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Abstract 

Quantum key distribution uses special purpose hardware and quantum mechanics to distribute 

cryptographic keys in a system for its usage in a classical symmetric key scheme for encryption 

and decryption. There are two appeals for going to such length of creating special hardware and 

utilizing quantum mechanics to distribute keys over parties. First, detecting eavesdropping on 

communication due to the fundamental properties of photons governed by quantum mechanics. 

Second, offering a solution to the byproduct effect of quantum computers breaking the most 

common asymmetric schemes (Transport Layer Protocol). In this research paper, prepare-and-

measure and entanglement-based protocols are compared on an implementation level to 

understand the various components and the context in which they are utilized. 

Keywords: Quantum Key Distribution Protocols, Quantum Computers, Quantum Information 

Theory, Prepare-and-measure protocols, Entanglement-based protocols, Quantum Security, 

Quantum Mechanics, Calderbank-Shor-Steane, Causer-Horne-Shimony-Holt. 
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Chapter 1: Basics of key distribution 

1.1 Introduction to the General Problem 

Cryptography is a topic that has played a role in history leading back to the ancient Greeks. The 

Roman Empire and its modern republic used a cipher to encrypt and decrypt their messages, 

especially in conflict with warring nations. Enemies failed to intercept crucial messages from 

Rome sent to the frontline commanders. One such ingenious idea in its time was the Caesar-

cypher. The plain alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} would be offset by a predetermined number of letters 

in either the left or the right direction. Traditionally, the Caesar-cypher was offset 3 letters to 

the right. Hence, the cypher alphabet became {𝑑, 𝑒, 𝑓, … , 𝑐}. 

Suppose we want to send a message using this encryption scheme. A plain message that looks 

something like MEET ME NEXT TO TREE would translate to cyphertext of PHHW PH 

QHAW WR WVHH. This produces an unreadable sequence of letters that seems arbitrary to 

human readers. The sender and the receiver know the action in which the plaintext is 

encrypted. However, even if the message looks random at first, there are mathematical ways 

where it could easily decrypt. In every language, the letters are not equally distributed in 

frequency. For example, the letters E and T are the most used in the English alphabet. [1] 
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Figure 1.1 Normal distribution of letters in the English alphabet 

In the above text, the letter E has been used six times and T four times. The sentence is a typical 

English-written text. Frequency analysis would quickly decrypt the cipher text. It gets faster 

with longer plaintexts since a more typical combination of letters forms [2]. Fortunately, there 

are provably secure encryption schemes. One such scheme is the One Time Pad (OTP). 

 

Figure 1.2 One Time Pad scheme 
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Every instance where we have a system with a sender and a receiver, we denote them 

respectively by Alice and Bob. 𝑀 is the message we want to transmit, 𝑆𝐴 and 𝑆𝐵 are they keys 

that are held by both Alice and Bob. 𝐶 is the cyphertext that Alice is sending. A message is 

generally a long string of bits.  

 

1. Encryption: Alice encrypts the message 𝑀 using her key 𝑆𝐴: 𝐶 = 𝑀 ⨁ 𝑆𝐴 by 

performing binary addition, meaning if two different bits were added together, it 

would result in the bit 1. Similar bits added together yield the bit 0. 

 

2. Transmission: Alice sends the cyphertext 𝐶 to Bob over a public channel. Any 

eavesdropper can listen in on it and read the cyphertext.  

 

3. Decryption: Bob receives the message and decrypts using his key  𝑆𝐵: 𝐶 = 𝑀′ ⨁ 𝑆𝐵. 

 

At the end, it is provable that the message Bob receives 𝑀′, is in fact equal to 𝑀. 

 

𝑀′ = 𝑀: 𝑀′𝑖 = (𝑆𝐵)𝑖⨁ 𝐶𝑖 = 𝑀𝑖⨁ (𝑆𝐴)𝑖⨁ (𝑆𝐵)𝑖 =  𝑀𝑖 

 

 

Say Alice wants to send a message 𝑀: 0 1 1 0 1 0 0 to Bob. She encrypts this using the key 

𝑆𝐴: 1 0 1 1 1 0 1. This results in a cyphertext 𝐶: 1 1 0 1 0 0 1. Assuming Bob has the same key, 

performing binary addition will recover the plaintext. This protocol is information-theoretically 

secure because they key cannot be obtained from the cyphertext. The key is also random, the 

same length as the plaintext and is never reused wholly or partially. The limitation is agreeing 

on the key, Alice and Bob cannot just meet up and exchange it. They would need a more formal 

approach for exchanging keys [3].  
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Figure 1.3 Ideal key generator scheme 

An Ideal Key Generator is conceived and can output 𝑆𝐴 for Alice and 𝑆𝐵 for Bob, but aborts if 

it detects an eavesdropper Eve tampering with the process. The outputted key from the Ideal 

Key Generator should have: 

 

1. Correctness: The probability that Alice and Bob’s keys differ but the protocol does not 

is small Pr[𝑆𝐴 ≠ 𝑆𝐵] ≤ 𝜖 where 𝜖 is a predetermined small constant. If the keys are 

very different, then the protocol should recognize and abort. 

 

2. Close to a perfect key: 

 

a. Eve does not have any knowledge of the key. 

b. The individual key bits are uncorrelated. 

How do we create keys for Alice and Bob that fulfill their requirements? It is where quantum 

key distribution protocols play a significant role. [4] 
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1.2 Polarization of photons 

Encrypting bits into quantum states is the building block for any quantum key distribution 

protocol. We have two different bases in which we can encode and decode in. The rectilinear 

bases: ↔ ↕ and the diagonal bases: ↗↙ ↘↖. We can use the polarization of photons to encrypt 

bits into quantum states. Consider linear polarization the oscillation of the photon occurring in 

a one-directional plane. Given one basis, we can distinguish between the different basis states 

by using polarization filters.  

 

Figure 1.4 Polarization filter in the rectilinear basis 

 

A vertically polarized photon that passes through the filter would be deflected to the right, 

whereas a horizontal photon would deflect to the left. If a photon encoded in the diagonal basis 

is sent through a rectilinear polarization filter, the state of the photon changes; therefore, the 
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polarization of the photon is now either horizontal or vertical in an equal probability. All the 

information about the previous polarization is now lost [5]. 

1.3 An introduction to the BB84 protocol 

Based on the diagonal and rectilinear basis, we choose for the bits 0 and 1 a polarized state.  

 

 

Figure 1.5 BB84 distribution protocol 

Alice and Bob want to communicate and create a secret key that can be used in the one-time 

pad encryption scheme. Alice and Bob now have access to a quantum channel where they 

exchange quantum states. A classical channel is also available to send back and forth classical 

messages. Eve has access to the quantum channel and can manipulate the sent states. Eve can 

also listen in on the classical channel but cannot change the messages [6]. 
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Figure 1.6 Stages of the BB84 protocol 
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Chapter 2: Quantum systems 

2.1 Introducing quantum systems 

In this section, we want to develop a mathematical description of the physical systems and 

processes that appear in a quantum key distribution protocol. The BB84 protocol where Alice 

prepares the states and sends them to Bob, then Bob measures them. A quantum key distribution 

protocol usually has three different steps or quantum stages.  

