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ALGEBRAS WITH PSEUDO-RIEMANNIAN BILINEAR FORMS

ABSTRACT

The purpose of this dissertation is to study pseudo-Riemannian algebras, which
are algebras with pseudo-Riemannian non-degenerate symmetric bilinear forms. The
paper([1]), the authors Zhigi Chen, Ke Liang, and Fuhai Zhu find that pseudo-
Riemannian algebras whose left centers are isotropic play a key role and show that
the decomposition of pseudo-Riemannian algebras whose left centers are isotropic
into indecomposable non-degenerate ideals is unique up to a special automorphism.
Furthermore, if the left center equals the center, the orthogonal decomposition of any
pseudo-Riemannian algebra into indecomposable non-degenerate ideals is unique up

to an isometry.
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Chapter 1

Introduction

In this chapter, many fundamental definitions and examples needed throughout

the dissertation are sumed up.

1.1 Algebras

Definition 1.1.1. Let K be a field. An algebra over K (K - algebra) is a vector space
A endowed with a bilinear operation T,y €EAr— 2.y € A

Recall that bilinearity means that for each z € A left and right multiplications by z
are linear tranformations of vector spaces (i.e preserve sum and multiplication by a

scalar).

Throughout this dissertation, Algebras are assumed to be of finite dimension over

the complex number field.

1.2 Pseudo-Riemannian algebra

Let A be an algebra with a bilinear product Ax A +— A denoted by (a,b) — ab.
The purpose of the dissertation is to study the pairs (A, f) where f denotes a non-
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degenerate symmetric bilinear form on A satisfying;

f(zy, z) + f(y,22) = 0, for all 7,y, z € A.

In abuse of notation we will use the term pseudo-Riemannian algebra for denoting

such a pair.

Definition 1.2.1. A bilinear form f on A is called pseudo-Riemannian if

f(@y,2) + f(y,22) = 0, for all z,y,2 € A.

Definition 1.2.2. The pair (A, f) is called a pseudo-Riemannian algebra if fisa

pseudo-Riemannian non-degenerate symmetric bilinear form on A.

1.3 Example of Pseudo-Riemannian algebra: Lie
algebras

In this section, we will introduce an example about pseudo-Remannian algebra called
Lie algebra.To completely understand this example, some basic definitions are col-

lected .

The simplest example of a pseudo-Riemannian algebra A is when A is a Lie
algebra, endowed with the product given by the Lie bracket [—,—], and symmetric
bilinear form given by the Killing form, for those Lie algebras whose Killing form are
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non-degenerate.

To completely understand this example, it is necessary to introduce some nota-
tions and definitions of Lie algebra and Killing form ([2]) which help us understand

pseudo-Riemannian algebras.

1.3.1 Lie Algebra

A Lie algebra is a vector space g over some field F together with a binary operation

[-,-] : g x g —> g called the Lie bracket, which satisfies the following axioms:

1. Bilinearity
[az + by, 2] = alz, 2] + bly, 2],

[z, az + by] = a[z, 2] + b[z, ], for all scalars a,b € F and all elements z,y, z € g.

2. Alternating on g

[z,z] =0forall z € g.

3. The Jacobi Identity

[x, 2]+ [zx]+[2z xy]]=0,foralx,y,zeg. (1.1)

As an example of Lie bracket, we have the commutator [A, B] = AB — BA of two

7 by n matrices.



Definition 1.3.1. A non abelian Lie algebra g is called simple if it has no non-trivial

ideals.

Definition 1.3.2. We define a Lie algebra g to be semi-simple if it is the finite direct

sum of simple Lie algebras g; :

=099, D ... 0 g
1.3.2 Adjoint Representation of a Lie Algebra

Let g be a Lie algebra over a field C. Then the linear mapping
ad : g — End(g)

given by

T +— ad,

is a representation of a Lie algebra and is called the adjoint representation of the
algebra.

Within End(g), the lie bracket is, by definition, given by the commutator of the two
operators:

[adz, ady] = ad; o ad, — ady o ad;

where o denotes composition of linear map.



Moreover, by using the above definition of the Lie bracket, we notice that there

is an equation equivalent to the Jacobi identity presented in the following lemma.

Lemma 1.3.3. We have the the Jacobi identity,(1.1) takes the form

([ad:n ﬂ"dy]) (Z) == (Gd[x,y]) (3) (12)

where z,y,z are arbitrary elements of g.

Proof. By taking the first side of equation (1.2), we get:

(ladz, ady)) () = (ad; o ad, — ad, 0 ad,) (z) = ad; o ady(z) — ad, o ad,(z)

= [2,ady(2)] - [y, ade(2)] = [z, [y, 2]] - [y, [, 2] -

Now we take the second part of the equation (1.2), we have (adj,)) (2) = [[z,9], 2].
As a result of (1.2), we have: [z, [y, 2]] — [y, [z, 2]] = [[z,4], 2] .

Then [z, [y, 2]+ [y, [z, 2]] - [[z, ] , 2] = 0. Therefore [z, [y, 2]]+[y, [z, z]] + [z, [z, 4] = 0

which is the Jacobi identity (1.1).

1.3.3 Killing form

We represent the definition of trace of a linear operator and some of its properties

that will be used throughout this subsection:

Given some linear map f : V — V (Vis a finite-dimensional vector space)
generally, we can define the trace of this map by considering the trace of matrix rep-
resentation of f, that is, choosing a basis for V and describing f as a matrix relative
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to this basis, and taking the trace of this square matrix.The result will not depend
on the basis chosen, since different bases will give rise to similar matrices, allowing

for the possibility of a basis-independent definition for the trace of a linear map.

As an illustration, We declare the matrix of [f with respect to the basis {vy, v,, ..., Un},

also called the matrix representation of [, to be

an a2 A1n

Gz1 Qg2 Qon
A= .

Qn1  Qp2 Qnn

an n X n matrix. Also known as an n— square matrix or a square matrix of order n.

