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Geometric measure theory could be described as differential geom-

etry, generalized through measure theory to deal with maps and

surfaces that are not necessarily smooth, and applied to the calcu-

lus of variations. Geometric measure theory is important because

it studies sets, their variation and their boundaries (from the mea-

sure theoretic sense). In particular, a very interesting branch in

Geometric measure theory, is the sets of locally finite perimeter.

Just as their name actually shows, these sets are essentially sets



whose perimeter is (locally) finite. In this thesis we start by giving

a formal definition for sets of locally finite perimeter. Moreover, we

will use the Hausdorff measure ( just like the surface measure ) as

a tool to give us the perimeter of the (measure theoretic) bound-

aries of these sets. Then we will prove a criteria for sets of locally

finite perimeter, which states that a set is of locally finite perime-

ter, if and only if, (locally) the Hausdorff measure of its ( measure

theoretic ) boundary is finite.
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Notations

L1 the 1-dimensional Lebesgue measure

Ln Ln−1 × L1 = L1 × . . .× L1 ( n times )

a.e. almost everywhere

Hs s-dimensional Hausdorff measure

en (0, 0, · · · , 1, 0, · · · ) with 1 in the nth slot

x (x1, · · · , xn)

B (x, r) {y ∈ Rn, |x− y| ≤ r} = closed ball with center x, radius r}

αs
π

s
2

Γ
(
s
2

+ 1
) (0 ≤ s <∞)

αn volume of the unit ball in Rn

χA indicator function of the set A

Lip (f) lipschitz constant of f

divϕ

(
∂

∂x1
, . . . ,

∂

∂xn

)
. (ϕ1, . . . , ϕn) =

∂ϕ1

∂x1
+ . . .+

∂ϕn
∂xn

spt (f) support of f

Df

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
U open set in Rn

∂U boundary of U



Chapter 1

Introduction

The concept of a Caccioppoli set ( locally finite perimeter ) was firstly intro-

duced by the Italian mathematician Renato Caccioppoli in 1927. He defined

the measure or area of a plane set or a surface, as the total variation in the

sense of their parametric equations, taking into consideration that this quan-

tity should be bounded. The measure of the boundary of a set was defined on

open sets, as a functional, precisely a set function. Moreover, it can be defined

on all Borel sets and its value can be approximated by the values it takes on

an increasing net of subsets.

Lamberto Cesari introduced the generalization of functions of bounded varia-

tion to the case of several variables only in 1936. In 1951, Caccioppoli improved

the version of his theory in the talk at the IV UMI Congress followed by five

notes published in the Rendiconti of the Accademia Nazionale dei Lincei.

In 1952 Ennio de Giorgi presented his first results, developing the ideas of
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Caccioppoli, on the definition of the measure of boundaries of sets at the

Salzburg Congress of the Austrian Mathematical Society. He used a smooth-

ing operator, similar to a mollifier, constructed from the Gaussian function,

in proving some results of Caccioppoli. In 1953, he published his first pa-

per on the topic. But his approach to sets of finite perimeter became widely

known, after he finished the paper in 1954 and it was reviewed by Laurence

Chisholm Young in the Mathematical Reviews. The last paper of De Giorgi

on the theory of perimeters was published in 1958. In 1959, after the death of

Caccioppoli, he started to call sets of finite perimeter ”Caccioppoli sets”.

In 1960, Herbert Federer and Wendell Fleming published their paper, changing

the approach to the theory. They defined currents. Federer showed that Cac-

cioppoli sets are normal currents of dimension n in n- dimensional Euclidean

spaces.

Sets of locally finite perimeter, those whose characteristic functions have lo-

cally bounded variation, are extremely important in studying many problems

involving interfaces, in areas such as material science, fluid mechanics, surface

physics, image processing, oncology, and computer vision. Moreover, Sets of

finite perimeter play an important role in the theory of minimal surfaces, cap-

illarity problems, phase transitions, and optimal partitions. They are general

enough to adequately model complex physical phenomena with singularities,

they have useful local approximation properties, and they satisfy vital com-

pactness results which do not hold for classes of sets having smooth boundaries



(see [1] and [2]).

Green’s theorem is one of the four fundamental theorems of vector calculus

and one of the basic results in analysis, it transforms the line integral around

a closed curve C into a double integral over the region inside C . This result

emphasizes the importance of sets of finite perimeter (see [3] and [4]).

Since sets of locally finite perimeter are of great importance, it is an inter-

esting question to find a criterion for them. We give first the formal definition

of sets of locally finite perimeter.

Definition 1.0.1. An Ln-measurable subset E ⊂ Rn has locally finite perime-

ter in U if

sup

{∫
E

divϕ dx|ϕ ∈ C1
c (U ;Rn) , |ϕ| ≤ 1

}
<∞

where U is an open set subset to Rn.

To be able to introduce the very well known criterion theorem for sets of lo-

cally finite perimeter, we first need to recall the definition of the Lebesgue and

the Hausdorff measure, and mainly focus on the latter one. The Hausdorff

measure is basically the surface measure. In other words, the Hausdorff mea-

sure can measure length, area, or in general the n-volume of an n-dimensional

object that lives in a higher dimensional space. For example if we have a 2-

dimensional surface living in R5 , we need a measure that gives us the area of

this surface even if it is not living in R2. Moreover, if we have an n-dimensional



set E and we want to work on its boundary, then we cannot use the lebesgue

measure Ln, because the boundary is of a smaller dimension that means of di-

mension n− 1 or smaller. Since the n-dimensional Lebesgue measure can only

work on n-dimensional sets and measures only the n-dimensional volume, we

need the surface measure to measure the volume of the boundary. For this

reason the mathematician Felix Hausdorff introduced the Hausdorff measure

in 1918.

Now we give the formal definition of the Hausdorff measure.

Definition 1.0.2. 1. Let A ⊂ Rn, 0 ≤ δ <∞.

Let us define

Hn
δ (A) = inf

{ ∞∑
j=1

α (n)

(
diam Cj

2

)n
; A ⊂

∞⋃
j=1

Cj ; diam Cj ≤ δ
}

and where α (n) =
π

n
2

Γ
(
n
2

+ 1
) .

2. For A ⊂ Rn, let us define

Hn (A) = lim
δ→0
Hn
δ (A) = sup

δ>0
Hδ (A) .

We call Hn an n-dimensional Hausdorff measure on Rn.

Since the set E that I work with lives in a higher dimensional space than its



own dimension, the boundary of E cannot be defined in the standard way. In

fact I introduce a definition of the boundary from the measure theoretical point

of view, called the measure theoretic boundary.

Definition 1.0.3. (see section 5.8 p.208 in [5])

Let x ∈ Rn. We say x ∈ ∂∗E, the measure theoretic boundary of E if

lim sup
r→0

Ln (B (x, r) ∩ E)

rn
> 0

and

lim sup
r→0

Ln (B (x, r) \ E)

rn
> 0.

In this thesis, my aim is to prove in extreme rigour and detail the very well

known criterion theorem for sets of locally finite perimeter. This theorem states

that a set is of locally finite perimeter if and only if locally, the hausdorff mea-

sure of the measure theoretic boundary is finite. In fact,

Theorem 1.0.4. Criterion for Finite Perimeter

Let E ⊂ Rn be Ln-measurable. Then, E has locally finite perimeter. if and

only if ,

Hn−1 (K ∩ ∂∗E) <∞ (1.0.1)

for each compact set K ⊂ Rn.



In Chapter 2, I give a review on the part of the measure theory needed in

the thesis. In particular I put the definition of Borel, Radon, Lebesgue and

Hausdorff measure, Lipchitz functions, and state some theorems and corollar-

ies related to them. In chapter 3, I state the definition for the mollifier and

a theorem that shows the importance of a mollifier in relating a non smooth

function to a smooth one. In chapter 4, I give the definition for bounded vari-

ation, locally bounded variation, and state a very important theorem which

relates functions of bounded varations to Radon measures. More precisely this

theorem states

Theorem 1.0.5. Structure Theorem for BVloc functions (see section 5.1 p.167

in [5])

Let U ⊂ Rn and f ∈ BVloc (U). Then there exists a Radon measure µ on U

and a µ-measurable function σ : U → Rn such that

1. |σ (x) | = 1 µ a.e, and

2.
∫
U
f divϕ dx = −

∫
U
ϕ.σ dµ

for all σ ∈ C1
c (U ;Rn) .

