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Abstract

In this work we discuss a special kind of stochastic processes X = {X,}icR.,, that are
of exceptional interest from both the theoretical and the applied points of view. These
processes are called Affine Processes, and are characterised by the fact that their charac-
teristic function has the form of an exponential of an affine function, i.e. by

éxx(u)h =[E* [e‘(Xt’u)] = e‘b(;|u)+($,\lf(t‘u)>‘ (l)

where the exponent
O(t,u)+ < x, ¥(t,u) > ()

is an affine function of its initial state z in the state-space E = RZ}; x R". The above
expectation E” is the expectation with respect to the law P* of the process started at z.

In chapter 2 we introduce affine processes and discuss the main properties associated
with these processes, and we give examples of such processes. In addition, we discuss in
detail the semi-flow property and the Feller property for affine processes. We also discuss
the important class of regular affine processes.

Chapter 3 discusses the application of affine processes to financial mathematics. In
sectio 3.1 we introduce basic aspects of the math of finance, while in section 3.2 we dis-
cuss some applications of affine processes in financial mathematics.

Finally, given that the general subjects of stochastic processes, stochastic calculus,
and stochastic differential equations are highly technical subjects, and so many definitions
are needed for a smooth reading of such a work, we give a quite detailed first chapter on
the basics of stochastic processes and stochastic calculus, to pave the way for a clear

understanding of the rest of the thesis.
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Chapter 1

Foundations on Stochastic Processes,
Stochastic Calculus, and SDE’s

For clear discussions related to Stochastic Processes and
Stochastic Calculus, you first need

” ... a six months course (only) on definitions ...”

A.PMeyer

In this chapter we introduce some basic definitions and elements for general stochas-
tic processes, stochastic calculus, and stochastic differential equations, to make
the rest of this thesis a useful and understandable piece of work.

1.1 Basics on Stochastic Processes and Martingales

In this section we closely follow the discussion and definitions given in “Diffu-
sions, Markov Processes and Martingales” by Rodgers and Williams [RW].



1.1.1 Basic Elements for Stochastic Processes
Stochastic Processes, Sample Functions, and the & Sigma-Algebra

& A DEFINITION (CHARACTERIZATION) OF STOCHASTIC PROCESSES. We
first recall that a stochastic process is a family X of random variables, written as

X ={Xi.t €T}, (1.1)

‘where T is a parameter set, defined over a probability space (2, o, P), with val-
ues in a state space (a measurable space) (E, &). Thus a stochastic process is a
collection of (E, &)-valued random variables over (2, o, P), i.e.

1 X:Q—E, WteT| o [X:TxQ—E]| (12)

where X, ! defines a mapping from the sigma-algebra & to the sigma-algebra o,
ie.
X1:6 — o0, (1.3)

given that each X, is measurable.

& SAMPLE FUNCTIONS & ANOTHER CHARACTERIZATION OF STOCHASTIC
PROCESSES. Given a stochastic process X one defines the sample function (also
called the sample path if T = R;), of X corresponding to the point w € (2, as

being the function
Xw): T—E (1.4)

such that

| X(w)(t) = Xo(w), vVt e T| (1.5)

Thus X(w) € ET, where ET is the space of all functions from T to E.



This idea of sample function establishes another characterization (or defini-
tion) of a stochastic process as a function

X —¥E, (1.6)

instead of a function X : T x Q0 — E, that maps every w € () to an element (a
function) X (w) in ET, to be called the "sample function” associated with w, such
that X is measurable with respect to the sigma-algebra o on {2 and a sigma-algebra
&7 (to be defined next) on ET. This would characterize a stochastic process as
just being a measurable function

X : (2,0) — (ET,67)] (1.7)

and this would make the stochastic process X as (simply) being a random vari-
able from the probability space (2, o, P) to the state-space (ET, £7). The (mea-
surable) function X thus establishes a mapping X! from &T on ET to 0, i.e.

Xl =4 (1.8)

that maps any £ € &7, i.e. maps any measurable collection ¥ of functions in &7,
to the (measurable set in o consisting of) points w € €2 whose “sample functions”
X(w) are in .

& THE &T SIGMA-ALGEBRA. To properly establish the above characterization
of a stochastic process, we only need to define &7 as being the smallest sigma-
algebra on the space ET of functions from T to E such that V¢ € T, the evaluation

map

B —E; (1.9)

defined by
m(f) = f(t), Vf € E, (1.10)

is measurable. Thus

&7 is the smallest sigma-algebra on E* that makes every evaluation
map 7 (as above), measurable.




This would establish any stochastic process X, defined on the probability space
(2, o, P) with state space (E, &), as a measurable function from (2, ) to (ET, &T),
and thus making X an (ET, &7)—valued random variable on the probability space
(22,0,P).

And indeed, one can show that the two definitions (given above) for a stochas-

tic process are equivalent. Thus

Xt (2,0) — (E, &) is measurable for every ¢t € T,
if and only if X : (Q,0) — (ET, &7) is measurable.

Laws of Stochastic Processes

& THE LAW OF A STOCHASTIC PROCESS. We recall that, for a stochastic process
X, the law of the process is the probability measure p on the measurable space
(ET, &T) (defined in the previous subsection), given by

1(D) = (PoX1)(D)| (1.11)

for every measurable subset ¥ € &7 of functions from T to E. Thus the law
of the stochastic process X is the law (the “distribution”) of the random variable
X :(Q,0) — (ET,&T).

& THE LAW OF A STOCHASTIC PROCESS STARTED AT z € E. We define the
law of the stochastic process started at z € E as being the probability measure,
denoted by P?, on (2, o) defined as follows. First let 2, C (2 be defined as the set
of all w € § such that the corresponding sample function X(w) starts at z € E,
ie.

Q ={w e Q: Xo(w) = z}. (1.12)
Roughly speaking, P* measures, as described below, and in a way related to P,
the intersection with (), of any measurable B € o, with respect to the P —measure

of 2.
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s The case where P(£2,) > 0. For every measurable B € ¢ we simply have

- M (1.13)

li::z(B) = P(B n Qz)/P(QI) P(Qx)

In other words P* measures (by P, and with respect to P((2,)) the subset of
B (i.e. B N{l,) that consists of all w whose sample functions start at .

* The case where P();) = 0. In this case the definition of P* is more intri-
cate, in which it can be imagined to be a probability measure on ({2, o) with
P*(Q,) = 1, such that for any two points w;,w; € §2,, the “relative density”
of P at w; and w», is the same as the “relative density” of P* at these two
points. The exact procedure to construct such a IP* is not straightforward.

Given the previous definition of X! : &T — o (as above), one can also
define the law of the process started at = as being the probability measure on
(ET, &7T), such that for every ¥ € &7, P* measures the functions (from T to E)
in ¥ that are sample functions, associated with the process X, and that start at
2 € E. This is given as follows:

* The case where P($,,) > 0.

_PXT(E)N %) T
=—pay — VEee"
(1.14)

[P*(2) = PX7'(2) N 0)/P(0:)

* The case where P();) = 0. This is also more intricate, and needs similar
arguments as those for the previous part (above).

Stochastically Continuous Processes

A Stochastic Process X = {X,}, where t € T = Rz, defined over a probabil-
ity space (0, o, P) and with values in a state space E (a topological space, with
the Borel sigma-algebra) is said to be a Stochastically Continuous Process if
for every sequence {t,}>o that converges to ¢, the sequence {X,, } converges in
probability (see next paragraph), with respect to P (or equivalently with respect

11



to every P*, z € E, where P* is the law of the stochastic process started at x) to
X;.

This means that for every ¢ € T, the set of w € {2 where there exists a sequence
t, — t with X; (w) # X;(w) has P-measure zero (or equivalently has [P*-
measure zero for every z € E). Thus, almost everywhere in €2, one has that
X, (W) = Xy(w) forevery t, — tand any ¢t € T.

This is equivalent to having, for any ¢ € T and every ¢,, — {, that

VApen CE,  limu,eo P(X(A)) = P(X;'(A)) (1.15)

This is also equivalent to having, for every z € E and every A,., C E, that

lim,,_,0 P*(X; (A)) = P*(X;'(A)) (1.16)

1.1.2 Basic Elements for Martingales

Roughly, a (for example discrete-time) martingale is a sequence of random vari-
ables (i.e., a stochastic process) for which, at a particular time in the realized
sequence, the expectation of the next value in the sequence is equal to the present
observed value even given knowledge of all prior observed values, as is specified

next.

& CONDITIONAL EXPECTATION. The idea of conditional expectation is basic for
defining martingales. Thus, given a probability space (€2, 7, P), the conditional
expectation of a random variable Y : 0 — R™ with respect to a family Xy -
) — R"} of random variables, denoted by

EY/{Xa}], (1.17)

is given by a random variable Z : 8 — R", such that the expectation of Y over
any measurable subset S (i.e. element) in the

smallest sigma-algebra F({X,}) C F over () that makes all X, measurable

12



is equal to the expectation of Z over S, i.e.
EgY] =Es[Z], VS € F({Xa}), (1.18)

where (also) Z has F({X,}) as the smallest sigma-algebra to make it measurable.
In this case we write that

[ElY/{Xa}] = 2] (1.19)

In fact this conditional expectation is also written as

[E[Y/F({X.})] = Z| (1.20)

Discrete-Time Martingales

& DISCRETE-TIME MARTINGALES. A discrete-time martingale is defined
to be a discrete-time stochastic process (i.e., a sequence of random variables)
X1, Xg, X3, -+ that satisfies the following:

1. E|X,]]<o0, Vn=1,23,:---
2. E[Xns1|X1, X2 Xn] = Xn. Vn=1,2,3,-

Thus, in a discrete-time martingale, the conditional expected value of the next
observation X, 1, given all the past observations X, -- - , X, is equal to the last
observation X,,. Due to the linearity of expectation, this second requirement is

equivalent to:
E[Xﬂ.—H = Xn1X1:X2 T Xﬂ.] = 0. (121)

which states that the average "gains” from observation n to observation n+1 are 0.

& MARTINGALE {Y,} WITH RESPECT TO ANOTHER SEQUENCE {X,}. Along
the line of the above definition, one has that a sequence Y, Y3, Y3 - - - is said to be
a (discrete) martingale with respect to another sequence X, Xo, X3 - - - if:

e E[|Yn]] <00, VYn=1,23,:--

° E[Yn+1|X1\X2"‘Xn]=Kv Vn=152|3:"'

13



Continuous-Time Martingales

& CONTINUOUS-TIME MARTINGALES. A continuous-time martingale Y =
{Y,} with respect to the stochastic process X = {X,}, is a stochastic process such
that for all £ € R>g:

1. E[|Y:]] < o0,
2. ElV|{X,,7<s}|=Y, Vs<t

This expresses the property that the conditional expectation of the observation
X, at time t, given all the observations X, up to time s , is equal to the observa-
tion X, at time s.

Note: Given the above definitions, one can in fact give a general definition for
a stochastic process to be an appropriate martingale.

Martingales with Respect to Filtrations

& FILTRATIONS OF PROBABILITY SPACES. We recall that a filtration {%, : t €
T = R} of a probability space(£2, o, P) is a family of sigma-algebras #; on Q2
such that

2. C Zv Co=Fs, Vi<t eT (1.22)

This definition for filtration allows for the following definition.

& MARTINGALES WITH RESPECT TO FILTRATIONS. A process X = {X¢}e>o
over a probability space (€2, o, P), i.e. where
X:RyoxQ—E (1.23)

is called a martingale with respect to a filtration {.%, } >, of the given probabil-

ity space if :

14



1. {X;} is adapted to the the filtration {.%;}, i.e. X, is %, —measurable, for
every t > 0,

2. E[|X.]] < oo,

3. E[X;|#)] = X..

& FILTRATIONS GENERATED BY PROCESSES. A filtration {.%,} of a probability
space (€2, o, P) is said to be generated by a process X = {X,;},>0 over (Q,0,P),
if for every t, %; is the smallest sigma-algebra to make all X,, s < t, measurable
with respect to this .%;. We shall write that

[ %= Z({X.}o<)] (1.24)

If a filtration on a probability space, on which a process X = {X;};>¢ is de-
fined, is mentioned without further restrictions, then it will be understood to be
the filtration generated by the process.

Note that the property of being a martingale involves both the filtration {.%;}
and the probability measure o (with respect to which the expectations [E are taken).
Note also that it is possible that X could be a martingale with respect to one

measure but not another one.