Then the trace of the square matrix A is defined to be the sum of the elements

on the main diagonal (the diagonal from the upper left to the lower right) of A, ie.,
n
tT(A) =an+ag+-+0pp = Zaii
i=1
Here we list some properties of a trace :

1. The trace is a linear mapping. That is,
tr(A+ B) = tr(A) + tr(B),
tr(cA) = ctr(A).

for all square matrices A and B, and all scalars c.

2. A matrix and its transpose have the same trace:
tr(A4) = tr(AT).
This follows immediately from the fact that transposing a square matrix does
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not affect elements along the main diagonal.

3. The matrices in a trace of a product can be switched:

tr(AB) = tr(BA).

Now we define the Killing form by the following:

Let g be a finite dimensional Lie algebra over a field C. The Killing form

is the bilinear form x : gx g — C defined by «(z, y) = Tr(ad oad,) forall z,y,2 € g.

It has the following properties:
1. It is bilinear.
2. It is symmetric.
3. It is ad invariant:
k(ly, 2], 2) + k(z, [y, 2]) =0, forall z,y,z € g.

Definition 1.3.4. The Killing form is said to be non-degenerate if for all

y = 0,k(z,y) = 0 implies z = 0.

Theorem 1.3.5 (Cartan criterion). A Lie algebra g over C is semi-simple if and

only if the Killing form is non-degenerate.

All Lie algebras mentioned in this dissertation are finite dimensional Lie algebras

over C.



Chapter 2

Preliminaries

In this chapter, we will list some definitions :

Definition 2.0.6. f|ax4 is non-degenerate if z € A and f(z,y) = 0, for ally € A,

then = = 0.

Definition 2.0.7. Let H be a subspace of A. If AH C H, then H is called a left ideal
of A. If HA C H, then H is called a right ideal of A. If H is both a left ideal and a
right ideal, then H is an ideal. The algebra A is called abelian if A # 0 and zy = 0,

for all z,y € A.

A symmetric positive definite bilinear form on a real finite-dimensional vector
space is said to be a Riemannian inner product, while in general, a non-degenerate
symmetric bilinear form (which is allowed to be indefinite) is called a pseudo-Riemannian

inner product. This justifies the terminology in the following definition.

Definition 2.0.8. Let (A, f) be a pseudo-Riemannian algebra and H be a subspace
of A. If f(z,y) = 0, for any z,y € H, then H is called isotropic. If f|uxn is non-
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degenerate, then H is called non-degenerate.

Definition 2.0.9. Let (A, f) be a pseudo-Riemannian algebra. If there ezist non-
trivial and non-degenerate ideals A, and Ay such that A = A, @ A3, then (A, f) is
called decomposable, otherwise indecomposable. Furthermore, if f (A1, A3) = 0, then

the decomposition A = A, @ A, is called an orthogonal decomposition.

Definition 2.0.10. The pair (A, f) is called irreducible if it has no non-trivial non-

degenerate ideal.

Definition 2.0.11. Let (A, f) be a pseudo- Riemannian algebra. An automorphism

7 of A is called an isometry if m preserves the bilinear form i.e.,

f(‘ﬂ'(I), ?r(y)) = f(-'l', y): fO‘," all T,y € A

The following notation will be used in this dissertation.

Let H* denote the subspace of A orthogonal to H with respect to f, i.e.,
H* = {z € Alf(z,y) =0,Vy € H}.
Let LC(A) denote the left center of A, i.e.,

LC(A) = {z € Alyz = 0,Vy € A}.

9



Proposition 2.0.12. LC (A) is a left ideal.

Proof. Let z € LC(A) and Let Az € ALC(A). We have, Az = 0. This implies,

ALC(A) = 0. It follows that ALC(A) =0 C LC(A). Therefore LC(A) is a left ideal.

O
Let Z(A) denote the center of A, ie.,
Z(A)={zeAlzy=yz =0,y c A}
Proposition 2.0.13. Z (A) is an ideal.
Proof. Let z € Z(A). We have Az = 0 also 24 = 0.
Therefore Z(A) is an ideal.
O
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Chapter 3

Now we will introduce some important propositions that will be used throughout the

dissertation :

Proposition 3.0.14. Let (A, f) be a pseudo-Riemannian algebra. Then LC(A) =

(AA)*. As a consequence, dim LC(A)+dim AA= dim A.

Proof. Let z € (AA)* such that (AA) = {z ¢ Alf(z,yz) =0,Vy,z € A}. Since
(A, f) is a pseudo-Riemannian algebra. We have, f(yz,z) + f (z,y2z) = 0, for all
z,Yy,z € A. This implies f(yz,z) = 0, for all Y,z € A. But f is non-degenerate on A.

Then yz = 0, for all y € A. It follows that z € LC(A). So (AA)*: C LC(A).

Conversely, we need to show that LC(A) C (AA)*. Let z € LC(A) ie, yr =0,
for all y € A. Then f(yz,z), for all Y,z € A. Since f on A is pseudo-Riemannian,
we know that f(yz,z) + f(z,yz) = 0, for all z,Y,2 € A. Then f(z,yz) = 0, for all
Y,z € A. We have, z € (AA)*. Therefore, LC(A) = (AA)*.

Because dim (AA)* = dim A - dim AA. We have, dim (AA)* + dim AA = dim A.

Consequently, dim LC(A) +dim AA = dim A .
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Proposition 3.0.15. Let (A, f) be a pseudo-Riemannian algebra and H an ideal of

A. Then H* is a left ideal and HH* = 0.

Proof. Let H an ideal of A, then AH C Hand HAC H.

we want to show that f(H, AHL) = 0.

Since f is pseudo-riemannian, we have f(H, AH+) = =f(AH, H ) =0.
This implies AH+ C HL. Therefore, H* is left ideal.

Moreover, we have f(A, HH*) = — f(HA, H*) = 0.

Because f is non-degenerate on A. It follows that HH* — 0.

O

Proposition 3.0.16. Let (A, f) be a pseudo-Riemannian algebra. Then there exists
!
a decomposition A = @A{ of A into indecomposable non-degenerate ideals.

=1

Proof. If A is indecomposable (4 = A4,).
[ is non-degenerate on A; because A = A4, and f is is non-degenerate on A.

Clearly A; is indecomposable since A is indecomposable.

