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Abstract

In this paper, we'll examine the effect of Cauchy errors in a 'linear model on the perfor-
mance of the least squares and maximum likelihood estimators with the aid of two factors;
the sample size and the Cauchy scale parameter. A sampling distribution of one hundred
experiments was done to judge the estimation process in the ease of least squares method.
On the other hand, multivariate Newton Raphson method was used to calculate the unique
solution of the partial derivatives of the log likelihood function. The uniqueness of the solu-
tion is proved for a known location parameter and unknown scale parameter. At the end, a
comparison is held based on the experimental methods done.

The methodologies used were implemented on R language.
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Introduction

The assumption of normality in stochastic modeling has been adapted to almost statistical
inference. This assumption had not been questioned until the time of Pareto. A's a result,
it is very important to test the effect of infinite variance distributions on the performance
of the conventional statistical methods' estimators specifically the least squares method and
the maximum likelihood estimation. This study will mainly focus one of the most extreme
members of the infinite variance family which is the Cauchy distribution. The 'fact that
Cauchy distribution can result as a ratio of normal variables or even the ratio of non-normal
variables makes our study very reasonable and efficient. Moreover, it is not unreasonable to
suggest that the Cauchy can't arise in some applied economic research because the modeling
of investment expenditures Resek's calls for the ratio of investment in constant dollars to
capital stock which may lead to a Cauchy distribution.

Blattberg and Sargent have shown that the OLS (ordinary least squares) estimator doesn't
perform well in the estimation of linear models with non gaussian errors. Consequently, the
relevant question becomes whether the performance of OL'S with mode's following Cauchy
errors can be applicable for small samples or not. Moreover, this arouses the question about
the factors that affect the performance of OLS estimators. Since the theoretical results don't
give any evidence for the threshold sample 'size for the use of OhS, a series of 'sampling ex-
periments have been performed to test the effect of the sample size and the Cauchy spread
parameter on the OhS estimators' performance.

The maximum likelihood estimation method is also tested regarding the sample 'size and
the Cauchy spread parameter. Multivariate Newton Raphson method is used to find the
solution of the log of the likelihood function due to the lack of closed form solutions for a
sample size greater than 4. The Newton Raphson method is implemented using R language.
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Preliminaries

0.1 Continuous Random Varaibles
Definition 0.1. Continuous Random Variables
A random variable is a mapping X: S—+ R from the sample space S to the real numbers
inducing a probability measure Px(B)=P(X1(B)), B E R.
A random variable is said to be continuous if there exists fx : 	 R such that Px(B) =

.LB fx(x)dx where fx is the probability density function {pdf} of X.

0.2 Cumulative Distribution Function
Definition 0.2. Cumulative Distribution Function
The cumulative distribution function (cdl) is given by Fx(x) = J x. fx(t)dt Vx E R.

0.3 Probability Density Function
Definition 0.3. Probability density function
The probability density function is the derivative of the cumulative distribution function given

by fx(x) =

0.4 Expectation and Variance
0.4.1 Expectation
Let X be a continuous random variable. The expectation or the mean is /x or Ex(x) defined

by Ex(X) = f_xfx(x)dx.

Linearity of Expectation

Clearly, we can see that Ex(aX + b) = aEx(X) + b

8



0.4.2 Variance

Definition 0.4. The variance of a continuous random variable is given by or 2 Varx(X) =
Ex(X - lix) 2 = fl (x - lix) 2 fx(x)dx
It is easy to show that Varx(X) = Ex(X2)_Ex(X) 2 . Moreover, for a linear transformation
Varx(aX + b) = a2Varx(X).

0.4.3 Moment Generating Function

Definition 0.5. Moment Generating Function
The moment generating Junction is defined as Mx (t) = E--(e ) = fetx fx(x)dx.

Theorem 1 (Central Limit Theorem). Central limit theorem is the second fundamental the-
orem of probability. It states that if S, is the sum of n. identically independent random van-

(	 \ables X. having finite mean (,ax) and variance (o2 ) then lim	
Sfl—n/i(

Pi	 X) =4(x)

where is the normal cumulative distribution function.

0.5 Linear Regression

Definition 0.6. Regression Analysis
Regression analysis is the art and science of fitting straight lines to patterns of data. The
independent variable Y in a linear regression model is predicted from k other independent
variables X1 , X2 ....., X. The value of Y at time t is determined by the following linear
equation

.................. ..... +i3kXkt+st

where the betas are constants and the epsilons are independent identically distributed normal
random variables with mean 0 and variance equal to 1. Epsilons are called the noise. 0 is
called the intercept of the model and /3' are called the multiplier or coefficient of the variables
-x-i,s.

The corresponding equation for predicting Yt from the corresponding values of the X
is

=b0+b1X1+b2X2+ ..... ±blXkt

where the b 3 are the estimates of the /3' obtained by least squares method.



Chapter 1

Cauchy Distribution

The Cauchy distribution is, also called the Lorenztian distribution, is a continuous function
which describes the distribution of horizontal distances at which a line segment titled at a
random angle cuts the x-axis. let 6 be the angle that a line with a fixed point of rotation
makes with the vertical axis as shown in the following figure.

