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Abstract

The origin of mathematical matrices lies with the study of systems of
simultaneous linear equations. Today, they are used not simply for solving systems of
simultaneous linear equations, but also for describing the quantum mechanics of atomic
structure, and even for designing computer game graphics.

Matrices are very useful due to the fact that they can be easily manipulated.
We use the notation A™ to denote the inverse of a matrix A.

One of the major uses of inverses is to solve a system of linear equations.
You can write a system in matrix form as AX = B, then X = A™B.

Inverses are also used in communication through coded messages. The use of
coding has become particularly significant in recent years (due to the explosion of
internet for example). One way to code a message is to use matrices and their inverses.

Indeed, consider a fixed invertible matrix A. Convert the message into a matrax B such
that AB is possible to perform.

Send the message generated by AB.
At the recipient end, they will need to know A™ in order to decode the message sent.
Indeed, we have A™ (AB) = B, which is the original message.

There are two classes of methods for finding the inverse matrices.

Direct methods; a finite number of arithmetic operations leads to an exact solution.
Examples of such direct methods include Gauss elimination, Gauss-Jordan elimination,
the matrix inverse method and LU factorization.

Methods of the second type are called Iterative methods. Iterative methods start with
an arbitrary first approximation to the unknown solution. These methods are used for
finding the inverse matrices of large systems of equations.

In this thesis, we will work on Matrix, Matrix norm, Norms and Matrix Inversion. We did
some examples on how to find the inverse of a matrix using direct method.



We recalled the definition of order of convergence throughout an example.

Then in chapter 2, we showed that the following iteration method

p
Xns1 = ) Kol = AX,)
i=0

converges to A under the assumption [|I — AX,|| < 1. We also showed that the order
of convergence is p+1. Then we found an upper bound on the norm of difference
between m'’s iteration and the exact value of the Matrix inverse.

This generalizes the results presented in [15], where the author only considered the
casep = 1.

First, we dealt with case p = 2, then the case p = 3. We also illustrate with a simple
numerical analysis how the iteration works. Afterwards, we generalize the results
presented in [15] for arbitrary p.



Chapter 1

The Basic Elements for Matrices and their
Inverse; Order of Convergence

1.1 Introduction

In this section, we will introduce some topics that will be used later with the aim of helping us
in explaining the iterative method when finding the inverse of a matrix. The material may be
found in any numerical analysis textbook such as [1],12],[3],[4],[5].

1.1.1 Matrix
Ay, - QA

LetA = ; be a matrix with m rows and n columns.
Am1 = Qg

Itis called an m x n matrix.

If m=n then A is said to be ann xn matrix, an n-square matrix or a square matrix of
order n.

Square matrices play a major role in our topic since some of them will be invertible.

Addition:
The sum A + B of 2 m x n matrices A and B is calculated entry wise:
(A+B);=A;+ Bj where 1<ism
1<j<n
Scalar Multiplication:
(c.A)jj=c. A;



Transpose:

We simply mean that the rows of A become its columns: (AT) i = Ay
It satisfies the following properties:

o (cA)'=c(A")

o (A+B)'=A"+B'

o (A=A

o (AB)'=B'A”

Remarks:

1. Matrix multiplication is not commutative.

2. In order to multiply a matrix A by a matrix B, the number of columns of A should
be equal to the number of rows of B.

3. Identity Matrix: I, of size n is the n x n matrix in which all the elements on the

main diagonal are equal to 1 and all other elements are equal to 0.
1 0 0]

Example: I3=[O 1 0
0 0 1

4. 2 matrices are equal if they have same size and if they agree entry by entry.

Square matrix:

An Qg

It is a matrix with the same number of rows and column:s. Ex: [ P : }
Any - Qpy

A square matrix A is called invertible if 3 a matrix B such that AB = lyifand only if BA = |,,.

If B exists then it is unique and is called the inverse matrix of A denoted A™.

Trace of a matrix:

The trace of a square matrix A is the sum of its diagonal entries denoted by
tr (A) =X ay

We have:

o tr (AB) =tr (BA)

o tr(A)=tr(A")

o tr(A+B)=tr (A)+tr (B)
o tr(cA)=ctr(A)



dy O 0
We have: - Diagonal matrix: \ 0 dypy O 1

: ,, 0 O
- Lower triangular matrix: {121 l,, O ]
3 laz las

Uy U1z Y13
- Upper triangular matrix: 0 uzp Uz
0 0 Uiz

-IfA=A"=Aisa symmetr'ic matrix.

1.1.2 Matrix norm

A distance between matrices A and B is the norm between matrices ||4 — Bl
A norm on the set of all n xn matrices is a function ||. || from this set to R satisfying
these properties:

i. 1Al =0

ii. 1Al = 0iff A=0nxn

i, Naall = lal 1Al

iv. |A+Bll < llAll+ Bl

v. |IAB|l < llAllIIBI]

Examples:
1) |lAlli= maXy=1.n E}l=1\ajk|
2) ||l = max;—1.n Tzl

3 4l s (Shealapd?)”