If A is decomposable, then there exist a non-trivial and non-degenerate ideals A,

and A, such that
A=A A, (3.1)

(3-1) holds for dim A = 2.
dim A= dim A, + dim A, - dim A; N A,, where A; N Ay = 0.
Then 2 = dim A, + dim A,. So dim A; = dim A, = 1.

12



This implies that A, and Ay are indecomposable.

Suppose it is true for A of dimension up to n— 1. Prove it is true for dim A = n. We
already have A = A; @ A, which are non-trivial and non-degenerate ideals. Both A,
and Aj; can be decomposed into indecomposable non-degenerate ideals since the di-
mension of each is less than n and the conclusion is true for dimension up to n—1 (By
induction). Therefore A = A, @ A4, is decomposed into indecomposable non-degenerate
ideals.

1
Then there exists a decomposition 4 = @ A; of A into indecomposable non-degenerate

i=l1

ideals.
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Chapter 4

Pseudo-Riemannian algebras
whose left centers are not isotropic

In this chapter we focus on pseudo-Riemannian algebras whose left center is not

isotropic.

Proposition 4.0.17. Let A be an abelian algebra. If f is a non-degenerate symmet-
ric bilinear form on A, then (A, f) is a pseudo-Riemannian algebra. Furthermore,
there ezists an orthogonal decomposition A = A, ® A, @ .....H A, into indecomposable

non-degenerate ideals such that dimA; = 1.

Proof. We have f(zy, z) + f(y,zz) =0, for all z,y,z € A since A is an abelian alge-
bra. Therefore f is a pseudo-Riemannian bilinear form.

Moreover, f is a non-degenerate symmetric bilinear form on A. Then the pair (A, f)
is a pseudo-Riemannian algebra.

Since A is abelian then any subspace H is an ideal because AH C H and HA C H,
since AH =0 and HA = 0.

We let A abelian, let z # 0, z € A then there exists y # 0 such that f (z,y) # 0 since
f is non-degenerate on A. We claim that there exists e; € A such that f (e;,e;) # 0.

14



If f(z,z) # 0, choose e; = z.

On the other hand, if f(z,z) =0, and f(y,y) # 0, so choose e; = y.

Otherwise, if f(z,z) = 0, and f(y,y) = 0, we choose e; = z + .

Since f(z+y,z+y) = f(z,2) + f(z,9) + f(y,2) + f(y,y) = 0+ f(z,9) + f(y, z) +0.
But f is symmetric then f(z +y,z +y) = 2f(z,y) # 0.

Then there exist at least one e; € A, such that f(e;,e;) # 0.

Let A; be the subspace of A generated by e; so A; is an ideal and dim A; = 1 then
A, is indecomposable.

Let x € A; such that f(z,y) =0, for all y € A,.

Let z = Aje; and y = Aze;, where A, Az € C. So f(\e1, Me;) = 0, for all A\, € C
since f is bilinear, we get: A;Ayf(e1,e;) = 0, for all A\, but f(e1,e;) # 0. So A =0
then 2 = 0. Consequently, f is non-degenerate on A;.

Let A, = Af; A, is an ideal. Since A, is non-degenerate then A can be written as
A=A, @ Af. Obviously, f(A;1, Af) =0.

Let z € Aj such that f(z, A7) = 0 but z € A7, so f(z, 4;) = 0.

However A = A, ® A{. Hence f(z, A) = 0 and z € A because f is non-degenerate on
A, therefore z = 0. Then f is non-degenerate on A

Therefore, the decomposition A = A; @ A7 is an orthogonal decomposition.

A = A; ® Af holds for dim A = 2. Then dim A+ = dim A-dim 4; =2-1=1.
Accordingly, A{ is indecomposable.

Suppose it is true for A of dimension n — 1. We already have A = A; & A" where A,
and Aj are non-trivial and non-degenerate ideals with dim A; =1 and f(A;, A}) =0

then dim A{ = n-1.

15



Hence by induction there exists ann-1 indecomposable, non-degenerate ideals A,, ..., A,
such that A = 4,®...® A, with f(Ai, Aj) = 0,fori# jand dim A; =1, 2<i <n.
Moreover, since f(A;, AL) =0 and A = A @A ®.....® A,. Therefore f(A1, A;) =0,

2<i<n.

Here we present an example and we show that this (4, f) is pseudo-Riemannian

algebra whose left center is not isotropic:

Example:

Let (H, fy) be an abelian pseudo-Riemannian algebra and (I, f;) a pseudo-

Riemannian algebra with the product o. Let

so(I) = {A € End If1(A(z),y) + fi(z, A(y)) = 0}.

Given a linear mapping L : H —» so(I) denoted by = —3 L,, define a product * on

vector space A = H + I (direct sum as subspaces) by
zxy=0,Vz,y € H,

zxy=0,Vrel,yeH,

Txy=zgoyVr,y€l,

zxy=L,(y),Vre Hye€l,

16



and define a symmetric bilinear form f on A by

f(x!y) == fH(I,y),Vx,y € H:
f(z,y) = fI(I:y):V:B:y €l,

flz,y)=0,Vze H,yeI.

We need to show that (A, f) is a pseudo-Riemannian and the left center is not

1sotropic:

Let z = h1+£1, y= hz'l‘lz, and z = h.3+l3 where hl,hz,hs € H and fl,zg,ﬁ el
We have, f(z*y,z) + f(y,z * 2)
= f((h1 + 1) * (hy + 1), hg + 1) + f(he + 1o, (hy + 1) * (hs + 13))
=0 =0
= f( hl * hg,hg + 33) - f(hl * 32,h3 + 33) + f(ll * hz,uha + £3) + f(ll * Eg,h;; + 33) +
=0 =i

e N— " —
f(hz+32,h1*ha)+f(hz+fzahl*53)+f(h2+52531*h3)+f(h2+52,31*33)

= f(h1*lp, k) + f(hy * by, I3) + f(ly * la, h3) + f(ly % 1y, l3) + f(ha, hy % I3) + f(la, by *

l3) + f(ho,ly % I3) + fla, 1y % 13)

=0 =0

= f(Lny (L), hs) +£(Lny (I2), ls)+ f (I © la, hs) +£ (Lioly, Ig)+ £ (ha, Ln, (Is)) +f (2, Ly, (L)) +
=0
f(ha,ly o l3) +f(ly,1; 0 l3)

=0

17



= J1(Lny (L2), Is) + f1(ly 0 by, 13) + f1(l2, Ly (13)) + fr(la, by 0 13) = 0.

