
THESIS DOCUMENT

USING SIMULATED ANNEALING

AND ANT-COLONY

OPTIMIZATION ALGORITHMS

TO SOLVE THE SCHEDULING

PROBLEM

July 10, 2012

Nader Chmeit
Notre Dame University
Zouk Mosbeh - Lebanon
nbchniait@ndu. edu . lb

Approved by:

Dr. khalil Challita
Advisor

Dr. Hikmat farhat
Member of Committee 14	 ti /-r

Dr. Rosy Aoun
Member of Committee III * ME __ -

ML! LIBRARY

L 220CT 2012 j
RECEIVED

Contents

List of Figures

Abstract
	

7

Introduction	 8

1 The Scheduling Problem	 11
	1.1	 Problem Formulation11

2 Heuristics And Optimization Algorithms	 13
	2.1	 Simulated Annealing 	 13

2.1.1	 Initial Temperature	 16
2.1.2	 Equilibrium State	 17
2.1.3	 Cooling Schedule	 18
2.1.4	 Stopping Condition	 19
2.1.5 Performance of the SA Algorithm 20

2.2 Ant Colony Optimization Algorithm 21
2.3 Combinatorial Optimization Problems 23
2.4 The Pheromone Model 23
2.5 The Double-Bridge Experiment 25
2.6 Ant System (AS) 26
2.7 Complexity Analysis of Ant Colony Optimization 27

3 Related Work
	 29

4 SA Applied To The Scheduling Problem 	 33
4.1 Our Approach Using SA33

	

4.2	 Empirical Results (SA)37

5 ACO Applied To The Scheduling Problem	 41
5.1 Our Approach Using ACO41

	

5.2	 Pheromone Update43

3

ru
	

CONTENTS

5.3 Empirical Results (ACO)43
5.4 Performance Analysis: ACO vs. SA45

6 Conclusion	 49
6.1 Summary of the Main Results49
6.2	 Future Work49

List of Figures

2.1 Double-bridge Experiment26

4.1 Simple Examination Schedule34
4.2 Variation in cost values with respect to temperature decrement 38
4.3 Variation in cost values with respect to temperature decrement

after constraining unfeasible neighbor configurations39

5.1 ACO - Cost values at subsequent iterations (Hard Schedule) . 44
5.2 ACO - Cost values at subsequent iterations (Loose Schedule) . 44

5

Abstract

The scheduling problem is one of the most challenging problems
faced in many different areas of everyday life. This problem can
be formulated as a combinatorial optimization problem, and it
has been solved with various methods using heuristics and intel-
ligent algorithms. We present in this research an efficient solution
to the scheduling problem using two different heuristics namely
Simulated Annealing and Ant Colony Optimization. A study
comparing the performances of both solutions is described and
the results are analyzed.

7

Introduction

A wide variety of scheduling (timetabling) problems have been described
in the literature of computer science during the last decade. Some of these
problems are: the weekly course scheduling done at schools and universities
[7], examination timetables [37], airline crew and flight scheduling problems
[31], job and machine scheduling [43], train timetabling problems [49]

Many definitions of the scheduling problem exist. A general definition
was given by A. Wren in 1996 as:
"The allocation of, subjects to constraints, of given resources to objects being
placed in space and time, in such a way as to satisfy as nearly as possible a
set of desirable objectives" [47].
Another way of looking at the scheduling problem is to consider it as a
timetable consisting of four finite sets:

• a set of meetings in time,

• a set of available resources such as rooms and people,

• a set of available time-slots,

• a set of constraints.

Some of these resources may be specified by the problem in hand, and
some others must be allocated as part of the solution [7].

Cook proved the timetabling problem to be NP-complete [13] in 1971,
then karp showed in 1972 that the general problem of constructing a sched-
ule for a set of partially ordered tasks among k-processors (where k is a
variable) is NP-complete [28]. Four years later, a proof showing that even a
further restriction on the timetabling problem (e.g the restricted timetable
problem) will always lead to an NP-complete problem [22]. This means that
the running time for any algorithms currently known to guarantee an op-
timal solution is an exponential function of the size of the problem. The
complexity results of the some of the scheduling problems were classified and
simulated in [6] and their reduction graphs were plotted.

The exam scheduling at Notre-Dame University is still done manually
using solutions from previous years and altering them, in such a way to
meet the present constraints related to the number of students attending the
upcoming exams, the number of exams to be scheduled, the rooms and time
available for the examination period. We propose an improved methodology
where the generation of the examination schedules is feasible, automated,
faster and less error prone.

8

Even though we will present in this research our solution in the context
of the exam scheduling problem, we can generalize it to solve many different
scheduling problems with some minor modifications regarding the variables
related the the problem in hand and the resources available.

An informal definition of the exam scheduling problem is the following:
a combinatorial optimization problem that consists of scheduling a number
of examinations in a given set of exam sessions so as to satisfy a given set of
constraints. As Carter states in [37] the basic challenge faced when solving
this problem is to "schedule examinations over a limited time period so as to
avoid conflicts and to satisfy a number of side-constraints". These constraints
can be split into hard and soft constraints where the hard constraints must
be satisfied in order to produce a feasible or acceptable solution, while the
violation of soft constraints should be minimized since they provide a measure
of how good the solution is with regard to the requirements [8].

The main hard constraints [20] are given below:

1. No student is scheduled to sit for more than one exam simultaneously.
So any 2 exams having students in common should not be scheduled in
the same period.

2. An exam must be assigned to exactly one period.

3. Room capacities must not be violated. So no exam could take place in
a room that has not a sufficient number of seats.

As for the soft constraints, they vary between different academic insti-
tutions and depend on their internal rules [11]. The most common soft
constraints are:

1. Minimize the total examination period or, more commonly, fit all exams
within a shorter time period.

2. Increase students' comfort by spacing the exams fairly and evenly across
the whole group of students. It is preferable for students not to sit for
exams occurring in 2 consecutive periods.

3. Schedule the exams in specific order, such as scheduling the maths and
sciences related exams in the morning time.

4. Allocate each exam to a suitable room. Lab exams for example, should
be held in the corresponding labs.

5. Some exams should be scheduled in the same time.

We will attempt to satisfy all the hard-constraints listed above. Regarding
the soft-constraints, we will address the first 2 points, whereby we try to
enforce the following:

1. Shorten the examination period as much as possible

2. A student has no more than one exam in two consecutive time-slots of
the same day.

In other words, we will try to create an examination schedule spread
among the shortest period of time and therefore use the minimum number of
days to schedule all the exams, also, we spread the exams shared by students
among the exam schedule in such a way that they are not scheduled in
consecutive time-slots.

This thesis is organized as follows. Chapter 1 presents the mathematical
formulation of the exam scheduling problem; Chapter 2 describes the main
structures of the (SA) Simulated Annealing and ACO (Ant Colony Optimiza-
tion) algorithms. We list and describe in Chapter 3 some of the heuristics
and algorithms that are used in solving the scheduling problem. In Chapter 4
and 5 we present and discuss our own approach to solving the exam schedul-
ing problem using the Simulated Annealing and Ant Colony Optimization
algorithms respectively. Finally we give a brief conclusion.

10

Chapter 1

The Scheduling Problem

1.1 Problem Formulation
We will use a variation of D. de Werra's definition of the timetabling

problem [14]. Note that a class consists of a set of students who follow
exactly the same program. So Let:

• C={ci ,. .. ,c} be a set of classes

• E={ei ,... ,e} a set of exams

• S={si ,. . . ,s} the set of students

• R={ri ,. . . ,r} the set of rooms available

• D={d 1 ,. . . , d} the set of the examination days

• P={p 1 ,. .. ,p} the set of periods (sessions) of the examination days.

Since all the students registered in a class ci follow the same program,
we can therefore associate for each class c i an exam ej to be included in
the examination schedule. So all the students registered in class c i will be
required to pass the exam e2.
We will use the notation below:

•

{
espijk	

1, if exam e and student s meet at period Pk

= 0, otherwise

•

scji- { 1, if student sj is taking class c
- 0, otherwise

11

12	 CHAPTER 1. THE SCHEDULING PROBLEM

.

seji1, if student sj has exam e
- 0, otherwise

.

epj- { 1, if exam e j is held in period Pu
- 0, otherwise

capacity - { the number of seats in room r, if r, holds exam e2
-	 null,	 otherwise

We shall assume that all exam sessions have the same duration (say one
period of 2 hours). We recap that the problem is, given a set of periods,
we need to assign each exam to some period in such a way that no student
has more than one exam at the same time, and the room capacity is not
breached. We therefore have to make sure that the equations (constraints)
below are always satisfied [14]:

1. V sj E S :	 se	 capacity

2. V sj eS, V ej E E, and one Pk E P: > iespiik 1

3. V ej E E, V 	 E P : > i epuj = 1

These equations reveal only the hard constraints which are critical for
reaching a correct schedule. They must always evaluate to true otherwise we
will end up by an erroneous schedule. So our aim is to find a schedule that
meets all the hard constraints and try to adhere as much as possible to the
soft constraints.