When I take E to be any set and f = χE, I will denote µ by ||∂E||, which is

called the boundary E measure. Furthermore, from this measure we can now



define the measure theoretic boundary. Next, I give the definition of essential

variation on R, which will be important in the next chapter to be able to relate

it to functions of bounded variation. In chapter 5, I extend the definition of

essential variation to Rn, and prove a theorem that relates functions of bounded

variation to the essential variation of a function. Finally, in chapter 6, I state

and prove two lemmas which will be helpful in proving my main theorem. We

finish chapter 6 by proving our main theorem.



Chapter 2

Preliminaries : Measure,

Hausdorff Measure and

Lipschitz Functions

We begin by defining measures,Borel measures, Radon measures and measur-

able sets and functions.

Definition 2.0.1. Measure

Let X denote a set, and 2X the power set of X, that is the set of all subsets of

X.

A mapping µ : 2X → [0,∞] is called a measure on X if

1. µ (φ) = 0

2. µ (A) ≤
∞∑
k=1

µ (Ak) whenever A ⊂
∞⋃
k=1

Ak.
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Definition 2.0.2. Let µ be a measure on X and A ⊂ X.Then µ restricted

to A,

written

µ A,

is the measure defined by

µ A (B) = µ (A ∩B) for all B ⊂ X.

Definition 2.0.3. A set A ⊂ X is µ-measurable if for each set B ⊂ X,

µ (B) = µ (B ∩ A) + µ (B − A) .

Definition 2.0.4. A borel set is a set that is made of unions and intersections

of open and closed sets.

Definition 2.0.5. A measure µ on Rn is called a Borel measure if every Borel

set is µ-measurable.

Definition 2.0.6. A measure µ on Rn is Borel regular if µ is Borel and for

each A ⊂ Rn there exists a Borel set B such that A ⊂ B and µ (A) = µ (B) .

Definition 2.0.7. A measure µ on Rn is a Radon measure if µ is Borel regular

and µ (K) <∞ for each compact set K ⊂ Rn.

Definition 2.0.8. A function f : X → Y is called µ-measurable if for each

open U ⊂ Y , f−1 (U) is µ-measurable.



Definition 2.0.9. 1. A µ-measurable function f is µ-integrable if

∫
f dµ <∞

and we say f ∈ L1 (µ) .

2. A µ-measurable function f is locally µ-integrable if

∫
K

f dµ <∞ for every compact set K

and we say f ∈ L1
loc (µ) .

Definition 2.0.10. A function f ∈ C∞ (Rn) is smooth, if it is infinitely dif-

ferentiable.

Next, we state some standard measure theory theorems that will be useful later

in this thesis.

Definition 2.0.11. f : Rn → Rm is approximetly continuous at x ∈ Rn if

ap lim
y→x

f (y) = f (x) ,

such an x is called a point of approximate continuity.

Definition 2.0.12. spt (f) = {f 6= 0} x ∈ X such that f (x) 6= 0. And if the

spt is compact, then it is compactly supported.



Theorem 2.0.13. Fatou’s Lemma (see section 1.3 p.19 in [5])

Let fk : X → [0,∞] be µ-measurable (k=1,. . . ).Then

∫
lim
k→∞

inf fk dµ ≤ lim
k→∞

inf

∫
fk dµ.

Theorem 2.0.14. Beppo-Levi ( see section 2.2 p.51 in [6])

Let (X,m, µ) be a measure space.

Let {fn} be a sequence of positive integrable functions, then,

∫ ∞∑
n=1

fn dµ =
∞∑
n=1

∫
fn dµ.

Now, let us recall the definition of lebesgue measure, some properties of the

lebesgue measure, and some useful theorems concerning it.

Definition 2.0.15. One-dimensional Lebesgue measure L1 on R1 is defined by

L1 (A) ≡ inf

{
∞∑
i=1

diamCi |A ⊂
∞⋃
i=1

Ci, Ci ⊂ R

}

for all A ⊂ R.

Definition 2.0.16. Let B (x, r) be a closed ball of center x and radius r

Ln
(
B (x, r)

)
= αnr

n.

Definition 2.0.17. The average of f over the set E with respect to µ by

−
∫
E

f dµ ≡ 1

µ (E)

∫
E

f dµ,



provided 0 < µ (E) <∞ and the integral on the right is defined.

Definition 2.0.18. Let µ be a radon measure on Rn, 1 ≤ p < ∞, and f ∈

Lploc (Rn, µ). A point x for which

lim
r→0
−
∫
B(x,r)

|f − f (x) |p dµ = 0

is called a lebesgue point of f with respect to µ.

Corollary 2.0.19. Density Theorem (see section 1.7.1 p.45 in [5])

Let E ⊂ Rn be Ln-measurable .Then

lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 1 for Ln a.e x ∈ E

and

lim
r→0

Ln(B(x, r) ∩ E)

Ln(B(x, r))
= 0 for Ln a.e x ∈ Rn − E.

Theorem 2.0.20. Isodiametric Inequality (see section 2.2 p.69 in [5])

For all sets A ⊂ Rn,

Ln (A) ≤ αn

(
diam A

2

)n
.

We proceed with the definition and some properties of the Hausdorff measure.

Definition 2.0.21. Let A ⊂ Rn, 0 ≤ s <∞, 0 < δ ≤ ∞. Define

Hs
δ (A) ≡ inf

{
∞∑
j=1

αs

(
diamCj

2

)s
, A ⊂

∞⋃
j=1

Cj, diam Cj ≤ δ

}



where

αs ≡
π

s
2

Γ( s
2

+ 1)
.

Here Γ (s) =
∫∞
0
e−xxs−1 dx, (0 < s <∞), is the usual gamma function.

Definition 2.0.22. s-dimensional Hausdorff measure on Rn

Let A ⊂ Rn, 0 ≤ s <∞, 0 < δ ≤ ∞.Define

Hs (A) ≡ lim
δ→0
Hs
δ (A) = sup

δ>0
Hs
δ (A) .

Theorem 2.0.23. (see section 2.1 p. 63 in [5])

H0 is the counting measure.

Theorem 2.0.24. (see on p.70 in [5])

Hn = Ln on Rn.

Finally let us finish this chapter by defining lipschitz functions.

Definition 2.0.25. 1. A function f : Rn → Rm is called Lipschitz if there

exists a constant C such that

|f (x)− f (y)| ≤ C|x− y| ∀ x, y ∈ Rn.

2. Lip (f) ≡ sup

{
|f (x)− f (y)|
|x− y|

;x, y ∈ Rn, x 6= y

}



Theorem 2.0.26. Let P : Rn → Rm be the projection map, and let A ⊂ Rn,

where m < n. Then P is a lipschitz function such that

Lip (P ) = 1 (2.0.1)

and

diam
(
P (A)

)
≤ diam (A) (2.0.2)

Proof. By Definition 2.0.25, we have

|P (x)− P (y) | ≤ |x− y| (2.0.3)

and

Lip (P ) ≤ 1.

Let us prove (2.0.1) by contradiction. Suppose that Lip (P ) < 1, thus

|P (x)− P (y) | < |x− y| ∀ x, y ∈ Rn. (2.0.4)

But, in particular if x, y ∈ Rm, then P (x) = x and P (y) = y. Replacing in

(2.0.4) , we get |P (x)− P (y) | = |x− y| < |x− y|, which is a contradiction.

