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In the realm of mathematics, the evaluation of integrals plays a

crucial role in various fields such as physics, engineering, and eco-

nomics. Integrals represent the accumulation of quantities over a

continuous range and are essential for understanding the behavior

of functions and solving complex problems. Over the years, math-

ematicians and researchers have developed numerous techniques to

evaluate integrals efficiently and accurately. This thesis consists of

two parts. In the first part, we present some binomial identities,



special numbers and polynomials as well as basic formulas related

to Euler’s transformation of series, Handamard’s series multipli-

cation theorem and several transformation formulas with example

and applications. These theoretical tools will be used to gain a bet-

ter understanding of the second part of this thesis which explores

two different techniques for evaluating integrals. The first tech-

nique uses a special formula to transform integrals to series. The

resulting series involves binomial transforms with the Taylor coef-

ficients of the integral. The second technique is by differentiation

with respect to a parameter.
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Chapter 1

Mathematical Preliminaries

In this chapter, we recall basic definitions of binomial transforms. For more

details, we refer to [1].

1.1 Some Binomial Identities

The binomial coefficients formula is given by

(
n

k

)
=

⎧⎪⎪⎨
⎪⎪⎩

p(p−1)···(p−k+1)
k!

k ≥ 0,

0 k < 0,

where p does not need to be an integer.

Definition 1.1.1. Let {ak}k be a sequence where k = 0, 1, 2, · · · . Its binomial

transform is the new sequence {bn}n where n = 0, 1, 2, · · · generated by the

formula:

bn =
n∑

k=0

(
n

k

)
ak (1.1.1)
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Proposition 1.1.2. Let {ak}k be a sequence where k = 0, 1, 2, · · · , and denote

by {bn}n Its binomial transform. The inversion of {bn}n is given by

an =
n∑

k=0

(
n

k

)
(−1)n−kbk, (1.1.2)

which can also be written as,

(−1)nan =
n∑

k=0

(
n

k

)
(−1)kbk

Proof. We have bk =
∑k

j=0

(
k
j

)
aj, then,

n∑
k=0

(
n

k

)
(−1)n−kbk =

n∑
k=0

(
n

k

)
(−1)n−k

{
k∑

j=0

(
k

j

)
aj

}

= (−1)n
n∑

j=0

aj

{
n∑

k=j

(
n

k

)(
k

j

)
(−1)k

}

= (−1)n
n∑

j=0

aj(−1)jδnj

= an,

where we used the convolution identity

n∑
k=j

(
n

k

)(
k

j

)
(−1)k = (−1)jδnj (1.1.3)

with δnj being the Kronecker symbol.

Proposition 1.1.3. Let {bk} be the sequence defined by:

bn =
n∑

k=0

(
n

k

)
(−1)kak. (1.1.4)



We have:

bn+1 − a0
n+ 1

=
n∑

k=0

(
n

k

)
(−1)k+1 ak+1

k + 1
(1.1.5)

Proof. We have

bn+1 =
n+1∑
k=0

(
n+ 1

k

)
(−1)kak

=
n+1∑
k=1

(
n+ 1

k

)
(−1)kak + a0

bn+1 − a0 =
n∑

l=0

(
n+ 1

l + 1

)
(−1)l+1al+1 ;where l = k − 1

bn+1 − a0 =
n∑

l=0

n+ 1

l + 1

(
n

l

)
(−1)l+1al+1 ;where

(
n+ 1

l + 1

)
=

n+ 1

l + 1

(
n

l

)

bn+1 − a0
n+ 1

=
n∑

l=0

(
n

l

)
(−1)l+1 al+1

l + 1

Remark 1. If the sequence {ak} is indexed from k = 1, 2, . . . , we can

assume that a0 = 0 and use the same previous formulas. In this case, we

also have b0 = 0.

2. The inversion formula of (1.1.4) is given by

an =
n∑

k=0

(
n

k

)
(−1)nbk (1.1.6)

Here the factor (−1)k can be replaced by (−1)k−1. In fact, the inversion



formula (1.1.6) follows from (1.1.2) as we can write

(−1)nan =
n∑

k=0

(
n

k

)
(−1)n−kbk

The binomial transform naturally appear in the theory of finite differences.

Definition 1.1.4. Let {ak}∞k=0 be a sequence. Consider the forward difference

operator Δ defined by:

Δk = ak+1 − ak.

It is easy to compute:

Δna0 =
n∑

k=0

(
n

k

)
(−1)kan−k,

and because of the well-known property
(
n
k

)
=

(
n

n−k

)
this can be also written

as,

Δna0 =
n∑

k=0

(
n

k

)
(−1)n−kak (1.1.7)

or equivalently as,

(−1)nΔna0 =
n∑

k=0

=

(
n

k

)
(−1)kak (1.1.8)

Proposition 1.1.5. Another elementary property involves the transform of

the shifted sequence. If bn =
∑n

k=0 ak, then

Δbn = bn+1 − bn =
n∑

k=0

(
n

k

)
ak+1 for n ≥ 1 (1.1.9)



Proof.

bn+1 − bn =
n+1∑
k=0

(
n+ 1

k

)
ak −

n∑
k=0

(
n

k

)
ak

=
n+1∑
k=0

ak

{(
n+ 1

k

)
−

(
n

k

)}

=
n+1∑
k=0

ak

(
n

k − 1

)

=
n∑

j=0

(
n

j

)
,

after letting j = k − 1

Remark By iterating Δbn = bn+1 − bn =
n∑

k=0

(
n

k

)
ak+1 , we get

n∑
k=0

(
n

k

)
ak+p = Δpbn =

p∑
k=0

(
p

k

)
(−1)p−kbn+k (1.1.10)

for every p ≥ 0. It follows from (1.1.10) that if we have a recurrence relation

an+2 + Aan+1 +Ban = 0

where A and B are constants, then, it transforms into the difference equation

Δ2bn + AΔbn +Bbn = 0



Proposition 1.1.6. If we iterate bn =
n∑

k=0

(
n

k

)
ak we find,

m∑
n=0

{
m∑
k=0

(
m

k

)
ak

}
=

n∑
k=0

(
n

k

)
2n−kak (1.1.11)

Proof. This follows from the binomial coefficient property that is,

(
n

m

)(
m

k

)
=

(
n

n

)(
n− k

m− k

)
(1.1.12)

In fact, let any integer n ≥ m and 0 ≤ k ≤ m. Then,

(
n

m

)(
m

k

)
=

n!m!

m!(n−m)!k!(m− k)!

=
n!(n− k)!

k!(n− k)!(m− k)!(n−m)!

=

(
n

k

)(
n− k

m− k

)

Remark The iterated symmetric transformation (1.1.6) is the identity trans-

form. i.e. leads back to {ak}.

1.2 Special Numbers and Polynomials

Definition 1.2.1 (Stirling numbers of the first kind). A Stirling number of

first kind count how many ways to partition a set into cycle rather than subsets.

Definition 1.2.2 (Stirling numbers of the second kind). A Stirling number

of the second kind S(n; k) counts number of ways in which n distinguishable



objects can be partitioned into k distinguished subsets when each subset has to

contain at least one object.

We can count them by counting the number of onto functions from set A to

set B, where |A| = n and |B| = k

Definition 1.2.3 (Cycle). A cycle is a sort of ordered subsets. The order of

elements matters, but in a circular way. A cycle of size k is a way to place k

items evenly around a circle, where two cycles are considered the same if you

can rotate one into the other.

Example 1.2.4. [1; 2; 3] and [2; 3; 1] represent the same cycle, but [1; 2; 3] and

[1; 3; 2] represent different cycles.

Definition 1.2.5. The binomial transform can be recognized in many formulas

involving classical numbers and polynomials. We have the representation,

S(α;n) =
1

n!

n∑
k=0

(
n

k

)
(−1)n−kKα (1.2.1)

or

(−1)nn!S(α;n) =
n∑

k=0

(
n

k

)
(−1)kKα,

where Re(α) > 0 and S(α;n) are the Stirling functions, the generalized Stir-

ling numbers of the second kind. When α = m is a positive integer, S(m;n)

are the usual Stirling numbers of the second kind.

The Stirling number of the second kind can be defined by the generating func-

tion

xn

(1− x)(1− 2x)...(1− nx)
=

∞∑
m=n

S(m;n)xm (1.2.2)



or by the exponential generating function

1

n!
(ex − 1)n =

∞∑
m=n

S(m;n)
xm

m!
(1.2.3)

The Stirling number of the first kind S(n; k) are defined by the generating

function

x(x− 1)...(x− n+ 1) = n!

(
x

n

)
=

n∑
k=0

S(n; k)xk (1.2.4)

Their exponential generating function is

(ln(1 + x))k

k!
=

∞∑
n=k

S(n; k)

n!
xn (1.2.5)

Definition 1.2.6. Many binomial transform formulas involve the harmonic

numbers and the generalized Harmonic numbers; for n= 0, 1, 2...

Hn =
n∑

k=1

1

k
; H(s)

n =
n∑

k=1

1

ks
;H0 = H

(s)
0 = 0 (1.2.6)

Remark Here S is any complex number.

These numbers can be expressed in terms of the Digamma function Ψ,

Ψ(x) =
d

dx
log Γ(x) (1.2.7)

namely,

Hn = Ψ(n+ 1) + γ (1.2.8)

where, γ = −Ψ(1) is Euler’s constant.