Chapter 2

Heuristics And Optimization
Algorithms

2.1 Simulated Annealing

The idea behind simulate annealing (SA) comes from a physical process
known as annealing [35]. Annealing happens when you heat a solid past its
melting point and then cool it. If we cool the liquid slowly enough, large
crystals will be formed, on the other hand, if the liquid is cooled quickly the
crystals will contain imperfections. The algorithm simulates the cooling pro-
cess by gradually lowering the temperature of the system until it converges
to a steady, frozen state [29]. This allows the system to settle into a low
energy state without getting trapped in a local minimum [14].
SA exploits this analogy with physical systems in order to solve combinato-
rial optimization problems [14]. A combinatorial optimization problem [27]
is regarded as an optimization/minimization problem where we try to find
optimal solutions over a well defined discrete space. Formally, a combinato-
rial problem is briefly described as follows:
Let E = l e i, e2 ,. . . ,e} be a finite set of all solutions, S a set of feasible solu-
tions defined over E, and f : S - R an objective function. A combinatorial
optimization problem is to find a solution i E S which minimizes f over S.

There are many articles and papers that define and explain the SA al-
gorithm. Most of these articles give similar definitions and refer to a paper
published in 1953 by Metropolis [35]. We will present the Simulated An-
nealing algorithm and the physical analogy on which it is based, as it was
described by R. W. Eglese [21].

SA is a type of local search algorithm with some variations. If we look at

13

14 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

a simple form of local search, like the Hill Climbing algorithm, we notice that
it starts with an initial solution usually chosen at random. Then a neighbor
of this solution is generated by some suitable mechanism depending on the
problem we are solving, and the change in the cost of the new solution is
calculated [21]. If a reduction in cost is found, the current solution is re-
placed by the generated neighbor, otherwise the current solution is retained.
The process is repeated until no further improvement can be found in the
neighborhood of the current solution. We give below the Hill Climbing local
search algorithm:

Algo-I : Hill Climbing [21]

Select an initial state i e S
Repeat

Generate state j, a neighbor of i
Calculate o = f(j) - f(i)
If	 0
Then i := j

Until f(j) > f(i), V j in the neighborhood of i

As shown in the algorithm above, the local search algorithm works by:

1. First generating an initial solution i and calculating its cost f(i).

2. The second step consists of generating a neighbor j of this solution and
calculating its cost f(j).

3. Then we calculate the change in cost W which is the difference between
the costs of the new solution f(j) and the previous one f(i).

4. If a reduction in cost is found, we replace the current solution by the
generated neighbor.

5. We repeat until no further improvements can be found.

Since we are calculating the change in cost W and choosing the solution
with the lowest cost, the above algorithm solves a minimization problem.
It can easily be used for solving a maximization problem by checking for
solutions with higher costs instead.

2.1. SIMULATED ANNEALING 	 15

G. Kendall [29] states that "hill climbing" suffers from the problem of
getting stuck at local minima (or maxima depending on whether it is a mini-
mization or an optimization problem). There are many techniques described
in the literature to try to overcome these problems as:

try a hill climbing algorithm using different starting points, or

• increase the size of the neighborhood so that we consider more of the
search space at each move.

But neither of these techniques has proved satisfactory in practice [29].
Simulated annealing solves this problem by allowing worse moves (moves
that increase the cost of the solution) to be taken in certain cases. These
moves which increase the value of f are called uphill steps. This strategy
helps us escape from getting stuck in local minima/maxima (depending on
the problem). In other words, SA escapes from local optima due to the
probabilistic acceptance of some non-improving neighbors [21]. But to be able
to climb out from the local optima, we have to control when SA accepts uphill
moves (worse solutions). Uphill moves are accepted or rejected depending
on a sequence of random numbers, but with a controlled probability. The
probability of accepting a move which causes an increase in f is called the
acceptance function and is normally set to:

exp(—p/T)	 (2.1)

where T is a control parameter which corresponds to temperature in
the analogy with physical annealing [21]. We can see from the formula above
that, as the temperature of the system decreases, the probability of accepting
a worse move is decreased and when the temperature reaches zero then only
better moves will be accepted which effectively makes simulated annealing
act like a hill climbing algorithm [29].

Hence, to avoid being prematurely trapped in a local optimum, SA is
started with a relatively high value of T. The algorithm proceeds by attempt-
ing a certain number of neighborhood moves at each temperature, while the
temperature parameter is gradually dropped. Algo-11 below shows the SA
algorithm as listed in [21]:

Algo-11 Simulated Annealing

Select an initial solution i e S
Select an initial temperature T0 > 0
Select a temperature reduction function ci

16 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

Repeat
Set repetition counter n = 0
Repeat

Generate state j, a neighbor of i
calculate = f(j) - f(i)

If W < 0 Then i := j
Else
generate random number x E 10,11

If x < exp(-/t) Then i := j
n:=n+1
Until n = maximum neighborhood moves allowed at each temperature
endif
endif

update temperature decrease function a
T=a(T)
Until stopping condition = true.

There are many heuristics used for choosing the initial temperature at
which SA starts [38]. We will next introduce many important concepts in
SA which are crucial for building efficient solutions. These concepts are listed
below:

• Initial Temperature

• Equilibrium State

• Cooling Schedule

• Stopping Condition

2.1.1 Initial Temperature
For the algorithm to work properly, we must choose a starting temperature
that is hot enough to allow a move to almost any neighborhood state [29],
otherwise we will end up by a solution very similar to the starting one.
On the other hand, if we choose a starting temperature that is too high
we might be implementing a random search algorithm since the search can
freely move to any neighbor even when the neighbor has a non-desirable cost
[29]. At very high temperatures we accept all neighbors during the initial
phase of the algorithm [38] and the main drawback of this strategy is its high

2.1. SIMULATED ANNEALING
	

17

computational cost.
We have 2 main methods for finding a suitable starting temperature:

1. The Acceptance deviation method and

2. The tuning for initial temperature method

Acceptance deviation method
Before explaining how this method works, we recap that the neighbor

solution is accepted with a probability p depending on the energy difference
between the new and the old solution. This selection scheme is called the
Metropolis criterion [38], and therefore SA consists of a series of Metropolis
chains at different decreasing temperatures.
The acceptance deviation method computes the starting temperature using
preliminary experimentations by:

ka	 (2.2)

where o represents the standard deviation of difference between values of
objective functions representing the energy of the system (cost of solution),
and

k =
	

(2.3)
ln(p)

where p denotes the acceptance probability of the next solution.

Tuning for initial temperature method
This method chooses a high temperature as a start, and then reduces the

temperature quickly until about 60% of worse moves are accepted and uses
this temperature as the starting temperature T 0 [38].

2.1.2 Equilibrium State
The process of selecting and proposing a move is repeated until the system
is considered in thermal equilibrium, at this step the system is considered
frozen. To reach an equilibrium state at each temperature we have to process
a number of sufficient moves [44]. But the number of iterations to achieve
at each temperature might be exponential with respect to the size of the
problem which means that we need to compromise between the quality of
the obtained solutions and the complexity of the cooling schedule [29]. So,
either we run a large number of iterations at a few temperatures or, we run
a small number of iterations at many temperatures.

18 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

Different strategies are used to determine the number of moves to be
made in the neighbor solution. They all depend on:

. The size of the problem instance, and

. The size of the neighborhood denoted by N(s) I

Static strategy In this strategy, the number of moves within each itera-
tion is determined before starting the search. We define a proportion y of the
neighborhood size IN(s)I to be explored. The number of generated neighbors
from a solution s is as large as: y x IN(s)I

The more significant the ratio y the higher the computational cost and
the better the results.

Adaptive strategy A simple approach used in this method consists of
achieving a predetermined number of iterations without improvement of the
best found solution at the same temperature.

2.1.3 Cooling Schedule

Another critical point for the success of the algorithm is the way in which the
temperature is decremented. In SA the temperature is decreased gradually
such that: T > 0, V i.
If we decrease the temperature slowly, better solutions are obtained but with
a more significant computational time. There are many ways in which the
temperature can be updated as we will show next.

Static Strategy: Linear

We can use a simple linear cooling schedule where the temperature T is up-
dated as follows:

T=T0—ix/3	 (2.4)

where Tj represents the temperature at iteration i, 3 is a specified constant
value and To is the initial temperature.

2.1. SIMULATED ANNEALING
	

19

Dynamic Strategy: geometric and logarithmic approach

Geometric approach

The geometric approach to this method is to decrement the temperature
T corresponding to the equation below:

T 1 = T a where a < 1.	 (2.5)

Is is clear from the equation above that the higher the value of a, the longer
it will take to decrement the temperature to the stopping criterion. The best
assumption is to take a between 0.8 and 0.99 [29].