To prove (2.0.2) , first recall that

diam (A) = sup |x− y| x, y ∈ A.

and

diam
(
P (A)

)
= sup |P (x)− P (y) | x, y ∈ A.



But by Definition 2.0.25, we have

|P (x)− P (y) | ≤ Lip (P ) |x− y|

Putting sup on both sides, we get

sup |P (x)− P (y) | ≤ Lip (P ) sup |x− y|

that is

diam
(
P (A)

)
≤ Lip (P ) diam (A) (2.0.5)

However by (2.0.1), Lip (P ) = 1, thus (2.0.5) becomes

diam
(
P (A)

)
≤ diam (A) .



Chapter 3

Preliminaries: Mollifiers and

Their Importance

This chapter concerns itself with the definitions needed to state our main theo-

rem and the prerequisites needed to prove it. We start by introducing mollifiers.

We will use a mollifier to smooth out our non smooth functions.

Definition 3.0.1. 1. If ε > 0 and U ⊂ Rn, we write Uε ≡ {x ∈ U ; dist (x, ∂U) >

ε}

2. Define the C∞ − function η : Rn → R as follows:

η (x) ≡


c exp

(
1

|x|2 − 1

)
|x| < 1

0 |x| ≥ 1,

17



the constant c adjusted so

∫
Rn

η(x) dx = 1. (3.0.1)

Next define

ηε (x) ≡ 1

εn
η
(x
ε

)
(ε > 0, x ∈ Rn) ;

ηε is the standard mollifier.

3. If f ∈ L1
loc (U),define

f ε ≡ ηε ∗ f ;

that is,

f ε (x) ≡
∫
U

ηε (x− y) f (y) dy (x ∈ Uε) .

To see the importance of mollifiers, note the following theorem.

Theorem 3.0.2. (see section 4.2.1 p.123 in [5])

1. For each ε > 0, f ε ∈ C∞ (Uε).

2. If f ∈ C (U), then

f ε → f

uniformly on compact subsets of U.

3. If f ∈ Lploc (U) for some 1 ≤ p <∞, then

f ε → f in Lploc (U) .



4. Furthermore, f ε (x)→ f (x) if x is a Lebesgue point of f; in particular

f ε → f Ln a.e.

5. For some 1 ≤ p <∞ ,then

∂f ε

∂xi
= ηε ∗

∂f

∂xi
(i = 1, . . . , n)

on Uε.



Chapter 4

Bounded Variation, Reduced

and Measure Theoretic

Boundary

We are mainly interested in sets of locally finite perimeter. To be able to define

these sets, we start by definition of bounded variation.

Definition 4.0.1. Bounded Variation in U

A function f ∈ L1 (U) has bounded variation in U if

sup

{∫
U

fdivϕ dx |ϕ ∈ C1
c (U ;Rn) , |ϕ| ≤ 1

}
<∞

We write

BV (U)

to denote the space of functions of bounded variation.

20



Definition 4.0.2. Locally Bounded Variation in U

A function f ∈ L1
loc (U) has locally bounded variation in U if for each open set

V ⊂⊂ U .

sup

{∫
V

fdivϕ dx |ϕ ∈ C1
c (V ;Rn) , |ϕ| ≤ 1

}
<∞

We write

BVloc (U)

to denote the space of such functions.

Definition 4.0.3. An Ln-measurable subset E ⊂ Rn has locally finite perime-

ter in U if

χE ∈ BVloc (U) .

The next theorem is of great importance since it relates f ∈ BV to a Radon

measure.

Theorem 4.0.4. Structure Theorem for BVloc functions (see section 5.1 p.167

in [5])

Let f ∈ BVloc (U). Then there exists a Radon measure µ on U and a µ-

measurable function σ : U → Rn such that

1. |σ (x) | = 1 µ a.e, and

2.
∫
U
f divϕ dx = −

∫
U
ϕ.σ dµ

for all σ ∈ C1
c (U ;Rn) .



Notations In view of Theorem 4.0.4, we denote µ by ||Df ||. In case f = χE,

we denote µ by ||∂E||, and σ = −νE.

Let us remark here a couple of things:

Remark

||Df || (U) = sup

{∫
U

fdivϕ dx|ϕ ∈ C1
c (U ;Rn) , |ϕ| ≤ 1

}

Remark Note that from the Theorem 4.0.4 and definition of ||Df ||, we can

define generalized partial derivatives and generalized derivative of function f

as long as f ∈ BVloc (U) . ( see p.169 in [5]).

For the sake of the thesis here, we will denote this partial generalized derivative

by

∂f

∂xi
where i = 1, . . . , n. (4.0.1)

And the generalized derivative by

Df =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(4.0.2)

Remark Throughout this thesis, when f ∈ BVloc, and we write
∂f

∂xi
and Df ,

we mean by them the generalized partial derivative and generalized derivative,

respectively.

However, when we have functions that are smooth, like f ε in the lemma and

the theorem of chapter 5,
∂f ε

∂xi
and Df ε will denote the usual partial derivative

and usual derivative of smooth functions, respectively.



We continue by defining the reduced and measure theoretic boundary of sets of

locally finite perimeter. These are basically a generalization of the boundary

of smooth sets.

Definition 4.0.5. Let x ∈ Rn and E is a set of locally finite perimeter in Rn.

We say x ∈ ∂∗E, the reduced boundary of E, if

1. ||∂E|| (B (x, r)) > 0 ∀ r > 0,

2. lim
r→0
−
∫
B(x,r)

νE d||∂E|| = νE (x), and

3. |νE (x) | = 1.

The reduced boundary is of extreme importance since

Theorem 4.0.6. (see remark in section 5.7.1 p.194 in [5])

Let E be a set of locally finite perimeter in Rn.Then

‖∂E‖ (Rn \ ∂∗E) = 0.

Theorem 4.0.7. (see section 5.7.3 p.205 in [5])

Assume E has locally finite perimeter in Rn.Then

‖∂E‖ = Hn−1 ∂∗E.



Definition 4.0.8. Let x ∈ Rn. We say x ∈ ∂∗E, the measure theoretic bound-

ary of E if

lim sup
r→0

Ln (B (x, r) ∩ E)

rn
> 0

and

lim sup
r→0

Ln (B (x, r) \ E)

rn
> 0.

Lemma 4.0.9. (see section 5.11 p.222 in [5])

Let E ⊂ Rn be Ln-measurable.

∂∗E is a Borel measurable set.

The measure theoretic boundary and reduced boundary are very related, that is

Lemma 4.0.10. (see section 5.8 p.208 in [5])

Assume E is a set of locally finite perimeter in Rn.

1. ∂∗E ⊂ ∂∗E.

2. Hn−1 (∂∗E \ ∂∗E) = 0.

We recall the definition of variation for smooth and essential variation for non

smooth functions f : R→ R.

Definition 4.0.11. Let f : R→ R be a smooth function. Then the variation

is

V b
a f = sup

{
m∑
j=1

|f (tj+1)− f (tj) |

}
.



Theorem 4.0.12. ( see section 3.4.1 p. 134 in [7])

Let f be a smooth function then

V b
a f =

∫ b

a

|f ′ (x) | dx.

Definition 4.0.13. Suppose f : R→ R is L1-measurable, −∞ ≤ a < b ≤ ∞.

The essential variation of f on the interval (a, b) is

ess V b
a f = V b

a f ≡ sup

{
m∑
j=1

|f (tj+1)− f (tj) |

}

the supremum taken over all finite partitions a < t1 < . . . < tm+1 < b such that

each tj is a point of approximate continuity of f.

It turns out ||Df || and essV b
a f are equal. This will be a key point while proving

our main theorem.

Theorem 4.0.14. (see section 5.10.1 p.217 in [5])

Suppose f ∈ L1 (a, b). Then ||Df || (a, b) = ess V b
a f . Thus f ∈ BV (a, b) ⇐⇒

ess V b
a f <∞.



Chapter 5

Extending The Essential

Variation to Functions on Rn

To be able to prove our main theorem, we need to extend the definition of the

essential variation essV b
a to function f on Rn.