It is good to mention that

Hn = log(n) + γ + θ(
1

n
) (1.2.9)

When m ≥ 2 is an integer

H(m)
n = ζ(m) +

(−1)(m−1)

(m− 1)!
Ψ(m−1)(n+ 1) (1.2.10)

Definition 1.2.7. The generating function of the harmonic numbers and the

generalized harmonic numbers are, correspondingly,

− ln(1− t)

1− t
=

∞∑
n=1

Hnt
n (1.2.11)

1

1− t
Lis(t) =

∞∑
n=1

H(s)
n tn, (1.2.12)

where Lis(t) is the polylogarithm function

Lis(t) =
∞∑
k=1

tk

ks
. (1.2.13)

We shall use also the skew-harmonic numbers

H−
n =

n∑
k=1

(−1)(k−1)

k
;H−

0 = 0, (1.2.14)

with the generating function

ln(1 + t)

1− t
=

∞∑
n=1

H−
n t

n (1.2.15)



Definition 1.2.8. The Bernoulli polynomials Bn(x); n= 0, 1, 2... are very

important polynomials in analysis. They are defined by the generating function,

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, (1.2.16)

where Bn = Bn(0) are the Bernoulli numbers.

Definition 1.2.9. The Euler polynomials En(x); n = 0, 1, 2,... are defined

by the generating function.

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, (1.2.17)

with En(0) = 0 when, n = 2, 4, 6, ... and En(1) = (−1)nEn(0). we also have

En(0) =
2

n+ 1
(1− 2n+1)En+1

The Euler numbers are defined by

En = 2nEn(
1

2
)

or by the generalized function

1

cosh t
=

∞∑
n=0

En
tn

n!
(1.2.18)

Definition 1.2.10. The Genocchi polynomials are defined by the generating

function

2text

et + 1
=

∞∑
n=0

Gn(x)
tn

n!
(1.2.19)



and Gn = Gn(0) are the Genocchi numbers.

It is easy to see that

Gn = 2(1− 2n)Bn

Note also that

Gn(x) = nEn−1(x)

Definition 1.2.11. The Euler-Bernoulli functions βn(x;λ) are defined by the

generating function

text

λet − 1
=

∞∑
n=0

βn(x;λ)
tn

n!
(1.2.20)

When λ = 1; βn(x; 1) = βn(x) are the Bernoulli polynomials

When λ �= 1 and x = 0; the function βn(λ) = βn(0;λ) are rational functions.

Definition 1.2.12. The exponential polynomials φn(x);n = 0; 1; 2; ... are de-

fined by the generating function

ex(e
t−1) =

∞∑
n=0

φn(x)
tn

n!

or by the characteristic property

(
x
d

dx

)n

ex = φn(x)e
x (n = 0; 1; 2; ...) (1.2.21)

The coefficients of these polynomials are the Stirling numbers of the second

kind.

φn(x) =
n∑

k=0

S(n; k)xk (1.2.22)



The value at x = 1

φn(1) =
n∑

k=0

S(n; k) (1.2.23)

are the well known Bell numbers.

Remark The Bell numbers count the possible partitions of a set.

Definition 1.2.13. The geometric polynomials ωn,r(x) = 0, 1, ..., r ≥ 0 where

ωn,0(x) = δn,0 ,are defined by the generating function

1

[1− x(et − 1)]r
=

∞∑
n=0

ωn,r(x)
tn

n!
(1.2.24)

or, by the property

∞∑
k=0

(
k + r − 1

k

)
knxk =

1

(1− x)r
ωn,r

(
x

1− x

)
(1.2.25)

They have the representation

ωn,r(x) =
1

Γ(r)

n∑
k=0

S(n; k)Γ(k + r)xk =
n∑

k=0

S(n; k)

(
k + r − 1

k

)
k!xk (1.2.26)

Where r = 1 we write ωn,1(x) = ωn(x) so that,

ωn(x) =
n∑

k=0

S(n; k)k!xk (1.2.27)

Remark The numbers

ωn(1) =
n∑

k=0

S(n; k)k!

are known in combinatorics as the preferential arrangement numbers.



When r = 1 we have from (1.2.25)

∞∑
k=0

knxk =
1

1− x
ωn

(
x

1− x

)
(1.2.28)

Definition 1.2.14. The Eulerian polynomials An(x) are defined by the equa-

tion
∞∑
k=0

Knxk =
1

(1− x)n+1
An(x) (1.2.29)

or by the generating function

1− x

1− xe(t(t−x))
=

∞∑
n=0

An(x)
tn

n!
(1.2.30)

The Eulerian polynomials are related to the geometric polynomials by the equa-

tion (6)

ωn

(
x

1− x

)
=

An(x)

(1− x)n
(1.2.31)

Definition 1.2.15. The Cauchy numbers of first type cn and the Cauchy num-

bers of second type dn were defined as c0 = d0 = 1 and for n = 1, 2, ...

cn =

∫ 1

0

x(x− 1)...(x− n+ 1)dx (1.2.32)

dn =

∫ 1

0

x(x+ 1)...(x+ n− 1)dx (1.2.33)

They have exponential generating functions correspondingly,

t

log(1 + t)
=

∞∑
n=0

cn
tn

n!
(1.2.34)



−t

(1− t) log(1− t)
=

∞∑
n=0

dn
tn

n!
(1.2.35)

The numbers (−1)ndn appeared in the works of Norlund (54) and known as

Norlund numbers.

From (1.2.4) , (1.2.32) and (1.2.33) we have correspondingly (22)

cn =
n∑

k=0

S(n; k)

k + 1
(1.2.36)

dn =
n∑

k=0

(−1)n−kS(n; k)

k + 1
, (1.2.37)

where S(n; k) are the Stirling numbers of the first kind 1.2.4.

Definition 1.2.16. The Fibonacci numbers Fn and the Lucas numbers Ln ,

where n = 0, 1, 2, ... are defined by the generating functions

f(t) =
1

1− t− t2
=

∞∑
k=0

Fkt
k (1.2.38)

and correspondingly by,

l(t) =
2− t

1− t− t2
=

∞∑
k=0

Lkt
k (1.2.39)

These numbers also have convenient exponential generating functions

eφt − eΦt

φ− Φ
=

∞∑
k=0

tk

k!
Fk (1.2.40)

eφt + eΦt =
∞∑
k=0

tk

k!
Lk (1.2.41)



where φ = 1
2
(1 +

√
5); Φ = 1

2
(1−√

5) = −1
φ

Definition 1.2.17. The classical Laguerre polynomials Ln(x), n = 0, 1, ... are

defined by Rodrigues formula.

Ln(x) =
ex

n!

(
d

dx

)n

(xne−x) (1.2.42)

or by the generating function

1

1− t
e(

xt
1−t

) =
∞∑
n=0

Ln(x)t
n (1.2.43)

These polynomials appear as a binomial transform

Ln(x) =
n∑

k=0

(
n

k

)
(−x)k

k!
(1.2.44)

Definition 1.2.18. The Hermite polynomial Hn(x);n = 0; 1; 2; ... can be de-

fined by the Rodrigues formula

Hn(x) = (−1)nex
2

(
d

dx

)n

e−x2

(1.2.45)

or by the generating function

e2xt−t2 =
∞∑
n=0

Hn(x)

n!
tn (1.2.46)



Chapter 2

Euler’s Transformation of Series

2.1 Basic Formulas

The Binomial transform is closely related to Euler’s series transformation. We

refer in this chapter to [1].

Definition 2.1.1 (neighborhood of a point). An ε-neighborhood of a point z0

in C is the set of all points z lying inside but not on circle centered at z0 with

radius ε . i.e. in the disc

B(z0; ε) = {z ∈ C/|z − z0| < ε}

Definition 2.1.2. A function f ia said to be analytic at a point z0 if it is

differentiable at each point in some neighborhood of z0 .

Proposition 2.1.3. Suppose we have a function f analytic in a neighborhood

of the origin

f(t) =
∞∑
k=0

akt
k (2.1.1)
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Euler’s series transformation formula says that

1

1− t
f

(
t

1− t

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
ak

}
(2.1.2)

for |t| small enough.

Remark Euler’s formula can be used, among other things, to evaluate the

binomial transform

bn =
∞∑
k=0

(
n

k

)
ak n = 0; 1; 2; ... (2.1.3)

by computing the Taylor coefficients of the function on the left hand side in

(2.1.2) independently and comparing coefficient.

Example 2.1.4. If we have a convergent series

s = f(1) = a0 + a1 + a2 + ...

then with t = 1
2
in (2.1.2) we find

s =
∞∑
n=0

1

2n+1

{
n∑

k=0

(
n

k

)
ak

}



Proof. for t = 1
2

1

1− 1
2

f

( 1
2

1− 1
2

)
=

∞∑
n=0

(
1

2

)n
{

n∑
k=0

(
n

k

)
ak

}

⇒ 2f(1) =
∞∑
n=0

1

2n

{
n∑

k=0

(
n

k

)
ak

}

⇒ s = f(1) =
∞∑
n=0

1

2n+1

{
n∑

k=0

(
n

k

)
ak

}

Example 2.1.5. Using the substitution

z =
t

1− t
; t =

z

z + 1

Equation (2.1.2) becomes

f(z) =
1

z + 1

∞∑
n=0

(
z

z + 1

)n
{

n∑
k=0

(
n

k

)
ak

}
(2.1.4)

It is good to mention an interesting formula resulting from (2.1.4) with x, z

appropriate parameters. We apply (2.1.4) to the function

f
(x
z
t
)
=

∞∑
n=0

(
anx

n

zn

)
tn

and the resulting is the representation

f(x) =
∞∑
n=0

zn

(1 + z)n+1

{
n∑

k=0

(
n

k

)
xk

zk
ak

}
(2.1.5)



In fact, we have

f(z) =
∞∑
n=0

anz
n

then,

f
(x
z
t
)
=

∞∑
n=0

anx
n

zn
tn =

∞∑
n=0

αnt
n

Now, let’s call f
(
x
z
t
)
= g(t). Then, we have, g(z) = f

(
x
z
z
)
= f(x). Hence,

f(x) = g(z) =
1

z + 1

∞∑
n=0

(
z

z + 1

)n
{

n∑
k=0

(
n

k

)
αk

}

=
1

z + 1

∞∑
n=0

(
z

z + 1

)n
{

n∑
k=0

(
n

k

)
akx

k

zk

}

Remark Notice that in this representation the variable (parameter) z appears

only on the right hand side.

