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Abstract

The paper presents the study of the iterations of rational fractions, that is, the
behavior of 29,21 = f(20),..-, 2Zn41 = f(2n),.... We illustrate the conditions
needed for this function to behave as its linear part and prove the existence
of Siegel and Cremer points. The study extends to a description of Fatou
and Julia sets.
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Introduction

0.1 Aims and Objectives

Iterations of a rational function on the Riemann sphere is one of the most
attractive topics in the theory of dynamical systems.

Let f: C — C be a rational function where C denotes the Riemann sphere
obtained by adding the point co to C. We will be interested in the iterations
of such f at a point zp; that is, the sequence

20,21 = f(zﬁ)a sy Bpel = f(zn):

Regarding the dynamics of f, we first distinguish between whether the points
on the sphere are "stable” or not, i.e. if nearby points behave similarly under
iterations. That is, whether or not arbitrary close points behave differently.
The set of stable points is called the Fatou set, (), and its complement is
called the Julia set, J;. The Fatou set can be defined as the largest open
set in which the iteration of f is normal. The dynamic of f on J; is ”chaotic”
whether on €2 it is much more regular.

The starting point of the chaos theory is the three-body problem. It consists
of studying the dynamic of three bodies in gravitational interaction such as
the system: Sun, Earth, Moon; supposed to be isolated from the rest of the
universe. Is the solar system ”stable” in the long run or might one of the
bodies strike another body one day or will it be ejected form the solar sys-
tem towards infinity? This remains an open question which requires further
investigation.

In the first chapter of this thesis, we define all types of points: superattrac-
tive, attractive, repulsive, and indifferent. We study whether the iterations
of f near each of these points behave as the iterations of its linear map.

In the second chapter, we discover Fatou and Julia sets and illustrate some
fascinating fractal shapes.



Iterations of rational maps is a large subject. Good places to start reading
further are ”Dynamics in one complex variable” by John Milnor (1}, "It-
eration of rational functions” by Alan Beardon [2] and ”Riemann surfaces,
dynamics and geometry” by Curtis MCMullen [3].

0.2 State of the Art

Complex dynamics has quite a long history starting with the work of Ernst
Schroder, Gabriel Koenigs, Hermann A. Schwarz and many others in the 19**
century. During that time, the local study of iterated holomorphic mappings
in a neighborhood of a fixed point was well developed [4].

Progress came early in the new century with Pierre Fatou’s Comptes Rendus
notice where he examined the iteration of two kinds of rational functions: the
family fi(z) = zf—:_z, where k is a natural number greater then 1, has a single

attracting orbit consisting of a fixed point at the origin, and g(2) = 5-22i§ that
has two attracting orbits, one a fixed point at the origin and the other the
point at infinity. The first Julia set appeared in Fatou’s note [1906d] when
Gaston Julia was 13 and before normal families were invented.

Modern day interest in Julia sets began in the 1920’s with Gaston Julia.
Julia first introduced the modern idea of a Julia set in his best known paper
Memoire sur I'iteration des fonctions rationelles [5]. Interest in the subject
flourished over the next 10 years and many other well known mathematicians
began to study Julia sets such as Carl L. Siegle and Paul Montel. The Fatou-
Julia theory was one of the first applications of the concept of normal families
introduced by Montel. Despite the lack of computing power available at that
time, Harald Cramer was able to become the first man to approximate the
image of a Julia set.

After that, the subject went to sleep until the late seventies when it has un-
dergone explosive growth due to computer graphics. It was not until Benoit
Mandelbrot began studying iteration in the 1970’s that Julia sets re-emerged.
By then, computing facilities were available and much more detailed images
could be produced. The advance in computer triggered the work of many
mathematicians such as John Milnor, Adrien Douady, and John Hubbard.



Preliminaries

0.3 Topological Properties

We introduce in this section some topological properties used for studying
the structure of Fatou and Julia sets.

Definition 0.3.1. A meiric space is an ordered pair (M,d) where M is a set
and d is a metric on M, i.e, a function d : M x M — R such that for any
= y,z € M the following holds:

d(z, y) >0

- d(z, 0iffr=y

- d(z, y) d(y,fc)

-d(z,2) < d(z,y) +d(y, T)

Example 0.3.1. The set of complex numbers C with the metric
d(z,w) = |z — w| where z,w € C is a metric space. The |- | represents the
modulus of a complex number.

Definition 0.3.2. A subset K of a metric space (M,d) is said to be open if,
given any point z € K, there exists a real number € > 0 such that
B(z,€) = {2';d(2,2') < €} lies entirely in K.

Definition 0.3.3. A subset K of a metric space (M,d) is said to be closed if
its complement is open. Equivalently, if there exists z € K such that for any
r > 0, B(z,7) 2 points from K and points from outside K.

Definition 0.3.4. Let (M,d) be a metric space and E C M. We say that
the family of open sets in M, {G4}a, is an open covering of E if and only if
E C UG,.

Definition 0.3.5. A subset K of a metric space (M,d) is said to be compact
if every open covering of K contains a finite subcovering of K.

10



Theorem 0.3.1. A closed subset of a compact set is compact.

Theorem 0.3.2. A subset K of C" is compact if and only if it 1is closed and
bounded.

Definition 0.3.6. Given a metric space (M,d), a sequence (Z,)nen n M is
said to be a Cauchy sequence if for every positive real number €, there is a
positive integer N such that for all integers m,n > N, d(zn, x,) < &; that is,
a sequence whose elements become very close as n —» oo.

Definition 0.3.7. A metric space M is said to be complete if every Cauchy
sequence of points in M has a limit that is also in M, or, alternatively, if
every Cauchy sequence in M converges in M.

Theorem 0.3.3. In a compact metric space (M,d), every sequence in M has
a convergent subsequence whose limit is in M. Therefore, any compact metric
space is complete.

Definition 0.3.8. A metric space (M,d) is said to be connected if no two
disjoint open or closed sets cover M.

Definition 0.3.9. The mazimal connected subsets of a nonempty metric
space (M,d) are called the connected components of M. The connected com-
ponents of M form a partition of M: they are disjoint, nonempty, and their
union is the whole space M.

Definition 0.3.10. An open set D of (M,d) is simply connected if it is con-
nected and if any closed path in D is holomorphic to a point in D; that is, D
is a set with no holes; that s, all interior points to a closed simple path in D
are in D.

Example 0.3.2. Spaces A,B,C and D are connected whereas space E (made
of subsets Ey, E,, E3, E;) is not connected. Furthermore, A and B are also
stmply connected while C and D are not.

11
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Figure 1: Connected and Disconnected Subspaces of R?

Definition 0.3.11. The closure of a subset S in a metric space (M,d) consists
of all points in S plus the limit points of S: it is the union of S and its
boundary. That is, it is the smallest closed set containing S. The closure of
S is denoted by S.

Definition 0.3.12. The interior of S is the union of all open sets contained
in S; that is, it is the largest open set contained in S.

Definition 0.3.13. A point z of a metric space M is called an isolated point
of a subset S of M if z belongs to S and there ezists in M a neighborhood of
z not containing other points of S.