Let us begin by some notations : Write x′ ∈ Rn−1 as x′ = (x1, . . . xk−1, xk+1, . . . xn)

for k = 1, . . . , n.

Assume f : Rn → R. For a fixed x′ ∈ Rn−1, define fk as a function of t ∈]a, b[

as

fk (x′, t) ≡ f (x1, . . . , xk−1, t, xk+1, . . . , xn)

where k = 1, . . . , n.

We now define the essential variation of fk as follows

ess V b
a fk = sup

n∑
j=1

|fk (x′, tj+1)− fk (x′, tj)|

26



for each fixed x′, and a = t1 < t2 . . . < tn = b forming a partition of ]a, b[.

The next theorem relates bounded variation to essential variation. To be able

to do that, we need the following lemma.

Lemma 5.0.1. Let f ∈ BVloc (Rn). Let f ε = ηε ∗ f where ηε is the standard

mollifier defined in Definition 3.0.1. Then we have

1. f ε → f a.e x ∈ Rn.

2. lim sup
ε→0

∫
C

|Df ε| dx <∞. ( where C ⊆ Rn is a compact set)

Proof. Notice that (1) is true by Theorem 3.0.2 part (4) .

To see (2) , notice first that ∀ i = 1, 2, . . . , n

∥∥∥( ∂f
∂xi

)ε ∥∥∥
L1(C)

≤
∥∥∥ ∂f
∂xi

∥∥∥
L1(C)

(5.0.1)

(see p.124 Theorem 1 part (3) in [5])

However, by Definition 3.0.1 part (3) and Theorem 3.0.2 part (5) , we have

(
∂f

∂xi

)ε
= ηε ∗

∂f

∂xi
=
∂f ε

∂xi
(5.0.2)

Replacing (5.0.2) in (5.0.1), we get

∥∥∥∂f ε
∂xi

∥∥∥
L1(C)

≤
∥∥∥ ∂f
∂xi

∥∥∥
L1(C)

(5.0.3)



Notice that (5.0.3) translates to

∫
C

∣∣∣∂f ε
∂xi

∣∣∣ dx ≤
∫
C

∣∣∣ ∂f
∂xi

∣∣∣ dx := Mi (5.0.4)

where Mi is a constant depending on i = 1, . . . , n.

By summing both sides of (5.0.4) , we get

n∑
i=1

∫
C

∣∣∣∂f ε
∂xi

∣∣∣ dx ≤M1 + . . .+Mn := M (5.0.5)

Moreover,

|Df ε| =

√√√√ n∑
i=1

∣∣∣∂f ε
∂xi

∣∣∣2 ≤ n∑
i=1

√∣∣∣∂f ε
∂xi

∣∣∣2 =
n∑
i=1

∣∣∣∂f ε
∂xi

∣∣∣ (5.0.6)

Integrating both sides of (5.0.6), and using (5.0.5) , we get

∫
C

|Df ε| dx ≤
∫
C

n∑
i=1

∣∣∣∂f ε
∂xi

∣∣∣ dx =
n∑
i=1

∫
C

∣∣∣∂f ε
∂xi

∣∣∣ dx ≤M (5.0.7)

Finally, taking lim sup on both sides of (5.0.7) , we get

lim sup
ε→0

∫
C

|Df ε| dx ≤M <∞,

which finishes the proof of (2) .



Theorem 5.0.2. Assume f ∈ L1
loc (Rn). Thus

f ∈ BVloc (Rn) ⇐⇒
∫
K

ess V b
a fk dx′ <∞

for each k = 1, . . . , n, a, b ∈ R, a < b, and compact set K ⊂ Rn−1.

Proof. We begin by proving the first direction of the theorem. Suppose f ∈

BVloc (Rn) . Set

C =
{
x ∈ Rn|a ≤ xk ≤ b, (x1, . . . , xk−1, xk+1, . . . , xn) ∈ K

}

such that k, a, b,K are defined as above.

Let f ε ≡ ηε ∗ f (for ε > 0 small enough).Thus by Lemma 5.0.1 we have :

1. f ε → f a.e x ∈ Rn.

2. lim sup
ε→0

∫
C

|Df ε| dx <∞.

Notice that (1) translates to f εk (x′, t) → fk (x′, t) for Ln−1 a.e x′ ∈ Rn−1, and

L1 a.e t ∈ R where,

f εk (x′, t) ≡ f ε (x1, . . . , xk−1, t, xk+1, . . . , xn) .

Which means that for a.e fixed x′ ∈ Rn−1, we have

f εk → fk a.e t ∈ R. (5.0.8)

Let a = t1 < t2 < . . . < tn = b be a partition of ]a, b[. Then, by using (5.0.8),



and the definition of ess V b
a fk, we have,

n∑
j=1

|fk (x′, tj+1)− fk (x′, tj) | =
n∑
j=1

lim
ε→0
|f εk (x′, tj+1)− f εk (x′, tj) |

= lim
ε→0

n∑
j=1

|f εk (x′, tj+1)− f εk (x′, tj) |

= lim inf
ε→0

n∑
j=1

|f εk (x′, tj+1)− f εk (x′, tj) |

≤ lim inf
ε→0

ess V b
a f

ε
k

This is true for all partitions of ]a, b[, thus, taking the sup on both sides

ess V b
a fk ≤ lim inf

ε→0
ess V b

a f
ε
k. (5.0.9)

Thus by (5.0.9) and Theorem 2.0.13, Theorem 4.0.12, the fact that
∣∣∣∂f ε
∂xi

∣∣∣ ≤
|Df ε|, and by (2)

∫
K

ess V b
a fk dx′ ≤

∫
K

lim inf
ε→0

ess V b
a f

ε
k dx′

≤ lim inf
ε→0

∫
K

ess V b
a f

ε
k dx′

= lim inf
ε→0

∫
K

∫ b

a

|f εk (xk) |′ dxk dx′

= lim inf
ε→0

∫
C

|f ε (xk) |′ dx

= lim inf
ε→0

∫
C

∣∣∣∂f ε
∂xk

∣∣∣ dx

≤ lim inf
ε→0

∫
C

|Df ε| dx

≤ lim sup
ε→0

∫
C

|Df ε| dx

< ∞.



This finishes the proof of the first direction of the theorem.

We end by proving the second direction of the theorem. Suppose f ∈ L1
loc (Rn)

and ∫
K

ess V b
a fk dx′ <∞,

for any compact K ⊆ Rn, ∀a, b ∈ R, a < b, and any k = 1, . . . , n.

Now, fix k = 1, . . . , n. Let ϕk ∈ C∞c (Rn) , |ϕk| ≤ 1. Then choose a, b, and

K such that

spt (ϕk) ⊆
{
x ∈ Rn, a ≤ xk ≤ b, (x1, . . . , xk−1, xk+1, . . . , xn) ∈ K

}

By Remark 4 , and Theorem 4.0.14 we have

∫ b

a

fk
∂ϕk
∂xk

dxk ≤ sup

∫ b

a

fk
∂ϕk
∂xk

dxk = ||Dfk|| = ess V b
a fk. (5.0.10)

So, by (5.0.10) we get

∫
Rn

f
∂ϕk
∂xk

dx =

∫
spt(ϕk)

f
∂ϕk
∂xk

dx ≤
∫
K

∫ b

a

fk
∂ϕk
∂xk

dxkdx
′ ≤
∫
K

ess V b
a fk dx′ <∞

(5.0.11)

Finally, let ϕ = (ϕ1, . . . , ϕn) , ϕ ∈ C∞c (Rn,Rn) . Then by (5.0.11) we get

∫
Rn

fdivϕ dx =

∫
Rn

f

n∑
k=1

∂ϕk
∂xk

dx =
n∑
k=1

∫
Rn

f
∂ϕk
∂xk

dx <∞

which means that f ∈ BVloc (Rn) .