Supermartingales and Submartingales

& E[Y/{X,}] < Z AND E[Y/{X,}| > Z. Given a probability space (2, F, P),
a random variable Y : Q — R and a family {X, : & — R"} of random
variables, we shall mean by

E[Y/{X.}] < Z, (1.25)

or by
E[Y/{X.}] = Z, (1.26)

15



where Z : £} — R" is another random variable, that the expectation of ¥ over
any measurable subset S (element) in the sigma-algebra F({X,}) C F (as de-
fined above), is smaller than or equal to (respectively larger than or equal to) the
expectation of Z over S, where Z is measurable with respect to F({X,}).

& DISCRETE SUPERMARTINGALES. A discrete supermartingale is defined as
in a discrete martingale, except that the equality in the last condition is replaced
by <, i.e. one would have

E[Xn41] X1, Xn] < Xn Vn=1,23,---. 1.27)

& CONTINUOUS SUPERMARTINGALES. While in a continuous supermartin-
gale one would have that

Vs < t. (1.28)

[EX./[{X,, 7 < s} < X,

& SUBMARTINGALES. Similarly one defines a discrete submartingale, or a
continuous submartingale, in a similar way, only replacing < by >, to have

EXns1|X1,- 1 Xa] 2 X Yn=1,2,3,--, (1.29)

and

[EX{X,7r<s}]>X,| Vs<t. (1.30)

respectively.

Immediate Properties
1. X is a supermartingale if and only if —X is a submartingale.

2. X is a martingale if and only if X is both a supermartingale and a sub-

martingale.

16



3. The process X for which X € £1(Q, %, P) is a martingale (respectively,
supermartingale, submartingale) if and only if the process X — X = (X, —
Xo : n = 1,2,3,---) has the same property. So one can concentrate on
processes that are null at 0.

Martingales and Stopping Times

& STOPPING TIMES. A stopping time with respect to a sequence of random
variables X, X5, X3,--- is a random variable 7" such that for each ¢, the oc-
currence or non-occurrence of the event 7' = ¢ depends only on the values of
Xi, X5, X3, -+, X;. The idea is that at any particular time ¢, you can look at the
sequence so far and tell if it is time to stop.

The concept of stopping time is defined by requiring only that the occur-
rence or non-occurrence of the event 7' = t be probabilistically independent of
X421, Xi49,- - - but not that it be completely determined by the history of the pro-
cess up to time t.

& BASIC PROPERTIES AND THEOREMS FOR STOPPING TIMES. Moreover, One
of the basic properties of martingales is that, if (X} )s>¢ is a (sub-/super-) martin-
gale and 7 is a stopping time, then the corresponding stopped process (X );>0
defined by X7 := Xpin(r) is also a (sub-/super-) martingale.

The concept of a stopped martingale leads to a series of important theorems,
including, for example, the Optional Stopping Theorem which states that, under
certain conditions, the expected value of a martingale at a stopping time is equal
to its initial value.

1.1.3 Markov Operators and Markov Semigroups
Defining Markov Operators and Markov Semigroups

& MARKOV OPERATORS. Let (2,0, 1) be a o—finite measure space. Then a

linear mapping
P:LYQ,0,u) — L', 0,p) (1.31)

17



is said to be a Markov operator, if it maps the set
D={feL'(Qop):f20and |f]|=1} (132)
(called the set of densities) into itself, i.e. if
f(D) c D. (1.33)
& MARKOV SEMIGROUPS. Now a family {P,};>o of Markov operators over a

o —finite measure space (£, o, u) is said to be a Markov semigroup, if it satisfies

the following:

1. P(0) = I,i.e. P(0) is the identity operator on L* (), o, s2) (that maps every
element in L!(Q, o, ) to itself).

2. P(t+s) = P(t) o P(s) forany s,t > 0.
3. Forany fixed f € L*({, 0, 1), one has that the mapping

t— Bf (1.34)

is a continuous function of ¢ (into L' (£, o, w)).

Examples of Markov Operators and Markov Semigroups

Assume a o —finite measure space (£, o, ;) in what follows.

« Integral Operators: Integral operators P of the form
(PN = [ k@), (139)
where k£ : Q x Q — [0, 00) is a measurable function such that
Ak(m.y}p(dm) = 1 (1.36)

for almost all y € Q, define Markov operators. For these cases, the function
k(z,y) is called the kernel of P.

18



* Markov Operators and Semigroups Associated with an SDE: (this ex-
ample requires reading other parts of this chapter) Consider the Stratonovich
stochastic differential equation (SDE) given by

dX, = 0dB, + oo(X,)dt, (1.37)

where B = {B,} is n—dimensional Brownian motion, with o(z) an m x n
matrix with components ¢,*(z) and o¢(z) € R™ with components oo’ ().
Then if a solution X, of the above SDE, with X, having a distribution that
is absolutely continuous with density v(xz), one finds that the density u(z, t)
of X, satisfies the Fokker-Planck PDE given by

m

ou <~ 0 u " 9(0o'(z)u)

— = — b(T)=— | - ) ———=, 1.38

S (Sewge) - S 2, s
where a;;(z) = 3 Y p_, 0k (z)o) (2).
Now for any v(z) € CZ(R™), i.e. v(z) has continuous and bounded deriva-
tives of orders 1 and 2 on R™, one can show that the above Fokker-Planck
equation has, for any ¢ in any interval [0, 7], a unique solution u(z, t) such
that u(z,0) = v(z), with u : [0,7] x R™ — R being, together with its
spatial derivatives of order 1 and 2, uniformly bounded.

Now if one defines an operator P(t) of the form
P(tyw(z) =ulz,t) (1.39)

for every v(z) € CZ(R™), then one can show that P(¢) can be extended to
an operator P(t) defined on L (R™) (where {) = R™ in this case). This op-
erator P(t) is a Markov operator with the family { P(t)}:>o being a Markov
semigroup.

1.1.4 Characteristic Functions

The characteristic function of any real-valued random variable completely de-
fines its probability distribution. If a random variable admits a probability den-
sity function, then the characteristic function is the inverse Fourier transform of
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the probability density function. Thus characteristic functions provide the basis
for an alternative way to analytical results compared with working directly with
probability density functions.

Characteristic Functions of Random Variables

& CHARACTERISTIC FUNCTIONS OF REAL-VALUED RANDOM VARIABLES.
Let X be a real-valued random variable defined over a probability space (2, o, P),
and let 7 be the imaginary unit (where > = —1). The function

¢x : R — C, (1.40)

defined by (for t € R)

¢x(t) = E[e*¥] = [ X dP(w) (1.41)
9]

is called the characteristic function of X.

& CHARACTERISTIC FUNCTIONS OF MULTIVARIATE RANDOM VARIABLES.
One also has generalizations of the above definition for the case of multivariate

random variables
X =W x@ ... x0h (1.42)

taking values in (say) R™. In this case, and for t = (f;,--- ,t,) € R" (considered
as a column vector), one defines the characteristic function of X (in terms of £) to

be given by

bx(t) = E[ei(X(”11+---+X‘")tn)] - }E[e"‘TX] = ]E[eié)(.t}} — fe"‘x(“’)'”dP(w)
1]

(1.43)
where T denotes transposition, and < X, >= Y7 | X()t;. Similarly one can
define characteristic functions of complex-valued random variables, or multivari-
ate complex random variables (i,e, with values in C"), by replacing (above) the
exponent it7 X by iRe(f” X ), where the bar over ¢ indicates complex conjugation.

20



Note, for example for real-valued random variables X, that the characteristic
function ¢x (¢) exists V¢ € R, since

ox () = E[e"¥] = E[cos(tX) + isin(tX)] = E[cos(tX)] + iE[sin(tX)],(1.44)

where the last two expected values are well defined, given that the sin(y) and
cos(y) functions are bounded in [—1, 1].

Characteristic Functions of Stochastic Processes

For a stochastic process X = {Xj}teT, one can either define the “characteris-
tic function” of X for a given ¢, in which case it would just be the characteristic
function of the random variable X, (as above), or one can define a characteristic
function of X (as an entire process).

& CHARACTERISTIC FUNCTIONS OF PROCESSES: INDEX-SET DEPENDENT.
Consider a (multivariate with values in R"™) stochastic process X = {X,}, with
(say) s € R™, defined over a probability space ({2, g, P), i.e.

X:R™x O — R" (1.45)

First, one can define characteristic functions of such processes, in terms of
the characteristic functions of the random variables that make the process, i.e. in
terms of s € R™, and for any t € R", as was done above, i.e. by

ox(t)]s = dx,(t) = E [ei<Xet>] = [ !<Xel)t>dP () (1.46)
Q

& CHARACTERISTIC FUNCTIONS OF PROCESSES: INDEX-SET INDEPENDENT.
On the other hand, the characteristic function for such a process X (not in terms
of the characteristic functions of the individual random variables X that make X)
can be defined as follows: For every R™—valued function (s) i.e.

t:R™ — R, (1.47)
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such that
/ < Xs(w),t(s) > ds (1.48)
tim
converges for almost all w € (), one defines the characteristic function of X (in
terms of £(s)) to be given by

¢x(t) =E [eaﬁ Jgm ch,t(s)>ds] — feifﬂm<xs(u),t(s)>dsdp(w) (1.49)
0.

Simple Examples on Characteristic Functions of Random Variables

1. If X is a discrete random variable with support R x and probability (mass)
function px (z),then its characteristic function is:
¢x(t) =E[e*] = > e“px(z). (1.50)
zeRyx
Thus, all we need to do, is to sum the complex numbers e**"px (z) over all
values of x belonging to the support of X.

2. If X is an absolutely continuous random variable (on R, where the sum
of the absolute differences of the values associated with any finite division
of any given interval is bounded by a finite constant dependent only on the
given interval) with probability density function fx(z),then its characteris-

tic function is:
+o0

bx(t) = E[e™] = / &5 () (1.51)

—00
which is a contour integral of a complex function along the real axis.
Thus
6x(t) = Ele) =

o =00

+oo

cos(tz) fx (z)dz + 1 [ sin(tz) fx(z)dz.
T (1.52)

400

In this case, the characteristic function is also known as the Fourier trans-

form of the function fx (z).
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Basic Properties of the Characteristic Function (for real-valued X)

1. ¢x(t) exists for any ditribution X, even when the probability density func-
tion and the moment generating function do not exist.

2. ¢x(0) = 1, with ¢ x () non-vanishing (i.e. not 0) in a neighbourhood of 0.
3. |ox(t)| <1 VteR.

4. ¢x(t) is a uniformly continuous function (in the sense that its (¢d) —continuity
has ¢ dependent only on § and not on ¢£).

5. The characteristic function of a + bX is e"®¢@x (bt).

1.2 Important Types of Stochastic Processes

In this section we give some important and usefull examples of stochastic pro-
cesses, that will be needed below, such as Brownian Motion, the Weiner Process,
Markov Processes, Lévy processes, and diffusions.

1.2.1 Brownian Motion

»Brownian motion” was first physically observed in the 19" century (by Brown)
as the random motion of tiny paricles in fluids, as a result of random bombarde-
ment with fluid molecules. This kind of behaviour was then described as a stochas-

tic process that has the following specifications.

Definition 1.2.1. Let (). o, P) be a probability space. An R%-valued process

[B = {Bi}iso : Rso x 2 — RY| (1.53)

is said to be a Brownian motion if it satisfies the following properties:
1. By =0, i.e. Bo(w) = 0 for every w € SL

2. All sample functions of B are continuous, i.e. B;(w) is a continuous func-

tion of t € R for every given w € (.
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3. Forevery() < u <t < s, one has that B; — B, is independent of B,, and
has Gaussian distribution with mean 0 and variance s — 1, i.e.

Bs; — B, = N(0,s — t). (1.54)

We note the following known facts for Brownian motion:

1. Every Brownian motion is a Martingale. In fact for a Brownian motion
B = {B,;}i>0 one has that B} — t is a martingale, i.e.

E(B? - t|8,] = B? — s, (1.55)

where %, is the o-algebra on §) associated with B, (i.e. the smallest o-
algebra on 2 to make B, a measurable function).

2. Every Brownian motion is a Guassian process.
3. Every Brownian motion is a Markov process.
4. Every Brownian motion is a diffusion process.

5. Every Brownian motion is a Lévy process.

We also note that almost every interesting class of processes contains a Brown-
ian motion and that Brownian motion can be used as a building block for very
general processes (in a certain class of processes) by using certain sequences of
transformation.

