the problem. In PCA, the set of input variables is transformed into uncorrelated
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‘principal’ components of decreasing variance. A highest-variance subset of principal

components can thus be retained to reduce the number of inputs and hence the model’s

complexity. The review conducted by Jolliffe and Cadima (2016) provides insights into

PCA and its variants. A recent example of practical use of PCA to enhance a soft mod-

eling approach in the field of structural engineering corresponds to the work of Koo et al.

(2021). The authors identified eight relevant predictor features of the shear strength of re-

inforced concrete beams with transverse reinforcement, including web width, shear-span

to depth ratio, concrete compressive strength, tensile reinforcement depth, yield strength

and ratio, and transverse reinforcement yield strength and ratio. PCA was used to decor-

relate the predictor features before feeding all the principal components into an ANN that

was trained to predict the shear strength. The ANN performed better than the analytical

expressions provided in building codes within the range of the training dataset.

Sensitivity analysis (SA) encompasses a wide variety of techniques whose main ob-

jective is to evaluate the relative impact of individual or collective changes in input pa-

rameter on a model’s outputs. Disregarding those inputs of marginal influence on model

predictions can potentially result in significant local or global model order reduction. SA

includes ‘local’ methods concerned in assessing a model’s sensitivity to relatively small

deterministic changes incurred by the input parameters in the neighborhood of a particu-

lar point in the model input space. Conversely, ‘global’ SA methods essentially rely on

the assignment of probabilistic distributions to the input parameters, considered as ran-

dom variables, to derive the resulting probability distributions of the model’s outputs. The

review conducted by Borgonovo and Plischke (2016) provides an overview of the most

commonly used SA methods.

Proper generalized decomposition (PGD) is an iterative numerical resolution strategy

that circumvents the curse of dimensionality by using a separated representation of the

unknown solution fields, thus transforming a full-scale multidimensional model into a se-

quence of simplified models of lower dimensionality whose predictions are more readily

determined. This transformation is practically achieved by expressing the quantity of in-

terest as a sum of products of functions, each dependent on one input variable (Chinesta et
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al., 2011). The function products (monomials) are determined sequentially, by consecu-

tive ‘enrichment’ of the global expansion. At every iteration, an additional monomial, i.e.

product of single variable enrichment functions, is added to those previously determined

in the expansion. The latter is then plugged into the weak form of the original model

determined by the full-scale governing partial differential equations, and processed tak-

ing into consideration the single-variable dependency of each enrichment function and

the boundary conditions, to generate a sequence of simpler integral forms in each en-

richment function. The latter are then solved progressively, one at a time, assuming the

others are constant, using a greedy algorithm. As opposed to PCA and SA, PGD is an

‘a priori’ method that does not require any knowledge of the solution. A recent example

of practical application of PGD in the modeling of the behavior of construction materials

was presented by Ghnatios et al. (2021). The authors used PGD to formulate a simpli-

fied model predicting the torque incurred during a vane test performed on a cement paste.

The model accounted for the material properties of the cement paste and the rotational

speed of the vane as extra (input) coordinates. It was then used iteratively to identify the

material properties of a cement paste from experimental vane test results.

The various simplified modeling approaches discussed above are outlined and catego-

rized in Figure 1.1. These can be leveraged individually, or combined, depending on the

nature of the problem at hand, to achieve optimal model size and performance.

In this thesis model simplification techniques are implemented in two particular re-

search works: one addressing the generalized modeling of the effective thermal conduc-

tivity of particulate composites, and the other pertaining to the prediction of blast loads on

structures in an urban environment. Those are presented in Chapters 2 and 3 of the thesis,

respectively. Numerical simplification, regression and machine learning techniques are

leveraged in both research works, which are introduced briefly herein:

Generalized modeling of the effective thermal conductivity of particulate composites

To accelerate the design of novel, better performing composite materials, simple, re-

liable and computationally efficient models are needed to predict the effective proper-

ties of the projected composite from those of its constituents. Forward model speed and
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Figure 1.1: Examples and classification of simplified modeling techniques.

accuracy are indeed crucial, especially for the resolution of inverse problems and the

implementation of optimization schemes involving recursive forward predictions. Sev-

eral simplified modeling approaches have been proposed to predict the effective thermal
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conductivity (ETC) of particulate composites (PC); however, existing models apply in

relatively narrow ranges of constituents properties and proportions, while many fail to

account simultaneously for the potential contiguity between inclusion particles and for

the thermal resistance across contact interfaces. Novel, simple yet generalized, fairly

accurate and computationally efficient predictive tools for the ETC of PC, including ana-

lytical, parametric network and machine learning models addressing these shortcomings

are devised in Chapter 2. The parametric network models proposed, in particular, rely on

judicious simplifying assumptions pertaining to the path followed by the flow of thermal

power. Conventional regression techniques are utilized to train the proposed models on

either experimental data or over a rich manifold of numerical solutions generated using

high-cost high-fidelity finite elements simulations.

Influence of building porosity on the shielding of blast waves

Due to the numerous and complex physical interactions occurring between a blast-

wave generated by a high-yield explosion and the various elements of a typical urban

topography, including shielding, channeling and confinement effects, reliable predictions

of potential blast loads on structures in a city can only be obtained from large numerical

models at high computational costs (Remennikov & Rose, 2005; Rose & Smith, 2002;

P. D. Smith et al., 2004). To design safe and blast-resilient structures, engineers currently

resort to typical design manuals for conservative estimates of blast loads in simple con-

figurations, or to heavy and time-consuming numerical simulations, otherwise. Better

alternatives are thus clearly needed for design purposes, but also to enable the quick and

reliable assessment of expected damages in the aftermath of an explosion – such as that

which occurred in Beirut on August 4, 2020 – to rapidly scale an appropriate relief ef-

fort. Research efforts are thus targeted towards providing fast and accurate predictions

of the intensity of blast loads in complex setups. Chapter 3 of this thesis contributes, in

this context, to a better understanding of the effect of the porosity of structures on their

shielding potential, including the development of simplified modeling tools that engineer-

ing practitioners can rely on to account for such. A computational study is first designed

and conducted using validated numerical tools to evaluate the intensity of a blast wave
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behind buildings of different porosity levels, located at various standoff distances from

a high-yield explosive charge. Specific model simplification techniques are developed

and implemented to improve both the accuracy and the computational efficiency of the

numerical simulations run. Data-driven surrogate predictive tools, including analytical

and machine learning models are then developed and trained on a previously determined

manifold of numerical solutions to produce fast estimates of the intensity of blast waves

behind porous structures.
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Chapter 2

Generalized modeling of the effective

thermal conductivity of particulate

composites

2.1 Introduction and background

More efficient and sustainable materials are continuously developed in almost every in-

dustry. For instance, in the traditional construction industry, a wide variety of novel inclu-

sion materials are incorporated to concrete mixtures to achieve various objectives, such

as reducing weight or permeability, improving sound or thermal insulation, and increas-

ing ductility or strength (e.g. Himo et al., 2019; Khoury et al., 2016; Matar & Zéhil,

2019; Zéhil & Assaad, 2019; Zéhil et al., 2020; Zéhil & Saba, 2018). More generally,

lighter, stiffer, stronger, cheaper and more environmental friendly structural composites

are constantly sought through both experimental and computational means (e.g. Assaad

et al., 2018; Zéhil, 2016, 2019, 2020). In the electronics industry, electrically insulat-

ing materials with high thermal conductivity are desired for heat dissipation in packaging

(Tekce et al., 2007). With this purpose in mind, Weidenfeller et al. (2004) studied the

effect of combining Polypropylene (PP), a good insulator, with magnetite, barite, talc,
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copper, strontium ferrite and glass fibers fillers to enhance the thermal conductivity of the

composite.

To accelerate the design of novel composites with enhanced thermal properties, it is

crucial to evaluate the effective thermal conductivity κeff of the projected material from

that of its components, with sufficient precision and speed. This highlights the need to de-

velop accurate and computationally efficient models for such. One of the first analytical

models for the homogenized (electric) conductivity of particulate composites (PC) was

introduced by Maxwell (1954). The model is based on the far field theory applied to a

dispersed phase in a continuous medium: the electric potential is evaluated at a location

far from the center of a sphere placed in a homogenized medium of different resistivity.

Because the model relies on the assumption that the distance between inclusion particles

is large compared to their radius, it performs best when their volume fraction is small.

Levy (1981) later modified the Maxwell-Eucken equation to yield consistent results when

applied symmetrically to the components. This was achieved by introducing an additional

term, function of the ratio of the thermal conductivities of the constituents. Another com-

monly used approach to the modeling of the effective thermal conductivity is based on

the electric circuits analogy: i.e. phases are arranged in series, in parallel or following a

combination of both (e.g. Deissler & Boegli, 1958). Alternatively, models based on the

effective medium theory (EMT) consider a random mixture of phases surrounded by a

homogeneous medium whose properties are those of the mixture (e.g. Landauer, 1952).

Various models were developed further and applied to the effective thermal conduc-

tivity of porous materials, by considering air-filled voids as particulate inclusions. For

example, Carson et al. (2005) found that the effective thermal conductivity of an inter-

nally porous material is bounded above by the Maxwell model and below by the EMT

model, while that of an externally porous material is bounded above by the EMT model

and below by the Maxwell model. Gong et al. (2014) also applied the effective medium

theory to porous materials, treating all phases as spheres dispersed in a uniform medium

of thermal conductivity κm. They derived a simple algebraic equation which, when κm

is varied, identifies with five previous models: the EMT model, the two Maxwell-Eucken
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equations and the traditional parallel and series models. J. Wang et al. (2006) among oth-

ers developed several models for porous materials based on a combination of two or more

of the EMT model, the Maxwell-Eucken models and the parallel/series models, selected

depending on the physical characteristics of the composite. Ma et al. (2003) designed

a model for the effective thermal conductivity of fractal porous media using Ohm’s law

applied to a self-similar circuit architecture inspired by the Sierpinski carpet. The effect

of radiative properties on the effective thermal conductivity of porous materials was also

studied both experimentally and numerically. For instance, Fang et al. (2017) considered

the contribution of both radiation and thermal contact resistance in the numerical model-

ing of the effective thermal conductivity of Silica aerogel composites. In particular, it was

found that the Rosseland approximation can be used in the case of optically thick aerogel

composites. On the other hand, H. Zhang et al. (2017) estimated that, at high temperature,

the radiative effects estimated according to the Rosseland equation can contribute to up to

12% of the effective thermal conductivity of polyurethane foams.

Research attempting to develop new models or improve existing models for the ho-

mogenized thermal conductivity of particulate composites is still relevant today. M. Chen

et al. (2002) assumed the existence of a generic function mapping component properties

and volume fractions into the effective thermal conductivity. Based on the “strong indif-

ference principle” (to how the inclusion materials are partitioned) the former was iden-

tified to the result of applying the same mapping to the matrix material and small-sized

inclusions only, and then recursively to the previously homogenized fraction and the larger

inclusions. Driving the above to the limit corresponding to a minute volume fraction of

small-sized inclusions (“weak indifference principle”) resulted in a simple analytical ex-

pression matching a set of direct numerical simulations conducted by the authors, fairly

well. J. Wang et al. (2008) proposed a new “structural” model for co-continuous phases

(CC), developed using three different approaches: a mathematical derivation based on

the Maxwell–Eucken model, a thermal field method and the average field approximation.

The CC model can be simply expressed in terms of the traditional series and parallel

models. Recently, Rong et al. (2019) trained an artificial neural network (ANN) to predict
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the effective thermal conductivity from a set of (2D) cross-section images. The model’s

accuracy depends on the number of cross-sections retained and their directionality.

Experimental studies have shown that, in some cases, models applying to dispersed

inclusions in a continuous phase fail to accurately predict the effective thermal conduc-

tivity of the composite (H. Chen et al., 2016; Gao et al., 2015). Such models only depend

on the thermal conductivities of the components and their proportions, and hence do not

account for a potential thermal resistance at the particle-matrix interface, or possible con-

tact between contiguous particles. Indeed, depending on material properties, shapes, size-

distributions, structures and proportions, neighboring filler particles can touch each other

and form thermal bridges, significantly influencing the effective thermal conductivity of

the composite (Boudenne et al., 2004; H. Chen et al., 2016; Gao et al., 2015; Jin et al.,

2015; Krupa & Chodák, 2001; Tekce et al., 2007; W. Zhou et al., 2007b). In such cases,

understanding and modeling these effects is also necessary for prediction accuracy. In this

vein, Tekce et al. (2007) noted that inclusions shape in copper-filled polyamide compos-

ites influences thermal conductivity. Three shapes of copper inclusions were considered:

spherical, flat and fibrous. The fiber-filled composites had the highest thermal conductiv-

ity followed by those with flat inclusions, while round inclusions resulted in the lowest

conductivity. The authors attributed their findings to possible contact between inclusions,

arguing that fibers are more likely to interact to form thermal bridges inside the compos-

ite. Weidenfeller et al. (2004) explored the influence of magnetite, barite, talc, copper,

strontium ferrite and glass fiber fillers on the thermal conductivity of polypropylene. In-

terestingly, the authors found that the highest effective conductivity was not achieved with

the most conductive filler but with talc, which has a moderate thermal conductivity, but

a specific microstructure favoring high connectivity between inclusions. Several studies

seem to agree on the fact that mixing conductive inclusions of different sizes typically

leads to a higher effective thermal conductivity, as small particles fill the gaps between

the larger particles, resulting in a higher packing density (Bae et al., 2000; H. Chen et al.,

2016; W. Zhou et al., 2007b). However, there is more controversy regarding the potential

effect of particle size on the effective conductivity. Krupa and Chodák (2001) followed
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by W. Zhou et al. (2007a) found that the effective thermal conductivity decreases with

conductive inclusions of increasing size, while Boudenne et al. (2004) and by Gao et al.