Figure 1.1: Cauchy distribution description

tan  =
X

0 = arctan -

1 dx
dO=	 -

X2 b

1+-

so the distribution of 6 is given by:

1 dx

ir it X2 

1+-
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+ b

1.1 The Standard Cauchy Distribution
Let X be a random variable,then X has the standard Cauchy distribution if it has the fol-
lowing probability density function:

1
AX) =.

7r(1 +.x2)'

1.1.1 Cumulative distribution function
X has a cumulative distribution function given by:

	

F(x)f(t)dt = 1
	 I	 1

	= 	 - arctan t t = - arctan x +

	

7r	 2

1.1.2 Expected Value
The expected value of a Cauchy distribution doesn't exist.

Proof. By definition

E(X) =J-xf(x)dx

For the latter improper integral not to exist at least one of the integrals J° xf(x)dx or

f xf(x)dx doesn't exist.

	

E(X) = f xf(x)dx = f
X

 (1 ± x2) = 
ln(1 + x2)]	 ::

Consequently, the expected value doesn't exist.
U
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1.1.3 Characteristic Function

The expected value of the function exp(itx) is called the characteristic function for the prob-
ability distribution f(x), where t is parameter that can have any real value and i is the square

root of -1. That is to say, the characteristic function of f(x) is

e(t) = E(exp(itx)) = J700 exp(itx)f(x)dx

X has a characteristic function 0 given by

8(t) = E(ctX) 
=	

eix	 1	
dx

ir(1+x2)

This integral will be computed using Cauchy's integral formula. Suppose first that t> 0.
For r>1, let Fr denote the curve in the complex plane consisting of the line segment L, on
the x-axis from -r to r and the upper half circle C, of radius r centered at the origin. We
give F the usual counter-clockwise orientation. On the one hand we have:

Jr	

eitz 
dz 

= IL,	

eitz	
+ 	

e

(1+z2)	 (1+Z2) 	 JCr(1+Z2)

We have on Lr z=x so dz=dx then

eitz	 r

	

ILr(1+Z2 
dz= I r	

dx(12)

Now on Cr, we have Jeit	 1 and I ^ -r thus we obtain

eitz	 I	 1	 r
irr=VC,  (1 + z2 )	 (r2 - 1)	 r2 - 1

Let g ) -- eta
 ir(1+z2)

We notice that g(x) has one singularity inside F r at i. Thus, the residue

eitz	 eitz	 - e_t
lirn(z-+z

z - i)(1 + 
z2) 

= urn
z-+i 71- (z + i) - 2i

Hence by Cauchy's integral formula,

JI
eitz	 et

r ir(1 + 
z2) dz=2ri_

2iri 
=et

Letting r—+ oc we get
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f 00 e
(1 + x2)dx = e_t

For t<O, choose the change of variable u=-x to get

du = et
etx	

100)"
TO	

c
e

dx=
ir(1±x2 )	 ir(1+u2)

Hence the characteristic function of the Cauchy distribution is given by e(t) = exp(—t1).

1.1.4 Ratio of independent normal variables

Let X= 
1'

where both Y and Z follow a standard normal distribution. Then X follow a stan-

dard Cauchy distribution. By definition, Z2 follow the Chi-Square distribution with a degree
of freedom equal to 1 and independent with Y. Hence also by definition X =Y/v'72 = Y/Z
has the Student t distribution with 1 degree of freedom. Using the general formula for the

student t PDF, we see that the PDF of is

['(1)	
(i +t2 ') =	

1
F(1/2)	 1+t2

1.2 General Cauchy Distribution

The Cauchy distribution is generalized by adding scale and location parameters. Suppose
that Z has the standard Cauchy distribution. Now, consider X=a±bZ where a E IR and b
E (0, oo).Then, X has the Cauchy distribution with location parameter a and scale parameter
b.

1.2.1 Probability density function

Suppose that X has the Cauchy distribution with location parameter a E IR and scale pa-
rameter b  (0, 00).
The probability density function is given by

b
XEIR

Proof. Let g(x) = f (-) where I is the standard Cauchy PDF. 	 0
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1.2.2 Cumulative distribution function
X has a distribution function given by G(x).
G(x)= ! + aretan (v), x E2	 7r

Proof. G(x) = F()

1.2.3 Simulating Cauchy Random Variables
If U has the standard uniform distribution, then X = a + b tan fir (U -	 has the Cauchy
distribution with location parameter a and scale parameter b.

Proof. Let X=F'(U) where U U(O,1) then X has the-same distribution as F. Now, P(X
<x)=P(F'(U) <x)=P(U < Fx))=F(x).As a result, we set F(x)=U and solve for X in
terms of U to get the result. 	 LI
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Chapter 2

Least Squares Method

In the real world linear relations exist in many aspects. For example, the force of the spring
(y) linearly depends on the displacement of the spring (x) where y=kx and k is the spring
constant. Moreover, the gravitational potential energy linearly depends on the height of the
object where it is related to the height by this linear equation E=mgh. The mass of the
object is denoted by m and the gravity is denoted by g.
Unfortunately, it is unlikely that we observe a perfect linear relationship but rather approx-
imately linear. The method of least square method finds the best fitting straight line for a
set of points as seen later on.