Definition 0.3.14. A subset S of a metric space M is called dense in M if
S=M.

Definition 0.3.15. The subset S is said to be nowhere dense if its closure
has empty interior.

Definition 0.3.16. A perfect subset S is a closed set with no isolated points;
every point of the set is an accumulation point of the set.

12



0.4 Riemann Sphere and Holomorphic Func-
tions
In this section, we state important results in complex analysis.

Definition 0.4.1. Let S? denote the unit sphere 2> +vy*+22 =1 in R3. The
stereographic projection is the function

M:52-{N} +C:M—- P

a+ b
l—c¢c

H(a,b,c) =

where N(0,0,1) is the "north pole” of S* and P is the point of intersection of
the line connecting MN and the zy-plane.

Figure 2: Stereographic projection

Proposition 0.4.1. The stereographic projection is a bijection between S* —
{N} and C and so, if we assign co to N, II can be extenf,ed to a biyjection
from S? to C = CU{oo} = P. Under this identification, C is known as the
Riemann Sphere.

Definition 0.4.2. Let V C C be an open set of complex numbers. A function
f :V — C is called holomorphic if the first derivative

TR CE0LD (O
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is defined and continuous as a function from V to C.
Equwalently, if f has a power series expansion about any point 2o € V which
converges to f in some neighborhood of zy with positive radius of convergence:

f2) =Y anlz— 20)"
n=0

Theorem 0.4.1. Inverse Function Theorem

Let V C C be an open set and f a holomorphic function over V such that
f'(25) # 0. Then there exists open sets U C V and W C C such that zo € U
and f : U — W is one to one and onto and f~' : W — C s holomorphic
and for any z € W, (f71)(z) = ?Cfé‘(“z_ﬁ

Theorem 0.4.2. Maximum Principal
Let V be an open set, a € V, and f : V — C a holomorphic function. If
|f(2)] < f(a) Yz close to a, then fis a constant near a.

Corollary 0.4.1. Let V be an open, bounded and connected set in C and
f:V — C a holomorphic function. Let M be the mazimum value of f |av.
Then:

1)|f(z)| SMVzeV.

2) If | f(a)] = M fora € V then fis a constant.

Theorem 0.4.3. Riemann Mapping Theorem

If U is a non empty simply connected open subset of the complex plane C,
then there exists a bitholomorphic (bijective and holomorphic) mapping f from
U onto the open unit disc. fis said to be a conformal map.

Theorem 0.4.4. Schwarz Lemma

Let f be holomorphic on the open unit disc and assume that:

1-|f(2)| <1Vze D(0,1) and

2. f(0) =0

Then |f(2)| < |z| Vlz| < 1 and |f'(0)| < 1. If either |f(z0)| = |20 for some
z0 # 0 or if |f'(0)| = 1, then f is a rotation; i.e, f(z) = az for some complex
constant a with |a| = 1.

Theorem 0.4.5. Rouche’s Theorem
Suppose f and g are holomorphic functions on and inside a simple closed path
v. Suppose that |f(z)| > |g(2)| on y. Then f and f+g have the same number
of zeros inside v where each zero is counted as many times as its multiplicity.
Equivalently, if f and g are sufficiently close to each other on vy, then they
have the same number of zeros inside 7.

14



Theorem 0.4.6. Cauchy’s Argument Principle
Let f(z) be a holomorphic function inside and on a simple closed path ~y where
f(z) has no zeros nor poles on . Then:

1 [ f(2)
No-Nm—Q—mf; s

where Ny is the number of zeros of f(z) inside v and N, is the number of
poles of f(z) inside v, counted as many times as its multiplicity.

Definition 0.4.3. A collection F = {fa}aer of holomorphic functions

fa: 02— C is called a normal famaly if and only if every infinite sequence
of functions {f,} € F contains a subsequence which converges uniformly on
every compact of §2.

Theorem 0.4.7. Let F = {fa}acz be a collection of holomorphic functions
fa: @ — C. Suppose that F is uniformly bounded on every compact included
in Q. Then F is a normal famaly.

15



Chapter 1

Iterated Holomorphic Maps

We consider, in this chapter, holomorphic functions f : P! — P! where
f{z) = gﬁﬁ ; is a rational fraction fixing the origin (f(0)=0), with derivative
A = f’(0). So f can be written in terms of a power series in a neighborhood
of 0:

f(z) = Az + 0(2?)
where O(2?) := Zapz”. We denote such a function by f : (C,0) — (C,0).
p>2
We will be studying the iterations of rational fractions: what is the behavior
of the sequence

20,21 = f(Zo), ey gl = f(zn), e
1.1 Linear Maps

In this section, let f : P! — P! be a linear function; f(z) = Az, A # 0. The
iterations of f at 2z, are

20,21 = f(20) = 20, * *, 2n = [™(20) = A2, ...
and so defined by the sequence
Zn=A"20;n €N

o If M| < 1, 0 < |z,| < |A|*|20] — 0 as n — oo. Therefore |2,| — 0
as n —» oo and so the iterations of f at any z; go inside the circle
centered at O of radius || and become very close to 0.

16



o If |\| > 1, |z,] — 00 as n — oo and so the iterations at any 2z, go
outside the circle and converge to oc.

o If || =1, |2,] = |20| Vn. Therefore, the iterations at any 2, lie entirely
on the circle centered at O of radius |zp]. In this case, A = %™ we
have a rotation of an angle a and so 2 cases arise: & € Q or & € R\ Q.

.IfaeQ a= 5 where g is reduced to its lowest terms and ¢ > 0, the
iterations are periodic of period q since

g2im

yid ; 3
zg = "Mz = e¥™z = (cos2mp + isin2mp) 2 = 2o

3 E -
Now, z = e*™az, therefore argz; = argz, + p(é)?ﬂ'. Hence, if we

decompose the circle into q equal parts, each point of the cycle zyp —
21 = ... = 24-1 = 2, = 2zp is distant p points from the previous point
on the circle.

Suppose that A = 25 Then, q=12, p=5 and 2z;5 = 2. So the
circle is divided into 12 equal parts and z; is the 5% point after z,_;;
i=1,2,....11. :

. 5
2w

Figure 1.1: Cycle for the rotation z — e*"12 2.

2. If & € R\Q, z # 2; Vi,j then the iterations are dense on the circle
C)|; they constitute almost the entire circle.

17



1.2 Linearization

Now that we understand the behavior of the iterations of a linear function,
the question is: in which case the iterations of a holomorphic function

f(2) = Az+0(2?) near 0 behave as the iterations of its linear part L(z) = Az
near (7

Definition 1.2.1. Two functions f : (C,0) — (C,0) and g : (C,0) —
(C,0) are conjugates if there exists a holomorphic function ¢ : (C,0) —»
(C,0) such that ¢'(0) # 0 and po f = go ¢ near 0.