1.2.2 Markov Processes

In this section we give the general definition of Markov Process and Transition
Function. This section is restrict to the case where T = Rxo.
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Markov Processes

A Markov process can be thought of as a "memoryless” process, in the sense that
one can make predictions for the future of the process based slowely on its present
state.

& DEFINITION OF A MARKOV PROCESS. The following definition gives the most
general formulation of a Markov process.

Definition 1.2.2. A Markov Process, with state space (E, &), is a collection X
given by

X = (Q)U: P: {ﬁt}i {XI‘.}: {P!}a {[FDI T E E})teﬂgu (156)

where
1) (R, 0, P) is a probability space,

2) {%,} is a filtration of (2, 0, P),

3) X = {X,}ser is an (E, &)-valued stochastic process, with the family {X;}
adapted to the filiration { %}, i.eNt € T, X, is measurable with respect to %,
(and hence X, is measurable with respect to %y for every t' > t),

4) P is the law of the stochastic process X started at z € E,

5) {P,} define, what are called as, the (probability) transition functions on
(E, &), that satisfy the following:

= For everyt > 0 one has that
P:Ex& — (0,1, (1.57)
such that for any « € E,
P(z,-): & — [0,1] (1.58)
is a probability measure on &, i.e. with P(xz,E) = 1, and forany I € &,

P(-,T):E—[0,1] (1.59)
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is &-measurable.

s fors,t >0,z € EandT" € &, Py, P, and P,y satisfy the Chapman-
Kolmogorov equation given by

Pa@ D) = o B(— D)dRy (@) (= [ PwDEG dy))
(1.60)

i.e. that P, s(x,T) is the integral, over E, of the function P,(—,T") with
respect to the measure Ps(x, —).

It is the Chapman-Kolmogorov equation above that gives the process X its "mem-
oryless” property, in the sense that the transition function P, for time ¢ + s de-
pends on a past (any past) transition function P, at time ¢, and on the transition
function P, associated with the difference in times between ¢ + s and ¢.

Note: That sometimes we will refer to X (as above, which is part of a Markov
process X), as being the Markov process. Thus the "Markov process X" will
mean that X is the stochastic-process part of a Markov process X’ that includes all
the elements given above (for a Markov process).

& THE TRANSITION FUNCTIONS AS A SEMI-GROUP. One can show that the
Chapman-Kolmogorov equation becomes a semi-group equation

P,y = PP, (1.61)

if one regards every P, as acting on the bounded & —measurable functions
f : E — R where the action is given by

(Pf)(z) = L (=)dPy(z, -), Vz € E, (1.62)
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Note that the resulting (P, f) is indeed a function (P,f) : E — R, on which
another P; can act, to establish the semi-group property. Thus one would have
that

(Peyif)(z) = (PsP.f) (), (1.63)

and one would transform the family {7, } to a semi-group.

Discret-Time Markov Processes

For a discrete-time process X (where T = N), X would be a Markov process (i.e.
the process part of a Markov process X) if it satisfies (as one can show, given the
above general definition for a Markov process) the property that
PT(Xn = :BII!XH—I = -T:n—l-;Xn—ﬂ = Tp=g """ sX'I = :rl)
= P?"(Xn - $n|X -1 = xn—l) (164)

indicating that the values at time n depend only on the values at time n — 1.

Time-Homogeneous Markov Processes

A time homogeneous Markov process is a Markov process such that the transi-
tion probability functions depend only on the difference s between t + s and ¢ and
not on the actual times ¢ and £ + s.

Thus for a time-homogeneous discrete-time Markov process one would have
that

Pr(Xas = 2| X = 9) = Pr(X, = 2| Xn-1 = v), (1.65)

for every n. While for a time-homogeneous continuous-time Markov process one
would have that

P?'(Xt+3 = I!Xt = y) = PT'(XS = $IXO = 'y) (1.66)

1.2.3 Lévy Processes

In this section we define Lévy processes, which provide important examples on
Markov processes.
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Lévy Processes

Definition 1.2.3. Let (2, o, P) be a probability triple. An R%-valued process X =
{ X }t>0 is said to be a Lévy processes (or a process with stationary independent
increments) if it satisfies the following:

1. For almost every w € , the function X;(w) (as a function of t) is right
continuous on R, with left limits on R.

2. Forevery 0 <to <ty <--- <ty the random variables Y; = X;, — Xy, .,
j = 1,--+,n, are independent random variables

3. The law (or distribution) of X; — X depends only ont — s.

& THE CENTRAL RESULT ON Lévy PROCESSES. The following is the central
result in the theory of Lévy processes, and it concerns the characteristic function
of such a process.

Lévy-Khintchine representation: An R?—valued lévy process X = {X;}i0
has a characteristic function defined by

¢x (0)]e=1 = ¢x,(6), - (1.67)

and this has the form (for any 8 € R?) given by

ox,(0) = exp (@'aTﬁ ~ 16T MO + [a(e® " -1 - z'eTzImﬂ)y(dx)) (1.68)

where a € RY, T denotes transposition, M is a non-negative definite symmet-
ric d x d matrix, and J;;<; is the indicator function for the domain [z| < 1 in
R?. While v is a certain measure called the 1évy measure of the process X, and
satisfies

/(1$|2 A 1)v(dz) < . (1.69)
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Infinitely Divisible Measures and Distributions

It is known that the theory of analytic semigroups associated with Lévy processes
is equivalent to the theory of infinitely divisible distributions. We first define in-
finitely divisible measures.

& INFINITELY DIVISIBLE MEASURES. A probability measure z on R is said to
be an infinitely divisible measure if for every integer n there exists a probability
measure /1, on R? such that if Wy, - - - , W, are independent R? random variables
on a probability space((, o, P) with identical laws j,,, then the law of Wy +-- -+
W, is given by p, i.e, W) + - - -+ W, is equal, in distribution, to p. This is written
as

Wit +W,Zp (1.70)

& INFINITELY DIVISIBLE DISTRIBUTIONS. In a similar way, one says that a dis-
tribution F is an infinitely divisible distribution if and only if for every integer n
there exist n independent and identically distributed random variable X3, - -- | X,
such that X, + - - - + X, has distribution F'. In this case we write that

Xy dueib Xu 2 B (1.71)
And if X is a random variable with distribution F', we write that
Xopuwp X 2 X (1.72)

If F'is an infinitely divisible distribution, with X = X; + - .- + X, having
distribution F, where each X; has distribution F, then the characteristic function
of X is given by

ox(t) = [ox,()]" (1.73)

1.2.4 Diffusions

Diffusions in stochastic processes provide models for what one can physically un-
derstand by the term “diffusion”. One readily available example of a stochastic
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diffusion process is Brownian motion itself (as defined in section (1.2.1)). It is
worth mentioning that at the heart of stochastic (and physical) diffusions is what
is known as the diffusion equation of mathematical physics.

& THE DIFFUSION EQUATION. To briefly describe the diffusion equation, one
can p(t, ) be the concentration, as a function of time ¢ and position Z, of a sub-
stance (whether of a physical or of any other nature) that can “diffuse” from one
point to another. Then, with a ”flux-vector” given by

—

F(t,8) = —5a¥(t,2), (1.74)

where a describes a diffusivity constant, which may even be a variable depending
on position, or even a matrix depending on position and dictating different diffu-
sivity properties along different directions at the same point in space, the diffusion
equation for this substance is given by

dp

E(t:f) = ‘_ﬁ i {F(tsf))

V - (aV(t, F)). (1.75)

b o=

& PROBABILISTIC INTERPRETATIONS & SEMI-GROUPS FOR THE CASEa = 1.
The special case where a = 1 establishes the Kolmogorov forward equation for
the Brownian transition density. In such cases, a probabilistic interpretation of
the diffusion equation involves a diffusion whose infinitesimal generator & has an

adjoint given by

{é’*:%v*’-(a,ﬁ), (1.76)
in the sense that there exists a transition semigroup
{Pe}io0, (1.77)
such that
Gf=limt(Rf - ), (1.78)
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for some class of functions f, where ¢ and %" are related by

/f?fgz /g‘é"‘f, (1.79)

for every f, g € C52 (where the K indicates "with compact support”).

& PHYSICAL ASPECTS OF DIFFUSION & THE ORNSTEIN-UHLENBECK SDE.
If one is discussing physical aspects of diffusion associated with a "particle”, then
one can model the velocity v, of this particle as a Brownian motion, or by mod-
elling it through the Ornstein-Uhlenbeck stochastic differential equation

d’Ut = dBt == /\'Utdt, (1.80)

involving Brownian motion B on R, where A > 0 is the viscous drag coefficient,
where the SDE means (see a detailed discussion in section 1.3) that

5 8

/dB; (It6 integral) — /)wzdt (usual integral) = v — . (1.81)
0 0

This SDE would have an explicit solution given by the stochastic integral
11
v, = vge~ M + e / e*dB; (Ité integral), (1.82)
Jo

where

t t
/ e*dB;, (It integral) := e B, — A/ e B.ds. (1.83)
0 0

1.3 Basic Elements of Ito’s Calculus & Stochastic
Differential Equations

In this section we just introduce some basic elements of stochastic calculus, and
of stochastic differential equtions (SDE’s), that will be needed later on.
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1.3.1 Stochastic Calculus versus the Usual Calculus

It is essential that one first highlights the difference between stochastic calculus
and the usual calculus, in terms of the differences in the fundamental operations
of integration and differentiation that occur in these two forms of calculus.

On Stochastic Integrals and Stochastic Integration

In what is known as “stochastic calculus”, where integrating (smooth) functions
f(X:,t) of stochastic processes X and time ¢, where

X:R x [0,00) — R, (1.84)

and in particular where the process X is in fact just a function of another underly-
ing process such as Brownian motion B : Q x [0,00) — R as well as on time,
is a main objective, the specification of how (as will be briefly discussed below)
to do a definite integration of the form

I= f F(X.(By),1) dB; (1.85)

a

associated with every w € 2, i.e. where for every w € () one has

b
Iw) = / F(Xu(Be(w)). 1) dBy(w), (1.86)

between times a and b (0 < a < b), of the function f over the stochastic paths
B,(w), t > 0, associated with the underlying process B (which could be Brownian
motion), makes a great difference over the end result of this integration.

If one thinks in terms of integrations, as inspired by the definition of a Riemann
integral, where one considers partitions [to,?;,- - - , 1] of the interval [a,b] and
considers a value (at w € (), associated with this partition, of the form

‘Dn = ’Ht’(f)(BtsH - Bti)! (1-87)
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ie.

n—1
qjﬂ(w) = Z %i(-f! w)(‘BhH (w) - Bti(w)): (188)
i=0
where H;(f,w) depends on the values of f in the subinterval [;,;41], then the
limit
lim ¥, (1.89)
n—o0

assuming it exists (at w) for a given form for H;(f), depends greatly on this form
of H;(f), when one deals with functions of stochastic processes, and stochastic
paths.

In contrast, if one considers Riemann integrals of (e.g. smooth) functions f
dependent on “reasonable” functions X, this limit of ¥, will not depend on the
choices of H;(f) if that choice varies (for example) from

Hi(f)® = f( Xy, (By), 1), (1.90)
N F Ky (Buga)stiss) + F(Xe (B, )
(@) tip1 (Btigy ) biv1) + t:\ Ot )y Li
Hi(f ) = 2 3 (1.91)
to
'Hi(f)(3} = f(XtH-J (Bﬂi+1)1 ti-i-l) (1.92)
to
Hi (f)(&] = f(X(f-.-+ti+1 )2 (B(t.-+1i+1J,"2): (ti + t€+l)/2)! (]93)

etc.... This exactly is what establishes a “Riemann integral”.

However, the choice of the particular function #(f) (as in the cases above,
for example) greatly affects the limit lim ¥, for (even smooth) functions f de-
pendent on stochastic processes X wi:h_’tﬁderlying processes B, as the stochastic
paths of B (e.g. when B js Brownian motion) can have infinite length between
any two finite times @ and b, and they can be differentiable almost nowhere even
though continuous. Thus one might find out that the two limits

n—1 n—1
lim ;ni(f)“)(&m ~B,) and  lim ;m(f)m(sm, ~ By)
R (1.94)
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might both exist but have different values, at a given w € (.