2.1 Statistics Review
Given a sequence of data x 1 , x2 ....., x, we define the mean by T =	 x. The mean

is the average value of the data.

The variance of the data is denoted by a2 where a2 =	
- )2. The standard

N En=
deviation is the square root of the variance:

a 
=	

>(x -

We mean by best fitting straight line y = ax - b that y - (ax + b) must be zero. Given the N-
observations (x 1 , y1 ), (x2 , y2)...... , (xN, yN), we look at Yl - (axi + b), y2 - (ax2 + b)......... YN - (axN + b).

The variance of the given data set is a2 =	 I1(y - (ax,. + b))2 . We use the squaring

instead of the absolute value to give higher weight to large errors than small ones. Also, the
absolute value function is not differentiable which makes the tools of calculus inaccessible.

2.2 The Method of Least Squares
The general linear model assumes that the dependent variable Y is determined by one or
more factors X, in a given linear relationship

15



Y = X,3 ±s

Y = m x 1 is a vector of m observations
X = m x (n + 1) is a matrix of (n + 1) observations for in regressors

= (n + 1) x 1 is a parameter vector
E = m x 1 is a vector of m values for the noise

YI 1
JY21	 1

x11 x21
V. 	V
'-21	 '22

Xm i Xm2

V. 1 1)
•	 • A.n	 P0

• •	 X2.'	 01	 E2

+

	

Xmt0n-	Em

Our goal is to obtain estimates of the population parameters in the 3 - vector. The estimates
of 3 is given by /3 = (XTX)_1XTY.

Proof. Define the objective function

M	 n	 2

S=IIY-/3X112 1: 
lyi -x/3I

i=1	 j=0

Let E = yi- 	 Xij  then

S = Ei
 = (Y - X/3) T(Y - Xfi) = ETE

S is minimized when its gradient vector is zero. The elements of the gradient vector are the
partial derivatives of S with respect to the parameters:

dS
M

we have	
dE

d/33

thus substituting in (1) we get:

dS	
M	 fl

= 2>(yj-	 Xk)3k)(—Xij)

16



minimizes S when

Tit	 n
2 '(y, -	 Xjk/3k)(—Xj) = 0

Thus we get

Ifl fl	 m

E >XjJXz/3A. =Xy,
i=1 k=O	 i=1

hence we get /3 = (XTX)_1XTY.

2.3 The Gauss-Markov Assumptions
1. Y=Xfl+E.
This assumption states that there is a linear relationship between Y and X.
2. X is n x Ic matrix of full rank.
We mean the columns of X are linearly independent. This assumption is known as the iden-
tification condition.
3. E(e\X) = 0.
The zero conditional mean assumption states that the stochastic errors average to zero for
any value of X. This implies that E(Y) = E(X/3).
4. E(e") 6 .2 I where ci = a2 1 is the variance-covariance matrix of the stochastic error.
5. X may be fixed or random but it should be generated by a mechanism where it is unre-
lated to E.

2.4 Gauss-Markov Theorem
The Gauss-Markov theorem states, based on the assumptions mentioned above, that the
least squares method estimator is the best linear, unbiased and efficient estimator (BLUE).

2.4.1 Unbiased

is an unbiased estimator of 0.

Proof. We have shown that /3 = .(XTX)_ 1 XTY , and we have Y = X/3+e. This means that

17



= (XTX)1XTX/3 + E

= /3 ± (xTx)xTs

E(/3) = E(3) + E((XTX)1XTE)

E(/3) = E(,3) + (XTX)XTE()

E(3) = E(/3)+O

LI

E(/3) = E(3) since E(E) = 0 Thus, /3 is an unbiased estimator of /3.

2.4.2 Linear
We want to show that /3 is a linear estimator.

proof. 	 /3 + (XTX)_1XTe.

Take A = (XTX)_1XT then we can write 3 = /3 + AE. Hence, /3 is a linear estimator. fl

2.4.3 Minimum Variance

Remember that our goal is to find the estimator /3 that minimizes the sum of the squared
residuals	 2)

The vector of residuals is given by e = Y - X/3
The sum of the square residuals is given by e.
We have

= YtY - 1 XtY - YtX+ $;tXtX

= YtY - 2/3XtY + XtX

since the transpose of a scalar is a scalar.
To find /3 that minimizes the sum of the squared residuals we find the partial derivative of
E tc with respect to /3.

d- = —2X tY + 2XtX/3	 (2.1)
d/3

18



To check that fi minimizes 2.1, we take the partial derivative of 2.1 with respect to again
to obtain:

d2.2 = 2XtX
d23

2XtX is a positive definite matrix hence a minimum.

2.5 Normality of the Stochastic Error
The general linear model

Y= X3+

with all of its properties mentioned above kept the same.s follows a normal distribution
where

f3 = (XTX)_1XTY

as seen in section 3.2.
In this case, where the stochastic errors follow a normal distribution the least squares method
turns out to be equivalent to the maximum likelihood method.