¢'(0) # 0, by the inverse function theorem, ¢ is bijective near 0. Also, ¢
can be seen as a holomorphic change of coordinates in a neighborhood of 0.
We can conclude the iterations of f from the iterations of g since:

pof=go¢
f=¢logog
ff=(¢""ogod)"=¢logopogplogog..
P=grtogtesp

Proposition 1.2.1. If f : (C,0) — (C,0) and g : (C,0) — (C,0) are
congugates then f'(0) = ¢'(0).

Proof.
(@0 £)(0) = (g04)(0)
¢'(£(0))1'(0) = g'(#(0))¢'(0)

¢'(0)£(0) = ¢'(0)¢'(0)
f(0) = ¢'(0) since ¢'(0) # 0.

O

The problem now is in which case f : (C,0) — (C,0) and its linear part
g(z) = Az are conjugates?

Definition 1.2.2. A holomorphic function f : (C,0) — (C,0) is said to be
linearizable if and only if it is conjugate to its linear part g(z) = Az = f'(0)z.

18



Definition 1.2.3. Let f : (C,0) — (C,0) and X\ = f'(0). 0 is said to be a
fized

e superattractive point if A = 0.
e attractive point if 0 < |\| < 1.
e repulsive point if |A| > 1.

e indifferent point if |\| = 1.

Theorem 1.2.1. Let f : (C,0) — (C,0) where 0 is a fized superattractive
point. [ s linearizable if and only if f is constant.

Proof. Suppose f is linearizable. Hence, f(z) = ¢! o g o ¢(z) where g(z) =
Az = 0 Vz. Therefore, f(z) = ¢~'(0) = 0 Vz and f is the zero function.

Conversely, suppose that f is constant. Since f(z) = Az + O(2?) and A = 0
then f(z) =0 Vz and so f is linear. O

If 0 is an attractive or repulsive fixed point, f is always linearizable.
If 0 is an indifferent fixed point, f is sometimes linearizable and sometimes
not and so different cases hold:

1. If A = e?™ where a € Q, 0 is said to be a parabolic point.

2. If A = %™ where a € R\ Q and f is linearizable, 0 is said to be a
Siegel point.

3. If A = e%™ where o € R\ Q and f is not linearizable, 0 is said to be a
Cremer point.

In the following setions, we will show that if f is a polynomial of degree
> 2 and 0 is a parabolic point, f is not linearizable. We will also prove the
existence of Siegel and Cremer points.

1.3 Attracting and Repelling Fixed Points

Let B, := {z € C/|z| < r}.

19



Theorem 1.3.1. Koenigs Linearization Theorem
If f : (C,0) — (C,0) has 0 as an attractive fized point then f is linearizable;
the following diagram commutes in the neighborhood of the origin:

v )

¢l X

C-5C

Furthermore, ¢ s unique up to a multiplication by a non zero constant.
To prove this theorem, we will start by proving the following lemma:

Lemma 1.3.1. If f : (C,0) — (C,0) has 0 as an attractive fized point then
Ir > 0,0 < c <1 such that f(B;) C By, (i.e. the successie iterates f"
are all defined over B,) and |f°"(z)| < ¢"r , Yz € B,. Therefore, {f"|s,}
converges uniformly to 0.

Proof. f(z) = Az + O(2?) near 0. Hence 3ry > 0 and C such that:
1£(2) = Al = a2 + o + .|
= |2||er + coz + .|
< Clz|* ¥z |2l <o
So,
|£(2)] = |f(2) — Az + Az
< |f(2) = Az + | Az
< Clzf* + A2
< (Al + Cro)lz| Vz; |2 <mo

Now we can choose r as small as possible so that |A| < |A\|+Cr < ¢ < 1.
Hence |f(2)| < (|A| + C7)|z| < ¢|z|; Vz € B,.
Then, f(B,) C B, and hence

112(2) = 1F(F(2))] < elf(2)] < 2], Vz € B,

By repeating the same process, we get

|fo(2)| < ||, Vz € B,
< c"r — 0asn — oo.

Therefore, { f°"|p,} converges uniformly to 0. O

20



Now we will prove Koenigs linearization theorem.

Proof. Consider the sequence 20 — f(z0) = z1 = f%(20) = 20 = ... =
f™(20) = zo — ... and the sequence wy, = (3% )>0. If this sequence converges
uniformly in a neighborhood of the origin, we get ¢ = lim 3.
00
n sk
| W1 — wn| = Iiuig - % = |z J;aﬂznl = |)\nl+i_|[zn+l — Azp|
By the above lemma, 3r > 0, 0 < |A\| < ¢ < 1 such that all the iterates f™

are defined in B,, |f*(2)| < ¢*r and |f(z) — Az| < C|z|?, Vz € B,. Hence

|2n41 = Azn| = |F(F7(2)) = Af(2))|
< Clf™(2)f
= C|z,|?
< C(re)?
= Cric™;|z| < r

Hence,

Wn41 — wnl = |)‘n+] An

If we take c as small as possible so that 0 < ¢? < [A\| < C, then
|wWns1 — wn| — 0asn —> oo. Thus the sequence w, converges uniformly
throughout B, to a holomorphic limit

¢(z) = lim " — lim f7(2)

nl—roo F n—ooo A"
where:
e ¢(0) = 0 since f°*(0) = 0.
e ¢ tangent to the identity, ¢’(0) = 1 since

(fr0)) . At
Al =1

#0) = Jim

21



° $(f() = lim 2 = lim £ = A lim £ = 2é(2) = 9(4(2))
where g(z) = Az, the linear part of f.

Suppose that there exist two functions ¢ and 3 such that ¢o fod=1(2) = \z
and Yo fo~1(z) = \z. Consider

Phod™ (Mw) =10 fopH(w) = pod™(w)
Expanding as a power series we get:
Yo ¢ Hw)=bw+bw? + ... + bw" + ...
o ¢ (Aw) = bidw + boA®w® + ... + b A W™ + ...
which implies that b,A" = b,A. If b, 5% 0, then A = A" = ) is a root of
1, or A = 0. Both cases are impossible. Therefore b, = 0 ¥n > 2. Hence
Yo ¢~ (w) = bi(w).
Let z = ¢~ (w) then ¥(2) = bip(z) = ¥ = by . O
Theorem 1.3.2. If f : (C,0) —» (C,0) has 0 as a fized repulsive point then
f is linearizable.

Proof. Consider f~! : (C,0) — (C,0). By the inverse function theorem,
f~! is well defined and holomorphic near 0 since A = f(0) # 0. f~! has 0
as a fixed attractive point since:

<A\rfns 1 11
U=y ~Fo 2!
Therefore, f~! is linearizable.
The function ¢ : (C,0) — (C,0), which linearizes f~! : (C,0) — (C,0),
linearizes f : (C,0) — (C, 0) since:

(;Sof‘l:g’ogbwhereg':z——)-;-:/\'z
poflog =g
dofo¢7N(z) = —§

(gofTed™) ) =5

¢pofod™(2) = Az
pofod ! =gwhereg:z— Az

=)

22



o If [A| < 1 at any point 2o € C, \"2p —> 0 as n —» co. Hence
[™(20) = ¢~ (A\"wp) — O0asn — oo
where wy = ¢(zp); the iterations of f approach the origin.

e If [A\| > 1 at any point zy € C, A\"z9p — 00 as n — 0o0. Hence
f(20) = ¢~ H{(A"wp) — c0asn —» oo

where wy = ¢(z0); the iterations of f go to infinity.

