Anomaly Detection On A Real—Time. Server Using

A Data Mining Algorithm

By

Georges Chaaya

Department of Computer Science,

Notre Dame University

A dissertation submitted to Notre Dame University,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

June 2015

‘H@JBRAW
*\ 27 SEP 2016

{_RECEIVED]

Anomaly Detection On A Real-Time Server Using A Data Mining Algorithm
By

" Georges Chaaya

Approved by:

g

Hoda Maalouf-7ASsociate Professor of Computer Science

Advisor.

Marne Khair: Associate Profgssor of Computer Science

Member of Committee.

rofessor of Computer Science

Date of Thesis Defense: June 26, 2015
i

Abstract

Anomaly detection is the process of finding outlying record from a given data set.
This problem has been of increasing importance due to the increase in the size of the data and
the need to efficiently extract those outlying records that can have important indications in
real-life problems. Anomaly detection is applied in many different sectors.

There are many approaches to solve the anomaly detection problem. However, those
that are more widely applicable are unsupervised approaches as they do not require labeled
data.

The aim of this thesis is to study a well-known anomaly detection technique on a
specific application, and to find some ways to tune and optimize it in order to have better
precision and results.

The server chosen in this thesis is the Short Message Service Centre server, which is
used in the telecommunications field to handle and store messages (SMSs) so that they can
be properly delivered to the appropriate destination. This server was studied in details to
decide which data should be taken into consideration. Once done, a script was written to
gather all these data, which went through a cleaning phase (preprocessing) and then through
a labeling process after being deeply analyzed and divided into many subsets.

After extensive research, the decision tree algorithm was chosen to be implemented,
and it was applied to the labeled data obtained. The original tree that was constructed gave a
precision of 98.82%. After that, different types of tuning were performed to increase the
precision, which reached 99.38% with an effective accuracy of 99.98% (relative to our case).
Our approach proved that the application on this type of servers is efficient and it leads to

very good results, which can also be improved in future studies.

iii

Acknowledgements

I would like to thank Dr. Hoda Maalouf for her supervision and patience throughout
the research and writing of this thesis. I would also like to thank Dr. Marie Kheir for her help
and the data mining concepts she supplied.

Many thanks also go to all the NDU faculty members who have been part of my

educational path and to all my friends who supported me when I needed it the most.

And the biggest “Thank you” goes to God, who has been with me all along the way,

and who without him I couldn’t have reached the stage I am at now.

iv

Dedication

To my family, who offered me unlimited support and guidance throughout my life
and motivation during this thesis, and to my close friends who were next to me during this

period.

Table of Contents

Chapter 1 Introduction and Problem Definition...........covueuiumemmisisininiiesinssisiisisisi s
1.1 Introduction to the General PrODIEM. cuuuisissssasssosssssenssansosessssessersesssasssusssnssorsamsassessansagansas
1.2 Problemy Definition..cismmaimimi s p e miin e it
13 R e SearCh OB BCtIVES s sssmiaisscsesissiniviisssssssssassussnineapisisevsenssrioesesis bintantos sinasss siasisonsinssssvussnsasanannss
1.4 Approach and Main ReSultS..........cuiiaisisssiismonsrissivisassesssvssoravessrersssnssadamtsnssniisssnsas isa i siisassssis
1.5 THESEE O PARIBREION ... cuuuiucrisssiassniasninverissssessssms siasisusnsistussasssis s ismensssosbiinsssassmns sEassmacms A HORRSPHrSnS

Chapter:2 Anomaly DEteCtiONc.sciiiisisisistosssssississtsonssmssats oo irsssss voaedsyiuissnivasmessairosd S sadishunasi
D IO PTG s oot a3 oo 4 s S A S O AR 8 s SO A 5700

21 L ATOMALY. .. arreeersessrnsssnsnssnansasenssrassbisiisssisnesiossmisiai TR i R R e
2.1.2 ANOMALY DBTECHON ciivitiiniisisivonsasonusinssisitsrssarasatsssmoasusstssssas iinisssssssasassasasissasesssstssssasyasessabess
2.2 Importance and APPLCATIONSc.e.reoeueiiiiiiiiiiisiiiis st isssesesssss et es b s s s st ssss ssssasies s
3 CRALICIIGES. visasasniessssmassasaussssusias s 5es 45440 DR 48 AN ST F OSSPSR A PR ER S B2
2:4.2 TYDCE .ovcoussassarssnisenssasnensaesanmsnsosas sebssassssssonsssatinsissisnsonshosavavevs st sssusaas e sobRioessss e EaSiNsR S s
24271 Point ANOMIBIIEE - . ;i nmiesammiamisiieiissss s besiisasiors oo sus ssis isonsnsstsssssmassssssSorseaavits
2:4:2:2 Contextual ANOMANES.. ... it i s i s
24,23 Collective: ATOTHALIES . cvvmanissemsmasissmsassssionessininiizssssonsansnssssinssasisss Mssssstramsomsssstess o
D S LADBIS.......ccreeneemessscrisms R S R R R R
25 Rielated WOTK: ... oo i i e ST G T Vs s s eas

Chapter 3 Anomaly Detection TEChIIQUESceerimiemrmrsrensecrtiesssesssstimstsrsssssssssssssssesssssssgsasssasssssssses

3.1 Basic Approaches to Anomaly Detectionccoieiriemrieiimniniii e
3.1.1 Supervised ANOmMaly DELECHONcocvuuiuerririminisssae st snr st ssssssssasases
3.1.2 Semi-Supervised Anomaly DeteCtioncccuiiuimiimemiimiimiisssisici s aees
3.1.3 Unsupervised Anomaly DeteCtionc.ccomueiemuemmirsnisemsissisinisssisssssississssss s sasesses

3.2 Classification AlGOTIIIMSecevrieeresomrenciismsiisesssssssassessssssesssssssnsssnssssssmssmsssemsssssssssssasnasssnass

3.3 Advantages and Disadvantages of Classification Data Mining Techniques...........c.cccccovveunneen.

3.4 Decision Tree TECHMIGUES.c.ocuiiiieciciiiesies s

3.5 The C4.5 Tree Construction AIGOTItITLoiveirriiirs it

3.6 Overfitting, Pruning and Cross Validationco.oerueimisiiiniiiniiisis e

vi

O W 0 N N h h LA W

10
10
10
11
11
12
12

14
14
15
15
15
17
18
19
22

3.7 Classifying an Unseen INStANCe...........ccvvuerieumeienieisiesss it st ssssssasss
3.8 "The Confusion VI e s i o s sy s s s R B e
Chapter 4 Anomaly Detection in Real-Time Servers........ooveiiiimiimsinii e
T I O O O Ot s ety s S e o B S s S S e Ay A TE S v o e P O PSR SR
4.2 SYSLEIN CONIERL . ovrrnossrssssasssossmsssossasnsstaassssssssssssssnesssssns st snsssssassonssssssasessesnsens sansassspasnassnasss sbansssin
42 1 Distributed. ATchIteCTURE ...oiiviiiinattinmssmisn it vios
4:2:2 BRACNA] COTIECH OIS, 1. <xovammsmmsspssnssnsossssnss st nsssasssnsrassmrsnasbrs atsm amwagaas s s spa s g nsssansansnss
47791 The Mobile NetWOrk: . s i si58a st i e ie s ssssassiades ssehssis sacs
4.2.2.2 The External Short Messaging Entities (ESMES)coovivemmreeninieieeeceec
4,293 The BIIINE SYBIRIN .m0t i i s i Bt savsi St iasivh s sodassassiasss HescRar o SRR
4.2.2.4 The Real-time Charging Gateway (RTCG).......ccoovvirmmrmimerireeieieeeeeeeesne
4.2.2.5 The Rules Engine Unit (REU).....covouisiininiasmsssiissssivisissmsssssssssssasssasnssisisnsssiasisussasssesis

A IS S O N AT s s s s i o s s e A e s sk AP LSS LA BT P S Bt e a5 s pr e Sy
4.4 Possible Anomalies in a Distributed ArchiteCture..........ccceviimernorineremeren e
4.5 Processes And FEAUTEScccccorissemsassaesressssssssassssssassutsssssnsssssassissasssassnsssasssesnsoanssnossssassassases
4.5.1 SYNCHrONIZAtON PIOCESSES wuuvoissvcisnrsiorsrississiamsibisusssiasstisasissisisisiiasimassissinsissamsisisanisssisasio
4.5.2 Mobile Number Portability...........ccceceremseessesseresnssersmsissesseressesssssessessessssessassassanssesssssnsassssss
4.5 3 Distibution Lists o it ot iiiesiinm sisvsvovhsn s assises I st pasanain
8,54 TP FRIIOVELuvaeinssarsessunsesseseesnsninsssrimassssmasasassnsasansassssssnsesssssnsasassansansas snsnsresress s s HATIEAF 155
45,5 The Web INterface .o mtasiieasis simmmsss it i isibossios oot b sasanissusnannsonnsas
457 Addvess TEanSIAtON . i aasiuassisinsssessssissms nss o3 s s 562 anasiessasssis s sosnsasmss sonmsnmsrns
4.5.8 Lawful IDETCEPLON ...voveveereeeceesasssseasesisestsrensnsessasasssseasassssssssssssnsassssusaassseanasststsasasssasesens
4.5.10 AULO-SIZNALUTEccooceiueeenieciiiiranseisss s sees et s s et b bbb
Chapter 5 The ImplEMENtationcvucueeuiuesursissssrmsssstistisis s s st s
5.1 Server Related StUGIes: . uiiiiivinsresisevissoerions sessiianissasateisnisiosisssrsviorssssvors sesissssrstsesss st sisnnss
5.2 Important ISSUES t0 AAIESSceuuerrirmsisieisssieisttriesnier s s
5.3 INitial DAtA SEIECHOM ...ccveirverieremesieeereeirastesissasastsesssrmssssssmesessasessasasastansstsnastssestssssssnsanonsenensanens
5.4 The Script Used for Data SEleCtioncowuuimueiuriieisisemsiicssistisiess st is
5.5 Cleaning the Data or Data PreproCessingovirmirmrisimiiisiiiis s
5.5.1 Handling DUPHCALEScccurmueuimiesiiiissirscasei it s

23
23
26
26
26
26
28
28
28
29
29
29
30
31

s 32

32
33
33
33

.34

34
34
35
35
35
37
38
39
41

R RS

5.5.2 Handling MiSsing ValUes.........c..cuemururiiseiiieisisisinisisa s s s s
5.6 Adding AnOmMalous RECOTAScuuwrrmurmtiruemimiisniinessissse sttt
5.7 Differences in ArDULE TYPES . vvirricuirieiiiiisis s st s
5.8 Correlations BetWeen AHTIDULEScocecreeiereiimsisieiniensteiese s s sssssssssssmsbesasssasssssssssesss sssssns
5.9 SEASONANIEY ...v.vvevesieesiesecseasssscas s aesns s s b i S

5.12.3 Applying Tuning CONCEPLScuurwurumresemesrussmserastosmsssss s seaasss s
5.12.3.1 Combining Multiple Attributes into ONeocoemmimiiimnininisinne e
5.12.3.2 Replacing Attribute Values by One of TWO Values.......cccomiirniiisiinnnnccns
5.12.3.3 Applying the Concept Of RANEEScvcueiiirieurmmiimiiiiisin s s

5.14 Transforming the Model int0 @ SCIPL......covumeimiermieiriciisiesini s
5.15 The AJArmm SYSEINuuvuerscucescusasisimssassasssessess st ss s s s e
Chapter 6 Conclusion and FUture WOrk ... st
6.1 COMCIUSION oo eeeeeevtetssesteusaseseesensesessessesersanesa e s esassE e R easnae e s e e s e A g aE e heeE e mna s e E e s b e b s s bt
6.2 Main Contribution of this THESIS ..cc.eeecriiirririneriiis i
6.3 Possible Extensions and FUture WOorkcooeereeeimieiniiisiiis s
Appendix A Script t0 Gather the Data.........cco.mrrisissmiemsin s
Appendix B Sample Model SOUICe COGEouurmmimmmiemmmsrmmmsisssssisss s s
231 e o1)) AR

viii

45
45
46
47

.. 49
5.10 Data LabENE.couvvrverrrirerresciseiesesiissssnasascassaeses e s sssss s s ss e ssssassasa s s sh s s
5.11 WEKA SOFEWATEcvvvveeisesesssesesssessseesis st sessssasassssssssssssssesaassssstsssas b s st s
5.12 Data Manipulationcueueruersesimisemesisstesssssssss st iss st s sa st s s s st
5.12.1 Choosing the Typical Number of RECOTAS..........c.ouiiiinimimiminiinisinnsni e
5.12.1.1 The Training TiINecvcceeeiermesesesinisssissssnssesressassrmssessasssmsssasmsssmsssssosstisbsnsssssmatsnsenss
5.12.1.2 THE TTEE SIZE ...vvvvevererrreeeesismsesienseeesesbs it sassesssasns st b et sas s sab b m s s
5.12.1.3 TRE ACCUTACY .vcuereerereermemarerisssusistossasassasssasassassassassassstatatsasssasstse stsnsassssssasassassasnssassasse
5.12.2 Between Cross-Validation and Percentage Split..........occoooeoiiiiiiiiis

51
52
53
53
54

55

55
56
58
58
59
61

.. 63
5.13.1 Three-Class MOGEL.cocveeererrrreermecrsereesrsssssesnsssesessasasesesnesmsssasmesssssastanassassasnsssenssssssanssenes
5.13.2 Two-Class MOGEL. .c..cciouiiumiisiossissinsisrsesspsnives iatsntsnssintessarassnnssunsssasnsnninsssonssasssanassonsats