The process stratifies into three different stages that are 1. The preparation stage involves Alice 

preparing the states she wants to send to Bob, 2. Channel stage: This is where Alice physically 

sends the states to Bob, 3. Measurement stage: Bob receives the states and derives a classical 

outcome 𝑥. 

 

Figure 2.1 Stages of a quantum key distribution protocol 
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The channel stage is all the things that happen between the preparation and the measurement 

stage, and this includes all types of attacks that Eve can perform and all the losses and noise 

that might occur from a non-ideal environment. [7] 

2.2 The preparation stage of a QKD 

A density operator can be used to describe the preparation stage 𝜌 ∈ Β(Η). Β is an operator that 

maps from the Hilbert space into the Hilbert space. The density operator has the following 

properties: 

Normalized 𝑇𝑟(𝜌) =  1 

Hermitian 𝜌+ = 𝜌, where the Hermitian conjugate is equal to the density operator itself. 

Positive semi-definite ⟨𝜃|𝜌|𝜃⟩ ≥ 0  

A density operator is an ensemble of pure states and mixed states {𝜌𝑖|𝜓𝑖}𝑖=1,…,𝑑. An ensemble 

that specifies all the distributed possible pure states with a probability distribution. For every 

possible pure state, a probability 𝜌𝑖 is assigned. The density operator 𝜌 sum is 

 

    ∑ 𝜌𝑖|𝜓𝑖⟩⟨𝜓𝑖|𝑑
𝑖=1  

 

Assume 𝜌3 is the only state where it is a pure state or  𝜌3 = 1 and the others are equal to 0. 

𝜌3 = 1, 𝜌𝑖 = 0 ∀ 𝑖 ≠ 3. The density operator therefore is just 𝜌𝑝𝑢𝑟𝑒 = |𝜓3⟩⟨𝜓3|.This equation 

has a sum of one term which makes it a pure state. 
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A qubit, as we have already discussed, is when a polarized photon encodes into a physical 

system. However, mathematically we can assume that |0⟩ is a horizontally polarized state and 

|1⟩ is a vertically polarized state. A general qubit state would then be a linear combination of 

zero and one vectors |𝜓⟩ = 𝛼|0⟩ + |1⟩ with 𝛼, 𝛽 being complex numbers 𝐶. 𝛼, 𝛽 are not 

however probabilities with which 0 and 1 vectors occur, but they are the probability amplitudes 

|𝛼|2 + 𝛽2 = 1. We can write out the basis vector 0 and 1 as |0⟩ = (1
0
), |1⟩ = (0

1
). This is also 

the rectilinear basis in BB84. We can have multiple choices for the basis of the qubit state space. 

The Hadamard basis, unlike the computational basis, can be denoted with |+⟩ = 1
√2

⁄ (1
1
), 

|−⟩ = 1
√2

⁄ ( 1
−1

). The Hadamard basis is an orthogonal basis for the qubit state space, or the 

diagonal polarization in the BB84 protocol. The preparation stage is described by a density 

operator. [7] 

2.3 Overview of a quantum channel in a QKD 

This stage includes all the things that happen after the preparation stage, or in other words, 

everything that happens between Alice sending the prepared states and Bob receiving them. 

Mathematically the quantum channel is a linear, completely positive, trace preserving map 

ϵ: β(Η𝐴) → β(Η𝐵) . It is a map that goes from the operator from the first Hilbert space Η𝐴 to 

the operator of the second Hilbert space Η𝐵. A quantum channel is a linear map, meaning that 

𝐸(𝛼𝜌𝐴 + 𝛽𝜎𝐴) = 𝛼𝐸(𝜎𝐴) + 𝛽𝐸(𝜎𝐴) for 𝜌𝐴, 𝜎𝐴 ∈ 𝛽(Η𝐴), 𝛼, 𝛽 ∈ 𝐶. 

 

This equation fulfills for every choice of density operator possible for coefficients alpha and 

beta. If we apply the quantum channel to a state, it should be the same as applying the quantum 
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channel to the individual states and build a linear combination. A quantum channel is a positive 

map. For map 𝐸(𝜌𝐴) to be the positive semidefinite for all positive semi-definite 𝜌𝐴 ∈ 𝛽(Η𝐴). 

For every choice of ρ𝐴 we can make, the map applied to this state has to be a semidefinite 

operator.  

 

Figure 2.2 A quantum channel 

 

 

Assume we have state 𝜌, we apply the channel 𝜖 at parts of 𝜌. Nothing is happening in the other 

part of the state, the sent state evolves freely without being attacked  

 

and is a bystander. Applying the map 𝜖 to the Η𝑏𝑦 yields as a positive map, which makes the 

quantum channel completely positive.  
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𝐸 ⊗ 𝑖𝑑𝑛: 𝛽(Η𝐴) ⊗ (𝐶𝑛) → 𝛽(Η𝐴) ⊗ 𝛽(𝐶𝑛) 

is positive for all 𝑛 ∈ Ν. The tensor product of the map 𝐸 and the identity of the Hilbert space 

of the bystander 𝑖𝑑𝑛, then the tensor product map should be positive for all choices of n 

regardless of the size of the Hilbert space.  

 

A quantum channel is a trace preserving and the quantum state doesn’t change  

𝑇𝑟(𝜌𝐴) = 𝑇𝑟(𝐸(𝜌𝐴))∀𝜌𝐴 ∈ 𝛽(Η). 

The trace of the quantum state inputted into the channel is equal to the quantum state that we 

got as an output, all this are true for all ρ𝐴  within the operator of Η𝐴. 

In conclusion, a quantum state is always mapped to another quantum state through a quantum 

channel. A quantum state always results in a quantum state [8].  

2.3.1 Conveying quantum channels with the Kraus decomposition 

We can mathematically convey and write these quantum channels with the Kraus 

decomposition. Suppose we have a channel that is a linear, completely positive trace- 

preserving map as previously stated, it can always find operators such that we can write the 

map as a sum of these operators applied to the state we have put in. Operators 𝑘𝑗  

 

are mapped from the Hilbert space Η𝐴 to Η𝐵 and at most 𝑑 operators to describe the quantum 

channel, where 𝑑 is the product of the dimensions of the Hilbert space. 

 

Kraus decomposition for a channel 𝐸: 𝛽(Η𝐴) → 𝛽(Η𝐵): 𝐸(𝜌𝐴) = ∑ 𝑘𝑗𝜌𝐴𝑘𝑗
+𝑑

𝑗=1 , where 

𝑘𝑗: Η𝐴 → Η𝐵 ∀ 𝑗 ∈ {1, … , 𝑑} with 𝑑 ≤ dim (Η𝐴)dim (Η𝐵) and ∑ 𝑘𝑗
+𝑑

𝑗=1 𝑘𝑗 = Ι𝐴. The 

summation of all the 𝑘𝑗 operators and 𝑘𝑗
+ together yields the identity of the Hilbert space Η𝐴. 
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A Kraus decomposition for the map can always be derived if it is linearly completely positive 

trace preserving. If a map possesses a Kraus decomposition, then it is provable that it is a 

linearly positive trace preserving map [7]. 