1.4 Parabolic Fixed Points

We consider, in this section, holomorphic functions f(z) = e*"¢z + 0(2?)
and we show that in this case, where 0 is a fixed parabolic point, f is almost
always not linearizable.

Theorem 1.4.1. Let f : (C,0) — (C,0) be a holomorphic function that

__ 2k

has 0 as a fized parabolic point; f'(0) = e*". Then f is linearizable if and
only if f°? = Id.

Proof. 1f f is linearizable then f is conjugate to g : z —» %™z = \z. Hence,
there exists a holomorphic function ¢ : (C,0) — (C, 0) such that ¢'(0) # 0
and

z=MXz=(¢o fod 1) z)=¢o f%0 ¢ '(2)
Hence

Id=¢ofio¢™
Ido ¢(z) = ¢po f*(2)
#(z) = ¢(f*(2))
¢ (¢(2)) = 671 (B(f*1(2))
z = f*(2)

23



fH(z) = 1d

Conversely, if 22 =T
g—1

Let ¢ =% Z f = EZ —2ﬂm"-f°ﬂ- where f°" = A"z + O(2?). Then:
#(0)=0 emce FR = 0 Vn and ¢'(0) = 1 since

]_ q—l 24 r
(p.! p £2 e— u'rnq(fcn)f
q n=0
1.2 2imn® 2irn® 182 1
¢f{] e e" 111'nqe Iﬂﬂq oo 1m_ =l
(0) : ; =3 e
B fc{n—H) q for

Alsod)of——nzo =—ZM =~ZA
Hence ¢o f = \% Zf = )\p =go¢ where g: z — Az
Hence f is hnea.rlza.ble I

Corollary 1.4.1. If f is a rational fraction of degree > 2, that has 0 as a
fized parabolic point, then f is not linearizable.

Proof. The rational fraction f°? is a rational fraction of degree d?, where d
is the degree of f. If f°9 = Id near 0 then d? = 1 which is not possible only
if d = 1 and so f will be equal to the identity everywhere. Therefore, f is not
of degree > 2. For this reason, f°? cannot be equal to the identity near 0, or
else it will be equal to the identity everywhere. O

1.5 Siegel Points

First, in this section, we consider the case where 0 is a fixed indifferent point
and then when o is an irrational number, i.e, f(z) = A\2+0(2?) with A = %™
and o € R\ Q in order to prove the existence of Siegel points.

Definition 1.5.1. Let f : (C,0) — (C,0) be a holomorphic function such
that f'(0) = X and |\| = 1. The dynamic of f is said to be stable near 0 if
and only if AR > r > 0 such that the iterations f°* |p, are defined ¥n > 0
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and f*(D,) C Dg. Geometrically, the dynamic of f is stable near the fized
point 0 if the iterations of any 2 points zy, zo close to 0 remain very close in
a certain neighborhood of the origin.

Theorem 1.5.1. Stability and Linearizability

Let f : (C,0) — (C,0) be a holomorphic function such that

|f'(0)] = |A] = 1. The dynamic of f is stable near 0 if and only if f is
linearizable.

Proof. If f is linearizable then there exist » > 0, R > r and a holomorphic
function ¢ : D, — Dpg such that ¢'(0) # 0 and ¢ o f = g o ¢ near 0 where
g9(z) = Az Vz € D, and so

po(f(2) = A(2)

f(2) = ¢71(M(2))

Now ¢(z) € Dr = A\p(z) € Dr = ¢~ (\¢(2)) € D, = f(D,) C D;.
Therefore f°*(D,) C D, C Dg and so the dynamic of f is stable near 0 and
fr(D;) C Dg.

Reciprocly, if the dynamic of f is stable near 0, consider ¢, : D, — Dpg

n 1 )
defined by ¢, := %Z =

n-—1

#,0) =1 ZNU“)()— Z»x j1=1.

Also, ¢, © f =1 Z fO(H-l) Z A;+1 fo(t+1] Z fol

z—.l
*(Z »f"‘ + Anf‘”‘ — Id) = A, + (—f‘”‘ Id).

Slnce qﬁn(D ) € Dpg the sequence {¢n}n constitutes a uniformly bounded
sequence and so, by theorem 0.4.7, {¢,}n is a normal family. Therefore, we
can extract a subsequence {¢, ’ In , Which converges uniformly in D, to ¢ and
S0 ¢y © f = An; + 2 (k5 £ — 1d).

For any 2 € D,, || f(2) ||[< R then

1 , 1 i
| 357 = 2 IS 5 1F @ I+ 21 R+ R=2R
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Hence, as n; — oo, nij(;\—,lgf"“f —Id) — 0 and ¢o f = Ao
For any n;, ¢,,(0) =0, ¢y, (0) = 1 therefore $(0) = 0, #'(0) = 1 and so ¢ is
a bijection near () that linearizes f. O

The following theorem is equivalent to the stability theorem.

Theorem 1.5.2. Let f : D(0, R) — C be a holomorphic function fizing the
origin such that || = |f'(0)] = 1. Let K = {z € Dg\f"(z) € D(0, R); Vn >
0}. fis linearizable if and only if 0 € K.

Proof. Let U be the connected component of K containing 0. f(K) C K
and, by the maximum principle, f(K) C K. Therefore f(U) C U. Since U
is simply connected, by the conformal representation, there exists an isomor-
phism ¢ : U — D(0, 1) such that ¢(0) = 0. To show that this ¢ linearizes
f, we will check the product g := ¢o fo¢~'.

g : D(0,1) — D(0,1) is a holomorphic function fixing the origin and
g'(0) = f'(0) = A with |A\| = 1. By Schwarz lemma, |g(z)| < |z| and,
since |¢’'(0)| = 1, then g(2) =

Reciprocly, if f is linearizable then, by the stability theorem, 0 € K. O

Corollary 1.5.1. Let f : (C,0) — (C,0) be a holomorphic function such
that 0 s a Cremer point. Then 3R > 0 such that Vr < R,

a) we can find a point z and an integer n such that |z| < r and |f°"(z)| > R.
b) we can find a point 2’ and an integer n’ such that |2’'| > R and |f°"(2')| < r.

Proof. a) Since 0 is a Cremer point then f is not linearizable. Hence, by the
above theorem, the dynamic of f is not stable and 3R > 0 such that Vr < R
and |2| < 1, |f™(2)| > R.

b) We choose R > 0 such that f~! : (C,0) — (C,0) be defined over Dpg.
f~! is not linearizable and so the dynamic of f~! is not stable and Vr < R,
we can find a point z and an integer n such that |z| < r and |(f~!)"(2)| > R.
If we set 2’ := (f~1)"(z), then |2’| > R and |f*"(2')| < r. O

Example 1.5.1. Consider the quadratic polynomial Py defined by
Py(2) = Az + 2%; |A\| = 1. We define the filled-in-Julia set by

= {z € C; (Py"(2))n bounded}.