(2015) noted the opposite.

Lumped parameter models were developed to account for the formation of conductive

chains. For instance, Agari and Uno (1986) combined the traditional parallel and series

models into a more general expression comprising two lumped parameters, typically fit-

ted to experimental data, to account for: (i) the formation of thermal chains due to particle

contiguity, and (ii) the crystallinity of the matrix. Hsu et al. (1995) proposed analytical

expressions for the stagnant thermal conductivity of two and three-dimensional spatially-

periodic media, also accounting for contact between particles. The authors relied on the

electric circuit analogy to partition an elementary volume element (EVE), comprising one

inclusion particle with contacting extensions, into a combination of simple parallel and

series models. The size of the extensions was considered as a lumped parameter charac-

terizing particle contiguity/contact, and determined by fitting the model to experimental

data.

An interfacial thermal resistance occurring at the filler-matrix interface can affect the

equivalent thermal conductivity of the composite significantly (e.g. Fang et al., 2017;

He et al., 2020; Yang et al., 2014; F. Zhou & Cheng, 2014). Studies have shown that

this effect is often dependent on the surface area of the filler particles: smaller particles

typically result in a larger interfacial area and hence in more resistance, to the flow of heat.

For example, W. Zhou et al. (2007b) studied the effect of the Al2O3 filler size on Silicone

rubber composites. They observed that larger particle sizes resulted in higher effective

thermal conductivities, partially attributing this effect to a smaller interfacial area.

Several analytical models were derived to account for interfacial resistance. Has-

selman and Johnson (1987) extended the traditional series model and those previously

developed by Lord Rayleigh (1892) and Maxwell (1954) to this aim. Nan et al. (1997)

developed another model with interfacial resistance, based on the effective medium the-

ory and taking into consideration the aspect ratio of ellipsoidal particles. The Maxwell

model was extended by Xu et al. (2016b) using a potential mean field theory applied to
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a continuous matrix and filler while incorporating an interfacial resistance between filler

particles. Following a significantly different approach, Xu et al. (2016a) also derived a

model similar to that of Agari and Uno (1986), hence providing useful statistical interpre-

tations of its lumped parameters reflecting both the interconnectivity and the interfacial

resistance between particles. By analogy to electric circuits, Kim et al. (2009) devel-

oped an effective thermal conductivity model that accounts for particle contiguity and

interfacial contact resistance. To this aim, contiguous but non-overlapping inclusions of

parallelepipedic shape were randomly generated in a 3D matrix. The simulated domain

was then meshed with a lattice of cubic thermal resistance elements, while an additional

thermal contact resistance was also added at the interface between matrix and particle

elements. Recently, Yan et al. (2020) designed and trained an artificial neural network

to predict the effective thermal conductivity of UO2-SiC composites based on their struc-

tural characteristics including mean grain area, mean particle area and particle fraction,

determined on 2D cross-sections, in addition to interfacial resistance. The model is also

used to infer the structural characteristics of a UO2-SiC composite based on its effective

thermal conductivity.

Existing models for the effective thermal conductivity of particulate composites are

most accurate in limited ranges of component properties and proportions. For instance,

the Maxwell (1954) model is characterized by a good predictive ability when the volume

fraction of inclusions is relatively small. Alternatively, the model developed by M. Chen

et al. (2002) works best when the thermal conductivity of the dispersed phase is small

relative to that of the matrix. Other existing material models accounting for particle con-

tiguity and thermal contact resistance do not make a clear distinction between these two

separate effects (Xu et al., 2016b). On another note, it is essential to perform fast forward

predictions to accelerate computationally intensive optimization schemes typically used

to explore novel composites with improved properties. Hence, there is a persisting need

to develop computationally efficient composite material models that are also applicable

over wider ranges of relative material properties and proportions.

Two novel and complementary predictive models for the effective thermal conductiv-
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ity of two-phase isotropic particulate composites are derived in this chapter: (i) a simple

and computationally efficient analytical model for a non-contiguous dispersed phase, and

(ii) a more comprehensive semi-analytical model factoring in potential filler particle inter-

actions and a thermal resistance at the interface between phases. Based on the terminology

adopted in M. Wang and Pan (2008), these models fall under the categories of ‘analyti-

cal basic’ and ‘analytical network’ models. Such models are widely preferred in practice

for the excellent compromise they can achieve between: (a) simplicity and high com-

putational efficiency on one hand, and (b) satisfactory prediction accuracy on the other

hand, including in cases where the discrete phase is randomly distributed (e.g. Khan et

al., 2019). The second ‘grid’ model relies on a generalized thermal conduction grid solver

algorithm that can incorporate as many thermal elements and components as necessary to

closely replicate the material constitution and hence better match the observed behavior

of particulate composites. The material models proposed are initially calibrated to a high-

fidelity manifold of numerical solutions constructed from a set of three-dimensional finite

element simulations. Their performance is assessed by comparison to other relevant mod-

els. A proposed instance of the grid model is also used to match existing experimental

data and contribute to filling the knowledge gap regarding the influence of filler particle

size on the effective thermal conductivity of composites.

2.2 Summary of relevant existing particulate composites

models retained

The performances of the models developed in this chapter will be compared to those of:

(i) an artificial neural network (developed in section 2.4), the Maxwell (1954), the Levy

(1981) and the M. Chen et al. (2002) analytical models, in the case of non-contiguous

inclusion particles, and (ii) the Hsu et al. (1995), the Agari and Uno (1986) and the Xu

et al. (2016b) models, otherwise. The Agari and Uno (1986) model can be considered the

same as the model developed by Xu et al. (2016a) because of their similar expressions.

The Hasselman and Johnson (1987) and the Nan et al. (1997) models are not considered
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in this work as these do not account for contact between inclusion particles. Table 2.1 lists

the analytical expressions of κeff for the various models retained. The volume fraction

of inclusions is denoted by vf , while λ = κI/κM corresponds to the ratio of the thermal

conductivity of the inclusion material (index I) to that of the matrix material (index M ).

The parameter C1 in the Agari and Uno (1986) model relates to the crystallinity of the

matrix, while parameter C2 accounts for filler particle contiguity. The lumped parameter

c in the Hsu et al. (1995) model corresponds to the lateral size of inclusion material ex-

tensions representing the contact between particles, while parameter Re in the Xu et al.

(2016b) model designates the interfacial contact resistance.

Model Equation

Maxwell (1954)
κeff
κM

=
2 + λ− 2(1− λ)vf
2 + λ+ (1− λ)vf

Levy (1981)

κeff
κM

=
2 + λ− 2(1− λ)F

2 + λ+ (1− λ)F

σ = (1− λ)2((1 + λ)2 + λ/2)−1

F =
1

2

(
2/σ − 1 + 2vf −

√
(2/σ − 1 + 2vf )2 − 8vf/σ

)

M. Chen et al. (2002) 1 =

(
(1− vf )

κM − κI
κeff − κI

)3
κeff
κM

Agari and Uno (1986) log(κeff ) = vfC2 log(κI) + (1− vf ) log(C1κM)

Hsu et al. (1995)

κeff
κM

=1− γ2a − 2γcγa + 2γcγ
2
a + γ2cγ

2
aλ

+ γ2a−γ2cγ2a
1−γa+γaλ−1 +

2(γcγa−γcγ2a)
1−γcγa+γcγaλ−1

vf =
(
1− 3γ2c

)
γ3a + 3γ2cγ

2
a

γc = c/a and γa = a/L

Xu et al. (2016b)
κeff = 1

4
(3vf (κse − κM) + (2κM − κse)

+
√

(3vf (κse − κM) + 2κM − κse)2 + 8κseκM)
1

κse
=

1

κI
+Re

Table 2.1: Review summary of relevant PC models retained.
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2.3 Numerical manifold of solutions for non-contiguous

particulate composites

This section explores numerically the effective thermal conductivity of a composite mate-

rial comprising non-contiguous particulate inclusions embedded in a continuous matrix,

with no thermal contact resistance at the inclusion-matrix interface. To this aim, a square

elementary volume element of the composite containing one inclusion is studied, in con-

ditions of macroscopically unidirectional heat conduction.

Matrix

Inclusion

g

h

L/2

a/2

Figure 2.1: Finite element model representing 1/8th of the elementary volume element.

Taking advantage of symmetry, a three-dimensional finite elements (FE) model rep-

resenting 1/8th of the elementary volume element (Figure 2.1) is implemented on the

commercial software Abaqus. The model consists of a cube of side L/2, representing the

matrix, containing a cubic inclusion of side a/2. The volume fraction of the inclusion,

vf = (a/L)3, is varied by changing the value of a, while L is set to 60 units of length (ul).

The domain is meshed using 20-node quadratic hexahedral serendipity elements. The

finite element model is used to evaluate the effective thermal conductivity κeff of the

homogenized material, in steady-state, under the following boundary conditions: the lat-

eral walls of the domain are insulated and a constant entering heat flux h is prescribed

uniformly across the upper boundary while the lower boundary is maintained at a fixed

temperature g. Applying Fourier’s law of thermal conduction to the homogenized mate-
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rial yields:

κeff =
hL

2 (ū− g)
, (2.1)

where ū designates the temperature at the upper boundary. The latter is estimated by

averaging nodal temperatures across the upper boundary of the model, specifically:

ū =
16

3L2

∑
e

je

∑
n∈ηed

un −
1

4

∑
n∈ηec

un

 , (2.2)

where e represents the top-surface element number, je the Jacobian of element e, un is

the temperature at node n, while ηec and ηed designate corner and edge element node sets,

respectively.

Following a thorough convergence analysis, an element size of 1×1×1 ul3 is retained

across all the domain, for volume fractions vf < 0.65. When vf ∈ [0.65, 0.90], the domain

representing the matrix becomes narrower, which requires refining its mesh to an element

size of 0.5×1×1 ul3. For vf > 0.90, the mesh needs to be refined further to 0.1×2×2 ul3

in the matrix, while a consistent element size of 2× 2× 2 ul3 is found to be sufficient in

the inclusion. In all cases, convergence is verified by a less than 0.04% change in κeff ,

relative to a twice coarser mesh.

The finite element model is used as a reference to constitute a manifold of numerical

solutions for the effective thermal conductivity of non-contiguous particulate composites:

κeff is determined by running simulations with various ratios λ = κI/κM and for various

inclusion volume fractions vf = (a/L)3. The dataset constituted is shown in Figure 2.2.

2.4 Artificial neural network model

A set of shallow artificial neural network models (ANN) are fitted to the manifold of

numerical solutions developed in section 2.3. Each ANN comprises one input layer taking

vf and log(λ) as inputs, one intermediate layer consisting of a variable number nh of

hidden neurons (3 ≤ nh ≤ 9), and a single-neuron output layer returning the network’s

prediction Y = log(κeff/κM). A two-component input X = 〈vf , log(λ)〉T is first offset
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and scaled to yield a pre-processed input-vector X1 whose components are between −1

and 1:

X1 = 2
X−Xmin

Xmax −Xmin

− 1, (2.3)

were Xmin and Xmax contain the minimum and maximum input values, respectively. The

hidden layer then transforms X1 into a column-vector A1 of size nh, as follows:

A1 = h (W1X1 + B1) , (2.4)

where the nh-component column-vector B1 contains the biases of the hidden neurons, W1

is a matrix of size nh × 2 containing the weights applied by each of the hidden neurons

to each of the two inputs in X1 and h(.) is the sigmoid symmetric transfer function given

by:

h (Z) =
2

1 + e−2Z
− 1. (2.5)

The single-neuron output layer transforms vector A1 into a scalar output A2:

A2 = W2A1 +B2, (2.6)

where the scalar B2 corresponds to the bias of the output neuron and W2 is an nh-

component row-vector containing the weights applied by the output neuron to each of

the components of A1. The scalar A2 ∈ [−1, 1] is finally post-processed (i.e. reverse

offset and scaled) to yield the final scalar output Y :

Y =
A2 + 1

2
(Ymax − Ymin) + Ymin, (2.7)

where Ymin and Ymax are the minimum and maximum target values, respectively.

The ANNs’ parameters (i.e. weights and biases) are fitted to the data using the

Bayesian Regularization algorithm implemented in the commercial software Matlab. To

this aim, the data is randomly split into a training set (84%) and a testing set (16%). The

training algorithm minimizes the Mean Squared Error (MSE) between the target values
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Y
(i)
t in the training set and the corresponding ANN model predictions Y (i)

m :

MSE =
1

Ntr

Ntr∑
i=1

(
Y

(i)
t − Y (i)

m

)2
, (2.8)

where Ntr is the number of training examples. After training, the MSE is also evaluated

on the testing set, while the Mean Relative Error (MRE) is determined on the entire data

of size N :

MRE(%) = 100× 1

N

N∑
i=1

∣∣∣∣∣Y (i)
t − Y

(i)
m

Y
(i)
t

∣∣∣∣∣. (2.9)

Hidden neurons nh 3 4 5 6 7 8 9
MSE (training set) 6.10−2 4.10−2 3.10−3 2.10−3 8.10−4 4.10−4 3.10−4

MSE (testing set) 4.10−2 2.10−2 6.10−3 3.10−3 4.10−3 4.10−3 6.10−3

MRE (global set) 15.95% 11.23% 4.14% 2.86% 2.30% 1.65% 1.66%

Table 2.2: Model errors for ANNs comprising three to nine hidden neurons.