Since Ly, € so(I) and f; is a pseudo Riemannian algebra.

Therefore (4, f) is pseudo-Riemannian.

Now we want to show that f is non-degenerate on A.
Let f(z,A) =0 and z € A. However A4 = H + I then f(z, H) = 0 and f(z,I) =0.
Let z = hy + 13, where hye€ Hand [; € I. "
Since f(z, H) = 0 this implies that f(hy, H) + m =0.
So fa(hi,H) =0 and h; € H. But fu is non-degenerate on H then h1 = 0. Similarly,
l; = 0. Finally, z = 0.

Hence (4, f) is a pseudo-Riemannian algebra.

One can see that the left center of LC(A) is not isotropic:
Since A* H = 0 then H C LC(A) and H # 0.
There exists an z # 0 and z € H But since fu is non-degenerate.
Therefore there exist y # 0 where Y € H, such that f(z,y) = fu(z,y) # 0. Then
there exist z,y € LC(A) such that f(z,y) #0.

Consequently, LC(A) is not isotropic.

We will state Zorn’s lemma below and use it later to prove some propositions in

this dissertation:
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Theorem 4.0.18 (Zorn’s Lemma.). Suppose a non-empty partially ordered set P has
the property that every non-empty chain has an upper bound in P. Then the set P

contains at least one mazimal element.

Moreover, Zorn’s Lemma is equivalent to the well-ordering theorem and the axiom

of choice.

Theorem 4.0.19. Let (A, f) be a pseudo-Riemannian algebra whose left center is
not usotropic. Then there ezist a sequence of non-degenerate subalgebras of A such
that

AIAQDAID...DAﬂ,

where A; is an ideal of Ai-1, the quotient algebra Ai1/A; is an abelian for each

i €{1,2,..,n}, and the left center of A, is isotropic.

Proof. Let Ag = A. Since LC(A) is not isotropic.

There exists z,y € LC(A) such that flz,y) #0.

We claim that there exists an e; € LC(A) such that f (e, e;) # 0.

If f(z,z) # 0, choose ¢; = z.

However, if f(z,z) = 0 and f(y,y) # 0, we choose e =y.

Also if f(x,z) =0 and f(y,y) =0, so choose e; = z + .

Since f(z+y,2+y) = f(z,2)+ f(z,9) + f(4,7) + f(v,y) = 0+ f(z,y) + f(y,2) +0.
But f is symmetric then f(z +y,z + y) = 2f(z,y) #0.

Then there exist e; € LC(A) such that flei,e) #0.

Let H; be the subspace of LC(A) generated by e;.

19



We have to show that H is non-degenerate. Let z € H; such that f(z,y) =0, for
all y € H,.

Let z = Me; and y = \se;, where A, A2 € C. So f(Aie1,A2e1) = 0 for all A, € C
since f is bilinear, we get: A1Azf(e1,e1) = 0, for all A, but fles,€1)# 0. So Ay =0
then z = (.

Consequently, f|g,xz, is non-degenerate.

By Zorn’s Lemma (4.0.18), we can pick H; to be a maximal non-degenerate subspace
of LC(A).

Let A; = Hi. Prove that A, is an ideal of A = A,.

f(Hy, AA;) = -f@}?l, A;) = 0 because f is a pseudo-Riemannian and H, c LC(A).
So AA; C A,. .

And f(A1A, Hy) = —f(A, A Hy) = 0. Then A, A C A,.

Therefore A, is an ideal.

We want to prove that A4, is non-degenerate:
Now let z € Hi such that f(z, H{) = 0. Otherwise, z € Hj* this implies that
f(z,Hy) = 0.
Since H, is non-degenerate then A can be written as A — H, ® Hi-. Therefore
f(z,A) =0andz € A but fis non-degenerate on A so z = 0. Then f is non-

degenerate on A,.

Prove that the quotient is abelian: Ao|A; = {z + A4, |z € A}.

Let z = c+dand y = e+ f where c,e € A, and d,f € Af then (zy) + 4, =

20



[(c+d)(e+ f)] + A; =ce+cf +de+ df + A,.
We have, df = 0 since d, f € At and A = H, C LC(A).

And we have cf,de € AAL C AN Af = 0. Hence (zy) + A1 = A;. Then A|A, is
abelian.

Now if LC(A4,) is isotropic, we're done.

If LC(A:) is not isotropic, we continue this process by induction till we reach a
certain A, such that LC(A,) is isotropic so we stop because the algebra A is of a

finite dimension.
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Chapter 5

Pseudo-Riemannian algebras
whose left centers are isotropic

We notice that pseudo-Riemannian algebras whose left centers are isotropic play a

crucial role.

Proposition 5.0.20. Let (A, f) be a pseudo-Riemannian algebra whose left center is
isotropic. Then (A, f) is decomposable if and only if there exist non-trivial ideals A,

and Ay of A such that A = A, @ As,.

Proof. (=)It is obvious. Since (A, f) is decomposable.

(<=)If there exist non-trivial ideals A; and Az of A such that A = A; @ A,. We
need to show that f is non-degenerate on A; and A,. Assume that f is degenerate

on A; then there exists a non-zero element (z # 0), z € A; such that f(z, A;) = 0.

If z€ AjA; then f(z, A) =0.
Because we have f(z,A;) C f(A1A1, Ay) = —f(A;, A1 A,). But since A, is an ideal
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and A; C A then A;A; C A, and since A3 is an ideal also A} C A so A; A, C A,.
Therefore, A;A; C A; N A,.