These facts dictate that the resulting values for a definite integral involv-
ing a stochastic process, as in (1.94) above, are very sensitive on how
one defines an integral, i.e. on the particular choice of #;(f), if one
intends a definition that resembles the idea of Riemann integration.

On Stochastic Differentials and Stochastic Differentiation

What is more, is that the differential of a function f(X(B,t),t), dependent on
a stochastic process X and time ¢, where X itself depends on some underlying
process B, i.e. a (differential) process of the form

df (Xy(By),t) = p(X.(By), t)dt + o(X,(B,), t)dB,, (1.95)
atw e Q,ie.
df (Xi(Bi), )| = p(Xe(B1), t)|wdt + 0 (Xe(By), t)|wdBi(w), (1.96)
or
df (Xe(Bi(w)), 1) = p(Xe(Bi(w)), t)dt + o(Xe(Bi(w)), t)dBy(w),  (1.97)

depends on how one has defined integration (as discussed above) so that one, in
an inverse process, obtains

b
f[,a(X;(B;,t))dt +0(Xi(By),1)dBy] = f(Xy(Bs),b) — f(Xa(Ba),a), (1.98)

at almost every w € . Thus, for example, if for two different functions o1 (X,(B,), %)
and oo(X;(B,),t), and for two different “definitions” for integration (depending
on different 7 (o) as discussed above) one has that

[/ a1 (Xr(Bt) t)dB(t)j| = R(Xb(Bb)$ b) - R(Xa(Ba): G), (]99)

a
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for almost every w € 2, while
b (2)

j 02(Xi(B),)dB(t)| = R(Xs(Bo),b) — R(Xa(B)ya),  (1.100)

a

for almost every w € ), i.e. if both integrations, by using different definitions
for integration and the two different functions, give the same result (for example)
almost everywhere in 2, then one would have, for the same function R(X,(B,),t),

that ) a
OR(Xy(By), 1)1
dB

if one has defined integration by the first method, while

= 01(Xy(By), 1), (1.101)

[OR(X,(By),t)1®

55 = 09(X(B), t), (1.102)

if one has defined integration by the second method.

Thus differentiation (or partial differentiation) involving stochastic pro-
cesses depends on how one defines integration, and thus has no abso-
lute meaning, as in the “usual calculus”, and thus differentiation is
only with respect to the definition of integration. This is all about

»Stochastic Calculus” versus the ”Usual Calculus”

1.3.2 Basic Elements of Ito’s Calculus

Defining It Integration

It6’s calculus, which is the main formulation of stochastic calculus, is essentially
based on the form of integration given by the definition of this process (as above)

using
Hi(f) = f( X2, (Br,), i), (1.103)

at every w € € i.e. where the integrals (in this calculus) are defined by
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n—

F(X(By), )dB, = nm[  (Xu(Bu)t)Bu — Bl| | (1108

1=

Ot

at every w € (. This is the starting point in what is known as Itd’s calculus

But to have meaningful results within this formulation, one would have to assume
the following.

Basic Assumptions to Have It6 Integrals

1. There is given a probability space (2, #,P), with B standard Brownian
motion on 2 where B = B_(—) :  x [0,00) — R, and one has the
filtration {&#}, t € [0,00), of (2, #,P) where %, is the sigma algebra
generated by the collection of random variables {B; : s < t}.

2. There is given a function
F:Qx[0,00) — R (1.105)

that is adapted to the above Brownian motion B, in the sense that for every
t € [0, 00), one has that

F(—t):9—R (1.106)
is measurable with respect to %; (in the filtration { %} above generated by
the Brownian motion).

In practice, and for the relevant cases, F' will have the form
F(w,t) = f(X(Bi(w)),t), (1.107)

for some two functions X and f, where X depends on Brownian motion B
and time ¢, while f depends on the values of X and time ¢.
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3. For almost every w € (2, the sample paths F(w,t), ¢ > 0, are continuous
paths, with the integral, from 0 to any time f, of the expectations of the
random variables F2(—, s) : @ — R being finite, i.c

/E [F?(-,s)] ds = /E [f2(Xs(Bs(-)),t)] ds < co. (1.108)

Within these assumptions, one defines the Ito integral of F' with respect to Brow-
nian motion B, at the point w € (2, to be given (as above) by

I09(F B,w,b) = [ F(w,t)dBy(w)

f(Xu(By(w)), t)dBy(w) (1.109)

D\cr o\&

= nll}_]go {Z_: f(Xi;' (Bf-i(w)): ti)[BtHl(w) - Bti (w)]
i=0

Note that the above integral 1(*?)(F, B, w), for a fixed F,B and b € [0, c0), de-

fines a random variable

109)(F, B, —,b): @ — R. (1.110)

Consequences of Ito Integration and the Resulting Differential Calculus

Some consequences are the following (see [RW2] for proves).

1. Given a function F and Brownian motion B as above, one has that the
expectation over Q of the random variable (%) (F, B, —, b) is zero, i.e.

E [I(i"‘"’)(F,Bv—;b)] —E [/b F(—,t)dBt(-)] =0 (1.111)
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2. For a random variable Z; :  — R, one has that the process Z = {Z,},
b € [0, 00), given by

b
Zy = Zo+ I (F, B, ~,b) = Zo+ / F(—,t)dBy(-), (1.112)
0
defines a martingale, i.e. where

E[M,|.F.) = M,, (1.113)

where 0 < s < b, and {.Z,} is the filtration given above. In particular one
has that
169, B) = {I*(F,B, -, b)} (1.114)

where b € [0, 00), defines a martingale.
3. Itd’s Formula: Assume a function F' as above, where

and assume that X satisfies the It6 Stochastic Differential Equation (SDE)

[dX, = p(X, t)dt + o (X, t)dB,| (1.116)

in the sense that the usual (Riemann) integral from 0 to ¢ of p(X, t)dt, and
the It6 integral (as above) from 0 to t of o(X,t)dB,, give X; — X, (after
using s as a variable for integration instead of ¢). Then one obtains Ito’s
Formula given by

aF =|[% + (X, )25 (X, 1) + 2o*(X, ) 24 (X, )] d | +

+ [0(X, 1) 2L (X, )] dB (1.117)

also in the sense that the usual (Riemann) integral from 0 to ¢ of the first box,
and the It integral from O to ¢ of the second box, give F(w,t) — F(w,0)

38



(after using s as a variable for integration instead of t).

For example, if X = B, i.e. X, = B, forevery t € [0, 00), and thus indeed
one has that dX, = dB,, with p(X,t) = 0 and o(X,t) = 1, then one has,
for F = f(Xi(B,),t) = X? = B?, that

dF = d(B?) = dt + 2B,dB,, (1.118)

where 8% f/0X? = 2 and 8f/0X = X = B. In the "usual calculus” one
would have obtained dF' = 2B5,dB;, instead of the above.

1.3.3 Introducing Systems of Stochastic Differential Equations

In this section we introduce a system of differential equations, where a stochastic
differential equation would be a special case where only one equation exists in
the system. A system of stochastic differential equations (SDE’s) for a vector-
valued stochastic process

X = {X(t)}is0 = {(Xa(t), Xa(t),++ , Xu(t)) }ezo = {(X1, X2, -, Xn)},
(1.119)

with respect to n-dimensional Brownian motion

ﬁ = {é(t)}tZG = {(Bl (t)s Bé(t)a T Bn(t))}iZU = {(BI:B2! Ry Bn)}a
(1.120)
where the B;’s are independent 1-dimensional Brownian motions such that

min(¢,s) ifi=j
E[B;(t)B;(s)] = 1.121
[Bi(t)B;(s)] {0 Eids ( )
1s a differential expression of the form
dX = b(X,t) dt + o(X,t) dB| (1.122)

The coefficient functions b and o in the above differential expression are, respec-

tively, a drift vector

b= (b1,ba, -~ ,ba) : R® x [0,00) — R, (1.123)
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i.e. where for every 7
b(X,t) : R* x [0,00) — R, (1.124)
and a diffusion matrix
o = (oy) : R® x [0,00) — R™*%, (1.125)
i.e. where for every (i, 7)
05(X,t) : R" x [0,00) — R, (1.126)

which satisfy some smoothness conditions.
The differential expression above is to be understood in terms of the integral
expression

X(t) =fo+/;E(X’(s),s)ds—k/;or(f(s),s)dg(s), (1.127)

where the second integral is understood to be an It6 integral. In component form
the above integral can be given as

X0 =Xo + [ B X0 0ds
+ i/t 0:i;(X1(s), -+ , Xu(s),s)dBJ(s), (1.128)
=10

forl <i<n.
At this point we note that if

fiR*x[0,00) — R (1.129)
is a smooth function f(Xi,- -, Xn,t) and
Y(t) = f(Xa(2), -+, Xu(t), 1), (1.130)
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where X (t) = (X1(2),- - - , Xa(t)) is a solution of the above system of stochastic
differential equations then It6 formula becomes

dYy = (a—“}{—ﬁgbﬁf—i%_z okUJkaxax)dt+ Z % 3548, |

1,7, k=1 ij=1
(1.131)
Which follows from the "Ité rule” that
dt ifi=34
dB,dB, L= (1.132)
0 ifi#j

1.4 Some Basic Results from Measure Theory and
General Analysis

1.4.1 Some Basic Results from Measure Theory
Lebesgue Dominated Convergence Theorem

Theorem 1.4.1. Let (2, 0, u) be a meaure space and assume that f, : 8 — R,
n=12--,and f : @ — R, are measurable functions with {f,} — f as
n — oo, pointwise almost everywhere in w. If the sequence {|f,|} is dominated
above by a positive integrable g € L'(2, 0, ) then

fo— f in LYQ,0,p) (1.133)
i.e.
/|fn—f|dp-—->0 as n —» 00, (1.134)
)
and hence that
lim fﬂdp / fdu. (1.135)
n—o0 Q
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1.4.2 Some Basic Results from Gerenal Analysis
Reimann-Lebesgue Lemma

Let f be a function in £!(R"). The Fourier Transform of f, denoted by F(f),
is defined as the function on R™ given by

/ e—2fri<k,:n> f(x}d&:

= / e~ 2 Ei=1ki%) £ (1) d. (1.136)

F(f)(k)

We note that the Fourier transform is a linear operator on f that satisfies the fol-

lowing simple facts:
1. F(f) € L~(R"™)

2. |Ifllee < H1f1s

3. F(f) is a continuous, and hence measurable, function.

The following is the Riemann-Lebesgue Lemma.

Lemma 1.4.1. For f € L'(R") one has that

F(f)(k) — 0 as |k| — oc. (1.137)
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Chapter 2

Affine Processes

It is thought that the following quote will apply at all times,
not only at a specific time !

»One wonders if the present theory of stochastic processes
is not still too difficult for applications”

K.L.Chung

In this chapter we discuss the basic elements of the theory of affine processes.
While the next chapter will consider some applications of affine processes to fi-
nancial mathematics.
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2.1 Affine Process and Basic Properties

Roughly speacking, an Affine Process can be described as a Markov Process
X = {Q'= a, P: {ﬁt}: {Xt}a {Pt}) {]PE ‘T E E}}tERgc (21)

whose Log-charachteristic function is an affine function of its initial state vector
x in its state space E. It is also a stochastically continuous time homogeneous
markov process where the state space E is given by the Borel-measurable space

E = RZ, x R™. 2.2)

We first discuss the characteristic function of an affine process.

2.1.1 Characteristic Function of an Affine Process

Briefly the characteristic function of an affine process is an exponentially affine-
function of the starting state vector.

Consider a starting state vector
re€E=R3;xR" C R? (where d =m+n). (2.3)

For this given z and any ¢t € R, the values of a random variable X; in E
have a certain distribution (depending on z) as determined by the law P* (on the
measurable space ({2, o)) of the process started at 2. The characteristic function
for the process X = {X,}, that is started at x, and as a function of ¢, will be
defined by

$x W) = ¢%,(v)] 24)

which is also a function of '

zeE and ue€iRY (2.5)

and is given by

d)f((u)h i Ez[eﬁxt,uﬂ s ]Ex[eXr.Ju1+---+X,,dud] e lE"‘[e“xmf‘i+"'+X*-d"‘d]] (26)

44



where
u:('ﬂ.],"';ud):é('&],”"ﬁd), (2'?)

with (4, -+ ,G4) € R? and the expectation E* is with respect to P*, and where
for vectors z,y in R? or C¢ we have used that

<z,y>= Zf:]_ TiY; (28)

(with no complex conjugation used in E:.Ll z;y; for the case of C?).