2.2 A General Theorem and Several Transfor-

mation Formulas

Lemma 2.2.1. (Handamard’s series multiplication theorem)

Given two power series, say, (2.1.1) ;

f(t) =
∞∑
k=0

akt
k

and also a second one

g(t) =
∞∑
k=0

ckt
k (2.2.1)



We have the representation

∞∑
n=0

ancnz
n =

1

2πi

∮
g
(z
λ

)
f(λ)

dλ

λ
(2.2.2)

Where L is an appropriate closed curve around the origin.

Theorem 2.2.2. The following representation holds

∞∑
n=0

cnh(z)
n

{
n∑

k=0

(
n

k

)
ak

}
=

1

2πi

∮
g

(
h(z)

(
1 +

1

λ

))
f(λ)

dλ

λ
(2.2.3)

Where h(z) is an appropriate function for which the above expression is defined

and the integral is a Cauchy type integral on a closed curve around the origin,

as in (2.2.2).

Proof. We shall apply Cauchy’s integral formula for the coefficients of the

function f(t) from (2.1.1).

According to this formula we have for k = 0, 1, ...

n∑
k=0

(
n

k

)
ak =

1

2πi

∮ (
1 +

1

λ

)n

f(λ)
dλ

λ
(2.2.4)

Multiplying both sides in this equation by cnh(z)
n and summing for n we

obtain

∞∑
n=0

cnh(z)
n

{
n∑

k=0

(
n

k

)
ak

}
=

1

2πi

∮
g

(
h(z)

(
1 +

1

λ

))
f(λ)

dλ

λ

Choosing g(t) and h(z) appropriately and combining this result by Han-



damard’s theorem we shall generate various series transformation formulas.

Here is the first example.

Corollary 2.2.3. let α be a complex number. Then the following representa-

tion holds.

∞∑
n=0

(
α

n

)
(−1)nanz

n = (z + 1)α
∞∑
n=0

(
z

z + 1

)n (
α

n

)
(−1)n

{
n∑

k=0

(
n

k

)
ak

}

(2.2.5)

Proof. In Theorem 2.2.2 we choose:

h(z) =
z

z + 1
; g(t) = (1− t)α =

∞∑
n=0

(
α

n

)
(−1)ntn; cn =

(
α

n

)
(−1)n.

A simple computation shows that,

g

(
h(z)

(
1 +

1

λ

))
= g

(
z

z + 1

(
1 +

1

λ

))

=

(
1− z

z + 1

(
1 +

1

λ

))α

=

(
1− z

z + 1
− z

(z + 1)λ

)α

=
(zλ+ λ− zλ− z)α

(z + 1)α λα

= (z + 1)−α

(
λ− 1

λ

)α

= (z + 1)−α
(
1− z

λ

)α



Now apply it in theorem 2.2.2, we get,

∞∑
n=0

cn

(
z

z + 1

)n
{

n∑
k=0

(
n

k

)
ak

}
=

1

2πi

∮
(z + 1)−α

(
1− z

λ

)α

f(λ)
dλ

λ

=
(z + 1)−α

2πi

∮ (
1− z

λ

)α

f(λ)
dλ

λ

This representation yields to (2.2.5) in view of Handamard’s Theorem.

When α = −1 we have (−1

n

)
= (−1)n (2.2.6)

and (2.2.5) becomes (2.1.4).

Corollary 2.2.4. Let the sequence an be defined by

f(t) =
∞∑
k=0

akt
k

Then the following exponential version of Euler’s series transformation for-

mula holds
∞∑
n=0

an
n!

zn = e−z

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
ak

}
(2.2.7)

Proof. In Theorem 2.2.2 we choose:

h(z) = z, g(t) = et cn =
1

n!

A simple computation shows that,

g

(
h(z)

(
1 +

1

λ

))
= g

(
z

(
1 +

1

λ

))
= ez(1+

1
λ)



Now apply in Theorem 2.2.2, we get,

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
ak

}
=

1

2πi

∮
ez(1+

1
λ)f(λ)

dλ

λ

=
ez

2πi

∮
e

z
λf(λ)

dλ

λ

Now from (2.2.2) we get,

∞∑
n=0

an
n!

zn =
e−zez

2πi

∮
e

z
λf(λ)

dλ

λ

∞∑
n=0

an
n!

zn = e−z

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
ak

}

We can replace in (2.2.7) an by an
λ

and z by λz (where λ is a parameter)

to give the equation the more flexible form,

eλz
∞∑
n=0

an
n!

zn =
∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
λn−kak

}
(2.2.8)

In the next two applications we use natural logarithm function. In all

expansions we assume that |z| is small enough to secure convergence.

Corollary 2.2.5. With

f(t) =
∞∑
k=0

akt
k

the following representation holds:

a0 log(1 + z) +
∞∑
n=1

zn

n!
an =

∞∑
n=1

(
z

z + 1

)n
1

n

{
n∑

k=0

(
n

k

)
ak

}
(2.2.9)



Proof. In Theorem 2.2.2 we choose:

h(z) =
z

z + 1
; g(t) = − log(1− t) =

∞∑
n=0

tn

n
; cn =

1

n

A simple computation shows that,

g

(
h(z)

(
1 +

1

λ

))
= g

(
z

z + 1

(
1 +

1

λ

))

= − log

(
1−

(
z

z + 1

(
1 +

1

λ

)))

= − log

(
1− z

z + 1
− z

(z + 1)λ

)

= − log

(
1

z + 1
− z

(z + 1)λ

)

= −
(
log

(
1

z + 1

)
+ log

(
1 +

−z
(z+1)λ

1
z+1

))

= − log

(
1

z + 1

)
− log

(
1− z

λ

)
= log(z + 1)− log

(
1− z

λ

)

Now apply in Theorem2.2.2, we get,

∞∑
n=0

1

n

(
z

z + 1

)n
{

n∑
k=0

(
n

k

)
ak

}
=

1

2πi

∮ (
log(z + 1)− log

(
1− z

λ

))
f(λ)

dλ

λ

=
log(z + 1)

2πi

∮
f(λ)

λ
dλ− 1

2πi

∮
log

(
1− z

λ

) f(λ)

λ
dλ

We know that,

log(z + 1)

2πi

∮
f(λ)

λ
dλ = a0 log(z + 1)



We still have to prove that,

−1

2πi

∮
log

(
1− z

λ

) f(λ)

λ
dλ =

∞∑
n=1

zn

n
an

From (2.2.2) we get the above equality, where

g
(z
λ

)
= − log

(
1− z

λ

)

Hence,

a0 log(1 + z) +
∞∑
n=1

zn

n
an =

∞∑
n=1

(
z

z + 1

)n
1

n

{
n∑

k=0

(
n

k

)
ak

}

In the next corollary we present an interesting identity involving harmonic

numbers.

Corollary 2.2.6. For every p with Rep > −1 we have

∞∑
n=0

(Hp+n −Hp)

(
p+ n

n

)
anz

n + log(1 + z)
∞∑
n=0

(
p+ n

n

)
anz

n(2.2.10)

=
1

(1 + z)p+1

∞∑
n=0

(
z

z + 1

)n

(Hp+n −Hp)

(
p+ n

n

){
n∑

k=0

(
n

k

)
ak

}

With {an} an arbitrary sequence of coefficients as in (2.1.1).

Proof. We use the series expansion

1

(1− z)m+1
ln

(
1

1− z

)
=

∞∑
n=0

(Hm+n −Hm)

(
m+ n

n

)
zn



Now let,

g(t) =
− log(1− t)

(1− t)p+1
=

∞∑
n=0

(Hp+n −Hp)

(
p+ n

n

)
tn

Where Rep > −1. As before take h(z) = z
z+1

g

(
h(z)

(
1 +

1

λ

))
= g

(
z

z + 1
+

z

(z + 1)λ

)

=
log(z + 1)− log

(
1− z

λ

)
(
1− z

z+1
− z(z + 1)λ

)p+1

=
log(z + 1)(

λ−z
(z+1)λ

)p+1 − log
(
1− z

λ

)
(

λ−z
(z+1)λ

)p+1

=
log(z + 1)(

λ−z
λ

)p+1 1
(z+1)p+1

− log
(
1− z

λ

)
(
λ−z
λ

)p+1 1
(z+1)p+1

= (z + 1)p+1

{
log(z + 1)(
1− z

λ

)p+1 − log
(
1− z

λ

)
(
1− z

λ

)p+1

}

Hence, the right hand side of (2.2.3) becomes

(1 + z)p+1 log(1 + z)

2πi

∮
1(

1− z
λ

)p+1

f(λ)

λ
dλ− (1 + z)p+1

2πi

∮
log

(
1− z

λ

)
(
1− z

λ

)p+1

f(λ)

λ
dλ

At this point we use the well-known binomial expansion

1

(1− z)p+1
=

∞∑
n=0

(
p+ n

n

)
zn



So according to Handamard’s theorem the first term above becomes

(z + 1)p+1 log(z + 1)
1

2πi

∮
1(

1− z
λ

)p+1

f(λ)

λ
dλ

= (z + 1)p+1 log(z + 1)
1

2πi

∮ ∞∑
n=0

(
n+ p

n

)
zn

f(λ)

λ
dλ

= (z + 1)p+1 log(z + 1)
∞∑
n=0

(
p+ n

n

)
zn

1

2πi

∮
f(λ)

λ
dλ

= (z + 1)p+1 log(z + 1)
∞∑
n=0

(
p+ n

n

)
znan

While the second term becomes

(z + 1)p+1 1

2πi

∮
log

(
1− z

λ

)
(
1− z

λ

)p+1

f(λ)

λ
dλ

= (z + 1)p+1

∞∑
n=0

(Hp+n −Hp)

(
p+ n

n

)
anz

n

and the desire identity follows. In this case we use in (2.2.3) the coefficients

cn = (Hp+n −Hp)

(
p+ n

n

)

The result in this corollary was used to evaluate in closed from the series

∞∑
n=0

(Hp+n −Hp)

(
p+ n

n

)
nmzn

for any m ≥ 0 and any p ≥ 0.