Proof. First, .consider the density function for a single error term.
ej follows a normal distribution N(O, or

f(E) = _____

We have Ej = yj - x2 /3 with x, as the i-th row of the matrix X. Now, yj is a linear function
of ej hence it will be normally distributed.
Now, consider

L = flf(y,x3, a2) = (	 )' exP{ 1-(Y - Xfl) t{y - X/3)}

Consider the logarithm of this function

L* (3, cr2 ) = - ln(27r) - ln(0,2) -	 - X/3) t(y - X3)

We take the partial derivative of LX with respect to / and a 2 . As a result, we get

dL*	 1
=	 - Xi3) tX	 (2.2)

19



= -	 +	 - X13)(Y - X13)	 (2.3)

To find the maximum likelihood estimator of 0 we set 2.2 equal to zero to get ,3 =
(X7'X)_ 1 XTY as found in the 'east squares method.
To find the maximum likelihood estimator of a  we set 2.3 equal to zero to get a2 =

- X/3)(Y - x.
This is the same as least squares method in large samples. Now, it is clear that the maxi-
mum likelihood and least squares method estimates are equivalent when the error terms are
assumed to be normally distributed.	 0
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Chapter 3

Cauchy Stochastic Errors

The assumption of normality for the stochastic error has been basic to nearly all statistical in-
ference. However, the departure from normality haven't been taken seriously. In this paper,
we will study the distribution of the least squares method estimates considering stochastic
errors following a Cauchy distribution. Moreover, we will concentrate on the properties of
the least squares method estimates as the stochastic errors follow a Cauchy distribution.
Now, consider the general linear model

Y= Xfi+

Y m x 1 is a vector of in observations
X = in x (n + 1) is a matrix of (n + 1) observations for m regressors

= (n + 1) x 1 is a parameter vector
= m x 1 is a vector of m values for the noise

1 x11 x21	 xln	 Ei

1 X21 x22	 x2n	 ^31	 62

+

Ym 	 1 Xmi Xm2
	

Xmn fin

where E '-' C(O, 9)
We have seen that /3

= (XTX)-IXTy.

It will be shown that /3 follow a Cauchy distribution as well.

Proof. we have proved in chapter 3 that

/3=8+(XTx)-1XTE

21



The proof proceeds from the characteristic function. We consider the first element of the
/3 - vector, we get

=01 +E CjE

where Cit is the first row of (XtX)_ 1 Xt j =	 rn
The characteristic function of a given Et, centered at zero with scale parameter Ot is given
as:

O(s) = E(exp(isE)} = Ef(exp(is9t)j =

Consequently, the characteristic function for the sum of CItEt is given by

m
H exp{—sCjt Ot } = exp{—lsl

	
(3.1)

t=l

FE

Equation 3.1 shows that 	 CItEt follows a Cauchy distribution centered at zero with
scale parameter	 ICidOt. Then 3 follows a Cauchy distribution with 0 location param-
eter and	 ICitlBt as a scale parameter.

Accordingly, the deviations of /3i from 0 may also be shown to obey the following statement.

P 
I 
1 -	 < 	 Wit I Ot] = 0.5

Proof. Let X = - 01 and b = >	 ICitIOt
Then we have

	

1	 x
P [] X 1 <b] =

	

b	 bdx	
= - arctan -

	

b bdx -f

	 x2tb +X2] - bb21 +fb

(3.2)

b
=0.5

U

3.1 Law of Large numbers and Central Limit Theorem

The law of large numbers and central limit theorem don't apply for the Cauchy errors,
consequently the justification for the use of least squares method with a model of Cauchy
errors should be tested. As we have seen in equation 3.2 that the deviation of /3 from 0 is

22



independent of the sample size and the Cauchy scale parameter. This will be tested by an
experiment which will be discussed later on.

For now, we will simulate standard Cauchy random variables vs standard normal random
variables to check whether the sample mean is representative of the population mean.

With the help of a statistical software, we will generate first standard Cauchy random
variables and we will calculate the sample mean as the sample size increases. This will
be illustrated in the following figure

Figure 3.1: Variation of sample mean as a function of sample size (Cauchy case)

The grey dots represent the simulated standard cauchy random variables where as the
blue dots represent the mean of these grey dots as sample size increases.
Because the parameters of the Cauchy distribution don't correspond to a mean and variance,
attempting to estimate the parameters of the Cauchy distribution by using a sample mean
and a sample variance will not succeed.

One can obviously see how the sample mean varies as a function of the sample size which
ensures that the estimation process won't work.
Now, let us have a look at the simulated standard normal random variables. We will apply
the same procedure i.e we will calculate the sample mean as the sample size increases. The
result is illustrated in the following figure

Figure 3.2: Variation of sample mean as a function of sample size (normal case)

One can obviously notice that the mean is almost the same as the sample size increases.
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Thus, we can conclude that the law of large numbers which states that as the number of
identically distributed, randomly generated variables increases, theirsample mean (average)
approaches their theoretical mean fails in the case of Cauchy errors.