Table 2.2 summarizes model errors for each of the seven ANN models trained. The

MSE on the testing set drops monotonically as the number of hidden nodes is increased

from three to six. It then grows as the size of the hidden layer becomes larger and the

model starts over-fitting the manifold. Clearly, the ANN comprising six hidden neurons

best fits the data with an MRE of 2.86% and it is thus retained here. This choice is

supported further by the fact that the model’s performance on the training set generalizes

best to the testing set, since the MSE has the same order of magnitude on both sets. The

25 fitted parameters of the ANN model retained are as follows:

B1 =

[
0.8460 13.4619 14.9909 −0.0986 −0.2562 −0.6630

]T
,

B2 = 0.2327,

W1 =

−0.0171 −10.7680 −12.6451 1.3555 0.4030 0.1595

−1.1126 −2.8152 2.6729 3.3934 0.6890 0.9605


T

,

W2 =

[
4.5701 −0.4336 0.4199 0.0578 −1.9568 6.6388

]
.
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2.5 Analytical model for non-contiguous particulate

composites

2.5.1 Model derivation

A careful observation of the manifold of numerical solutions generated using the finite

element model presented in section 2.3 reveals a clear trend in the relationship between

κeff and vf , at fixed λ, while a different trend governs the dependency of κeff on λ, at

fixed vf . The latter is well related by a rational function of the form:

κeff
κM

=
(1 + b)

(1 + a)

(λ+ a)

(bλ+ 1)
, (2.10)

where a and b are primary (internal) parameters depending on vf . Evaluating a and b at

the various volume fractions reveals that these are also well fitted by rational expressions

of the form:

a = p
1− vf

1 + vf/q
, and (2.11)

b = (1/p)
1− vf

1 + vf/r
, (2.12)

where p, q and r correspond to three global (external) parameters characterizing the “non-

contiguous model” (NC) derived here. Fitting the NC model globally to the numerical

manifold yields p = 2.1443, q = 0.3577 and r = 2.6009. Figure 2.3 superimposes

the NC model predictions to the numerical manifold. Clearly, the model fits the data

excellently.

2.5.2 NC model performance and validation

The performance of the NC model is evaluated by comparison to the ANN (from sec-

tion 2.4), the Maxwell, the Levy and the Chen et al. models, based on the manifold of

data points generated in section 2.3. To this aim, a percent relative error (RE) is calculated
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at each data point for the five models:

RE = 100× Y
(i)
t − Y

(i)
m

Y
(i)
t

, (2.13)

where Y (i)
t and Y (i)

m correspond to the ith target data point and the corresponding model

prediction, respectively. Maximal model errors are plotted versus λ in Figure 2.4. Clearly,

the NC model outperforms the others. Even though the Chen et al. and the Levy models

perform best when λ is close to one, these diverge significantly from the manifold for

λ < 0.1 and λ > 10. The Maxwell model performs better than the NC model in the

limited range corresponding to 0.3 < λ < 10. The performance of the ANN model

follows the same trend as that of the NC model but with higher values of the RE. Table 2.3

clarifies further the ranges of validity of the NC model corresponding to various levels of

precision. Errors greater than 5% are only seen for λ ≤ 0.01 in the case of vf > 0.65.
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Figure 2.4: NC model’s performance compared to the models from Maxwell (1954), Levy
(1981), M. Chen et al. (2002) and to the ANN model from section 2.4.

Maximum | RE | Validity range
Lower bound Upper bound

9% ≤ 10−3 ≥ 103

5% ∼ 2(10−2) ≥ 103

3% ∼ 4(10−2) ≥ 103

Table 2.3: Validity ranges of the NC model corresponding to various precision thresholds.
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The MRE (equation 2.9) is also determined to assess the overall performance of the

models. The NC model has an MRE of 0.7%, while that of the Maxwell model (2.0%) and

the ANN model (2.9%) are almost three and four times larger, respectively. The Chen et

al. and the Levy models have significantly larger MREs of 24.3% and 79.0%, respectively.

The superior accuracy of the NC model combined to its closed-form analytical simplicity

and computational efficiency gives it a clear edge on the other models, including in the

resolution of inverse problems.

The Maxwell, the ANN and the NC models are also compared to experimental data

from Sundstrom and Lee (1972) corresponding to polystyrene and polyethylene filled

with particulate inclusions made from various materials. The models’ predictions are su-

perimposed to the experimental data points for glass-filled polystyrene and polyethylene

in Figures 2.5(a) and 2.5(b), respectively. In the case of the polystyrene-glass composite

(λ = 6.5), the NC model outperforms the Maxwell and the ANN models significantly,

with an MRE of 1.49%, versus 3.89% for the Maxwell model and 4.44% for the ANN

model. In the case of polyethylene (λ = 3.0) the NC model and the Maxwell model per-

form equally well with MREs of 0.85% and 0.75% respectively, while the ANN model’s

MRE of 2.97% is roughly four times larger. It is interesting to note that the performance

of the models drops with other fillers of increasing thermal conductivity (Sundstrom &

Lee, 1972). This can be attributed to the contiguity effect being enhanced further at larger

values of λ.

2.6 Thermal conduction grid model (TCG) for

contiguous particulate composites

2.6.1 Grid solver algorithm

The size of an elementary volume element (EVE) in a particulate composite of periodic

structure corresponds to the spatial period L. By analogy to electric circuits, the EVE is

modeled as a combination of elements of homogeneous thermal conductivities, arranged
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Figure 2.5: NC model validation on experimental data for glass-filled composites from
Sundstrom and Lee (1972).

in parallel and/or in series, to reproduce an idealized version of the composite’s structure.

For example, the EVE can be modeled as two blocks in parallel, one corresponding to

a matrix element while the other comprises a matrix element and an inclusion element,

placed in series. An analytical expression of such model (referred to as the “Ps” model)
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is given by:
κeff
κM

=
(

1− v2/3f

)
+

λv
2/3
f(

1− v1/3f

)
λ+ v

1/3
f

. (2.14)

Alternatively, the EVE can be modeled as two blocks in series, one corresponding to a

matrix element while the other comprises a matrix element and an inclusion element,

placed in parallel. This alternative “Sp” model is characterized by:

κeff
κM

=

(
1− v2/3f

)
+ λv

2/3
f

1 + (λ− 1)
(

1− v1/3f

)
v
2/3
f

. (2.15)

More generally, the EVE can be subdivided into additional blocks and elements of var-

ious spatial orientations, depending on the need to better match the effective thermal-

conduction behavior of certain multiphase composites, which might also comprise voids

and/or contiguous particles. Furthermore, additional elements might be needed to simu-

late interfacial thermal contact resistances between different phases. This can constitute a

thermal-conduction “grid” of significant complexity that is not readily amenable to ana-

lytical formulation. A general grid-solver algorithm is hence developed here, to determine

the effective thermal conductivity of the composite, regardless of network intricacy and

size.

In the thermal-conduction grid model, elements are connected through nodes. Each

element e is characterized by its length Le, its cross-sectional area Ae, its thermal con-

ductivity κe, and its delimiting nodes. The flow of thermal power q̂e through element e is

given by:

q̂e =

(
κeAe
Le

)
∆Te, (2.16)

where ∆T e corresponds to the difference between the temperature at the origin and that

at the extremity of the element. The unknown temperatures Ti at nodes i are determined

by solving a system of equations expressing the balance of power at the same nodes, i.e.

∑
e∈ηi

(
κeAe
Le

)
(Te − Ti) + q̂oi = 0, (2.17)
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where ηi designates the set of elements connected to node i, Te is the temperature at the

far end of element e, and q̂oi is an external source of power prescribed at node i. In the

context of the direct ‘stiffness’ method, the components of the local element ‘stiffness’

matrix ke and the global ‘force’ vector F are given by

keab =

(
κeAe
Le

)
(−1)a+b ; (a, b) ∈ {1, 2}2, and (2.18)

Fi =
∑
e∈ηi

(
κeAe
Le

)
ge + q̂oi , (2.19)

respectively, where ge designates the temperature at the far end of element e if this tem-

perature is prescribed, or zero otherwise.

To simulate a macroscopically unidirectional heat conduction process, a constant flow

of thermal power is applied to the upper boundary of the 1/8th elementary volume el-

ement, while the lower boundary is maintained at a fixed temperature. The effective

thermal conductivity resulting from the thermal conduction grid model hence writes:

κeff =
2q̂

L∆T
, (2.20)

where q̂ is the prescribed flow of thermal power at the grid’s input node and ∆T is the

difference between the temperature at the grid’s input node, determined by the grid solver,

and that prescribed at the grid’s output node.

The grid solver algorithm can be used to simulate any three-dimensional network

comprising an arbitrary number of discrete thermal conduction elements. Elements of

different orientation and material properties can be used to model multiphase composites.

Thermal contact resistances at the interfaces between phases can also be represented by

special elements characterized by a unit length, a cross-sectional area corresponding to

that of the interface and a thermal conductivity set equal to the interfacial thermal contact

conductance hc. Figure 2.6 illustrates the modeling and simulation process on a two-

dimensional example of a three-phase contiguous particulate composite comprising two

discrete phases (or inclusions) of thermal conductivities κI1 and κI2 , and one continuous
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phase (or matrix) of thermal conductivity κM . The composite is also characterized by a

finite thermal contact conductance hc at the interface between phases I1 and M .

e Le Ae κe

κeff =
2q̂

L∆T

κM

q̂

κI1
κI2
hc

∆
T

Grid solver

nodes

L

2

q̂

Le

κe

Ae

Figure 2.6: Modeling and simulation process using the thermal conduction grid solver.

Two instances of the thermal conduction grid model (TCG) are developed in the fol-

lowing sections: one representing a two-phase particulate composite with non-contiguous

inclusions (TCG1), and another addressing the case of contiguous particles with a thermal

contact resistance at the filler-matrix interface (TCG2).

2.6.2 Example model for two-phase PC with non-contiguous

inclusions (TCG1)

A particular instance “TCG1” of the TCG model is developed here for a two-phase par-

ticulate composite with non-contiguous filler particles. The TCG1 model is derived by

adding transverse elements to the Ps model (section 2.6.1), to better reproduce transverse

heat exchanges between the longitudinal blocks in parallel, as illustrated in Figure 2.7.

The length Le, the cross-sectional area Ae, and the thermal conductivity κe of each ele-

ment e, are listed in Table 2.4. The parameter p tunes the effective depth d of the rectangu-

lar cross-sections of the horizontal matrix elements 5, 6, 7 and 8. This depth is expressed

as d = p(L − a)/2, where a and L correspond to the size of the cubic inclusion and that

of the EVE, respectively.

An analytical expression of the TCG1 model is also derived and verified using the

grid solver algorithm. The effective thermal conductivity is found to satisfy the following
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Figure 2.7: The TCG1 model - element 12 models the inclusion material.

expression:
κeff
κM

=
G+ (1 + 10p− 16p2)vf + 2p(4p− 3)v

4/3
f

G+ 4p(1− 6p)vf + 8p2(3v
4/3
f − v

5/3
f )

, (2.21)

where

G = A−Bv1/3f + Cv
2/3
f ,

A = (λ+ 4p)(1 + 2p)/(λ− 1),

B = 2p(3 + 8p)/(λ− 1) + 1,

C = 8λp2/(λ− 1)− 6p,

with λ = κI/κM ; vf = (a/L)3 being the volume fraction of the inclusion.

The TCG1 model is calibrated to the manifold of numerical solutions constructed in

section 2.3. In this process, the parameter p is found to vary with λ. This dependency is

well fitted by the rational function:

p =
αλ+ β

λ+ (α + β − 1)
, (2.22)

where α = 2.6057 and β = 0.3122.
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Element e 1 2 3 4 5 6

Le
L−a
2

L−a
2

L−a
2

L−a
2

L
4

L
4

Ae
a(L−a)

4
a2

4
a(L−a)

4
(L−a)2

4
pa(L−a)

4
pa(L−a)

4

κe κM κM κM κM κM κM

Element e 7 8 9 10 11 12

Le
L
4

L
4

a
2

a
2

a
2

a
2

Ae p (L−a)2
4

p (L−a)2
4

a(L−a)
4

a(L−a)
4

(L−a)2
4

a2

4

κe κM κM κM κM κM κI

Table 2.4: TCG1 model elements properties.

Maximum | RE | Validity range
Lower bound Upper bound

9% ∼ 5(10−2) ≥ 103

5% 10−1 50
3% ∼ 0.16 ∼ 12

Table 2.5: Validity ranges of the TCG1 model corresponding to various precision thresh-
olds.
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error varies with vf and lies between the extremal values shown, for each model.

The performance of the TCG1 model is measured against that of the Maxwell model

and the NC model, over the manifold of numerical solutions. Figure 2.9 compares the

predictions of the three models for λ = 0.1 and λ = 80. Extremal values of the percent



35

relative error calculated at each data point for the three models is also shown versus λ

in Figure 2.8, while Table 2.5 clarifies further the ranges of validity of the TCG1 model

corresponding to various precision thresholds. The NC model performs the best in its field

(i.e. non-contiguous PCs) with an MRE of 0.7% followed by 1.5% for the TCG1 model

and 2.0% for the Maxwell model. It is interesting to note that, although the parameter p

was calibrated to the manifold of numerical data points, it can alternatively be fitted to

any set of experimental data.
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2.6.3 Example model for two-phase PC with contiguous inclusions

and thermal contact resistance (TCG2)

Design

Another instance (TCG2) of the TCG model is developed here to illustrate the process

of designing a thermal conduction grid network accounting for particle contiguity and

for thermal contact resistance at the inclusion-matrix interface. Inspired by Hsu et al.