63

66
66
67
67
67
68
70
75
77

List of Figures

Figure 2-1 Anomalies in a 2-Dimensional Data Set...........cooiiiiiimiini e
Figure 3-1 Multi-Class VS. One-Class Anomaly Detectionccoouuiumimmmiiminmnmineinsens s
Figure 3-2 Pseudocode of the C4.5 algorithim........c...cciiiiicimiiiiii s
Figure 3-3 The Confusion MatriX..........cccciiriuirurirminsinieseserssiesssissssnss s ssssssssssssssssisssssssnssssss s sssanes
Figure 4-1 Distributed ArChiteCIUIEcccvivmeriiirmiisiitinseritisrst s s s
Figure 4-2 SyStem CONLEXL.......ccciuiirimiriisimsinnisianesssi s si s ssesssssss st ssssssssssssssssessessssssbansatssssssessesenses
Figure 5-1 Handling DUPHCALESccccocviiunmmninsinincsessssesssssmsissssnssnsssssissstsssssssisssssasssssssass e sssanenss
Figure 5-2 Relation Between SMSC Process and COUNLETcccvemiriiisisisisisinssisssi s
Figure 5-3 Relation Between Messages Table and MySQL Size.........coooiiiniiinninnnn
Figure 5-4 Average CPU Usage FOr 6 Daysccoueieiiiiiimiimiiminis e
Figure 5-5 WEKA GUIoooiuiiiiiiiminiisirsni i as sttt s b s bt st e s
Figure 5-6 Training Time Vs. Number of RECOTdSccceiiimrinmeisnnssnisinesinsisssnainsisss s
Figure 5-7 Tree Size Vs. Number of RECOTASouuriemmmiiiiiiniiriisiisinisisicisni st s
Figure 5-8 Accuracy Vs. Number of ReCOrdsoooviiiiiniininniiiiiens
Figure 5-9 Statistics - CASE 1......c.ocoiuiiiriiiitiinnriniiesie st s e i nes
Figure 5-10 Detailed Accuracy - Case 1c.ocoouiiemiimiiiiiiiciin s s
Figure 5-11 Confusion MatriX = CaS€ 1c.coeuereueeriermssssmnmmssss st sensstsnssstsssssstsssassssesssssssasssssssssssns
Figure 5-12 Statistics = CASE 2...c..uouuiuiiriciiisiesiie sttt st ss st
Figure 5-13 Detailed Accuracy - Case 2cccoveeiimiiiiiiiiiiniiinn st s
Figure 5-14 Confusion MatriX =~ CaSe 2.........ceuuimimiisminisinmssiniisisiss s

16
20
24

.27

30
45
47
48
50
53
54
55
56
63
63

65
65
65

List of Tables

Table 3-1 Advantages and Disadvantages of Classification-Based Techmiques..........coovivvrineicins
Table 3-2 Confusion Matrix FOMMUIAS.cccvurrrreurrerereciiiaisnsssssssss s bbb s
Table 5-1 Cases with Different Training Data File Size.......ccooviiniin
Table 5-2 MOGIFICAtION CASESvviveraresssemsesssmeseseseseneaesesessaessssis sssasssssasssssissutess it ssssssssisss b sisbssaens
Table 5-3 TUNINE CASEScvrurserssmsrsensmssmassserssssssssssssssssssss sttt s a s s s st

17
25
57
60
62

AIM
CDR
ESME
GMSC
GSM
GUI
HLR
HTML
MO
MPU
MNP
MSC
MSISDN
MT
OAM
PLMN
SIU
SMPP
SMS
SS7
STP
TCP/IP
TLR

List of Abbreviations

Application Interface Module

Customer Data Record

External Short Message Entity

Gateway Mobile-services Switching Center
Global System for Mobile Communications
Graphical User Interface

Home Location Register

Hyper Text Markup Language

Mobile Originated

Message Processing Unit

Mobile Number Portability

Mobile Switching Center

Mobile Station ISDN Number

Mobile Terminated

Operation, Administration and Maintenance
Public Land Mobile Network

Signaling Interface Unit

Short Message Peer-to-Peer

Short Message Service

Signaling System Number 7

Signaling Transfer Points

Transmission Control Protocol / Internet Protocol
Transaction Log Record

xi

Chapter 1

Introduction and Problem Definition

1.1 Introduction to the General Problem

Outliers were considered in the past as noisy data in statistics. Recently, their
detection has become a very important problem which is undergoing much research in
different fields and application domains. The purpose is to be able to catch these abnormal
events or behaviors that might cause harm to the related application in order to prevent any

negative effect.

Many specific techniques have been developed to certain applications, while others
are more general. Some are very critical to the point that they are being researched in strict

confidentiality.

As a specific application, some studies tackled the problem of anomaly detection on
servers. When dealing with some types of servers, it is an essential task to be able to
accurately identify the anomalies. Efforts were done to find algorithms and techniques that

catch these anomalies with high accuracy and to apply them to the servers.

In current real-time applications, it is important to find new ways to discover

anomalies and improve the results and accuracies of these techniques.

1.2 Problem Definition

Different algorithms were used to solve the anomaly detection problem. The server,
consisting of hardware and software, is connected to many other entities, and on which many
processes are running. This server is constantly receiving data, generating data, and its

normal functioning is essential to the service being provided.

During some periods, this server might have some issues that can affect the service:
hardware failures, software errors, loss of connections with the external entities, and many
others. The purpose of all server-related research is to be able to prevent any loss of service,
and this is why some analysis for this specific server needs to be done to catch any

malfunctioning before it causes disastrous results.

In order to have accurate analysis, a specific server that is being currently
implemented was considered in this research (SMSC server), and also the data used is real
data collected from this server.

The server at hand was not being monitored before. Engineers were relying on basic
monitoring tools and they would generally wait for an error to occur in order to investigate
the reason behind it and try to solve it. The goal of this thesis is to be able to monitor the

server continuously and fire an alarm whenever something suspicious happens.

1.3 Research Objectives

The main objective of this thesis is to detect anomalies in real world servers. It is
essential to understand the concept of anomaly detection, how it is applied, and in which
fields. Then, different techniques should be gone through, those that are used to detect
anomalies, in order to choose a specific server and decide which technique should be
implemented on this server. After that, the goal would be to perform some tuning relative to
the application at hand, and to customize it based on the use cases encountered. The objective
is to obtain a very accurate model that will be able to catch any anomaly that occurs on the

system.

1.4 Approach and Main Results

First, we start by studying anomaly detection in details, focusing on the importance of
detecting anomalies ahead of time, the applications where this concept is used, the challenges

that are faced when tackling this problem, and the different aspects of it.

Second, we go through the basic approaches used to detect anomalies, the domain of
each approach (where it is applied), and the server on which the study is done; we show its
context, architecture, role, connections, features, and everything we need to understand in
order to decide what to include in our monitoring process, what is of high importance, and

what can be ignored at some point.

Then we have to decide which algorithm should be used in this thesis and explain it
along with all important concepts related to it. This algorithm should be applied to the server,

and tests have to be conducted to improve the accuracy and find the best customized model.
Finally, the model will be implemented and tested on the system.

The algorithm used was the decision tree algorithm, and it lead to a very high
accuracy when applied on the SMSC (99.83%).

1.5 Thesis Organization

This thesis is organized into six chapters. Chapter 2 discusses the concept of anomaly
and anomaly detection, different studies that were done on this subject, the advantages and
disadvantages, the difficulties and challenges, and the most important points to consider
when working with anomaly detection. Chapter 3 introduces the basic approaches to anomaly
detection, and then describes the data mining algorithm used. It shows the different aspects of
the decision tree, how it is built, and how to understand the meaning of the results it gives.
Chapter 4 presents the SMSC server on which the study was conducted in order to explain

what should be monitored. Chapter 5 shows our main contribution to this research field, the
3

progress of the study and the customization of the decision tree algorithm along with the
experiments and tests that were done. Finally, Chapter 6 summarizes the main results and

contributions of the thesis and provides some of its possible extensions.

Chapter 2
Anomaly Detection

2.1 Definitions

2.1.1 Anomaly

An “anomaly” or an “anomalous object” is an object (point) that is sensibly different
from other objects (points). In statistics, an “outlier” is an observation that is numerically

distant from the rest of the data [1].

Anomalies are patterns in data that do not conform to a well-defined notion of normal
behavior. Figure 1 illustrates anomalies in a simple 2-dimensional data set. The data has two
normal regions, N1 and N2. Points that are sufficiently far away from the regions (e.g., points

01 and 02, and points in region O3 are anomalies [2].

Figure 2-1 Anomalies in a 2-Dimensional Data Set

2.1.2 Anomaly Detection

Anomaly detection is the process of finding outlying record from a given data set [3].
It refers to the problem of finding patterns in data that do not conform to expected behavior.
These non-conforming patterns are often referred to as anomalies, outliers, discordant
observations, exceptions, faults, damage, aberrations, surprise, peculiarities or contaminants
in different application domains [2].

Detecting outliers or anomalies in data has been studied in the statistics community as
early as in the 19th century [4].
Outliers arise due to different reasons such as mechanical faults, changes in system behavior,
fraudulent behavior, human error and instrument error.

Anomaly Detection combines machine learning, statistical analysis and human
knowledge from your domain experts to analyze streams of machine data, detect events in
the stream and provide alerts on those events, allowing you to remediate issues before they

affect business services [5].

2.2 Importance and Applications

This problem has been of increasing importance due to the increase in the size of the

data and the need to efficiently extract those outlying records.

The anomalies in data often translate to meaningful information in many application
domains, and this information can help in detecting problems or new strange phenomena,
discovering unusual behavior in the data, and can sometimes be really critical and can lead to
extremely disastrous results that cause damage to the related application.

Some examples include unauthorized access of a system, credit card theft or the diagnosis of
a disease [3]. For example, if an anomalous traffic pattern is encountered in a computer
network, this could be related to a hacked computer that is sending out sensitive data to an

unauthorized destination [6]. If a certain anomaly is detected in an MRI image, it may

6

indicate that some malignant tumors are present [7]. Anomalies in credit card transaction data

can indicate that the credit card was stolen, or that an individual might be subject to an

identity theft [8]. In military surveillance, an unusual region present in a satellite image in an

enemy area can indicate enemy troop movement [9]. In safety critical environments, the

presence of an outlier indicates abnormal running conditions that can cause significant

performance degradation [2]. Anomalous readings from a space craft sensor could signify a

fault in some component of the space craft, such as an engine rotation defect or a flow

problem in a pipeline.

The anomaly detection has been useful in different fields, and has been applied in a

variety of applications, among which the following:

Industrial Damage Detection (Fault Detection in Mechanical Units, Structural Defect
Detection...)

Image Processing

Novel Topic Detection in Text Data

Sensor Networks

Fraud Detection (Credit Card Fraud Detection, Mobile Phone Fraud Detection,
Insurance Claim Fraud Detection, Insider Trading Detection...)

Intrusion Detection (host-based intrusion and network intrusion)

Ecosystem Disturbances (trying to predict events like hurricanes and floods)
Medical and Public Health Anomaly Detection (using unusual symptoms or test result
to indicate potential health problems).

Speech Recognition

Novelty Detection in Robot Behavior

Traffic Monitoring

Faults in Web Applications

Astronomical Data Anomaly Detection

Online anomaly detection is an important step in data center management, requiring
light-weight techniques that provide sufficient accuracy for subsequent diagnosis and
management actions [10].

Detecting anomalies, as mentioned previously, can be extremely valuable.

For instance, one can start talking about being able to detect warnings about a possible future
failure in a certain system, or to notice a variation in some health indicators, which might
indicate the possible presence of a certain disease, or to encounter some unusual patterns of
shopping cart failures on an ecommerce website.

Furthermore, anomalies don’t always indicate a failure, and therefore they are not
always bad. For example, if a change is detected in a consumer buying habits, this could give
the business an opportunity to discover a new trend.

The number of machines and computers that generate data is highly increasing, which means

that the opportunity for detecting anomalies is growing rapidly [11].

2.3 Challenges

As mentioned earlier, an anomaly is a pattern that does not conform to the expected
normal behavior. A straightforward approach would be to define a region that represents
normal behavior and to consider any instance in the data that does not belong to this normal
region as an anomaly. But this approach is very challenging due to many factors:

« It is nearly impossible to define a normal region that covers all normal behaviors, and the
boundary between normal and anomalous behavior is often not precise. Therefore, an
instance classified as anomalous and that lies close to the boundary can be actually normal.

« In many cases where the anomaly is a result of malicious actions, the attackers usually try
to hide their action by making the anomalous observations appear like normal, which makes
it difficult to define normal behavior.

« The systems are constantly changing over time, software is being always updated, even the

patterns of the human interaction change. Therefore, normal behavior often evolves, and a

8

normal behavior today can be considered as anomalous sometime in the future. This is why,
in order to have effective anomaly detection, the systems have to learn continuously.

« The notion of anomaly varies with the application. Each application has its own constraints
and therefore leads to a specific problem formulation to detect anomalies.

« In most of the cases, the data is not labeled or very hard to label.

+ The data usually contains noise that might be similar to the anomalies, to the point that it
cannot be easily distinguished from the anomalies and consequently cannot be removed.

« It’s not very efficient to just wait for a certain metric to be largely out of bounds in order to
confirm that an anomaly is present. All systems should be able to detect any small change in
patterns, even if this change is not easily detected, in order to predict the possibility of the
anomaly occurrence before it actually happens [11].

Because of the challenges mentioned above, the anomaly detection problem is not easy to
solve.

Most of the existing techniques focus on a specific formulation which is affected by the

nature of the data, whether it is labeled or not, the type of anomaly to be detected [2].

2.4 Aspects

2.4.1 Input

Whatever the anomaly detection technique is, it is very important to know the nature
of the input data. In general, it is a collection of data instances (also referred as object,
record, point, vector, pattern, event, case, sample, observation, entity) [12].

The data instances are described using a set of attributes (also referred to as variable,
characteristic, feature, field, dimension), which can be binary, categorical or continuous.
The data instance can be univariate (consisting of one attribute) or multivariate (consisting of

many attributes). For multivariate data instances, the attributes don’t have to be of the same

type.

The nature of the attributes can be essential in determining which anomaly detection
technique to choose. If statistical techniques are to be used, these techniques vary according
to whether the attributes are continuous or categorical.

In most of the existing anomaly detection techniques, it is assumed that no
relationship exists between the data instances. But in general, these instances can be related
to each other. For example, in sequence data, the data instances are linearly ordered (like the
case in protein sequences), in special data (like vehicular traffic data) the instances are
related to their neighboring instances. These relationships among data instances can be very

relevant for anomaly detection.

2.4.2 Types

The purpose of anomaly detection is to find data patterns that do not conform to the
expected behavior. Based on the nature, context, behavior or cardinality, anomalies can be

generally classified in three categories [13]:

2.4.2.1 Point Anomalies
This is the simplest type of anomaly. It refers to an instance of the data that is anomalous
with respect to the rest of the data. This type occurs in most of the applications, and it was

addressed by a good amount of research.