2.3.2 The unary-evolution channel  

One such channel is the unary evolution 𝑢. It is a closed system that has only one Kraus 

operator. We have one unary that we denote with 𝑈 that is applied to the state to get a 

resulting state. [7] 

 

𝜌′ = 𝑈𝜌𝑈+  ≡ 𝑢(𝜌) 

 

Unitary evolutions are reversible, fining the inverse of the unitary evolution by taking the 

dagga of the map.  

 

(𝑢+ ∙ 𝑢)(𝜌) = 𝑈+𝑈𝜌𝑈+𝑈 = 𝜌 

While 𝑈+𝑈 = Ι. 
 

 

 

 

 

 

 

 

2.3.3 The amplitude damping channel 

An example of an open channel can be described as a two-level system. It is an atom with a 

ground state 0 and an excited state 1. The amplitude damping channel models the decay of the 

atom. If the atom is in an excited state, it goes to the decaying state with 
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probability of 𝛾 where 0 ≤ 𝛾 ≤ 1. The atom will stay in its excited state with probability of 

1 − 𝛾. If the atom is already in a grounded state, it will stay grounded with the probability of 

1. 

 

Figure 2.3 An amplitude damping channel 

This type of channel has two Kraus operators:  

 

𝑘1 = √𝛾|0⟩⟨1| → 𝑘1|1⟩⟨1|𝑘1
+ = 𝛾|0⟩⟨0| 

𝑘2 = |0⟩⟨0| + √1 − 𝛾|1⟩⟨1| 

 

 

 

In 𝑘1, applying it to the excited state will yield the ground state with the factor of 𝛾. It models 

the decay of the excited state to the ground state with probability 𝛾. A second operator is 

needed because 𝑘1
+𝑘1 ≠ Ι. If the sum of 𝑘1

+𝑘1 and 𝑘2
+𝑘2 is calculated, the identity Ι =

 𝑘1
+𝑘1 + 𝑘2

+𝑘2 = Ι can be derived. [9] 
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2.4 The measurement channel 

This stage is where the quantum state is received and measured to deduce a classical outcome. 

Measurement is described as a Positive Operator-Valued Measure. For a finite outcome set 𝑋, 

a POVM is a collection 𝑀 of operators 𝑀𝑥 that fulfill: ∀𝑥 ∈ 𝑋: 𝑀𝑥 ≥ 0, ∑ 𝑀𝑥 = Ι𝑥∈𝑋 . 

Probability of getting an outcome 𝑥 ∈ 𝑋: 𝜌𝜌(𝑥) = 𝑇𝑟(𝜌𝑀𝑥). For a pure state |𝜓⟩ that 

simplifies to ⟨𝜓|𝑀𝑥|𝜓⟩. The expectation value of a POVM of all the outcomes, this can be 

done by taking sum of all the outcomes in the outcome set multiplied by the trace of 𝜌(𝑀𝑥). 

∑ 𝑥𝑇𝑟(𝜌𝑀𝑥)𝑥∈𝑋 . [10] 
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Chapter 3: Composite systems 

3.1 Introduction to composite systems 

In this section, we will be discussing composite systems mathematically. We will also look at 

the entanglement quantum phenomena and briefly discuss the no-cloning theorem and why 

we cannot clone arbitrary quantum states. As shown before, the following section describes a 

general quantum experiment. 

 

Figure 3.1 Quantum experiment A 

 

Suppose Alice conducts this experiment. Alice prepares a quantum state 𝛲A, sends it through a 

quantum channel 𝛦A and finally measures the state with a measurement 𝑀𝐴 to deduce a classical 

outcome. We can assume that Bob is doing the same by preparing quantum states 𝛲A sending 

them through 𝛦A channel and measuring the state 𝑀A. 
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Figure 3.2 Quantum experiment B 

These are two completely independent quantum experiments that do not influence each other. 

We can still view this as one system where two individual quantum experiments occur. We 

can also describe it as tensor products of quantum states. 

 

Figure 3.3 A system containing experiments A and B 

The state of the composite systems is 𝛲A × 𝛲B. The quantum channel is 𝛦A × 𝛦B and the 

measurement is the tensor product of  𝑀A  × 𝑀B. Composite system can be two different 

quantum experiments viewed as one. [11] 
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3.2 Overview of the Hilbert space 

We specify an underlying Hilbert space whenever we have a quantum system. In this section, 

we will introduce bipartite systems, or a system with two different parties, like in the case of 

Alice and Bob. The Hilbert space is a tensor product of two Hilbert spaces Η𝐴 × Η𝐵. A 

system could be multiple parties as well, which yields a tensor product of multiple Hilbert 

spaces. The concepts in this section apply to multipartite Hilbert spaces unless shown 

otherwise. A Hilbert space is a vector space |Ζ| ∈ Η of complex numbers 𝐶. A Hilbert space 

has scalar products ⟨𝑥|𝑦⟩. We can define an orthogonal basis of a Hilbert space Η as a family 

of vectors {𝑥𝑖}𝑖 with ⟨𝑥𝑖|𝑥𝑖⟩ = 1, ⟨𝑥𝑖|𝑥𝑗⟩  ≥ 0 where 𝑖 ≠ 𝑗.   

The basis of the Hilbert space is described as Η𝐴: { |𝑒𝑖⟩ }, Η𝐵: { |𝑓𝑖⟩ }. 

The bases of the subsystems construct a basis of the tensor product of the Hilbert space. Η𝐴 ×

Η𝐵: {|𝑒𝑖⟩ × |𝑓𝑗⟩}. This leads directly to a formula of the dimensions of the Hilbert space 

dim(Η𝐴 × 𝐻𝐵) = dim(Η𝐴) dim (Η𝐵). We take every combination of basis states of the tensor 

product. The dimension of the tensor product Hilbert space just becomes the product of the 

dimensions of the subsystem of Hilbert spaces. [12] 

 

 

 

Notation: 

  

|𝑒⟩ ⊗ |𝑓⟩ = |𝑒⟩|𝑓⟩ = |𝑒𝑓⟩ 

|𝑒⟩𝐴 ⊗ |𝑓⟩𝐵 = |𝑒⟩𝐴|𝑓⟩𝐵 = |𝑒𝑓⟩𝐴𝐵 

 

Mixed states:  
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𝜌𝐴 ∈ β(Η𝐴), 𝜌𝐵 ∈ 𝛽(Η𝐵) 

𝜌𝐴 ⊗ 𝜌𝐵 ∈ 𝛽(Η𝐴 ⊗ Η𝐵) 

3.2.1 An example of a composite system 

We can define the basis of one-qubit space: {|0⟩, |1⟩} where |0⟩ =  (1
0
), |1⟩ = (0

1
).  

A one-qubit space has the computational basis as the only basis we can choose. If we have a 

system of two qubits, we can assign a computational basis to each subsystem, and the basis of 

composite Hilbert space is given by the tensor product of the one-qubit bases. 