(1995), element number 14 is added to the TCG1 model to relate the contact between

particles. Both elements 12 and 14 correspond to the inclusion material. Element 14 is

characterized by a length L/2 and a square cross-section of size c/2 = (qa) /2, where

q ≤ 1 is a lumped contact-surface parameter to be fitted to experimental data. The cross-

sectional area of element 12 is also adjusted to (a/2)2−(c/2)2 to account for that occupied

by the additional contact element 14. In three dimensions, the resulting volume fraction

of inclusion material in the model writes vf |model = (a3 + 3(L− a)c2) /L3, which, for

c << a is approximately equal to (a/L)3.

The thermal contact resistance at the inclusion-matrix interface is modeled by element

13 standing between inclusion-element 12 on one side and matrix-elements 2, 5 and 6 on

the other side. Element 13 is given a unit length, a thermal conductivity hc, and a cross-

sectional area equal to that of element 12. The size of the particle is reflected by the

parameter a while that of the EVE is approximated as L ≈ a/v
1/3
f . The TCG2 model is

represented in Figure 2.10, while its element properties are listed in Table 2.6.

The flow of heat through a contact interface between two phases is governed by the

thermal contact conductance hc (which depends on the contacting materials only) and by

the contact area, characterized here by the parameter q = c/a, which is a function of

the volume fraction. In particular vf = 0 =⇒ q = 0, while q is expected to reach

a maximum value at the largest packing density. The dependency of q on vf is hence

described by an analytical expression that is consistent with the above, i.e.

q = γ
(
1− (1− vf )1/δ

)
. (2.23)
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Figure 2.10: The TCG2 model. Elements 12 and 14 model the inclusion material, while
element 13 represents a thermal contact conductance.

Element e 1 2 3 4 5 6 7

Le
L−a
2

L−a
2

L−a
2

L−a
2

L
4

L
4

L
4

Ae
a(L−a)

4

a2(1−q2)
4

a(L−a)
4

(L−a)2
4

pa(L−a)
4

pa(L−a)
4

p (L−a)2
4

κe κM κM κM κM κM κM κM

Element e 8 9 10 11 12 13 14

Le
L
4

a
2

a
2
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Table 2.6: TCG2 model elements properties.

TCG2 model validation

The TCG2 model is tested on experimental data reported by Gao et al. (2015) for four

mixtures of Al2O3-filled silicone-rubber composites, prepared with different size distri-

butions of the filler particles. In the mixtures’ designation dx, the subscript x corresponds

to the mean filler-particle size. The thermal conductivities reported are κM = 0.15 W/m.K

for silicone rubber and κI = 30 W/m.K for Al2O3. Gao et al. noted that, at fixed volume

fraction, a higher effective thermal conductivity is achieved by mixtures of higher mean

particle-size. The authors fitted both the Agari and Uno (1986) and the Hsu et al. (1995)

models to the experimental data. Changes in the parameters representing inter-particle
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connectivity in those models drove the interpretation that more contact between inclusion

particles is achieved in mixtures with higher mean particle-size.

p γ δ hc MRE % CoV

Silicone rubber / Al2O3

(Gao et al., 2015)

d3 0.085 0.261 0.581 7.50(107) 4.7 0.55

d10 0.148 0.248 0.450 7.52(107) 4.6 0.57

d35 0.398 0.270 0.482 7.28(107) 3.9 1.05

d75 2.580 0.320 0.586 7.38(107) 5.2 1.26

Polypropylene / Al
(Boudenne et al., 2004)

A1 0.007 0.165 0.983 2.84(107) 8.9 0.81

A2 0.007 0.225 1.000 2.13(107) 4.3 1.98

HDPE / Graphite (Krupa
& Chodák, 2001)

EG 2.421 0.089 0.118 2.50(108) 3.0 1.01

KS 1.527 0.093 0.083 2.53(108) 2.4 1.04

Polystyrene / Graphite
(Krupa & Chodák, 2001)

EG 1.522 0.144 0.474 8.34(107) 2.6 1.01

KS 2.887 0.173 0.471 8.34(107) 5.5 1.04

Table 2.7: TCG2 model parameters as fitted to experimental data from Gao et al. (2015),
Boudenne et al. (2004) and Krupa and Chodák (2001).

Figures 2.11 and 2.12 compare the TCG2 model to relevant existing models over the

experimental data reported in Gao et al. (2015). The mean relative errors reveal that

globally, the TCG2 model provides a slight improvement over the previous models. The

parameter q = γ
(
1− (1− vf )1/δ

)
of the TCG2 model is plotted against the volume

fraction vf in Figure 2.13, as fitted to each of the mixtures dx in Figures 2.11 and 2.12 .

Clearly, q is larger for mixtures presenting a larger mean particle-size. This is consistent

with the fact that this lumped parameter relates to the contact area between filler particles.

It is also in agreement with the conclusions of the Gao et al. study, although the latter

retained a linear dependency of the parameter c (and thus q) on the volume fraction.

The parameter hc has approximately the same value for the four mixtures (Table 2.7),

reflecting the thermal conductance at the interface between the silicon rubber and the

Al2O3 particles. It is also interesting to note that, with the assumption that vf ≈ (a/L)3,

the relative error on the volume fraction is less than 3.9%.
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Figure 2.11: Models comparison over data for Al2O3-filled silicone-rubber composites
(Gao et al., 2015) for d = 3 and d = 10µm .
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Figure 2.12: Models comparison over data for Al2O3-filled silicone-rubber composites
(Gao et al., 2015) for d = 35 and d = 75µm.
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Figure 2.13: Parameter q versus vf for the data fitted in Figures 2.11 and 2.12.

The TCG2 model is also tested on experimental data reported by Boudenne et al.

(2004) and by Krupa and Chodák (2001). Boudenne et al. measured the effective thermal

conductivity of Aluminum filled Polypropylene. The thermal conductivities of the com-

ponents were taken as 237 W/m.K for Aluminum and 0.239 W/m.K for Polypropylene.

Two mixtures made with Aluminum particles of typeA1 andA2, of 8µm and 44µm mean

particle-size respectively, were tested. The effective thermal conductivity was found to be

larger for the mixture with the larger particles A2. Krupa and Chodak tested the effec-

tive thermal conductivities of four mixtures made of high density polyethylene (HDPE)

or polystyrene (PS), each filled with one of two grades of graphite, KS and EG, of small

and large mean particle-size, respectively. The thermal conductivities of HDPE, PS and

graphite were taken as 0.436, 0.167, and 208.3 W/m.K, respectively. Contrary to the re-

sults reported by Gao et al. and Boudenne et al., the effective thermal conductivity in

the study of Krupa and Chodak was found to be larger in mixtures comprising smaller

particles. The authors deduced that more conductive chains were formed in this case. The

fitted parameter q of the TCG2 model is in agreement with the conclusions of both stud-

ies. At constant volume fraction, q is larger for the mixture with Aluminum particles A2

in the Boudenne et al. study, and for the mixtures with graphite particles KS in the Krupta

and Chodak study. The TCG2 model is compared to previous models over both sets of
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experimental data in Figures 2.14 and 2.15. Clearly, the TCG2 model fits the data fairly

well while showing slight improvement over the previous models. Table 2.7 recapitulates

the TCG2 model parameters fitted to the various experimental data in Gao et al. (2015),

Boudenne et al. (2004) and Krupa and Chodák (2001). The confidence intervals on hc are

however relatively large due to the small number of available data points and the limited

effect of thermal contact resistance for the materials at hand.

On the influence of particle size-distribution

It can be reasonably argued that, within a range of filler particle sizes that are signifi-

cantly larger than the sizes of individual atoms and molecules, in both the discrete and

the continuous phases, the equivalent thermal conductivity measured on a statistically

representative volume element of the composite is scale independent. In this context,

applying a uniform scaling factor to all filler particles should not influence the thermal

conductivity at the macroscale, including the extent to which contacting particles can

form conductive or resistive networks. Previous studies have hinted to this argument

(e.g. Krupa & Chodák, 2001; Sundstrom & Lee, 1972) while also arguing that particle

shape and/or size-distribution can influence the formation of such networks significantly.

This line of thought is also supported here by the behavior of parameter q in the TCG2

model. Indeed, for each of the three experimental studies reviewed in this section, at fixed

volume fraction, the parameter q takes larger values when the TCG2 model is fitted to

mixtures comprising more dispersed particle size-distributions, as reflected by their coef-

ficient of variation (CoV). In this regard, Table 2.7 reveals significant correlations between

the global (external) model parameters γ and δ (defining the primary/internal parameter

q) and the CoV of the particle size-distribution (based on particle counts). Furthermore,

in the case of Gao et al., the parameter δ is found to be correlated with the coefficient

of curvature Cc = D2
30/ (D60D10) (x% of the particles, by weight, are finer than Dx),

while γ is correlated with the average particle size s. This is documented in Table 2.8 and

illustrated in Figure 2.16.
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Figure 2.14: Models comparison over data for Aluminum filled Polypropylene
(Boudenne et al., 2004).
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Chodák, 2001).
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Mix γ δ Cc mean size s (µm)

Gao et al.
(2015)

d3 0.261 0.581 0.8845 3
d10 0.248 0.450 0.9896 10
d35 0.270 0.482 0.9898 35
d75 0.320 0.586 0.9041 75

Table 2.8: Al2O3 size-distribution properties (Gao et al., 2015) and fitted TCG2 model
parameters γ and δ.
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Figure 2.16: Correlation between TCG2 model parameters and size-distribution proper-
ties.

2.7 Conclusion

Two new material models were developed in this chapter to better estimate the effective

thermal conductivity of two-phase isotropic particulate composites. The first is a simple
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and highly efficient analytical model for a non-contiguous dispersed phase. This model

matches a manifold of high-fidelity finite element solutions better than other existing mod-

els, over a wide range of phase properties and fractions. The model’s accuracy was also

verified on experimental data from the relevant literature. The second model proposed is

powered by a general thermal grid solver. Although slightly more involved, it is also more

comprehensive in that: (i) it accounts for particle contiguity and for thermal contact resis-

tance at the filler-matrix interface, by means of clearly distinct model components, and (ii)

it can incorporate more, or less, thermal elements and components, arranged as needed,

to closely replicate specific material configurations, and hence better match the observed

behavior of particulate composites. A particular instance of the grid solver model was

developed explicitly, with three lumped parameters, to achieve a fairly close match with

both: (i) the manifold of finite element solutions for well-dispersed filler particles and (ii)

experimental data from the literature for composites with contiguous filler particles also

presenting a thermal contact resistance at the filler-matrix interface. This instance also

served to shed more light on the role played by the filler’s size distribution in determin-

ing the effective thermal conductivity of the composite, as well-graded fillers can more

readily form networks of contacting particles.

The new models proposed are fast and accurate over fairly broad validity ranges. With

such properties, these are readily applicable in recursive schemes to model the behavior

of particulate composites comprising more than two phases. Their high predictive ca-

pabilities and computational efficiencies can be leveraged in the field of computational

materials science, such as in solving inverse problems to optimize homogenized material

properties of interest. In this regard, it is interesting to mention that the models have

already been retained in ongoing research works aiming to optimize the properties, size-

distributions and volumetric proportions of phase-change material inclusions increasing

the effective thermal mass of concrete mixtures, to improve the energy efficiency of future

constructions.
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Chapter 3

Influence of building porosity on the

shielding of blast waves

3.1 Introduction and background

On August 4, 2020, a large quantity of ammonium nitrate exploded at the Beirut port,

causing considerable losses at several kilometers from the explosion center, including

significant damages to Beirut city structures and infrastructures, and the loss of many hu-

man lives. Previously, in 2015, a warehouse exploded in Tianjin’s port causing hundreds

of deaths and damaging tens of thousands households and businesses nearby (Huang &

Zhang, 2015). Producing a quick, yet fairly accurate estimate of the amount of damage

due to a large explosion is necessary to build and appropriately scale a suitable emergency

response. This, however, requires an understanding of the blast wave propagation and its

interactions with the structures in the city. On another note, producing more accurate pre-

dictions of blast loads in a complex urban environment is also instrumental to optimize

the design of more resilient structures within safer and more sustainable urban layouts.

Empirical models and design manuals, such as the pressure-distance relationship pro-

vided by Gilbert F. and Kenneth J. (1985) or by Brode (1955), the graphical data provided

by Kingery and Bulmash (1984), the CONWEP software (Hyde, 1988), or the TM5-1300
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manual (TM5-1300, 1990) provide estimates of blast load parameters in a free field (un-

obstructed) environment. Such estimates however do not apply in denser configurations,

due to the interactions of the blast wave with the urban topography: the blast loads can

be either enhanced or reduced by channeling, confinement and/or shielding (Gan et al.,

2022). The physical complexity of such phenomena is such that the interactions of blast

waves with natural or manmade obstacles, such as buildings and other structures, can only

be studied experimentally and numerically.

Several numerical and experimental studies were conducted to better understand the

confinement, channeling and shielding effects on the propagation of blast waves. For

instance, Rose and Smith (2002) studied the effects of street width and buildings height

on the enhancement of the positive and negative phase impulses measured along a street.

Remennikov and Rose (2005) modeled numerically the detonation of a hemispherical

charge at a close distance from two buildings, one shielded by the other. They found

that such configuration would reduce the peak reflected overpressure measured at the

ground level of the shielded building by a factor of 3.5, and the corresponding positive-

phase specific impulse by a factor of 2.5. In another setup, the authors noted that the

peak reflected overpressure and specific impulse measured on the facade of a building

located at the far end of a T-junction, are greatly enhanced by the channeling of the wave

along the incident street. In a more complex setting, P. D. Smith et al. (2004) studied

experimentally and numerically the influence of areal density, defined as the ratio of the

footprint area occupied by buildings in an array over the total area occupied by the array,

on the level of shielding and/or channeling provided by domestic dwellings. It was found

that, for the areal densities retained (17.9%, 22.0% and 28.6 %), the presence of an array

of buildings between the explosive charge and a target wall reduces the integrated positive

impulse along the wall by an average of 10%, while differences due to array density

and configuration remained relatively small. This was attributed by the authors to the

combined and integrated outcome of the competing effects of shielding and channeling.