2.4.2.2 Contextual Anomalies

Also known as conditional anomalies. This type is defined for a data instance that is
anomalous in a specific context (and not otherwise). In general, the structure of the dataset
induces the notion of context.

Two sets of attributes are used to determine if a data instance belongs to this type of

anomaly:

10

Contextual attributes: they determine the context of the instance. For example, in some cases
time can be a contextual attribute that helps to specify the position of the instance.
Behavioral attributes: they determine the non-contextual characteristics of an instance. For
example, in a spatial data sets that describes the average salary of employees in a certain
country, the amount of salary in a specific region can be defined as a behavioral attribute.

In order to determine an anomalous behavior, the values of behavioral attributes have to be
taken within a specific context. A data instance might be an anomaly in a certain context, but

it could be considered normal in a different context.

2.4.2.3 Collective Anomalies

They refer to collections of related data instances that are anomalous with respect to the
entire set of data. The individual data instances might not be considered as anomalies by
themselves, but when they occur together as a collection they form an anomalous event.
Point anomalies can occur in any data set, whereas collective anomalies occur only in data
sets where the data instances are related. On the other hand, contextual anomalies occur
where context attributes are available in the data. Point or collective anomalies can also be

contextual anomalies if analyzed with respect to a context.

2.4.3 Labels

A label is a tag associated with a data instance to denote if that instance is normal or
anomalous.
It is usually very expensive and hard to get labeled data that cover all scenarios and types of
behavior. Experts do the labeling process manually, and it requires a great effort and a long
time. Also, obtaining a labeled set of anomalous instances is much harder that getting labels
for normal instances, because the probability of occurrence of an anomalous behavior is
usually very low. Adding to it that the anomalous events are often dynamic, in the sense that
new anomalies that have no labeled data sets can arise, especially when it comes to events

that are rare and catastrophic.

11

Based on the availability of labels, anomaly detection techniques can operate in three modes

that will be discussed in details later: supervised, semi-supervised and unsupervised.

2.4.4 Output

In all of the anomaly detection techniques, the anomalies can be reported in two
ways: by means of scores or labels:
An anomaly score is assigned to each instance in the test data depending on the degree of
anomaly. Therefore, analysts will have a ranked output and can choose to analyze only the
top anomalies based on a threshold they specify.
On the other hand, binary labels are assigned to the test data instances as normal or

anomalous.

2.5 Related Work

Many surveys, books, and articles tackled the problem of anomaly detection: Hodge
and Austin [14] wrote a detailed survey of the anomaly detection techniques that are
developed in machine learning and statistical domains. Agyemang et al. [15] presented a
more general review on anomaly detection techniques for numeric and symbolic data.
Novelty detection techniques using neural networks and statistical approaches were presented
by Markou and Singh [16]. Patcha and Park [17] studied the anomaly detection techniques
used for intrusion detection in computer networks, and Lazarevic et al. [18] presented an
evaluation of these techniques. Forrest et al. [19], Snyder [20] and Dasgupta and Nino [21]
reviewed anomaly detection techniques that were specifically developed for system call
intrusion detection.

To deal with the anomalies types mentioned above, different techniques have been
proposed over the decades. For the point anomaly type, distance-based approaches were

mainly used, but their effectiveness depends on many factors, among which the type and

12

dimensionality of data and the anomaly score used. For the contextual anomalies, in addition
to distance-based approaches, density-based approaches were also used. Here also the same
factors previously mentioned play a vital role. Collective anomaly is mainly handled by
density-based approaches, but in the identification of this type of anomalies, new factors
affect the decision such as compactness and single linkage effects [22].

Looking at the problem independently from the anomaly type, the approaches that are
more widely applicable are unsupervised approaches since they do not require labeled data.
Even though many techniques exist, the strength and weaknesses of each of them are still
unfolding [3].

Some of these techniques include statistical methods, distance and model based
approaches, and profiling methods [23][24][25]. Another part of anomaly detection would be
generating artificial counter-examples from the unknown class [26][27][28]. Its advantage 1s
that a standard generic classifier can be trained to separate the regular class from the
anomalous class. It has a great performance, but the sampling of the anomalous class might
be hard, especially when dealing with high dimensionality. This problem was addressed by
applying Active Learning [26], and Feature Bagging, using a decision tree as classifier.

In [29], an extension for standard decision tree algorithms for anomaly detection that can
deal with continuous and symbolic features is proposed. With this method, there is no need to
generate artificial samples of the missing class into the training set, but instead, a parametric
distribution of the outlier class can be used when determining the split points which are more

accurate in this case, and the training is faster due to the presence of fewer samples.

13

Chapter 3

Anomaly Detection Techniques

3.1 Basic Approaches to Anomaly Detection

“Machine learning is a technique by which a computer “learns” from a set of data
given to it, and is then able to predict the result of new data similar to the training data. The
machine learning algorithm is meant to identify patterns based on different characteristics or
“features” and then make predictions on new, unclassified data based on the patterns

“learned” earlier.” [30].

As mentioned previously, there are three main techniques to tackle the problem of

anomaly detection:

3.1.1 Supervised Anomaly Detection

These techniques assume that a training data set that has labeled instances for normal
and anomalous classes is available. A predictive model is built for both classes and any new
data instance will be compared to these models to determine which class it belongs to.

The issues encountered in these techniques are that the anomalous instances in the training
data set are much less than the normal ones, and it is very challenging to obtain accurate
labels especially for the anomalous class. Therefore, some techniques tried to inject artificial

anomalies in the normal data set [31][32][33].

14

3.1.2 Semi-Supervised Anomaly Detection

These techniques assume that the training data contains labels for the normal class
only. They are much more applicable than the supervised techniques, since they do not
require labels for the anomaly class. The approach used here is to build a model for the

normal class, and based on this model, identify anomalies in the test data.

3.1.3 Unsupervised Anomaly Detection

They don’t require training data, that is why they are the most applicable techniques.
They assume that the normal instances are much more than the anomalous instances in the
test data (this assumption has to be true, or else the techniques will cause a high rate of false

alarms).

3.2 Classification Algorithms

The purpose of classification algorithms is to find a model for the “class™ attribute
using a training set (which is a set of records in the database). So given a set of records, the
values of the attributes will be examined, along with the relation of these attributes with the
class of the tuple, in order to extract a model that will be used to decide on the class of newly
added tuples.

Classification based anomaly detection techniques go through two phases: The
training phase learns a classifier using the labeled training data, and the testing phase uses the
classifier to classify test instances as normal or anomalous. These techniques can be grouped
into two categories: multi-class techniques which assume that the training data set includes
labeled instances that belong to more than one normal class, and one-class techniques where
all training instances have one class label. Figure 3-1 shows the difference between multi-

class and one-class anomaly detection.

15

: .*.-, Normal Class |

.
.

. et

.

Multi-class Clsstier. 15,

I *~— Anomalies
Jiooo,

LI S "
: x® x% : - .‘u [-I]
* x r’,' ' o g @ .
X E g ow . Normal Class §
xw o X =
o &
*w Nt
_.-*" Normal Class 2

(a) Multi-class Anomaly Detection

Figure 3-1 Multi-Class VS. One-Class Anomaly Detection

One-class Classitier .
meaE Normal Instances
e e
SOy B R ek Ty .
: x :
S o= % “)‘I ‘ * " x
y E ok ox o, ox x
P X ox ® * k "

L 3 . .
¢ R R K o T Anomalics
:I » » x x)

» = 1
. " T T m m % 2
b x ® * = x X,
£ x x w0
. ol ®
e »

(b) One-class Anomaly Detection

In anomaly detection, different techniques that use different classification algorithms

to build classifiers can be used. In the following, some of these techniques are mentioned,

without going in depth in each of them, since they are not applied in this thesis.

e Neural Networks: They have been applied to both one-class and multi-class. Various

neural networks were used, like Multi Layered Perceptrons, Neural Trees, Auto-

associative Networks, Adaptive Resonance Theory Based, Radial Basis Function

Based, Hopfield Networks, Oscillatory Networks.

e Bayesian Networks: have been mainly used for multi-class anomalies.

e Support Vector Machines.
e Rule Based.

The entire classification process involves a lot of intermediate steps such as data

preprocessing, clustering, feature construction, feature selection, classification, regression

and finally visualization.

16

3.3 Advantages and Disadvantages of Classification Data Mining Techniques

When there exists training instances for both the normal and the anomalous class, it is
an easy task for classification based anomaly detection techniques to accurately learn
classifiers to detect anomalies, since they have enough information about normal as well as
anomalous behavior. Some techniques (such as SVMs) are limited to continuous data, but
other techniques (like decision trees) can be applied to categorical data also.

One of the essential problems here is that the anomalies are not often labeled. In these
cases, the semi-supervised and unsupervised classification techniques should be used,
knowing that these techniques are effective only when the anomalies are very far from the
decision boundary.

One of the challenges presented here is when choosing between generalization and
rejection. Generalization refers to the fact that unseen test instances are being accepted as
normal, whereas rejection refers to considering an unseen test instance as anomalous. This

issue highly depends on the threshold used on the decision confidence.

In the following Table 3-1, the main advantages and disadvantages of classification

based techniques are mentioned:

Table 3-1 Advantages and Disadvantages of Classification-Based Techniques

Use powerful algorithms that can Often impossible to have accurate labels for

distinguish between instances belonging to all normal classes

different classes.

Testing phase is fast Choosing between generalization and
rejection

Can be applied to both continuous and

categorical data

In addition to classification based techniques, other techniques were used to solve the
anomaly detection problem, among which the nearest neighbor based, clustering based,

statistical based, and graph based.

3.4 Decision Tree Techniques

From the research done, it was clear that no solution can be considered the best for all
classification problems. Every classification problem has its own best solution in terms of the
algorithm, the tool to use and the type and size of data required for learning.

Usually, the larger the training data set is, the more accurate the prediction results are.

A decision tree is a very powerful way of presenting rules. Classification can be
performed using simple computations and can be done for both continuous and categorical
variables, as mentioned previously. Decision trees have many advantages when compared to
other classification methods, that is why they are more suitable for outlier detection.

They are among the easiest machine learning techniques to implement, to debug, to
customize and also the fastest in terms of learning and classification. Usually, the speed and
simplicity lead to a compromise on the accuracy of the prediction, but as it will be shown
Jater, a well-tested and customized tree learning system can give very accurate predictions,

and would perform even better than a neural network or a SVM.

Their structure can be easily interpreted, and they are also less susceptible to the curse
of dimensionality [34].
Until now, many research has been done on decision trees, and it has been used in many
applications such as electricity energy consumption [35], prediction of breast cancer [36],
accident frequency [37].
One of the mostly used decision tree algorithm is the C4.5 which is used in this thesis, and

which will be explained in details in the following.

18

3.5 The C4.5 Tree Construction Algorithm

C4.5 is a technique that produces at the same time a decision tree and rule sets. This
model is easy to understand, from the fact that the rules derived from the tree have a clear
interpretation [38]. Most of the modern decision trees are based on the C4.5 algorithm. As a
general view, the algorithm chooses the best attribute(s) to split the tree and makes it a
decision node. It repeats this process recursively for each child and stops when all the
instances have the same target attribute value, or when there are no more attributes or
instances.

Before explaining in details how the algorithm works, it is important to understand
that each tuple or record is formed of values corresponding to a collection of attributes, and a
class. The values of the attributes may be discrete (having a definite number of possible
values) or continuous (can have any value belonging to a certain interval), whereas the class
can only have discrete values.

The C4.5 algorithm constructs a tree that consists of nodes and leaves. At each node,
an attribute is selected and a test on that attribute is performed. For each possible result of
this test, a child node is created:

e If the attribute is discrete, it can have x possible outcomes, so the corresponding node
will have x child nodes, each of them belonging to a specific possible value of the
attribute.

o If the attribute is continuous, the node will usually have two possible outcomes, based
on a comparison relative to a certain threshold, so one of the child nodes will
correspond to a value of the attribute which is greater than or equal to a certain
reference value (threshold), and the other child node will correspond to a value less

than the threshold.

The class values will be at the leaves of the tree, and these are the values predicted by
the tree. A certain performance error (classification error) will be present at the leaves, which

corresponds to giving a class value to a certain tuple that actually belongs to another class.

19

Starting from a training set, the C4.5 algorithm constructs a decision tree with a
“divide and conquer” strategy: At the beginning, the root is created and all the training set is
associated with this node. At each node, the C4.5 algorithm shown in Figure 3-2 is executed
[39]:

FormTree(T)
(1) ComputeClassFrequency(7T);
(2) if OneClass or FewCases
return a leaf;
create a decision node N;
(3) ForEach Attribute A
ComputeGain (A);
(4) N.test= AttributeWithBestGain;
(5) if N.test is continuous
find Threshold;
(6) ForEach 77 in the splitting of T
(7) if 1" is Empty
Child of N is a leaf
else
(8) Child of N = FormTree (I7);
(9) ComputeErrors of N;
return N

Figure 3-2 Pseudocode of the C4.5 algorithm

T is the set of all the cases present at the node.

The class frequency freq(Cj,T) is computed, which corresponds to the cases in T where the

class is Cj.

If all the cases in T belong to the same class Cj, or if a few number of cases (usually less than
a certain threshold) exists, the node becomes a leaf, and it is associated to the class Cj.

If the cases in T belong to two or more classes, then the information gain of each attribute is
calculated, and the attribute with the highest information gain will be selected as the test at
that particular node.

If the selected attribute is continuous, the threshold should be calculated.

20

Now whether the attribute is continuous or discrete, there will be s children corresponding to

the different outputs of the test (clearly, s will be equal to 2 if the attribute is continuous).

For each subset Ti, if Ti is empty, the child node will be a leaf, and it will be assigned the
most frequent class in the parent node. If Ti is not empty, the same operations will be applied
recursively to Ti, adding to it the cases of T that have an unknown value of the selected
attribute.

The final step would be to calculate the classification error of each node which is the sum of
the errors of the child nodes. If this sum is greater than the error of classifying all cases in T
as belonging to the most frequent class in T, then the node is set to be a leaf and all subtrees
are removed.