Logarithmic approach

The following formula is used:

T=
T0	

(2.6)
log(z)

where T, represents the temperature at iteration i and To is the initial tem-
perature.
Even though this cooling schedule is too slow to be applied in practice, it
has the property of the convergence proof to a global optimum [44].

Adaptive Strategy

The adaptive cooling schedule depends on the characteristics of the search
landscape. The temperature decrease rate is dynamic and it depends on some
information obtained during the search. So the adaptive strategy approach
carries out a small number of iterations at high temperatures and a large
number of iterations at low temperatures [44].

2.1.4 Stopping Condition
The decision of when to stop is a very important measure. Though theory
suggests a final temperature equal to 0, this might make the algorithm run for
a lot longer especially when we are using a geometric cooling schedule [29].
When the temperature approaches zero the chances of accepting a worse
move are almost the same as the temperature being equal to zero, so one
can stop the search when the probability of accepting a move is negligible
without waiting for T to decrease to zero [29].

20 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

According to [44], the stopping criteria is not only governed by the tem-
perature T. Sometimes we reach the stopping condition when:

• no improvements in the solutions' cost are found after some pre-determined
number of successive iterations done at several temperature values,

• after a fixed amount of CPU time,

• when we reach the objective function we are searching for.

Finally, we should note that the SA algorithm might not necessarily
find the optimal solution to the problem in hand but it is designed to give
an acceptable solution within a reasonable computing time without getting
trapped in a local maximum or minimum [21].

2.1.5 Performance of the SA Algorithm
In general, the performance analysis of an approximation algorithm [2] con-
centrates on the following quantities:

The quality (cost) of the final solution.

The running time of the algorithm.

Since the Simulated Annealing algorithm is a stochastic algorithm requir-
ing a neighborhood structure to be specified as well as a number of parameters
to be provided as part of the cooling schedule, then its performance analysis
depends on the problem instance as well as the cooling schedules. Moreover,
the performance analysis of SA consists not only on worse-case and average-
case analysis, but also on its probabilistic aspects. For any problem, we have
to consider its probability distribution for a set of instances and over the set
of possible solution. we have two approaches to investigate the performance
of SA:

• Theoretical analysis: given a particular problem instance and a cool-
ing schedule, we provide analytical expressions for the quality of the
solution and its running time.

• Empirical analysis: the conclusion (with regard to the quality of the
solution and its running time) drawn from the results of solving many
instances of different combinatorial optimization problems with differ-
ent cooling schedules.

As part of the theoretical study of the worst-case analysis it was shown
[2] that:

2.2. ANT COLONY OPTIMIZATION ALGORITHM	 21

• Some cooling schedules can be executed in a number of elementary
operations bounded by a polynomial in the problem size.

• Upper bounds can be given for the proximity of the probability distri-
bution of the configurations after generating a finite number of tran-
sitions. An upper bound on the quality of the final solution is only
known for the maximum matching problem which is known to be in P.

As part of the empirical results, compared to repeating descent algo-
rithms (like hill climbing) with different random starting positions, studies
of a number of different problems have shown that SA can give significantly
better results in the same amount of computing time [21].

2.2 Ant Colony Optimization Algorithm

The second algorithm (ACO) is a meta-heuristic method proposed by
Marco Dorigo in 1992 in his PhD thesis [15] about optimization, learning
and natural algorithms. It is used for solving computational problems where
these problems can be reduced to finding good paths through graphs. The
ant colony algorithms are inspired by the behavior of natural ant colonies.
In real life, ants wander randomly, and upon finding food, they return to their
colony while laying down pheromone trail [48]; if other ants find such a path,
they are likely not to keep traveling at random, but to instead follow the trail,
returning and reinforcing it if they eventually find food. In other words, ants
solve their problems by multi-agent cooperation using indirect communica-
tion through modifications in the environment. They communicate indirectly
via distribution and dynamic change of information (pheromone trails). The
weight of these trails reflects the collective search experience exploited by the
ants in their attempts to solve a given problem instance [4]. Many problems
were successfully solved by ACO , such as the problem of satisfiability, the
scheduling problem [34], the traveling sales man problem [18], the frequency
assignment problem (FAP) [1]
M. Dorigo and T. Stutzle describe the ACO as a set of computational con-
current and asynchronous agents' moves through states of the problem corre-
sponding to partial solutions of the problem to solve [19]. The ants or agents
apply a stochastic local decision policy when they move. This policy is based
on two parameters, called trails and attractiveness [19]. Therefore, each ant
incrementally constructs a solution to the problem each time it moves and

22 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

when it completes a solution, the ant evaluates it and modifies the trail value
on the components used in its solution which helps in directing the search
of the future ants [19]. There is also a mechanism called trail evaporation
used in ACO. This mechanism decreases all trail levels after each iteration
of the AC algorithm. Trail evaporation ensures that unlimited accumulation
of trails over some component are avoided and therefore the chances to get
stuck in local optimums are decreased [33]. Another optional mechanism
that exists in ACO algorithms is daemon actions. "Daemon actions can be
used to implement centralized actions which cannot be performed by single
ants, such as the invocation of a local optimization procedure, or the update
of global information to be used to decide whether to bias the search process
from a non-local perspective" [33].

The pseudo-code for the ACO as described in [10] is shown below:

Algo-Ill Ant Colony Optimization algorithm

Set parameters, initialize pheromone trails
while termination condition not met do

ConstructAntSol'ations
ApplyLocalSearch (optional)
UpdatePheromones

end while

According to Maniezzo [33], "ACO algorithms rely mainly on the com-
bination of a prior information about the structure of a promising solution
with a posteriori information about the structure of previously obtained good
solutions". Just like the Simulated Annealing algorithm, AGO is also con-
sidered to be a meta-heuristic, that is an algorithm that drive basic heuristic
trying to escape from local optima [33]. These heuristics are either:

• a constructive heuristic starting from a null solution and adding ele-
ments to build a good complete one, or

• a local search heuristic starting from a complete solution and iteratively
modifying some of its elements in order to achieve a better one.

This allows us to reach solutions with better costs than those we would
have achieved without the use of metaheuristics, even if we make the al-
gorithms run through many iterations [33]. We can control the running

2.3. COMBINATORIAL OPTIMIZATION PROBLEMS	 23

mechanism by constraining or randomizing the set of neighbor solutions to
consider in local search (e.g tabu search), or by combining elements taken by
different solutions as done in genetic algorithms [33].

2.3 Combinatorial Optimization Problems
Before going into the details of AGO, we will define a model P = (S, Il, f)

[10] of a combinatorial optimization problem (COP). The model defined in
this section is different and more complete than the one described in Section
2.1. The model consists of:

• a search space S defined over a finite set of discrete decision variables
= 1,...

• a set Q of constraints among the variables;

an objective function f : S -f JR to be minimized.

The generic variable Xi takes values E D = {v,. . . , vI°'}. "A feasible
solution s E S is a complete assignment of values to variables that satisfies
all constraints in Q" [10].

2.4 The Pheromone Model
We will use the model of COP described in Section 2.3 above to derive

the pheromone model used in AGO [16]. In order to do this we have to go
through the following steps:

1. We first instantiate a decision variable X 2 = v (e.g a variable Xi with
a value v3i assigned from its domain D)

2. We denote this variable by cij and we call it a solution component

3. We denote by C The set of all possible solution components.

4. Then we associate with each component c ij a pheromone trail param-
eter T3

5. We denote by -Tij the value of a pheromone trail parameter T 23 and we
call it the pheromone value

24 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

6. This pheromone value is updated later by the ACO algorithm, during
and after the search iterations.

These values of the pheromone trails will allow us to model the probabil-
ity distribution of the components of the solution.
The pheromone model of an AGO algorithm is closely related to the model
of a combinatorial optimization problem. Each possible solution component,
or in other words each possible assignment of a value to a variable define a
pheromone value [10, 5]. As described above, the pheromone Tij is associated
with the solution component Cj3 , which consists of the assignment X = v,
and the set of all possible solution components is denoted by C.

So how do AGO algorithms build a solution to such combinatorial prob-
lems?
AGO uses artificial ants to build a solution to a GOP by traversing a fully con-
nected graph Gc(V, E) called the construction graph. This graph is obtained
from the set of solution components either by representing these components
by the set of vertices V of G or by the set of its edges E [10].

The artificial ants move from vertex to vertex along the edges of the
graph Cc(V, E), incrementally building a partial solution while they deposit
a certain amount of pheromone on the components, that is, either on the
vertices or on the edges that they traverse.

The amount Ar of pheromone that ants deposit on the components de-
pends on the quality of the solution found. In subsequent iterations, the ants
follow the path with high amounts of pheromone as an indicator to promising
regions of the search space [10].