Chapter 6

Criterion for Sets of Locally

Finite Perimeter

To be able to prove our main theorem, we need the following two lemmas.

We start by some notations: x = (x′, t) ∈ Rn, for x′ = (x1, . . . , xn−1) ∈ Rn−1,

t = xn ∈ R.

The projection P : Rn → Rn−1 is defined by :

P (x) = x′.

Finally, Set

N (P |A, x′) = H0
(
A ∩ P−1{x′}

)
(6.0.1)

for Borel sets A ⊂ Rn and x′ ∈ Rn−1.

Lemma 6.0.1.
∫
Rn−1 N (P |A, x′) dx′ ≤ Hn−1 (A) .

Proof. Fix j ∈ N. By Definition 2.0.21, ∃{Bj
i }∞i=1 such that A ⊂

∞⋃
i=1

Bj
i where
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diam
(
Bj
i

)
≤ 1

j
for every i, and

∞∑
i=1

αn−1

(
diam

(
Bj
i

)
2

)n−1

≤ Hn−1 (A) +
1

j
. (6.0.2)

Let

gji = χP(Bj
i )
. (6.0.3)

Then,

H0
1
j

(
A ∩ P−1 ({x′})

)
≤

∞∑
i=1

gji (x′) . (6.0.4)

To see (6.0.4), notice that by Theorem 2.0.23, H0
1
j

(
A∩P−1 ({x′})

)
counts the

points in A ∩ P−1{x′}.Then, if

x ∈ A ∩ P−1{x′} −→ ∃ at least one i such that x ∈ Bj
i andP (x) = x′ ∈ P

(
Bj
i

)
−→ gji (x′) = 1

which implies that,
∞∑
i=1

gji (x′) counts the same points each at least once (for

each x, and each i, where x ∈ Bj
i , g

j
i (x′) gives us a 1), thus leading to (6.0.4) .

By (6.0.1) , Definition 2.0.22, Theorem 2.0.13, (6.0.4) , Theorem 2.0.14, (6.0.3) ,



Theorems 2.0.24, 2.0.20 and 2.0.26, and finally by (6.0.2) , we get,

∫
Rn−1

N (P |A, x′) dx′ =

∫
Rn−1

H0
(
A ∩ P−1 ({x′})

)
dHn−1

=

∫
Rn−1

lim
j→∞
H0

1
j

(
A ∩ P−1 ({x′})

)
dHn−1

=

∫
Rn−1

lim inf
j→∞

H0
1
j

(
A ∩ P−1 ({x′})

)
dHn−1

≤ lim inf
j→∞

∫
Rn−1

H0
1
j

(
A ∩ P−1 ({x′})

)
dHn−1

≤ lim inf
j→∞

∫
Rn−1

∞∑
i=1

gji (x′) dHn−1

= lim inf
j→∞

∞∑
i=1

∫
Rn−1

gji (x′) dHn−1

= lim inf
j→∞

∞∑
i=1

∫
Rn−1

χP(Bj
i )

dHn−1

= lim inf
j→∞

∞∑
i=1

Hn−1
(
P
(
Bj
i

) )
= lim inf

j→∞

∞∑
i=1

Ln−1
(
P
(
Bj
i

) )

≤ lim inf
j→∞

∞∑
i=1

αn−1

diam
(
P
(
Bj
i

) )
2

n−1

≤ lim inf
j→∞

∞∑
i=1

αn−1

(
diam

(
Bj
i

)
2

)n−1

≤ lim inf
j→∞

(
Hn−1 (A) +

1

j

)
= Hn−1 (A) + lim inf

j→∞

1

j

= Hn−1 (A) .

This finishes the proof of the lemma.



Lemma 6.0.2. Let E ⊂ Rn be Ln-measurable. We define

I :=

{
x ∈ Rn| lim

r→0

Ln (B (x, r) \ E)

rn
= 0

}
(6.0.5)

and

O :=

{
x ∈ Rn| lim

r→0

Ln (B (x, r) ∩ E)

rn
= 0

}
(6.0.6)

to be the measure theoretic interior and exterior of E, respectively. Then

Ln
(

(I \ E) ∪ (E \ I)
)

= 0 (6.0.7)

and

Ln
(

(O \ Ec) ∪ (Ec \O)
)

= 0 (6.0.8)

Proof. We will only prove (6.0.7) , since the proof of (6.0.8) is similar. To do

this we will show that Ln (I \ E) = 0 and Ln (E \ I) = 0. First, by Corollary

2.0.19 on Ec we have

lim
r→0

Ln (B (x, r) ∩ Ec)

Ln (B (x, r))
= 1 a.e x ∈ Ec. (6.0.9)

This means that Ec = A ∪ F with

Ln (F ) = 0 (6.0.10)

and

lim
r→0

Ln (B (x, r) \ E)

αnrn
= 1 ∀ x ∈ A. (6.0.11)



Similarly by Corollary 2.0.19 on E, we can write E = B ∪G with

Ln (G) = 0 (6.0.12)

and

lim
r→0

Ln (B (x, r) ∩ E)

αnrn
= 1 ∀ x ∈ B. (6.0.13)

Now, let us prove that I \ E ⊂ F. Notice that

I \ E = I ∩ Ec = I ∩ (A ∪ F ) = (I ∩ A) ∪ (I ∩ F ) . (6.0.14)

But, I ∩ A = φ because, if x ∈ A, then by (6.0.11) lim
r→0

Ln (B (x, r) \ E)

αnrn
= 1,

while if x ∈ I, then by (6.0.5) lim
r→0

Ln (B (x, r) \ E)

rn
= 0.

Thus (6.0.14) becomes

I \ E = I ∩ F ⊂ F (6.0.15)

which is exactly what we want. Since by (6.0.10) we have Ln (F ) = 0, (6.0.15)

implies that Ln (I \ E) = 0.

Next, let us show that

E \ I ⊂ G (6.0.16)

To see this, take

x ∈ E \ I = (B ∪G) ∩ Ic ⊂ B ∪G



Notice that if x ∈ B ,then by Definition 2.0.16 and (6.0.13) we have :

1 = lim
r→0

Ln (B (x, r))

αnrn

= lim
r→0

Ln (B (x, r) ∩ (E ∪ Ec))

αnrn

= lim
r→0

Ln (B (x, r) ∩ E)

αnrn
+ lim

r→0

Ln (B (x, r) ∩ Ec)

αnrn

= 1 + lim
r→0

Ln (B (x, r) ∩ Ec)

αnrn

which implies that , lim
r→0

Ln (B (x, r) ∩ Ec)

αnrn
= 0. In other words x ∈ I, which

contradicts the fact that we took x ∈ E \ I. Thus, x /∈ B and therefore we

have (6.0.16) .

However, recall that by (6.0.12) , we have, Ln (G) = 0 so by (6.0.16), we get

Ln (E \ I) = 0.

Finally, by countable subadditivity:

Ln
(

(I \ E) ∪ (E \ I)
)
≤ Ln (I \ E) + Ln (E \ I) = 0.

Thus,

Ln
(

(I \ E) ∪ (E \ I)
)

= 0.

We are now ready to discuss the criterion for sets of locally finite perimeter.



Theorem 6.0.3. Criterion for Finite Perimeter

Let E ⊂ Rn be Ln-measurable. Then, E has locally finite perimeter if and only

if ,

Hn−1 (K ∩ ∂∗E) <∞ (6.0.17)

for each compact set K ⊂ Rn.

Proof. We start by proving the first direction of the theorem.We know by

Theorem 4.0.4 that if E is a set of locally finite perimeter, then ||∂E|| is a

radon measure. Furthermore, by Theorem 4.0.7 and Definition 2.0.2 , we have

||∂E|| (K) = Hn−1 ∂∗E (K) = Hn−1 (∂∗E ∩K) . (6.0.18)

Hence, by Lemma 4.0.10 and (6.0.18) we have :

Hn−1 (K ∩ ∂∗E) = Hn−1

(
K ∩

(
∂∗E ∪ (∂∗E \ ∂∗E)

))

= Hn−1

(
(K ∩ ∂∗E) ∪

(
K ∩ (∂∗E \ ∂∗E)

))
≤ Hn−1 (K ∩ ∂∗E) +Hn−1

(
K ∩ (∂∗E \ ∂∗E)

)
= Hn−1 (K ∩ ∂∗E)

= ||∂E|| (K) <∞

where the last step comes from Lemma 4.0.9 and Definition 2.0.7.