To be able to calculate the information gain of an attribute, the entropy must be calculated

first, according to the following formula:

N (Classes) .
freq(Cj,T) (freq(C),T))
e e Iog: bl e S Y A

Entropyv(T)= — 7] Tl

i=

Therefore, the information gain is:

o |7l
Gain = Entropy(T) — Z Tl x Entropy(Ti)
i=1

Other than selecting the information gain, C4.5 relies on another option, which is the

information gain ratio, given by the following:
O ITil (!Til)
Split(T) = — —#lo P—
pREY= =) e 28 P

If the selected attribute is continuous, the cases in T that have a known value for the attribute
will be ordered using a quicksort algorithm, and it is assumed that the ordered values are

called V; to Vi

21

For each i between 1 and n, This parameter is computed:
(v; + ;24)
P ————
2
This value of © will enable us to make a splitting, and to put the tuples in two categories: one
that contains tuples with the value of the attribute that is less than v, and the other one with

the tuples where the value of the attribute is greater than v.

Now many cases are available, and each one will give a splitting in two categories. So in
order to determine which one among them is the best splitting, the information gain for each

value v will be calculated by considering the splitting already explained. The value v for

which the gain is maximum will be considered to be the local threshold.

3.6 Overfitting, Pruning and Cross Validation

The “Overfitting” phenomenon can be explained as follows: If the training set was too large
or if the examples taken for learning are very rare occurrences, the tree model obtained may
create branches for some features that are too specific and that do not make a difference to
the target feature. In this case, the performance of the model that fits the training data will
increase, but whenever the class of an unknown instance needs to be predicted the
performance will clearly decrease.

To understand “overfitting” more easily, it is useful to consider that the training data is
divided into two parts. There is data that provides information and that leads to building a
precise model, and data that is simply considered as noise, and that needs to be removed from
the training set.

To remove this noise, the so-called “cross-validation™ is used, followed by “pruning” the
tree.

In cross-validation, the training data is partitioned into two sets: the training set and the

validation set. The system is trained on the training set and after the training is done, the

22

validation set is used to make the predictions. Each record in the validation set now has an
actual value and a predicted value. The algorithm compares these two values in order to
provide statistics among which the precision, recall, and most importantly the “root mean
squared error rate”, because based on it the system decides the pruning strategy for the tree.
In order to avoid any bias in the information, many rounds of cross validation are performed,
and in each round a new set is taken for training. This will enable the algorithm to give an
accurate measure of the precision. Usually, 10-fold cross validation is the most commonly
used strategy.

The accuracy of the prediction depends on the size of the tree:

If the tree is very large, it might give a bad prediction accuracy on generalized data.

It the tree is very small, it might have not captured some very important features in the
training data, which also leads to incorrect classifications.

Pruning a decision tree consists of removing nodes or making sub trees into leaf nodes. The
best way in pruning is to let the tree grow until each node has at least few instances and then

prune all the nodes that do not provide newer information.

3.7 Classifying an Unseen Instance

Before building the tree, the entropy is calculated for each feature. During this process, the
minimum and maximum values for every feature become known to the system. The decision
tree can be thought of as a set of rules. When an instance has to be classified, the system
parses the rules and the decision is made according to the conditions that satisfy the instance.
If no rule is satisfied, the decision tree has a final rule that sets the target variable to a default

value.

3.8 The Confusion Matrix

A confusion matrix, commonly named “contingency table”, contains information
about the actual and the predicted classifications done by a classification system. The

performance of these systems is evaluated using the data in the matrix. The following Figure
23

3-3 shows the confusion matrix for a two class classifier that applies to the subject of this

thesis:

Predicted
Normal Anomalous
Normal a b
Actual
Anomalous [d

Figure 3-3 The Confusion Matrix

¢ ais the number of correct predictions that an instance is normal.

b is the number of incorrect predictions that an instance is anomalous.
« cis the number of incorrect predictions that an instance normal.

« dis the number of correct predictions that an instance is anomalous.

In the following, the most important metrics that were defined for the 2 class matrix are

mentioned, along with the formula used to calculate their values:

o The accuracy (AC) is the proportion of the total number of predictions that were
correct.

o The recall or true positive rate (TP) is the proportion of positive cases that were
correctly identified, i.e. the proportion of instances classified as class x, among all
instances which truly have class x.

« The false positive rate (FP) is the proportion of negatives cases that were incorrectly
classified as positive, or the proportion of instances classified as class x but not
belonging to x, among all instances which are not of class x.

o The true negative rate (TN) is defined as the proportion of negatives cases that were

classified correctly.
24

« The false negative rate (FN) is the proportion of positives cases that were incorrectly
classified as negative.

+ The precision (P) is the proportion of the predicted positive cases that were correct.
i.e. the proportion of the instances that truly have class x among all those which were

classified as class x.

If the number of negative cases is much greater than the number of positive cases, the
accuracy determined by the first equation may not give a precise value. In this case, the
geometric mean and the F-Measure (which 1s a combined measure for precision and recall)
would give a more adequate result. In the F-measure formula, B can take values from 0 to

infinity and is used to control the weight assigned to 7P and P. All the formulas related to the

above mentioned metrics can be found in Table 3-2.

Table 3-2 Confusion Matrix Formulas

o a+d - = B

AC a+b+c+d ZF c+d £F a+b

i a+b N c+d 2 b+d
g—meanl=«ﬁ§*P g—meanzzqﬁf’; *IN F=(;5‘2+1}*P*TP
F*P+TP

25

Chapter 4

Anomaly Detection in Real-Time Servers

4.1 Introduction

The aim of this thesis is to study anomaly detection in real-time servers. In order to

have an accurate study, a Short Message Service Centre server (SMSC) was considered.

As a first step, and in order to be able to decide what to monitor on the existing system, a
study was done to fully understand the SMSC role, its functionalities, and the different
connections to other external entities. In this chapter, only the concepts needed in this study

will be presented.

4.2 System Context

The SMSC is a server that handles and stores messages so that they can be properly
delivered to the appropriate destination.
Whenever a certain mobile phone (referred to by “A-party”) sends an SMS to another mobile
(B-party), the SMS goes through different elements in the network and eventually reaches

this server before being sent again to the network.

4.2.1 Distributed Architecture

The SMSC works according to a distributed architecture. Logically, the server might
encounter a failure at a certain point of time. The service therefore will automatically stop,
which is unwanted because the messages of the customers will fail to be delivered during the
failure period. Therefore, the SMSC consists of at least two servers that are active at the same
time. This will provide high availability (if one SMSC fails, the others will handle all the

26

traffic normally), and load sharing (instead of having one SMSC handling all the messages,
they will be split between the available active SMSCs).

The Distributed SMSC consists in our case of two Message Processing Units (MPUs)
and two Signaling Interface Units (SIUs). One of them is designated as primary and the
second as secondary.

The MPUs synchronize files between each other, handle normal short messages (incoming
and outgoing), store waiting messages, and deal with charging.

The SIUs distribute the incoming messages among the MPUs, send the outgoing messages to
the appropriate network elements.

In our case, the study is limited to only one SMSC and specifically to one MPU (Of
course the same concept can be applied to all SMSCs belonging to the same cluster). The

distributed architecture of the SMSC is presented in Figure 4-1.

MPU 1 MPU n

Where:
“\‘\\ / MPU: Message

Processing Unit

SIU: Signaling Interface
Unit

Siu1 Siun SS7: Signaling System
Number 7

(M)

SS7 b

PLMN

Figure 4-1 Distributed Architecture

27

4.2.2 External Connections

The SMSC connects to different external entities. The most essential ones are

explained in the following:

4.2.2.1 The Mobile Network

Through the Signaling Interface Unit (SIU) which implements the Gateway Mobile-
services Switching Centre (GMSC). The SMSC communicates with the network
using IS-41 Mobile Application Part (MAP) protocol over SS7. It can communicate
directly with Mobile Switching Centres (MSC) and Home Location Registers (HLR),
or indirectly through Signaling Transfer Points (STP).

4.2.2.2 The External Short Messaging Entities (ESMEs)

These can send/receive messages to/from mobile subscribers. In our case, it does this
using the SMPP protocol (Short Message Peer to Peer). Each ESME interface uses a
transmitter to transmit messages to the SMSC and a receiver to receive messages
from the SMSC. It can also use a transceiver, which performs these two actions
simultaneously. Processes on the SMSC known as Application Interface Modules

(AIMs) handle each of these connections.

The inter-process communication between the SMSC and the interface servers 1s
done through the queues. Each ESME connection has its own queue. These queues
have to be monitored in order to see how many messages are stuck inside them at a
certain point of time. The increase in the number of these messages can indicate the

slowness of the execution or that a certain process stopped unexpectedly.

In a distributed architecture, i.e. if more than one SMSC exist in the same cluster, an
Application Router (MR) is needed to distribute the traffic among these SMSCs. In

this case (which is similar to the case studied here), the AIMs are connected directly
28

to this router. Therefore, the increase in the number of stored messages in a certain
queue can indicate that the related connection between the AIM and the MR was

dropped for a certain reason.

4.2.2.3 The Billing System

The SMSC has a billing interface, which assists the operator in the task of charging
the subscribers. This interface includes a specific format for billing and provisioning
records that are sent to the billing system.

The SMSC writes in a log file a record for each event (MO, alert, result of MT
attempt, etc...) which contains different fields related to the short message. These log
files are refered to as TLRs. The operator does not need all the fields, so there exists a
customized billing process which takes only specific fields and then generates the
CDRs. Obviously, this process is very critical since it’s related to the charging part,

and any anomaly here can cause money loss.

4.2.2.4 The Real-time Charging Gateway (RTCG)

It connects to the Prepaid System to handle prepaid billing. It interfaces with different
vendors such as Siemens’ IN, Ericsson’s IN... The prepaid subscribers list can be
stored on the SMSC. So for each prepaid message that needs to be charged, the
SMSC can add a record to an external prepaid queue, and then the charging will then
be done based on a customized application between the SMSC and the operator’s

billing system. The prepaid process is also one of the most important processes.

4.2.2.5 The Rules Engine Unit (REU)
Upon receiving a message, the SMSC sends it to the REU in order to decide what to
do with it. Based on predefined rules, it returns the corresponding action back to the
SMSC (whether to accept, reject, or modify something in the message parameters).

29

This can help prevent spamming on the system. It can for example reject all messages

that are being sent from a specific A-party, or messages that have a specific content or

a text that follows a certain format.

The SMSC also connects to the Operation, Administration, and Maintenance (OAM) System.

The connections to the SMSC that were mentioned above are shown in Figure 4-2.

ESME ESME
I
SMPP over EMI over
TCPIIP of X.25 TCPAIP or X25
G
Mobile Network SIU “S" SMSC
c
OAM System Billing System

Figure 4-2 System Context

4.3 SMSC Software

ESME
SEMA over
TCPAP or X25
REU
Prepaid System

The software that runs on the SMSC server consists of the following:

e A Linux operating system

e A MySQL database system (for all database related tasks)

o The SMSC application software (which is already installed on the server)

30

The SMSC has different modes of operation. It’s not essential here to explain each
mode in details, but it’s important to know that certain messages are only delivered in one
attempt, so if they fail they will be automatically discarded. Other messages can be stored in
queues for later retries, while others are stored in the database. This concept will also help in

deciding what data is important for the monitoring of the system.

4.4 Possible Anomalies in a Distributed Architecture

As explained in a previous section, the SMSC cluster is formed of two SMSC servers
running simultaneously to ensure availability in case one of them goes down.

Ideally, every server in a cluster runs uniform configurations: identical resources,
versions of OS, software, and data. But in reality, that is rarely the case. Systems are plagued
by a number of inconsistencies that increase over time. This divergence of servers in the data
centre causes a large number of problems in IT operations, from minor disruptions to large-

scale outages.

“We were rolling out a major new release of our software when we found that the
search results on one site turned up different results than on another. We checked code line
by line and re-deployed, but the problem persisted. After scouring through the file system,
we found that one of the search libraries was a different version. We reinstalled, we rebuilt
the search index, and we restarted the service. Everything went well, but it had been a
frustrating and time-consuming exercise. That inconsistency must have been in the search
indexer for years, but until we pushed out code that used new functionality we wouldn’t have
known the problem existed.” - Jeremy Hutchings, Technical Director, MetroLyrics.com (a
division of CBS Interactive)

These anomalies can be classified into two types:

31

e Environment anomalies: which result from the lack of uniformity between servers.
Even if the systems are identically provisioned, differences might happen during the
course of normal operations.

e Behavior anomalies: they are related to inconsistent behavior that does not conform to
expectations. Systems are always provisioned identically and they receive similar
traffic, therefore they should behave identically. Environment drift can cause
behavior anomalies, but even without drift, a server can exhibit a behavior unlike the
others in the cluster, due to a line of bad code, network congestion, hardware hiccups,

or a security breach.

These concepts can also be included when studying servers in a cluster.

4.5 Processes and Features

In this section, the main processes that run on the SMSC server are described:

4.5.1 Synchronization Processes

Each MPU is considered as an SMSC node. It holds a lot of data, including the
profiles of the subscribers, configurations, services, messages, and many others.

The secondary MPU connects to the primary MPU for synchronization purposes:
The primary MPU receives the updates of the data, writes them into log files, and sends this
information to the secondary MPU, so that all the information will be synchronized between
the two MPUs.

Different synchronization processes run on both MPUs, to maintain the connection
between them and to transfer the needed data. The tasks they perform include detecting the
most up-to-date database, synchronizing the database, history files and configuration files,
assigning roles to the MPUs, detecting failures, and starting some of the services.

32

4.5.2 Mobile Number Portability

The Mobile Number Portability (MNP) is the ability for mobile subscribers to keep
their number when they change from one network operator to another one.
For GSM subscribers, this means that the subscribers are given a new IMSI while retaining
their MSISDN. Without MNP, a certain range of fixed numbers is allocated to each operator.
The SMSC uses source address ranges to filter unallowed MO messages, so if an A-party is
not in the defined range then it’s not allowed to send messages using this SMSC. With the
introduction of MNP, the SMSC relies on IMSI checking to filter its own MO subscribers.
The MNP process should always be running on the SMSC so that the messages incoming

from these subscribers are handled and delivered to their corresponding destinations.

4.5.3 Distribution Lists

Distribution lists is a feature that allows an operator or an authorized user to send a

message to a large number of subscribers. It has a process running on the server.

4.5.4 IP Failover

The SMSC server has automatic IP failover. Each SMSC machine has a virtual IP
address in addition to the real IP address. This virtual address is shared between the primary
and secondary nodes. Whenever the primary node fails, the secondary node takes over the
virtual IP address.