Remarks:
1) Check whether ||A||= Z;-‘=IZ}‘=1|a,-j| is a norm:
We have: i) |4 >0since |a;|>0=>F", " |a;|20

i) [lAll=0iff XL, Y |a;|=0 iffay=0V i=1.n = A=0
j=l..n

iii) lladll = ¥, Xik|aay| = lal B, Ty lay] = |alllAll

v) llA+Bll=EL Tikilay + byl < Ty Nk (|ay| + |by])
=Yk 2ikqlayl + Xy Ty |yl
< [lAll + |IB]|

v) [lABIl < ||AlllIBI|

g;;mm:(i })andB:G i)

Al =2k T2 |ay| =4
1iBll =251 S24lby| =4

Now AB = (2 2) and ||AB|| = 8

2 2
Since 8<4x4 =16 = ||AB|| < ||A]l|IBI|

2) Check whether || 4[| = max,; j<,|a;]| is a norm:

We have: i) ||All = 0iff max,;jc,|a;| = 0iffay=0forisi,jsniffA=0
i) [lAll 20iff max,;jc,|a;] = 0

i) [|laAll = maxlsi,jsnlaaijl = |al maxlsi,jsnlaijl = |al[|A]l



A+ B| = maxlsi,jsnfaij + bij’

IA

MaX; j<n( ,aij I + [bifl )

= maxlsi.jsnlaijl + maxlsi,js::lb

IA

Al +IB]l
AB]| < [|AlllIB]|?

We take a counter example:

LetA=(1 1); |3=(1 1) ; AB:@ g

11 1 3

Now ”A“ = max 'aul =1
IB]| =1
lAB]| =2

Then ||AB]| 2 [|A[ll|BI|

)



1.1.3 Norms

Let X be a complex (or real) linear space (vector space) _

A function || ]|: X = R satisfying:

a) |lx||=0 (positivity)
b) ||lx||=0iffx=0 (definiteness)
) llex|| = |a|||x| (homogeneity)

d) llx+yll<llxll + |lyll (triangle inequality)
_Forall xeX, yeY and all aeC (or R) is called a norm on X.

Examples:

Norms on R" and C" are given by:

Li-norm: [Ix||; = X7, |x;]
l;-norm (Euclidean norm): ||x]|, = (5] %]

L, -norm (maximum norm): ||x||,, = maxj=1,_‘n|xj|

These 3 norms are special cases of the Lp-norm:
() 1]l o= ( }‘ﬂ[lep) VP defined for p21
The l,-norm is the limiting case of (*) as p & o



1.1.4 Matrix inversion

Let A be an nxn matrix. A is said to be invertible or non-singular if 3 an nxn matrix B
such that;
AB=BA=1,

In this case we use the notation B=A™ with the understanding that A™ is just a

notation, it is not %

Example:
_fa b n__ 1 [d -b 1 —en_1_/1 O
letA= [c d] then the matrix B = i Lc o ] satisfies AB=BA =1,= [0 1
s -1 1 d —-b ; ;
In this case A™ = ——[ ] provided ad — bc # 0 which meansdet A = 0
ad-bc L—¢ a
: > S | d -b
Accordingly, A oy [—c . ] :
Example:
1 2 a_174 -27_[72 1
= = — =] 3 ~1
A<l Fmennt-2[% [

By det A we simply mean a scalar associated with a square matrix A.

This clearly implies that the determinant is very useful in determining whether a
matrix is invertible or not.

In particular, if A= [1 22] ,detA=-2-8=-10 % 0, then A exists and it is:
2 2 i

a_ 1 [-2 -2] _l10 10| _|5 5

Atecels T =2 A B =
10 10 5 10

10



Basic properties of matrix inversion:

Let A be an nxn matrix then:

a)
b)
c)
d)
e)

(A7) =A

(kA)™ = % A? ;k#0
(AT)-l = (A-I)T :
(AB)* =B?A™

(A7) = (A7)

Inverse matrices can be very useful for solving matrix equations.

But, given a matrix, how do you invert it?

How do you find the inverse?

The technique for inverting matrices is kind of clever.

For a given matrix A and its inverse A™, we know we have A™A = 1.

We're going to use the identity matrix | in the process for inverting a matrix.

Example 1

Find the inverse of the following matrix.

1 3 3

1 4 3

1 3 4
First, | write down the entries of the matrix A, but | write them in a double-wide
matrix:

1. 3 3 ¢

1 4 3 :

1 3 4 :

In the other half of the double-wide, | write the identity matrix:

13 3 : 10 0
[1 4 3 : 0 1 0
1 3 4 : 0 0 1

11



Now I'll do matrix row operations to convert the left-hand side of the double-
wide into the identity. (As always with row operations, there is no one "right"
way to do this. What follows are just the steps that happened to occur to me.
Your calculations could easily look quite different.)