We describe the basis the two-qubit space as {|00⟩, |01⟩, |10⟩, |11⟩}. We take every 

combination of the zeroes and ones to get the basis of the two-qubit space, resulting in a four 

basis states which fits perfectly with the dimension formula shown in section 3.2. We already 

have the vectoral presentation of the basis for the one-qubit space and now we can take the 

algebraic tensor product to get the presentation of the two-qubit states 

 

|00⟩ = (1
0
) × (0

1
) = (

(1)(1
0)

(0)(1
0)

) =  (
1
0
0
0

), |01⟩ =  (
0
1
0
0

), |10⟩ =  (
0
0
1
0

), |11⟩ =  (
0
0
0
1

) 

 

Given the spaces, a general two-qubit state is a linear combination of these four basis states. 

|𝜓⟩ = 𝛼|00⟩ + 𝛽|01⟩ + 𝛾|10⟩ + 𝜎|11⟩ = (
𝛼
𝛽
𝛾
𝜎

) with |𝛼|2 + |𝛽|2 + |𝛾|2 + |𝜎|2 = 1. [13] 

3.3 Entanglement 

Assume we have a tensor product of the zero states. One state is present in Alice’s system and 

the other in Bob’s. This is a composite state, and we can safely announce that Alice’s and Bob’s 

qubit are in state zero. 
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|𝜙⟩+ =
1

√2
|10⟩𝐴 × |10⟩𝐵 + |1⟩𝐴 × |1⟩𝐵 

 

The following quantum state is in the composite Hilbert state. It is in a super-positional state, 

meaning we have the tensor product of zero states in both Alice and Bob’s qubits with a 

tensor product of one state added. This raises the uncertainty about the state of Alice’s and 

Bob’s qubit.  

 

Entanglement is a pure bipartite state meaning |Ψ⟩𝐴𝐵 is entangled if it cannot be written as a 

product state |ψ⟩ × |𝜓⟩𝐵 for any choice of states |𝜓⟩𝐴 and |𝜓⟩𝐵. If there are no states |𝜓⟩𝐴 

and |𝜓⟩𝐵 such as the tensor products of these states give the state |𝜓⟩, then |𝜓⟩ is an entangled 

state. To prove if a state is a pure bipartite state and to figure out if the state is entangled, we 

use the Schmidt decomposition theorem. [14] 

3.4 The Schmidt Decomposition 

We always write a pure bipartite state |𝜓⟩𝐴𝐵 as |𝜓⟩𝐴𝐵 =  ∑ 𝜆𝑖|𝑒𝑖⟩𝐴 ×  |𝑓
𝑖
⟩𝐵

𝑑
𝑖=1  with 𝜆𝑖 > 0 

and ∑ 𝜆𝑖
2 = 1𝑖 , 𝑑 < 𝑚𝑖𝑛{ 𝑑𝑖𝑚(𝐻𝐴), 𝑑𝑖𝑚(𝐻𝐵)}. Suppose Alice has a qubit, a two-

dimensional system. Bob possesses a large system, then we can always find a subspace in 

Bob’s system such that the Schmidt decomposition only includes the subspace of Bob’s  

 

system. The Schmidt decomposition also shows is if the state is entangled when 𝑑 > 1. If the 

state |𝜓⟩ is an entangled state, then 𝑑 is always greater than one. Therefore, by taking the 

Schmidt decomposition and calculating the Schmidt rank, we can figure out if the state is 

entangled or a product state.  
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Going back to the previous example  

 

|𝜙⟩+ =
1

√2
|10⟩𝐴 × |10⟩𝐵 + |1⟩𝐴 × |1⟩𝐵  ⟹  𝜆1 =

1

2
, 𝜆2 =

1

2
, 𝑑 = 2 

 
Therefore, the state |𝜙+⟩𝐴𝐵 is entangled. The Schmidt decomposition is applicable to pure 

bipartite states. [15] 

3.5 Entanglement for mixed states 

A bipartite state 𝜌𝐴𝐵 is called separable if and only if it can be written as:  

 

𝜌𝐴𝐵 = ∑ 𝜌𝑥

𝑥

𝜎𝐴
𝑥 ⊗ 𝜂𝐵

𝑥
 

 

For a probability distribution 𝜌𝑥 and states 𝜎𝐴
𝑥 ∈ 𝛽(Η𝐴) and 𝜂𝐵

𝑥 ∈ 𝛽(Η𝐵). Otherwise, 𝜌𝐴𝐵 is 

called entangled. Meaning, if we could write this bipartite state as the summation, it is 

separable, otherwise it is entangled. [16] 

3.6 Partial trace 

We can conclude from the previous example that |𝜙+⟩
𝐴𝐵

 is an entangled state. A local density 

operator can calculate the state of Alice’s system. Let  𝜌𝐴𝐵 be a bipartite density operator and 

{|𝑒𝑖⟩𝐵} a basis for Η𝐵 is then 𝑇𝑟𝐵(𝜌𝐴𝐵) = ∑ (𝑖 Ι𝐴 ⊗ 𝛽⟨𝑒𝑖|)𝜌𝐴𝐵(Ι𝐴 ⊗ |𝑒𝑖⟩𝐵
) or  

𝑇𝑟𝐵(𝜌𝐴𝐵) = ∑ 𝛽⟨𝑒𝑖|)𝜌𝐴𝐵|𝑒𝑖⟩𝐵𝑖 . We use the partial trace to calculate the local density operator 

of state |𝜙+⟩
𝐴𝐵

. 

 

We need a basis for Bob’s system. |𝜙+⟩
𝐴𝐵

 is a state in a two qubits Hilbert space, we already 

have an understanding that the basis for the one-qubit Hilbert space is the computational 

basis. Therefore, we can use the computational basis to calculate the partial trace: 
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𝜌𝐴 = 𝑇𝑟𝐵(|𝜙+⟩𝐴𝐵⟨𝜙+|) 

=  1
2⁄ (⟨0|𝐵(|0⟩𝐴|0⟩𝐵 +  |1⟩𝐴|1⟩𝐵)(⟨0|𝐴⟨0|  +  ⟨1|𝐴⟨1|)|0⟩𝐵 

+(⟨1|𝐵(|0⟩𝐴|0⟩𝐵 +  |1⟩𝐴|1⟩𝐵)(⟨0|𝐴⟨0|𝐵 +  ⟨1|𝐴⟨1|𝐵)|1⟩𝐵) 

=  1
2⁄ (|0⟩𝐴⟨0| +  |1⟩𝐴⟨1|) 

=  Π𝐴 

 

We can see that there are only two terms which are non-zero. Combining the one state with 

the zero leads to a scalar product of 0. We get a maximally mixed state Π𝐴. Both basis states 

of the system appear with equal probability. We cannot gain information from the state 

because all the possible basis states are equally provable. The same calculation can be applied 

to Bob’s system, tracing out Alice’s system yields a maximally mixed state of Bob’s system. 

This does not mean the state |𝜙+⟩
𝐴𝐵

 can be written as a tensor product of Π𝐴 ⊗ Π𝐵.  

 

|𝜙+⟩
𝐴𝐵

⟨𝜙+| ≠  Π𝐴 ⊗ Π𝐵 

 

 

The local density operator for Alice and Bob describes the situation in their experiments but 

tracing out one part of the system leads to a complete loss of all the information. Therefore, it 

cannot be describing this entangled state by looking at the local density operator. [17] 

3.7 Classical-quantum ensembles 

One of the subsystems is a classical system with a Hilbert space Η𝐴 ⊗ Η𝑍. 