In order for this to happen, the presence of “Heartbeat” is required. Heartbeat is a daemon
that provides cluster infrastructure (communication and membership) services to its clients.
By this, the MPU node is able to know about the presence (or disappearance) of peer

processes on the other MPU(s) and to easily exchange the messages with them.

33

4.5.5 The Web Interface

The SMSC is administered and configured through a user friendly Graphical User
Interface (GUI). This web interface allows to easily change the parameters defined in the
configuration file on the SMSC.

In a distributed architecture, the SMSC web administration pages offer a centralized
management of all the nodes: each modification made from the web interface, will be
distributed to all nodes. And this requires that apache is installed and configured on the
servers, and it has to be always running. Otherwise, the users won’t be able to use the web

interface, which is run from a local PC in an Internet browser window.

4.5.6 Statistics

Statistics counters are present on the server; they provide an idea about the status and
performance of the system.
The SMSC provides the administrator with different counters that offer statistics regarding
the total usage of all the external connections with the SMSC as well as statistics per
connection.
These counters have to be also checked deeply, since they give very important information

regarding the running processes, the connections, and the traffic.

4.5.7 Address Translation

The address translation is applied for every message handled by the SMSC. Two
translation files are used: one to translate the originating and destination addresses into an
international format needed for profiling and internal searching, and the other to translate the
destination address into the format required by the operator for routing purposes on their
network.

34

The presence of these files is essential to ensure that the message parameters will be
transformed in a way that is understood by the SMSC and the network, which prevents the

message from failing because of a wrong translation.

4.5.8 Lawful Interception

The lawful interception plays an important role in detecting suspicious activities. It is
used by the authorities or some official parties and is enabled by the operator to allow the
interception of short messages sent/received by certain individuals.

To enable it, an ESME should be available to receive the forwarded message. That is why

some ESME connections are critical and should be highly monitored.

4.5.9 Tracking

All the transactions made on the SMSC (MO, MT delivery attempt, Alerts, ESME
traffic...), are logged into a history file. Each transaction line contains all the parameters for
a transaction. The presence of this file is very important for later investigations in case
certain messages fail to be delivered, and it’s the source of the creation of the CDR files used

to perform the billing.

4.5.10 Auto-Signature

The subscribers can define a signature which will be automatically appended to all
messages they send. The auto-signature is handled by an extemal application

(smsc_signature).

35

In this thesis, the main focus is on these processes and features, being the most
important ones. But also many other processes that were not mentioned in this chapter are
included in the study. In the next chapter the implementation of the decision tree algorithm

on the SMSC server will be discussed.

36

Chapter 5

The Implementation

In the first part of this experiment, the study was based on offline analysis done on
prerecorded data. If the purpose is to detect anomalies in real-time, the algorithms used will
have additional constraints and requirements, related to the performance of the algorithm and

the amount of data on which the study should be done.

Experts in this field were interviewed, people who are working closely with servers,
to better understand the strategies that are implemented, and what additional improvements
might be of good use. Their feedback helped in putting together the concepts and cases that
will be explained in this chapter.

The data was gathered from a real operating server, the SMSC, and it contains many
attributes related to hardware, software running on the server, external connections. The

values of these attributes were taken at specific time intervals.

One disadvantage of this would be that the algorithm will not be able to detect
anomalies that are fast to happen and that occur between two consecutive selections of the

data.

The anomalies that might be caught on the system can have different reasons, from
software failures because of programming bugs, to hardware issues, or they can be related to
high system load or even configuration errors. This study tries to cover as much as possible

all the parameters that can be related to all types of failures or anomalies.

37

5.1 Server Related Studies

Before providing our own approach, it is important to check what other studies have
proposed and implemented in this topic. This section shall present a summary of some of the
approaches and methodologies that were done so far on server data monitoring and analysis
[41][42][43][44][45][46].

One of the studies tried to forecast database disk space requirements by using linear
regression analysis. In this study, regression points to the fact that some variations in disk
space usage were observed on the short term, but this growth on the long term was linear-

looking and therefore easily predictable.

Another study focuses on combining monitoring of the service level with the normal
monitoring of the resource usage. The purpose is to find the best thresholds that divide two

bivariate time series in a way to maximize the mutual information between them.

A practical study considered data that was collected by network monitoring agents
and applied data mining techniques to it. The goal was to find the causes that affect the
performance. The concepts were applied to real-world data of a tracing application for
aircraft. Values for 250 parameters related to system hardware values were collected at
regular intervals, for a period of 2 months. Decision tree algorithm, top n algorithm, rule
induction algorithm, and inductive logic programming were used, and many unexpected

problems were detected.

Also, dynamic syslog mining was proposed to detect failure symptoms in computer
devices. The steps consist of using a mixture of Hidden Markov Models to represent the
syslog behavior, to adaptively learn the model using an online learning algorithm in
combination with dynamic selection of the optimal number of mixture components, and to

give anomaly scores using universal test statistics with a dynamically optimized threshold.

38

The “universal test statistics” uses the combination of Shannon information and event

compression efficiency to give an anomaly score.

Many companies implemented anomaly detection in their systems. Among them the
Intel IT’s Business Intelligence platform whose infrastructure goes through a three-stage
process: It collects and analyzes log files from proxy servers, domain name servers (DNS),
Dynamic Host Configuration Protocol (DHCP), Active Directory databases, and other
systems. It extracts data from server logs, security sensors, intrusion systems, and
management platforms, and parses these contextual data at more than a million events per
second. And it then generates reports and workflow automation using custom algorithms that

can identify unusual events.

Having considered the previous studies and other previous work, it is realized that

there are some important issues to be tackled. This will be done in the next section.

5.2 Important Issues to Address

In this context, there are some important issues to tackle in our study:

e The number of attributes: Since an object may have many attributes, it may have
anomalous values for some attributes but it can also be anomalous even if none of its
attribute values are individually anomalous.

o The perspective (global versus local): The object can look anomalous with respect to
all other objects, but not with respect to its local neighbors.

e The degree of anomaly: Some objects are more anomalous than others, in the sense
that their anomaly can be very critical to the health of the system. That is why it is
preferable to assess the degree of anomaly of a certain object (by using an anomaly

score or any other similar method).

39

e “One at a time” versus “Many at once”: decision should be made concerning whether
it is better to remove the anomalous objects one at a time or identify a collection of
anomalous objects together?

e Evaluation: A good measure should be found to evaluate the process of anomaly

detection (precision, recall, FP-rate, accuracy...).

The first challenge was to understand the system and everything related to it. An
extensive study was conducted, many documents and technical descriptions were read in
order to grasp the most important concepts and functionalities of the SMSC.

The second challenge was to decide which data to gather and the way to do it. The
system can generate thousands of different information, but not all of this information is
useful or essential for anomaly detection.

"The challenge with search is that you fundamentally need to know what you're searching on.
Given the explosion of data, it's humanly impossible to know everything about your data"
says Sanjay Sarathy, chief marketing officer (CMO) of machine data analytics specialist
Sumo Logic [5].

This is why at first too many variables were gathered, but with the progress of the
study, many of them were eliminated for more simplicity and accuracy.
Another challenge came up after gathering the data, concerning which machine learning
algorithm to choose to tackle this problem. The first objective was to balance the accuracy of
the prediction and the speed at which the entire data could be trained on and classified.
In our case, the higher importance was given to the accuracy, since it is necessary to have at
each step a correct classification about the status of the system, whether it is normal or
anomalous, because this decision will have an impact on the traffic and the functioning of the

server. In the following sections the main steps that were conducted will be summarized.

40

5.3 Initial Data Selection

As mentioned previously, the purpose of this study was to gather from the SMSC
server the maximum number of “useful” parameters that affect, in a way or another, the
status of the server and the performance in general.

The first step was to collect all the possible data, and to find a fast way to do that. Around
500 attributes were collected.
In the following, some of the parameters that were selected and that cover almost everything

on the system are listed:

Central Processing Unit (CPU) statistics and input/output statistics for devices,
partitions and network filesystems (NFS): These values help in monitoring the system
input/output device loading by observing the time the devices are active in relation to
their average transfer rates. Among these: the percentage of CPU utilization that
occurred while executing at the user level (application), the percentage of CPU
utilization that occurred while executing at the system level (kernel), the number of
transfers per second that were issued to the device (i.e. the number of I/O requests to
the device), the amount of data read from the device expressed in number of blocks
per second (blocks are equivalent to sectors with kernels 2.4 and later and therefore
have a size of 512 bytes), the amount of data written to the device expressed in
number of blocks per second, the total number of blocks read, the total number of
blocks written, the number of read requests that were issued to the device per second,
the number of write requests that were issued to the device per second, the number of
blocks read from the server by the NFS client via an NFS READ request, the number
of blocks written to the server by the NFS client via an NFS WRITE request, and

many others.

Memory usage (the total amount of free and used physical and swap memory in the

system, as well as the buffers used by the kernel): the amount of virtual memory used,

41

the amount of idle memory, the amount of memory used as buffers, the amount of
memory used as cache, the amount of inactive memory, the amount of active
memory, the amount of memory swapped in from disk (/s), the amount of memory
swapped to disk (/s), the number of blocks received from a block device (blocks/s),
the number of blocks sent to a block device (blocks/s), the number of interrupts per

second, including the clock, the number of context switches per second, and others.

The percentage of the used/available disk space in each partition of the hard disk.

The connection with the network hosts, namely the other SMSCs in the same cluster,
by sending multiple ICMP ECHO_REQUESTS: to these hosts which respond by an
ICMP ECHO_RESPONSE. Here also these requests and responses were transformed

into values for the corresponding parameters.

The applications: the processes running on the servers, the number of processes
waiting for run time, the number of processes in uninterruptible sleep, and many
others. The most important processes were introduced in the SMSC chapter. They
include for instance: the SMSC main process, the distribution list process, the MNP
process, the AIM process (which handles connections with the ESMEs), all the
synchronization processes, the REU handler process (which handles the connection
with the REU), the apache process (which enables the use of the web interface), the
heartbeat, and other processes. Parameters were created to hold values related to
whether these processes are running or not, and the number of instances of each

process. Also, the number of defunct processes and their nature were included.
The cores present on the server: A process dumps core when it is terminated by the

operating system due to a fault in the program. This mainly occurs when the program

accesses an invalid pointer value.

42

The DAT and CDR files: Whether the DAT file is writing correctly, and the CDR file

is being created as it should.

The connections with all the external entities.

General information about the mysql database: its size, the connection to it, its current
state (running or not), the number of messages saved in the database, the normal and
the broadcast messages, the number of messages waiting to be delivered in a later
stage (The sending of these messages will be retried after a certain period of time,
since in the first time it failed for some valid reasons), and here will will be counting

the records in three important tables: messages, waiting, and future.

The queues: The number of messages stuck in the different queues. All processes
write/read to/from queues. It is very essential to keep track of the state of the queues

in order not to slow down the execution.

The counters: The value of the different important counters, which count the number

of received messages, failed messages, those that were successfully sent.

5.4 The Script Used for Data Selection

The operating system running on the SMSC is Linux (Redhat). In order to collect the
data mentioned above (and other related data), a shell script was written and tested.
This script included around 500 parameters (attributes) as mentioned previously, and it was
set to run automatically every 1 minute and save the gathered data in a csv file. A file per day
is produced, and the timestamp is added next to each entry containing all the values for the

attributes. Some parts of this script can be found in Appendix A.

43

The result file was checked after 3 days and it was decided to run the script every five
minutes, since it contained many duplicate records due to the stability of the system at that
time and the fact that most of the parameters don’t vary a lot in one minute.

The script was kept on the server for 30 days. After that period, the CSV file that included
more than 8600 records was taken in order to analyze it and apply to it the chosen data

mining algorithm.

5.5 Cleaning the Data or Data Preprocessing

After having the file ready, the data had to be cleaned. Some records were duplicate
(although it was chosen to run the script every five minutes), others had missing values. So it
was essential to decide whether to delete the corresponding record or to find a logical way to
fill the missing parameters with data.

Next, the main steps required for data cleaning are described.

5.5.1 Handling Duplicates

Figure 5-1 below shows the pipeline that handles duplicates in the data set. The
original data set was processed, all duplicated were removed, and a weighting factor was
assigned to each record in the new data set, which is equal to the number of identical records
in the original data set. The algorithms operate on the new data set and the scores are mapped
to produce the result set.

This procedure has a main advantage of significantly reducing the number of records, which

has a positive influence on the performance.

44

Data Set

— Preprocessing

weight | Data set No duplicates
W v

Mappin
PRiNg Algorithm

weight | Result Data Set No duplicates
v Y

L] postprocessing

Result Data Set

Figure 5-1 Handling Duplicates

5.5.2 Handling Missing Values

For the records that contain missing values for some attributes, another algorithm was
used to fill these values logically. The previous 10 records were taken into consideration, and
a formula was applied to find the pattern that relates them. If the values are constant, the
same number is added. If they are being incremented constantly, the same increase is

followed...

For records that contain more than 3 missing values (which are very few), the whole

record is deleted.

5.6 Adding Anomalous Records

Most of the records in the result file correspond to normal cases, which is logical

since the frequency of anomaly occurrence is very minor with respect to the normal cases. In
45

order to be able to use a classification algorithm, the file needs to contain a balanced number
of normal and anomalous cases.

For this reason, another script was used to generate similar data (more records) with
some various changes based on historical behavior of the system and issues that were
previously encountered, on the records present in the file, and the possible values that the
attributes can have.

The final number of records was limited to 6000, which will go through the labeling

process.

5.7 Differences in Attribute Types

The attributes (indicators) that are gathered in the study differ from many points of
view. Some of them behave in a consistent way, in a sense that their values remain almost the
same or in a certain small range. Others can be somehow unstable, and perform some
irregular changes at some point. Some can remain always constant but exhibit a huge change

of value at specific times.

Some indicators are a measurement in percentage, so their value will certainly be
between 0 and 100. Others can also have a limited range, for example the amount of free disk
space, since it has to be between 0 and the maximum size of the disk. On the other hand,
some indicators can have no boundaries for their possible values, and these would be harder

to analyze.

The way the indicator’s value changes affects whether the situation is normal or
anomalous. For example, if the value of a certain indicator increases rapidly, this might not
be an alarm of something anomalous. Whereas if its value decreases suddenly, it might be
considered as a danger to the system. So the variation of an indicator’s value is not always

considered as a sign of anomaly presence, but the direction of this change can be. [40]

46

5.8 Correlations Between Attributes

During the study, one of the observations was that some indicators have correlations
between them, in the sense that their values are somehow related, and they change in the
same direction or following a certain pattern.