By theorem 1.5.2, Py is linearizable and 0 is a Siegle point if and only if
0 € K. In this case, there ezists a connected component U of K, containing
0. This connected component is said to be the Siegel disk.
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Figure 1.2: Filled-in-Julia set for 22 + %"z with £ = \:"/g = 0.62996.... It
has a Siegel disk.

Figure 1.3: Filled-in-Julia set for 22 + %™z with ¢ = 0.7870595.... It has a
Siegel disk.

If\= e?i’rﬁ, 0 1is a parabolic point and, in this case, Py is not linearizable.
The point 0 is on the boundary of the filled-in-Julia set.
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Figure 1.4: Filled-in-Julia set for 2 — 2% + €™z with ¢ = 2 which is not
linearizable. 0 is on the boundary of K.

1.6 Cremer Points

To show that Cremer points exist, we use Baire’s theorem.

Theorem 1.6.1. Baire’s Theorem

Let X be a complete metric space. X is a Baire space [the union of any
countable collection of closed sets (F,),>1 with empty interior has empty
interior].

Proof. We want to show that UF, has empty interior. For this reason, we
negate the following statement: Jzy € UF,, dro > 0 such that Vz € X if
d(zo,z) < 719 then z € UF,, which is equivalent to: Vzo € X, Vro > 0,
dz € X, z ¢ UF, such that d(zq,x) < ro.
Let o € X and r¢ > 0. We construct by recurrence z, € X \ F;, and r, > 0
such that d(Zp-1,2n) < Tn and r, < min(™52, d(zn, Fy,)). Since each F, has
empty interior, let

x; € X \ Fi suchthat d(zo, 1) < r1 < min(%2,d(z1, F1)) < 1o

Ty € X \ Fy suchthat d(z,, z2) < ro < min(%,d(zq, F2)) < m

z3 € X \ F3suchthat d(zs,z3) < rs < min(%,d(zs, F3)) < 2
Therefore, the terms are getting closer to each other. The sequence (z,,)n>0 i8
a Cauchy sequence and hence has a limit z € X (since X is a complete space).
Hence, Vn > 0, d(z,,z) < 7 and z ¢ F,, i.e., z ¢ UF, and d(zp,z) < 19. O
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Corollary 1.6.1. Let X be a complete metric space with no isolated points.
The intersection of any countable collection of open dense sets is a dense
uncountable set.

Proof. Let (On)nen be the sequence of open dense sets. F, = X \ O, is
a closed set and has empty interior. By Baire’s theorem, UF, has empty
interior. Hence O := N0, = N(X \ F,) = X \ UF,, is dense.

If O is countable, we can find an increasing sequence of finite sets A4, C O
such that UA, = O. Hence (O, \ A,)nen is a sequence of open dense sets
since X has no isolated points and N(O, \ 4,) = NO,, \ UA, = 0\ O = 0.
This is impossible since N(O, \ 4,) is dense. Therefore O is uncountable. [J

Definition 1.6.1. The intersection of open dense sets is called a residual set
(dense and uncountable).

Definition 1.6.2. A function f : (C,0) — (C,0) has small cycles if ¥r > 0,
there ezists a periodic orbit < zg — 21 = f(z)) — ... — zn = f*(20) —
2o = [ (20) > contained in the punctured disk D} [any neighborhood of 0
contains a periodic cycle].

Theorem 1.6.2. Cremer
Let Py(z) = e*™z + O(2?), a € R be a polynomial of degree > 2. Then the
set of a € R\ Q, such that P, has small cycles, is a residual set.

We prove first the following lemma:

Lemma 1.6.1. Let oy = ﬁ be a rational number and r > 0 a real number.
Je > 0 such that for 0 < |a—ao| < €, P, has a periodic orbit in the punctured
disc D;.

Proof. P,,(z) = e¥™02 + O(2?)

P29(z) = €209z 4 0(22) = %192 4 0(22) = %"z + O(22) = 2 + O(2?)
P31 — z = O(2%). Let g(z) = P33(z) — 2, a polynomial of degree > 1, and
0 is the only root of multiplicity m > 2 inside a certain path v = 8D,.. By
Cauchy’s Argument Principle

_L [94E),,
2mi /., g(2)

Now, P29(z2) = (e%™)%z + O(2?) = Mz + O(2?)
P2(2) —z= (M — 1)z + O(2?)
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Let gx(z) = P2%(z) — z, a polynomial of degree > 1. Given ¢ > 0, if 0 <
|a— ap| < €, the 2 polynomials g(z) and g,(z) are close to each other and, by
Rouche’s theorem, they have the same number of zeros inside 7. Let ' > 0,
¢ > 0 sufficiently small in such a way that if |& — ap| < &, ga(z) has only
zeros inside v = 9Dy, i.e. ga(2) # 0 (PI(z) # z), V|z| = ' and, for |2z| < 7/,
| B <y 1=0, g — 1.

gx(z) = (M — 1)z + O(2?) is a polynomial of degree > 2 that has at least
m roots inside 7. 0 is a root and ”T(Z) = (N —1)40(2). A = €% and «
very close to ap = £ so a is an irrational number and A7 = (€%"*)7 cannot
be equal to 1 and so A7 — 1 # 0. Therefore 0 is not a root for the polynomial
Q*T(Z) and 0 is a simple root for g\(z).

Hence, gx(z) has m-1 roots different from 0 inside ~. If 2, is a root then

9x(20) = Py%(z) — 20 =0

P3i(20) = 20

Hence P, has (m-1) cycles inside D;.

Comment: PJ (z) = z+ O(2?) has 0 a fixed point of multiplicity m > 2
inside 7. By a small perturbation and for a & g, PI(2) = \(z) + O(z?)
still has m fixed points near 0. ]

Now we prove Cremer’s theorem:

Proof. ¥n > 0, let U, = {a € R; P, has a cycle in D%} }. U, is an open set
since U, = %]g -, E +¢l. U, is dense in R since Q C U, and Q dense in R.

Let G = decreasing N U,, by Baire’s theorem, G is a residual set.
G = {a € R\P, hasacycleinall D% }
= {a € R\ P, has a cycle near 0}

where { D% },, consists of all neighberhoods of 0. O

Conclusion
Suppose P, has a cycle < zg — 21 = Pa(20) — ... — zn = P3(20) —
7y = P"1(z) > and P, linearizable then:

do P,=godwhereg: z— Az;\ =e*™ a € R\ Q

Py =¢log"o¢
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¢~ 0 g% o ¢(z) = 2
g*lo ff)(zo) = ¢(ZU)

Let w = ¢(2)
9" (w) =w
MNMw =w
N=1

This is a contradiction since A = %™ and @ € R\ Q. Hence f is not
linearizable for certain o € R\ Q and Cremer points exist.
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Chapter 2

Fatou and Julia Sets

The Fatou set, Qf, and Julia set, J;, are fascinating sets named after the
Mathematicians Pierre Fatou and Gaston Julia. They are 2 dimensional
images with fractal shapes. Qf and J; form a partition for the Riemann
Sphere. J; is when the dynamic is chaotic and €y is when the dynamic
is regular. In this chapter, we will show some important results and will
discover examples of these mathematical visualizations.