When p = 0 then cn = Hn and we have the special case bellow.



Corollary 2.2.7. With

f(t) =
∞∑
k=0

akt
k

the following transformation formula holds:

∞∑
n=0

Hnanz
n + log(1 + z)f(z) =

1

1 + z

∞∑
n=0

(
z

z + 1

)n

Hn

{
n∑

k=0

(
n

k

)
ak

}
(2.2.11)

For completeness we present here one more series transformation formula in-

volving two power series.

Proposition 2.2.8. Given two analytic functions f(t) and g(t) where

f(t) =
∞∑
k=0

akt
k

and

g(t) =
∞∑
k=0

ckt
k

then the following representation is true

∞∑
n=0

ancnt
n =

∞∑
n=0

g(n)(−t)

n!
tn

{
n∑

k=0

(
n

k

)
ak

}
(2.2.12)

Proof. Multiplying both sides in (2.2.4) by

g(n)(−t)

n!
tn

and summing for n we get

∞∑
n=0

g(n)(−t)

n!
tn

{
n∑

k=0

(
n

k

)
ak

}
=

1

2πi

∮ ∞∑
n=0

g(n)(−t)

n!

(
t

λ
+ t

)n
f(λ)

λ
dλ



From the Taylor expansion of g
(
t
λ

)
centered at (−t) we get

∞∑
n=0

g(n)(−t)

n!

(
t+

t

λ

)n

= g

(
t

λ

)

Hence,
∞∑
n=0

ancnt
n =

1

2πi

∮
g

(
t

λ

)
f(λ)

λ
dλ

which is the same as (2.2.2).

Euler’s transformation works also for asymptotic series. Namely, we have

this result:

Corollary 2.2.9. Suppose the function

F (λ) =
∞∑
n=0

an
λn+1

is analytic in a neighborhood of infinity (or is a formal power series). Then

F (λ− 1) =
∞∑
n=0

1

λn+1

{
n∑

k=0

(
n

k

)
ak

}

Proof. Let λ = 1
t
, so t = 1

λ
Now by substituting in (2.1.2) we get

1

1− 1
λ

f

( 1
λ

1− 1
λ

)
=

∞∑
n=0

(
1

λ

)n
{

n∑
k=0

(
n

k

)
ak

}

λ

λ− 1
f

(
1

λ− 1

)
=

∞∑
n=0

1

λn

{
n∑

k=0

(
n

k

)
ak

}



Dividing both sides by λ we get

1

λ− 1
f

(
1

λ− 1

)
=

∞∑
n=0

1

λn+1

{
n∑

k=0

(
n

k

)
ak

}

F (λ− 1) =
∞∑
n=0

1

λn+1

{
n∑

k=0

(
n

k

)
ak

}

2.3 Examples and Applications

Example 2.3.1. In this example we show how the transformation formula

(2.2.8) can be used to prove some classical properties of Bernouilli polynomials

Bn(x).

In (2.2.8) we set an = Bn(x) so (2.2.8) become

eλz
∞∑
n=0

Bn(x)

n!
zn =

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
λn−kBk(x)

}

so from (1.2.16) we get that

eλz
∞∑
n=0

Bn(x)

n!
zn =

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
λn−kBk(x)

}
=

ze(x+λ)z

ez − 1

so that

∞∑
n=0

zn

n!

{
n∑

k=0

(
n

k

)
λn−kBk(x)

}
=

ze(x+λ)z

ez − 1
=

∞∑
n=0

zn

n!
Bn(x+ λ)



By comparing coefficients we get the important identity

n∑
k=0

(
n

k

)
Bk(x)λ

n−k = Bn(x+ λ) (2.3.1)

Where x and λ are any two numbers.

It is known that Bn(1) = (−1)nBn(0) = (−1)nBn, where Bn are the Bernoulli

numbers.

With x = 0 in (2.3.1) we find the well-known representation

n∑
k=0

(
n

k

)
Bkλ

n−k = Bn(λ) (2.3.2)

and when λ = 1 we get

n∑
k=0

(
n

k

)
Bk = (−1)nBn

Note that (2.3.1) can be written as binomial transform

n∑
k=0

(
n

k

)
Bk(x)λ

−k = λ−nBn(x+ λ)

The above method can be used to compute the binomial transforms of sequences

of special numbers, or polynomials which have an exponential generating func-

tion.

For Euler’s polynomial En(x) with generating function (1.2.17) and by using

(2.2.8) we compute in the same way

n∑
k=0

(
n

k

)
Ek(x)λ

n−k = En(x+ λ) (2.3.3)



In the next example and also in several other places we shall use the lemma:

Lemma 2.3.2. Given the power series

f(t) = a0 + a1t+ a2t
2 + ...,

we have

1

1− t
f(t) =

∞∑
n=0

{
n∑

k=0

ak

}
tn (2.3.4)

Proof.

1

1− t
f(t) = (1 + t+ t2 + ...)

( ∞∑
n=0

ant
n

)

= (1 + t+ t2 + ...)(a0 + a1t+ a2t
2 + ...)

= a0 + (a0 + a1)t+ (a0 + a1 + a2)t
2 + ...

=
∞∑
n=0

{
n∑

k=0

ak

}
tn

Example 2.3.3. We use know formula (2.1.2) to find the binomial transform

of the sequence

an =
(−1)n−1

n
n = 1, 2, 3...

The generating function of this sequence is

f(t) = log(1 + t) =
∞∑
n=1

(−1)n−1

n
tn



and then

1

1− t
f

(
t

1− t

)
=

1

1− t
log

(
1 +

t

1− t

)

=
1

1− t
log

(
1

1− t

)

=
− log(1− t)

1− t

=
1

1− t

∞∑
n=1

tn

n

According to Lemma (2.3.2) this equals

∞∑
n=1

(
1 +

1

2
+ ...+

1

n

)
tn =

∞∑
n=1

Hnt
n

Where Hn are the Harmonic numbers (1.2.6).

That is (2.1.2) yields to

n∑
k=1

(
n

k

)
(−1)k−1

k
= Hn (2.3.5)

Assuming that the summation starts from zero with a0 = 0 we write

n∑
k=0

(
n

k

)
(−1)k−1

k
= Hn

and then applying (1.1.9) we find

Hn+1 −Hn =
1

n+ 1
=

n∑
j=0

(
n

j

)
(−1)j

j + 1
(2.3.6)

This is an example of a sequence 1
j+1

invariant for the symmetric binomial



transform (1.1.3).

By inversion in (2.3.5) we have also

n∑
k=1

(
n

k

)
(−1)k−1Hn =

1

n
(2.3.7)

Example 2.3.4. Integrating the representation

− log(1− t)

1− t
=

∞∑
n=1

Hnt
n

we get

log2(1− t)

2
=

∞∑
n=1

Hn

n+ 1
tn+1 (2.3.8)

and then dividing by t both sides we find the generating function

log2(1− t)

2t
=

∞∑
n=1

Hn

n+ 1
tn (2.3.9)

Replacing t by −t we obtain also

log2(1 + t)

−2t
=

∞∑
n=1

Hn

n+ 1
(−t)n

log2(1 + t)

−2t
=

∞∑
n=1

Hn

n+ 1
(−1)ntn

log2(1 + t)

2t
=

∞∑
n=1

Hn

n+ 1
(−1)n−1tn

We shall use now Euler’s series transformation (2.1.2) to compute the binomial



transform of

an =
(−1)n−1

n+ 1
Hn

Applying (2.1.2) to the function in (2.3.9) we get,

1

1− t

(
1− t

2t

)
log2

(
1

1− t

)
=

log2(1− t)

2t
=

∞∑
n=1

tn

{
n∑

k=0

(
n

k

)
(−1)k−1Hk

k + 1

}

and computing this to (2.3.8) we conclude that

n∑
k=0

(
n

k

)
(−1)k−1Hk

k + 1
=

Hn

n+ 1
(2.3.10)

Remark Formula (2.1.2) can be put in a more flexible equivalent form

1

1− λt
f

(
μt

1− λt

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
λn−kμkak

}
(2.3.11)

where λ and μ are appropriate parameters.

Proof. To show the equivalence between (2.3.11) and (2.1.2) we first write

(2.1.1) in the form

f

(
μt

λ

)
=

∞∑
k=0

ak

(μ
λ

)k

tk

and then apply (2.1.2) to this function as a function of t to get

1

1− t
f

(
μt

1− λt

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
λn−kμkak

}



Lemma 2.3.5. For sufficiently small |t| the following representation holds

− log(1− αt)

1− βt
=

∞∑
n=1

(
αβn−1 +

1

2
α2βn−2 + ...+

1

n
αn

)
tn (2.3.12)

Where α and β are small parameters.