In many research works evaluating shielding and channeling effects, including those

previously discussed here, the structures interacting with the blast wave are modeled as
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rigid blocks without openings, which amounts to neglecting the role of building porosity.

Only few studies have accounted for the latter. For instance, P. D. Smith et al. (2003)

studied the effect of building porosity, defined as the area of openings relative to the

frontal area, on the strength of the blast wave measured along the street and inside the

building. The authors found that, for a fixed value of street width, the impulse measured

along the street drops as the porosity of the street’s buildings increases. The effects of

glazing and facade failure on the peak pressure and impulse measured inside the building

were also explored. It was found that facade failure resulted in greater average porosity

and led to larger overpressure time-histories inside the building. The presence of the rear

and side walls did not affect the impulse measured inside the building significantly, due

to the delay and attenuation of the reflected waves. Ram et al. (2016) studied the effect

of internal geometry and initial conditions (incident pressure and impulse profile) on the

specific impulse measured at the back wall of an isolated building. The peak impulse ex-

perienced on the back wall was not affected significantly by internal geometry, although

the peak pressure and the pressure profile were. The authors related their findings to a

previous study revealing a shock-wave filtration process corresponding to significant at-

tenuation of high-frequency pressure fluctuations by stiff porous media (Ram & Sadot,

2015). Drazin (2018) studied the effect of building porosity on the confinement amplifi-

cation factor in city streets of various widths. It was found that larger porosity reduces

the impulse measured along the street, and hence, the confinement effect. Windows’ al-

terations also affected the impulse measured inside the building. For instance, for a fixed

porosity level, the impulse measured inside the building dropped as the number of win-

dows increased.

Such outcomes of existing research works reveal the importance of considering build-

ing porosity when studying the propagation of blast waves in city streets. However, pre-

vious studies focus on the propagation of the blast wave inside the porous buildings and

along their street, while these are restricted to relatively small explosive charges as com-

pared to high-yield explosions, such as those that took place in Beirut and Tianjin.

This chapter explores the influence of the porosity of buildings on their shielding
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potential, i.e. properties of the blast wave behind the building. A set of high-fidelity

numerical simulations are designed to better characterize changes in the shielding effect

resulting from building porosity variations, for a set of buildings of typical size in Beirut,

located at various distances from a simulated high-yield explosion. More specifically, rel-

ative changes in incident overpressure and specific impulse averaged over virtual facades

located at various distances behind a building are studied in relation to its porosity and to

its standoff distance to the explosive charge.

3.2 Methods: setup and modeling approaches

3.2.1 Selection of explosive weight and buildings

To better characterize the influence of building porosity on the shielding of blast waves

generated by high-yield explosions, an equivalent charge of 300 tonnes of TNT is retained

as an average between various estimates proposed in the literature for the August 4, 2020

Beirut port explosion (Aouad et al., 2021; Dewey, 2021; Rigby et al., 2020; Temsah et

al., 2021). For simplicity, the charge is considered hemispherical in shape and the ground

fully reflective. A set of buildings of 20 m width, 15 m depth and 16.8 m height, with

varying porosity, are placed, each building in isolation, at three standoff distances, 50 m

(close-in or near field; 0.7 m/kg
1
3 ), 150 m (intermediate field; 2.2 m/kg

1
3 ) and 450 m

(far field; 6.7 m/kg
1
3 ) from the center of the explosive charge. Inspired by the diverse

architecture typical to the city of Beirut, four levels of porosity are retained:

(i) “Zero porosity” equivalent to a building with no openings.

(ii) “Low porosity” (Figure 3.1) equivalent to a six-story building characterized by a

floor-height of 2.8 m, a facade porosity of 38% and internal walls perpendicular to

the flow.

(iii) “Medium porosity” (Figure 3.2) equivalent to a four-story building characterized by

a large floor-height of 4.2 m, large arcade openings with a facade porosity of 54%

and a few internal columns (no internals walls).
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(iv) “High porosity” (Figure 3.3) equivalent to a four-story building characterized by a

large floor-height of 4.2 m, fully open front and back facades, and devoid of any

internals partitions.

In each case, the peak averaged incident overpressure Pavg and averaged specific im-

pulse Iavg, determined over virtual facades of 20 × 16.8 m2 located at distances between

5 and 40 meters behind the building, at 5 m spacing, are compared to those measured at

the same location in free field, i.e. when the building is not present.

(a) Perspective view. (b) Facade elevation.

(c) Floor plan.

Figure 3.1: The “low-porosity” building model (facade porosity of 38%).

3.2.2 Numerical modeling

CEL model parameters

The buildings and the explosive charge are modeled on the commercial software Abaqus

in the various configurations of building porosity and standoff distance retained. The
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(a) Perspective view. (b) Facade elevation.

(c) Floor plan.

Figure 3.2: The “medium-porosity” building (facade porosity of 54%).

Figure 3.3: The “high-porosity” building (facade porosity of 100%).

buildings are discretized into Lagrangian finite elements, while Eulerian elements are

used to model the air, and the explosive charge. Coupled Eulerian-Lagrangian (CEL)

simulations are run in each case to characterize the influence of porosity on the shielding

of the blast wave generated by the explosive charge. The air is modeled as an ideal gas
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ρ0
[kg/m3]

detonation
speed [m/s]

A
[GPa]

B
[GPa]

ω R1 R2 Em
[J/Kg]

1630 7070 454.86 10.119 0.25 4.5 1.5 4.779 E6

Table 3.1: The JWL parameters retained for the TNT charge (Giam et al., 2020).

whose pressure is governed by the behavioral law:

P = ρairRT, (3.1)

where ρair is the density of air, R is the specific gas constant, and T is the temperature.

The internal energy per unit mass e is given by:

e = CvT =
Cp
γ
T, (3.2)

where Cv and Cp are the specific heat at constant volume and constant pressure, respec-

tively, and γ = 1.4. The standard properties of air are assumed as initial conditions, with

ρair = 1.2256 kg/m3, R = 287.05, P = 101,325 Pa, and Cp = 1 kJ/kg/K. Because peak

building displacements and velocities relative to air during the positive phase of the blast

wave are small, the fluid-structure interaction can be neglected and the building can be

considered as perfectly rigid (Kambouchev et al., 2007; Subramaniam et al., 2009). The

TNT charge will be modeled in Abaqus using the Jones-Wilkins-Lee (JWL) equation of

state relating the adiabatic expansion of detonation products:

P = A

(
1− ωρ

R1ρ0

)
e−R1

ρ0
ρ +B

(
1− ωρ

R2ρ0

)
e−R2

ρ0
ρ + ωρEm, (3.3)

where ρ is the density of the detonation product and the parameters A, B, R1, R2, ω, Em,

and ρ0 are user defined constants. This behavioral law was developed by Lee et al. (1968)

and validated by comparison to experimental data. The parameters retained to model the

explosive charge in the proposed work are listed in Table 3.1. This choice relies on a

study conducted by Giam et al. (2020), to best match the CONWEP predictions at various

standoff distances from the charge.
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Material parameters and modeling approach validation

The JWL parameters retained are further validated on experimental data gathered by Tyas

et al. (2011) for a hemispherical charge equivalent to 0.3 kg of TNT 1 detonated four

meters away from a plain concrete block of 0.71 × 0.675 × 1.93 m3 (Figure 3.4).

4,000 mm

675 mm
G1

337.5 mm charge

710 mm

cross-section a-a

G1

a

a

Figure 3.4: Experimental setup of Tyas et al. (2011).
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Figure 3.5: History of the reflected pressure at point G1 - numerical results superimposed
to the experimental measurements.

The standoff corresponds to a scaled distance Z = 6 m/kg
1
3 . Using symmetry, only

one-half of the domain and one-quarter of the charge are modeled. A domain size of

1.2 × 1.6 × 5 m3, used to represent air, is meshed using 1 cm eight-node linear Eulerian

brick elements. The concrete block is modeled using zero velocity boundary conditions

(BC) in the directions normal to its external surfaces, which are furthermore set as no-

inflow/outflow Eulerian boundaries. The same is applied on the surfaces representing the

ground and on the surfaces of symmetry. ‘Free’ inflow and ‘equilibrium’ outflow Eulerian

boundary conditions are prescribed over the remaining three surfaces. The ‘equilibrium’
10.25 kg of PE4 assuming a TNT conversion factor of 1.2 in the far field (Rigby & Sielicki, 2015)
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outflow boundary condition in Abaqus is used to represent the surface of an unbounded

domain: it reduces spurious reflections by assuming that the stress is zero-order continu-

ous across the element faces on the boundary (M. Smith, 2009). The reflected pressure-

time history extracted from the numerical model at point G1, located at the center of the

frontal surface of the block, is time shifted to align with the arrival time of the experimen-

tal blast wave and is superimposed to the experimental data in Figure 3.5. The numerical

results are a close match to the experimental measurements, thus validating the modeling

approach retained, including the JWL material model parameters.

3.2.3 Model size reduction at large standoff distances

To reduce the model’s size and computational cost in the intermediate and far fields, the

explosive charge is replaced by a velocity boundary condition, prescribed over a spheri-

cal boundary set closer to the building. The velocity-time profile prescribed at this input

boundary is extracted from a separate free-air wave-propagation model in 1D, where the

charge is represented explicitly using the JWL material law. The 1D wave-propagation

model relies on spherical symmetry to represent an explosive charge of 600 tonnes of

TNT - i.e. double the surface charge considering the ground as fully reflective (USDOE,

1980) - detonating in one sector of free air. The domain is meshed using a single row of

hexahedral elements of sizeDe/1000 in the radial direction, whereDe is the distance from

the element to the center of the charge. Mesh convergence is confirmed by comparing the

velocity measured at 110 m from the detonation point to that obtained using a larger ele-

ment size of De/500 (Figure 3.6). The mesh size retained also aligns with that prescribed

by Shin et al. (2015) and corresponding to the standoff distance divided by 500.

To verify the accuracy of this approach, the velocity-time profile extracted from the

1D wave-propagation model at a distance L = 110 m from the charge is prescribed over

the input boundary of a reduced 1D model from which the part corresponding to a distance

of less than L is removed (Figure 3.7). The overpressure measured at L+ ∆L = 150 m in

the reduced 1D model is compared to that extracted from the original model, at the same

location in Figure 3.8(a). The outcomes of the same procedure applied for L = 390 m
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and L + ∆L = 450 m are shown in Figure 3.8(b). The pressure histories of the reduced

1D model match those of the original 1D model, which validates the modeling approach

retained here.
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Figure 3.6: 1D free-air wave-propagation model mesh convergence.

Figure 3.7: Spherically symmetrical free-air wave-propagation models in 1D for velocity
boundary condition extraction and verification.
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Figure 3.8: Overpressure histories from the original and the reduced 1D models at stand-
off distances of (a) 150 m and (b) 450 m.

3.3 Exploring the effect of building porosity on the

shielding of a blast wave

The validated modeling approaches are used to study the influence of building porosity

on the propagation of the blast wave behind the structures. To this aim, fifteen main CEL

simulations are run to characterize the incident overpressure and specific impulse behind

the porous buildings exposed to the explosive surface charge equivalent to 300 tonnes of

TNT. The peak average overpressure and specific impulse are determined, for the incident
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wave, over virtual facades of 10 × 16.8 m2 located 5, 10, 15, 20, 25, 30, 35 and 40 m

behind the buildings. For each of the standoff distances considered, an adequate mesh

size is selected to ensure convergence and a sufficiently large Eulerian domain is retained

to avoid the effect of spurious reflections on the quantities of interest determined over the

virtual facades.

3.3.1 Domain and mesh size retained in the far field

The model size reduction technique described in section 3.2.3 is applied to study the effect

of building porosity on the propagation of the blast wave in the far field, at a standoff

distance D = 450 m (equivalent to a scaled distance Z = 6.7 m/kg
1
3 ). To this aim, the

velocity history is extracted from the 1D wave-propagation model at 390 meters from the

center of the charge (Figure 3.9) and applied as a velocity boundary condition to a set of

3D models in the far field. In the latter, the structures are modeled at a distance of 60 m

from the input boundary to prevent any spurious reflections potentially taking place on this

boundary from altering the pressure determined over the virtual facades. It is interesting

to note that the ‘second’ wave appearing in Figure 3.9 - at approximately 370 ms from

the time of arrival of the first wave - is due to internal reflection of an inwardly-traveling

expansion wave as it coalesces at the center of the charge (Rigby & Gitterman, 2016).
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Figure 3.9: The velocity-field history at 390 m from the detonation point.

Figure 3.10 illustrates the modeling setup implementing buildings at 450 meters from
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the detonation point: building location, virtual facades and domain boundaries are shown.

Leveraging symmetry, half of the buildings are modeled and the domain representing air

is considered as one quarter of a reduced pyramid of 200× 200 m2 base, 558 m height and

apex located at the center of the charge, from which the part corresponding to a standoff

distance of less than 390 m is removed. The size of the reduced domain is identified by the

dimensions of its quarter base and the smallest distance between the input boundary and

the output boundary i.e. 100 × 168 × 100 m3 for the domain illustrated in Figure 3.10.