133 :100
143 :0 1 4
13 4:001
“Ritk; [1 3 3 1 00
e 010 % —1 4 0
— oo 1: -10 1
it 0 3 4 -3 0
—— 0 10 : -1 1 0
0 0 1 i -1 0 1
Spep L 0 0 2 7 =5 3
—l0 1 0 : -1 1 o
0 0 1 : -1 0 1

Now that the left-hand side of the double-wide contains the identity, the right-
hand side contains the inverse. That is, the inverse matrix is the following:

7- -3 -3
-1 1 0
-1 0 1

Note that we can confirm that this matrix is the inverse of A by multiplying the
two matrices and confirming that we get the identity:

[7 -3 -3]/1 3 3
-1 1 0|1 4 3
=1 0 1111 3 4

[ 71 —-3+x1-3x1 7*3—3+%4—-3%3 7*3—3+x3-3x4
=|-1*1+1%x1+0*1 —-1%x3+1%4+0%3 —1x3+1+3+0x4
-1+1+0x1+1+1 —-1*3+0%x4+1%3 —-1*x34+0%3+1x4

[7-3-3 21-12-9 21-9-12
= |-14+1+0 -34+4+0 -3+3+0
-1+0+1 -3+0+3 -3+0+4

100
=10 1 0
0 0 1

12



Example2:

Let AX = b be a linear system of 3 equations in 3 unknowns, if A™ exists (det A=0)
then

AX=b has a unique solution given by X=A"b.
Xi=X;+2X3=2

Xy +X5=2 (*)
3%, + X, — X3 =3

To get A™; we should pass from [A i [] > [1 : A~1] using Gauss-Jordan elimination.

[1 -1 2 ¢ 1 0 0
1 0 1 : 0 1 0
3 1 -1 : 0 0 1
1 -1 2 : 1 0 0
- o 1 -1 : -1 1 0
0 4 -7 : =3 0 1
1 0 1 : 0 1 0]
- 0 1 -1 : -1 1 0
0 0 -3 : 1 -4 1l
1 0 1 0 1 07
-1 1 0
> 0 1 -1 14 1
00 1 3 3 3.
1 _1 1j
10 0 3 3 3
4 7 1
-> 0 1 0 -3 5 =3
0 0 1 1 4 1
3 3 3-
1 _1 1
g 3 3 2 1
The solution of (*) is X = Ab = -§ -Z; —% [2] = [1]
_1oe 3l 11
3 3 3

13



We can use another way to find the inverse of a matrix:

Adjoint method:

1.1 g a1 : T
A = i (adjoint A)or A™ = e (cofactor matrix of A)
Example:
1 -1 2
In (*), wehaveA=|1 0 1| detA=-3.
3 1 =1
-1 4 1 -1 1 -1
The cofactor matrixforAis| 1 —7 —4/, sotheadjointis|{ 4 -7 1}
-1 1 1 1 -4 1
2 E 1
-1 1 -1 3 3 3
SincedetA=—3,wegetA’1=-}§[4 -7 1]= —g % —§
L =& 23 | 1 a4 1
3 3 3

1.2 Order of convergence

A convergent sequence (x,) from a normed space with limit x is said to be
convergent of order p 2 1 if there exists a constant C>0 such that:
lx,+1 — xll sCllx, — x|?, wv=1,2..

Remark:

in general, a sequence with a high order of convergence converges more rapidly than a
sequence with a lower order.

The constant “C” affects the speed of convergence but is not as important as the order.

14



Example:

We consider the sequences {p,} and {f,} and we suppose that {p,} and {P,}

converge to zero and that {p,} is linear with lim,,_,, %’% = 0.5 and
Pn

{;n} is quadratic with the same asymptotic error constant, lim,,_, I?ﬁ’”l;l =0.5
n

Now for the linearly convergent scheme, this assumption means that

|Pn— 0l = |pnl 0.5 |p,_q| = (0.5) [Pz wone = (0.5) ™ | pg|

Whereas the quadratically convergent procedure has:
[P =01 =1Pn =0.5 B4 1% = (0.5) [0.5 [P ]1 = (0.5)* | B, |*

= (0.5 [(0.5) [B-31? 1* = (0.5)” (B3 [® = e = (0. 5)2" 1[5 |2"

* The table below illustrates the relative speed of convergence of the sequences to zero
when

Ipol = IPol =1
Linear convergence Quadratic convergence
N Sequence {p,,} Sequence {p,, }
(0.5)" (0.5)%"-1
1 5.0000 x 10™ 5.0000 x 10
2 2.5000 x 10™ 1.2500 x 10
3 1.2500 x 10™ 7.8125 x 10
4 6.2500 X 107 3.0518 x 10
5 3.1250 X 10 4.6566 x 10™°
6 1.5625 x 10~ 1.0842 x 107
7 7.8125 x 10°° 5.8775 x 10

The quadratically convergent sequence is within 10 of zero by the seventh term.

At least 126 terms are needed to ensure this accuracy for the linearly convergent
sequence. '

Quadratically convergent sequences generally converge much more quickly than those
that converge only linearly, but many techniques that generate convergent sequences
do so only linearly.