2.1 Dynamics on the Riemann Sphere

Definition 2.1.1. The Fatou set Qs of the function f is the largest open
set of the complex plane where the family {f°"}, forms a normal family,
Qs = {z € C\3U neighborhood of z; the family f*: U — P! normal}. The
complement of the Fatou set is called the Julia set J;.

Proposition 2.1.1. The Julia set and Fatou set are completely invariant by
f fg) = Jr=F1(Jy), F(Qf) = Q= fH(y).

Proof. Since the Julia set is the complement of the Fatou set, it is enough to
prove the result for the Fatou set. Lets prove that f~1(Q) = Qr = f(€y).
We prove first that f~(Qf) C Qy:

Let zo € f~4(y) = wo = f(20) € . Then the sequence "~ (wg) =
f°™(20) is a normal family near wy and so near z5. Therefore zy € €2y and
f7H(8y) C Q.

We now prove that f(2f) C Qf:

Let 29 € f(Q) = 20 = f(wo), wo € . Then the sequence f°*(wp) is a
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normal family near wy.

for(wo) = O I(f(wo)) = foV(z) which is a normal family near z.
Therefore zo € Qf and f(2y) C Q.

We proved that f~'(Qs) C Qf then Q; C f(Qy) and since f(Q) C Qy,
therefore f(Qy) = Q.

Also, f(€f) C Sy then Qf C f (%) and since f~1(Qf) C £y, therefore
Qp = (). O

Theorem 2.1.1. Montel’s Theorem (Fundamental Normality Test)
A family F = {f, : U — P'},ca of holomorphic functions which omits at
least 3 different values in P*, (i.e, there exist distinct points a,b,c € P! so
that fo(U) C P*\ {a,b,c} for every fo € F) is normal.

Definition 2.1.2. Two rational fractions are said to be conjugates if there
exists a holomorphic function h : P' — P such that ho f = g o h.

Proposition 2.1.2. If h : P! — P! is a Moebius transformation then
h(QI) = Qg and h(Jf) = Jg.

Proof. The family {f°® : U — P'} is normal if and only if the family
{ho f"oh ' :h(U) — P'} is normal. O

When the degree of f < 2, f is either a constant or the Moebius trans-
formation z — %Ig. In these cases, the study of holomorphic dynamics is
very simple.

Theorem 2.1.2. Suppose f is a Moebius transformation different from the
identity (f(2) # z), f: 2 — %3, a,b,¢c,d € R and ad — be > 0.
Then f has either one fized point in P! and is so conjugate to a translation,

or two fized points in P! and is so conjugate to a similarity or to a rotation.

Proof. Let f(z) = 22

cz+d”
a 0
Note that f(o0) = {‘ Gy
co c=10

Suppose z; is a fixed point of f; f(z0) = 20. %22 = 2 is a polynomial of
degree 2. Then either A = 0 and so we have 1 fixed point or A # 0 and so
we have 2 fixed points.

Case 1: if f has only one fixed point a € P:
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e If @ = oo then ¢ = 0 and f(z) = %2 but since it is the only one
then a = d. Hence f(2) = z+k, k # 0 is a translation and f"(z) =
29+ nk — coasn —» 0o Vzo. Therefore, Q; = P! and J; = 0.

o If a # o0, let ¢(z) be a holomorphic function that takes f to g where
g(00) = 0o (g is a translation).

¢o fog(c0) =00

In this case f™(z0) — a as n — 0o Vzp and J; = 0.
Case 2: if f has exactly 2 fixed points:
o If a; =0, ay = 00, then f(z) = kz and

|f™(20)] = |k"20] — Oasn —> ocoVzo, if |k| < 1
—> 00asn — ooz, if |k| > 1
= |20|, theiterations remainin S'.

In this case, J; = S

e If ay, ay # 0, 00, let ¢ be a holomorphic function that takes f to g where
g(0) =0, g(o0) = oo and so g(z) = kz.

b0 fod(00) = o0
fo¢7l(o0) =¢7'(c0)
= (xg = (25_1(00)

(o) = 00

and

$pofod™'(0)=0
fo¢™(0)=9¢7'(0)
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= ] = qb"l([))
d(a) =0
2=

=>¢v(z)=z_a2

In this case, by proposition 2.1.2, J; = S'.
1

Next, we will be interested in rational fractions of degree > 2. For certain
polynomials, the dynamic is easily understood.

Theorem 2.1.3. Let f(z) = 2¢, where d > 2 or d < —2. The Julia set of f
Js is S1:= {z € C;|2| = 1}, the unit circle of C.

Proof. o Vz; |2| < 1, fo*(2) = z%" and so as n — oo, |f°*(2)] — 0 and
z e Qf.

o Vz; |z| > 1, | f™*(2)] — o0 as n — oo and z € (5.

Hence J; € S*. We still have to show that S' C Jj.
Now let z € S! and U a small neighborhood of z then there exist z,y € U
where x inside the disc D and y outside the disc D.

Q)

S1

|f*(2)] — 1 as n — oo.

|f™(z)| — 0 as n — oo.

|f*(y)] — oo as n —» oo.

Therefore, the sequence f°*(z) does not converge and z € Jy. Hence

Jy =S\ 0

Remark 2.1.1. Another reason to say that J; C S* using Montel’s theorem
is that f7(P'\ S') C P!\ S' and so the sequence f™|p1\s, omits at least 3
points. Hence P'\ S' C Qs and J; C S*.
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Definition 2.1.3. The Chebyshev polynomials f4(z) of the first kind of degree
d are polynomials satisfying fq(cosz) = cos(dx). They satisfy the recurrence
relation fa1(2) = 22fa(2) — fa-1(2), d > 1.

An example for d=2 is fo(z) = 222 — 1.

Proposition 2.1.3. If f is a Chebyshev polynomial of degree d, then the set
of points where the orbit is bounded is the interval [-1,1].

Proof. We have z=a+ib. Hence, the proof is divided into 2 cases:
Case 1: b=0, i.e. z € R.

e If |z| <1, then z can be written as cos x. Hence

fa(z) = fa(cosz) = cos(dz)
f2(2) = f3(cosz) = fi(cosdz) = cos(d’z)

-f;‘(z) = fi(cosx) = cos(d"z) € [-1,1]

e If |2| > 1, f4(2) is a polynomial of degree d: fs(z) = agz® + ag—1247" +
-+ ag2? + a1z + ap and so f}(z) is a polynomial of degree d" which
converges to co as n — 00.