Specific Eulerian boundary conditions are applied to prevent the inflow/outflow of air

through surfaces of symmetry, while an ‘equilibrium’ boundary condition is prescribed

over the ‘input’ boundary upstream and the domain boundary downstream to reduce po-

tential effects of spurious reflections.

Figure 3.10: Modeling setup – 450 m standoff (far field).

(a) Side view of the whole domain. (b) Refinement around the building.

Figure 3.11: Illustration of the finite element mesh retained in the far field.
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Four simulations are run for a domain of size 100 × 168 × 100 m3, meshed using

hexahedral Eulerian elements of size 1.8, 1.5, 1.2, and 0.9 m in the regular region. El-

ements of one third the regular size are used around and inside the buildings to better

capture the blast wave’s behavior through the openings. Figure 3.11(a) shows an example

of the whole domain meshed with 0.9 m elements in the regular region (and 0.3 m ele-

ments inside and around the building). Figure 3.11(b) corresponds to a detailed view of

the mesh refinement showing transition elements designed following Parrish et al. (2008).

A maximum simulation time-step of 2×10−4 seconds is prescribed.
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Figure 3.12: Mesh convergence analysis in the far field - (a) Pavg and (b) Iavg over the
virtual facade located 10 m behind the building.

Figures 3.12(a) and (b) show, for the different mesh sizes retained, the averaged in-
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cident overpressure Pavg and the averaged specific impulse Iavg, respectively, measured

over the virtual facade located 10 m behind the low-porosity building. For all the virtual

facades of interest, the difference in Pavg when the regular element size is decreased from

1.2 m to 0.9 m is less than 3.1%. The maximum difference drops below 0.4% for Iavg. A

mesh size of 0.9 m is hence deemed adequate to achieve the objectives of this work at a

feasible computational cost.
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(b) Averaged specific impulse.

Figure 3.13: Far field domain size convergence - histories of Pavg and Iavg 10 m behind
the building.

To ensure that the locations of the boundaries have no significant effect on the outputs

of interest, the results of the simulation pertaining to a domain of 100× 168× 100 m3 are

compared to those of a larger domain of 112× 168× 112 m3 for the low-porosity building
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case. The same mesh fidelity is used in both simulations, with 0.9 m regular elements and

0.3 m elements inside and around the building. Figure 3.13 reveals that the models’

outputs are almost indistinguishable. The smallest domain size of 100× 168× 100 m3 is

thus retained. The specific impulse is estimated in each case by integration of the positive

overpressure history up to a specific time shortly preceding the arrival of the second wave.

These times are listed in Table 3.2.

Facade distance to
the building d [m]

Integration time [ms]
Near field Intermediate field Far field

5 180 280 570
10 180 300 570
15 180 300 600
20 185 310 600
25 185 320 600
30 190 325 620
35 195 330 620
40 200 340 620

Table 3.2: Integration times retained for the calculation of the positive specific impulse
(since the onset of the simulation).

3.3.2 Domain and mesh size retained in the intermediate field

The velocity-time profile extracted from the 1D wave-propagation model at 110 m from

the charge (Figure 3.6) is applied as a boundary condition to a set of 3D models imple-

Figure 3.14: Modeling setup – 150 m standoff (intermediate field).
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menting buildings in the intermediate field, at D = 150 m from the detonation point (cor-

responding to a scaled distance Z = 2.2 m/kg
1
3 ). The domain representing air, the building

location, the virtual facades and the boundary conditions are shown in Figure 3.14. The

125 × 125 × 125 m3 size domain retained is meshed using linear cubic elements of size

0.9 m in the regular zone. The element size is reduced to 0.3 m inside and around the

building. A maximum simulation time-step of 1×10−5 seconds is prescribed.
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Figure 3.15: Mesh convergence analysis in the intermediate field - (a) Pavg and (b) Iavg
over the virtual facade located 10 m behind the building.

A mesh convergence analysis conducted on the conservative case corresponding to the

low-porosity building for a domain of 103× 110× 100 m3 reveals that the change in Pavg

when the regular element size is decreased from 0.9 m to 0.6 m does not exceed 4.8%,



64

locally. The maximum change drops below 1.2% for Iavg. A regular mesh size of 0.9 m

is hence deemed adequate for all practical purposes. Figures 3.15(a) and (b) illustrate

Pavg and Iavg (respectively) determined over the virtual facade located 10 m behind the

low-porosity building using global elements of 3.0, 1.5, 1.2, 0.9, 0.75 and 0.6 m size.
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Figure 3.16: Intermediate field domain size convergence - histories of Pavg and Iavg 10 m
behind the building.

The model’s boundaries are set such that the incident overpressures determined across

the virtual facades become significantly smaller than their corresponding peak before be-

ing disturbed by any spurious reflections. The specific impulse can thus be estimated in

each case by integration of the positive overpressure history up to a specific time (mea-

sured from the time of arrival of the wave at the input boundary) beyond which the re-
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maining contributions are small. These times are listed in Table 3.2.

Pavg and Iavg determined at 10 m behind the low-porosity building, are compared to

those extracted from a 25% larger domain, meshed using the same element sizes, in Fig-

ures 3.16(a) and (b). It can be seen that the models’ outputs are fairly close, up to the spec-

ified time at which Iavg is determined. The largest domain size of 125 × 125 × 125 m3 is

thus retained.

3.3.3 Domain and mesh size retained in the near field

A hemispherical charge of radius 4.45 m, corresponding to 300 tonnes of TNT, is rep-

resented using the JWL material model parameters retained in section 3.2.2. Leveraging

symmetry, only one-quarter of the charge and one-half of the building are modeled. A

rectangular domain of 60× 130× 60 m3 is retained. The domain is meshed using 0.45 m

elements in the regular region. The mesh is refined locally with elements of 0.15 m

in and around the charge, while a maximum simulation time-step of 3.5×10−5 seconds

is prescribed. Figure 3.17 illustrates the modeling setup implementing buildings in the

near field, at D = 50 m from the detonation point (corresponding to a scaled distance

Z = 0.7 m/kg
1
3 ): building location, virtual facades and domain boundaries are shown.

Figure 3.17: Modeling setup – 50 m standoff (near field).

Figures 3.18(a) and (b) compare Pavg and Iavg, respectively, determined over the vir-
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tual facade located 10 m behind the low-porosity building for mesh sizes of 0.55, 0.50,

0.45 and 0.40 m. For all the virtual facades of interest, the change in Pavg when the reg-

ular element size is decreased from 0.45 m to 0.40 m does not exceed 4.1%, locally. The

maximum change drops below 2.7% for Iavg. A regular mesh size of 0.45 m is hence

deemed adequate for all practical purposes. The mesh refinement inside the charge corre-

sponds to approximately 30 elements along the radial direction, which is consistent with

that prescribed by Giam et al. (2020).
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Figure 3.18: Mesh convergence analysis in the near field - (a) Pavg and (b) Iavg over the
virtual facade located 10 m behind the building.

The specific impulse is calculated by integrating the overpressure up to the times listed

in Table 3.2. These were selected to ensure suitable convergence of the impulse while
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avoiding any disturbances from spurious reflections potentially occurring over equilib-

rium boundaries of the domain. A comparison between Pavg and Iavg evaluated for two

domain sizes of 55 × 130 × 55 m3 and 60 × 130 × 60 m3 over the virtual facade located

conservatively 10 m behind the low-porosity building is shown in Figure 3.19. The largest

domain is retained as the models’ outputs are fairly close.
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Figure 3.19: Domain size convergence in the near field - histories of Pavg and Iavg 10 m
behind the building.
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3.3.4 Results and discussion

Compiled results

Designating by d the distance between the back of the shielding structure and the virtual

facade of interest, the peak facade-averaged incident overpressure Pavg, facade-averaged

peak incident overpressure P̂avg and facade-averaged specific impulse Iavg are represented

versus d, in percent of the same quantities in free air (i.e. without the structure) in Fig-

ures 3.20, 3.21 and 3.22 respectively, for the three standoff distances and for the four

porosity levels retained in this work. The corresponding percent free-air quantities are

denoted pavg, p̂avg and iavg, respectively. Pavg can be of interest in evaluating the overall

behavior of a shielded structure, or that of its large components. Alternatively, the more

conservative average of the (non-simultaneous) peak overpressures P̂avg could be retained

for the local design of smaller elements. Both pavg and p̂avg are thus provided in this work;

although the discussion is held in terms of pavg, mainly. The values of Pavg, P̂avg and Iavg

resulting from the CEL simulations are listed in Tables 3.9–3.11. The contour plots of

percent free-air peak incident overpressure and specific impulse over the virtual facades

are shown in Figures 3.36–3.41 for the standoff distances of 50, 150 and 450 m.

In the near field, pavg is bounded below by the zero-porosity case, and above, by the

high-porosity case, up to at least d = 40 m. In the intermediate and far fields however,

it is mainly the low-porosity case that constitutes the lower bound of pavg. Also for d

greater than 30 m, the pavg experienced behind the medium-porosity building becomes

the highest (Figure 3.20).

Figure 3.22 reveals that iavg is bounded by two envelopes, one below pertaining to the

zero-porosity building and the other above, to the high-porosity building; except in the far

field, where the lowest impulse occurs behind the low-porosity building. Iavg becomes

approximately equal to that in free air at distances larger than 15 m and 20 m behind the

building, at the standoff distances of 450 m and 150 m, respectively.

Overall, the shielding effect wanes as the standoff distance increases. For instance,

at D = 450 m, the lowest pavg and iavg are of 74% and 95%, respectively, 5 m behind
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the building. Those values drop to 38% and 68% respectively at D = 150 m, and to

14% and 52% respectively at D = 50 m. The zero-porosity and low-porosity buildings

provide roughly similar shielding performances with respect to overpressure; however,

the difference in the specific impulse experienced behind those buildings increases as

they get closer to the charge. It is also interesting to note that the high-porosity structure

can contribute to increasing the intensity of the blast wave in its wake. This effect however

fades as the standoff distance to the charge increases. Overall, the shielding performance

of the medium-porosity building is intermediate between that of the zero/low-porosity

and high-porosity structures. Also in general, the lower the building porosity, the more it

delays the rise to peak overpressure. This effect, which is clearly revealed, for example,

in Figures 3.28 to 3.30, can be attributed to the longer paths that the blast wave is forced

to take by the less porous structures.
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Figure 3.20: pavg plotted against virtual facade distance behind the shielding structures.
Markers represent numerical data while trend lines represent fitted functions.
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Figure 3.21: p̂avg plotted against virtual facade distance behind the shielding structures.
Markers represent numerical data while trend lines represent fitted functions.
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Figure 3.22: iavg plotted against virtual facade distance behind the shielding structures.
Markers represent numerical data while trend lines represent fitted functions.
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High-porosity building

In the near and intermediate fields, the blast wave is amplified behind the high-porosity

building due to an internal channeling effect taking place freely between the parallel floor

slabs and side-walls, unimpeded by any partition walls. This is best illustrated in the

near field by the contour plots of overpressure shown in Figures 3.23(a) and (b). The

phenomenon wanes with increasing standoff distance as the blast wave over the building’s

height becomes increasingly planar, thus interacting less with the slabs and side-walls.

For example, in the near field, both Pavg and Iavg are larger than in free air up to 30 m

approximately behind the structure (Figures 3.20 and 3.22). This is the case up to no more

than 20 m in the intermediate field, while in the far field the specific impulses experienced

by the virtual facades are approximately equal to those in free air.

(a) Vertical cross-section at 9 m from the plane of symmetry.

(b) Horizontal cross-section at 5 m from the ground.

Figure 3.23: Contour plots of the overpressure (in kPa) for the high-porosity building in
the near field, 28.81 ms after detonation. The lines in red represent the virtual facade
located 5 m behind the building.
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Medium-porosity building

Overall, the medium-porosity building provides notable shielding at distances d that are

roughly less than 15 and 20 m downstream in the far and intermediate fields, respectively.

In this regard, it is interesting to note that, although Pavg remains smaller than in free air

up to 30 m behind the building, Iavg is not affected significantly beyond half that distance.

The shielding effect of the medium-porosity building extends up to at least d = 40 m in

the near field (Figures 3.20 and 3.22 ). In the intermediate and far fields, Pavg is higher

than in free air at 35 and 40 m behind the building (Figure 3.20), while the virtual facades

located at distances d larger than about 15 m experience, centrally, a peak overpressure

larger than that in free air (Figure 3.24(a)). This can be attributed to the interference

between the wave passing through the openings in the structure and that traveling around

the building’s envelope before converging centrally, further downstream (Figures 3.25(a)

and (b)).
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Figure 3.24: Contour plots of percent free-air peak overpressure behind the medium-
porosity building. The dimensions of the cross-sections are three times those of the build-
ing whose trace corresponds to the black rectangle on the bottom left.

In the near field, the virtual facades close-in behind the medium-porosity structure

(e.g. 5 m) present field patterns that are consistent with the layout of openings and ex-

perience, centrally at the ground floor, a peak overpressure higher than in free air due to

the scattering of the blast wave by the three openings, followed by an interference of the

scattered waves (Figures 3.24(b) and 3.26).
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(a) Horizontal cross-section at 2 m from the ground.

(b) Vertical cross-section at 2 m from the plane of symmetry.

Figure 3.25: Contour plots of the overpressure (in kPa) for the medium-porosity building
in the far field, 268.7 ms after detonation. The dotted lines in red represent the virtual
facade located 15 m behind the building.

Figure 3.26: Contour plots of the overpressure (in kPa) at the ground-floor level of the
medium porosity building located in the near field, 34.2 ms after detonation. The red lines
represent the virtual facade located 5 m behind the building.