Figure 5-2 shows the relation between the number of instances of the SMSC process
and the SMSC alive counter (that keeps incrementing as long as the process is running and
executing). As it can be seen, the value of the alive counter is directly proportional to the
number of instances of the SMSC process. For this reason, one of these two attributes can be

deleted. The same logic applies to few other attributes.

Relation Between SMSC Process and Counter

70

50 o
40 e

30 Q

Alive counter

20)

10 Q

-2 0 2 4 6 8 10 12 14

-10
Instances of SMSC Process

Figure 5-2 Relation Between SMSC Process and Counter

47

Figure 5-3 shows also an X-Y skatter graph representing the relation between the
number of messages in the “Messages™ table in the database, and the MySQL size. It can be
seen that the relation between the two is almost linear, i.e. the MySQL sizes increases with
the number of messages stored in the “Messages™ table (of course with other factors also
since they are not perfectly proportional). The same concept was tested with different other

attributes in order to reduce their number and remove unnecessary indicators that do not give

additive information.

Messages Table Vs. MySQL Size

1200000
1000000 ‘
-ﬁ"‘
800000

600000

MysSaQl Size

400000

200000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
Number of Messages in the "Messages" Table

Figure 5-3 Relation Between Messages Table and MySQL Size

48

5.9 Seasonality

The attributes can have some logical patterns based on a certain periodicity. This
seasonality is caused by the fact that the indicator values are sometimes influenced by the
hour of the day, the day of the week, special holidays or event-based days. For example,
having a high CPU usage during an activity on the system is not an anomaly, but having the
same value at another time can be considered as anomalous. Also, other attributes can have a
high value on weekends or on high broadcast traffic hours, which is considered normal, but
not on periods with low traffic.

The concept of seasonality was studied for the three-month period of the data
gathering. Figure 5-4 shows a sample of the average CPU usage for 6 days of the first week,
where the average CPU usage per hour was calculated. It can clearly be seen that the CPU
usage has higher values between 11 am and 1 pm on Wednesday, Thursday and Friday (with
a high value for 2 pm on Friday), and even higher values between 8 am and 2 pm on
Saturday. Since this pattern keeps repeating every week, it will not be considered as a sign of
anomaly, and it is due to a known increase in the traffic during these periods, along with

huge broadcast from different content providers.

49

Average CPU Usage Average CPU Usage

Monday Tuesday
80 80
60 60
40 40
20 20
RN R AN R P RN R A TR A N AR A RT I AT
12345678 9101112131415161718192021222324 12345678 9101112131415161718192021222324
Hour of the Day Hour of the Day
Average CPU Usage Average CPU Usage
Wednesday Thursday
80 80
60 60
20 20
2 | I " | |
0II||II||II Illllllllll oll'lllll'l l'lllllllll
1234567 8 9101112131415161718192021222324 12345678 92101112131415161718192021222324
Hour of the Day Hour of the Day
Average CPU Usage Average CPU Usage
Friday Saturday
80 100
80 &0
60
40
20
20
o nlialnals, TTH N1 e P YT L
12345678 91011121314151617181582021222324 12345678 9101112131415161718192021222324
Hour of the Day Hour of the Day

Figure 5-4 Average CPU Usage For 6 Days

Some of the anomalies can be easily detected by using constant thresholds, but others
cannot be found this way. Now if their behavior is the same every week or month for
example, they can be detected by using time-dependent thresholds, but sometimes this

seasonal behavior concept cannot be applied to the indicators.

50

After going through all these correlations, the number of attributes was lowered to 56,
by removing those that are of minor importance, that are considered somehow duplicates in

the information they provide, or that don’t highly affect the state of the system.

5.10 Data Labeling

This part is considered one of the hardest, since it requires a lot of time and focus to
be able to understand each case and label it manually.

Commonly, selected records are divided between two classes, normal and anomalous.
Here it was chosen to divide them into three classes: normal, wamning and critical
(anomalous), where the warning class includes records that are considered a middle state (not
totally normal, and not anomalous yet). This class is used to warn that the system is probably
going towards an anomalous state so that the appropriate action will be taken ahead of time,

since most of the cases pass through this warning state before being anomalous.

The labeling process had to take into consideration the type of anomaly (point,
contextual, collective). To enforce the contextual anomaly concept, the data set was divided
into subsets taking the time as a contextual attribute, after analyzing the different types of
“periods” that the system goes through (the concept of seasonality).

All these concepts were gathered, notes were taken, records were divided into subsets, and

decisions were made to classify each instance as “normal”, “warning” or “critical”.

Now having the labeled file, the purpose is to work with it, apply to it the decision
tree algorithm, and perform some tuning and modifications in order to improve the accuracy.
For this to be done, a software is needed. In the following section the WEKA software which

was used in this thesis will be presented.

51

5.11 WEKA Software

WEKA is a machine learning software created by researchers at the university of
Waikato in New Zealand [48]. It is a Java based open source collection of many data mining
and machine learning algorithms and it provides facilities for all the steps involved in solving
these problems. These facilities include data conversion, pre-processing, classification,
clustering, association, categorization, and it also provides a GUI on supporting systems,
which makes it very easy in terms of understanding the flow of data, and visualizing the
results. WEKA contains 49 data preprocessing tools, 76 classification/regression algorithms,
8 clustering algorithms and many others.

On the other hand, it has a simple Command Line Interface (CLI) which is
lightweight in terms of memory, and which provides much more scope for dealing with very
large files.

Weka was one of the most cited, used and recommended maching learning tool in the
studies performed previously [30]. It is very well documented and it is very convenient to

understand and customize.

Figure 5-5 shows the first GUI that the software displays when it runs. In this thesis,
the main interest is in the “Explorer” section which is concerned with preprocessing, attribute
selection, learning and visualization. Data files can be loaded to WEKA, having formats such
as ARFF, CSV, C4.5 and binary, and the user can also import data from URLs or SQL

database.

52

WEKA

The University

of Waikato

Waikato Environment for Knowledge Anaiyss
Version 3.6.6

(c) 1999 - 2011

The University of Waikato

Hamiiton, New Zealand

Figure 5-5 WEKA GUI

5.12 Data Manipulation

In this research, many experiments were conducted using different cross-validation
levels, percentage split values and pruning strategies. The first purpose was to decide which

strategy should be used in order to have a smaller but meaningful tree, and a higher accuracy.

5.12.1 Choosing the Typical Number of Records

In order to understand the impact of the number of records on the results, different
tests were considered using different file sizes. These cases were treated using the 10-fold
cross validation. In the following, the impact of the number of records on three different

result parameters will be studied: the training time, the tree size and the accuracy.

53

5.12.1.1 The Training Time

Figure 5-6 shows the time taken to train the dataset in relation with the number of
records in the dataset. It can be seen that for very small file sizes, the training time is
negligible. And whenever the size increases, the training time also increases. For a file

containing 6000 records, less than 1.2 seconds are needed to output the results.

Training Time in Relation with the Number
of Records

[«] -
%) — [N

Time to train (in seconds)
[=) o
FS o

0.2

0 1000 2000 3000 4000 5000 6000
Number of Records in Training Data

Figure 5-6 Training Time Vs. Number of Records

The increase in the training time is almost exponential and it is related to the number
of features in the training set. The algorithm goes through all the instances for each feature in
order to calculate the entropy. Therefore, the training time is largely proportional to the

number of features in the training data and the number of instances.

54

5.12.1.2 The Tree Size

Figure 5-7 shows the effect of the number of records on the size of the tree and the

number of leaves. Typically, as the number of records increases, the size of the tree increases

and so does the number of leaves. But taking a very small tree would negatively affect the

classification, and would not cover all the attributes that should be included in the decision

making.

140
120
100
80
60
40

20

Tree Size in Relation with the Number of Records

133
67
59
30
15 15
3 5 8 4 7 8
200 1000 2000 6000

100 500

B Number of Leaves m Size of the Tree

Figure 5-7 Tree Size Vs. Number of Records

5.12.1.3 The Accuracy

The same concept applies to the accuracy. Figure 5-8 shows the relation between the

number of records and the accuracy. Small files don’t lead to a trusted precision, and it was

55

seen that a 6000 records file gives an accuracy close to 99% whenever applying to it the

decision tree algorithm explained before.

Accuracy
100%
'k

. 9% 1» Z
Y
QD0
£ 98%
5
o
g 97%
(=8
£
~ 96%
ey
i
S 95%
s
<

94% k

93%

0 1000 2000 3000 4000 5000 6000

Number of Records in Training Data

Figure 5-8 Accuracy Vs. Number of Records

5.12.2 Between Cross-Validation and Percentage Split

The number of folds of cross validation was changed, and it was shown that it also
has an effect on the training time of the tree: The higher the number of cross validation folds,
the more the training time. The files were tested for 10, 15 and 20 cross-validation. This was
also tested for different types of percentage split. 10-fold is the most commonly used, and

after these tests it was seen that it is also the best to be used in this thesis.

56

The previously mentioned cases are summarized in Table 5-1, along with a

comparison of the same cases but using a percentage split of 70%. The aim is of course to

have a high prediction accuracy, but also to test the effect of preprocessing and pruning

techniques on the training time, to have an acceptable training time, and to have a tree that

somehow covers all scenarios, i.e. includes most of the attributes.

Table 5-1 Cases with Different Training Data File Size

Using Cross Validation = 10

Number of Records in Number of ~Size of the
Test Training Data Time to Train (s) Leaves Tree Accuracy
1 100 0.02 3 5 99%
2 200 0.01 8 15 94%
3 500 0.01 4 7 99%
4 1000 0.04 8 15 99%
5 2000 0.26 30 59 99.37%
6 6000 1.08 67 133 98.82%
Using Percentage Split = 70%
Number of Records in Number of Size of the
Test Training Data Time to Train (s) Leaves Tree Accuracy
7 100 0 3 5 100%
8 200 0.01 8 15 91.67%
9 500 0.01 4 7 99%
10 1000 0.03 8 15 99%
11 2000 0.23 30 59 99.22%
12 6000 0.96 67 133 98.83%

It can be seen from the table that all cases have an accuracy higher than 98.8%, which

is very acceptable as a first step. For small files used for training, the accuracy is nearly

100%, but the tree is small, containing 3 leaves, which limits the number of attributes to a

maximum of three, thus completely ignoring the other attributes. This means that although

the accuracy is very high, but it will have a lot of false positives and will not be able to catch

all anomalies since the criteria is only based on very few attributes.

57

The bigger the dataset, the bigger the tree, but the more precise it is, having a very

acceptable training time compared to small datasets, and keeping a high value for accuracy.

As stated before, there is no common best solution for all decision tree problems. The
amount of cross validation, pre-processing, feature selection, filtering, etc. depends entirely

on the kind of data being handled.

It was decided to use 6000 records as training data (of course having a larger set will
yield more precise results), and the 10-fold cross validation was used since no big difference

was noticed when compared to the 70% split.

Now more tuning should be done on the data in order to increase the accuracy and

improve the results.

5.12.3 Applying Tuning Concepts

Now having decided to use the file containing 6000 records along with 10-fold cross
validation, it was time to manipulate the data in order to have better results and higher
accuracy.

The main objective was trying to work with the attributes and perform some tuning in

order to improve the results.

5.12.3.1 Combining Multiple Attributes into One

5.12.3.1.1 Disk Space Attributes

First, the disk space values were combined into one. The original script gives the disk
space usage in each partition of the disk, in this case five partitions. These five attributes

were replaced by one, which contains in itself information about all the partitions. They can
58

be replaced by an attribute showing their average (this way any sudden increase in the disk
space of any partition will be noticeable, since the average would also increase). Or they can
for example be replaced by the maximum value among the disk space of the five partitions.
In this case, it can be sure that no partition will become nearly full without taking that into
consideration in the analysis, but this doesn’t give any information about whether another
partition having a lower used disk space is not encountering an increase in its value (which
also might indicate an anomaly).

Making this modification and running the algorithm gave a tree with 57 leaves (10 less than

the original one), and with an accuracy of 98.93% (0.11% more).

5.12.3.1.2 Ping Attributes

Trying to combine all variables related to pinging the other nodes in the cluster didn’t
lead to better results. A tree with a bigger size (123) was obtained, but with less leaves than

the original one, and with the same original accuracy value (98.82%).

5.12.3.1.3 Other Attributes Combination

Many other attribute manipulations were done such as: combining both disk space
usage and ping usage, removing attributes that are somehow correlated to other attributes
(like mysql size which is related to the number of messages in the waiting table and the
messages table...) or attributes that were found to have no effect on the performance or the

result (CDR, brdcast and normal messages...).

5.12.3.2 Replacing Attribute Values by One of Two Values

For some variables, the value (no matter what it is) can be replaced by only one of
two values. For example, it might not be important to know how many instances of a process

are running, but rather whether this process is running or not. Same logic applies to the

59

defunct processes found on the system and other attributes. Also, considering the running

processes, this method does not have to be applied to all of them. For some it might be useful

to know if with time the number is decreasing, for others it might be important to have at

least one instance running. For the latter case, a script was run to replace by 1 every value

greater than 1 (0 means not running, and 1 running).

This concept gave an improvement, with a tree formed of 56 leaves, and of size 111, with an

accuracy of 99.12%. And applying it to some counters also improved the accuracy to 99.22%

and gave a smaller tree.

The results of some of the tests performed (mostly mentioned in the sections above)

are summarized in Table 5-2.

Table 5-2 Modification Cases

CASE Accuracy (%) LEAVES SIZE OF TREE TIME TO BUILD (Sec)
1 No Modification 98.8333 67 133 0.56
p Disk Space Mod. 98.9333 57 113 0.46
3 Ping Mod. 98.8167 62 123 0.49
4 Disk Space and Ping Mod. 98.9 62 123 0.33
5 Removing 1 Attribute 98.9833 61 121 0.34
6 Removing 2 Attributes 99.1167 56 111 0.3
7 | Changing variable (processes) 99.1167 56 111 0.3
8 | Changing variable (defunct) 99.1333 62 123 0.29
9 | Changing counters' values 99.2167 52 103 0.41

To note that the cases in the above table are additive, i.e. for example case 6 is a case

where modifications to the disk space variables and ping variables were performed, and

where three attributes were removed.