Case 2: b#0,ie. z€ C.
Any z € C can be written as: z = cosw = cos(a + ib) = cosacoshb —
isinasinhb. Hence f}(z) = fi(cosw) = cos(d™w) where

cos(d™w) = cos(d"a)cosh(d"b) — isin(d"a)sinh(d"b)

lcos(d™w)|? = cos®(d"a)cosh?(d"b) + sin®(d"a)sinh®(d"b)
= cos?(d"a)cosh?(d"™b) + (1 — cos*(d™a))sinh*(d"b)
= cos®(d"a)(cosh®(d"b) — sinh*(d™b)) + sinh?(d"b)
= cos®(d"a) + sinh*(d"b)

gid"a  o—ida ed" _ o—d™b

e e e

—>r00asn — o0

Hence f7(z) converges to co as n —» oo. Therefore, Q; = P! and J; =
0. a
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In most cases, the J; has a fractal shape.

Figure 2.1: Julia Set of the Quadratic Polynomial P(z) = 22 — 1 in C.

Figure 2.2: Julia Set of the Rational Fraction f(z) = 3(2* — %) in P’
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2.2 Periodic Points

We introduce in this setion the definition of periodic points and their relation
with Fatou and Julia sets.

Definition 2.2.1. A periodic point of f is a point a such that f?(a)) = a for
p > 1. In this case we say that {a, f(a), ..., f°P~V(a)} is a cycle (periodic
orbit). If p > 1 is the smallest integer such that fP(a) = a, then p is called
the period of a.

If the cycle does not contain co, the product of the derivatives of f throughout
the cycle is called the multiplier of the periodic orbit:

IO Hf (@)

i=0
The periodic orbit is said to be

e superattractive if A = 0;

e attractive if 0 < |\ < 1;

e ndifferent if |\ = 1;

e repulsive if |A| = 1.

Proposition 2.2.1. The multiplier of a cycle is invariant by analytic conju-
gacy. In fact, if h : P' — P! is an isomorphism that conjugates f : P* —
Pl to g : P — P! and if a is a periodic point of f, then B = h(a) is a
periodic point of g.

Proof. fP(a) = a and g°® = ho f°? o h™! Hence
9°P(h(a)) = ho fPoh™ (h(e)) = ho f*(a) = h(a)

Also, h is a bijection between the orbit {a, f(), ..., f°® Y (a)} and the orbit

{B,9(B),-..,g°P"V(B)}. Therefore, the two cycles have the same period p.
3 op)t o Poh'(a hof°P|'(a R(FoP(a))[foP) (@) _

Finally, [g]'(B) = [g°7) (h(a)) = 2@  Befw(@) _ WU@I/rE)

' (a)
E’E%L%}L@—) = [f°?)'(c). Hence the multipliers are equal. O

Proposition 2.2.2. Let f : P' — P! be a rational fraction and let o a
periodic point of f. If o is superattractive or attractive then a € Q.
If « is repulsive or indifferent then o € Jy.
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Proof. e If o is (super)attractive, 3U neighborhood of & such that
f(U) € U and so the family of iterations (f"|y), is uniformly bounded.
Therefore o € (.

e If o is repulsive, (") (a) = A — 0o as n —> oo and so fP" cannot
converge to a holomorphic function near « and therefore o € J.

e If o is indifferent then, composing with a Moebius transformation, we
may assume that the indifferent fixed point is 0. Then there is some
iterate f°" that has power series expansion 2z + @, 2™ + @y 2™ + ...
near 0 where a,, # 0 and m > 2. The iterates f°U™ = (f°*)7 have the
power series expansion z + jam,z™ + ... near 0. Then the m** derivative
of f°U™ at 0 is equal to ja,m! and hence converges to co as j —» o0.
This implies that the sequence of iterations f*™ cannot converge to a
holomorphic function near 0. Therefore 0 € J;.

[]

2.3 Description of the Julia Set

In this section, we give some important properties concerning the topology
of Julia set.

Proposition 2.3.1. The Fatou set is an open set.

Proof. Let zp € Q. Then Ir > 0 such that f°%|g,(,) is normal, ie., it
has a subsequence that converges uniformly at any z near 2. Therefore,
Br(Zg) &= Qf O

Proposition 2.3.2. The Julia set is a closed nonempty and compact set.

Proof. If the Julia set was empty then Q; = P'. Hence, the family {f°"},
forms a normal family over P' and there exists a subsequence f°™ that
converges uniformly on P!. Let f, be its limit. The degree of fy is finite.
For large i, the degree of the map f°™ is equal to the degree of f,. However,
the degree of f°™ is d™ which converges to oo as n — oo. Contradiction.
The Fatou set is open. Hence its complement, the Julia set, is closed in P?
which is compact. Therefore the Julia set is a compact set. d

Proposition 2.3.3. Let E be a completely invariant set. Then E is either
infinite or contains a maximum of two points.
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Let’s prove first the following lemma:

Lemma 2.3.1. If a is a multiple root of f(z) = 0 then a is a critical point
of f; a is a root of f'(2) = 0.

Proof. Suppose a is a root of f(z) = 0 of multiplicity 2 then
f(2) = (z — a)?g(2). Hence f'(2) = 2(z — a)g(z) + (z — a)?¢’(2) and so a is
also a root of f'(z) = 0. Hence a is a critical point of f. (]

We will now prove proposition 2.3.3:

Proof. Let E be a completely invariant set, i.e., f(E) = E = f~*(E). Sup-
pose that E is a finite set. Since f is onto, each point of E has at least one
preimage and two distinct points of E have distinct preimages. Hence the
number of points in f~!(E) is greater than or equal to the number of points
in E. Since f~!(E) = E each point of E has exactly one preimage. Hence f is
one-to-one. Therefore f : E — FE is bijective; it is a permutation of points
in E.

Since each point of E has only one preimage, and since the degree of f is > 2,
this preimage is a multiple root of degree d for f. Hence E consists only of
critical points for f.

If f: E — E has a fixed point, it can be placed in a coordinate where oo
is this point. Since oo has only itself as a preimage then the expression of f
in this coordinate is a polynomial.

If E has another fixed point, f can be placed in a coordinate where 0 is this
point. Since f(0) has only 0 as a preimage then f(z) = az? + f(0), a # 0
and since f(0) must be a critical point of f, then f(z) = az? In this case, E
contains 2 points.

If E contains an orbit of period 2, f can be placed in a coordinate where the
two points of the orbit are 0 and oo. Since 0 is the only preimage of co and
oo is the only preimage of 0 then f(z) = %, a # 0. In this case also f has no
other critical points and E contains only 2 points.

Finally, if E contains an orbit of period > 3, lets suppose that it contains
1 — 0 — oo. In this case, since 1 is the only preimage of 0 and 0 is the
only preimage of oo, we have f(z) = az=D® where a # 0. Now f(oo) = a

P

which is impossible since oo is a critical point of f. O

Definition 2.3.1. The exceptional set Ey is the largest finite set completely
imwvariant by f.
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Corollary 2.3.1. The exceptional set Ey is nonempty in precisely 2 cases:
o when f is conjugate to z — 2%, |d| > 2; E; = {0, 00}.
e when fis conjugate to a polynomial but not to 2%; E; = {co}.

Since the exceptional set is formed by superattractive orbits
(A = [f°?]'(a) = 0), then it is in the Fatou set.