Low-porosity building

The near-field consequences of the interactions of the blast-wave penetrating the low-

porosity building through its front openings are less significant than in the case of medium
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porosity. This can be related to the smaller size of the openings and to the shielding of such

interactions, at each floor, by the denser internal partitioning of the low-porosity structure.

The latter also prevents an internal channeling effect from taking place, as in the high-

porosity case, between the slabs and the sidewalls. The global interactions of the blast-

wave with the envelope of the low-porosity structure are thus dominant. The wave mainly

travels around the building, diffracts at its edges and subsequently converges centrally

downstream, resulting in peak overpressures that are locally larger than in free air at

distances d larger than 10 m. In the intermediate and far fields, the wave circumventing the

structure also penetrates it backwards from the openings located leeward (Figures 3.27(a)

and (b)). This leads to local peak overpressures (and a p̂avg) that are lower than those

experienced in the zero-porosity case.

(a) Horizontal cross-section at 2 m from the ground.

(b) Vertical cross-section at 2 m from the plane of symmetry.

Figure 3.27: Contour plots of the overpressure (in kPa) for the low-porosity building in
the intermediate field, 122.7 ms after detonation. The dotted vertical lines in red represent
the virtual facade located 5 m behind the building.

In the far field, the wave that penetrated the structure backwards reflects on its internal
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walls and exits the building from the back early, i.e. during the positive phase of the outer

circling wave, as the latter continues to progress. Their interference behind the structure

leads to a pavg, at d = 5 m, higher than in the zero-porosity case while iavg remains lower

(Figures 3.28(a) and (b)).
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Figure 3.28: Average overpressure and specific impulse histories in the far field, at d = 5
m.

In the intermediate field however, the wave that penetrated the building from the open-

ings at the front and the wave that penetrated the building from the back – before being
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reflected by the internal walls – both exit the building from the back at a later stage, after

the outer wave has passed, resulting in a higher iavg than in the case of zero porosity,

while pavg remains lower (Figures 3.29(a) and (b)). In the near field, the wave that travels

across the building exits through the openings at the back towards the end of the positive

time of the outer circling wave, which results in an iavg higher than in the zero-porosity

case while pavg remains lower (Figures 3.30(a) and (b)).
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Figure 3.29: Average overpressure and specific impulse histories in the intermediate field,
at d = 5 m.



77

50 100 150

time [ms]

-200

0

200

400

600

800

1000

1200

a
v
e

ra
g

e
d

 i
n

c
id

e
n

t 
o

v
e

rp
re

s
s
u

re
 [

k
P

a
]

Free air

High porosity

Medium porosity

Low porosity

Zero porosity

(a) Averaged incident overpressure.

50 100 150

time [ms]

0

5000

10000

15000

a
v
e

ra
g

e
d

 s
p

e
c
if
ic

 i
m

p
u

ls
e

 [
k
P

a
.m

s
]

Free air

High porosity

Medium porosity

Low porosity

Zero porosity

(b) Averaged specific impulse.

Figure 3.30: Average overpressure and specific impulse histories in the near field, at d =
5 m.

Zero-porosity building

The blast wave goes fully around the zero-porosity structure, diffracts at its edges and

subsequently converges centrally in its wake, resulting in peak overpressures that are lo-

cally higher than in free air at distances d larger than 5 m in the far field, and larger

than 10 m in the intermediate and near fields. It is also interesting to note that the wave

circling the structure reflects on its back wall before converging centrally. Overall, the
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zero-porosity building provides notable shielding up to a distance d of 40 m at least, in

the near field; however, its shielding capacity decreases with the standoff distance D. For

instance, in the intermediate and near fields Iavg is lower than in free air up to d ≈ 20 m

only (Figure 3.20 and 3.22).

3.4 Data-driven surrogate modeling

3.4.1 Scaling

The problem can also be formulated in nondimensional form, for more generality. To this

aim, the variables involved can be scaled in relation to:

(i) the characteristic dimension of the shielding structure defined as Ls = min(Hs,

Ws/2), where Hs and Ws are the structure’s height and width, respectively, normal

to the direction of propagation of the blast wave, and

(ii) the properties of the blast wave in free air, at the same location as the back of the

shielding structure (i.e. at D + Ds; Ds designating the structure’s depth). The wave

is mainly characterized by its peak overpressure P̄ and its estimated duration time td;

or alternatively, by its wave ‘length’ Ld = C × td, where C = 340.3 m/s designates

the speed of sound in the unperturbed air of initial pressure Po = 101.325 kPa.

Referring to the Buckingham Π theorem, the dimensionless quantities of interest pavg,

p̂avg and iavg can thus be expressed in terms of the four dimensionless parameters, namely:

the porosity level PL, the normalized distance behind the building dn = d/Ls, the nor-

malized wave ‘length’ Ldn = Ld/Ls and P̄ /Po. It can furthermore be assumed that the

influence of P̄ /Po is marginal, based on previous works (e.g. Geng & Thomas, 2020).

For the building dimensions retained in this work, Ls = min(16.8, 20/2) = 10 m and Ds =

15 m, the normalized incident wave lengths at D +Ds are summarized in Table 3.3.
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Field Standoff
distance
D [m]

Scaled
distance Z
[m/kg1/3]

Estimated
duration
td [ms]

Wave
length
Ld [m]

Normalized
wave length
Ldn [-]

Near 50 0.7 40 13.6 1.36
Intermediate 150 2.2 125 42.5 4.25

Far 450 6.7 335 114.0 11.40

Table 3.3: Normalized blast wave lengths in free air, at D +Ds.

3.4.2 Regression analysis

The percent free-air peak facade-averaged overpressure pavg, and facade-averaged peak

incident overpressure p̂avg, increase with the normalized distance dn following trends that

are best fitted by quadratic functions (Figures 3.20 and 3.21):

pavg = p0 + p1dn + p2d
2
n, (3.4)

p̂avg = p̂0 + p̂1dn + p̂2d
2
n, (3.5)

where pi and p̂i, i ∈ {0, 1, 2} are parameters. The percent free-air facade-averaged spe-

cific impulse, iavg, increases with dn following a trend that is best fitted by a first order

exponential decay function (Figure 3.22):

iavg = 100× a
(
1− be−cdn

)
, (3.6)

where a, b and c are parameters. The functions’ parameters are fitted to the numerical data

for each porosity level and standoff distance to the charge. These and the corresponding

mean relative errors (MRE) are given in Tables 3.4, 3.5 and 3.6, for pavg, p̂avg and iavg,

respectively. The MRE is defined as:

MRE(%) = 100× 1

N

N∑
i=1

∣∣∣∣Y i
p − Y i

t

Y i
t

∣∣∣∣, (3.7)

where N is the number of fitted data points, while Y i
p and Y i

t correspond to the predicted

and the target values, respectively.
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Standoff Porosity p0 p1 p2 MRE(%)
D = 50 m
Ldn = 1.36
Z = 0.7 m/kg

1
3

(near field)

zero 7.897 14.549 0.010 2.2
low 7.804 14.818 -0.021 1.8
medium 43.510 15.923 -1.198 1.2
high 103.363 3.342 -1.411 0.1

D = 150 m
Ldn = 4.25
Z = 2.2 m/kg

1
3

(interm. field)

zero 28.130 28.162 -2.723 2.5
low 27.231 28.170 -2.805 3.0
medium 68.727 13.946 -1.209 0.1
high 101.381 -0.425 -0.053 0.1

D = 450 m
Ldn = 11.40
Z = 6.7 m/kg

1
3

(far field)

zero 72.441 11.250 -1.280 1.0
low 76.459 6.647 -0.609 0.9
medium 67.760 16.099 -1.775 0.6
high 99.213 0.644 -0.101 0.1

Table 3.4: Equation 3.4 for pavg - fitted parameters and corresponding MRE.

Standoff Porosity p̂0 p̂1 p̂2 MRE(%)
D = 50 m
Ldn = 1.36
Z = 0.7 m/kg

1
3

(near field)

zero 19.965 26.936 -3.090 1.8
low 22.873 24.396 -2.543 2.1
medium 57.764 7.991 -0.229 1.7
high 113.281 6.538 -1.906 1.5

D = 150 m
Ldn = 4.25
Z = 2.2 m/kg

1
3

(interm. field)

zero 53.360 21.717 -2.417 1.4
low 49.571 23.322 -2.697 1.6
medium 72.450 12.607 -1.151 0.2
high 102.323 -0.541 -0.059 0.1

D = 450 m
Ldn = 11.40
Z = 6.7 m/kg

1
3

(far field)

zero 76.088 10.424 -1.119 0.9
low 77.708 8.019 -0.832 0.8
medium 75.927 12.368 -1.339 0.6
high 99.381 0.488 -0.072 0.0

Table 3.5: Equation 3.5 for p̂avg - fitted parameters and corresponding MRE.

Standoff Porosity a b c MRE(%)
D = 50 m
Ldn = 1.36
Z = 0.7 m/kg

1
3

(near field)

zero 0.960 0.561 0.444 1.9
low 0.966 0.531 0.534 2.1
medium 0.987 0.279 0.382 1.1
high 0.991 -0.240 0.284 0.4

D = 150 m
Ldn = 4.25
Z = 2.2 m/kg

1
3

(interm. field)

zero 1.006 1.601 3.216 0.2
low 1.016 1.001 2.538 0.4
medium 1.000 0.231 1.703 0.2
high 1.000 -0.038 1.161 0.0

D = 450 m
Ldn = 11.40
Z = 6.7 m/kg

1
3

(far field)

zero 0.996 0.126 2.486 0.0
low 0.995 0.129 2.119 0.1
medium 0.996 0.049 1.547 0.0
high 1.000 0.002 0.353 0.0

Table 3.6: Equations 3.6 for iavg - fitted parameters and corresponding MRE.
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3.4.3 A machine learning model

The manifold of numerical data points determined by means of the computationally ex-

pensive high-fidelity CEL simulations designed and implemented in this work is leveraged

further here to develop a more efficient predictive tool for pavg, p̂avg and iavg. To this aim,

an artificial neural network (ANN) is designed and trained on the dataset shown in Fig-

ures 3.20–3.22 scaled as described in section 3.4.1. The ANN comprises three neurons in

the input layer, receiving the three input quantities corresponding to the normalized length

Ldn of the incident wave in free air, the porosity level PL of the shielding structure, and

the scaled distance dn of the virtual facade over which the shielding effect is considered.

To enable and facilitate interpolation over porosity, the input PL is considered as a con-

tinuous variable taking the integer values from 0 to 4 for the porosity levels retained in

this work, in increasing order, i.e. 0 for zero porosity and 4 for free air. The output layer

comprises three neurons delivering predictions of pavg, p̂avg and iavg, corresponding to

the inputs. The number of hidden layers, their sizes and the activation functions retained

are optimized for best performance, including generalization to a testing set of data. This

is achieved through random selection of 70% of the data for training, 15% for validation

and the remaining 15% for testing. Following this process, two fully-connected hidden

layers comprising 7 neurons each, and a sigmoid activation function h are retained. Ta-

ble 3.7 illustrates this selection process by comparing the performances of a few different

architectures with a sigmoid activation function.

Designating by X1 the 3× 1 array of inputs, centered and scaled to the interval [-1,1], the

3 × 1 array of outputs A3, also centered and scaled to [-1,1], is given by:

A3 = W3.h (W2.h (W1.X1 + B1) + B2) + B3, (3.8)

where W1 (7×3), W2 (7×7) and W3 (3×7) are arrays of network weights, while B1

(7×1), B2 (7×1), and B3 (3×1) are arrays of network biases. These are given in Table 3.8.

Figure 3.34 shows the training history of the ANN retained while Figures 3.35(a)–(c)

compare the predictions of the ANN to the numerical data. The network trained achieves
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Number of neurons in hidden layer 1 7 6 8 7 8 7 9 8
Number of neurons in hidden layer 2 5 6 5 6 6 7 6 7
Number of parameters 86 87 95 97 107 108 117 119
MSE train % 1.03 0.97 0.72 0.89 0.75 0.30 0.37 0.40
MSE test % 2.36 1.94 1.69 1.85 1.50 0.56 0.77 0.91
Overall MSE % 1.23 1.11 0.86 1.04 0.86 0.34 0.43 0.48

Table 3.7: Comparing the performances of a set of ANNs comprising two hidden layers
and sigmoid activation functions.

W1 (7 × 3) B1 (7 × 1)
0.19078 2.48667 -0.29024 -0.52860
0.53649 -0.45355 -0.54471 0.57214
4.54559 0.01049 -0.35217 4.75203
-0.37074 1.19430 -0.04487 0.80536
2.19032 0.69250 0.58383 1.85442
1.45889 0.47306 -0.09301 1.49059
0.00824 0.66284 1.32466 2.43609

W2 (7 × 7) B2 (7 × 1)
-0.51759 1.67341 -2.58524 1.47152 -0.83477 0.58837 -2.58457 0.66612
3.85199 -1.75493 0.97955 -1.70748 0.18200 1.05788 0.19115 -1.42305
0.43406 1.96910 -0.06565 3.94725 0.38453 -4.87576 -2.83976 -0.40294
2.51191 -1.07348 0.40233 -0.73556 0.15677 0.30285 0.54688 2.26528
2.82577 -0.39264 -0.40345 1.25575 -1.13360 2.30234 -0.65178 0.71949
1.02441 -0.62178 0.34489 -0.39192 0.08891 0.10530 0.40625 1.34551
2.17814 -0.36821 -0.19223 1.14541 -1.44808 2.81217 1.83888 -2.56283

W3 (3 × 7) B3 (3 × 1)
-0.27979 -0.08790 0.16081 1.04317 -1.15900 0.23001 1.08190 -0.33912
0.15093 -0.43170 -0.01331 -0.53831 -1.35681 3.44829 1.51845 -1.92848
-2.61750 -0.15213 1.77818 -0.57471 -0.11555 1.35046 0.21396 -1.14587

Table 3.8: Weights and biases of the data-driven ANN surrogate model for pavg, p̂avg and
iavg.