We proceed by proving the second direction of the theorem. We have

Hn−1 (K ∩ ∂∗E) <∞ for any compact K ⊂ Rn and want to prove that E is of

locally finite perimeter. Now recall that by Lemma 6.0.2, Ln (E \ I) = 0 and

Ln (I \ E) = 0. But any two sets that differ in at most a set of Ln-measure

zero, define the same boundary measure. Thus it is enough to prove I of lo-

cally finite perimeter. Hence, by Definition 4.0.3 and Theorem 5.0.2 we need

to prove that ∫
V

ess V a
−a (χI)l dx′ <∞ (6.0.19)

for V = ] − a, a[n−1 ⊂ Rn−1 for any fixed a > 0, l = 1, . . . , n, and x′ =

(x1, . . . xl−1, xl+1, . . . , xn) ∈ Rn−1.

We will do this proof for l = n only, as the rest of the cases follow accord-

ingly. For x ∈ Rn, we will denote x = (x′, xn) where x′ ∈ Rn−1, xn ∈ R and

x′ = P (x) the projection of x on Rn−1. We will denote by z a general point in

Rn−1, and by t a general point in R.

We begin by defining the following sets, for positive integers k and m :

G (k) =

{
x ∈ Rn,Ln (B (x, r) ∩O) ≤ αn−1

3n+1
rn for 0 < r <

3

k

}
(6.0.20)

H (k) =

{
x ∈ Rn,Ln (B (x, r) ∩ I) ≤ αn−1

3n+1
rn for 0 < r <

3

k

}
(6.0.21)



and,

G+ (k,m) =

{
x ∈ G (k) , x+ sen ∈ O for 0 < s <

3

m

}
(6.0.22)

G− (k,m) =

{
x ∈ G (k) , x− sen ∈ O for 0 < s <

3

m

}
(6.0.23)

H+ (k,m) =

{
x ∈ H (k) , x+ sen ∈ I for 0 < s <

3

m

}

H− (k,m) =

{
x ∈ H (k) , x− sen ∈ I for 0 < s <

3

m

}
(6.0.24)

Claim # 1: Ln−1
(
P
(
G+ (k,m)

))
= Ln−1

(
P
(
G− (k,m)

))
= Ln−1

(
P
(
H+ (k,m)

))

= Ln−1
(
P
(
H− (k,m)

))
= 0 ∀ k,m ∈ N.

Proof of Claim # 1 :We will only prove Ln−1
(
P
(
G+ (k,m)

))
= 0, be-

cause all other cases are treated similarly. Let G+ (k,m) =
∞⋃

j=−∞

Gj, where

Gj = G+ (k,m) ∩

{
x ∈ Rn,

j − 1

m
≤ xn <

j

m

}
(6.0.25)

Assume that

z ∈ Rn−1, 0 < r < min
{1

k
,

1

m

}
, andB (z, r) ∩ P (Gj) 6= φ (6.0.26)

Thus, P−1
(
B (z, r)

)
∩ Gj 6= φ. So, sup

{
xn ∈ R, x ∈ P−1

(
B (z, r)

)
∩ Gj

}
is defined.



Therefore, there exists b ∈ P−1
(
B (z, r)

)
∩Gj such that

bn +
r

2
> sup

{
xn ∈ R, x ∈ P−1

(
B (z, r)

)
∩Gj

}
. (6.0.27)

But, notice that

{
y ∈ Rn, bn +

r

2
≤ yn ≤ bn + r

}
∩ P−1

(
P (Gj) ∩B (z, r)

)
⊂ O ∩B (b, 3r)

(6.0.28)

To show this, let y ∈ left hand side of (6.0.28) . We prove first that y ∈

B (b, 3r) .

Take y′ = (y1, . . . , yn−1) and b′ = (b1, . . . , bn−1) . Then,

|y − b| =

√√√√ n∑
i=1

|yi − bi|2

=

√√√√n−1∑
i=1

|yi − bi|2 + |yn − bn|2

≤

√√√√n−1∑
i=1

|yi − bi|2 +
√
|yn − bn|2

= |y′ − b′|+ |yn − bn|

≤ |y′ − z|+ |z − b′|+ |yn − bn|

≤ 3r

where the last inequality is due to the following statements respectively:

1. by (6.0.28) y ∈ P−1
(
P (Gj) ∩ B (z, r)

)
−→ y′ ∈ P (Gj) ∩ B (z, r) −→

y′ ∈ B (z, r).



2. by (6.0.27) b ∈ P−1
(
B (z, r)

)
∩ Gj −→ b′ ∈ B (z, r) ∩ P (Gj) −→ b′ ∈

B (z, r) .

3. by (6.0.28)
r

2
≤ yn − bn ≤ r −→ yn ∈ B (bn, r) .

Next we prove that the left hand side of (6.0.28) is in O.

Since y ∈ P−1
(
P (Gj) ∩ B (z, r)

)
then , y′ ∈ P (Gj) ∩ B (z, r) that is, there

exists x ∈ Gj such that x′ = y′. Thus, we get x ∈ P−1
(
B (z, r)

)
, that is x ∈

Gj ∩ P−1
(
B (z, r)

)
. So by (6.0.27) and (6.0.28) , we get

xn < bn +
r

2
≤ yn (6.0.29)

So by (6.0.29) , ∃ s > 0 such that

yn = xn + s ≤ bn + r. (6.0.30)

Thus, we get

s ≤ bn + r − xn.

Moreover, by (6.0.25), we have xn ≥
j − 1

m
, and thus

s ≤ bn + r − j

m
+

1

m
. (6.0.31)

But, b ∈ P−1
(
B (z, r)

)
∩Gj, and so by (6.0.25) , we get

bn <
j

m
. (6.0.32)



Finally, by replacing (6.0.32) in (6.0.31) and using (6.0.26) we get

0 < s ≤ 2

m
<

3

m
. (6.0.33)

To see how this leads us to y ∈ O, recall that we have x ∈ Gj. Thus by (6.0.25)

x ∈ G+ (k,m) . Hence, by (6.0.33) x+ sen ∈ O.

Now, with the fact that x′ = y′ and by (6.0.30) , we have

x+ sen = (x′, xn + s) = (y′, xn + s) = (y′, yn) = y.

So y ∈ O and we have (6.0.28) . Taking the Ln-measure of each side of (6.0.28)

and by (6.0.20) used on b and 3r, we get

Ln
({

y ∈ Rn, bn+
r

2
≤ yn ≤ bn+r

}
∩P−1

(
P (Gj)∩B (z, r)

))
≤ Ln

(
O∩B (b, 3r)

)
≤ αn−1

3n+1
(3r)n .

(6.0.34)

However, notice that

(
P (Gj)∩B (z, r)

)
×
[
bn+

r

2
, bn+r

]
⊆

{
y ∈ Rn, bn+

r

2
≤ yn ≤ bn+r

}
∩P−1

(
P (Gj)∩B (z, r)

)
.

(6.0.35)

To see this take y = (y′, yn) ∈ P (Gj)∩B (z, r) ×
[
bn+

r

2
, bn+r

]
. This implies

that

1. y′ ∈ P (Gj) ∩B (z, r) −→ y ∈ P−1
(
P (Gj) ∩B (z, r)

)
2. yn ∈

[
bn +

r

2
, bn + r

]
−→ y ∈

{
y ∈ Rn, bn +

r

2
≤ yn ≤ bn + r

}
.