It is also common (optional) to improve the solutions obtained by the
ants through a local search before updating the pheromone [16]. We then
update the pheromone positively in order to increase the pheromone values
associated with good or promising solutions, and sometimes negatively in
order to decrease those that are associated with bad solutions [16]. The
pheromone update usually consists of:

1. Decreasing all the pheromone values through pheromone evaporation,
and

2. Increasing the pheromone levels associated with a chosen set of good
solutions.

To model the ants' behaviour formally, we consider a finite set of available
solution components C = {c},i = {1, . . . ,n}, j = {1,. .., ID} and a set

2.5. THE DOUBLE-BRIDGE EXPERIMENT	 25

of m artificial ants which construct solutions from the elements of the set C
[16]. We start from an empty partial solution s = 0 and extend it by adding
a feasible solution SP using the components from the set N(s) ç C (where
N(sP) denotes the set of components that can be added to the current partial
solution sP without violating any of the constraints in I). It is clear that
the process of constructing solutions can be regarded as a walk through the
construction graph Cc = (V, E).
The choice of a solution component from N(s) is done probabilistically at
each construction step. Before giving the rules controlling the probabilistic
choice of the solution components, we will next describe an experiment that
was run on real ants called the double-bridge experiment which derived these
probabilistic choices.

2.5 The Double-Bridge Experiment

In the double-bridge experiment, we have two bridges connecting the food
source to the nest, one of which is significantly longer than the other. Of
course, the ants choosing by chance the shorter bridge are the first to reach
the nest [16]. Therefore, the short bridge receives pheromone earlier than
the long one. This increases the probability that further ants select it rather
than the long one due to the higher pheromone concentrations over it. This
is shown in the figure 2.1 below.

Based on this observation, a model was developed to depict the proba-
bilities of choosing one bridge over the other. So assuming that at a given
moment in time m 1 ants have used the first bridge and m2 ants have used
the second bridge, the probability p i for an ant to choose the first bridge is
shown in the equation [16] below:

(mi + k)'
(2.7)P1= (mi + k)h + (m2 + k)h

where k and h are variables depending on the experimental data.
Obviously the probability P2 of choosing the second bridge is: P2 1 - Pi.

As stated above, the choice of a solution component is done probabilisti-
cally at each construction step. Although the exact rules for the probabilistic
choice of solution components vary across the different ACO variants, the
best known rule is the one of ant systems (AS).

26 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

iiiil
Figure 2.1: Double-bridge Experiment

2.6 Ant System (AS)
The Ant System is the first AGO algorithm where the pheromone values

are updated at each iteration by all the Iml ants that have built a solution
in the iteration itself [17, 33]. Using the traveling salesman problem (TSP)
as an example model, the pheromone is associated with the edge joining
cities i and j, and it is updated as follows:

Tij (1— p).Tij	(2.8)

where p is the evaporation rate, m is the number of ants, and Lr is the
quantity of pheromone laid on edge (i,j) by ant k and

- { Q/Lk, if ant k used edge (i, j) in its tour,
Tij-	 0,	 otherwise

where Q is a constant used as a system parameter for defining a high
quality solutions with low cost, and Lk is the length of the tour constructed
by ant k [17]. In the construction of a solution, each ant selects the next city
to be visited through a stochastic mechanism. When ant k is in city i and
has so far constructed the partial solution s, the probability of going to city

J is given by:

2.7. COMPLEXITY ANALYSIS OF ANT COLONY OPTIMIZATION 27

a	 /3

Pik	 Vj E S	 (2.9)
=	 cj1ESP	 j1

or zero otherwise. The parameters a and 0 control the relative importance
of the pheromone versus the heuristic information rjj, which is given by:

'Tlij =(2.10)
dij

where dij is the distance between cities i and j.

Ant Colony System (ACS)

In ACS (e.g ACO) we introduce the local pheromone update mechanism in
addition to the offline pheromone update performed at the end of the con-
struction process [17]. The local pheromone update is performed by all the
ants after each construction step. Each ant applies it only to the last edge
traversed using the following function:

(2.11)

where E (0, 1] is the pheromone decay coefficient, and r0 is the initial
value of the pheromone. Local pheromone update decreases the pheromone
concentration on the traversed edges in order to encourage subsequent ants
to choose other edges and, hence, to produce different solutions [17].

The offline pheromone update is applied at the end of each iteration by
only one ant, which can be either the iteration-best or the best-so-far as
shown below:

{ (1 - p) . Tj + p	 rjj, if (i,j) belongs to best tour,
otherwise.

The next section describes in more detail the Ant System Algorithm and
briefly presents its complexity bounds.

2.7 Complexity Analysis of Ant Colony Op-
timization

Now that we have described the characteristics of Ant Systems (AS) we
give their pseudo-code in more detail as shown below. We use the following

28 CHAPTER 2. HEURISTICS AND OPTIMIZATION ALGORITHMS

notation: for some state i, j is any state that can be reached from i; 77ij is a
heuristic information between i and j calculated depending on the problem
in hand, and 7-ij is the pheromone trail value between i and j.

Algo-IV The Ant System Algorithm

1. Initialization
V (i,j) initialize Tij and ijj
2 .Construction
For each ant k (currently in state i) do
repeat

choose the next state to move to by means of Equation 2.9
append the chosen move to the kt'2 ant's set tabuk

until ant k has completed its solution
end for
3.Trail update
For each ant k do

find all possible transitions from state i to j
compute
update the trail values

end for
4. Terminating condition

If not (end test) go to step 2

Walter J. Gutjahr [26] analyzed the runtime complexity of two AGO
algorithms: the Graph-Based Ant System (GBAS) and the Ant System. In
both analysis, the results showed computation times of order 0(m logm) for
reaching the optimum solution, where m is the size of the problem instance.
The results found were based on basic test functions.

After we have describe the SA and ACS in the previous sections,
the two algorithms will be applied on the exam scheduling problem. We
might not find the optimal solution (NP problem) where the hard and soft
constraints are all satisfied completely, but we will attempt to reach a near-
optimal solution after several iterations.

Chapter 3

Related Work

During the past years, many algorithms and heuristics were used in solving
the timetabling problem. The algorithms vary from simple local search algo-
rithms to variations of genetic algorithms and graph representation problems.
We list some of the recognized techniques which proved to find acceptable
solutions concerning the scheduling problem:

I. Simulated Annealing [24]

II. Ant-Colony Optimization [41]

III. Tabu Search [12]

IV. Graph Coloring [36]

V. Hybrid Heuristic Approach [30, 12]

Simulated Annealing (SA) (I) and Ant Colony Optimization (ACO) (II)
algorithms where described in the previous chapter.

Tabu Search (TS) (III) is a heuristic method originally proposed by
Glover [25] in 1986 that is used to solve various combinatorial problems.
TS pursues a local search whenever it encounters a local optimum by a!-
lowing non-improving moves. The basic idea is to prevent cycling back to
previously visited solutions by the use of memories, called tabu lists, that
record the recent history of the search. This is achieved by declaring tabu
(disallowing) moves that reverse the effect of recent moves.

As for the Graph Coloring (IV) problem, it can be described as follows.
Suppose we have as an input a graph C with vertex set V and edge set
E, where the ordered pair (R,S) E E if and only if an edge exists between

NE

30	 CHAPTER 3. RELATED WORK

the vertices R and S. A k-coloring of graph C is an assignment of integers
{1,,. . .,k} (the colors) to the vertices of C in such a way that neighbors
receive different integers. The chromatic number of G is the smallest k such
that G has a k-coloring. That is, each vertex of G is assigned a color (an in-
teger) such that adjacent vertices have different colors, and the total number
of colors used (k) is minimum.
The problem of Optimizing Timetabling Solutions using Graph Coloring is
to partition the vertices into a minimum number of sets in such a way that
no two adjacent vertices are placed in the same set. Then, a different color
is assigned to each set of vertices.

In the Hybrid Approach(V), the idea is to combine more than one al-
gorithm or heuristic and apply them on the same optimization problem in
order to reach a better and more feasible solution. Sometimes the heuristics
are combined into a new heuristic and then the problem is solved using this
new heuristic. In other cases the different heuristics are used in phases, and
every phase consists of applying one of these heuristics to solve a part of the
optimization problem.