Note: As will be discussed below, one could have used u in a larger set in (@
other than R, In particular u could have been in the following set U, which will
be used below, and which has a special role:

U = {u € C%: Re(w;) < 0,Re(u;) = 0} (2.9)

wherei € I = {1,2,--- ,m}andj € J = {m+1,m+2,--- ,m+n=d}, with

d=m+n. (2.10)

Affine Processes and their Characteristic Functions
This would be the definition of an affine process.

Definition 2.1.1. An affine process is defined to be a stochastically-continuous
time-homogeneous Markov process that has an affine log-characteristic function
with respect to a starting state vector x in the state space E, given by

% (u)], = E* [eqxﬁv“)’] — el®(tu)+<z,¥(tu)>) 2.11)

Vz € E, and ¥(t,u) € R>q x iR?, and where the functions ® and WV satisfy

:RyoxiR? — C| and [¥:Rso x iR! — C (2.12)
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We immediately note that the exponent
O(t,u)+ < z,¥(t,u) >, (2.13)

that appears in the above characteristic function, is an affine function of z, given
that it is a sum of a linear function of z (the part < z, ¥(¢,u) >) plus a constant
(independent of z) translation (the part ®(¢,u)). This would establish the "affine
log-characteristic” nature of affine processes.

(Markov) Semigroups Associated with Markov and Affine Processes

It is known that one can associate to each time-homogenous Markov process X =
{X:}ters, a (Markov) semigroup (see section 1.1.3 for all details) { P }ter., act-
ing on the bounded Borel functions bB(E) (defined on the Borel-measurable state
space E), where for every f € bB(E) and for every t € R, F.f is given by

[(P)(@) =E[f(X)]] Vz€E (2.14)

where [E” is the expectation with respect to the Law [P*.
In particular, with every affine process X one can associate such semigroups.
We will refer to these semigroups at some points in what follows.

2.1.2 Basic Elementary Properties for Affine Processes

The study of affine processes is essentially the study of the two functions ¥ and
® that form the (affine exponent of the) characteristic function of these processes.
In what follows, we basically discuss some properties associated with these two

functions.

+ We first start by stating a lemma which gives a continuous extension of
®(t,u) and U(t,u) toaset O C Rg x C? that contains R x 1R? (where
& and W initially existed by definition).
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« Jtis these extended functions ® and W that lead to some important collection
of properties, including, for example, the semi-flow property for affine
processes, and which also help (later on) in establishing that every affine

process is (what is known as) a Feller process.

 If, furthermore, one assumes some regularity (i.e. differentiability) as-
sumptions on ® and U, one establishes what are known as regular affine
processes, and these

regular affine processes are a very favourable kind of processes for do-
ing calculations in the context of mathematical finance, as will be dis-

cussed in chapter 3.

We first begin with basic properties for the function ¢ and ¥ associated (as above)
with any affine process X. In particular we start with the following lemma which
gives a continuous extension of ®(¢,u) and V(t,u) to a set R>o x U, where we
use fu(z) to mean

fulg) =32, (2.15)

Lemma 2.1.1. Let X = {X,};>0 be an affine process, and the set U as defined
above. Then the set

[0 = {(t,u) € Ryp x U : Vs € [0,1], P, fu(0) = E*[e<*X+>] # 0} L @16

where
Rso x iR? C O C R X U, (2.17)

is open in R>o x U, and there exists a unique continuous extension of ®(t, ) and
U(t,u) to O, and that (2.11) holds ¥(t,u) € O

(see Duffie [2003, lemma 3.1 for a proof])

Given the above basic extension lemma to the set O, we have the following prop-
erties for the ® and U functions for an affine process.
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Lemma 2.1.2. The functions ® and V associated with an affine prosses X satisfy

the following:
1. ® maps O to C_ := {u € C: Re(u) < 0}.
2. W maps OtolU.
3. ©(0,u) =0and ¥(0,u) =uforallu €U
4. Foreveryt,s > 0 suchthat (t + s,u) € O, ® and V satisfy the semi-flow
property consisting of the functional equation
[W(t+5,u) = U(s, U(t,u)), (2.18)
which is called the semi-flow property for U, and of the equation
[D(t + 5,u) = D(s, U(t,u)) + B(t,u) | (2.19)
which is the functional equation for ® called the additive cocycle of the
semi-flow U.
5.

For a fixed uy = (Um+1,Um+2, " - ,Uq) and for a fixed t, the functions
(I)(ta(_:uJ)) and ‘-P(t,(—m,;)), (220)

are analytic functions of ur = (U1, ug,- -+ ,Unm) (i.e. can be written in the
form of a power-series in terms of these variables) in the domain where
Re(u;) < 0and (t,u) € O.

6. ® and ¥ are jointly continuous on O.

7. Let (t,u), (t,w) € O with Re(u) < Re(w). Then

Re(®(t,u)) < ®(t, Re(w)), (2.21)
Re(U(t,u)) < ¥(t, Re(w)) (2.22)
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Proof: 1) and 2):first we note that the semigroup { P, }>, (defined above) is a
contractive semi-group of operators, since (P, f)(z) = E*[f(X,)], giving that

|(Pf) ()] = [E*[f(Xo)]] < ], (2.23)
and hence that || P,|| < 1. Thus we have

“Ptfu“m < ”fn”oo =1, (2.24)

given that Vz € E and Vu € U (refer to the definition of E and U above) one has
that f,,(z) has the form

fu(:‘:) s e{u,:r> == e-‘.‘-‘.+~ib (2'25)

where a < 0. Also, since
P.fu(z) = E*[fu(X.)] = E*[e<***], (2.26)
and by the affine property we have that
E?[e<***>] = exp(®(t,u)+ < z, U(t,u) >), 2.27)
then

exp(®(t,u)+ < z, U(t,u) >)
¥t £ (). (2.28)

P, fu(z)

Now since || fu||lso < 1 if and only if u € U then, first, ®(¢, ) must be in C_
as otherwise, if it is in Cgeso, then [e®*)| > 1 which gives that

€24 fo ey ()] > | Fa (), (2.29)

and thus for some subset of E of positive measure [e®**) fy, .,y (z)| > 1 giving
that || P, fulloo = ||€®®* fy(e.9|] > 1 contradicting that || P, f,||c < 1. this proves

1).
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For 2) note that if U(¢,u) isnotini/ then | fy (. ()| > 1 giving that [e®®*) fg, . ()| >
1 for a subset of E of positive measure and hence that ||e®®*) fg, .|| > 1 con-
tradicting, as above, that it should be < 1.

3) By Iettihg t = 0in P,f,(z) = e®® fy, .y (z) one obtains that
Pofu(z) = €O fy0.u)(2), (2.30)
Vz € E and Vu € U. But Py f,(z) = fu(z), hence
fulz) = e foou(2), (2.31)

Vz € E and Vu € U, and thus ®(0,u) = 0 and ¥(0,u) = u

4) By the semi-group property

Piisfu(@) = PPifu()
= Py(e®™ fysu)(z))
= Bﬂs’u)Ptf@(s,u) (z)
= 2@tV £ 50y (2) (2.32)
_ e”sm)+Mt’°(s'“))f\v(z,w(s,u))(x): (2.33)

Vz € E and Y(t + s,u) € O. But
Prrsfu= " foyian)(2), 234)
Vz € Eand V(t + s,u) € O. Hence

O(t + s,u) = D(s,u) + D(t, ¥(s,u)), (2.35)

and
U(t+ s,u) = U(t, ¥(s,u)). (2.36)

This establishes the semi-flow property.
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5) The analyticity of ®(t,(—,uy)) and U(¢,(—,uys)) in Re(u;) < 0 where
(t,u) € O, follows from the analyticity properties of the extended moment gen-
erating function E*[f,, (X,)] mentioned in the remark after the proof.

6) Consider any sequence {(,,u,)} C O that converges to (f,u) € O. Since
X is a stochastically continuous process, then {X;.} — X;, asn — oo, in
probability, and hence {X;, } — X, in distribution. Thus

e<Xtnsun> __y o<Xiu> 2.37)

in distribution as n — co. Thus by using the dominated convergence theorem
(see section 1.4.1) we find that

Pofun = Effeot)]
ed»(tn Jn )+ <z, Uty un)>

— [E= [e{Xhu)]

_ e¢(t,u]+<x,¢(£,u)) = Ptfu(:c) (238)
Hence
Bltn,un) — ®(t,u),  and  Ultn,un) — U(tu),  (239)

and thus ¢ and WV are jointly continuous functions.

7) For (t,u), (t,w) € O with Re(u) < Re(w), one has,Vz € E, that

|Ez[e<){;.u>]| K= [|e<Xg.u‘;v|]

E= [eéXg;H.e(ujb-]

IA

IA

Ez[e<xf.,Re(w)>]_ (2.40)

Since (t,u), (t,w) € O then one finds, from the affine property and the above
inequality that

Re(®(t,u))+ < z, Re(¥(t,u)) >< ®(t, Re(w))+ < z, U(t, Re(w)) > .
(2.41)
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Now by taking z = 0 in the previous inequality one obtains

Re(®(t,u)) < ©(t, Re(w)), (2.42)

and by taking z = ke; one finds that

Re(®(t,u)) + kRe(¥;(t, u)) < ®(t, Re(w)) + kVi(t, Re(w)),  (2.43)

and now by letting ¥ — co we find that kRe(¥;(t,u)) < k¥;(t, Re(w)), and
hence that
Re(;(t,u)) < U,(t, Re(w)). (2.44)

This completes the proof. e

Extended Moment Generating Functions & Extended Cumulant Generating
Functions

For part 5) above one can first define the extended moment generating function
given by @ : D — C, where

De = {u € C%: ®(Re(u)) < oo} (2.45)
by
B(w) = [ e p(as), (2.46)
Rd
if 42 in an infinitely divisible (see section 1.2.3) sub-stochastic measure on RY,
(recall that a Borel measure j on RY is called sub-stochastic measure, if 0 <
p#(R9Y) < 1). It is known (see for example Lemma C.3 page 93 in [KR]) that

&®(u) can not have zeroes in C™ and thus one can define the extended cumulant

generating function
og(@)(w) = tog ([ e utae)) C.a7)
Rd
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and that (see proposition B.4 page 92 in [KR]) the extended moment generating
function ® and the extended cumulant generating function log(®) are analytic in
the interior Int(D¢) of De.

2.1.3 The Semi-Flow Property for Affine Processes

A very important property of ¢ and W that appear in the charcteristic function of
an affine process is the semi-flow property mentioned in lemma(2.1.2). In general
semi-flows, that appear in many contents in mathematics such as in dynamical
system and in topological transformation groups on manifolds, are functions f
that satisfy the following functional equation

Definition 2.1.2. A function
f:Gx X — X, (2.48)

where G is a semi-group (with binary operation x), and X is some space, is said
to have the semi-flow property, if it satisfies the functional equation

| f(sxt,z) = f(s, f(t,))] (2.49)

foreverys,t € Gandx € X.

As mentioned in lemma (2.1.2) above U satisfies a semi-flow property while
@ satisfies an additive cocycle property associated with the semi-flow ¥. One can
combine ® and W in a 2-component vector " that satisfies a ’global” semi-flow
property for the affine process X on

O=0xC, (2.50)
with values in

U=UxC, (2.51)
i.e. a semi-flow

gl T (2.52)
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We first define the vectors £ € O by

i
U t
£= : = (u) eEOxC=0,
Ug Ud+1
Ud+1

and similarly we have p € U given by

U
() ,
p= = EUxC=U.
Ug Ud+1
Ud+1

Now I' : @ — U is defined by

t

D(t, (ur, -+ ,uq)) + Uds1
Uy

Ud41

We note the following: the function I" satisfies

1. foru = (u1, - ,Ud, Uds1) € 4, one has that

uy
rey=r| =( U(t, (ug, - ) ):pea

(2.53)

(2.54)

(2.55)

r 0 _ (0, (u1; -+ ,ua)) _ (wr, - , Ua)
U - (0, (ur,- -+ ,Uq)) + Uds1 Ud+1

g

I
£

Il

Ud

Ud+1
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2. alsoforu = (uy, -+ ,%d,Ugt1) € U, one has that

r t+s B W(t+ s, (up, -, ug))
U B D+ s, (ur, -,

Ug)) + Ugy

while

S
F(m‘u)) - (cb(t

( D(s, U(t
Thus

i

U(t, (uy, - ,uq))

_ ( U(s, U(t, (u, - ,ua)))
CI’(S} lIJ(t‘ (ula At :ud))) + q)(t) (uls Lo aud)) + Ugq

8

)

l(ula T aud)) + U+l

‘I’(Ss \Il(t, (uls e 1ud)))
05 !ud))) + (I)(t’ (uls e =u‘d}) + Ud41

P(t+s
U

)

i
r(

s
t,u)

)

and I is indeed a semi-flow function. Thus we have established that

Lemma 2.1.3. The above defined function T establishes a (global) semi-flow for

any given affine process X.