However, 34 = A, ® A, then AjA; C A; N A, = 0. Hence flz,Az) C f(A1A1, Ag) =
—f(41, A A3) = 0. Now we have f(z, Ay) = 0 and £(z, Ay) = 0 then f (z, A) = 0

however f is non-degenerate on A soxz = 0. It is a contradiction, then z ¢ A, A;.

Because LC(A) is isotropic. We have LC(A) C (LC(A))* = ((AA)H)L = AA by
proposition (8.0.14). Accordingly, LC(A) C AA. Moreover, we have A = Ay + Ay so
AA = A1 A) + A1 Az + A2A; + AgAg = A1 Ay + AsA,.

If z € AA, hence z = s+t this impliest € Ay N A; =0sot=0.

Consequently, z = s € A1 A,.It is a contradiction, z ¢ AA therefore z ¢ LC(A).
Thus there exists w € A such that wz # 0 since A = Ay + A, then w = y+y,, where
Y1 € Ay and y; € Ay. So y17 + Yoz # 0. Note that y,z = 0 because Y2 € Ay, z € A
and A A; = 0.

Thus y,z # 0 then 3 y € A, such that yz # 0. Therefore there exists z € A such that
f(yz, z) # 0 since f is non-degenerate on A.

Since A; is an ideal of A and y € A, we have yz € A,, which contradicts the choice
of z.

Namely f|A, x A; is non-degenerate. Similarly, f|A; x A, is non-degenerate.

The following is to show that the decomposition of any pseudo-Riemannian alge-
bra whose left center is isotropic into non-degenerate indecomposable ideals is unique
up to an automorphism.

23



Let (A, f) be a pseudo-Riemannian algebra whose left center is isotropic and let

A=A10A®...0 A
be decompositions of A. Here A,,-,A;, 1<i:<n,1<75<m,are indecomposable

non-degenerate ideals of A.

It is easy to check that A; 4, # 0. In fact, we assume that A1A; = 0.
Tﬁus A; CLC(A)so AA; =0. But A = AiD A D .....D A, this implies (A, & A, &
..... ® An)A; = 0 we notice that A;A4, = 0, for all i = 1,2,..,n and 4; N A = 0.
However, LC(A) is isotropic and A; is non-degenerate. It is a contradiction.

Because A;4; = @Alfl}, we have Ay A} # 0 for some j. Without loss of generality,

J=1

n m
assume that A;A] # 0. Let H; = @ A; and H] = @A_’,—, which are non-degenerate
=2 =2

ideals of A by proposition (5.0.20).
Then

A=A ®H,,
A=A & H,.
We introduce some propositions that we use throughout this chapter:
Proposition 5.0.21. A1A) C A NA] and A H, C AN H
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Proof. Since A, is an ideal (A4 C A;) and A} C A then A1 4] C A;. Moreover, Al
is an ideal (A4} C A}) and A; C A so A A7 C A

Consequently, AA} C AN AL Likewise, 4, H] C A, N Hj.

Proposition 5.0.22. Intersection of two ideals is an ideal.

Proof. Let A; and A, be ideals. We have, A(A;NAz) € AA; N AA, C A; N A,. Also,

(AI n AQ)A g A]A n AQA Q A] N Az. Thus Al N Ag is an ideal.

Proposition 5.0.23. Sum of two ideals is an ideal.

P?"OOf. Let A] and Az be ideals. We have, A(A.l =+ Ag) C_: AA} -+ A.Az ; Al + Ag.

Simila.rly (A] + Az)A C AA+ AxA C A + As.

Proposition 5.0.24. LC(4,) = LC(A) N A;.

Proof. Let z € LC(A,) we have z € A, such that A1z = 0. Clearly = € A. Since A =
A1+H,. As aresult, Az = A;z+H,z = 0 because z € Ay and H1A; € HiNA, = {0} .
Therefore, z € A; Az=0.S50z € LC(A). Consequently, LC(A,) € LC(A) N A,.

Conversly, let z € LC(A) N A; so 2 € LC(A) which means z € A such that Az = 0.
But A; C A then A;z = 0 and we already have z € A;. Therefore, 7 € LC(A;). As

a consequence, LC(A) N A; C LC(A,).
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Lemma 5.0.25. A\NH] =0 and AN H, =0.

Proof. By = A;N A}, and B, = A, N Hi:

We notice that By N By = 0 since (4; N 4;) N (4; N H))=ANA NH =0.

And LC(A,) C LC(A)N A,. We have LC(A) is isotropic, then LC(A,) is isotropic.
Clearly, AjA1 = A)lA = A)(A1® A, ® ... 0 A) = A1(A} ® HY) = A Ay @ A H! C

B, & B,.

(1) If Al = Bl @ Bz.
A, is indecomposable and B; # 0 since A1A} € AN A} # 0. Consequently, by

proposition (5.0.20) B, = 0.

2) If A; # B, @ B,.
Since BI = Al ﬂA"l - A] and .82 = A] n H{ = Al then Bl @ Bg C A].
So there exist = € A; such that z ¢ B; @ B,. Then z = z; + T3, where z; € A} and

zo € Hj. Using the other decomposition,
Ty = z) + 7% and T3 = z} + z3,

where 3,73 € A1, 23,23 € Hy. So z =z} + 2} + 23 + 22 = 2} + 2} and 22 + 22 = 0

since 23,23 € H and = € A, then 22 + 22 € A, N H, = {0} .

One can easily check that A,z; C A,Af. Since z; = z} + z? then z} = z; — z2.
So Ayz1 C A1z — A1z} and we know that Ay2? C A H, C A,NH; = 0. This implies
Ala:% = A}_.T,l C AlA;
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Similarly,

ZiA.l Q AiAl, A]I% _C_ A]Hi,aﬂd Iil,Al Q H{Al.

ff.'Bi ¢ Bl 32] Bg, let

B® = B, +Cz},

Bél) = Bz.

Ifz} € B) @ By, then z} ¢ B, @ B,. Let
B](_I) = Bl)

B{") = B, + Cal.