Duong T.A and Lam K.H presented in [20] a solution method for exami-
nation timetabling, consisting of two phases: a constraint programming phase
to provide an initial solution, and a simulated annealing phase with Kempe
chain neighborhood. They also refined mechanisms that helped to determine
some crucial cooling schedule parameters. In [36] a method using Graph
Coloring was developed for optimizing solutions to the timetabling problem.
The eleven course timetabling test data-sets were introduced by Socha K.
and Sampels M. [41] who applied a Max-Min Ant System (MMAS) with a
construction graph for the problem representation. Socha K. also compared
Ant Colony System (ACS) against a Random Restart Local Search (RRLS)
algorithm and Simulated Annealing (SA) [40]. A comparison of five meta-
heuristics for the same eleven data-sets was presented by Rossi-Doria 0. [39];
the approaches included in this study were: the Ant Colony System (ACS),
Simulated Annealing (SA), Random Restart Local Search (RRLS), Genetic
Algorithm (GA) and Tabu Search (TS). The conclusions drawn from the
comparisons done in [39] are the following:

• The problem difficulty varies between problem instances, across cate-
gories, and to a lesser extent, within a category, in terms of the ob-
served aggregated performance of the metaheuristics. In the context of
the scheduling problem, an example is when a particular choice of sub-
jects by a particular student make the timetabling much more difficult

31

in a particular year.

• The absolute performance of a single metaheuristic, and the relative
performance of any two metaheuristics vary between instances, within
and, to a lesser extent, across categories.

• The performance of a metaheuristic with respect to satisfying hard
constraints and satisfying soft constraints may be very different.

• It is very difficult to design a metaheuristic that can tackle general
instances.

• Promising solutions are generated when using algorithms consisting of
at least two phases, one taking care of feasibility, the other taking care
of minimizing the number of soft-constraint violations.

Abdullah S. and Burke E. K. [3] developed a Variable Neighborhood Search
based on a random descent local search with Monte-Carlo acceptance crite-
rion. Burke et al. [9] employed Tabu Search within a Graph-based Hyper-
Heuristic and applied it to both course and examination timetabling bench-
mark data-sets in order to raise the level of generality by operating on dif-
ferent problem domains.

Since we will be using the SA and AGO algorithms in this research, we
will highlight the most common scheduling problems that were solved using
these algorithms.

Apart from the exam scheduling problem and the generation of weekly
timetables, SA has been applied to many optimization problems occurring in
areas such as Very Large Scale Integration (VLSI) design, image processing,
molecular physics and chemistry, and job shop scheduling.
Laarhoven, Aarts and Lenstra [45] described an approximation algorithm for
the problem of finding the minimum make-span in a job shop using SA. This
problem is a form of machine scheduling where we are given a set of jobs and
a set of machines and each job consists of a chain of operations that must be
processed during an uninterrupted time period of a given length on a given
machine. Each machine can process at most one operation at a time and a
schedule is an allocation of the operations to time intervals on the machines.
The problem is to find a schedule of minimum length.

Another scheduling problem solved by SA is Grid computing [23] which is
a form of distributed computing that involves coordinating and sharing com-
puting, application, data storage or network resources across dynamic and
geographically dispersed organizations. The goal of grid tasks scheduling is

32	 CHAPTER 3. RELATED WORK

to achieve high system throughput and to match the application need with
the available computing resources.

D. F. Wong presented a method for optimizing VLSI design [46] using
SA. As described in his book, the VLSI design problem is divided into 2 sub-
problems. the first one is the general placement problem of placing a set of
circuit modules on a chip such that a certain objective function is minimized.
The second one is to minimize the total chip area occupied by circuit modules.

J-M. Su and J-Y. Huang used Ant Colony Optimization to solve another
scheduling problem which is the Train Timetabling Problem [49]. The aim
is to determine a periodic timetable for a set of trains that does not violate
track capacities and some other operation constraints.

ACO was also used to solve Fuzzy Job Shop Scheduling Problems [43] used
in complex equipment manufacturing systems to validate the performance of
heuristic algorithms. The idea was to move ants from one machine (nest) to
another machine (food source) depending upon the job flow, thereby opti-
mizing the sequence of jobs.

Another important problem solved using ACO is the quadratic assign-
ment problem (QAP) [42]. QAP can best be described as the problem of
assigning a set of facilities to a set of locations with given distances between
the locations and given flows between the facilities. The goal then is to place
the facilities on locations in such a way that the sum of the product between
flows and distances is minimal. The QAP is considered to be one of the hard-
est combinatorial problems, and can be solved to optimality only for small
instances. Several ACO applications dealt with the QAP, starting using the
simple AS and then by means of many more advanced versions like MMAS
(Mm-Max Ant System).

In the following chapter we will present our solution in the context of the
exam scheduling problem using the Simulated Annealing meta-heuristic.

Chapter 4

SA Applied To The Scheduling
Problem

4.1 Our Approach Using SA

In this research we provide a general solution that allows to produce
examination schedules schedules that meet the various academic rules of the
universities. We will apply our method to a simple instance of the scheduling
problem. Therefore we consider the example schedule with the following
attributes:

1. There are exactly4 examination periods (time-slots) in each examina-
tion day.

2. We have a fixed number of rooms (equal to 3) which can be used to
hold the exams.

3. There are 24 exams to be scheduled in a total examination duration of
2 days.

4. Room allocation is maximized. Any room available during the exami-
nation period should be allocated to hold and exam.

We start by building an initial solution for the schedule. All the following
work was implemented using Matlab.

The schedule is represented by an m x n matrix denoted by Sched.
Sched/i,jJ holds a set Sij of exams scheduled at day d and period p, where
i—i, 2. . . , m and j= 1, 2,. . . , n. Hence the matrix Sched will have the follow-
ing properties:

33

34 CHAPTER 4. SA APPLIED TO THE SCHEDULING PROBLEM

• A number of columns n = 4 since we have exactly 4 examination
periods (time-slots) per day.

• A number of rows m > 1 depending on the number of exams to be
scheduled.

• Sij = 3 since we have 3 examination rooms that we wish to use at
each examination period.

In our example, the 24 exams are scheduled in 2 examination days over

4 examination periods each day. This is depicted in Figure 4.1.

Periods

	

8:00-10:00	 11:00-1:00	 2:00-4:00	 5:00-8:00

DaYI	 j (E1,E2E3)	 (E7.E8,E9)	 (E13,E14,E15) (Ei9,E20.E;1)

	

(E4, El, E6)	 (E10,E11,E12) (E16.E17,E18) (E22,E23,E24)

Example schedule with 24 exams

Figure 4.1: Simple Examination Schedule

The exams are denoted by the Letter E concatenated to the course code.
For example if we have a course code CS1 11 the exam code for this course
will be ECS111. Exam E9 in the picture above is scheduled from 11:00 am
to 1:00 pm of day one. As stated above, each day we have 3 exams at each
period, this is because we have 3 examination rooms available and we wish
to maximize their utilization by always allocating non-scheduled exams to
the empty rooms.

Depending on the number of exams to be scheduled, a case frequently
appears where we sometimes end up by having rooms which are not allo-
cated to any exam at the final examination day. This is logical since the
number of exams might not be a multiple of the size of the matrix Sched. We
accommodate for this by adding virtual exams in the remaining empty cells.
These exams have no conflicts whatsoever with any of the other exams. This
is done to allow for the algorithm to run on Matlab since it is necessary to
fill-in all matrix cells.

In some other cases, the examination rooms are vast halls, and might hold
more than one exam at one period. To account for this change, we consider

4. 1. OUR APPROACH USING SA 	 35

the hail to be multiple examination rooms (the exact multiple depends on
the number of seats in the Hall).

We have provided a function Return Conflicts (E 1 , E 2) that takes two
exams as parameter and returns an integer equal to the number of students
taking these exams (E 1 and E 2 in the case above) in common. Using the
notations of Section 1.1 the function can be described as follows:

Function: ReturnConflicts(ea,eb)
set counter = 0
for all sj E S do

if seja = 1 && se b = 1 then
counter = counter + 1

end if
end for
return counter

We start by inserting the exams to be scheduled into the matrix Sched.
The exams are first inserted randomly, and the cost of the random solution
is calculated (the details of the calculations will be showed hereafter).

The cost a solution schedule is the sum of:

1. the cost of its hard constraints returned by checking for any students
having exam clashing (more than one exam in the same time-slot), and

2. a fraction of the cost of its soft constraints. This is done by multiplying
the cost of these soft constraints by a decimal e e

This is illustrated below:

Total Cost = cost of hard constraints + e cost of soft constraints (4.1)

Still remains to explain how to calculate the cost of the hard and soft con-
straints of a solution schedule. The cost of the hard constraints is calculated
over 2 steps:

1. Run the function ReturnConfiicts() for any two exams occurring in the
same time-slot of the same day

36 CHAPTER 4. SA APPLIED TO THE SCHEDULING PROBLEM

2. Take the Sum of the returned values.

As for the soft constraints, we need to make sure that we space the exams
fairly and evenly across the whole group of students thus, we need to check
that a student has no more than one exam in two consecutive time-slots of
the same day. The same procedure will be used to calculate the cost of the
soft constraints with only one modification. This time the function Return-
Conflicts() is run on all exams pairs occurring in consecutive time-slots of
the same day, and their costs are added together.
To control the relative importance of the hard constraints over the soft con-
straints, we added the cost of the hard constraints to a fraction of the total
cost of the solution's soft constraints by multiplying it by a decimal E E 10,1 [.