An ensemble: {𝜌𝜁 , 𝜌𝐴
𝜁

⊗ |𝜁⟩Ζ⟨𝜁|}
𝜁∈Ζ

 

Density operator: 𝜌𝐴Ζ =  ∑ 𝜌𝜁𝜁∈ Ζ 𝜌𝐴
𝜁

⊗  |𝜁⟩ Ζ⟨𝜁| 
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The corresponding ensemble to this system is an ensemble where the states are tensor 

products of density matrices 𝜌𝐴 with an index 𝜁 and classical values 𝜁 that are encoded into 

quantum states. These tensor product states are then distributed by a probability distribution 

𝜌ζ. Before, we had an ensemble of pure states, now the state 𝜌𝐴 in the ensemble derives from 

another ensemble. Essentially, it is an ensemble of ensembles. The density operator is a sum 

over all the classical values. [18] 

3.8 Evolution of composite systems 

 

Figure 3.4 A quantum system that maps from system A to system B 

 

Just like we defined in the previous section, a quantum channel is a linear, completely 

positive, trace-preserving map 𝜖𝐴𝐵: 𝛽(Η𝐴 ⊗ Η𝐵) → 𝛽(Η𝐴
′ ⊗ Η𝐵

′ ). The only difference that 

the map, maps between tensor products of Hilbert spaces. The properties still held even if the 

Hilbert spaces are tensor products.  
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Figure 3.5 Evolution on the subsystem A and B 

A particular case of the evolution of composite systems is when the evolution takes place on 

one subsystem and the other subsystems, the identity evolution is applied. An example of 

such evolution is the partial trace or the discarding channel, which means that the quantum 

channel on the B system is the partial trace and the evolution on the A system is the identity. 

[13] 

 

Partial trace: 𝜖𝐵 = 𝑇𝑟𝐵 

𝑇𝑟𝐵(𝜌𝐴𝐵) = (Ι𝐴 ⊗ Tr𝐵)(𝜌𝐴𝐵) =  ∑(Ι𝐴 ⊗ ⟨𝑒𝑖|)𝜌𝐴𝐵

𝑖

(Ι𝐴 ⊗ |𝑒𝑖⟩𝐵
) 

Kraus operator: {Ι𝐴 ⊗ ⟨𝑒𝑖|𝐵} 
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3.9  The no-cloning theorem 

A composite system appears in the no-cloning theorem where it deals with perfectly copying 

unknown quantum states. Suppose we want to build a machine which is a unitary 𝜐 that takes 

|𝜓⟩ pure state as an input and outputs two perfect copies of |𝜓⟩. 

 

 

Figure 3.6 The no-cloning theorem 

 

Fortunately for quantum key distribution protocols, building such a machine is not 

realistically feasible. That is because Eve could use this machine to copy the entirety of the 

states Alice is sending, then proceed to send one to Bob and hold on to it. Alice and Bob 

would not be aware of the process. This machine is not realistic due to the linear nature of 

quantum mechanics. 

 

Proof. 

General qubit state: |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩. Consider a general qubit |0⟩ and |1⟩. Passing 𝜓⟩ as a 

parameter into the 𝜐 no-cloning machine entails the following. 
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𝜐|𝜓|0⟩ = |𝜓⟩|𝜓⟩ 

= (𝛼|0⟩ + 𝛽|1⟩)(𝛼|0⟩ + 𝛽|1⟩) 

= 𝛼2|0⟩|0⟩ + 𝛼𝛽|0⟩|1⟩ + 𝛽𝛼|1⟩|0⟩ + 𝛽2|1⟩|1⟩ 

 

We can calculate this using the linear combination given for |𝜓⟩. 
 

𝜐|𝜓|0⟩ = 𝜐(𝛼|0⟩ + 𝛽|1⟩)|0⟩ 

 

= 𝛼𝜐|0⟩|0⟩ + |𝛽𝜐|1⟩|0⟩ 

= 𝛼|0⟩|0⟩ + 𝛽|1⟩|1⟩ 

 

Because 𝜐 is a linear map, we can calculate the linear combination applied to the basis state 

|0⟩ and |1⟩.  

 

𝛼2|0⟩|0⟩ + 𝛼𝛽|0⟩|1⟩ + 𝛽𝛼|1⟩|0⟩ + 𝛽2|1⟩|1⟩ 
≠ 𝛼|0⟩|0⟩ + 𝛽|1⟩|1⟩ 

 

These two expressions are not equal. However, they are equal only when 𝛼 = 1, 𝛽 = 0 or 𝛼 =

0, 𝛽 = 1. Meaning we can always copy classical states. [19] 
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Chapter 4: Prepare-and-measure Vs 
Entanglement 

4.1 Introduction 

The goal of quantum key distribution protocols is to establish a secret key between two 

different parties, Alice, and Bob, which is used to encrypt then and decrypt shared messages. 

A quantum key distribution scheme can be split into two parts: quantum transmission and 

classical post-processing. Quantum transmission is where quantum states are sent back and 

forth between the parties. Depending on the protocol, this phase might be utilized to measure 

quantum states or have an independent source distributing them. At the end of this phase, 

Alice and Bob will possess a classical bit string that is not identical but partially correlated 

and partially secured. The classical post-processing phase consists of Alice and Bob taking 

their bit strings deduced from the quantum transmission phase to form an actual key. Errors 

are corrected to make a more reliable and usable key for a secure line of communication. We 

can subdivide he quantum transmission stage into two stages: the prepare-and-measure and 

entanglement stage. 

 

In prepare and measure, quantum states are prepared, sent, and then measured. Whereas 

entanglement schemes do not require Alice to prepare and send states to Bob, Alice and Bob 

possess entangled pairs of qubits. The method in which they obtain these pairs is irrelevant as 

it is from a friendly third-party source or a 
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potential aggressor. In this section, we will discuss the prepare and measure protocols and 

draw comparisons to the entangled protocols. 

4.2 Prepare-and-measure 

 

Figure 4.1 Basic structure of a Prepare-and-measure protocol 

We have already discussed the BB84 protocol in the previous section, which possesses the 

same structure shown in the above figure. The structure is as follows; there are two parties, 

Alice, and Bob, which want to establish a secret key. The use of a quantum channel to allow 

the flow of qubits. We use a classical channel to send messages. Eve can interact with 

quantum states if it respects the rules of quantum mechanics. The BB84 protocol is an 

excellent example of a prepare and measure protocol. Introduced in 1984 by Bennet and 

Brassard, it begins with Alice choosing two random bit strings: 

 

𝑎 =  (𝑎1, 𝑎2, … , 𝑎𝑛) 
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𝑏 =  (𝑏1, 𝑏2, … , 𝑏𝑛) 

 

𝑎 is the key bit string and 𝑏 is the basis bit: 0 = 𝐶, 1 = 𝐻. Both bit strings contain 4𝑛 bits. 