3.2 Sampling distribution of the mean
In this section, 1000 samples of size 100 were drawn from a standard cauchy.distrihution. We
will calculate the mean of each sample to give us an idea about the sampling distribution of
the mean. This simulation is done using excel; here are the descriptive statistics .for these
1000 sample means:

mean minimum 01 median 03 Maximum

-0.026	 -1010	 -1.174	 0.047	 1.1369	 218	 58.56

Table 3.1: Summary Table

One can notice that the minimum and the maximum values are very extreme outliers.
Moreover, we can notice that the standard deviation is much larger than the interquantile
range. A scatter plot has been performed to visually detect the outliers.

Figure 3.3: Visual detection of outliers

3.3 Outliers
Definition 3.1. An outlier is an observation that is distant from other observations. The
common sources of outliers are measurement error and experimental error. Outliers may also
exist by chance, but they are often indicative of measurement error or heavy-tailed distribution
of the population. In the former case, we use robust statistics to outliers while in the latter
case they indicate that the distribution has high kurtosis.
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One can note that the Cauchy distribution is a heavy tailed one due to the non- existence
of the moment generating function for all t>0.
In our case, we are dealing with errors that follow a Cauchy distribution instead of a nor-
mal one. Outliers can have deleterious effects on statistical analyses. They increase error
variance and reduce the power of statistical tests. Moreover, they seriously bias or influence
estimates which is obvious in our case.

3.4 How to deal with outliers?
Robust methods are robust against the presence of outliers. Common robust estimation
are the use of trimmed mean or the Windsorized mean. We mean by the trimmed mean is
that we eliminate extreme observations at both ends of the sample while Windsorized mean
replaces the extreme residuals with the next closest value in the dataset
Our main point in this chapter is to study the effect of Cauchy errors on the bias and
efficiency of the - estimate. Thus our next step will cover an experimental method to
asses which factors influence the performance of 3 - estimate.

3.5 Experimental Method
A one regressor model given in 3.3 will be used as a frame of reference for the sampling
experiments. One hundred experiments were performed to estimate o and /31.

(3.3)

These experiments are distinguished by the sample size (20 and 100 observations) and the
Cauchy spread parameter 0.
The Cauchy errors will be generated according to this equation:

C = m + 0tan((U - 0.5))

where m is the location parameter, U a uniformly random variable and 0 is the Cauchy scale
parameter.

Ten values of 0 ( 0 = 1, 2,..., 10) each for the two sample sizes will be taken.

Due to the lack of real data, we'll consider a hypothesized model with 00 = 1 and ,3i = 5.
We construct this data by adding the Cauchy errors to a certain data for X and to get the
Y values.

The OLS estimates of Oo and i3j are computed starting with a sample size of 20 observations.
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1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

7.98
14.92
21.86
28.80
35.74
42.68
49.62
56.56
63.51
70.45

5.15
5.13
5.10
5.08
5.06
5.03
5.01
4.99
4.96
4.94

1.31
1.63
1.94
2.25
2.57
2.88
3.20
3.51
3.82
4.14

5.00
5.00
5.00
5.00
5.00
5.00
4.99
4.99
4.99
4.99

The following table shows the mean, median, bias and the RMSE (root mean square error)
of 0 - estimates.

f3	 10	 13o	 I3 00 	 01
Theta mean mean median median bias bias RMSE RM'SE

6.98	 0.15
13.92 0.13
20.86 0.10
27.80 0.08
34.74 0.06
41.68 0.03
48.62 0.01
55.56 -0.01
62.51 -0.04
69.45 -0.06

19.93
39.85
59.78
79.71
99.64
119.56
139.49
159.42
179.34
199.27

0.15
0.22
0.29
0.37
0.44
0.51
0.59
0.66
0.73

Table 3.2: A small sample size result table, n=20

One can see that the increase in the Cauchy spread parameter, 0, tends to worsen the
OLS performance of the /3-estimates. However, we can notice that the estimated parameter
i3 seems to evidence less sensitivity to that increase.

Examining the values of the mean of /3o as the scale parameter increases by one unit, we can
see that the mean corresponding to scale parameter 1 tends to be multiplied by the values
of 0. This huge increase worsen the estimation of /3 which is obviously tested using Bias
and the root mean squared error (RMSE). We conclude that the mean is a biased estimator
which doesn't represent the population.
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As a next step, I've estimated the median for /3-estimates to test its perforniaiwe as the
scale parameter increases, it turned out as shown in the table that the median is a better
estimator for both 130 and 3. Now, the same experiment is done but dealing with a sample
size of 100. The following table shows the mean, median, bias and the RMSE (root mean
square error) of 0 - estimates as above.