Once we have defined how to calculate the cost of the solution in hand, we
can now use the SA algorithm to iterate over neighbor solutions in the aim
of reaching better cost solutions. This is describe in the following sections.

Choosing a starting temperature

We used the Tuning for initial temperature method as described in Subsec-
tion 2.1.1, whereby we start at a very high temperature and then cool it
rapidly until about 60% of worst solutions are being accepted. we then use
this temperature as T0.

Temperature Decrement

In this research we will use an alternative method from those described in
Subsection 4.1 to decrement the temperature. This method was first sug-
gested by Lundy [32] in 1986 and it consists of doing only one iteration at
each temperature, but to decrease the temperature very slowly. The formula
that illustrates this method is the following:

Ti
—Ti+1=l+T 	 (4.2)

where 0 is a suitably small value and T 2 is the temperature at iteration
i.
In our test case we will take 0 to be equal to 0.001. Another solution to the
temperature decrement is to dynamically change the number of iterations as
the algorithm progresses [29].

4.2. EMPIRICAL RESULTS (SA)
	

37

Final Temperature

As a final temperature, we chose a suitably low temperature where the system
gets frozen at. We used similar results as those found in [20] where many
experiments using SA were run to solve the university timetabling problem.
Each experiment was done using different final temperatures, namely [0.5,
0.05, 0.005, 0.0005, 0.00005] and a fixed value of Tf = 0.005 was chosen.
This final temperature Tf returned the best solution cost. In our solution,
we used the same Tf even though any temperature E [0.005,. .. ,1] would
have given very close results.

But our stopping criterion does not only depend on Tf . A check was
made on consecutive solutions where no moves appeared to be improving the
cost afterwards and, whenever we receive the same cost over more than T0/4
iterations we stop since we probably have reached a best-case solution. Of
course we would also stop whenever we reach a schedule with cost = 0 since
it would be an optimal solution.

Neighborhood structure

In SA, a neighbor solution s' of s is usually any acceptable solution that can
be reached from s. In the context of the scheduling problem, a neighbor s'
of the current schedule s is a another schedule where the exams have been
distributed differently starting from s. This works in practice, but we have
improved it by constraining some schedule configurations which return very
high and impractical costs. This was done by adding these configurations to
a black-list in such a way that whenever such configurations appear during
the running time of the algorithm, they are skipped and a search for new
neighbors with different configuration is launched. Although this is naturally
controlled in the SA algorithm by the acceptance probability of neighbor
solutions, constraining such high cost solutions can save many unsatisfactory
iterations and therefore a big amount of computer processing time.

4.2 Empirical Results (SA)
We have run the SA algorithm on the exam scheduling problem using the

structures and values defined in the sections above, and plotted the results
on Matlab. Part of the plot, where the temperature goes down from 100
to 0 (without using the black-list constraint on neighbor configurations) is
shown in the Figure 4.2 together with the respective solutions costs at each
temperature.

38 CHAPTER 4. SA APPLIED TO THE SCHEDULING PROBLEM

Cost

Figure 4.2: Variation in cost values with respect to temperature decrement

We can see that the cost starts with high value (equal to 78) when the
temperature is near 100, and it drops gradually with the temperature until it
reaches a value equal to 3. At some points of the plot, the cost increases even
though the temperatures are decreasing. These are exactly the uphill steps
that appear in SA where worse moves are allowed to be taken to escape from
local minimum. One more thing to notice in the plot is that the probability
of accepting a worse move is decreased when the temperature decreases just
as expected from Equation 2.1.

Another plot is shown in Figure 4.3, where the SA algorithm is started
from the same initial configuration and run within the same range of tem-
peratures, but now using the improved version that consists of constraining
unfeasible neighbor configurations.

We can see that the difference between the costs in adjacent temperatures
is narrower than those in Figure 4.2. Even though the final cost reached is the
same, the cost function with respect to temperature drops more strictly now.
This resulted from the fact that many non-useful iterations were avoided due
to the restrictions of unfeasible schedule configurations.

4.2. EMPIRICAL RESULTS (SA)
	

39

Cost

Figure 4.3: Variation in cost values with respect to temperature decrement
after constraining unfeasible neighbor configurations

40 CHAPTER 4. SA APPLIED TO THE SCHEDULING PROBLEM

Chapter 5

ACO Applied To The
Scheduling Problem

5.1 Our Approach Using AGO

We will use the same definition of the scheduling problem as described
in the Introduction. Furthermore, we consider the same example problem as
in Section 4.1 whereby Sched denotes the schedule we are building and the
function Return Conflicts(E i , E 2) takes two exams as parameter and returns
an integer equal to the number of students taking these exams E 1 and E 2 in
common (conflicts between the 2 exams). We also recap that we are trying
to schedule 24 exams in a period of 2 examination days.

To be able to use the ACO algorithm on this problem, we create a 24x24
matrix to hold the pheromone values between the exams and call it PhMatrix.

The pheromone values in the timetabling problem will be used differently
than what has been done in TSP since the relative position of an exam
does not only depend on its direct predecessor or its direct successor in the
schedule, but also on all the exams that are to be scheduled within the same
time-slot of the same day (that is in the same set S) and therefore the costs
are calculated differently in these 2 problems. The difference is highlighted
in the example below:

To calculate the cost of scheduling S exams in the same set S ij we must
check for the all the conflicts between every other exam in this set. On the
other hand, to calculate the cost of going from a city i to another city j in a
TSP, we only need to check for the distance between the two cities without
considering the distances to the cities we have previously visited.

In the context of the scheduling problem, the ants will therefore decide

41

42 CHAPTER 5. ACO APPLIED TO THE SCHEDULING PROBLEM

which exams are feasible to be placed in the same set Sjj of the schedule.
We know that we can have as many exams in each S ij as there are available
rooms.

PhMatrix is first initialized so that the values 'r : i, j E {1,. . . , n} are all
equal to 1. The attractiveness 77ij is defined as follows:

1

= ReturnConflicts(E, E)	
(5.1)

where E, E refer to exams i and j respectively.
At each iteration the ants will start from a new source (exam) and build

their solution (schedule). The ants choose an exam as a source; they move
to the next exam which has a highest probability according to equation 2.9.
It is clear that during the first iteration the ants will choose the next exam
having the minimum number of conflicts (highest 1jj) with the previous one,
since the pheromone values are all equal.

Once the next exam is chosen by ant k, the previous one in the schedule
is put in the tabu list of ant k, that is a list containing all moves which
are infeasible for ant k. This is done to ensure that the same exam is not
scheduled twice in the timetable. Ant k continues its colony, and chooses the
next exam in the same way.

But, as we showed in the example above, even if this works for adjacent
exams in the schedule, this might lead to conflicts with other exams sched-
uled in the same time-slot. So the point to make here is that, even when

jjj is optimal between 2 consecutive exams, it leads in some cases to high
costs returned from conflicts with other exams scheduled within the same
set S. This might be accounted for by elevating the defined parameter Ce in
equation 2.9, but this does not solve the problem completely.
Therefore, a global pheromone evaluation rule is proposed where an ant k at
exam i that has to decide about the next exam j of the permutation, makes
the selection probability:

• Considering every exam j not in the tabu list of k

• Depending on the sum of all pheromone values between, the exams
already scheduled in the same set as i (denoted by 1), and the candidate

exam j which is:	 J r.

So we end up by the following equation:

jj=1Yjj)	 11ij

Pij
= >(>	 iz)	

Vj E S	 (5.2)
z

5.2. PHEROMONE UPDATE	 43

This makes sure that we have considered the probabilities of moving to
the next exam, for all the exams already scheduled in the same time-slot of
the current day, before choosing it.

The steps above are repeated until every ant completes its solution asyn-
chronously from other ants. During this construction phase, the ants evaluate
their solution and modify the pheromone trail values on the components of
this solution. This pheromone information will direct the search of the future
ants. We next show how the pheromone update is done in our solution.

5.2 Pheromone Update
After scheduling a set of exams (one cell) in the timetable Sched, we do

a local pheromone update whereby we update the pheromone values between
all pairs of scheduled exams according to Equation 2.11.

On the other hand, to avoid unfeasible distributions (with conflicting
exams that lead to dead-end configuration) from being placed in the same
set Sij , we have decided to induce negative pheromone values between the
exams leading to such distributions in such a way that, if exam i and j lead
to future conflicting configurations in the timetable, they will be assigned
a negative pheromone value 7-ij even if i and j have no conflicts with each
other.

The negative pheromone update equation is the inverse of Equation 2.11
where the addition is replaced by a substraction. The equation is the follow-
ing:

(5.3)

where V E (0, 1] is the pheromone decay coefficient, and T01d is the old value
of the pheromone. This negative pheromone update can be induced directly
after the pheromone initialization between the exams resulting in conflicting
configurations, therefore before the ants start building their solution. This
will ensure that for ant k the probability of choosing these exams in the same
set is very low.