60

5.12.3.3 Applying the Concept of Ranges

The next step was to try to tune the values of some attributes, especially those that
have a lower and an upper bound such as the CPU usage, the memory usage, and other
variables that are expressed in terms of percentage (value between 0 and 100). The idea here
is that having few values for a certain attribute (4 or 5) might lead to a smaller tree and a

higher accuracy then having 100 possible values for this attribute.

Many cases were tackled, that include many attributes, and that differ by the ranges taken
into consideration. For example, in the first case, the possible range was divided into five
parts:

o If the value is between 0 and 20 it will be assigned a value of “1”

e Ifit is between 20 and 40 it will be given a value of 2~

e Ifitis between 40 and 60 it will be given a value of “3”

o Ifit is between 60 and 80 it will be given a value of “4”

e Ifitis between 80 and 100 it will be given a value of “5”

Here the focus will not be on the time taken to build the model since it is always within

parts of a second, so a very acceptable value.

First, the value of CPU load was transformed into one of the five possible values
mentioned above.
Then the same concept was applied to both CPU and IO, then other attributes were added to
them. .. not all cases of tuning gave better results, but rather some of them caused a decrease

in the accuracy instead of improving the learning.

Also, many trials were done to change the number of ranges used and their

boundaries, based on specific values of some attributes that might lead to an anomaly.

61

For example, 0-25-50-75-100 means that the variable is divided into four ranges, where the
first range (between 0 and 25) is given a value of 1, the second range (between 25 and 50) is

given a value of 2, and so on.

In the following Table 5-3, some of the cases that were tackled will be presented,

along with the results obtained when applying each one of them:

Table 5-3 Tuning Cases
CASE Accuracy (%) LEAVES SIZE OF TREE
1 1 Att - 0-20-40-60-80-100 98.8167 62 123
2 2 Att - 0-20-40-60-80-100 98.3167 72 143
3 3 Att - 0-20-40-60-80-100 95.2333 141 281
4 0-40-60-80-90-100 99.1333 69 137
5 0-50-70-80-90-100 99.05 ' 76 151
6 0-60-80-90-95-100 99.05 76 151
7 0-25-50-75-100 95.1167 153 305
8 0-25-50-75-100 92.9167 222 443
9 0-40-60-80-100 94.1333 153 305
10 0-60-80-90-100 97.6667 108 215
11 0-80-90-95-100 97.3667 93 185
12 0-30-60-100 91.3333 199 397
13 0-60-80-100 93.2667 159 317
14 0-80-90-100 98.3333 89 177
15 0-80-100 92.6333 161 321
16 0-90-100 94,15 98 195
17 DS only - 0-80-90-100 99.3833 51 101

The best results were observed in case 17, this is why it was adopted.

Now some of the statistics obtained by WEKA after training the result file will be presented.

62

5.13 Statistics

In this section, the statistics obtained will be shown.

5.13.1 Three-Class Model

In the following (Figures 5-9 and 5-10), some statistics of the model obtained when
using the final result file are presented (after applying to it all the modifications explained

previously).

=== Stratified cross-velidaticn ==
mmn Surmary mew

Ccrrectiy Classified Instances 5963 93,3833 %
Incorreccly Cless:ifjad Iratances 37 0.61€7 %
Keppa =tatistic £.9907

Mezr zbeclute 2Irc: G.0037

Root meen equaved error g.0832

Relative absplute ercsr 1.2775 &

Root reietive sguared error 13.44%3

Tctel Nuzber cf Instences €300

Figure 5-9 Statistics - Case 1

It can be seen that the classes’ accuracies have high values. The TP (True Positive)
rate for the normal class is 99.9%, for the critical class 99.4% and for the warning class

98.8%. All F-measures and precisions are above 99%.

wmw Detalled Accuracy By Class ===

TF Rate FF Rate Precisisn Rezzll F-Measure ROC Ar=az Cless

w

D.9%3 D.002 0.996 0.992 0.957 €.99 Nermal

c.9ogs 0.004 ¢.001 G.9E8 0.9%8 6.99¢ Werning

G.994 0.603 0.994 0,894 0,204 €.987 Critical
Weighted Rvy. 0,894 0.003 0.99: 0.983 0.99& 6.297

Figure 5-10 Detailed Accuracy - Case 1

02

Figure 5-11 shows the three-class confusion matrix.

=== (Coniusion Metrix ==

a B & <== classified as
2136 3 [& = Normal

e 1734 13 | b = Weraing

i 12 2083 | c = Criticel

Figure 5-11 Confusion Matrix - Case 1

Three normal instances are misclassified as warning, 13 warning instances classified
as critical, 12 critical instances classified as warning. All these, although misclassified, don’t
have a negative effect on the result. Also, the 8 warning instances classified as normal can be
considered as non-affecting the result negatively, since the warning class is only used to
indicate a possibility of anomaly. So even if it’s classified as normal, it won’t be a problem.
Therefore, effectively, only 1 instance here out of 6000 is seriously misclassified (classified

as normal while it’s critical). This leads to an “effective” accuracy of 99.98%.

Of course having a larger training data set will lead to even better results.

5.13.2 Two-Class Model

In all previous studies, they would use only two classes (normal and anomalous).
Therefore, another experiment was carried out in order to see whether having only two
classes would lead to better results. The same final file used for the three-class case was
taken, replacing the “warning” and “critical” classes by “anomalous”. So now two classes

exist: normal and anomalous.

Running the decision tree algorithm lead to a very smaller tree (with 27 leaves instead
of 51, and a size of 53 instead of 101), with a better accuracy of 99.77%. The statistics are
shown in Figure 5-12.

= Stretified cross-velidation ==
wmx SUMMArY ===

Correctly Classified Instances 5886 92 7667 %
Incorrectly Classified Instances 14 G.2333 &
Hzppz stetistic 0,883

Mean absolute errer 0.04p23

Root mean sgquared errey 0.04€2

Relative absolute erreor 0.6278 %

Roct relestive sguared error 9.6402 %

Total Number of Instances 8400

Figure 5-12 Statistics - Case 2

All the accuracy values are above 99.7% for both classes, as shown in Figure 5-13.

== Detziled Accuracy By Class ==
T Rete FF Rets Bracigion Recall F-Mazgure ROC kysz Cless
0.93¢ 0.023 9.385 0.es:2 06.337 0,988 Kermel
6,997 0.082 0.9%3% 0.88% ¢.29¢8 0.958 Ancmalous
Weighted 2vg. 0.39g 0.0%2 6i.89¢ 0.92% 0,332 0.g8a3

Figure 5-13 Detailed Accuracy - Case 2

Figure 5-11 shows the two-class confusion matrix.

was Confusicn MATriX smm

a b <-- clessified as
2135 4 | & = Normal
10 385% | b = Enoc=zlous

Figure 5-14 Confusion Matrix - Case 2

65

Four normal instances are classified as anomalous (which has no negative effect on
the performance), while 10 anomalous instances are being considered as normal. Although
the two-class decision tree gave a higher accuracy, but it was decided to adopt the three-class
since the effective accuracy (calculated based on our preferences relative to the problem

here) was higher than that of the two-class (99.98% versus 99.83% here).

5.14 Transforming the Model into a Script

After deciding which model to adopt, the decision tree was transformed into rules,

and these rules were transformed into a script.

WEKA gives the ability to do this transformation and to output a source code. Some parts of
this code are shown in Appendix B. The code at hand was written as a shell script in order to
be understood by the linux operating system. The script was set to always run on the SMSC

SErver.

5.15 The Alarm System

An alarm system was created. The original script that gathers the data would run
every minute. The gathered data acts as an input to the script that describes the model. After
being executed (which takes few milliseconds), the script classifies the record as normal,
warning, or critical.

If it is normal, no action will be taken. Otherwise, an alarm will be sent to a monitoring
screen stating whether it’s a warning or it’s a critical state. Also, along with the pop-up

window that shows the state of the system, an alarm sound will be played.

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion

All systems and servers generate a huge amount of data that can be used to give
information about the state of the system. Many studies were conducted to understand the
problem of anomaly detection. Different techniques were implemented, and the advantages

and disadvantages of each were explored.

The purpose is to catch any error or anomaly before it causes harm to the system. A
practical use case would be to decide at which point some system components might need
upgrade, for instance adding more memory or disk space. If these were to be added early,
useless additional costs would be created. And failing to add them at the appropriate time
might result in loss of performance of the server or the inability to catch the errors.

Also, whenever a certain upgrade is performed, the system should be able to give a
proof of the improvement of the performance. Another use case is to be able to estimate the
Joad that an application can have on the system, before installing it, to see whether the server
is able to cope with it or not.

All these and many others were the reason behind this thesis and the studies done in
the anomaly detection field.

6.2 Main Contribution of this Thesis

In this thesis, an anomaly detection algorithm was implemented on a server that
didn’t apply any anomaly detection technique before. The decision tree algorithm was

presented, and all the features of the SMSC server. Then the implementation was proposed,

67

the tuning, and the different tests that were performed to obtain the best results were

explained.

Unlike older studies, the use of three-class decision tree was suggested, which has a
higher effective accuracy than the two-class, and which is more practical since it sends an
alert before the actual anomaly occurs. The model had a very high accuracy, and proved to be

working as expected.

6.3 Possible Extensions and Future Work

The concept of anomalies in a distributed architecture was explained in an earlier chapter, but
was not tackled in our study since the focus was on a single server. What could be done more
is to extend the study to cover more than one server, to find ways to cover the anomalies
mentioned in this context, and to detect any differences between two similar nodes in a

cluster.

The problem with the thresholds is that the user has to define them. This works in an
environment that has stable and infrequent deployments, like our case here (which relied
somehow on a threshold concept during the labeling process). But when the environment is
dynamic this causes many difficulties: The user has to continuously assess the suitability of
those thresholds, and redefine them as needed, the normal conditions can change depending
on specific time/day, and thresholds don’t give a precise result when encountering an
abnormal trend or behavior. Anomalous behavior will give an alarm if it occurs within
threshold boundaries. But in most cases, by the time the threshold is reached, it will be too
late. It’s not a good practice to wait until an anomaly to occur to fix it. The system might not

be broken yet, but it can be in the process of breaking. [47]

Therefore, some extentions of this study would be to improve the use of the concept of

seasonality, and avoid being dependent on thresholds. The best way would be to apply
68

unsupervised techniques that continuously learn (even though the system in our case is
somehow stable), and try to obtain higher accuracies than the results in this thesis.
Some other issues that should be considered in the future when working with anomaly

detection:

+ Labelling of data. Usually, the researchers assume that the recorded data is normal and can
be directly used to build the normality model. But this isn’t true, since these data can contain
anomalous records. The data is not labeled, so if unsupervised techniques were to be used, a
technique that deals with the data without assuming that it’s 100% normal should be
implemented.

+ Changes in the system. The frequency of the updates’ installation can influence the
normality model. The algorithm used should be able to take into account the changes made to
the system.

« Architectural issues. The collection of the data from the server influences itself the server
performance, since this collection is consuming memory, CPU load and sometimes disk
space... This fact should also be taken into consideration.

» Algorithms and experts. An instance can be classified as anomalous, but it can be a
consequence of an anomaly. The algorithm does not always give an ultimate decision about
the severity of an anomaly. That is why the presence of experts is always needed to give the

final word about a certain situation.

69

Appendix A
Script to Gather the Data

#/bin/bash
day="date +%Y%m%d’

counters part 1

Percentage of CPU usage

CPU="top -d 0.1 -n 2 | grep "*Cpu(s):"| tail -1 Jawk '{print $5}'|sed 's/%.*//"
CPUl="echo $CPU | cut -d"." -fI’

LOAD=$((100 - $CPU1))

iostat
DEV=sda
10STAT=/usr/bin/iostat

#RedHat release 3

I0_ACT="$IOSTAT -d -x | grep -w $DEV | awk '{print $14}"
if [-z "$IO_ACT"]
then

#RedHat release 5

I0_ACT="$IOSTAT -d -x | grep -w $DEV | awk '{print $12}"
fi
%util is given with 2 digits after the floating point
IO_ACT_NUM="echo $I0_ACT | awk -F "' '{print $1}"

memory usage - buffers
FREE_MEM="/usr/bin/free | grep buffers/ | awk '{print $4}"
70

TOTAL_MEM="free | grep Mem | awk '{print $2}"

FREE_MEM_PER="echo "scale=2; SFREE_MEM/STOTAL_MEM" | bc | /bin/cut -d "." -f2°
USED_MEM_PER="expr 100 - SFREE_MEM_PER’

swap usage

FREE_PATH=/usr/bin/free
#RedHat release 3 and 5
SWAP_LINE="$FREE_PATH -m | grep Swap
TOTAL_SWAP="echo $SWAP_LINE | awk '{print $2}"
USED_SWAP="echo $SWAP_LINE | awk '{print $3}"
%util is given with 2 digits after the floating point
SWAP_USAGE="echo "scale=2; SUSED_SWAP/STOTAL_SWAP" | bc"
SWAP USAGE_NUM="echo $SWAP_USAGE | awk '{print $1*100}"

#ping usage

COUNT=2

count]='ping -c SCOUNT tsmsc! | grep 'received' | awk -F',' '{ print $2 }' | awk '{ print $1 }"
count2="ping -c SCOUNT tsmsc2 | grep 'received' | awk -F',’'{ print $2 }' | awk '{ print $1 }"
count3="ping -c SCOUNT barmpul | grep 'received' | awk -F',' '{ print $2 }'|awk '{ print $1 }"
countd="ping -c SCOUNT barmpu2 | grep 'received' | awk -F',' '{ print $2 }'| awk '{ print $1 }"

disk space usage

Templ="df -P / | grep -v Filesystem | awk '{print $5}"

Usedl="basename $Templ %'

Temp2="df -P /boot | grep -v Filesystem | awk '{print $5}"

Used2="basename $Temp2 %’

Temp3="df -P /data | grep -v Filesystem | awk '{print $5}"

Used3="basename $Temp3 %’

Temp4="df -P /home | grep -v Filesystem | awk '{print $5}"

Used4="basename $Temp4 %’