flu	 i3o	 flu
	

flu
	

flu
Theta mean mean median median bia	 E

1.00	 -1.09
	

5.18
	

0.76
	

5.00	 -2.09 0.18
	

6.13
	

0.03
2.00	 -3.22
	

5.19
	

0.52
	

5.00	 -4.22 0.19
	

12.26
	

0.06
3.00	 -5.34
	

5.19
	

0.28
	

5.00	 -6.34 0.19
	

18.39
	

0.09
4.00	 -7.47
	

5.20
	

0.04
	

5.00	 -8.47 0.20 24.52
	

0.13
5.00	 -9.59
	

5.21	 -0.20
	

5.00	 -10.59 0.21
	

30.65
	

0.16
6.00	 -11.72 5.22	 -0.44

	
5.00	 -12.72 0.22

	
36.78
	

0.19
7.00	 -13.84 5.22	 -0.68

	
5.01	 -14.84 0.22

	
42.91
	

0.22
8.00	 -15.97 5.23	 -0.92

	
5.01	 -16.97 0.23 49.05

	
0.25

9.00	 -18.09 5.24	 -1.16
	

5.01	 -19.09 0.24 55.18
	

0.28
10.00 -20.22
	

5.25	 -1.40
	

5.01	 -21.22 0.25 61.31
	

0.32

Table 3.3: A large sample size result table, n=100

The increase in the sample size (100) made the performance of the mean for 3-estimates
better than dealing with a sample size of 20. The OLS performance pattern is mainly focused
on the estimation of Oo since it is clearly noticed that 0 is much less sensitive to the sample
size and scale parameter variation.
Although this increase has lessened the bias and root mean squared error of the mean, it
still doesn't represent the real /3's which all goes back to the large sensitivity that /3 O shows.
Also, we can notice that the median is a much better estimator than the mean.

This experiment has shown that the sample size and the Cauchy spread parameters are
two main factors that affect the performance of OLS. Moreover, this experiment has shed
the light on the costs in terms of estimator performance associated with using .conventional
methods such as OLS and MLE as it will be shown later on. Using such methods to estimate
the parameters of a linear regression model where the errors follow a Cauchy distribution
maybe misleading taking into consideration the infinite variance of the Cauchy errors. Fur-
thermore, we conclude that as the scale parameter and the sample size increases we totally
doubt the performance of OLS method due to the high probability of outliers occurrence
that messes that whole estimation process leading to a huge variance.

As a next step, we will test the performance of Maximum Likelihood Estimation in esti-
mating beta parameters.This experiment will allow us to compare the results of both
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Chapter 4

Maximum Likelihood Estimation

Definition 4.1. Maximum Likelihood Estimation
Maximum likelihood estimation (MLE) is a method of estimating the parameters of a statisti-
cal model. The Maximum likelihood estimate of parameter 0 is the value of 0 which maximizes
the likelihood L(0). For data values of n-sample x 1 , x2 , ..., x, the likelihood is is given by

L(0) = Hfx(x,O)

This is equivalent to maximize

£(0) = Log(L(0)) =	 log fx(x, 0)

since log is an increasing function.

Definition 4.2. Likelihood
The likelihood is defined as the joint density or probability of the outcomes,with the roles of
the values of the outcomes y and the values of the parameters 6 interchanged. Let f(y,O)
be a class of joint densities with the parameter vector 0 in a set (parameter space) ®. The
likelihood is defined as the function

L(6, y) =f(y,6)

The maximum likelihood estimator of 0 for the model given by the joint densities or proba-
bilities f(y, 6), with 0 e e, is defined as the value of 0 at which the corresponding likelihood
L(6, y) attains its maximum:

ML = argmaxeL(6, y)

This definition is not complete because there is no guarantee that such a maximum exists or,
when it does exist, it is unique. However, in many settings this definition turns out to be
very useful and constructive, yielding an estimator with good properties.
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4.1 MLE of Cauchy distribution with zero mean and
unknown scale parameter

We will consider the estimation of the scale parameter h of a Cauchy distribution with zero
mean and an unknown scale parameter say C(m=0, b).
Haas et al. (1970) have shown that b, the maximum likelihood of b, does exist and it is
unique. We will solve the MLE using numerical methods due to the lack of existence of a
closed form solution.

4.2 Location parameter Known
The problem of estimating b using MLE of b from the Cauchy distribution with known m, is
considered to be a simpler problem from estimating the location parameter given the scale
one. This will be shown according to the following theorem.

Theorem 2. Let L'x,b) be the likelihood function for the Cauchy distribution with known
location parameter m then there exists a unique b such that

alogL(x, b)
I	 =0.

ab	
I b=b

Proof. The Likelihood function as defined previously is given by

n
L(x,b)=fl	

1x2
irb[1 +

and

logL(x, b) = > —log(7rb1 +

or

logL(x, b) = —nlogir - nlogb -	 log1 +

Hence,
alogL(x, b)	 n 2 

ôb	 +b2±X2
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Now, we seek the solution of

	

8logL(x, b) -	 x

	

h(b) =
	 -	 b ± b	 b2 +	 x =

Notice that h is a continuous function and h(0)=n and h()=-n and

	

71	 2

(b2 ± x

	

h'<b)=-2b>	 )2 
<0

. 

for all b>0. Then it follows that there is a unique b such that h(b)=0.
The function h(b) is nonlinear in b. To find b we'll use Newton-Raphson method starting
with a value that causes convergence. 	 U