String 𝑎 includes the actual key. String 𝑏 determines in which basis the key bit will be 

encoded. If the bit is 0, the computational basis is used, whereas for the Hadamard basis the 

bit is 1. These two strings are used to prepare states |𝜓00⟩
𝐴

=  |0⟩, |𝜓10⟩
𝐴

=  |1⟩, |𝜓01⟩
𝐴

=

 1 2⁄ (|0⟩ + |1⟩), |𝜓11⟩
𝐴

=  1
2⁄ (|0⟩ − |1⟩). If both bits are, then Alice encodes the 0 into the 

computational basis, so on and so forth. The prepared states are sent to Bob, where these 

states endure noise and loss from non-ideal hardware and/or acts of eavesdropping. However, 

consider an ideal scenario where these errors do not occur. Bob receives the states 

𝐸(|𝜓⟩
𝐴

⟨𝜓|), where |𝜓⟩𝐴 = ∑ |𝜓
𝑎𝑖𝑏𝑖

⟩𝐴 ⊗  |𝜓
𝑎𝑖+1𝑏𝑖+1

⟩𝐴
4𝑛
𝑖=1 . Bob proceeds to measure in order 

to receive his own bit string 𝑎′ = (𝑎1
′ , 𝑎2

′ , … , 𝑎4𝑛
′ ) which is the analog of Alice’s string a. 𝑏′ =

(𝑏1
′ , 𝑏2

′ , … , 𝑏4𝑛
′ ) denotes the basis Bob has chosen to measure with. Alice and Bob now both 

hold two bit-strings 𝑎′ and 𝑎 for the key bit, and bit string 𝑏′ and 𝑏 where the chosen basis is 

stored.  

4.2.1 Sifting step in a prepare-and-measure protocol 

The sifting step comes next where parties compare the basis they choose: 

 

1. Alice declares the bit string b. Alice cannot declare her basis if Bob did not announce 

that he has received them. This is to deter Eve from figuring out the basis Alice has 

measured.  
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2. Bob declares the bits where it differs from Alice’s bit string, 𝑏 ≠ 𝑏′ this is where Bob 

has chosen different basis than Alice. In this case, Bob’s calculations yield a 

completely different result.  

3. Alice and Bob discard pairs {𝑎𝑖, 𝑎𝑖
′} for which 𝑏𝑖 ≠ 𝑏𝑖

′. They discard the pairs in the 

key bit string where the basis bit strings differ. 

 

At the end of the sifting process, Alice, and Bob now both possess a string 𝑎 and 𝑎′ of length 

2𝑛. This is because the probability of Bob choosing the correct basis if 50%. 

 

In the classical post-processing phase the following steps are performed:  

 

1. Parameter estimation: The amount of information that could potentially be obtained 

from Eve is deduced. 

2. Error correction: The generated key strings are correlated but not identical, error 

corrections are applied to mitigate this effect. 

3. Privacy amplification: It is a decisive step to attempt to minimize Eve’s knowledge on 

the key. The less knowledgeable Eve is, the more the key is secure. 

4.2.2 Intercept and resend strategy 

1. Eve obtains a total of 4𝑛 qubits from Alice. She must successfully guess which basis 

Alice has chosen. 

2. Eve randomly selects the basis either in the computational or the Hadamard basis. In 

all 2𝑛 cases, Eve guesses correctly. The bits are then correlated with Alice’s bits. 
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3. Eve transmits the prepared qubits to Bob.  

4. Bob measures the qubits in his own randomly chosen basis. 

5. Sifting step is applied, where Alice and Bob perform a comparison of basis and find 

string 𝑎 and 𝑎′ of length 2𝑛. 

 

In the final bit strings, they get after performing the sifting step, both parties choose the same 

bases, but Eve’s differ. In 𝑛 cases, Alice and Bob chose the exact same bases. Therefore, Bob 

got a random outcome because Eve’s result was random. In half of the cases, this means that 

Bob got the correct result. 𝑛 2⁄  or 25% errors in the sifted keys have been detected. Such high 

percentage causes the protocol to be aborted.  

 

Figure 4.2 A detailed overview of the steps in the BB84 protocol 
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Alice and Bob calculate the estimate in which Eve has produced. They can conclude that in 

1
3⁄  of the cases Eve had introduced an error. The protocol is thus aborted. [21] 

4.3 The six-state protocol 

The six-state protocol is like the BB84 protocol in all the steps except for one main difference. 

The BB84 protocol uses the computational and the Hadamard basis, while the six-state 

introduces the third basis 𝑦. The states are: 

 

|𝜓𝑦+⟩ =  1
2⁄ (

1

𝑖
) 

 

|𝜓𝑦−⟩ =  1
2⁄ (

1

−𝑖
) 

 

 

The massive advantage of the six-state protocol over the BB84 protocol is that it has more 

possibilities for the state. In the BB84, the computational and Hadamard measurements span a 

plane in the Bloch sphere, while a third added state spans the entirety of the Bloch sphere, 

yielding more possibilities for states. 

In the sifting step, parties must discard more bits because the probability that Bob has chosen 

the wrong basis is 2 3⁄ , instead of the 1 2⁄  in the BB84. Eve would have less knowledge about 

which basis she should use to measure the state in. This introduces more errors into Alice’s 

and Bob’s key bit during the error estimation step. This security analysis of both protocols 

shows that the six-state protocol lets us generate a higher secret key rate. [21] 
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Figure 4.3 A quantum system that maps from system A to system B 

4.4 The SARG04 protocol 

The SARG04 protocol is specifically tailored to be secure against a specific attack, the Photon 

Number Splitting attack or PNS. The PNS attack targets the implementation part of the 

protocol. An ideal single-photon source is needed in the polarization of photons where the 

states are being prepared. 

These ideal single-photon sources do not exist. In experimentation, a weak laser pulse is 

generally used to encode qubits. A certain percentage of the weak laser pulsations do not 

always contain photons; ideally, one weak laser pulse should contain only one single photon. 

In certain instances, a pulse might contain two or more photons. [22] 
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Figure 4.4 A basic PNS attack on a protocol 

In figure 4.4, Eve performs an attack to eavesdrop on the quantum channel. Since the pulse 

contains more than one photon, then the key-bit is shared between them. Eve can simply store 

one of these photons in her quantum memory. In this case, Bob still receives part of the 

photons initially sent and announces that he had received them without recognizing that Eve 

had performed an attack. This is dangerous because when Alice announces her basis for 

encoding, Eve now can use the correct one to measure her stored photon and calculate a 

perfectly correlated bit value. In all the cases where a pulse contains more than one photon, 

Eve can gain perfect knowledge about the key. It is difficult for Alice and Bob to detect 

invasive attacks of that magnitude because no error had been introduced in the measured and 

sent photons. The SARG04 protocol is advantageous for mitigating this attack type but weak 

against other types of attacks. The protocol has a different sifting process than the BB84 and 

the six-state protocol. The sifting process in the SARG04 protocol: 

 

1. Alice’s state is |𝜓00⟩. 
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2. After Bob measures the state received, he announces the pair {|𝜓00⟩, |𝜓01⟩}. It is 

crucial that one of the states present in the pair is the actual state Alice sent, and the 

other one is a state of the other basis. Alice notes 0 as the secret key bit, 0 being the 

state she has prepared in the computational and sent. The secret key bit determined by 

the bases she has used for the encoding.  

3. Bob deduces his measurement and decides whether the bit is valid or invalid. It is 

valid if Bob can differentiate between the two candidate states.  