MREs of 0.58%, 0.45% and 0.38% over the datasets for pavg, p̂avg and iavg, respectively.

Figures 3.31–3.33 show the numerical dataset superimposed to the predictions of the

ANN. The lines in magenta correspond to the ANN’s predictions of pavg, p̂avg and iavg for

a normalized wave length Ldn = 2.55 (corresponding to a standoff distance D = 100 m),

which are not included in the available dataset. The closeness between the predictions of

the ANN and a couple of additional numerical solutions determined for verification with

Ldn = 2.55 (which are represented by the markers in magenta) shows the possibility to

determine rapid and computationally inexpensive estimates of pavg, p̂avg and iavg in other

configurations than those on which this data-driven surrogate model was trained.
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Figure 3.31: ANN predictions for pavg superimposed to the scaled dataset. The additional
data points in magenta were generated after the prediction for Ldn = 2.55.
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Figure 3.32: ANN predictions for p̂avg superimposed to the scaled dataset. The additional
data points in magenta were generated after the prediction for Ldn = 2.55.
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Figure 3.33: ANN predictions for iavg superimposed to the scaled dataset. The additional
data points in magenta were generated after the prediction for Ldn = 2.55.
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Figure 3.34: Training history of the ANN retained.
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Figure 3.35: Regression of the ANN’s predictions on the numerical data for (a) pavg, (b)
p̂avg and (c) iavg.
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3.5 Conclusion

This study investigated the extent to which the porosity of a building can affect its ca-

pacity to shield other structures from a massive explosion, such as that which occurred

on August 4, 2020, in the port of Beirut. To this aim, high-fidelity numerical simulations

were designed and executed to determine the average incident overpressure and specific

impulse developed over virtual facades shielded by buildings of typical porosity levels

located at various standoff distances from a high-yield explosive charge. A valuable man-

ifold of solutions was hence generated. This manifold mainly revealed that the effect of a

building’s porosity on its shielding potential can be substantial: for instance, in the near

field (at Z = 0.7 m/kg
1
3 ), the peak facade-averaged overpressure behind a highly porous

structure reaches up to seven times that behind a non-porous structure of the same size. It

was also found that the shielding effect wanes with both: (i) increasing standoff and (ii)

increasing distance behind the shielding structure. Overall, peak overpressure and specific

impulse fall inside of envelopes delimited above by the high-porosity building and below

by the zero or low-porosity building, depending on standoff. An internal channeling of the

blast wave was observed inside of the high-porosity building, between the parallel slabs

and side-walls, which led to an increased peak overpressure and impulse close-in behind

the building. This phenomenon faded as the blast-wave became increasingly planar, in the

far field. It was also noted that, in general, a lower building porosity results in the blast

wave taking a longer path, which delays the rise to peak overpressure behind the building.

A suitable scaling was applied to the numerical datasets generated in this work, for

broader impact. Soft computing techniques were applied to devise simple, computation-

ally efficient and more general, data-driven, predictive tools. In particular, closed-form

analytical expressions were fitted to the scaled data points, to facilitate their interpolation.

An artificial neural network was also developed and trained successfully on the scaled

dataset, to generate low-cost predictions corresponding to other explosive charges, stand-

offs, porosity levels and distances behind the shielding structure.

The outcomes of this work can provide some guidance to structural engineering prac-
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titioners in estimating blast loads behind porous structures. However, these also reveal the

complexity of the various phenomena taking place during the propagation of a blast wave

inside and around a building. Many parameters, including the yield of the explosion, the

external dimensions of the shielding structure, its standoff distance to the charge, the floor

height, the properties of the internal partitioning (including density, distribution and ori-

entation), the number of openings and their properties (including shape, size and location)

contribute to determining the intensity of the blast wave behind the structure. Additional

studies are thus needed to further the understanding of the influence that each parameter

has on the shielding effect. This added knowledge would enable the development of more

exhaustive surrogate models relating the influence of building porosity on the propagation

of the blast wave. These could be incorporated subsequently into broader computational

tools for the efficient prediction of blast loads on structures located in complex urban

environments.
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Near field
(
D = 50 m; Z = 0.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 147.0 149.0 529.9 1091.1 1041.3
10 215.1 214.4 540.2 949.2 902.1
15 236.4 237.4 495.6 826.7 785.7
20 254.0 257.1 478.4 716.2 687.6
25 266.1 269.0 463.7 622.0 604.6
30 273.0 275.5 434.0 539.6 534.1
35 278.3 280.5 401.6 464.2 474.4
40 282.9 284.8 370.9 398.1 423.6

Intermediate field
(
D = 150 m; Z = 2.2 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 56.5 54.4 109.2 146.5 144.9
10 76.4 75.8 110.8 137.0 135.7
15 84.4 83.4 111.1 128.7 128.0
20 89.0 87.5 110.8 121.3 120.9
25 91.9 90.0 109.8 114.4 114.3
30 93.8 91.8 108.1 107.9 108.3
35 95.1 93.1 105.8 102.0 102.9
40 96.4 94.5 102.5 96.5 97.5

Far field
(
D = 450 m; Z = 6.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 19.7 20.2 19.2 25.7 25.8
10 20.2 20.2 20.0 24.0 24.0
15 20.5 20.1 20.8 23.5 23.5
20 20.7 20.1 21.4 23.1 23.1
25 20.8 20.1 21.9 22.7 22.7
30 20.9 20.1 22.2 22.3 22.3
35 21.0 20.2 22.4 22.0 22.0
40 21.1 20.3 22.5 21.6 21.6

Table 3.9: Values of peak facade-averaged incident overpressure Pavg (in kPa), at dis-
tances d between 5 and 40 m behind shielding structures of various porosities located in
the near, intermediate and far fields of a high-yield explosion.
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Near field
(
D = 50 m; Z = 0.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 389.4 395.9 711.6 1404.3 1193.0
10 471.2 479.5 688.1 1195.8 1017.1
15 478.1 483.9 618.1 1014.5 871.3
20 462.1 466.9 547.5 873.0 751.0
25 436.2 440.4 492.4 771.3 651.9
30 408.8 412.8 448.3 680.5 569.9
35 383.4 387.0 416.2 566.2 501.9
40 359.4 362.5 391.1 473.5 445.4

Intermediate field
(
D = 150 m; Z = 2.2 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 90.0 85.5 113.9 148.9 145.9
10 101.7 98.4 115.0 138.4 136.2
15 104.9 102.9 114.4 130.2 128.6
20 106.1 104.3 112.9 122.9 121.5
25 107.0 105.3 112.8 117.9 117.0
30 106.3 104.6 110.7 111.1 110.9
35 105.0 103.4 107.9 104.9 105.3
40 103.5 101.9 104.9 99.6 100.4

Far field
(
D = 450 m; Z = 6.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 20.7 20.7 20.5 25.8 25.9
10 21.1 20.8 21.0 24.0 24.0
15 21.3 20.8 21.6 23.5 23.5
20 21.4 20.9 22.0 23.1 23.1
25 21.5 20.9 22.3 22.7 22.7
30 21.6 21.0 22.5 22.4 22.3
35 21.7 21.0 22.6 22.0 22.0
40 21.8 21.0 22.6 21.6 21.6

Table 3.10: Values of facade-averaged peak incident overpressure P̂avg (in kPa), at dis-
tances d between 5 and 40 m behind shielding structures of various porosities located in
the near, intermediate and far fields of a high-yield explosion.
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Near field
(
D = 50 m; Z = 0.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 6709.7 7260.3 9563.9 15139.5 12678.8
10 7996.0 8704.4 10043.6 14052.7 12010.6
15 8180.6 8877.3 9702.1 13271.2 11502.8
20 8266.3 8839.0 9440.6 12375.4 10988.5
25 8128.8 8641.6 9141.7 11431.1 10399.1
30 8000.4 8448.4 8834.6 10717.2 9874.8
35 7846.3 8234.4 8566.7 10104.3 9367.5
40 7734.8 8012.2 8343.7 9555.6 8897.5

Intermediate field
(
D = 150 m; Z = 2.2 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 4581.2 4896.0 6044.2 6844.3 6704.8
10 6295.2 6258.2 6355.6 6771.8 6687.6
15 6474.6 6532.3 6372.3 6509.1 6467.8
20 6378.0 6441.6 6294.6 6341.8 6324.8
25 6228.7 6288.1 6166.1 6192.1 6185.2
30 6048.2 6107.2 6004.1 6017.7 6013.0
35 5872.6 5928.9 5843.4 5846.2 5843.4
40 5730.4 5782.0 5711.2 5712.5 5711.6

Far field
(
D = 450 m; Z = 6.7 m/kg

1
3

)
Porosity level Zero Low Medium High Free

Distance d
behind the
building [m]

5 2872.0 2845.3 2912.4 2986.4 2992.9
10 2878.7 2866.1 2877.6 2914.9 2920.5
15 2914.0 2905.4 2909.3 2930.9 2935.5
20 2845.2 2840.6 2841.6 2858.7 2862.5
25 2774.4 2772.1 2772.1 2786.5 2789.6
30 2765.3 2763.1 2763.6 2774.6 2777.3
35 2694.6 2694.3 2693.9 2703.6 2705.9
40 2624.3 2624.9 2624.4 2633.0 2634.9

Table 3.11: Values of the incident facade-averaged specific impulse Iavg (in kPa.ms), at
distances d between 5 and 40 m behind shielding structures of various porosities located
in the near, intermediate and far fields of a high-yield explosion.
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Chapter 4

General conclusions and future work

High-cost high-fidelity numerical finite element simulations in the fields of computational

heat conduction and computational fluid dynamics were utilized in this work, in combi-

nation with soft modeling techniques, to design fast, fairly precise and computationally

efficient predictive tools for the prediction of key quantities of interest in two major areas

of engineering.

Novel, accurate and computationally efficient predictive tools for the effective ther-

mal conductivity of particulate composites, including the effects of particle contiguity

and thermal contact resistance at the interface between phases, were developed in Chap-

ter 2. These are mainly characterized by formulation simplicity and by prediction speed

and accuracy over broad ranges of material properties and proportions. They can thus

be readily incorporated to recursive, inverse resolution and/or optimization schemes that

require the fast execution of a large number of forward simulations. The tools proposed in

Chapter 2 of this work can hence be key in facilitating the design of novel, more efficient,

more sustainable metamaterials with enhanced thermal properties and behaviors.

A detailed analysis of the effect of building porosity on the shielding of blast waves

resulting from high-yield explosive charges was conducted in Chapter 3. Regression and

machine learning techniques were applied to a manifold of solutions generated from val-

idated high-fidelity numerical simulations to make swifter and cheaper predictions of the

intensity of a blast wave behind a porous building. The work presented in Chapter 3 con-
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stitutes a significant contribution to gradually developing the capacity to make fast and

reliable predictions of blast loads in complex urban environments, taking into account the

various governing parameters, including building porosity. This objective is key in facili-

tating the design of safer and more resilient cities, and the rapid evaluation of damage and

planning of relief efforts in the aftermath of catastrophic explosions.

The practical performances of the simplified modeling approaches developed in this

work can be illustrated by a few examples. For instance, the NC and the generalized

TCG2 models proposed in Chapter 2, running on an Intel® CoreTM i7-8665U CPU with

16 MB of cache memory and a clock speed of 2.11 GHz, can make predictions of the

effective thermal conductivity of particulate composites with accuracies of about 0.7%

and 4.5%, respectively, in a fraction of a millisecond only. This can be compared to the

computational time needed to run one finite element simulation to determine the same,

which is approximately 10 minutes using equivalent hardware. Also for instance, the

intensity of a blast wave behind a porous building can be predicted by the artificial neural

network devised in Chapter 3 with an accuracy of about 0.5% in a fraction of a millisecond

only, while the time necessary to determine the same from a coupled Eulerian-Lagrangian

simulation is typically measured in days.

The outcomes of the work presented in this thesis extend beyond the computational

aspects that were previously highlighted here. The detailed analyses performed also re-

sulted in interesting observations and valuable conclusions, which contribute to the im-

provement of our understanding of physical phenomena governing the thermal behavior

of composites and the propagation of a blast wave in and around porous structures. For in-

stance, fitting the TCG2 model (devised in Chapter 2) to experimental data in the literature

revealed that the contact between inclusion particles is favored by more dispersed parti-

cle size distributions. Notable outcomes from Chapter 3 include the observed increase

in the average shielding effect tighter behind a porous structure and as the latter is sited

closer to the explosive charge. A lower porosity typically results in the blast wave taking

a longer path, which delays the rise to peak overpressure behind the shielding structure.

Some highly porous structures however can intensify the blast wave due to an internal
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channeling effect taking place between parallel floor slabs and sidewalls.

Future work could be directed towards developing inverse problem resolution and

optimization schemes incorporating the computational tools devised in Chapter 2 to de-

termine the most suitable properties and proportions for the constituents of a projected

composite, based on a target effective thermal conductivity. The pioneering study con-

ducted in Chapter 3 should also be complemented by additional research work to deter-

mine both the distinct and combined effects of the various relevant parameters governing

the shielding of blast waves by porous structures, such as the density and layout of internal

partitions, the floor height, the layout, number, shape and size of openings, the building’s

envelope shape and dimensions, and the explosion yield. It is only then that a fully gener-

alized and comprehensive data-driven surrogate model can be developed to make fast and

accurate predictions of the intensity of blast loads behind any porous structure.
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