Proof. From the expansion of the logarithm and lemma (2.3.2) we get the

representation

− log(1− αt)

1− t
=

∞∑
n=1

(
α +

1

2
α2 + ...+

1

n
αn

)
tn

Now replace t by βt and then replace αβ by α we get

− log(1− αt)

1− βt
=

∞∑
n=1

(
αβn−1 +

1

2
α2βn−2 + ...+

1

n
αn

)
tn

Example 2.3.6. We show that for all λ and μ

n∑
k=1

(
n

k

)
Hkλ

n−kμk = (λ+ μ)nHn −
n∑

k=1

λk(λ+ μ)n−k

k
(2.3.13)

Proof. We apply the transformation formula (2.3.11) to the function

− log(1− t)

1− t
=

∞∑
n=1

Hnt
n

to find

−1

1− λt

log
(
1− μt

1−λt

)
1− μt

1−λt

=
− log(1− (λ+ μ)t)

1− (λ+ μ)t
+

log(1− λt)

1− (λ+ μ)t
(2.3.14)



Which equals in view of (1.2.11) and the above lemma (with α = λ and

β = λ+ μ). from (2.3.12)

− log(1− αt)

1− βt
=

− log(1− λt)

1− (λ+ μ)t
=

∞∑
n=1

{
n∑

k=1

λk(λ+ μ)n−k

k

}
tn

so (2.3.14),

−1

1− λt

log
(
1− μt

1−λt

)
1− μt

1−λt

=
∞∑
n=1

(λ+ μ)nHnt
n −

∞∑
n=1

{
n∑

k=1

λk(λ+ μ)n−k

k

}
tn

At the same time (2.3.11) shows that (2.3.14) equals

∞∑
n=0

tn

{
n∑

k=1

(
n

k

)
Hkλ

n−kμk

}

and comparing coefficients in these power series we finish the proof.

With λ = μ = 1 in (2.3.13), we find the companion to formula (2.3.7)

n∑
k=1

(
n

k

)
Hk = 2n

(
Hn −

n∑
k=1

1

k2k

)
(2.3.15)

With λ = 1 in (2.3.13), we have

n∑
k=1

(
n

k

)
Hkμ

k = (1 + μ)nHn −
n∑

k=1

(1 + μ)n−k

k
(2.3.16)

We apply to this equation the differential operator
(
μ d

dμ

)m

to get

n∑
k=1

(
n

k

)
Hkμ

kkm = α(m,n, μ)Hn −
n∑

k=1

α(m,n− k, μ)

k
(2.3.17)



Where

α(m,n, μ) =

(
μ
d

dμ

)m

(1 + μ)n =
n∑

k=0

(
n

k

)
kmμk (2.3.18)

=
n∑

k=0

(
n

k

)
k!S(m, k)μk(1 + μ)n−k

The second equality here follows from the obvious fact that

(
μ
d

dμ

)m

μk = kmμk

The third equality comes from the representation

n∑
k=0

(
n

k

)
kmμk =

n∑
k=0

(
n

k

)
k!S(m, k)μk(1 + μ)n−k (2.3.19)

Example 2.3.7. We show here an interesting application of corollary (2.1.4)

to series with central binomial coefficients. The central binomial coefficients

are defined by (
2n

n

)
=

(2n!)

(n!)2

First we note that by simple computation

(−1
2

n

)
(−1)n =

1

4n

(
2n

n

)



and then we set α = −1
2

in corollary (2.1.4) so that formula (2.2.4) turns into

∞∑
n=0

(
2n

n

)
an

zn

4n
=

1√
z + 1

∞∑
n=0

(
z

z + 1

)n
1

4n

(
2n

n

){
n∑

k=0

(
n

k

)
ak

}

Substituting now by z = 4x we get

∞∑
n=0

(
2n

n

)
anx

n =
1√

4x+ 1

∞∑
n=0

(
x

4x+ 1

)n (
2n

n

){
n∑

k=0

(
n

k

)
ak

}
(2.3.20)

Setting here

an = (−1)n−1Hn

and using equation (2.3.6) we find

∞∑
n=0

(
2n

n

)
(−1)n−1Hnx

n =
1√

4x+ 1

∞∑
n=1

(
x

4x+ 1

)n (
2n

n

)
1

n
(2.3.21)

Now we reach for the well-known expansion

∞∑
n=0

(
2n

n

)
zn

n
= 2 ln

(
1−√

1− 4x

2z

)
= 2 ln

(
2

1 +
√
1− 4x

)
(2.3.22)

which we use to evaluate in closed from the right side in (2.3.21). Applying

(2.3.22) with

z =
x

4x+ 1

We find after simple computations

∞∑
n=0

(
2n

n

)
(−1)n−1Hnx

n =
2√

4x+ 1
ln

(
2
√
4x+ 1

1 +
√
4x+ 1

)
(2.3.23)



Proof.

∞∑
n=0

(
2n

n

)
(−1)n−1Hnx

n =
1√

4x+ 1
2 ln

⎛
⎝ 2

1 +
√
1− 4

(
x

4x+1

)
⎞
⎠

=
2√

4x+ 1
ln

(
2

1+
√
4x+1√

4x+1

)

=
2√

4x+ 1
ln

(
2
√
4x+ 1

1 +
√
4x+ 1

)

Remark

cn =
1

n+ 1

(
2n

n

)
(2.3.24)

are the Catalan numbers.

Example 2.3.8. In this example we present one application of formula (2.2.12)

from proposition (2.2.4) to series with Hermite polynomials. Changing t to −t

and ak to (−1)kak in that formula we write it here in the form

∞∑
n=0

ancnt
n =

∞∑
n=0

(−1)ng(n)(t)

n!
tn

{
n∑

k=0

(
n

k

)
(−1)kak

}
(2.3.25)

Recall now that the Hermite polynomials Hn(x) satisfy the Rodrigues equation

Hn(x) = (−1)nex
2

(
d

dx

)n

e−x2



and their generating function is

e2xt−t2 =
∞∑
n=0

Hn(x)

n!
tn

Corollary 2.3.9. The following series transformation formula holds

∞∑
n=0

anHn(x)
tn

n!
= e2xt−t2

∞∑
n=0

(−1)nHn(x− t)
tn

n!

{
n∑

k=0

(
n

k

)
(−1)kak

}
(2.3.26)

for any sequence of coefficients {an}.

Proof. We use equation (2.3.25) with g(t) = e2xt−t2 and cn = Hn(x)
n!

so (2.3.25)

becomes

∞∑
n=0

anHn(x)

n!
tn =

∞∑
n=0

(−1)n

n!

(
d

dt

)n

e2xt−t2tn

{
n∑

k=0

(
n

k

)
(−1)kak

}

From the Rodrigues formula we find

(
d

dt

)n

e2xt−t2 =

(
d

dt

)n

ex
2

e−(x−t)2

= ex
2

(−1)n
(

d

dt

)n

e−(x−t)2 = ex
2

(−1)n
(

d

d(x− t)

)n

e−(x−t)2

= ex
2

(−1)n(−1)ne−(x−t)2Hn(x− t) = e2xt−t2Hn(x− t)

That is, (
d

dt

)n

g(t) = e2xt−t2Hn(x− t)

and (2.3.26) follows now from (2.3.25).



Next we consider the binomial transform identity

(−1)nn!S(m,n) =
n∑

k=0

(
n

k

)
(−1)kkm

Where S(m,n) are the Stirling numbers of the second kind. This is the inver-

sion of (1.2.1), a well-known analytic representation of the numbers S(m,n).

Here m,n are any two non negative integers. We substitute ak = km in (2.3.26)

to get the closed form evaluation

∞∑
k=0

kmHk(x)
tk

k!
= e2xt−t2

m∑
n=0

S(m,n)Hn(x− t)tn (2.3.27)

The series on the right hand side truncates because S(m,n) = 0 for n > m.

Example 2.3.10. The Chebyshev polynomials of the first kind Tn(x) and the

Chebyshev polynomials of the second kind Un(x) have exponential generating

functions correspondingly

∞∑
n=0

Tn(x)
tn

n!
= ext cos

(
t
√
1− x2

)
∞∑
n=1

Un−1(x)
tn

n!
= ext

sin
(
t
√
1− x2

)
√
1− x2

Setting x = cos θ we can rewrite these series in the form

e−t cos θ

∞∑
n=0

Tn(cos θ)
tn

n!
= cos (t sin θ)

e−t cos θ

∞∑
n=0

Un−1(cos θ)
tn

n!
=

sin (t sin θ)

sin θ



Using now Euler’s series transformation (2.2.8) we have

∞∑
n=0

tn

n!

{
n∑

k=0

(
n

k

)
(− cos θ)n−kTk(cos θ)

}
= cos (t sin θ)

∞∑
n=0

tn

n!

{
n∑

k=0

(
n

k

)
(− cos θ)n−kUk−1(cos θ)

}
=

sin (t sin θ)

sin θ

or

∞∑
n=0

tn

n!

{
(− cos θ)n

n∑
k−0

(
n

k

)
(−1)k

Tk(cos θ)

(cos θ)n

}
= cos(t sin θ)

∞∑
n=0

tn

n!

{
(− cos θ)n

n∑
k−0

(
n

k

)
(−1)k

Uk−1(cos θ)

(cos θ)n

}
=

sin(t sin θ)

sin θ

Proof. Let z = t and λ = − cos θ in (3.13) we get

e−t cos θ

∞∑
n=0

Tn(cos θ)
tn

n!
=

∞∑
n=0

tn

n!

{
n∑

k=0

(
n

k

)
(− cos θ)n−kTk(cos θ)

}

= cos(t sin θ)

Same for sin(t sin θ)
sin θ

Comparing coefficients of both sides we obtain the binomial transforms

n∑
k=0

(
n

k

)
(−1)k

Tk(cos θ)

(cos θ)n
=

⎧⎪⎪⎨
⎪⎪⎩
0 (n odd)

(−1)
n
2 (tan θ)n (n even)

(2.3.28)

n∑
k=0

(
n

k

)
(−1)k

Uk−1(cos θ)

(cos θ)n
=

⎧⎪⎪⎨
⎪⎪⎩
0 (n even)

(−1)1+
n
2
(tan θ)n−1

cos θ
(n odd)

(2.3.29)



Example 2.3.11. The following representation is true

−2

1− t
Li2

( −t

1− t

)
=

∞∑
n=0

(
H2

n +H(2)
n

)
tn

Where Li2 is the dilogarithm (1.2.13). We have

−Li2(−t) =
∞∑
n=1

(−1)n−1tn

n2

According to Euler’s transformation formula (2.1.1) we have

−1

1− t
Li2

( −t

1− t

)
=

∞∑
n=0

tn

{ ∞∑
k=1

(
n

k

)
(−1)k−1

k2

}

and therefore,

∞∑
k=1

(
n

k

)
(−1)k−1

k2
=

1

2

(
H2

n +H(2)
n

)



Chapter 3

A Binomial Formula for

Evaluating Integrals

In this chapter we will refer to [2] to present a rule for evaluating integrals in

terms of series with binomial expressions.