Therefore, replacing (6.0.35) in (6.0.34) , we get

Ln
((

P (Gj) ∩B (z, r)
)
× [bn +

r

2
, bn + r]

)
≤ αn−1

3n+1
(3r)n . (6.0.36)

Now,by applying Definition 2.0.15 on (6.0.36) , we get

r

2
Ln−1

(
P (Gj) ∩B (z, r)

)
≤ αn−1

3n+1
(3r)n . (6.0.37)

Doing some arithmetic operations on (6.0.37) and taking lim sup
r→0

on both sides,

we get

lim sup
r→0

Ln−1
(
P (Gj) ∩B (z, r)

)
αn−1rn−1

≤ 2

3
∀ z ∈ Rn−1. (6.0.38)

But, if we apply Corollary 2.0.19 on P (Gj) , then we know that

lim sup
r→0

Ln−1
(
P (Gj) ∩B (z, r)

)
αn−1rn−1

= 1 a.e z ∈ P (Gj) ,

which means that, ∃ N ⊂ P (Gj) such that

Ln−1 (N) = 0,

whereas on P (Gj) \N

lim sup
r→0

Ln−1
(
P (Gj) ∩B (z, r)

)
αn−1rn−1

= 1 ∀ z ∈ P (Gj) \N.



However, by (6.0.38) we have lim sup
r→0

Ln−1
(
P (Gj) ∩B (z, r)

)
αn−1rn−1

≤ 2

3
< 1, which

implies that P (Gj) \N = φ, and P (Gj) = N. Thus, we get

Ln−1
(
P (Gj)

)
= Ln−1 (N) = 0. (6.0.39)

Finally, by (6.0.39) we have :

Ln−1
(
P
(
G+ (k,m)

))
= Ln−1

(
P

(
∞⋃

j=−∞

Gj

))

= Ln−1
(

∞⋃
j=−∞

P (Gj)

)

≤
∞∑

j=−∞

Ln−1
(
P (Gj)

)
= 0.

And the claim is proved.

Define U = ]− a, a[n⊂ Rn.

We want to apply Lemma 6.0.1 on the set U ∩∂∗E. To be able to do so, notice

that U is an open set, and thus ( by Definition 2.0.4 ) a borel set, and by

Lemma 4.0.9, ∂∗E is a borel set. Hence, U ∩∂∗E is a borel set. So by applying

Lemma 6.0.1 on the set U ∩ ∂∗E, and by (6.0.17) , we have

∫
Rn−1

N (P |U ∩ ∂∗E, z) dz ≤ Hn−1 (U ∩ ∂∗E) <∞. (6.0.40)

Since an integrable function is finite almost everywhere, from (6.0.40) we get

that

N (P |U ∩ ∂∗E, z) <∞ Ln−1 − a.e z ∈ Rn−1, (6.0.41)



and therefore by (6.0.1) we have

H0
(
U ∩ ∂∗E ∩ P−1 ({z})

)
<∞ Ln−1 − a.e z ∈ Rn−1. (6.0.42)

Now let z ∈ V \
∞⋃

k,m=1

P

[
G+ (k,m)∪G− (k,m)∪H+ (k,m)∪H− (k,m)

]
, such

that (6.0.42) holds.

Then, by Theorem 2.0.23 and by (6.0.42) , we can write

U ∩ ∂∗E ∩ P−1 ({z}) = {τi}Mi=1. (6.0.43)

Now, assume −a < t1 < . . . < tm+1 < a are points of approximate continuity

of f z (t) := χI (z, t) . Notice that ∀ j ∈ {1, . . . ,m} we have

|f z (tj+1)− f z (tj) | = 0 or |f z (tj+1)− f z (tj) | = 1.

Suppose that |f z (tj+1)−f z (tj) | = 1, and assume without any loss of generality

that,

(z, tj) ∈ I and (z, tj+1) /∈ I. (6.0.44)

We would like to show that every neighbourhood of tj+1 that is inside the

partition ]− a, a[ must contain points s such that (z, s) ∈ O and f z is approx-

imetly continuous at s (F)

To prove (F) , consider two cases :

Case 1: If (z, tj+1) ∈ O, then (F) is satisfied for s = tj+1.

Case 2: If (z, tj+1) /∈ O, then by Definition 4.0.8 and by (6.0.5) and (6.0.6)

we can write Rn = I ∪ O ∪ ∂∗E. By (6.0.44), we get (z, tj+1) /∈ I ∪ O, hence



(z, tj+1) ∈ ∂∗E.

We now have the following information about (z, tj+1)

1. (z, tj+1) ∈ ∂∗E

2. (z, tj+1) ∈ P−1 ({z})

3. (z, tj+1) = (z1, . . . zn−1, tj+1) ∈ U = ]−a, a[n ,where z1, . . . zn−1

∈ ]− a, a[n−1 and tj+1 ∈ ]− a, a[.

Thus by (6.0.43) , and without any loss of generality, we have (z, tj+1) = τ1.

To prove (F) , we go by contradiction. Assume (F) is not true.Then, there

exists a neighborhood W of tj+1 such that for any s ∈ W, (z, s) /∈ O. Thus

there exists r0 > 0 such that

|τi − τl| > 2r0 ∀ i, l ∈ {1, . . .M}

and

(z, s) ∈ I ∀ s ∈ (tj+1 − r0, tj+1 + r0) \ {tj+1}.

Now, for sufficiently large integer N , we have

B
(

(z, tj+1) ,
r

2

)
⊂ B

((
z, tj+1 +

r

N

)
, r
)

(6.0.45)

where (z, tj+1) ∈ ∂∗E and
(
z, tj+1 +

r

N

)
∈ I.

Next, putting Ln measure, intersecting by Ec, dividing by rn and taking



lim sup
r→0

on both sides of (6.0.45) we have, by (6.0.5) that

lim sup
r→0

Ln
(
B
(

(z, tj+1) ,
r

2

)
∩ Ec

)
rn

≤ lim sup
r→0

Ln
(
B
((
z, tj+1 +

r

N

)
, r
)
∩ Ec

)
rn

= lim
r→0

Ln
(
B
((
z, tj+1 +

r

N

)
, r
)
∩ Ec

)
rn

(6.0.46)

with (z, tj+1) ∈ ∂∗E and
(
z, tj+1 +

r

N

)
∈ I.

But, by Definition 4.0.8, the left hand side of (6.0.46) is strictly positive, while

by (6.0.5) , the right hand side of (6.0.46) is zero. This leads to a contradiction,

and (F) is proved.

Consequently, for z ∈ V \
∞⋃

k,m=1

P

[
G+ (k,m)∪G− (k,m)∪H+ (k,m)∪H− (k,m)

]
such that (6.0.42) holds, we have

ess V a
−af

z = sup

{
m∑
j=1

|f z (tj+1)− f z (tj) |

}

the sup taken over all points −a < t1 < . . . < tm < a such that (z, ti) ∈ O ∪ I

and f z is approximetly continuous at each ti.

Claim # 2: Let z ∈ V \
∞⋃

k,m=1

P

[
G+ (k,m)∪G− (k,m)∪H+ (k,m)∪H− (k,m)

]
.

If (z, u) ∈ I and (z, v) ∈ O, with u < v, then ∃ u < t < v such that (z, t) ∈ ∂∗E.



Proof of Claim # 2 : Fix z ∈ V \
∞⋃

k,m=1

P

[
G+ (k,m)∪G− (k,m)∪H+ (k,m)∪

H− (k,m)

]
, and let (z, u) ∈ I and (z, v) ∈ O. We will prove Claim # 2

by contradiction. Assume (z, t) /∈ ∂∗E ∀ u < t < v. Then (z, t) ∈ O ∪ I

∀ u < t < v.

Subclaim # 1: ∀ k ∈ N, G (k) and H (k) are both closed and increas-

ing as a sequence of k.

Proof of Subclaim # 1 : For simplifying notation, let

fr (x) =
Ln (B (x, r) ∩O)

αn−1
3n+1

.