2.1.4 The Feller Property for Affine Processes

The Feller property for affine processes is simply the fact that

EEvery affine process is a Feller process |

As such, we note that the family { P, };>o of (probability) transition functions
associated with any affine process (being itself a Markov process), and which
forms a semi-group (as discussed in section 1.1.3), in fact forms a Feller semi-

group, as per the definition (below) for a Feller process.
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We start by defining Feller semigroups and Feller processes.

Feller Semigroups and Feller Processes

Let bC'(X) be the space of all real valued continuous functions on a locally com-
pact topological space X with a countable base. And let bC(X) be given the
supremum norm ||f||. A Feller Semigroup on bC(X) is a collection {P, }:>¢ of
positive linear maps from bC'(X) to bC(X), i.e. Vt > 0

P, : bC(X) — bC(X), (2.58)

such that the following are satisfied:

1. For every t > 0, and for every f € bC(X), one has that

[|PAI| < 1A (2.59)

i.e. the family {P, };>¢ is a family of contractions with respect to the supre-
mum norm on bC(X).

2. The family { P, };>0 has the semigroup property

260

for every t,s > 0.

3. For every f € bC(X), one has that

[limy o [|P.f — f]] = 0] (2.61)

Definition 2.1.3. A Feller Process is defined as being a Markov Process X with a
Feller semigroup of transition function { P, }>¢ i.e. with a (probability) transition

functions { P, }1>o forming a Feller semigroup.
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One can define infinitesimal generators associated with Feller processes as
follows. A function f € Cp(X) is said to be in the domain of the generator
A associated with a Feller Process X with probability transition function derived
from a Feller semigroup { P, };>¢ if

Af = lim

t=0
exists uniformly. A is said to be a generator of the Feller semigroup{ P, };>o with

domain D, being the subset of Cy(X) consisting of all f € Cy(X) where the
above limits A f exist uniformly.

RS t“ f (2.62)

It is known that Brownian motions, Poisson processes, Lévy processes, and
solutions to SDE’s with Lipschitz continuous coefficients are Feller processes.
We also have the following proposition.

Proposition 2.1.1. Every Feller process X satisfies the strong Markov property.

Every Affine Process is a Feller process

We now prove the following lemma
Lemma 2.1.4. Every affine process is a Feller process

we first start by stating the following proposition (see proof page 14 in (KR))
that we shall need.
Proposition 2.1.2. Let X = {X,;},>0, be an affine process on E = RE, x R",
and let J denote the components (m + 1, - ,m + n) in E then there exists an
n X n matrix M such that

Uy(t,u) = (Umsts s Uman) = eMuy, (2.63)
where
Um 41
Uy = : A (2.64)
1!""m+n

for every (t,u) € O.
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We also need the following proposition (for proof see proposition 1.10 page
15 in [KR])

Proposition 2.1.3. Let U (t, u) be the semi-flow associated with the affine process
X. ThenV(t,u) € O, such that u € Int(U), one has that U(t,u) € Int(U).

Proof of Lemma(2.1.4):

Let X = {X,}>o be an affine process. Using the stochastic continuity of X
and using the dominated convergence theorem (see section 1.4.1) one can imme-
diatly show that

P f(z) = E*[f(Xy)] — f(x) as ¢t — 0, (2.65)

forevery f € Co(E) and for every z € E (since [E” is the expectation with respect
to the probability measure P* which is the law of the process started at x).

Now since { P, };>o is already known to be a family of contractions on Cy(z)
and satisfies the semigroup property then these (together with what was mentioned
in the previous paragraph) show that the family { P, },> satisfies the three axioms
for the Feller property. Only one thing remains to show that V& > 0, P, maps
Co(E) to Cy(E).

Consider the set © of functions given by

9= {h(u,‘gJ(x) N R fiz(z1)g(2)dz : u; € Int(Uy), g € Cj"’(R”‘)} .
v (2/66)
and let £(©) be the set of (complex and finite) linear combinations of functions
in ©. Note that £(©) is an algebra of functions and is also closed under complex
conjugation. It is also easy to check that £(©) separates points in ¥ and vanishes
nowhere in E. It also follows from the Reimann-Lebesgue Lemma (see section
1.4.2) that [g,, fi.(zs)g(2)dz vanishes at oo, and thus that every h, q)(z) € ©
belongs to Cy(E), and hence that every element in £(©) is in Cy(E). Thus £(©)
is a subalgebra of Cy(E) and therefore, by using the Stone-Weierstrass Theorem,
L(©) is dense in Cy(E).
For any given t € R we have, by proposition(2.1.2), that ¥, (t,u) =
eB )y, ; where 3 is a real n x n matrix, whenever (t,u) € O, and that by lemma
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(2.1.1) we have E*[f,(X;)] = ®(t,u)+ < z,¥(t,u) > if (t,u) € O, with
E(fiu;.i2)(Xe)] = 0if (t,u) ¢ O. Hence, for a given h(z) € ©, we find that

Pi) = B e [ fuei)ota)ds]

— [E= / e{u;,z;beﬁiz,zJ>g(z)dz:|

B Ez / e<u;,z; >+<iz,z.;>vg(z)dz]

= EI / e<(ufaiz)'(mf‘z.f)}g(z)dz]

_ g /R “ f(uhiz)(Xt)g{z)dz] 2.67)

and thus we find (using Fubini’s theorem) that

Ph(z) = jR Efougin(X0)g(2)dz
/ P fu; ,iz)(m)g(z)dz
{ueli:(t,u)e0}

== / e(@(t,u;,iz)+<:c,-,‘]-"g(£,u;,t'z)>+<z_j,e‘51'.z))g(z)dz‘
{ueld:(t,u)c0}

Il

(2.68)

Now since (ur,iz) € Int(U), it follows by the previous proposition(2.1.3)
that W (¢, (ur,22)) € Int(U), and thus that

Re(U(t, (ug,iz))) < 0 (2.69)

for any z € R™. Therefore, as |2;| — o0, one finds that P,A(z) — 0. In
addition, since P,h(z) is the Fourier Transform (over the J components) of a
compactly supported density then by the Reimann-Lebesgue Lemma one finds
that P,h(z) — 0 as |z;| — co. Hence P.h(z) — 0 as|z| — oo, which means that
P.h(z) € Co(E), and thus that P,r(z) — 0 as |z| — oo for any 7(z) € L(O).

59



Finally this shows that P;r(z) — 0 as |z| — oo for every r(z) € Co(E) given
that £(©) is dense in Cy(E). This shows that V¢ > 0, P, maps Cy(E) to Cy(E)
and the result follows. .

2.2 The Semi-Flows Versus the Nature of the Affine
Processes

This part illustrates the interplay between the semi-flow properties and the nature
of the given affine process X.
We begin with Lévy processes.

2.2.1 Every Conservative Affine Process is a Lévy Process
Definition 2.2.1. A Lévy process on a triple (Q, o, P), is an R%*—valued process
Y = {Y;}i>0 such that

* The sample paths Y,(w) are continuous in terms of t.

e The law of Y, — Y, is dependent on h, and not on t.

e Ifs<t<w<zthenY; —Y;andY, — Y, are independent.

Now suppose that X = {X,};>¢ is a conservative affine process, i.e. that X

is affine with ®(¢,0) = ¥(¢,0) = 0 for every ¢ > 0. Assume further that X has a
stationary semi-flow ¥ given by

U(t,u) = u, Y(t,u) € O. (2.70)
Then the functional equation for the cocycle ® of ¥ becomes

Ot +s,u) = (s, V(t,u)) + D(t,u)
P(s,u) + P(t,u). (2.71)
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Since @ is continuous and satisfies ®(0,u) = 0 (a property), then ®(—, u) is a
linear function for any fixed u, and hence ®(¢,u) has the form

O(t,u) = kt = m(u)t (2.72)

where k = m(u) is some constant dependent on u. Hence P, f,,(0) has the form

E0[64X¢,u)]

Bt u)+<0,¥(tw)>

P, £.(0)

emt (2.73)

and thus e™®* is a characteristic function V¢ > 0. Hence E°[e<***>] is an
infinitely divisible characteristic function and thus, by the central theorem on
Lévy processes (see [RW]) p.74), m(u), as a function of u, has to be of Lévy-
Khintchine form, i.e. of the form

m(u) = b -u+ %uTMu + /(e”"" —1—u-zljy<)v(de) (2.74)

where b € R?, M is some symmetric d x d matrix, and v is called a Lévy measure
which satisfies
(1 A z*)v(dz) < o0. (2.75)
R¢—{0}
Hence (by this theorem) the process X must be a Lévy Process.

2.2.2 Every Ornstein-Uhlenbeck-Type Process is an Affine Pro-
cess

Let X = {X,}i>0 be a conservative affine process on the state space E = R,
defined as a semi-martingale, i.e. where each X; can be decomposed as the sum
of a local martingale M, and an adapted finite-variation process Ay, giving for
every t = 0 that

X = M, + A,. (2.76)

61



Then by (proposition 1.9 in the paper [KR]), ¥(Z, u) has the form
U(t,u) = eu, (2.77)

for some constant (i.e. 1 x 1 matrix) 8 € R.
Now consider the stochastic differential equation

|dX, = BXdt + dL,| (2.78)

where X, = z € R, and where L, is a Lévy Process with characteristic expo-
nent xu, and B € R. this SDE has a unique solution X = {X,},>0 (see Sato
[1999]) called the Ornstein-Uhlenbeck-Type Process. It can be shown that the
characteristic function of this process is given by

t
E*[e<Xt*>] = exp (/ Kk(e*Pu)ds + xewu) 2.79)
Jo

(where zePu =< z, e'®y >). Given this characteristic function, one can conclude
that X is a conservative affine process where

t
O(t,u) = / k(e*Pu)ds, (2.80)
0

and
U(t,u) = ey, (2.81)
as should be the case for the semi-flow W for a conservative affine process (above).

Note: That if X = {X;};>¢ Is a conservative affine process on the state space
E = R, then by (proposition 1.9 in the paper [KR]), ¥(#, u) must have the form

U(t, u) = etu, (2.82)

for some constant (i.e. 1 x 1 matrix) 8 € R, which is the same as the one for an
OU-process (above). However the ® (¢, u) part of this affine process may not have
the same form as that for an OU-process, and thus it would not be the case that a
(conservative) affine process satisfies the above SDE.
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2.2.3 Every Squared Bessel Process is an Affine Process

Consider the SDE

dZ, = 2v/Z, dW, + édt (2.83)

where Zy = z > 0. There exists (see Revuz and Yor [1999]) a unique solution
that is non-negative and has the extended moment generating function

1 — 2ut
defined for all u € C with Re(u) < 2. This process Z = {Z,},50, called the
Squared Bessel Process of dimension 4, is clearly an affine Process on E = R

E?[e"?]) = exp (g log(l — 2ut) + 2z = ) (2.84)

where

O(t,u) = glog(l — 2ut), (2.89)

and

u
U(tw) = 75— (2.86)

Note that for every ¢ > 0, ¥(t, ) is a Mdbius transformation and thus is a bijective

conformal map of the extended complex plane to itself.

2.3 Regular Affine Processes

In this section we discuss regularity properties for the semi-flows ¥ and the cocy-
cles @ of the semi-flows, for affine processes. These regularity properties will be
very important in the study of affine processes, roughly speaking

The regularity properties are about the differentiability of the functions
®(t,u) and W (¢, u) with respect to the time parameter ¢

For affine processes X, where ® and W are parts of the characteristic function,
differentiability in the u variable is equivalent to the existance of momements, and
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the existance of such bounded moments should also exhibit in these semi-flows
some regularity in the time variable ¢.

The existance of regularity assumptions for affine processes would enable one
to fully characterize these processes in terms of their infinitesimal generators, de-
fined as the operators

45(e) = tig U = 1@) o

t=0

for functions f : R™ — R, and would result in other important results.