Theorem 3.0.1. Let f(x) be a function defined and integrable on (−r, λ] for

some r > 0,λ > 0.

Let also f(x) be analytic in a neighborhood of the origin with Taylor series

f(x) =
∑∞

n=0 anx
n.

Then we have

∫ λ

0

f(x)dx =
∞∑
n=0

(
λ

λ+ 1

)n+1
1

n+ 1

n∑
m=0

bm =
∞∑
n=0

(
λ

λ+ 1

)n+1 n∑
k=0

(
n

k

)
ak

k + 1

where the sequence bn is the binomial transform of the sequence an.

bn =
n∑

k=0

(
n

k

)
ak
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In particular, for λ = 1 we have

∫ 1

0

f(x)dx =
∞∑
n=0

1

2n+1(n+ 1)

n∑
m=0

bm =
∞∑
n=0

1

2n+1

n∑
k=0

(
n

k

)
ak

k + 1

and for λ → ∞

∫ ∞

0

f(x)dx =
∞∑
n=0

1

(n+ 1)

n∑
m=0

bm =
∞∑
n=0

n∑
k=0

(
n

k

)
ak

k + 1

Proof. With the substitution x = t
1−t

, t = x
x+1

we get

∫ λ

0

f(x)dx =

∫ λ
λ+1

0

1

(1− t)2
f

(
t

1− t

)
dt

=

∫ λ
λ+1

0

1

(1− t)

{
1

1− t
f

(
t

1− t

)}
dt

=

∫ λ
λ+1

0

1

(1− t)

{ ∞∑
n=0

tn
n∑

k=0

(
n

k

)
ak

}
dt

=

∫ λ
λ+1

0

1

(1− t)

{ ∞∑
n=0

bnt
n

}
dt

by using Euler’s transformation formula

1

1− t
f

(
t

1− t

)
=

∞∑
n=0

tn

{
n∑

k=0

(
n

k

)
ak

}
=

∞∑
n=0

bnt
n

where the sequence {bn} is the binomial transform of the sequence {an} as

described above.

Expanding (1− t)−1 as geometric series and using Cauchy’s rule for multipli-



cation of two power series we write

∫ λ
λ+1

0

1

(1− t)

{ ∞∑
n=0

bnt
n

}
dt =

∫ λ
λ+1

0

∞∑
n=0

{
n∑

k=0

bk

}
tndt =

∞∑
n=0

(
λ

λ+ 1

)n+1
1

n+ 1

n∑
k=0

bk

by the property

n∑
k=0

(
n

k

)
ak

k + 1
=

1

n+ 1

n∑
k=0

bk

Differentiating in the theorem with respect to λ we come to the following

result.

Corollary 3.0.2. Under the conditions of the theorem we have the represen-

tation

f(λ) =
1

(λ+ 1)2

∞∑
n=0

(
λ

λ+ 1

)n n∑
m=0

bm

Now we give some applications of our theorem in form of examples

Example 3.0.3. In the first example we will evaluate the integral

∫ ∞

0

log(1 + t)

t(1 + t)
dt

We start from the well-known series

∞∑
n=1

Hnt
n =

− log(1− t)

1− t

(Here Hn = 1 + 1
2
+ ...+ 1

n
, H0 = 0 are the harmonic numbers).



Now replacing t by −t and dividing both sides by t we get

− log(1 + t)

t(1 + t)
=

∞∑
n=1

Hn
(−t)n

t

=
∞∑
k=0

Hk+1
(−t)k+1

t
; k = n− 1

log(1 + t)

t(1 + t)
=

∞∑
k=0

Hk+1 (−1)k tk

and take ak = (−1)k Hk+1.

n∑
k=0

(
n

k

)
ak

k + 1
=

n∑
k=0

(
n

k

)
(−1)kHk+1

k + 1
=

1

(n+ 1)2

hence,

∫ ∞

0

log(1 + t)

t(1 + t)
dt =

∞∑
n=0

n∑
k=0

(
n

k

)
ak

k + 1
=

∞∑
n=0

1

(n+ 1)2
=

π2

6

Example 3.0.4. Here, we will evaluate the difficult integral

∫ ∞

0

(
log(1 + t)

t

)2

dt

We will start from the well-known power series

log2(1− t)

−2t
=

∞∑
n=1

Hnt
n

n+ 1



Replacing t by −t and dividing both sides by t, we get

log2(1 + t)

−2t2
=

∞∑
n=1

Hn(−t)n

t(n+ 1)

log2(1 + t)

−2t2
=

∞∑
n=1

(−1)nHnt
n−1

n+ 1

log2(1 + t)

−2t2
=

∞∑
n=1

(−1)n−1Hnt
n−1

n+ 1
=

∞∑
k=0

(−1)kHk+1t
k

k + 2
; k = n− 1

So take ak =
(−1)kHk+1

k + 2

n∑
k=0

(
n

k

)
ak

k + 1
=

n∑
k=0

(
n

k

)
(−1)kHk+1

(k + 1)(k + 2)

=
n∑

k=0

(
n

k

)
(−1)kHk+1

k + 1
−

n∑
k=0

(
n

k

)
(−1)kHk+1

k + 2

=
1

(n+ 1)2
−

n∑
k=0

(
n

k

)
(−1)k

k + 2

(
Hk +

1

k + 1

)

We know that,

−
n∑

k=0

(
n

k

)
(−1)k

k + 2

(
Hk +

1

k + 1

)
= −

n∑
k=0

(
n

k

)
(−1)kHk

k + 2
−

n∑
k=0

(
n

k

)
(−1)k

(k + 1)(k + 2)

=
n+Hn

(n+ 1)(n+ 2)
− 1

n+ 2

=
Hn − 1

(n+ 1)(n+ 2)

It is easy to see that

∞∑
n=0

Hn − 1

(n+ 1)(n+ 2)
=

∞∑
n=0

Hn

(n+ 1)(n+ 2)
−

∞∑
n=0

1

(n+ 1)(n+ 2)
= 1− 1 = 0



and we compute

∫ ∞

0

log2(1 + t)

2t2
dt =

∞∑
n=0

n∑
k=0

(
n

k

)
ak

k + 1

=
∞∑
n=0

1

(n+ 1)2

=
π2

6

Finally,

∫ ∞

0

(
log(1 + t)

t

)2

dt =
π2

3

Example 3.0.5. Using some well-known generating functions we evaluate here

the integral ∫ 1

0

Li2

(
t

1 + t

)
dt

Li2(x) is the dilogarithm.

Li2(x) =
∞∑
n=1

xn

n2
(|x| < 1)

We have,

Li2

(
t

1 + t

)
=

∞∑
n=1

(−1)n−1Hnt
n

n
(|t| < 1)

So we take,

an =
(−1)n−1Hn

n



So

ak
k + 1

=
(−1)k−1Hk

k(k + 1)
=

(−1)k−1Hk

k
− (−1)k−1Hk

K + 1

And using the two binomial formulas

n∑
k=1

(
n

k

)
(−1)k−1Hk

k
=

n∑
k=1

1

k2
= H(2)

n

n∑
k=1

(
n

k

)
(−1)k−1 Hk

k + 1
=

Hn

k + 1

we have

n∑
k=0

(
n

k

)
ak

k + 1
=

n∑
k=0

(
n

k

)
(−1)k−1Hk

k
−

n∑
k=0

(
n

k

)
(−1)k−1Hk

k + 1

= H(2)
n − Hn

n+ 1

Here, H
(2)
n = 1 + 1

22
+ · · ·+ 1

n2 ;H
(2)
0 = 0

This way,

∫ 1

0

Li2

(
t

1 + t

)
dt =

∞∑
n=0

1

2n+1

n∑
k=0

(
n

k

)
ak

k + 1

=
∞∑
n=0

1

2n+1

(
H(2)

n − Hn

n+ 1

)

=
∞∑
n=0

H
(2)
n

2n+1
−

∞∑
n=0

Hn

2n+1(n+ 1)

These two series are easy to evaluate.



We have,

∞∑
n=0

H(2)
n xn =

Li2(x)

1− x
;

∞∑
n=0

Hnx
n

n+ 1
=

log2(1− x)

2x
|x| < 1

And we compute with x = 1
2

∫ 1

0

Li2

(
t

1 + t

)
dt =

1

2

(
Li2

(
1
2

)
1− 1

2

− log2
(
1− 1

2

)
2× 1

2

)

=
1

2

(
Li2

(
1
2

)
1
2

− log2
(
1
2

)
1

)

= Li2

(
1

2

)
− log2(2)

2

=
π2

12
− log2(2)

2

and at the end we used the well known formula

Li2

(
1

2

)
=

π2

12
− log2(2)

2



Chapter 4

Evaluation of Integrals by

Differentiation with Respect to

a Parameter

We review in this chapter a special technique for evaluating challenging inte-

grals by differentiating with respect to a parameter. This technique will be

illustrated by providing a number of examples from [3, 4], as well as presenting

new examples.

Example 4.0.1. In this example we will evaluate the following integral

∫ ∞

0

sin x

x
dx

In order to do so, we will introduce the function

F (λ) =

∫ ∞

0

e−λx sin x

x
dx ;λ > 0
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Now differentiate this function we get

F ′(λ) = −
∫ ∞

0

e−λx sin xdx

F ′(λ) =
−1

1 + λ2

(Laplace transform of the sine function).