5.3 Empirical Results (ACO)
The results of running the ACO algorithm on the example described

previously were plotted on Matlab. Figure 5.1 below shows the variation in

44 CHAPTER 5. AGO APPLIED TO THE SCHEDULING PROBLEM

the cost of the schedule at several iterations. At each iteration we start from
a different nest (source) and build a complete solution.

Figure 5.1: AGO - Cost values at subsequent iterations (Hard Schedule)

We can see that the cost drops significantly from a value around 1520 to
almost 5 after 100 iterations. Plot 5.1 corresponds to solution for a schedul-
ing problem instance with a huge number of conflicts between students. We
have also run the AGO algorithm on a different instance having a lower num-
ber (still a considerable number) of conflicts between exams and the results
are plotted in Figure 5.2. The initial solution has a cost equal to 20 and it
drops to 0 after only 5 iterations, therefore an optimal solution was found
in this case.

a	 a	 10	 IS	 20	 25	 30	 35	 40
Cost

Figure 5.2: AGO - Cost values at subsequent iterations (Loose Schedule)

5.4. PERFORMANCE ANALYSIS: ACO VS. SA 	 45

5.4 Performance Analysis: ACO vs. SA

Each of the Simulated Annealing and Ant Colony Optimization algorithms
was tested by performing 15 trials in the aim of building complete examina-
tion schedules, starting from different initial configurations and using differ-
ent numbers of exams.
The first 5 trials consisted of generating schedules for 24 exams (timetable
size = 24) in the minimum possible timescale. In the next 5 trials we gen-
erated timetables of size equal to 32, while in the last 5 trials we generated
timetables of size equal to 38.
Note that the schedules chosen in these trials have a percentage of conflicting
exams that varies between 55% and 65% (so more than half of the exams
in these schedules have conflicts with each other). Also note that ACO was
run using 50 ants, and each ant chose a random exam as its starting point
(source).

The results with the lowest cost were recorded at each trial, together with
their corresponding CPU running time. The standard deviation (o) of every
5 trials was also calculated. All the trials were run on a Core2 Duo PC with
2.0 GHz CPU and 2 GB of RAM. The results are shown in the table 5.1
below.

We have made the following observations:

1. The running times of ACO are better than those of SA in all 15 trials.
SA annealing takes more time to discover and evaluate the neighbor
solutions at each iteration (temperature). AGO uses information from
prior iterations to guide subsequent colonies to new states (neighbors)
which reduces the processing time needed to calculate the cost of such
moves.

2. ACO found the least cost solution in all 3 timetable sizes, even though
it sometimes lead to high cost solutions compared to those found in
SA. The standard deviations of the timetables' costs produced using
SA are lower than those found in the case of AGO which means that
SA provide tight results where the costs of the solutions are close to
each other, while ACO gives broad results where the difference between
the costs can be high.

3. If we choose to use more ants in ACO, the running time will increase
and we will not get any better results, so we fixed the number of ants

46 CHAPTER 5. AGO APPLIED TO THE SCHEDULING PROBLEM

Table 5.1: Performance of AGO and SA algorithms: Empirical Results
SA -	 Running Time (sec)	 Cost	 ACO- Running Time (sec) 	 Cost

Trial#1	 1.5444	 3.55	 -	 0.2028	 0.0100
Trial#2	 1.5000	 6.80	 -	 0.2184	 1.0500
Trial#3	 1.2948	 3.70	 -	 0.1716	 10.900
Trial#4	 1.5132	 3.80	 -	 0.2184	 2.9500
Trial#5	 1.5288	 3.85	 -	 0.0936	 5.9500

-	 -	 a = 1.37	 -	 -	 a = 4.38

SA -	 Running Time (sec)	 Cost	 ACO- Running Time (sec)	 Cost

Trial#6	 2.1300	 3.97	 -	 0.3400	 11.8000
Trial#7	 1.9909	 5.81	 -	 0.9909	 4.3500
Trial#8	 1.9001	 7.20	 -	 0.4411	 7.5000
Trial#9	 2.0152	 3.10	 -	 0.2214	 1.3300
Trial#10	 2.1001	 4.20	 -	 0.1999	 3.4999

-	 -	 a = 1.63	 -	 -	 a = 4.06

SA -	 Running Time (sec)	 Cost	 ACO- Running Time (see)	 Cost

Trial#11	 2.5120	 4.36	 -	 1.0933	 13.950
Trial#12	 4.6000	 3.37	 -	 0.9922	 4.0011
Trial#13	 3.0011	 5.11	 -	 1.0056	 2.3500
Trial#14	 3.3111	 3.91	 -	 0.8851	 5.9500
Trial#15	 2.7222	 3.56	 -	 0.9111	 2.7600

-	 -	 a = 0.69	 -	 -	 a = 4.76

to 50. On the other hand, if we reduce the number of ants we will
not reach such low cost solutions even though we will achieve better
running times. The same was noticed in SA: we can use a lower initial
temperature or even decrease the number of neighbors visited at each
temperature, and thus do less iterations (better running times), but we
would have not been able to achieve the above costs.

4. When the number of conflicting exams chosen is too high in such a way
that more than 70% of the exams have conflicts with each other (not
shown in table 5.1), the ACO algorithm outperforms the SA algorithm.
We had to highly increase the number of iterations done at each tem-
perature (using the static strategy of temperature decrement) to allow
for the SA algorithm to explore enough neighbors so that it is able to
find a better move (neighbor).

5.4. PERFORMANCE ANALYSIS: AGO VS. SA 	 47

5. When the number of conflicting exams chosen is very loose in such a
way that less than 20% of the exams have conflicts with each other
(also not shown in table 5.1), both approaches lead to near-optimal
solutions. Although ACO converged to a near-optimal solution using
50 ants, its running time was higher than that of SA, since SA reached
the stopping criteria in only very few iterations.

48 CHAPTER 5. AGO APPLIED TO THE SCHEDULING PROBLEM

Chapter 6

Conclusion

6.1 Summary of the Main Results

We have used two algorithms namely SA (simulated annealing) and ACO
(ant-colony algorithm) to solve the scheduling problem. We first introduced
the problem and provided its mathematical formulation in Chapter 1 and
then we described the SA and ACO algorithms and illustrated the way they
are used to solve combinatorial optimization problems. We presented our
approach to solving the scheduling problem using these algorithms in Chap-
ter 4 and 5. All the results were implemented using Matlab, and a comparison
between the performance and running times of SA and ACO in producing
different examination schedules over several trials was depicted in Table 5.1.
The solution we provided was based on an exam scheduling problem model
that could be implemented in Notre-Dame University. It is not difficult to
generalize our solution to solve many different scheduling problems with some
minor modifications regarding the variables related to the problem in hand
and the resources available.

6.2 Future Work
Our future work consists of parallelizing these algorithms in order to im-

prove their running times and also on using a hybrid Ant Colony - Simulated
Annealing approach to improve the cost of our solution. We intend to par-
allelize the two algorithms at the level of data whereby we work on solving
sub-problems and then combine them into a bigger low cost problem. We
also intend to achieve parallelism at the level of ants when using the ACO
algorithm in such a way that ants can work in parallel to find their solution.

49

50	 CHAPTER 6. CONCLUSION

Bibliography

[1] Karen I. Aardal, Stan P. M. Van Hoesel, Arie M. C. A. Koster, Carlo
Mannino, and Antonio Sassano. Models and solution techniques for
frequency assignment problems. pages 261-317, 2001.

[2] Emile H. L. Aarts and Peter J. M. Van Laarhoven. Simulated Annealing:
Theory and Applications. Kluwer Academic Publishers, 1987.

[3] Salwani Abdullah, Edmund K. Burke, and Barry Mccollum. An
investigation of variable neighbourhood search for university course
timetabling. In The 2nd Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA), pages 413-427, 2005.

[4] Masri Binti Ayob and Ghaith Jaradat. Hybrid ant colony systems for
course timetabling problems. In Proceedings of the 2nd conference on
data mining and optimization, Universiti Kebangsaan Malaysia, pages
120-126. IEEE, 2009.

[5] Imed Bouazizi. Ara - the ant colony based routing algorithm for manets.
In Proceedings of the 2002 International Conference on Parallel Process-
ing Workshops, ICPPW 02 series, page 79, Washington, DC, USA, 2002.
IEEE.

[6] p Brucker and S Knust. In complexity results for scheduling problems.
In Robust and Online Large-Scale Optimization, volume 5868 of Lecture,
Last update: 29.06.2009.

[7] Edmund Burke, Kirk Jackson, Jeff Kingston, and Rupert Weare. Au-
tomated university timetabling: the state of the art. The Computer
Journal, 40:565-571, 1997.