It is clear that B, and B, are ideals of A,. Also, Cz} and Cz} are ideals of A; by

above. Therefore, B and B are ideals of A, and
BPnBY <o

Thus by taking Bl(l) and Bél) according to the first case, Bg” = B;+Cz!,, Bé” = B.
Lety € Bi”ﬂBél). Theny € B soy = a+nzy, wherea € By,n e C. Andy € B
soy=b, where b € B,. However, y =y so b= a+nzy. Then z} = 1(b—a) ifn #0.
It is a contradiction. So n = 0. Therefore, y=a=be ByNB, = {0}. As a result,
BYnB® = {0} . Likewise for B and B{" in the second case.

If A = B;E” @ Bén using similar argument as in (1), Bél} = 0. In particular,

A NH, =0.
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If Ay # Bfl) <) Bél), since dimA; < oo, repeating the discussion in (2), we may
choose Blm and Bék] such that A, = Bl(k’ ® B*); where B{H and Bék) are ideals
of A;.

Using similar argument as in (1), Bék) = 0. In particular, A, N Hj} = 0.
Similarly, A} N H; = 0.

a

Lemma 5.0.26. The projection m : Ay — Al is an isomorphism and preserves the

bilinear form.

Proof. Welet z € A; C A = A} + H] 50 z = z; + z,, where T € A] and 7, € Hj.
Since m; : A) —» A}, then mi(z) = ;.
Now we let z,y € A, such that z = T1 + 23 and y = y, + Yo, where z,,7, € Aj and

T2,Y2 € Hj. We notice that m(z) = z; and m; (y) = v1.

The map m : A; — Al is a linear map. Because it preserves the following

operations:

(1) Addition : It is clear that m(z + y) = m(z) + m(y). Because z + y =

Zi+ T2+ y1+y2 then m(z +y) =m(z + 20 + 1 +y2) =11+ = m(z) + m(y).

(2) Scalar multiplication : we have, m (kz) = m(kzy + k) = kz, = km(z),

where k € C.
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(3) Multiplication: Ty = (z1+z5)(y; +42) = 191 +T1 Y0+ 2oy, +ZaY2 = T1y1 +2270.
Because z;y, C AlH] C A n H =0 Similarly, 1, = 0.

Then m(zy) = iy =m (3)?’1(3’)-

Let z € ker my, then z € A; and m(z) = {0} =z1s0z =2, ¢ Hj. Therefore,
z € A1NH] =0 by Lemma (5.0.25). It follows that kerm, € Ay N H] = 0, then
kerm; = 0. As a result, m is injective. Thus dimA; = dim(Im(m)) < dimAj. By
defining the projection my similarly as m; we have, dimA} < dimA,. This implies
that dimA, = dimA}. Therefore, 7, is an isomorphism from A; to Al
It is clear that A}z, = 0 since Az, C A{H] C A\NH! = 0. Also, H{z, = 0 because
Z2 =% — 2 50 Hizo C Hizx — Hjz, then Hiz, C Hiz C H{A C H{NA; =0. Thus
Azy = 0. Consequently, z, € LC(A).
Therefore, f(z,2) = f(z; + T2,21 + Ty) = f(z1,71) + 2f(z1,2) since LC(A) is
isotropic.
Now because H! is non-degenerate , Let z; = h; + ha, where h; € Hj and h; € H{'L.
So hy = z; — hy, then Hihy C H{(z; — hy) =0 so hy € LC(H}). Moreover, Ajh; =0
then hy € LC(A}). Accordingly, h, € LC(A).

It follows that
f(z,2) = f(z1,21) + 2f (2, 7,) = F(z1,21) + 2f (hy, 23) + 2f (h, z5) = f(z1,21) +0

As a result,

f(z,z) = f(mi(z), m(z)).

Therefore, 7; preserves the bilinear form.
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Furthermore, we have

Indeed A, H;, H{Ay € Ay H] = 0. Likewise, 4 H, = H, 4! C H, A <.
Moreover, (1) A4, = (A1 + H)A, = A1A; and AA, = (AL + HDA, = A A, then
A A = Al A,

Also, (2) AlA = A\(A; + Hy) = A{A; and AJA = A1(A] + H]) = A, A, then
AjA = A1A; = AL A,

By (1) and (2) we have 4,4, = AlA; = AL 4.

We also notice that (3) AjA = Ai(A1+H,) = A1 A, and A1A = A (Aj+H]) = A Al
Therefore, A;A = A1A, = A AL

By (1), (2) and (3) we have,

A]Al = A]A; = A;Al = A;Ai.

Repeating the above discussion for J=2,3,..,n, we have :

Theorem 5.0.27. Let (A, f ) be a pseudo-Riemannian algebra whose left center is

wsotropic and let

A=A oA .. 0A,
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be decompositions of A. Here Ai, A;,1<i<n,1<j<m,are indecomposable ideals

of A. Then we have:

2. Changing the subscripts if necessary, we can get

AjA, = A\ A= 0,5 # k.

3. The projections m; : A; — A} are isomorphism and preserves the bilinear form,

so = (my, ..., M) 18 an automorphism of A.

Proof. We already have (2) and (3) where they are clear.
Now, we assume n < m. According to (2) we have,
dimA;, = dimA]
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By (3) the projections are isomorphism. Then

dimA = dimA; + ... + dimA,,

dimA = dimAj + ... + dimA’..

Therefore, dimAl,, = ... = dimA;, = 0.

Then Ay =A;+2=___=A:n:(}_

Consequently, n. = m.
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Chapter 6

Pseudo-Riemannian algebras
whose left centers equal the centers

In this chapter we focus on pseudo-Riemannian algebras whose left centers equal the

centers.

Theorem 6.0.28. Let (4, ) be a pseudo-Riemannian algebra whose left center equals
the center. If the left center is not 1sotropic, then there exist non-degenerate ideals
Ay and Ay such that A = A, @ Ay, where f(Ay, As) =0, A1A; =0 and the left center

of A, is isotropic.

Proof. Since the left center of 4 is not isotropic. Then there exist z, y € LC(A) such
that f(z,y) # 0.

Now we claim that there exists e; € LC(A) such that f (e;,e;) # 0.

If f(z,z) # 0, choose e; = z.

On the otherhand, if f(z,z) = 0 and f(y,y) # 0, we choose e; = y.