 

a. Suppose Bob has chosen the computational basis. He gets |𝜓00⟩. However, this 

result is also possible if the transmitted state had been |𝜓01⟩. That is because 

Alice could have sent the state |𝜓01⟩ and Bob would have measured in the 

computational basis, yielding an equal probability of receiving the state |𝜓00⟩ 

or the state |𝜓10⟩, both candidate states. Therefore, it cannot be concluded 

which state Alice has sent, invalidating the bit.  

b. Suppose Bob had chosen the Hadamard basis to measure the bit with. In this 

case, Bob would get a random result |𝜓01⟩ or |𝜓11⟩. If the outcome is |𝜓01⟩, 

the bit is rendered invalid because it is consistent with both candidate states. If 

the state Alice had sent was |𝜓01⟩ then this state would have been the outcome 

of Bob’s measurement in the Hadamard basis. If Bob’s outcome is |𝜓11⟩, then 

the bit is valid because this can only occur if the state Alice has sent is |𝜓00⟩. 

In the other case, if Alice sent |𝜓01⟩ and Bob measures in the Hadamard basis 

then the only possible result is |𝜓01⟩. From the outcome |𝜓11⟩, Bob knows 

Alice must have sent state |𝜓00⟩ and the secret key bit is 0. 
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The sifting process is much more complex than in the BB84 protocol. Alice and Bob must 

discard more qubits because, in SARG04, more bits would be invalid. The advantage is that 

Alice never has to announce the basis used for the encoding. This can aid in the Photon 

Number Splitting, as Eve stored photon could never conclude on which basis it has to 

measure. [23] 

4.5 Entanglement-based protocols 

A quantum key distribution is divided into a quantum transmission phase and a classical post-

processing phase. A quantum transmission can occur either through a prepare and measure 

protocol or an entanglement-based one. 

The idea of an entanglement-based protocol, as opposed to a prepare and measure protocol, is 

to have access to a source that distributes quantum states to Alice and Bob; it can belong to a 

friendly third-party provider Charlie. It can also be controlled by Eve directly; this is the 

worst-case scenario that is assumed in every eavesdropping scenario, just like in the prepare 

and measure protocols where Eve is assumed to listen in on the communication. [24] 

 

Figure 4.5 General scheme of an entanglement-based protocol 
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4.6 The Ekert protocol 

It was created by Arthur Ekert in 1991 and utilized maximally entangled states to generate 

keys. The source distributes maximally entangled states to Alice and Bob. If Alice and Bob 

prove that the states are indeed maximally entangled, they can prove that Eve has no 

information on the state. 

 

|ψ−⟩𝐴𝐵 =  1
√2

⁄ (|01⟩𝐴𝐵 + |10⟩𝐴𝐵)  

 

Due to the monogamy of entanglement, if two parties share maximally entangled states, a 

third party cannot have entanglement with the same state. The shape of the system shared 

across Alice, Bob and Eve always follows a dynamic where Alice and Bob share a maximally 

entangled state, and Eve possesses a product state with both. Eve tampering with the state 

results in a non-maximally entangled state. The problem thus falls upon detecting the 

percentage of Eve’s interaction with the state [24] 

4.6.1 Measurement operations 

We specify the measurement operation Alice can perform: 

 

𝐴1 = 𝑍 

𝐴2 = 𝑋 

𝐴3 = 1
√2

⁄ (𝑍 + 𝑋) 
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Figure 4.6 Bloch sphere of Alice’s measurement operations 

The operations that Bob can perform: 

 

𝐵1 = 𝑍 

𝐵2 = 1
√2

⁄ (𝑍 − 𝑋) 

𝐴3 = 1
√2

⁄ (𝑍 + 𝑋) 

 

Figure 4.7 Bloch sphere of Bob’s measurement operations 

 

 



Chapter 4: Prepare-and-measure Vs Entanglement 49 

 
 

Note that 𝐴1 = 𝐵1 = 𝑍, 𝐴3 = 𝐵3 = 1
√2

⁄ (𝑍 + 𝑋). Using these pairs of measurements 

generates a key (𝐴1, 𝐵3), (𝐴1, 𝐵2), (𝐴2, 𝐵3), (𝐴2, 𝐵2). [24] 

4.6.2 The CHSH inequality in the classical case 

The inequality can be derived for classical random variables: 𝐴1, 𝐴2, 𝐵3, 𝐵2. These notations 

are used for the measurement direction, however, assume they are classical random variables 

now. All these random variables can take realizations +1, -1 with equal probability: 

 

𝐴1(𝐵3 + 𝐵2) + 𝐴2(𝐵3 − 𝐵2) = ±2 
 

By calculating the above term, the answer yields -2 or +2. We can take the expectation value 

and absolute value; the statement would always be less or equal to 2. Since the expectation 

value is a linear operation, we can put it amongst products of itself: 

 

 

𝑆 ∶= |⟨𝐴1𝐵3⟩ + ⟨𝐴1𝐵2⟩ +  ⟨𝐴2𝐵3⟩ −  ⟨𝐴2𝐵2⟩| ≤ 2 
 

 

The expectation value in the case where the realizations are all equally probable is defined by 

𝐴𝑖
𝑣 = realizations of r.v  𝐴𝑖. 〈𝐴𝑖𝐵𝑗〉 = 1

𝑁⁄ ∑ 𝐴𝑖
𝑣

𝑣 𝐵𝑗
𝑣. 

 

At the end, the resulting inequality S is the CHSH inequality, where it is always less or equal 

to 2 in the classical case. [26] 

4.6.3 Steps of the Ekert protocol 

1. Alice and Bob distribute several |𝜓−⟩
𝐴𝐵

states between them. Alice and Bob might be 

the distributors, or this job could be given to a friendly third party. We assume this 

role is given to Eve as a worst-case scenario analysis. 
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2. Foreach state, Alice and Bob randomly choose a measurement from the sets {𝐴𝑖} and 

{𝐵𝑖}. 

3. Alice and Bob announce the base they chose foreach of the measurements. The result 

of the pairs (𝐴1, 𝐵1) and (𝐴3, 𝐵3) form the sifted key. The key is sifted, because in the 

prepare and measure protocols, where Alice announces the basis and Bob compares it 

to his basis choice, the bits are discarded where they chose different basis states, they 

use the results with the same basis for the sifted key, but they don’t discard the other 

results and use them for testing. 

4. The results for the pair (𝐴1, 𝐵3), (𝐴1, 𝐵2), (𝐴2, 𝐵3), and (𝐴2, 𝐵2) are used to check the 

CHSH inequality. 

5. If the results of the S value are higher than 2, Alice and Bob continue to perform error 

corrections and privacy amplification, with the of turning the partially correlated bit 

string into a secure key that can be used in cryptography. [25] 

4.7 Entanglement-based BB84 protocol 

The idea of the entanglement based BB84 protocol is closely like the prepare and measure 

BB84. Alice and Bob want to distribute several maximally entangled states between them so  

 

it can be used for key generation between them. In this case, they want to distribute 𝑚 pairs of 

|𝜙+⟩ states defined by:  

 

|𝜙+⟩𝐴𝐵 =  1
√2

⁄ (|00⟩𝐴𝐵 + |11⟩𝐴𝐵) 
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Because, if they are certain they have the state, which is maximally entangled, they can 

simply measure it and choose the result for the key generation. The difficult is the distribution 

of these perfectly maximally entangle states. A quantum error correction code, Calderbank-

Shor-Steane code, is used for error correction. We will not get into the details of the code but 

assume have access to two classical error correction codes 𝐶1 and 𝐶2 that can both correct 𝑡 

errors. Both 𝐶1 and 𝐶2 are used to construct a quantum error correction code that encodes 𝑚 

qubits intro 𝑛 qubits and that can correct up to 𝑡 errors. 