15



Chapter 2

A Variation of an Iterative Method to compute
the Inverse of an invertible Matrix

Iterative methods occur in many topics in numerical analysis such as solving systems
of linear and nonlinear equations [6]—[14].
We consider the following iteration method

Knsr = Xn + Xn (1 = AX,) + X, (1= AX,) 2+ o+ X, (1 - AX,)? n=0,1..

(3

Our aim is to show that it converges to A™ under the assumption ||I — AXyll <1
and to show that the order of convergence is p + 1

2.1 Iteration Method where the Order of Convergence is 3

We consider the following iteration method
Xns1 = 3X, (1= AX,) + X,AX,AX,, n=0,1...
We will show that it converges to A™ under the assumption ||I — AX,l| < 1

We also show that the order of convergence is 3. This result can be regarded as a
variation of the following iteration

Xne1 = X, (21 - AX,), n=0,1...

which was proved to converge quadratically to A™ under the assumption||I — AX,ll < 1.

16



2.1.1 Introduction

Most topics in numerical analysis (linear and nonlinear systems, eigenvalues and
eigenvectors, initial and boundary-value problems...) involve exact and iterative
methods.

The most well-known exact method for computing the inverse of an invertible matrix
Ais to form the augmented matrix (A|l) where | is the identity matrix of same size as
A and then reduce it by applying elementary row operations to (1|A™).

This method appears in every linear algebra text book. However, little is known about
iterative methods.

The following iteration method

xn+l = xn (ZI - Axn), n= 0, b PP

was introduced and proved to converge quadratically to A under the assum ption
{lI — AXyll < 1. Our aim in this note is to accelerate the rate of convergence, of
course as usual, at the cost of computational complexity.

At the end, we provide some insights into possible directions for future work.

2.1.2 Main Result
We consider the following iteration method
Xns1 = 3X, (1= AX,) + X,AX,AX, n=0, 1
We will show that it converges to A™ under the assumption ||I — AX,l| < 1.
We also show that the order of convergence is 3. Note that the iteration could be

written in the following equivalent form which is more convenient for our purpose.

Xns1 = Xol + X, (1= AX,) + X, (1= AX,)%, n=0,1...

17
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First, we will prove the following lemmas.

% Lemmal

(1= AXy) = (1 - AX,)?

Proof
X1 = Xo + Xo(l = AXo) + Xo(l — AXo)?
= 3Xp — 3XgAXo + Xo(AX,)?
Hence,
AX; = 3AX, — 3(AXo)? + (AX,)®
Therefore

I = AX; = I = 3AXg + 3(AXo)? = (AXo)® = (1 - AX,)?

< Lemma?2
(I-AX,)=(I- AXy)%"

Proof:

By mathematical induction; for n = 1, it’s true by the previous lemma.
Suppose the result is true for n. Let us prove it for n+1.

I = AXny1 = 1= AXy = AXq(1 = AX,) = AX, (1 = AX,,)?
= | - 3AX, + 3(AX,) * = (AX,)>

= (1-AX,)?
=[(l- Axo)3n] .
- (I— AX0)3n+1

18



< Lemma3
Xn = Xo + Xo(l = AXo) + Xo(l = AXo)? + ... + Xo(I - AX4)3"~?

Proof:

By mathematical induction; for n =1, X; = Xg + Xo(l — AX,) + Xo(l = AXo)?.
Suppose the result is true for n.
Let us prove it for n+1.

Xos1 = Xo+ Xo (1= AXp) + X, (1 — AX,) 2
= Xo+ Xa(1- AX()®" + X, [(I1- AXy)®"]?
= Xo + Xo(l = AXo) + Xo(l = AXo) + ... + Xo(1 - AX,)3" 1
+Xo(1= AXg)®" + Xo(I = AXg)3"*1 +...+ Xo(I - AX,)23"1
+Xo(1= AXg) 22" + Xo(I = AXg)?3™ 1 + .. + Xo(I - AX)23"+3"-1

Therefore
Xns1 = Xo + Xoll = AXp) + Xofl = AXp)? + ... + Xo(I — AXg )31

We further need the following elementary fact which could be found in any linear
algebra textbook.

% Lemma4

If Cis a square matrix with norm strictly less than 1, then the series 1+C+C%+... is
convergent and its inverse is given by (1= C)™* .

Our first main result is the following.
Theorem 1

The following iteration method
Xns1 = X + Xo(l = AX,) + X, (1= AX,)?, n=0,1..