Integrating back we find

F (λ) = − arctan(λ) + C

Setting λ → ∞ yields the equation

0 = −π

2
+ C;C =

π

2

and therefore,

F (λ) =

∫ ∞

0

e−λx sin x

x
dx =

π

2
− arctanλ

Taking limits for λ → 0 we find

∫ ∞

0

sin x

x
dx =

π

2

Example 4.0.2. We will now evaluate the following integral

∫ 1

0

ln(1 + x)

1 + x2
dx



Consider the function

F (λ) =

∫ 1

0

ln(1 + λx)

1 + x2
dx ;λ ≥ 0

Now differentiate this function we get

F ′(λ) =
∫ 1

0

x

(1 + λx)(1 + x2)
dx.

To evaluate this integral we will split the integrand into partial fractions.

x

(1 + λx)(1 + x2)
=

A

1 + λx
+

Bx+ C

1 + x2

=
A+ Ax2 +Bx+Bλx2 + C + Cλx

(1 + λx)(1 + x2)

The coefficients satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A+Bλ = 0

B + Cλ = 1

A+ C = 0

Hence, we have

B =
1

1 + λ2

A =
−λ

1 + λ2

C =
λ

1 + λ2



so,

F ′(λ) =

∫ 1

0

−λ

(1 + λx)(1 + λ2)
dx+

∫ 1

0

x

(1 + x2)(1 + λ2)
dx+

∫ 1

0

λ

(1 + λ2)(1 + x2)
dx

= − ln(1 + λ)

1 + λ2
+

1

2
ln(2)

1

1 + λ2
+

π

4

λ

1 + λ2

Integrating back we find

F (λ) = −
∫ λ

0

ln(1 + x)

1 + x2
dx+

ln 2

2
arctanλ+

π

8
ln(1 + λ2)

and setting λ = 1 we get to the equation

2F (1) =
π

4
ln 2.

That is,

∫ 1

0

ln(1 + x)

1 + x2
dx =

π

8
ln 2

Example 4.0.3. We will now evaluate the following integral

∫ ∞

0

(
1− e−x

x

)2

dx

Consider the function

F (λ) =

∫ ∞

0

(
1− e−λx

x

)2

dx = λ ln 4 ;λ > 0



Now differentiate this function with respect to λ. We find

F ′(λ) = 2

∫ ∞

0

(
1− e−λx

x

)
e−λxdx = 2

∫ ∞

0

e−λx − e−2λx

x
dx.

By using Frullani’s formula for the last equality (see below), we conclude that

F (λ) is a linear function and since F (0) = 0 we can write F (λ) = λ ln 4. With

λ = 1 we find F (1) = ln 4.

Frullani’s formula says that for appropriate functions f(x) we have

∫ ∞

0

f(ax)− f(bx)

x
dx = [f(0)− f(∞)] ln

b

a

Now we will introduce more general examples

Example 4.0.4. Consider the integral

F (λ) =

∫ ∞

0

e−βx1− cosλx

x
dx ; β > 0

Now differentiate this function we get

F ′(λ) =
∫ ∞

0

e−βx sinλxdx =
λ

λ2 + β2

Integrating back we find

F (λ) =
1

2
ln(λ2 + β2) + C(β)



To compute C(β) we set λ = 0 and this gives C(β) = −1
2
ln β2. Therefore,

∫ ∞

0

e−βx1− cosλx

x
dx =

1

2
ln

(
1 +

λ2

β2

)

Example 4.0.5. A symmetrical analog to the previous example is the integral

F (λ) =

∫ ∞

0

1− e−λx

x
cos βxdx

defined for λ ≥ 0 and β �= 0. The integral is divergent at infinity when β = 0.

Now differentiate this function we get

F ′(λ) =
∫ ∞

0

e−λx cos βxdx =
λ

λ2 + β2

Integrating back we find

F (λ) =

∫ ∞

0

1− e−λx

x
cos βxdx =

1

2
ln

(
1 +

λ2

β2

)

so that for any λ ≥ 0 , β > 0

∫ ∞

0

1− e−λx

x
cos βxdx =

∫ ∞

0

e−βx1− cosλx

x
dx

Note that the integral

∫ ∞

0

e−λx − e−μx

x
cos βxdx

can be reduced to the above integral by writing



e−λx − e−μx = (e−λx − 1) + (1− e−μx) and splitting it in two integrals. Thus,

∫ ∞

0

e−λx − e−μx

x
cos βxdx =

1

2
ln

μ2 + β2

λ2 + β2

Example 4.0.6. Using the well-known Gaussian integral, also known as the

Euler-Poisson integral,

∫ ∞

0

e−x2

dx =

√
π

2

we can evaluate for λ ≥ 0 the integral

F (λ) =

∫ ∞

0

1− e−λx2

x2
dx.

Now differentiate this function we get

F ′(λ) =
∫ ∞

0

e−λx2

dx =
1√
λ

∫ ∞

0

e−(x
√
λ)2dx

√
λ =

√
π

2
√
λ

Integrating back we find

F (λ) =

∫ ∞

0

1− e−λx2

x2
dx =

√
λπ

Example 4.0.7. We can use partial derivatives as in the following integral.

Consider the function

F (λ, μ) =

∫ ∞

0

e−px cos qx− e−λx cosμx

x
dx

Here λ > 0, μ will be variables and p > 0, q will be fixed.



Then the partial derivatives will be

Fλ(λ, μ) =

∫ ∞

0

e−λx cosμxdx =
λ

λ2 + μ2

Fμ(λ, μ) =

∫ ∞

0

e−λx sinμxdx =
μ

λ2 + μ2

Integrate back we find

F (λ, μ) =
1

2
ln(λ2 + μ2) + C(p, q),

where C(p, q) is unknown. The integral will be 0 when λ = p and μ = q, so

from the last equation we find C(p, q) = − ln(p2 + q2)/2. Therefore,

∫ ∞

0

e−px cos qx− e−λx cosμx

x
dx =

1

2
ln

λ2 + μ2

p2 + q2

Example 4.0.8. Now consider the function

J(λ) =

∫ ∞

0

e−λx sin(ax) sin(bx)

x
dx

Now differentiate we get

J ′(λ) = −
∫ ∞

0

e−λx sin(ax) sin(bx)dx

=
1

2

{∫ ∞

0

e−λx cos(a+ b)xdx−
∫ ∞

0

e−λx cos(a− b)xdx

}

=
1

2

{
λ

λ2 + (a+ b)2
− λ

λ2 + (a− b)2

}



Integrating with respect to λ we get

J(λ) =
1

4
ln

λ2 + (a+ b)2

λ2 + (a− b)2
+ C

letting λ → ∞ we get that C = 0. Hence,

J(λ) =

∫ ∞

0

e−λx sin(ax) sin(bx)

x
dx =

1

4
ln

λ2 + (a+ b)2

λ2 + (a− b)2

Example 4.0.9. Using the previous example we can evaluate also

G(λ) =

∫ ∞

0

e−λx sin(ax) sin(bx)

x2
dx

where again a > b > 0.

Differentiate now with respect to λ we get

G′(λ) = −
∫ ∞

0

e−λx sin(ax) sin(bx)

x
dx = −J(λ)

and now integrating by parts,

G(λ) =
λ

4
ln

λ2 + (a− b)2

λ2 + (a+ b)2
− 1

4

∫ (
(a+ b)2

λ2 + (a− b)2
− (a− b)2

λ2 + (a− b)2

)
dx

and the integration becomes easy. The result is

G(λ) =
λ

4
ln

λ2 + (a− b)2

λ2 + (a+ b)2
+

a− b

2
arctan

λ

a− b
− a+ b

2
arctan

λ

a+ b
+ C



Letting λ → ∞ we get that,

0 = 0 +
(a− b)π

4
− (a+ b)π

4
+ C

0 =
−πb

2
+ C

C =
πb

2

Hence,

G(λ) =
λ

4
ln

λ2 + (a− b)2

λ2 + (a+ b)2
+

a− b

2
arctan

λ

a− b
− a+ b

2
arctan

λ

a+ b
+

πb

2

With λ = 0 we get that

∫ ∞

0

sin(ax) sin(bx)

x2
dx =

πb

2

where (a ≥ b > 0).

Example 4.0.10. Consider the integral

G(λ) =

∫ ∞

0

e−λx sin(ax) cos(bx)

x
dx

Suppose a > b > 0. Differentiate now with respect to λ we get

G′(λ) = −
∫ ∞

0

e−λx sin(ax) cos(bx)dx

=
−1

2

{∫ ∞

0

e−λx sin(a+ b)xdx+

∫ ∞

0

e−λx sin(a− b)xdx

}

=
−1

2

{
a+ b

λ2 + (a+ b)2
+

a− b

λ2 + (a− b)2

}



after integrating with respect to λ,

G(λ) =
−1

2

{
arctan

λ

a+ b
+ arctan

λ

a− b

}
+ C

Letting λ → ∞ we get that,

0 =
−1

2

(π
2
+

π

2

)
+ C

0 =
−π

2
+ C

C =
π

2

Hence,

G(λ) =

∫ ∞

0

e−λx sin(ax) cos(bx)

x
dx =

−1

2

{
arctan

λ

a+ b
+ arctan

λ

a− b

}
+

π

2

Setting b → a we find also

∫ ∞

0

e−λx sin(ax) cos(bx)

x
dx =

π

4
− 1

2
arctan

λ

2a
.

Using the identity 2 sin(ax) cos(ax) = sin(2ax) the integral can be reduced to

(4.0.1).