Otherwise, if f(z,z) = 0 and f(y, y) =0, choose e; = z + y since fle+yz+y) =
F(@:2) + f(@y) + f(u,2) + f(3,3) = 0+ f(2,9) + f(y,7) + 0. But f is symmetric
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then f(z +y,z+y) = 2f(z,y) # 0.

As a result, there exist e; € LC(A) such that f(e1,e1) #0.

Let H be the subspace of LC (A) generated by e;.

We have to show that H is non-degenerate. Let z € H such that f (z,y) = 0, for all
y € H. Let z = \je; and y = Aye;, where A1, A2 € C. So f(Are1, Aaey) = 0, for all
A2 € C since f is bilinear, we get: Az f(e1,e1) = 0, for all A, but f(e1,e1) # 0. So
A1 = 0 then 2 = 0.

Consequently, f is non-degenerate on H.

By Zorn’s Lemina. (4.0.18), we can pick H,; to be a maximal non-degenerate subspace
of LC(A).

Let B, = H{". So Bj- = H,.

Now we want to prove that B; is non-degenerate ideal.

We have f is a pseudo- Riemannian. Then f(Hy,AB)) = — f(AH,, B;) = 0, where
AH, =0 thus H, C LC(A).

Moreover, f(B1A, H,) = —f(A, BiH;) = 0, where B;H; = 0 because H; C LC(A)
and B; C A. Consequently, B, is an ideal of A.

Now, let € Hi* such that f(z, H) = 0 but z € Hit so by its definition, we have
f(z, Hy) = 0. Since H, is non-degenerate then A can be written as A = H; @ .
Therefore, f(z,A) =0and z € A. Thus z = 0. So f is non-degenerate on B;.

Now because B; is non-degenerate then A can be written as A = By @ Bt Clearly

B; € Aand f(B,,By') = 0.

Assume that LC(By) is isotropic. Now we need to prove that Bj is non-
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degenerate ideal.

We let z € By such that f(z, BL) = 0. However, z € Bj this implies that f(z, B;) =
0 and we have A = B; @ B{. Then f(z,A) = 0 and z € A. Because f is non-
degenerate on A so z = 0.

As a consequence, we have f is non-degenerate on Bi-.

In fact, f(AB}, B.) = —f(B{", AB;) = 0 since AB, C B, and f(B{-, B,) = 0.
Moreover, f(BitA, B;) = —f(A, BLB;) = 0 because BiB; C ByN B} = 0. Hence

Bit is an ideal.

To completely prove the theorem we want to show that B, B; = 0.
We have f(B,By, Bi') = — f(B,, B;B{) = 0 but f is non-degenerate on B
Thus B, B; = 0. Moreover, f(B1By, B;) = —f(B1,B1B;) =050 B;B;, C B;.
Therefore, f(B,B;, A) =0 and f is non-degenerate on A then B, B; = 0.

Finally, we let A; = B; and A, = By then A= A, ® A, and the theorem is proved.

Otherwise, if LC(B{") is not isotropic, each time we get Bj* = Biy, ® B, where
1 <7 < n-—2, sowe continue this process by induction till we reach a certain
B | such that LC(Bj._,) is isotropic so we stop because the algebra A is of a finite
dimension.
We assume that B, = B} |.

In other words, by theorem (4.0.19), there exist a sequence of non-degenerate
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subalgebras of A such that

AD B3 .. 5 B,

where B;, 1<i<nis non-degenerate ideal and the left center of B, is isotropic.

Now we already have A = B, ® B;* where B; and B,* are non-degenerate ideals
and f(Bj, Bi*) = 0 is true for dimension 2. Suppose it is true for A of dimension up
to n — 1. Then by induction there exist n — 1 non-degenerate ideals B,, ..., B, such
that By* = B,® ...® B,, and f(Bi, Bj) =0, for i # j where 2 < i,7 < n. As a result,

A=B ®B:;®..®B,.1® B,.

Clearly, since f(B1,B{) = 0 then f(By1, B;) = 0, where 2 < i < n. In general,

f(Biy1, B;) = 0, because B;,; C Bt for1<i<n.

Furthermore, since f(B;B;, B,) = — f(Bi, B;B,) = 0 and f is non-degenerate on
B,,. Therefore, B;B; = 0, for 1 <i<n-—-1.
Now we let A = B, @ ...B,,_; and A; = B, then we’re done.

O

Proposition 6.0.29. Let (A, f ) be decomposable pseudo-Riemannian algebra whose
left center equals the center. If the left center is isotropic, then there exist non- degenerate

wdeals A, and Ay such that A= A, ® A, is orthogonal.

Proof. Since A is decomposable, we have A4 = A; ® A, where f]A; x A;, i =1,2 are
non-degenerate. Then A = A; ® A7 and 4, A+ = 0.
Now we want to prove that A; is an ideal.
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We let £ = z; + z,, where z € At 2 € Ay, 35 € A,. Since both A; and A, are
ideals, we have f(yz),2) = f(y(z —z,),2) = f(yz,2) = f(yz2,2) =0— f(yzs,2) =0,

for any y, 2z € A,, since yz, € 4,4, = 0.

As a result,

f(yxla z) = “f(xls yz) = f(yxi-’: z) = _f(x% yz) =0.

Since f(yz1,2) = 0 and f|A4; x A, is non-degenerate. Therefore yz, = 0, for all
y € A;. Thus Ayz; = 0. Moreover, it is obvious that Az = 0.

Namely, z, € LC(A) = Z(A). Then zy = (z; + Ta)y = 0 for any y € A, ie.,
AbA =0,
It follows that A is an ideal since f(AAL, A;) = —f(Af, AA;) = 0 because A, is an
ideal (A4, C 4;) and f(A{, A;) = 0. Furthermore, f(A+A, A;) = — f(A, AL A;) = 0.
Likewise, Aj is an ideal.