4.3 Newton Raphson Method
The Newton-Raphson method is used to solve equations of the form f(x) = 0. First, we
begin by making an initial guess for the root we are trying to find, we call this initial guess
x0 . Now, the sequence x0 , x 1 , x3 ......, x,,.. generated in the manner described below should
converge to the exact root. To implement it analytically we need a formula relating each
approximation with the previous one i.e Xn+1 in terms of x.
This method is constructed by finding the equation of the tangent line of 1(x) at the point
(x0 , f(so)). The tangent line is given by this equation:

Y - f(x) = f'(xo)(x - X)

The tangent line intersects the x-axis when y = 0 x = x 1 , so solving for x 1 we get:

f(xo)
x 1 =xo— /

f(xo)

and more generally we get:

f(x)
Xfl = Xn - f'(x71)
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4.4 Multi-Dimensional Case For Newton Raphson Method
Now, consider the system of n non-linear equations and n unknowns.
Consider

fi(xi,x2,x3, ......x) =0

f2 (xi ,x2) x3 . ...... x) =0

f3(x i ,x2 ,x3 . ..... ,x) =0

	

f4 (x 1 , x21 x3	 = 0

ffl (xl,x2 ) x3. ...... x) =0

One technique used to solve this problem is called the Multivariate Newton Raphson Method
(MNRM). The basic idea comes from the fact the the derivative of a function of two variables
,f, is

dfj
df3 = dx,+ --dx2

	

dx 1	dx2

For the n variable case we have:

	

df3 =
	

dx
dxi

where j represents the index over the functions, i the index over the variables and the su-
perscript in parenthesis stands for iterations. We suppose now that we have n equations so
j goes from 1 to n. This system can be written of the form:

(2)	 (1)

	

f(x(2)) - f(x 1 )	 =	 - x )
dxi= 1

We want our next iteration to lead us to the root so we take f(x(2) ) = 0 Thus the iterative
method for solving a system of n non-linear equations and n unknowns is given by:

= X k - J_hf(xc)

where
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9f af,	 Dli
8x 1 Dx	 fix
812 Df 	 aj1

J = a 1 8x2

Df,, af
8x 1 Ox2	Dx

4.5 Experimental Method
In this experiment, we will test the same data used in the OLS method. Sample sizes of 20
and 100 will be taken to examine the performance of the MLE estimators in the presence of
Cauchy errors. As we mentioned before, we need a starting value which is close to the real
solution to run the multivariate Newton-Raphson method to insure convergence.

This experiment is implemented using R program with the aid of RootSolve and MASS
packages and the solution of the likelihood function is given to the nearest 10-12.

To find the maximum likelihood estimates for regression parameters with Cauchy errors,
we just look at that likelihood:

1
L(fl0,1,)	

(i+ kOr	 i)

We take the log of the likelihood function £(J3o,3i ,o) = log(L(00 ,01 ,cr)), set the partial
derivatives equal to zero as given below and solve the obtained system using multivariate
Newton Raphson method.

After differentiating we get the following non-linear system:

n&(30 ., 01 , 	 2(y-30-01x)
=	 =0

D0	 (a2+(yj —30 ---/31x)2)
i=1

2x(y—f30—f31x)
=0

a^o ___ 
=	 (2 + (y - - 1x)2)j=1

Ti	 2o
=0

i=1

To solve this system using multivariate Newton Raphson method we need an initial
guess.This initial guess will be the vector e = (median median/3 1 , IQR(error)/2) where
IQR is the interquartile range of the estimated error vector. This choice is based on the
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results we have discussed in chapter 2. Moreover, we choose the IQR since it is a robust
estimator of the scale parameter.

In the case of the sample size 20, we run the R program 10,000 times to get the vector
of 0, 01 and the estimated scale parameter of the Cauchy distribution a. The result is
c=(1.3,5,1.01). As we can see that Oo, /3i and a are very close to the real emphasizing that
the multivariate Newton Raphson method has converged very close to the real parameters
in the case of a small sample size.

In the case of the sample size 100, we get the estimated vector c=(1.3,5,1.00) where we
can notice that the estimation of 30 and 3 and o are also very close to the real parameters
(1,5,1) illustrating that the method has also converged to the same point for big sample size.

We can notice that solving the log of the maximum likelihood function using multivari-
ate Newton Raphson method has certainly gave very impressive results which are very close
to the real ones. Moreover, one should be careful of the choice of the starting point since
this method is expected to converge only near the solution. As a result, we can say that the
MLE method is much more preferable than the OLS method regarding sample size factor
and limited scale parameter.

As a next step, we will test the MLE while increasing our scale parameter to check whether
the losses may be torelable or not. In our former case, the scale parameter was 1 and it
turned out that the estimation of the parameters was very close to the real ones. Now, we
will see the effect of the increase of the scale parameter on the MLE solution as shown in
the following table.
The results below are computed for a sample size of 20.

00

	

1.00	 1.31	 5.00	 1.01

	

2.00	 1.31	 4.99	 2.11

	

5.00	 1.31	 4.99	 5.29

	

10.00	 1.31	 5.00	 10.57

Table 4.1: MLE estimators, n=20
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Now, the results are computed for a sample size of 100.