Converges to A™ under the assumption ||/ — AX,|| < 1

19



Proof:
By lemma 3, we have
Xns1 = Xo + Xo(l = AXo) + Xo(l = AXo)? + ... + Xo(I - AX,)3" -1
Therefore
Xner = Xo (I+ (1= AXg) + (1= AXo)* + ... +(1 - AX,)3"""-1)

Let C =1 - AX,. Our assumption implies that ||C|| < 1.
Thus, by the previous lemma, asn —» o

Xa1 = Xo(l = (1= AXo))™ = Xo(AXo) " = XoXo'A™ = A
Our next main result is that the convergence is of order 3.
We first need the following lemma.
% Lemmas5

I = AXpiq = (1= AX,) 3

Proof:
AXni1 = AXy + AX, (1= AX,) + AX, (1 - AX,) 2

= 3AX,— 3(AX,) % + (AX,) >

Therefore
I AXna1 = | - 3AX, +3(AX,) % - (AX,) 3 = (1 - AX,)

Theorem 2

The order of convergence is 3
Proof

I = AXpuq = (1= AX,) ®

20



Hence
A (A" = Xoa) = (A (AT = X))
Therefore
|47 = Xpual| < NAIP || 472 = X, |2

Numerical Example:

1 0 1

4 0 -1
Consider the matrix A = (0 2 1). The exact inverse is A™ = (1.5 0.5 —0.5).

3 0 4 -3 Q@ 1

23 =05 =15
Let the initial guessbe Xo=| 1 0.2 -1 such that [|I — AX,|| < 1
-2 02 1.6

Using Xner = Xol + Xo(1 - AX,) + X, (1 - AX,)>  p=2
Solving the equation in MATLAB, we get the following results:

3.2440 0.6520 -—1.6280
Forn=0: X;=1{ 1.2880 0.2480 —1.0000)
—2.6640 0.3360 1.6880

1.5628 04744 —-0.9147

3.8920 -0.1881 -1.5073
Forn=1: ( )

—3.0835 0.0392 1.5786

1.6661 0.5888 —0.7734

4.1817 0.0934 -1.3191
Forn=2: )

—-3.2313 —-0.1236 1.3811

1.5613 0.5342 - 0.5937
—3.0855 -0.0476 1.1306

Forn=3:

1.5025 0.5014 - 0.5038
—3.0035 -0.0020 1.0053

X2=
X3=(
4.0712 0.0397 -—1.1088
Forn=4: Xs = (

4.0029 0.0016 —1.0045)

21



4.0000 0.0000 -1.0000
Forn=5: Xg = (1.5000 0.5000 - 0.5000)
3.0000 - 0.0000 1.0000

Then for p = 2, after 5 iterations the result converges to A’

On the other hand, for p=3:

Xos1 = Xal + Xo(1 - AX,) + Xo(1 - AX,)? + Xo(1 - AX,)?

Forn=0: 0.8016 —0.0144 —0.1296

(2.7800 —-09272 - 0.6200)
Xl =
—2.0080 0.7168 0.4816

3.6072 —0.2622 —0.6274
Forn=1: X,= ( 12145 03203 -0.1716
—2.6006 0.2516 0.5425
X3 = (

Forn=2: 14142 04522 - 0.3690

3.9004 - 0.0556 —0.8479)
—2.8804 0.0667 0.8174

39977 —-0.0013 —0.9966
Forn=3: X,= (1.4981 0.4989 — 0.4970)
~2.9973 0.0015 0.9959
4.0000 - 0.0000 - 1.0000
Forn=4: Xg= (1.5000 0.5000 =~ 0.5000)
—3.0000 0.0000 1.0000

Then for p=3, after 4 iterations the result converges to A™

Using our output results from MATLAB, we note that for p=3; we reach our desired

result faster using less iteration,

22



2.2 Iteration Method Where the Order of Convergence is 4

Since our aim is to accelerate the rate of convergence, we will consider another

iteration method and we will show that it converges to A under the assumption
I — AX,|l < 1.

We will also show that the order of convergence is 4.

2.2.1 Main Result

We consider the following iteration method

Xne1 = Xol + Xp (1= AX,) + X, (1= AX,)2 + X, (1- AX,)3, n=0,1..

We will show that it converges to A under the assumption [l —AX,|l < 1.
We also show that the order of convergence is 4.

First, we will prove the following lemmas.
“* Lemma6

(1= AX,) = (1 = AXp)*

Proof:
X1 = Xo + Xo(l = AXo) + Xo(l = AXo)? + X (1 = AX,)?
= 4Xo— 6XoAXg + 4% (AXo)? - Xo (AXo)?
Hence,
AX; = 4AXo = 6(AXo)® + 4(AX,) - (AX,)*
Therefore

I = AX; = | = 4AX, + 6(AXo)* = 4(AXo)® + (AXg)* = (I - AX,)*
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< Lemma?7
(I-AX,) = (1- AXy)*"

Proof:

By mathematical induction; for n = 1, it’s true by the previous lemma.
Suppose the result is true for n. Let us prove it for n+1.

1= AXnes = 1= AXy = AXo(I = AX,) = AXo( = AX,)2 = AX,(1 = AX,)? n=0,1, ..
= 1= 4AX, + 6(AX,) 2 = 4(AX,) > + (AX,) *
= (1-AX,)*
=[(1- AXp)*")*
= (I _ AX0)4“+1

% Lemma8
Xn = Xo + Xo(l = AXq) + Xo(l = AXg) + ... + Xo(I - AX)*"~1

Proof:

By mathematical induction; for n =1, X; = Xo + Xo(l = AXo) + Xo(l = AXo)? + Xo(I - AX,)®
Suppose the result is true for n. Let us prove it for n+1.