O

Theorem 6.0.30. Let (A, f) be a pseudo-Riemannian algebra whose left center equals

the center and whose left center is isotropic, and let

A = A] @Az@ @An,

A=A0A®...0A,

be orthogonal decompositions of A. Here A;, A5, 1<i<n,1<j<m, are indecom-
posable non-degenerate ideals of A. Then we have:
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2. Changing the subscripts if necessary, we can get

dimA; = dimAj,

AjAj = AJA; = A;AJ — 14"I.A.JF

i et o)

AjAl = AiA = 0,5 # k.

3. The projections m; : A; — Al are isomorphisms and preserve the bilinear form,
$o m = (m,..., M) is an isometry of A, that is, the decomposition is unique up

to an wsometry.

Proof. Same proof as theorem (5.0.27).

O

Theorem 6.0.31. Let (A, f) be a pseudo-Riemannian algebra whose left center equals
the center and whose left center is not isotropic. If the decomposition A = A; ® A,
is orthogonal such that A; and A, are non-degenerate, LC(A;) is isotropic and

Ay C LC(A), then the decomposition is unique up to an isometry.

Proof. Let A = A| ® A} be another such decomposition. Then we have

Now we want to prove that LC(A;) C LC(A;)* = A1 A; = A} A
We let z € LC(A;). Since the left center of A, is isotropic, this implies that for



all 7,y € LC(A;) such that f(z,y) = 0. Moreover, we know that LC(A)*
{z € Al f(z,y) = 0Vy € LC(4;)} therefore z € LC(A1)*. As a result, LC(A4,)

LC(A1)*. According to Proposition (3.0.14), we have LC(A;)* = ((A;4;)4)*

A, A;. Consequently,

Now since A;A; = AjAj this implies that LC(4;)* = LC(A})*. Namely
LC(4)) = LC(Ay).
By Proposition (3.0.14), we have
dimA, = dimA} A} + dim (A, A})+

and recall that (A4;A7)* = LC(A})*. Likewise for dimA,.

As a result we get dimA; = dimAj and then dimA, = dimAj,.

Let {e1,..., €k, ..., €n, ..., €nsx} be a basis of A; such that LC(A;) = L (e, ...

A1A = L.(el,...,en), and
fleie)) =i, k+1<4,j<mn,
Jle,enis) =04, 1<4,j <k,
flei,ej) =0, 1<4,j <k,

flei,e;) =0, n+1<4j<n+k.
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Now consider the projections

m 1 Ay — Al

My Ag — A’ ’
which are isomorphisms by theorem (6.0.30) . We have m1|4,4, = id and
f(mi(e:), mi(e;)) = flei,e;) for1<i<n+kandl< i<n.

Assume that e, = e,,+¢,, and e, = €gsteq, forn+1 < p < n+k, where e,,a., eqn € A}

and ep,, eq, € A. For n+1< g < n+k, we have 0 = f(e,, e,) = fleps +epy e +64,)
= f(epss €a5) + f(epss €q.) + f(epsr €5) + f(epa, €a) but f(A], A5) = 0. Therefore
= f(e‘P‘e‘?) = f(epsie%) = f(epueﬂ)'

n+k
Let by, = f(ep4!eq4) for p # g, 2bop = f(eps» €p,) and e;:;; = €pg + prf €l-n, 1t i

I=p
easy to see that

F(€hgs€ps) = f(Eps, €py) + 2bpp = 0, n+1<p<n+k;

flepgr€) = fleps €q5) +bpg =0, n+1<p<qg<n+k.

Define m; : A — Af by
mi(e) =e;, 1<j<m;
m(e) =ep, n+1<j<n+k.

It is easy to check that =} is also an isomorphism from A; onto Al preserves the

bilinear form. Then 7 = (], 72) is an isometry of A.
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By Theorems (6.0.30) and (6.0.31), we have:

Theorem 6.0.32. Let (A, f) be a pseudo-Riemannian algebra whose left center equals
the center. Then the orthogonal decomposition of A into indecomposable non-degenerate

tdeals is unique up to an isometry.

If the algebra is anti-commutative, i.e.,
ab = —ba, foralla,be A,
then LC(A) = Z(A) and
flab,c) = —f(b,ac) = f(b,ca) = f(a,bc), for all a,b,c € A. (6.1)

Lemma 6.0.33. (/{]) Let (A, f) be an anti-commutative pseudo-Riemannian alge-
bra. If H is an ideal of A, then H* is an ideal of A. Furthermore, assume that H is

non-degenerate, then H* is also non-degenerate and A = H @ H-.

Proof. Assume that H is an ideal of A, this means that HA C H and AH C H.
Since A is anticommutative so we have (6.1). Then f(H*A, H) = f(H*, AH) = 0,
because AH C H and f(H*,H) = 0. Also we have f is pseudo-Riemannian then
f(AH,H) = ~ f(H*, AH) = — f(H*, H) = 0. Consequently, H* is an ideal of A.

Assume that H is non-degenerate. Moreover, A can be written as A = A; @ A,.
Now we want to prove that H- is also non-degenerate. We let z € HL, such that
f(z,H*) = 0. But z € H*, then f(z, H) = 0. Therefore f(z,A) =0 and = € A but

[ is non-degenerate on A. Then z = 0. Consequently, H+ is also non-degenerate.



It follows that:

Proposition 6.0.34. Let (A, f) be an anti-commutative pseudo-Riemannian algebra.

Then A is indecomposable if and only if A is irreducible.

Thus, we have:

Theorem 6.0.35. Let (A, f) be an anti-commutative pseudo-Riemannian algebra.
Then the orthogonal decomposition of A into irreducible non-degenerate ideals is

unique up to an isometry.

Now we will introduce the definition of quadratic Lie algebra that will be used in

the corollary.

Definition 6.0.36. (/10]) A quadratic Lie algebra (g, f) is a vector space g equipped
with a non-degenerate symmetric bilinear form f and a Lie algebra structure on g

such that f is invariant (that means, f([z,y], 2) = f(z,[y, 2]), for allz,y,z € g.)

By Theorem (6.0.35) and the identity (6.1), we have the following result on the

uniqueness of the decomposition of quadratic Lie algebras.

Corollary 6.0.37. ([11]) Let g be a quadratic Lie algebra. Then the orthogonal de-

composition of g into irreducible non-degenerate tdeals is unique up to an isometry.
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