[8] Edmund K. Burke, Dave Elliman, Peter H. Ford, and Rupert F. Weare.
Examination timetabling in british universities: a survey. In Selected
papers from the First International Conference on Practice and The-
ory of Automated Timetabling, pages 76-90, London, UK, UK, 1996.
Springer-Verlag.

51

52	 BIBLIOGRAPHY

[9] Edmund K Burke, Barry Mccollum, Amnon Meisels, Sanja Petrovic,
and Rong Qu. A graph-based hyper-heuristic for educational timetabling
problems. European Journal of Operational Research, 176:177-192, 2007.

[10] Oscar Castillo, Patricia Melin, Janusz Kacprzyk, and Witold Pedrycz,
editors. Soft computing for Hybrid Intelligent Systems, volume 154 of
Studies in Computational Intelligence. Springer, 2008.

[11] C. Y. Cheong, K. C. Tan, and B. Veeravalli. A multi-objective evolution-
ary algorithm for examination timetabling. J. of Scheduling, 12(2):121—
146, April 2009.

[12] M. Chiarandini, M. Birattari, K. Socha, and 0. Rossi-Doria. An ef-
fective hybrid algorithm for university course timetabling. Journal of
Scheduling, 9(5) :403-432, October 2006.

[13] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of comput-
ing, STOC '71, pages 151-158, New York, NY, USA, 1971. ACM.

[14] D. de Werra. An introduction to timetabling. European Journal of
Operational research, (19), 1985.

[15] M. Dorigo. Optimization, learning and natural algorithms. PhD thesis,
Politecnico di Milano, Italy, 1992.

[16] Marc Dorigo and Socha Krzysztof. An introduction to ant colony opti-
mization. IRIDIA Technical Report Series, 2006.

[17] Marco Dorigo, Mauro Birattari, and Thomas Sttzle. Ant colony opti-
mization - artificial ants as a computational intelligence technique. IEEE
COMPUT. INTELL. MAC, 1:28-39,2006.

[18] Marco Dorigo and Christian Blum. Ant colony optimization theory: a
survey. Theor. Comput. Sci., 344(2-3):243-278, November 2005.

[19] Marco Dorigo and Thomas Sttzle. The ant colony optimization meta-
heuristic: algorithms, applications, and advances. In Handbook of Meta-
heuristics, pages 251-285. Kluwer Academic Publishers, 2002.

[20] Tuan-Anh Duong and Kim-Hoa Lam. Combining constraint program-
ming and simulated annealing on university exam timetabling, 2004.

[21] R. W. Eglese. Simulated annealing: a tool for operational research.
European Journal of Operational Research, (46), 1990.

[22] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5(4):691-
703, 1976.

BIBLIOGRAPHY
	

53

[23] Stefka Fidanova. Simulated annealing for grid scheduling problem. In
Proceedings of the IEEE John Vincent Atanasoff 2006 International
Symposium on Modern Computing, JVA '06, pages 41-45, Washington,
DC, USA, 2006. IEEE Computer Society.

[24] Juan Frausto-Solfs, Federico Alonso-Pecina, and Jaime Mora-Vargas.
An efficient simulated annealing algorithm for feasible solutions of course
timetabling. In Proceedings of the 7th Mexican International Conference
on Artificial Intelligence: Advances in Artificial Intelligence, MICAI '08,
pages 675-685, Berlin, Heidelberg, 2008. Springer-Verlag.

[25] M. Gendreau. An Introduction to Tabu Search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, chapter 2, pages
37-54. Kluwer Academic Publishers, 2003.

[26] Walter J. Gutjahr. First steps to the runtime complexity analysis of ant
colony optimization. Comput. Oper. Res., 35(9):2711-2727, September
2008.

[27] Juraj Hromkovic. Algorithmics for hard Problems: introduction to com-
binatorial optimization, randomization, Approximation, and heuristics.
Springer-Verlag, Berlin, Heidelberg, 2010.

[28] Richard M. Karp. Reducibility among combinatorial problems.
In Michael Jnger, Thomas M. Liebling, Denis Naddef, George L.
Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi,
and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-
2008, pages 219-241. Springer Berlin Heidelberg, 2010.

[29] Graham Kendall. Artificial intelligence methods: Simulated annealing
- introduction, 2002. course run at the The University of Nottingham
within the School of Computer Science and IT.

[30] Philipp Kostuch. The university course timetabling problem with a
three-phase approach. In Proceedings of the 5th international conference
on Practice and Theory of Automated Timetabling, PATAT'04, pages
109-125, Berlin, Heidelberg, 2005. Springer-Verlag.

[31] Ketan Kotecha, Gopi Sanghani, and Nilesh Gambhava. Genetic Algo-
rithm for Airline Crew Scheduling Problem Using Cost-Based Uniform
Crossover. pages 84-91. 2004.

[32] M Lundy and A Mees. Convergence of an annealing algorithm. Math.
Program., 34(1):111-124, January 1986.

[33] Vittorio Maniezzo, Luca Maria Gambardella, and Fabio De Luigi. Ant
colony optimization, April 09 2004.

54
	

BIBLIOGRAPHY

[34] Peter Merz and Bernd Freisleben. A comparison of memetic algorithms,
tabu search, and ant colonies for the quadratic assignment problem. In
Proc. Congress on Evolutionary Computation, IEEE, pages 2063-2070.
Press, 1999.

[35] N Metropolis, A Rosenbiuth, M Rosenbluth, A Teller, and E Teller.
Equations of state calculations by fast computing machines. The Journal
of Chemical Physics, (21):1087-1091, 1953.

[36] Sara Miner, Saleh Elmohamed, and Hon W. Yau. Optimizing
timetabling solutions using graph coloring. In NPAC REU program,
1995.

[37] Carter M.W., Laporte G., Chinneck J.W., and GERAD. A general
examination scheduling system. Les Cahiers du GERAD. 1992.

[38] Eric Poupaert and Yves Deville. Simulated annealing with estimated
temperature. Al Commun., 13(1):19-26, October 2000.

[39] Olivia Rossi-doria, Michael Sampels, Mauro Birattari, Marco Chiar,
Marco Dorigo, Luca M. Gambardella, Joshua Knowles, Max Manfrin,
Monaldo Mastrolilli, Ben Paechter, Luis Paquete, and Thomas Stut-
zle. A comparison of the performance of different metaheuristics on the
timetabling problem. In In: Proceedings of the 4th International Confer-
ence on Practice and Theory of Automated Timetabling (PATAT 2002,
pages 329-351. Springer, 2003.

[40] Krzysztof Socha, Joshua Knowles, and Michael Sampels. A max-min ant
system for the university course timetabling problem. In Proceedings of
the Third International Workshop on Ant Algorithms, ANTS '02, pages
1-13, London, UK, UK, 2002. Springer-Verlag.

[41] Krzysztof Socha, Michael Sampels, and Max Manfrmn. Ant algorithms
for the university course timetabling problem with regard to the state-
of-the-art. In In Proc. Third European Workshop on Evolutionary Com-
putation in Combinatorial Optimization (Evo COP 2003, pages 334-345.
Springer Verlag, 2003.

[42] Thomas Sttzle and Marco Dorigo. Aco algorithms for the quadratic as-
signment problem. In New Ideas in Optimization, pages 33-50. McGraw-
Hill.

[43]P. Surekha, P.R.A. Mohanaraajan, and S. Sumathi. Ant colony opti-
mization for solving combinatorial fuzzy job shop scheduling problems.
In Communication and Computational Intelligence (INCO CCI), pages
295 —300, dec. 2010.

BIBLIOGRAPHY
	

55

[44] El-Ghazali Talbi. Metaheuristics: from design to implementation. Wiley
Publishing, 2009.

[45] Peter J. M. Van Laarhoven, Emile H. L. Aarts, and Jan Karel Lenstra.
Job shop scheduling by simulated annealing. OR, 40(1):113-125, Jan-
uary 1992.

[46] D. F. Wong, H. W. Leong, and C. L. Liu. Simulated annealing for VLSI
design. Kluwer Academic Publishers, Norwell, MA, USA, 1988.

[47] Anthony Wren. Scheduling, timetabling and rostering - a special rela-
tionship? In Selected papers from the First International Conference on
Practice and Theory of Automated Timetabling, pages 46-75, London,
UK, 1996. Springer-Verlag.

[48] Qinghong Wu, Zongmin Ma, and Ying Zhang. Current status of ant
colony optimization algorithm applications. In Proceedings of the 2010
International Conference on Web Information Systems and Mining -
Volume 02, WISM '10, pages 305-308, Washington, DC, USA, 2010.
IEEE Computer Society.

[49] Jen yu Huang. Using ant colony optimization to solve train timetabling
problem of mass rapid transit. In Journal of Computer Information
Systems, 2006.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53