Xne1 = X+ Xn(l = AXa) + Xo(l = AXn)? + Xo(l = AX,)?
= xn + XnU - AXU)4R + xn [(l = AX0)4R] 2 + Xn [(1 - AXO)4H} e
= Xo + Xofl = AXo) + Xo(l = AXo)? + ... + Xo(I = AXg)*"~1
+Xo(I = AXg)*" +Xo(1 = AXo)*™ 14 .+ Xo(I - AX,)24"1
+Xo(I = AXo)#*" + Xo(1 - AXg)24™ ™14 4 Xo(I - AX,)34™+1
+o+ Xo(1- AXp)*4 -1

Therefore
Xae1 = Xo + Xo(l = AXg) + Xo(l = ,“3«)(,3)2 + ..+ Xo(I = AX, )4n+1_1

We further need the following elementary fact which could be found in any linear
algebra textbook.
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* Lemma 9

If Cis a square matrix with norm strictly less than 1, then the series 1+C+C%+...
is convergent and its inverse is given by (1 — c)*t.

Our first main result is the following.

Theorem 3
The following iteration method
Xne1 = Xn + Xl = AXp) + Xo(1 — AX,)? + Xo(1 - AX,)? ,n=0,1..

Converges to A under the assumption ||/ — AXpll <1

Proof:
By lemma 8, we have
Xns1 = Xo + Xo(l = AXo) + Xo(l = AXg)® + ... + Xo(I - AX)*" -1
Therefore
Xne1 = Xo (I + (1= AXo) + (1= AXo)? + ... +(1 - AX)*"""-1)

Let C=1— AX,. Our assumption implies that ||C]| < 1.
Thus, by the previous lemma, asn — oo

Xns1 = Xoll = (1= AXg))™ = Xo(AXo) ™ = XoXo A = AL

Our next main result is that the convergence is of order 4.
We first need the following lemma.
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<+ Lemma 10

1= AXpe = (1= AX,) *

Proof
AXns1 = AXy + AX, (1= AX,) + AX, (1= AX,) % + AX, (1= AX,)® , n=0, 1..
= 4AX,— 6(AX,) 2 + 4(AX,) > - (AX,)*
Therefore
- AXnuy = 1 - 4AX,, +6(AX,)? - 4(AX,)® + (AX)* = (I - AX,)*
Theorem 4
The order of convergence is 4
Proof:
| = AXpe = (1= AX,,)
Hence
A (AT =Xn1) = (A (A = X,))
Therefore

|47 = Xpuall = ]| A7 A4 = X, )Y
<NATHIAN Y |47 = X,

26



2.3 Iteration Method Where the Order of Convergence
isp+1

xn+1=2?=0Xn (I 'A-Xn)‘I
Xns1 = Xn + Xn (1= AX) + X, (1= AX) 2+ o+ X, (1 = AX,)?  n=0,1..

We will show that it converges to A™ under the assumption ||I — AX,ll < 1.
We also show that the order of convergence is p+1.

':4 Lemma 11
I - AXo = AXg (I = AXg) = AXg (1 = AXo)” - ... - AXo (I = AXo) P = (I - AXg) ***
Proof:

By mathematical induction;
For p =1, I - AXg- AX (I — AXg) = I = 2AXo + (AXo)? = (1 — AXp)?
Suppose the result is true for p. Let us prove it for p+1.

I~ AXg = AXo (I = AXg) = ... - AXo (I = AXg) P - AXg (1= AXo) P*
= (1= AXg) P - AX, (1 = AX)
= (1= AXp) *** (1 - AXo)
= (1= AXp) ™

¢ Lemma 12
= AX; = (1 - AXg) "
Proof:
X1 = Zf:oxo (1 -AX,) ! _
AXi=XF AX, (1-AX,)"
AX; = AXg + AXg (1 = AXg) + ... + AX (1 = AXq) P

Therefore |—=AX; =1-AXg-AXg (I = AXp) - ... - AXg (1 — AXo) P
Therefore | —AX; = (1= AXo) ™
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% Lemma 13
I1-AX, = (I - AXy)®@+D"

Proof:

By mathematical induction;
forn=0, (I — AXo)=(I — AXo) ®*D° = (I — AXg)*=(I — AX,)
Suppose the result is true for n. Let us prove it for n+1.

Xns1 = Xn + Xo (1- AXp) + Xq (1= AXp) 2 +..4X, (1 - AX,) P

| = AXne1 = 1 = AXy = AX, (1 = AX,)) - AX, (1 = AX,) % -...c AXn (1= AX,) P
= (1- AX,) "
= [(1 - AX, )(p+1)“] P+
=(I — AX,)@+0™"

¢ Lemma 14
Xn = Xo + Xo (1= AXg) + Xo (1= AXo) 2 +...4Xo (I — AX ) PHV"-1

Proof:

By mathematical induction; forn=0, X,=X.
Suppose the result is true for n. Let us prove it for n+1.