Example 4.0.11. Consider the integral

G(λ) =

∫ ∞

0

e−λx sin
3(ax)

x
dx



Differentiate now with respect to λ,

G′(λ) = −
∫ ∞

0

e−λx sin3(ax)dx

=
−1

2

∫ ∞

0

e−λx(1− cos 2ax) sin axdx

=
−1

2

∫ ∞

0

e−λx sin(ax)dx+
1

2

∫ ∞

0

e−λx cos(2ax) sin(ax)dx

=
−1

2

∫ ∞

0

e−λx sin(ax)dx+
1

4

∫ ∞

0

e−λx (sin(3ax)− sin(ax)) dx

=
−1

2

∫ ∞

0

e−λx sin(ax)dx+
1

4

∫ ∞

0

e−λx sin(3ax)dx− 1

4

∫ ∞

0

sin(ax)dx

=
−3

4

∫ ∞

0

e−λx sin(ax)dx+
1

4

∫ ∞

0

e−λx sin(3ax)dx

G′(λ) =
−3

4

(
a

λ2 + a2

)
+

1

4

(
3a

λ2 + 9a2

)

Integrate now with respect to λ we get,

G(λ) =
−3

4
arctan

λ

a
+

1

4
arctan

λ

3a
+ C

Letting λ → ∞ we get that,

0 =
−3π

8
+

π

8
+ C

0 =
−π

4
+ C

C =
π

4

Hence,

∫ ∞

0

e−λx sin
3(ax)

x
dx =

−3

4
arctan

λ

a
+

1

4
arctan

λ

3a
+

π

4



With λ = 0 we get that,

∫ ∞

0

sin3(ax)

x
dx =

π

4

Example 4.0.12. Consider the integral

J(λ) =

∫ ∞

0

e−λx sin
2(ax) sin(bx) sin(cx)

x
dx

Differentiate now with respect to λ we get,

J ′(λ) = −
∫ ∞

0

e−λx sin2(ax) sin(bx) sin(cx)dx

= −
∫ ∞

0

e−λx

(
1− cos 2ax

2

)
sin bx sin cxdx

=
−1

2

∫ ∞

0

e−λx sin bx sin cxdx+
1

2

∫ ∞

0

e−λx cos 2ax sin bx sin cxdx

Let

A =
−1

2

∫ ∞

0

e−λx sin bx sin cxdx

=
1

4

{∫ ∞

0

e−λx cos(b+ c)xdx−
∫ ∞

0

e−λx cos(b− c)xdx

}

=
1

4

{
λ

λ2 + (b+ c)2
− λ

λ2 + (b− c)2

}



and let

B =
1

2

∫ ∞

0

e−λx cos 2ax sin bx sin cxdx

=
1

4

∫ ∞

0

e−λx cos 2ax (cos(b− c)x− cos(b+ c)x) dx

=
1

4

∫ ∞

0

e−λx cos 2ax cos(b− c)xdx− 1

4

∫ ∞

0

e−λx cos 2ax cos(b+ c)xdx

=
1

8

∫ ∞

0

e−λx (cos(2a+ b− c)x+ cos(2a− b+ c)x) dx

−1

8

∫ ∞

0

e−λx (cos(2a+ b+ c)x+ cos(2a− b− c)x) dx

=
1

8

∫ ∞

0

e−λx cos(2a+ b− c)xdx+
1

8

∫ ∞

0

e−λx cos(2a− b+ c)xdx

−1

8

∫ ∞

0

e−λx cos(2a+ b+ c)xdx− 1

8

∫ ∞

0

e−λx cos(2a− b− c)xdx

=
1

8

(
λ

λ2 + (2a+ b− c)2
+

λ

λ2 + (2a− b+ c)2
− λ

λ2 + (2a+ b+ c)2
− λ

λ2 + (2a− b− c)2

)

We have

J ′(λ) = A+B

=
1

4

{
λ

λ2 + (b+ c)2
− λ

λ2 + (b− c)2

}

+
1

8

(
λ

λ2 + (2a+ b− c)2
+

λ

λ2 + (2a− b+ c)2

)

−1

8

(
λ

λ2 + (2a+ b+ c)2
+

λ

λ2 + (2a− b− c)2

)



Integrating now with respect to λ we get

J(λ) =
1

8
ln |λ2 + (b+ c)2| − 1

8
ln |λ2 + (b− c)2|+ 1

16
ln |λ2 + (2a+ b− c)2|

+
1

16
ln |λ2 + (2a− b+ c)2| − 1

16
ln |λ2 + (2a+ b+ c)2| − 1

16
ln |λ2 + (2a− b− c)2|

=
1

8
ln

∣∣∣∣λ2 + (b+ c)2

λ2 + (b− c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a+ b− c)2

λ2 + (2a+ b+ c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a− b+ c)2

λ2 + (2a− b− c)2

∣∣∣∣+K

Evaluating the constant of integration when λ → ∞ we find that K = 0.

Therefore,

J(λ) =
1

8
ln

∣∣∣∣λ2 + (b+ c)2

λ2 + (b− c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a+ b− c)2

λ2 + (2a+ b+ c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a− b+ c)2

λ2 + (2a− b− c)2

∣∣∣∣
Example 4.0.13. Using the previous example we can evaluate also

G(λ) =

∫ ∞

0

e−λx sin
2(ax) sin(bx) sin(cx)

x2
dx,

where a > 0, b > 0 and c > 0. Differentiate with respect to λ we get

G′(λ) = −
∫ ∞

0

e−λx sin
2(ax) sin(bx) sin(cx)

x
dx

G′(λ) = −J(λ) =
1

8
ln

∣∣∣∣λ2 + (b− c)2

λ2 + (b+ c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2

∣∣∣∣+ 1

16
ln

∣∣∣∣λ2 + (2a− b− c)2

λ2 + (2a− b+ c)2

∣∣∣∣
Suppose

I1 =
1

8
ln

∣∣∣∣λ2 + (b− c)2

λ2 + (b+ c)2

∣∣∣∣ ; I2 = 1

16
ln

∣∣∣∣λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2

∣∣∣∣ ; I3 = 1

16
ln

∣∣∣∣λ2 + (2a− b− c)2

λ2 + (2a− b+ c)2

∣∣∣∣
Integrating by parts each function.



∫ ∞

0

I1 =

∫ ∞

0

1

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
dλ

Let

u = ln
λ2 + (b− c)2

λ2 + (b+ c)2
dv =

1

8
dλ

du =
2λ(b+ c)2 − 2λ(b− c)2

(λ2 + (b− c)2) (λ2 + (b+ c)2)
dλ v =

1

8
λ

Then, we have

∫ ∞

0

I1 = uv −
∫ ∞

0

vdu

=
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
− 1

4

∫ ∞

0

λ2 ((b+ c)2 − (b− c)2)

(λ2 + (b− c)2) (λ2 + (b+ c)2)
dλ

=
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
−

∫ ∞

0

bcλ2

(λ2 + (b− c)2) (λ2 + (b+ c)2)
dλ

Using partial fraction decomposition, we obtain

bcλ2

(λ2 + (b− c)2) (λ2 + (b+ c)2)

=
Aλ+B

λ2 + (b− c)2
+

Cλ+D

λ2 + (b+ c)2

=
(Aλ+B) (λ2 + (b+ c)2) + (Cλ+D) (λ2 + (b− c)2)

(λ2 + (b− c)2) (λ2 + (b+ c)2)

=
Aλ3 + Aλ(b+ c)2 +Bλ2 +B(b+ c)2 + Cλ3 + Cλ(b− c)2 +Dλ2 +D(b− c)2

(λ2 + (b− c)2) (λ2 + (b+ c)2)



We get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+ C = 0

B +D = bc

A(b+ c)2 + C(b− c)2 = 0

B(b+ c)2 +D(b− c)2 = 0

Then A = −C = 0, D = 1
4
(b+ c)2, and B = −1

4
(b− c)2. We now have

∫ ∞

0

I1 =
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
+

1

4

∫ ∞

0

(b− c)2

λ2 + (b− c)2
dλ− 1

4

∫ ∞

0

(b+ c)2

λ2 + (b+ c)2
dλ

=
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
+

b− c

4
arctan

λ

b− c
− b+ c

4
arctan

λ

b+ c
+ k1

=
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
+

c− b

4
arctan

λ

c− b
− b+ c

4
arctan

λ

b+ c
+ k1

Letting λ → ∞ to find the constant of integration, we get

0 =

(
(c− b)π

8

)
−

(
(b+ c)π

8

)
+ k1

0 =
−π

4
b+ k1

k1 =
π

4
b

Note that c− b > 0 and c+ b > 0. Hence,

∫ ∞

0

I1 =
λ

8
ln

λ2 + (b− c)2

λ2 + (b+ c)2
+

c− b

4
arctan

λ

c− b
− b+ c

4
arctan

λ

b+ c
+

π

4
b



Let’s now integrate I2.

∫ ∞

0

I2 =

∫ ∞

0

1

16
ln

λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
dλ

Let

u = ln
λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
dv =

1

16
dλ

du =
2λ(2a+ b− c)2 − 2λ(2a+ b+ c)2

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
v =

1

16
λ

We then have

∫ ∞

0

I2 =
λ

16
ln

λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
− 1

8

∫ ∞

0

λ2 ((2a+ b− c)2 − (2a+ b+ c)2)

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
dλ

=
λ

16
ln

λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
− 1

8

∫ ∞

0

λ2(−8ac− 4bc)

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
dλ

=
λ

16
ln

λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
+

1

2

∫ ∞

0

λ2(2ac+ bc)

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
dλ

=
λ

16
ln

λ2 + (2a+ b+ c)2

λ2 + (2a+ b− c)2
+

∫ ∞

0

λ2ac

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
dλ

+
1

2

∫ ∞

0

λ2bc

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)
dλ

Using partial fraction decomposition for the first integral, we obtain

λ2ac

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)

=
Aλ+B

λ2 + (2a+ b+ c)2
+

Cλ+D

λ2 + (2a+ b− c)2

=
(Aλ+B) (λ2 + (2a+ b− c)2) + (Cλ+D) (λ2 + (2a+ b+ c)2)

(λ2 + (2a+ b+ c)2) (λ2 + (2a+ b− c)2)