Proposition 2.3.4. The Julia set is the smallest closed completely invariant
set containing at least 3 points.

Proof. The Julia set is closed and completely invariant (already proved). If
it didn’t contain at least 3 points, it would be finite and so included in the
exceptional set which is in the Fatou set. Contradiction.

Also, if E is a closed completely invariant set containing at least 3 points,
then its complement 2 = P'\ E is an open completely invariant set, omiting
at least 3 points. By Montel’s theorem, the family of iterations f"|q is
normal. Hence 2 C Q; and Jy C E. O

Corollary 2.3.2. If 2 rational fractions f : P — P! and g : P! — P!
are conjugates by a homeomorphism h, then h(Qy) = Q, and h(Js) = J,.

Proof. The homeomorphism h sends completely invariant sets by f to com-
pletely invariant sets by g since ho f = goh and it sends closed sets to closed
sets. Hence, the smallest closed set completely invariant by f containing at
least 3 points is sent to the smallest closed set completely invariant by g
containing at least 3 points. Hence h(J;) = J,. Taking the complementary
we get h(Q25) = Q. ]

Proposition 2.3.5. Vz ¢ Ef, we have J; C L::llf‘“(z). This means that
n_ —_—

there exists an exceptional set Ey depending only on f such that J; C C\Ey C

L).th f™(U) where U is any open set intersecting Jy.

n=z

Proof. Let 2o € J; and U a neighborhood of 2. We need to show that

20 € l)._llf—“(z), i.e., that U contains points from nlillf““(z). We set Q =
n> =

UNf°“(U) and to prove that z € 2, we show that E = P'\ Q is in Ej.

ne

In fact, §2 is an open invariant set that omits at most 2 points, since otherwise,
the family of iterations f°"|q is normal. Hence, E contains at most 2 points
and f~'(F) = E = f(E). Therefore E C Ej. O
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Corollary 2.3.3. If z € J; then J; = nglf‘“(z).

Proof. If z € Jg, then 2 ¢ Ej, therefore J; C glf—“(z). On the other
hand, since z € Jy then f~'(2) C J; and so L;I!J_‘_”(z) C Jy. Therefore
liJlf—”(z) C Jy = J; (since the Julia set is closed). O

Theorem 2.3.1. J; has either an empty interior or is equal to the entire
Riemann Sphere.

Proof. Suppose that J; contains interior points and let U C J; an open set.
Then the family of iterations { f°™ : U — P'} omits at most 2 points a and
b. Therefore

P!\ {a,b} C n%f"“(U) c Jy

P\ {a,b} C Jy = J;
Pl a2 Jf
Therefore J; = P O

Theorem 2.3.2. The Julia set i1s nonempty and perfect; it has no isolated
points.

Proof. The Julia set is infinite since the only possibilities for finite completely
invariant sets are (up to conjugacy) the sets {co} or {oo,0} and they are
contained in the Fatou set.

To prove that J; is perfect, we show that any point a € J; is not isolated,
i.e. there exists U a neighborhood of a containing points of J; other then a.
Case 1: if a is not periodic, f?(a) # a, Vp € N:

a€Jf=>aEnLéJ1f (U)
= a € fN(U) for acertain N

=a=fY0b),b#a, beU
= b= f"Na) e J;
Then U N J; O {a,b}. Hence Jy is a perfect set.

Case 2: if a is periodic, f°?(a) = a for certain p:
Since J; = Js« we can replace f by f* and suppose that f(a)=a and degree
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of fis > 4. We have to prove that a = fN(b), a # b. a is not a critical
point since otherwise it would be contained in € and so a = f(a) is not a
critical value and it has at least 3 different preimages by, be, b3 # a. Since
the degree of f is > 4, therefore at least one of the b}s is not in Ey. Suppose
that by ¢ Ey, we can proceed as in case 1, there exists b € U; fN(b) = by,
b4 a. O

2.4 Julia Set and Periodic Points

Proposition 2.4.1. The Julia set s contained in the closure of the set of
periodic points.

Proof. Let zy € J; and U a neighborhood of z,. We prove that U contains a
periodic point of f.

Since J; is a perfect set, we can assume that z, is not a critical value for f°?
(without loss of generality, since there are only a finite set of critical values).
Let U the neighborhood of 2, sufficiently small so that 3 distinct branches
of f~2 are defined. Denote these by ¢, : U — U;, go : U — U, and
g3 : U — Uz where Us, U,, Us are disjoint.

Suppose (for a contradiction) that U contains no periodic points of f. For
each z € U, set

_ (2) = 91(2) ,93(2) — i (2)
(2= Fon(2) = 2) 90(2) = a(2)
If fom(z) # gi(2), i=1,2,3, then h,,(2) # 0,1, 00 for z € U (else f would have

a periodic point). So by Montel’s theorem, {h,,} forms a normal family.
Hence {f°™} is normal since

fom - g (93 _ Q’Z) - 92(93 - gl)h’m
(93— 92) — (93 — 91)hm
Contradiction since 2z € J;.

Hence, in each neighborhood of 2y, 3 solutions of f°™(z) = g;(z) for an i and
an m, hence solutions for f°m+2)(2) = z. m|

Theorem 2.4.1. Fatou-Shishikura inequality [7]
A rational fraction has only a finite number of non repelling orbits.
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Corollary 2.4.1. The Julia set is equal to the closure of the set of all re-
pelling periodic points of f.

Proof. Jy C {periodicpoints} = {repulsive points}U{non repulsive points}
where the set of non repulsive points is finite. Since J; has no isolated points,
Js C {periodicrepulsive points}. on the other hand,
{periodicrepulsivepoints} C J;. Hence J; = {periodicrepulsive points}.
O
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Appendix

This appendix will describe some theorems regarding Fatou and Julia sets.
Definition 2.4.1. Consider the polyomial P : C — C. The filled Julia set
of P is the set Kp of points having a bounded orbit:

Kp = {z € C | (P°™(2))nen is bounded}
Proposition 2.4.2. The filled Julia set Kp is a nonempty compact set. The
Julia set is the boundary of Kp.
Proposition 2.4.3. The complementary of the filled Julia set is connected.

Theorem 2.4.2. A (super)attractive basin always contains at least one crit-
ical point.

Theorem 2.4.3. Fatou
A connected component of Qs is either a (super)attractive basin, a parabolic
basin, a Siegel disc or a Herman ring.

Proposition 2.4.4. Every polynomial of degree 2 is conjugate by an affine
function to a unique polynomial of the form P, : z — 2% +c.

Definition 2.4.2. We denote by J, and K, the Julia set and filled Julia set
of the polynomial P, : z — 2% + c.

Theorem 2.4.4. If c € K, then the sets J. and K, are connected. If c ¢ K,
then J. = K, is a Cantor set.

Definition 2.4.3. The Mandelbrot set M s the set
M :={ceC;ce K.}

Proposition 2.4.5. If P, has an attractive orbit, then c is in the interior of
the Mandelbrot set.

Conjecture 2.4.1. If c is in the interior of the Mandelbrot set, P, has a
periodic attractive point.
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