Xner = X+ Xo (1= AXy) + X, (1= AXo) 2 +..4X,, (1 - AX,) P

=Xn+ Xo (I — AX)PHO™ 4 X, (I — AXy )2PHO™ & 4 X, (I — AX,)P@+D"
= Xo+ Xo (1= AXo) + Xo (I = AXo) * + .. + Xo (I — AX) P14 X, (I — AX,)P+D"
+ Xo (I — AX)PHO™L 4 4 X (I — AXp)2@HO™=1 4 X (I — AX,)2P+D" 4+

Xo (I — AXp)3P+D™=1 4 44X, (I — AXy)P@+D +(p+1)"-1

=Xo+ Xo (1= AXo) + X (1= AXg) > + ... + Xo (I — AXp) PHD™=14 X (] — AX,)P+D"
+ Xo (I — AX)PHI™ 14 b Xo (I — AXp)2PHI™=1 4 X0 (1 — AXp)2®+D™ 4 4

Xo (I — AX)3®H™ =1 4 4 4%, (I — AX,)P+D" -1
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Theorem 5
The following iteration method
Xns1 = Do Xy (1- AX,,)
Converges to A under the assumption ||I — AXoll < 1.

Proof:

By lemma 14, we have

xl‘H-l = XD + XQ(I = AXU) + XO(I - Axo)z + nk XO(] _ AXO)(p+1)n+1_1

Therefore

Xns1 = Xo (1 + (1= AXp) + (1 —AXO)?' + .. #+(l- AXG)(p-i-l)“H—l )

Let C = | — AXo. Our assumption implies that ||C|| < 1.
Asn— o0

Xns1 = Xoll = (1= AXo)) " = Xo(AXo) ! = XoXo'A™ = A™

Our next main result is that the convergence is of order p+1.

Theorem 6
The order of convergence is p+1

| = AXpeq = (1 — AX,) P2
A (A7 = Xne1) = [A (AT = X1
Al=X, =AT[A(AT-X)]P?
A~ = Xpgall < A7 NAIP? [A72 = X, 1P
=K(A) lIAlIP [[A~Y — X, ||P*?
With K (A) = ||A~||||A|| the condition number
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Remark

Significance of the Condition Number

The condition number of an n x n matrix A is
Cond (A) =K (A) = [|A]|[[A7]|

This number tells us how accurate we can expect the vector x when solving a system
of equations A - x = b. We assume that there is an error in representing the vector b,
call it € and otherwise the solution is given to absolute accuracy. That is we solve A - x
=b + € and get a solution x + § where x is the solution of Ax = b. How does the
condition number help estimate the number §? We note that

x+6=A"1(b+€)=A"1b+A4A71€
Since A™*b = x, this gives us the following equation for .
§=A"1.€
811 < [IA7H] €l

So, the condition number for the magnitude of the absolute error & for such a

calculation is just the operator norm, ||A~%||. On the other hand, the relative error is
; sl

given by T

For the relative error we simply divide the above inequality by the norm of x to get

the following inequality:

-1
sl < A~ el
il (B4

4.x]|
[B4]

However, from the definition of the norm of A, < ||A]] and Ax =b.

So, ||b]| = ||A]l -llx||]. Thus, combining these inequalities we get the following.

I8l _ A3 el _ Al la=3] hel _ Jll
S sl Tl e cond (Al

So, in solving the equation Ax = b, the relative error in the solution divided by the
relative error in the right-hand-side vector is given by the condition number of A. The
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following rule of thumb is a useful way to express the above estimate. It states that if
m =log,q(cond(A)), then mis the number of digits accuracy lost in solving the
system of equations Ax = b. There is typically additional error due to the many
calculations needed in solving the equations. The estimate for additional losses is
given by log,,(n) if the matrix Ais n x n.
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Chapter 3

Error bound on the norm of the error

Suppose Ais a r X r matrix such that | - A is non-singular then the identity

(I=A) " =1+A+A%+ .+ A™ 4 AT (1- A)?
Holds since
(I=A) =1+ A+A%+ L+ A"+ AT+ A™ 4
(I—A) =1+ A+A%+ L+ A" + A" (1 + A+ A2+ )
(I—A) =1+ A+A%+ .+ A™ 4 AT (1- A)?

Now suppose that N (A) < k< 1. In the sequel, we use the Frobenius norm

Taking the norm and using: N (A+B) < N (A) + N (B)
N (AB) <N (A) N (B)
N (A™) < [N (A)]™
We have:
N[I=A<r/z+k+k2+ .. + K™+ kK™ N [(1-A)Y
Clearly, N(I) = r.
Since k < 1; we may solve for N [(1-A)™].

rlf?-— 1

1
+— foreverym>0

e = -1
We obtain: N [(I - A)"] < k™ 1k

Proof:
N[I=A) Y <r/z+k+K+ .. + K™ +K™N [(1-A)Y

N[(I=A)*-K"N[(I-A)Y < r/2=1+1+k+ K +...+k™

1- k™
(1-k)

(1-K")N[(1-A)Y<r/a—1+
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1
r/2—1 x
+

-1
Therefore N[(I-A)Y < e

If m =>oo then k™ - 0 since k < 1. Therefore in the limit when m becomes infinite; we
find: Nm—mﬂsr%;1+ﬁ; ; N(A)sk<1

Let X, be an approximation to the inverse of a matrix A.
Consider the following sequence of operations.