2.3.1 Regularity Assumption for Affine Processes

Definition 2.3.1. An affine process is said to be a regular affine process if the
(right-sided) derivatives
0P av
F(u) = —(t,u) . R(u) = —(t,u) : (2.88)
ot t=0+ ot t=0+
exist for all uw € U and are continuous at u = 0

for a regular affine process X the functions F'(u) and R(u) are called the
functional characteristics of z, since these functions (as can be demonstrated)
completely characterize the process X.

For a regular affine process X one can differentiate the semi-flow equations

O(t,u) + ®(s, U(t,u))
U(s, U(t,u))

Dt + s,u)
U(t+s,u)

with respect to s and evaluate at s = 0 to obtain

0P od 0d B

a(t + s, u) . = g(t,u) 6 + g(s, U(t,u)) B = FP(¥(t,u))
(2.89)

ov o

E(t + S,U) s = E(s,‘l’(t,u)) i = R(\P(t, 1‘..'2)) (290)




Now since 22 (¢ +s,u) = §2(t + s, u) and similarly §2(t + s,u) = &L (t + s,u),
then

0P oo

od
E(t,u) = a(t + 8, 'I'L) - = g(t -8, '-'.L) . = F(lp(t,’ﬂ.)) (291)
and
v ov
E(t’u) = E(t + s,u) » = g(t + s,u) - = R(U(t,u)) (2.92)

Then one obtains the following two ODE’s

@
ot
Piw = REEY) VO =u @M

(tu) = F(U(tw)  ®0,u)=0 (2.93)

that are called the generalized Riccati differential equations for ¢ and V.

2.3.2 The Main Result for Regular Affine Processes

The main result for regularity, concerning ¢ and W that are associated with an
affine process X, indicates that F'(u) and R(u) as defined above have a specific
form given by Log-Characteristic functions of sub-stochastic infinitely divisible
measures (for an explanation of the terminology, see Appendix page 90 in [KR])
satisfying some additional admissibility conditions.

As was mentioned in section (1.2.3) the characteristic function of an infinitely
divisible probability measure is characterized by the Lévy-triplet (a, b, m) of pa-
rameters where a is a positive definite (diffusion) matrix, b is a (drift) vector and
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m is a Lévy measure, i.e. a (o-finite Borel) measure satisfying the integrability
condition

fE (1 A J€*)m(d€) < oo. (2.95)

While for the case of a sub-stochastic infinitely divisible measures a fourth pa-
rameter ¢ in R>q given by ¢ = —logu(E), where (p is the measure on E).

Given this, we find that the function F'(u), which is one-dimensional is char-
acterized by the Lévy-quadruplet (a, b, ¢, m), while R(u), which is d-dimensional
is characterized by the d Lévy-quadruplets given by

((31:6]:’)’1:#1)5 e ’(adsﬁd: ’deu'd))s (296)

with the quadruplet (a;, 3;, i, i) corresponding to the i-th component R;(u) of
R(u),i=1,2,--- ,d.
We define the following admissibility conditions:

Definition 2.3.2. A parameter set for an affine process X positive semi-definite
real d x d-matrices a,a',--- 0% by R? valued vectors b, 3*,-- - , 3%; by non-
negative numbers ¢,y - - - ,v* and by Lévy measures m, p*,- - - , u on R4, form-
ing a one-dimensional quadruplet (a,b,c,m) and a d-dimensional quadruplet
((et, 8%, 7 ")y -+ 5 (02 8% 97, %))-

A parameter set as above is said to be an admissible parameter set for an
affine process X with state space E, if the following are satisfied

a =0 if kelorlel (2.97)

o =0 VieJ (2.98)

aj, =0 if ke I\{i} or l € I\{i} (2.99)
beE (2.100)

=0 Vi€l and k € I\{z} (2.101)
Bl=0 VjeJand kel (2.102)
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¥ =0 Vijield (2.103)
supp{m} CE and / {(lz1] + |z41*) A 1}m(dz) < 0 (2.104)
E\{0}

Ww=0 jel (2.105)

supp{p‘'} CE Viel (2.106)

[\{ }{(|$;\{i}1 + |zug]?) A 1}pi(dz) < oo i€1 (2.107)
E\{0

Thus, in simpler matrix-form, one has that

[ > )
0 0 >
e T , B | soeses
0 22 '
\ )
( 0 \
0
0---0 o 0---0 Kook
0
o = : : where o}, > 0, o = O where j € J
0
*
22




B = : wherei € I and 5} € R, =1 where j € J

for the structure of a, b, o* and /3*. Note that stars denote arbitrary real numbers;
the >-signs denote non-negative real numbers and the >>-signs positive semi-
definite matrices. A big O stands for a zero-matrix, and also empty regions in a
matrix denote all-zero elements. The dotted lines indicate the boundary between
the first m and the last n coordinates.

Before giving the main result of regularity we define the following functions.
We let h : R — [—1, 1]¢ be given, component-wise, by the following

hi(€) { y sel V¢ € R (2.108)
x(§) = . ]
1—_%&; kelJ
We also define functions x*, - -- , x™ : R* — [—1, 1]¢, component-wise, by
. 0 k € I\{i} 3
Xk(§) = _ : véeeRYiel (2.109)
) { iy keJUufd)

Now we state the following main theorem concerning the characterization of
an affine process in terms of admissible functions
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Theorem 2.3.1. Let {X},>0 be a regular affine process with a state space E. Then
there exists sets of admissible parameter quadruplets

(a'.! b: ¢, m) and (aéa ﬁi) ,Yi: .u'i)ie{l,--- d}o (21 10)

as defined bove such that
* The functions F(u) and R(u) are of the Lévy-Khintchine form
F(u) = —<'u,au> + <bu>-c+ (2.111)
/ (e —1— < h(€),u >) m(d§)
RA\{0}
R(u) = = <u,u> + <pfLu>—+ (2.112)

2
] (€56 — 1= < ¥(€),u >) pi(d8)
R4\ {0}

» The generator A of the affine process {X};>0

1 8% f(z)
.Af(&.,") = 52 GM+ZQ’H T; arkax!+ (2.113)

=1

<bZB‘31Vf(x)>—(c+Z'}'$z) )+

+ [ [f@+9) - f@)= < h(e) V() >Imide) +
E\{0}

+

* g_/wo} [f(z + &) - fz)— < X'(€), V() >|zp’(dE)

Vf e C:E)and z € E.
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Chapter 3

Affine Processes in Financial
Mathematics

The first systematic introduction of affine process in financial mathematics came
with the paper by D. Duffie, D. Filipovic & W. Schachermayer, Affine Processes
and Applications in Finance [DFS].

We start by introducing some basic elements in financial mathematics.

3.1 Basic Elements of Financial Mathematics

3.1.1 Basic Financial Terms and Models

In this section we will define some basic financial terms and the notion of financial

modeling:

Definition 3.1.1.

1. Derivative: is a financial instrument whose value depends on the value of

other basic assets, such as common stock.
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2. Option: is a contract which gives the buyer (the owner) the right, but not
the obligation, to buy or sell an underlying asset at a specified strike price

on or before a specified date.
3. Long position: is when a trader buys an option contract.
4. Short position: is when a trader sells an option contract.

5. European call option: is a financial contract between two parties, the
buyer and the seller of this type of option. The buyer of the call option
has the right, but not the obligation to buy the underlying asset from the
seller of the option at the expiration date for a certain price (strike price).
The seller (or "writer”) is obligated to sell the commodity or financial in-
strument to the buyer if the buyer decides so. The buyer pays a fee (called
premium) for this right.

Characteristics of Call Option

The characteristic of call option are:

1. Strike price: this is the price at which you can buy the stock (if you have
bought a call option) or the price at which you must sell your stock ( if you
have sold a call option)

2. Expiry date: this is the date on which the option expires, or becomes worth-
less, if the buyer doesn’t excersice it.

3. Premium: this is the price you pay when you buy an option and the price
you receive when you sell an option.

Now, we will define the financial modeling.

Definition 3.1.2. Financial modeling: is the task of building an abstract repre-
sentation (a model) of a real world financial situation. Which will be explained as

follows:
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* This is a mathematical model designed to represent (a simplified version
of) the performance of a financial asset or portfolio of a business, project,
or any other investment. Financial modeling is a general term that means
different things to different users; the reference usually relates either to ac-
counting and corporate finance applications, or to quantitative finance ap-
plications. While there has been some debate in the industry as to the nature
of financial modeling whether it is a tradecraft, such as welding, or a sci-
ence the task of financial modeling has been gaining acceptance and rigor

over the years.

* Typically, financial modeling is understood to mean an exercise in either
asset pricing or corporate finance, of a quantitative nature. In other words,
financial modelling is about translating a set of hypothesis about the behav-
ior of markets or agents into numerical predictions.

Stock Price Model

In order to determine the stock price model we assume the following:
1. The history of the stock is fully reflected in the present price.
2. Markets respond immediately to new information about the stock.

With these two assumptions, one can notice that changes in a stock price follow
a Markov process (where only the present value of the variable is relevant for

predicting the future).

3.1.2 Black-Scholes-Merton Equation

Black Scholes Merton model is the most famous formula in all finance, it is a
mathematical model of a financial market containing certain derivative investment
instruments. This formula gives a theoretical estimate of the price of European
style options. The theory is derived from a partial differential equation called the
Black Scholes equation, which estimates the price of the option over time. The
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key idea behind the model is to hedge the option by buying and selling the under-
lying asset in just the right way, and as a consequence to eliminate risk.

Notation
* tis atime in years, we generally use: now= 0 and expiry= 7.

» S is the price of the stock, which will sometimes be a random variable and
other times a constant.(where Sy is the price of the stock at £ = 0)

* V(S,t) is the price of a derivative as a function of time and stock price.
« C(S,t) is the European call option.

* X is the strike price (exercise price).

« 7 is the free-risk interest rate.

*» ¢ is the standard deviation of Log returns (volatility).

Volatility

The volatility o of a stock is a measure of our uncertainty about returns pro-
vided by the stock. It can be defined as the standard deviation of the return pro-
vided by a stock in 1 year when the return is expressed using continuous com-
pounding. The Black-Scholes model explains how volatility can be either esti-
mated from historical data or implies from option prices.

The Black Scholes Equation
The BlackScholes equation is a partial differential equation, which describes
the price of the option over time. Broadly speaking, the term may refer to a similar

PDE that can be derived for a variety of options, or more generally, derivatives.

The equation is:
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BV 53 o’V oV
—r 2V 5% _v-o 3.1
ot 957 T 38 o)
This equation (that gained Scholes and Merton the Nobel Prize in economics
in 1997) results from the analysis that the option does have a real price V' (S, t) de-
pendent on the current price S of the stock, irrespective of the (random) behaviour

of the stock’s price until the time 7" of the option’s expiry, that can be achieved by

following a certain hedging (i.e. protection) strategy of buying and selling the
stock and option, to completely eliminate risk (on the option) that would other-
wise exist.

Black Scholes Formula

The BlackScholes formula calculates the price of European call options, by
solving this partial differential equation for the corresponding terminal and the
following boundary conditions:

» C(0,t) = 0forall t.
* C(S,t) > Sas S — o0.

« C(S,T) = max{S — X, 0}, which gives the value of the option at the time
that the option matures.

Or else the partial differential equation does not have a unique solution. (Know-
ing that the European call option can be exercised one time on the exercise date,
while the American call option can be exercised at any point). Inorder to get the
following formula:

C(S,t) = N(d;)S — N(dg)Xe "™ (3.2)

(which is the difference between what you get and what you pay), where
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o
* N(z) = 7= [ e 7 dzisthe cumulative probability distribution function
for a standard distribution function. In other words it is the probability that a
variable with a standard normal distribution will be less than z,(0 < N(z) <

1).

* d, is the first input given by:

dy = ﬁmﬁt [ln (-;-) + (r+ %2) (T - t)] (3.3)

* ds is the second input given by:

d 2 [1 (S)+ g (T 1) (3.4)
=——=—|In| = P — ;
? oI —t X 2

Now we note the following results, based on the conditions where some of the
parameters take extreme values:

1. If dy and d, are very big numbers, due to the reason where S is a very big
number or when ¢ —» 0, then N(d;) = N(d;) = 1 and thus the Black-

Scholes formula becomes C(S,t) = S — Xe T,

2. If the ratio of the stock price to the excercise price % is increasing, then d;
and d, are increasing so we will get high probabilities which will higher the
exercises price. (So that makes sense the relation between the stock price

and the exercise price).