 

Steps for the entanglement based BB84 protocol: 

 

First, we define the Hadamard transformation: 

 

𝐻: |0⟩ →  |+⟩ 

𝐻: |1⟩ →  |−⟩ 

 

𝐻: |+⟩ →  |0⟩ 

𝐻: |−⟩ →  |1⟩ 

 

1. Alice creates 2𝑛 qubit pairs, where each qubit is in the |𝜙+⟩
⨂ 2𝑛

 state. 

2. Alice randomly selects 𝑛 qubits that will later be used to estimate the errors in the 

qubit pairs. This is to gauge the damage done to the |𝜙+⟩ state. 

3. Alice selects a random classical bit string 𝑏 of length 2𝑛. If the 𝑏𝑖 is 1, she applies the 

Hadamard transformation to her half of the corresponding qubit pair. A Hadamard 

transformation maps between the computational basis and the Hadamard basis and 

vice versa. 

4. She then sends the other half of all qubit pairs to Bob. 
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5. Alice announces the string 𝑏, which stores which qubit she has applied the Hadamard 

transformation to, and she also announces the positions of the check qubits.  

6. Bob proceeds to apply a Hadamard transformation to those qubits for which the 

corresponding bit value is 1, 𝑏𝑖 = 1. This procedure of applying Hadamard 

transformation is equal to preparing a qubit in the Hadamard basis on Bob’s side and 

then measuring it in the Hadamard basis. 

7. Alice and Bob measure the checked qubits in the computational basis {|0⟩, |1⟩} to 

estimate the error rate. If more than 𝑡 errors occur, they abort the protocol. Remember 

that the quantum error correction code they have used can correct up to 𝑡 errors in 

qubits. Therefore, if the checked qubits have more errors, then it is very likely that in 

the qubits used for key generation has more than 𝑡 errors. Even if the checked qubits 

have less than 𝑡 errors, it is possible that there a more than 𝑡 errors in the key qubits, 

and then the quantum error correction procedure fails. However, this scenario is highly 

improbable.  

8. If the number of errors is below 𝑡, Alice and Bob use the CSS code built from the 

error correction codes 𝐶1 and 𝐶2 to correct the errors in the 𝑛 remaining bits and 

obtain m copies of |𝜙+⟩ defined by|𝜙+⟩
⨂ 𝑚

. The CSS was able to encode 𝑚 qubits 

into 𝑛 qubits while correcting 𝑡 errors, so Alice and Bob end up with 𝑚 of the |𝜙+⟩ 

state. 

9. Since they are now sure that they share a maximally entangled state, they can measure 

the state |𝜙+⟩
⨂ 𝑚

 in the computational basis to obtain the shared secret key. 
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4.8 Connection between prepare and measure protocols 
and entanglement-based protocols 

This section's objective is to show that an entangled-based protocol can replicate the statistics 

we have in a prepare and measure protocol. 

Prepare and measure: 

1. Remember that in a prepare and measure protocol, Alice randomly chooses bit 

sequence 𝑥1, … , 𝑥𝑛 where these bits are a realization of a classical random variable 𝑋 

with some probability distribution 𝑝𝑋(𝑥). 

2. Alice encodes them into quantum states |𝜙𝑥1
⟩, … , |𝜙𝑥𝑁

⟩ and sends them to Bob. 

3. Bob’s role in the prepare and measure protocol is to receive and measure the states 

sent from Alice. 

However, these is an alternative way to get the same result from an entanglement-based 

protocol: 

1. Alice begins by preparing the bipartite entangled state |Φ⟩𝐴𝐵 =

 ∑ √𝑝𝑥(𝑥) |𝑥⟩𝐴 ⊗𝑥 |𝜙𝑥⟩𝐵 where {|𝑥⟩𝐴} is an orthonormal basis for Alice’s system. 

2. Alice sends the second half of the state to Bob. 

3. Alice measures the state she kept with respect to the basis {|𝑥⟩𝐴}.  

 

We want to show that this entangled procedure yields similar statistics as the prepare-and-

measure protocol. 

 

Proof: 

 



Chapter 4: Prepare-and-measure Vs Entanglement 54 

 
 

From Alice’s side the probability of obtaining outcome 𝑦. In the prepare and measure 

protocol this is given by 𝑝𝑥(𝑦), the probability distribution of the classical random variable. 

In the entangled based version, we can also calculate this probability 

 

P(y) = Φ|(|𝑦⟩⟨𝑦|) ⊗ Ι)|Φ⟩ 

=  ∑ √ 𝑝𝑋(𝑥)

𝑥,𝑥′

√ 𝑝𝑋(𝑥′)⟨𝑥|𝑦⟩⟨𝑦|𝑥′⟩⟨𝜙𝑥|𝜙𝑥′⟩ =  𝑝𝑋(𝑦) 

 

If we put in the calculation of the phi state, we get the square root of probabilities and two 

data functions 

 

⟨𝑥|𝑦⟩  ≡  𝜎𝑥,𝑦 

⟨𝑦|𝑥′⟩  ≡  𝜎𝑦,𝑥′ 

 

Resulting at the end, in the probability of y, which is the same in the prepare-and-measure 

protocol.  

From Bob’s side, it is interesting in which state he receives it if Alice’s bit is y. In the prepare-

and-measure protocol it is defined by |𝜙𝑦⟩. In the entangled-based protocol we can calculate 

the state  

 
(|𝑦⟩⟨𝑦| ⊗ Ι)|Φ⟩

√𝑃(𝑦)
 

 

We apply the measurement to phi and normalize it with a square root of the probability of y. 

If we plug in the definition of phi, we get the following: 
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(|𝑦⟩⟨𝑦| ⊗ Ι)|Φ⟩

√𝑃(𝑦)
=  1

√𝑃𝑋(𝑦)⁄ ∑ √𝑃𝑋(𝑋)

𝑥

|𝑦⟩⟨𝑦|𝑥⟩ ⊗ |𝜙𝑥⟩ =  

1
√𝑃𝑋(𝑦)⁄ √𝑃𝑋(𝑦)|𝑦⟩ ⊗ |𝜙𝑦⟩ =  |𝑦⟩ ⊗ |𝜙𝑦⟩ 

 

In the send, we take the state y on Alice’s side and apply it as a tensor to the state |𝜙𝑦⟩ from 

Bob’s side. Alice has obtained the state outcome y and Bob gets the state |𝜙𝑦⟩, which is like 

the prepare-and-measure protocol. 

4.9 Conclusion 

To conclude, we can obtain similar statistics either with a prepare-and-measure or an 

entangled-based one. However, it is never that easy in practice since it is not a trivial task for 

Alice to create a quantum state described earlier. We also have the error introduced, such as 

noise in the channel when she distributes the state to Bob. We can mathematically achieve the 

same statistics in both descriptions. 
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