11	 00	 01

	

1.00
	

1.30
	

5.00
	

1.00

	

2.00
	

1.3
	

5.00
	

2.03

	

5.00
	

1.3
	

5.00
	

5.07

	

10.00
	

1.3
	

5.00
	

10.10

Table 4.2: MLE estimators, n=100

N.B: The results of both tables 4.1 and 4.2 are taken to be the mean of 10000 runs.
As we can see, that the increase in the Cauchy spread parameter has no effect on the es-

timation of the linear model parameters while using multivariate Newton Raphson method.
We can notice that that estimated parameters are insensitive to both changes: sample size
and Cauchy scale parameter. As a result, MLE could be used in the parameter estimation
for linear models with Cauchy errors.

In conclusion, we can say that the MLE results using Newton Raphson method were valid to
equation 3.2 which stated that the convergence of /3's are independent of the sample size and
the Cauchy scale parameter unlike the OLS method. These results have unified the theoret-
ical and experimental aspects in the case of MLE contrary to the OLS results. Moreover, we
can't ignore the importance of OLS in providing a starting point for the Newton Raphson
iterations with the help of robust estimators such as the median and the interquartile range.

4.6 Optimum Properties of Maximum Likelihood Es-
timation

Let us consider the maximum likelihood estimation of the parameter 6, which is to be
estimated on the basis of a random sample from a density f(.; 0), where 0 is assumed to be a
real number. That is, let us consider the unidimensional-parameter case and estimate 0 itself.
Recall that for the observed sample x1,x2,...,x the maximum likelihood estimate of 0 is the
value, say 9, of 0 which maximizes the likelihood function L(6,x i , x2 ,..., x)=fJ f(x; 0).

Let e=0(x 1 , ..., X,) denote the maximum likelihood estimator of 9 based on a sample of
size n.

Theorem 3. If the densityf(x; 0) satisfies certain regularity conditions and if 6n  0(X1 , ..., X)
is the maxumim likelihood estimator of 0 for a random sample of size n from f(x;0), then:

is asymptotically normally distributed with mean 0 and variance 1/n E9 N 	 0)] 
21.

O
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4.7 Disadvantages of Newton Raphson Method

• The method is very Itime consuming and computationally challenging. We mean the cal-
culation of the inverse of the Jacobian matrix and the evaluation of the function and its
derivative.
• The method doesn't converge if the tangent is parallel or nearby parallel to the x-axis.
• Usually the Newton method is expected to converge only near the solution.
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Conclusion

The objective of this paper was to test the effect of Cauchy errors in a-' near model on the
performance of the OLS and MLE estimator. In the OLS method, one hundred sampling
experiments were performed to test the effect of the sample size and the Cauchy spread pa-
rameter on the performance of the OTiS estimators. It turned out that the sample size and
the Cauchy spread parameter affect the performance of OLS. In this study, a one regressor
linear model was tested and the results showed that fib was very -sensitive to the increase in
the sample size and the Cauchy scale parameter contrary to 01.

In the MLE case, we encountered the initial guess problem in which we took the values
of the sample median and the interquartile range of the error vector to start with. Moreover,
we have shown that the derivative of log of the likelihood function has a unique root in the
case of known location parameter and unknown scale parameter. This unique root exhibited
close values to real beta values in which it was insensitive to the increase of both factors;
the sample size and the Cauchy scale parameter.

At the end, we can say that the application of OLS in a linear model with Cauchy errors
is not representative in which it is important to be aware of the costs in terms of estimator
performance associated with using such conventional method. On the other hand, the MLE
is strongly recommended for the estimation of a linear model parameters although it is very
time consuming and computationally demanding.
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Appendix

This appendix will display the R-programming of multivariate Newton-Raphson method.
sum=c(O,O,0)
k=0
norm=1
for (i in 1:10000)

xvect=c(500*runif( 100))
evect=c(10*tan(180*(runif(100)0.5)))
yvect=1+5*xvect+evect
evect=yvect- 1.31-5 .000 72 72 *xvect
Q 1=quantile(evect ,0. 25)
Q3=quantile(evect,0. 75)
IQR=Q3-Q1
c=c(1.31,5,IQR/2)
f==function(t=0,beta,parms = NULL,epsilon= 10- 12 )c(fl=sum((2* 1/betaf3]2*(yvectbeta[1]_
beta[2] *xyt)) 1(1 + 1 /beta[3j2 * ( yvect —betalli —beta[2J *xvect) 2 )), f2=sum((2*xvect* 1/betaf32 * (yvect-
beta[11beta{2]*xvect))/(1+1/beta[3] 2 *(yvcct - betatlj - bet a[2] * xvect) 2 )), f3=100/betat31-
sum(2*betat3j/(betaf3] 2 +(yvect - beta[1] - betat2] * xveet)2))

while (norm> 10 12 & & is.finite(norm)==TRUE & & is.nan(norm)==FALSE)
{
J=jacobian.full(y=c,func=f)
c=c-ginv(J)% * %f(t=0,beta=c)
delta=-ginv(J)% * %f(t=0,beta=c)
absdelta=abs(delta)
norm=sum(absdelta)
}
if(is .finite(norm) ==TRUE && is. nan (norm)==FALSE)
sum=sum+c
k=k+1

solution=sum/k
print(solution)
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