Calculate: Xy = Xp (21— AXy) (*)
)(2 = Xl (2{ it A)(l)

Xiia= 3o (21 —A%) m=0,1,2..

Let us inquire as to the conditions under which the sequence of matrices X,
converges to A™, the maximum error that may be committed in stopping at any stage,
and the rate of convergence.
Suppose that X, is an approximation to A™ to make the roots of the matrix

D=1-AX, (**)
all less than unity in absolute value.
Then increasing powers of D approach zero, and the convergence of X, to A will

follow from the relation Xpm= A (I -Dzm)

Proof:
By mathematical induction;
For m = 1; we have X; = A (AX,) (I + D)

=A*(I-D)(1+D)
=A(1-D?)
Since, from (**) we have D — | = - AXgthen | = D = AX, then X, = A (1 - D)

Now in (*), X; = Xp (21 = AXp)
=AY (1-D)(21-AA? (1-D))
=AY (1-D)(21-1+D)
=A*(1-D) (I +D)
=Al(1-DY
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Suppose it is true for m and let us prove it for m+1:
Xme1 = X (21 = AXpy)
=AT (1-D?") (21- AA (1-D2™))
=A™ (1-D?™) (1 +D?™)
= A (1-D¥"")
Therefore Xmez = A2 (1-DF™)
This completes the induction.

Now, we derive an upper bound for the error in X, in terms of k and N (X,).

From D = |- AXowe have D—1 = - AX,
|-D=AX,
Al (1-D) =X,
Al=X,(1-D)*

Hence, by X, = A™ (1-D2™)
Xn,=Al-A1D2"
Xm=Al=-A1D?"
Xm—A"t=-Xq(1-D)'DZ"

Therefore, using: N (AB) < N (A) N (B)
N (A™) < [N (A)]™
Andby N[(I-A)Y < r'/2—1+ .I“Lk
We have N (X,, =A%) <N (Xo) k2™ (r/2 =1+ ;j_k )

The previous inequality sets an upper bound for the difference between each element
of X, and the corresponding element of A™.

Let us generalize this inequality for our iteration with p = 3, i.e., for the iteration
Xms1 = Xn + X — AX ) + X (I — AX )P

By Lemma 2, Chapter 2, we have
1—AX, = (1-AXy)*"
letD =] —AX,. Then A™'=X,(I—-D)™L.
We also have
I - AX,, = D3"
Hence
X, =A(1-D%")
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Which can be writtenas X, = A1 — 4"1p3"
or Xy — At =-X,(I — D)"1D3"

Therefore by N (AB) < N (A) N (B)
N (A™) < [N (A)]"

1
r2-1 1
+—

And by N[(1-A)" < — =

1
rz-1 1
s o _)

Wehave N (X =A%) <N (Xo) K37 (4 —

Our aim is to generalize this inequality for arbitrary p, i.e., for the iteration

7]
Xs1 = ) Xy (I =A%)
i=0

By Lemma 13, we have
I — AX,, = (1 - AX,)P+D™

letD =1—-AX,. Then A™'=X,(I-D)".
We also have
I - AX,, = D@D

Hence

Xm = A1 = D@+I™)
Which can be written as

X, = A"t = A"+
Or

Xm— At = —X,(I — D)"tD@+D™

Therefore by N (AB) <N (A) N (B)
N (A™) < [N (A)]"

1
r2—-1 1
+.__

And by N[(1-A)Y < —h—

1
Wehave N (X, —A") <N (Xo) k@™ (lrj,::l + ﬁ)



Chapter 4

Conclusion and Future Work

In [15], the author showed that the iteration method
Xos1 =X, - AX,);n=0,1, ...
Converges quadratically to the inverse of the matrix A under the assumption that
I —AXoll <1

He also showed that

Num—Aﬂ)SNw@WmQﬁ—1+T%I)

Where N(A) is the Frobenius norm of an r X r matrix A which satisfies N(4) < k < 1.

In this work, we generalized the results presented in [15] by considering the iteration

17
Xm+1 == ZXm (I = AXm)i
i=0
Clearly, the iteration presented in [15] is a particular case of our iteration for the value
p = 1. We showed that our iteration converges to the inverse of the matrix A under the

assumption that
I — AX,ll < 1

We also showed that the convergence is of order p + 1, and

i 1
N = A7) < NP (V7 = 14 —)
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One possible direction for future work is to determine the optimal p. Clearly, as p
increases, the computational cost increases but the number of iterations decreases
(since the order of convergence increases). We have no idea currently how to address

this issue.

Another possible direction is to generalize the results presented in [16] where the

author considered the iteration in [15] in the context of generalized inverses.
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