Temp5="df -P /var | grep -v Filesystem | awk '{print $5}"
71

Used5="basename $Temp5 %’

ps usage

ps_smsc="ps -ef | grep smsc$ | grep -v grep | we -1’
ps_smsc_dl="ps -ef | grep smsc_dl | grep -v grep | we -I'
ps_aim="ps -ef | grep aim | grep -v grep | we -1’
ps_httpd="ps -ef | grep httpd | grep -v grep | we -I
ps_sync_db="ps -ef | grep sync_db | grep -v grep | we -1’
ps_reu_handler="ps -ef | grep reu_handler | grep -v grep | we -I
ps_smsc_mnp="ps -ef | grep mnp | grep -v grep | we -I'
ps_jsync="ps -ef | grep jsync | grep -v grep | we -I
ps_jfsync="ps -ef | grep jfsync | grep -v grep | we -I'
ps_heartbeat="ps -ef | grep heartbeat | grep -v grep | we -I

core monitoring

dat monitoring

cdr monitoring

hour="date -d -1 hours' "+%H""

defunct monitoring

stat="ps -A -ostat,ppid,pid,comm | grep - "[Zz]' |grep -v grep’ > /home /temp/geo/defunct-file.log
stat]="cat /home /temp/geo/defunct-file.log [we -1

stat2="cat /home /temp/geo/defunct-file.log [awk '{print $4}"

database messages monitoring

Mysql_DB=smsc_6_0
72

MESS_COUNT="echo 'select count(*) from messages;' | /usr/bin/mysql $Mysql_DB -u
$Mysql_USER -p$Mysgl_PWD | grep -v count’

database waiting monitoring
WAIT_COUNT="echo 'select count(*) from waiting;' | /usr/bin/mysql $Mysql_DB -u $Mysql_USER
-p$Mysql_PWD | /bin/grep -v count’

database future monitoring

#FUTURE_COUNT="echo 'show table status like "future"\G;' | /usr/bin/mysql $Mysgl_DB -u
$Mysql USER -p$Mysql_PWD | grep -i auto_increment| cut -d ":" -f 2"
FUTURE_COUNT="echo 'select count(*) from future;' | /usr/bin/mysql $Mysql_DB -u
$Mysql_USER -p$Mysql_PWD | /bin/grep -v count’

broadcast and normal messages
SMSCLISTMON=/home/bin/smsclistmon
BRD_MSG="$SMSCLISTMON -q -t brdcst | grep msg | cut -d "=" -f2

NORMAL_MSG="$SMSCLISTMON -q | grep msg | cut -d "=" -f 2

MySQL disk mon
mysql_size="du -s /var/mysql/innodb | awk '{print $1}"

MySQL conn mon
SQL_CURRENT_CONN="echo "$SQL_CURRENT_CONN - 5" | be’
SQL_CONN_RATIO="echo "$SQL_CURRENT_CONN * 100/ $SQL_MAX_CONN" | be’

MySQL mon
MySQLstatus="ls -1 /var/lib/mysql/mysql.sock | we I

queues

73

counters part 2

dsmsc="echo "$csmsc2 - $esmsecl" | be’
daim="echo "$caim2 - $caim1" | bc’
dmnp="echo "$cmnp2 - $cmnp1" | be’
dreu="echo "$creu2 - $creul" | be’

dreua="echo "$creua2 - $crenal" | be'

dsyncdb="echo "Scsyncdb2 - Scsynedbl” | b’

djsync="echo "$cjsync2 - $cjsyncl" | bc’
djsynce="echo "$cjsyncc2 - $cjsynccl” | be’
djagtx="echo "$cjagtx2 - $cjagtx1" | bc’

D="date +%Y%m%d%H%M"

echo

"$D,SLOAD,$I0_ACT NUM,SUSED_MEM_PER,$SWAP_USAGE_NUM,$countl ,$count2,$coun
t3,$count4,$Used1,$Used2,$Used3,$Used4,$Used5,$ps_smsc,$ps_smsc_dl,$ps_aim,$ps_httpd,$ps_s
ync_db,$ps_reu_handler,$ps_smsc_mnp,$ps_jsync,3ps _jfsync,$ps_heartbeat,$core_result,$dat1,5dat
2 $cdr,$stat], SMESS_COUNT,$WAIT_COUNT,SFUTURE_COUNT,$BRD_MSG,SNORMAL_MS
G,$rnysql_sizc,SSQL_CONN_RATIO,&SMySQLstatus,$qsub,$qreu,$ch,$q1 ,$92,9q3,$94,$95,$96,%
q7,$dsmsc,$daim,$dnmp,$dreu,$dreua,$dsyncdb,$djsync,$djsyncc,$djagbc" >>

/home/temp/geo/gathered_data.csv

74

Appendix B
Sample Model Source Code

class WekaClassifier {

public static double classify(Object[] i)
throws Exception {

double p = Double.NaN;
p = WekaClassifier.N1dd3380(i);
return p;
}
static double N1dd3380(Object []i) {
double p = Double.NaN;
if (i[1] == null) {
p=0;
} else if ((Double) i[1]).doubleValue() <= 4.0) {
p = WekaClassifier.N1c6ea391(i);
} else if (((Double) i[1]).doubleValue() > 4.0) {
p = WekaClassifier.Nb61ba312(i);
}
return p;
}
static double N1c6ea391(Object [Ji) {
double p = Double.NaN;
if (i[5] = null) {
p=0;
} else if (((Double) i[5]).doubleValue() <= 1.0) {
p = WekaClassifier.Nba96db2(i);

} else if (Double) i[5]).doubleValue() > 1.0) {
75

p = WekaClassifier.N2703405(i);
}
return p;
}
static double Nba96db2(Object []i) {
double p = Double.NaN;
if (i[2] = null) {
p=0;
1 else if (((Double) i[2]).doubleValue() <= 37.0) {
p=0;
} else if (((Double) i[2]).doubleValue() > 37.0) {
p = WekaClassifier.N237363(i);
¥
return p;
}
static double N237363(Object [Ji) {
double p = Double.NaN;
if (i[1] = null) {
p=0;
} else if ((Double) i[1]).doubleValue() <= 3.0) {
p=0;
} else if (((Double) i[1]).doubleValue() > 3.0) {
p = WekaClassifier.N34a91d4(i);
}
return p;

}

76

Bibliography

[1] Anomaly Detection - Data Mining Techniques - Francesco Tamberi, Department of Computer
Science, University of Pisa, 26 June 2007

[2] Anomaly Detection: A Survey, Varun Chandola, Arindam Banerjee, and Vipin Kumar, August
15,2007

[3] Comparison of Unsupervised - Anomaly Detection Techniques - Bachelor Thesis - Author:
Mennatallah Amer, Supervisor: Markus Goldstein, Reviewer: Prof. Dr. Andreas Dengel, Prof. Dr.
Slim Abdennadher, Submission Date: 20 September, 2011

[4] Edgeworth, F. Y. 1887. On discordant observations. Philosophical Magazine 23, 5, 364-375.

[5] Anomaly Detection Lets You Find Patterns in Log Data, Thor Olavsrud, CIO, Sep 10, 2013

[6] Kumar, V. 2005. Parallel and distributed computing for cybersecurity. Distributed Systems
Online, IEEE 6, 10.

[7] Spence, C., Parra, L., and Sajda, P. 2001. Detection, synthesis and compression in mammographic
image analysis with a hierarchical image probability model. In Proceedings of the IEEE Workshop
on Mathematical Methods in Biomedical Image Analysis. IEEE Computer Society, Washington,
DC, USA, 3.

[8] Aleskerov, E., Freisleben, B., and Rao, B. 1997. Cardwatch: A neural network based database
mining system for credit card fraud detection. In Proceedings of IEEE Computational Intelligence
for Financial Engineering. 220-226. '

[9] Fujimaki, R., Yairi, T., and Machida, K. 2005. An approach to spacecraft anomaly detection
problem using kernel feature space. In Proceeding of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM Press, New York, NY, USA, 401-410.

[10] Statistical Techniques for Online Anomaly Detection in Data Centers - Chengwei Wang,
Krishnamurthy Viswanathan, Lakshminarayan Choudur, Vanish Talwar, Wade Satterfield,
Karsten Schwan - HP Laboratories HPL-2011-8

[11] The Science of Anomaly Detection - How Grok Uses Machine Intelligence to Find Anomalies -
White Paper

[12] Tan, P.-N., Steinbach, M., and Kumar, V. 2005. Introduction to Data Mining. Addison-Wesley.
Chapter 2.

[13] Chandola, V., Banerjee, A., and Kumar, V. (2009), Anomaly detection : A survey. ACM
Computing Surveys (CSUR), 41, 15:1-58

77

[14] Hodge, V. and Austin, J. 2004. A survey of outlier detection methodologies. Arti cial
Intelligence Review 22, 2, 85-126.

[15] Agyemang, M., Barker, K., and Alhajj, R. 2006. A comprehensive survey of numeric and
symbolic outlier mining techniques. Intelligent Data Analysis 10, 6, 521-538.

[16] Markou, M. and Singh, S. 2003a. Novelty detection: a review-part 1: statistical approaches.
Signal Processing 83, 12, 2481-2497.

[17] Patcha, A. and Park, J.-M. 2007. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Networks 51, 12, 3448-3470.

[18] Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., and Srivastava, J. 2003. A comparative study of
anomaly detection schemes in network intrusion detection. In Proceedings of SIAM International
Conference on Data Mining. SIAM.

[19] Forrest, S., Warrender, C., and Pearlmutter, B. 1999. Detecting intrusions using system calls:
Alternate data models. In Proceedings of the 1999 IEEE ISRSP. IEEE Computer Society,
Washington, DC, USA, 133-145.

[20] Snyder, D. 2001. Online intrusion detection using sequences of system calls. M.S. thesis,
Department of Computer Science, Florida State University.

[21] Dasgupta, D. and Nino, F. 2000. A comparison of negative and positive selection algorithms in
novel pattern detection. In Proceedings of the IEEE International Conference on Systems, Man,
and Cybemetics. Vol. 1. Nashville, TN, 125-130.

[22] A Survey of Outlier Detection Methods in Network Anomaly Identification, Prasanta Gogoi, D
K Bhattacharyya, B Borah and Jugal K Kalita, revised 9 February 2011

[23] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artif. Intell. Rev., 22(2),
2004.

[24] M. Markou and S. Singh. Novelty detection: A review - part 1: Statistical approaches. Signal
Processing, 83(12), 2003.

[25] M. Markou and S. Singh. Novelty detection: A review - part 2: Neural network based
approaches. Signal Processing, 83(12), 2003.

[26] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, New York, NY, USA, 2006. ACM Press.

[27] A. B'anhalmi, A. Kocsor, and R. Busa-Fekete. Counterexample generation-based one-class
classification. Machine Learning: ECML 2007, 2007.

78

[28] W. Fan, M. Miller, S. J. Stolfo, W. Lee, and P. K. Chan. Using artificial anomalies to detect
unknown and known network intrusions. In ICDM, 2001.

[29] Anomaly Detection by Combining Decision Trees and Parametric Densities- Matthias Reif,
Markus Goldstein, Armin Stahl - German Research Center for Artificial Intelligence (DFKI) -
Thomas M. Breuel, Technical University of Kaiserslautern, Department of Computer Science

[30] Bhawe, Chinmay, "BIG DATA CLASSIFICATION USING DECISION TREES ON THE
CLOUD" (2013).Master's Projects. Paper 317.

[31] Theiler, J. and Cai, D. M. 2003. Resampling approach for anomaly detection in multispectral
images. In Proceedings of SPIE 5093, 230-240, Ed.

[32] Abe, N., Zadrozny, B., and Langford, J. 2006. Outlier detection by active learning. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM Press, New York, NY, USA, 504-509.

[33] Steinwart, 1., Hush, D., and Scovel, C. 2005. A classification framework for anomaly detection.
Journal of Machine Learning Research 6, 211-232.

[34] V. Hodge and J. Austin. A survey of outlier detection methodologies. Artif. Intell. Rev., 22(2),
2004.

[35] G. K. F. Tso and K. K. W. Yau, "Predicting electricity energy consumption: A comparison of
regression analysis, decision tree and neural networks," Energy, vol. 32, pp. 1761-1768, 2007.

[36] D. Delen, G. Walker, and A. Kadam, "Predicting breast cancer survivability: A comparison of
three data mining methods," Artificial Intelligent in Medicine, vol. 34, pp. 113-127, 2005

[37] L. Y. Chang and W. C. Chen, "Data mining of tree-based models to analyze freeway accident
frequency," Journal of Safety Research vol. 36, pp. 365-375, 2005.

[38] Human talent prediction in HRM using C4.5 classification algorithm — Hamidah Jantan — IJCSE
~ Vol. 02, No. 08, 2010, page 2529.

[39] Efficient C4.5 — Salvatore Ruggieri — IEEE Transactions on Knowledge and Data Engineering,
Vol 14, No.2, March/April 2002 — p.438

[40] Anomaly detection from server log data - A case study, Sami Nousiainen, Jorma Kilpi, Paula
Silvonen & Mikko Hiirsalmi

[41] Trettel, E.L. Forecasting Database Disk Space Requirements: A Poor Man’s Approach, Prepared
for the CMG Conference Committee 32nd Annual International Conference of The Computer
Measurement Group, Inc., December 4-9th 2006, Reno, Nevada.

79

[42] Perng, C.-S., Ma, S., Lin, S. & Thoenen, D. Data-driven Monitoring Design of Service Level and
Resource Utilization. 9th IFIP/IEEE International Symposium on Integrated Network
Management, 2005. 15-19 May 2005.

[43] Knobbe, A., Van der Wallen, D. & Lewis, L. Experiments with data mining in enterprise
management. In: Proceedings of the Sixth IFIP/IEEE International Symposium on Integrated
Network Management, 1999. Distributed Management for the Networked Millennium.

[44] Yamanishi, K. & Maruyama, Y. Dynamic syslog mining for network failure monitoring.
International Conference on Knowledge Discovery and Data Mining. Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining, Chicago,
Illinois, USA. Industry/government track paper, 2005. Pp. 499-508.

[45] Ziv, J. On Classification with Empirically Observed Statistics and Universal Data Compression,
IEEE Transactions on Information Theory, Vol. 34, No. 2, March 1988.

[46] Fast Threat Detection with Big Data Security Business Intelligence, IT@Intel Brief, Intel IT,
Risk Management, July 2013

[47] ANOMALY DETECTION IN THE DATA CENTER AND THE CLOUD, May 2013, metaphor
software

[48] Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations,
Chapter 8, Ian H. Witten, Eibe Frank, 2000

80