3. People who work with options focus on the volatility (the higher the volatil-
ity the higher the option price), let us verify these factors in the equation:

* in d;: if o increases then d; will be increased.

* in dy: if o increases then dy will be decreased.

which means that what we should get (N (d;)S) increases and what we
should pay (N(ds) Xe ") decreases.
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ifot = C1

as a result:
{ ifod = GCi (conversely)

Conclusion

+ Advantage: The main advantage of the Black Scholes model is speed, it
lets you calculate a very large number of option prices in a very short time.

» Limitation: The Black Scholes model has one major limitaion, it can not
be used to accurately price options with American-style exercise as it only
calculates the option price at one point in time at expiration. It does not
consider the steps along the way where there could be the possibility of
early exercise of an American option.

3.2 Affine Processes and Financial Mathematics

Affine processes are very useful in financial modeling, due to the flexi-
bility of their properties when used to calculate terms that are relevant
in the stochastic description of the financial markets.

3.2.1 Discounting

Discounting is a financial mechanism in which a debtor obtains the right to delay
payments to a creditor, in return for charges that are usually calculated in terms of
interest rates.

Such (interest) rates are formulated according to an (affine) function involving
an R?—valued process X = {X,};>0 by

re=1(X) =1+ <A X, >, reR, XAeR% (3.5)
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Given this, the price of a claim, given in terms of the interest rate process X, in
the form f(X;), where f € bE (the Banach space of bounded complex-valued
Borel-measurable functions f on E), would be given by an expectation (where
t = 0 is the present, and ¢ is in the future)

Quf(z) = B [e- irxais (X, | (3.6)

t
where the term e~ Jo (Xs)ds

is a continuous compounding term, and z is the starting
state (i.e. the starting price now). It is clear that Q, f(z) — Qo f(z) = Q.f(z) — z

is about discounting, and that the family {Q,} >0 forms a semi-group.

In this model for discounting, it is essential to be able to calculate the integral
for @, f(z) above, and this seems to be very tractable if the process X is taken to
be a regular affine process (with the resulting properties) (see [DFS]).

Several financial modeling use the special properties of affine processes, be-
cause of their flexibility and tractability in capturing certain stochastic properties
that are obvious in many financial markets such as jumps, stochastic volatility,
optimal dynamic portfolio and consumption choices.

3.2.2 The Term Structure of Interest Rates

One of the central objects in finance is the term structure ¢ — ;1 of prices of
"bonds”, assets that pay 1 unit of account at a given maturity ¢. Then we can build
up the prices of bonds that make payments at multiple dates, and other “fixed-
income” securities.

A typical model of the price processes of bonds of various maturities begins
with a discount rate process {r(X;) : t > 0} defined by the above affine function
x — r(z), and where the discount factor E [e_ Jor(Xe)ds| x| is well defined and
is of the anticipated exponential-affine form in X,.

In general, since e<%*> = 1, the bond price

Q(]-(T) " eA(r.)+<B(t],z> (37)
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is calculated from the generalized Recatti equation for a broad range of affine
processes. However for (d > 1) we have variant results, beside this there is
“infinite-dimensional affine term structure model”.

The Vasicek (Gaussian Ornstein-Uhlenbeck) process or the Cox-Ingersoll-
Ross process are important simple models of interest short rate r(X'), which is the
continuous branching diffusion of Feller. (These short rate processes are affine

(r(z) = 2)).

Vasicek Short Rate Model

The state space is R, i.e.(d = 1), and we set 7 = X for the Vasiccek short rate
model:

dry = a(b—r)dt + odB, (3.8)
where

* a(b — ;) is a drift factor that represents the expected instantaneous change
in the interest rate at time ¢.

» g and b are some constants.

* o is the instantaneous volatility that measures the amplitude of randomness
entering the system.

= B is a brownian motion.

Vasicek gives an explicit characterization of the term structure of interest rates
in an efficient market. The model is widely use for pricing the bond. Additionally
it uses Ornstein-Uhlenbeck process to compute the spot interest rate. This model
is a one-factor model which means that rates depend on the spot interest rate. Thus
the spot rate defined the whole term structure.

Beside the general characteristics, the main advantage of this model is to value
all interest rates contingent claims in a consistent way. While the disadvantage is
that it involves unobservable parameters and do not provide a perfect fit to the

initial term structure of interest rate.
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3.2.3 Default Risk

This 1s about the risk that a financial contract defaults, i.e. fails to pay what it has
to pay. The idea is to model the time-of-default T of financial contracts, and (for
example) the probability distribution of the total default losses on a portfolio of

financial contracts.

Doubly Stochastic Models
In doubly stochastic models, the observed random variable can be modelled in
two stages.

 The distribution of the observed outcome is represented in a fairly standard

way using one or more parameters.

* Some of these parameters are treated as being themselves random variables.

This is essentially the same as the well-known concept of compounded distribu-
tions. As an example: the observed values in a point process might be modelled as
a Poisson process in which the rate (the relevant underlying parameter) is treated
as being the exponential of a Gaussian process.

Consider, for example, a defaultable bond with maturity time £, that pays 1.,
i.e. it pays one-unit if £ is smaller than the (expected) time 7 of default. Then, it
can be shown that this defaultable bond has a price given by

Ee [e—fs r(X_q)dsl{T)t}] — E* [e- f;(r()(s)-i—!\(xs))ds] (3.9)

where r(X;) is as in the previous case, with X being an interest rate process, with
A(z) being an affine function that is the intensity i.e.

. Pr(one event in [x,x + Ax]
lim

3.10
Azr—0 Az ? ( )

of a process N that is Poisson, conditional on X. (N would also be called as a

doubly stochastic process.)
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Also, the probability of survival, i.e. P*(7 > £), can be shown to be given by

Pe(r > t) = E* [e-fo‘ *‘(Xs)ﬂ . G.11)

It is also found that having a regular affine process X to model interest rates is
very effective in calculating the above expectation and probability in default risk.

Moreover, we can generalize for a model of the default times 7, -+ , 7, of k >
1 different financial contracts, we suppose that 7; is the first jump time of a non-
explosive counting process IN; with respective intensity {A;(X;_) : ¢ > 0},for
affine z — A;(z) > 0, where Ny, .-, Ny are doubly stochastic driven from
X, one can view (X, Ny, ---, Ni) as an affine process. Then for any sequence
t1, -+ ,tx € R>p we get

]Px("'_ 2 th e, T 2 tk) =E* [e_ f;k e ’ (312)
where
A(z,s)= Y Ai(a). (3.13)
{i:s<t;}

Using the law of iterated expectations, the joint distribution of the default time
is given by:

P2(r > by, - , 7 2 1) = ePot<Vos> (3.14)

where ®; and U, are defined inductively by ®; = 0 and ¥y = 0, and

tipy—t;
QPit<¥ia> _ go [e‘“-ﬂ H17H A (X, tit)dt edv‘-+1+<w.-+1,x.‘.+,—:,-;~] (3.15)

for t = 0 and since + — A(x,s) > 0 is affine with constant coefficients
for some s € |[t;;1,41], one can calculate the probability distribution of the total
default losses on a portfolio of financial contracts.

However “the first default time”7* =inf{r,--- , 7, } satisfies
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P*(r* > t) =E" [e- h “'fX-‘)‘“] i (3.16)
where

k
A*(z) =) Az) (3.17)
i=1

also has the same form as the bond price calculation (3.7).

3.2.4 Option Pricing

A put option gives its owner the right, but not the obligation, to sell an underlying
asset at some future time ¢ at a fixed pre-arranged exercise price K € R>q, which
has the form f(X,) for some non-negative f € C(E) (the space of complex-
valued continuous functions f on E). Like wise we can treat the corresponding
call option to buy the asset. We note that “the option is rationally exercised if and
only if f(X,) < K, with payoff

9(X1) = maz(K - f(X4),0), (3.18)
and the initial price
Quola) = E* [efirisg(x,)]
= KFE* [E_f“‘rw")dsl{f(xr)sw}}
- E* [e'ﬁr(x*’)dsf (Xt)l{f(Xn)iK}] (3.19)

By using the affine modeling approach to computational advantage provided
f(z) = ke<b=> for (k € Ryp and b € R?), an example of which is the bond
price f(z) = eAT-D+<B(T=)2> of (3.7) of time ¢ and maturity date 7" > t. Then
Q:g9(z) becomes:

Gur(q) = E* g~ Jor(Xa)ds em'xml{ﬂ,xwﬁq}] (3.20)

where (a,b,q) € R x R? x R such that (¢ = log K — log k).
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We consider G,;(.) the distribution function of < b, X; > with measure
t
e~ Jom(Xs)ds g<aXe>pe oo we can calculate the transform

+oo
Gap(2) = / €*1Go,(dg) (3.21)
then Fourier inversion method can be used to compute G, 5(g), one can notice that
gab(z) = [E= [e_ J'{; r(Xs)ds e<a,Xs‘> eiz*(b,Xg):r
= ]EI [e_ f{; T(Xs)deu (X.'_)] , (3‘22)

where © = a + 1zb and the generalized recatti equations give the solution under
the non-negativity of 7(.X).

Heston Approach to Option Pricing

Heston tried to extend the Black-Scholes model, where the underlying price pro-
cess is a geometric brownian motion, the underlying asset price is e# and (Y, 2)
is the affine (m = n = 1) defined by the following 2 corrolated brownian mo-
tion model. The first talks about the evolution of the volatility (assuming that the
volatility of the asset is not constant, nor even deterministic, but follows a random
process). and the second talks about the evolution of the price.

dY, = (b —BY:)dt+ o/YedW"
dZ, = bydt + /Yi(pdW + /1 = p2dW®), (3.23)

for real constants —1 < p = corr(th{l),de}) < 1, by,06 > 0 and b,,0, and
where (WM, W) is a standard brownian motion in R2. In Black-Scholes case
of a geometric Brownian price process eZ, the stochastic volatility process Y is
constant. For Heston’s model, the Fourier transform G, (.) is computed explicity.

Similarly, a defaultable option may be priced by replacing (X)) with r(X;) +
A(X,), where {A(X,_) : t > 0} determines the intensity, as for defaultable bond

pricing.
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Affine Generalizations of the Heston-Model

Numerous affine generalizations of the Heston model have been directed toward
more realistic stochastic volatility and jump behavior.

The work of Heston (1993) led to the development of stochastic volatility
models. The Heston model is one of the most widely used stochastic volatility
models today. There are many empirical, economic and mathematical reasons for
using a model with such a form for investigation the volatility on the market. Em-
pirical studies have shown that an assets log-return distribution is non-Gaussian.
It is characterized by heavy tails and high peaks. It is also observed that equity
returns and empirical volatility are negatively correlated.

Then we investigate classical and nonclassical stochastic volatility models
with respect to their extreme behavior. We show that classical stochastic volatility
models driven by Brownian motion can model heavy tails, but obviously they are
not able to model volatility jumps. Such phenomena can be modelled by Lévy
driven volatility processes as, for instance, by Lévy driven Ornstein-Uhlenbeck
models. They can capture heavy tails and volatility jumps. Also volatility clus-
ters can be found in such models, provided the driving Lévy process has regularly
varying tails. This results then in a volatility model with similarly heavy tails.

Affine Jump-Diffusion and Numerical Methods Based on Fourier Inver-
sion

We consider a Heston model with jumps in returns and variance and obtain
closed-form solutions for a wide range of options on the realized variance. Ana-
lytical solution through Fourier transform for the density of the realized variance
in the Heston model was obtained by Lipton (2001). However, by employing
his method we need to discretisize the state space of future realized variance and
for each state evaluate its probability by inverting the Fourier integral, and finally
compute the expected value of the option by convoluting the pay-out in the given
state with the probability of this state. We apply the generalized Fourier trans-
form and reduce the computation of a single option price to numerical inversion

83



of a single Fourier integral. The generalized Fourier transform was extended for
pricing options on the realized variance.

The purpose of introducing jumps in returns and variance dynamics is to make
the Heston model consistent with short-term variance swaps with cap protection
for which market prices are typically lower than theoretical prices implied by the
Heston model with no jumps. Among others, the empirical study of the VIX time
series shows that jumps in the dynamics of the S and P 500 index variance are
statistically significant. Variance jumps are also necessary to produce positive
volatility skews implied from market prices.
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