Notice that fr (x) is a continuous function of x.

Now, recall that by the definition of G (k) ( see 6.0.20 ), we have

G (k) =

{
x ∈ Rn, fr (x) ≤ rn for 0 < r <

3

k

}
(6.0.47)

Let us show that

G (k) =
⋂

0<r< 3
k

f−1r ([0, rn]) (6.0.48)



To see that, take x ∈ G (k) , then by (6.0.47) we have

fr (x) ≤ rn ∀ 0 < r <
3

k
⇐⇒ 0 ≤ fr (x) ≤ rn ∀ 0 < r <

3

k

⇐⇒ fr (x) ∈ [0, rn] ∀ 0 < r <
3

k

⇐⇒ x ∈ f−1r ([0, rn]) ∀ 0 < r <
3

k

⇐⇒ x ∈
⋂

0<r< 3
k

f−1r ([0, rn]) ∀ 0 < r <
3

k

and (6.0.48) is proved.

Thus, since fr continuous and [0, rn] is a closed interval, then (6.0.48) implies

that G (k) is closed.

Furthermore, G (k) is an increasing sequence in k, since by (6.0.47) if x ∈ G (k)

then fr (x) ≤ rn ∀ 0 < r <
3

k
.

Thus fr (x) ≤ rn ∀ 0 < r <
3

k + 1
which implies that x ∈ G (k + 1) . Hence,

G (k) ⊂ G (k + 1) .

By a similar argument H (k) is also closed and increasing as a sequence of k.

Subclaim # 2:

I ⊂
∞⋃
k=1

G (k) (6.0.49)

and

O ⊂
∞⋃
k=1

H (k) (6.0.50)

Proof of Subclaim # 2 : To show (6.0.49), take x ∈ I. Then by (6.0.5)

lim
r→0

Ln (B (x, r) ∩ Ec)

rn
= 0. (6.0.51)



On one hand we have

B (x, r) ∩ Ec =

(
B (x, r) ∩

(
Ec ∩ (O ∪Oc)

))
=

(
B (x, r) ∩ (Ec ∩O)

)
∪
(
B (x, r) ∩ (Ec ∩Oc)

)
(6.0.52)

Putting Ln-measure on both sides of (6.0.52), we get

Ln
(
B (x, r) ∩ Ec

)
= Ln

(
B (x, r) ∩ (Ec ∩O)

)
+ Ln

(
B (x, r) ∩ (Ec ∩Oc)

)
= Ln

(
B (x, r) ∩ (Ec ∩O)

)
, (6.0.53)

we got the last step since by Lemma 6.0.2, Ln
(
B (x, r) ∩ (Ec ∩Oc)

)
≤

Ln (Ec \O) = 0.

On the other hand we have

B (x, r) ∩O =

(
B (x, r) ∩

(
O ∩ (E ∪ Ec)

))
=

(
B (x, r) ∩ (O ∩ E)

)
∪
(
B (x, r) ∩ (O ∩ Ec)

)
(6.0.54)

Putting Ln-measure on both sides of (6.0.54), we get

Ln
(
B (x, r) ∩O

)
= Ln

(
B (x, r) ∩ (O ∩ E)

)
+ Ln

(
B (x, r) ∩ (O ∩ Ec)

)
= Ln

(
B (x, r) ∩ (O ∩ Ec)

)
, (6.0.55)

we got the last step since by Lemma 6.0.2, Ln
(
B (x, r)∩(O ∩ E)

)
≤ Ln (O \ Ec)

= 0.



Therofore, by (6.0.53) and (6.0.55) , (6.0.51) becomes

lim
r→0

Ln (B (x, r) ∩O)

rn
= 0.

Now, fix ε =
αn−1
3n+1

, hence there exists k ∈ N such that for all 0 < r <
3

k
we

have

Ln (B (x, r) ∩O)

rn
<
αn−1
3n+1

.

Therefore, by (6.0.20) x ∈ G (k) , so x ∈
∞⋃
k=1

G (k) .

We can argue similarly to prove (6.0.50).

Subclaim # 3: ∃ k0 ∈ N such that

(z, u) ∈ G (k0) , (6.0.56)

and

(z, v) ∈ H (k0) , (6.0.57)

and

G (k0) ∩H (k0) = φ. (6.0.58)

Proof of Subclaim # 3 : Recall ( by the first line in proof of Claim # 2

) that (z, u) ∈ I and (z, v) ∈ O.

Using (6.0.49) and (6.0.50) ∃ k such that (z, u) ∈ G (k) and ∃ k′ such that

(z, v) ∈ H (k′) .

Let k0 = max{k, k′}, and using the fact that G (k) and H (k) are increasing



as functions of k, we get (z, u) ∈ G (k0) and (z, v) ∈ H (k0) .

Let us now show that G (k0)∩H (k0) = φ. To prove it, we go by contradiction.

Assume there exists x ∈ G (k0) ∩H (k0) . Then for every 0 < r <
3

k0
, we have

Ln (B (x, r) ∩O)

rn
=
Ln (B (x, r) ∩ Ec)

rn
≤ αn−1

3n+1
, (6.0.59)

and

Ln (B (x, r) ∩ I)

rn
=
Ln (B (x, r) ∩ E)

rn
≤ αn−1

3n+1
. (6.0.60)

By adding (6.0.60) and (6.0.59) , we get

lim
r→0

Ln
(
B (x, r)

)
rn

= lim
r→0

Ln (B (x, r) ∩ Ec) + Ln (B (x, r) ∩ E)

rn
≤ 2αn−1

3n+1
< αn,

(6.0.61)

where the last inequality comes from the fact that αn is increasing and thus

2

3n+1
< 1 <

αn
αn−1

.

However, by Definition 2.0.16 we have

lim
r→0

Ln
(
B (x, r)

)
rn

= lim
r→0

αnr
n

rn
= αn. (6.0.62)

Thus by (6.0.61) and (6.0.62), αn < αn, which is a contradiction. Hence,

G (k0) ∩ H (k0) = φ.

Subclaim # 4: There exists two numbers u0 and v0, such that

u < u0 < v0 < v (6.0.63)



and

{(z, t) , u0 < t < v0} ∩
(
G (k0) ∪H (k0)

)
= φ, (6.0.64)

Proof of Subclaim # 4 : Define

u0 := sup{t| (z, t) ∈ G (k0) , t < v} (6.0.65)

We would like to show that u0 < v, and to do that we go by contradiction.

Suppose that u0 = v. Then, by the definition of sup, there exists a sequence {ti}

in R such that ti < v, (z, ti) ∈ G (k0) and lim
i→∞

ti = v. Thus lim
i→∞

(z, ti) = (z, v) .

Moreover, G (k0) is closed, and thus, (z, v) ∈ G (k0) which is a contradic-

tion, since by (6.0.57) (z, v) ∈ H (k0) and by (6.0.58) G (k0) ∩H (k0) = φ.

Notice that (z, u0) ∈ G (k0) since by the definition of sup, we got the se-

quence ti that converges to u0 such that (z, ti) ∈ G (k0) . Then by the fact that

G (k0) is closed, we get lim
i→∞

(z, ti) = (z, u0) ∈ G (k0) .

Now, let

v0 := inf{t| (z, t) ∈ H (k0) , t > u0} (6.0.66)

We would like to show that u0 < v0, and to do that we go by contradic-

tion. Suppose that u0 = v0. Then, by the definition of inf, there exists a

sequence {ti}, such that ti > u0, (z, ti) ∈ H (k0) and lim
i→∞

ti = u0. Thus,

lim
i→∞

(z, ti) = (z, u0) .



Moreover, H (k0) is closed and thus, (z, u0) ∈ H (k0) which is a contradic-

tion since (z, u0) ∈ G (k0) and by (6.0.58) G (k0) ∩H (k0) = φ.

Summarizing our work above and recallng (6.0.56) and (6.0.57) we get (6.0.63) .

We are now ready to show (6.0.64) . Notice that (6.0.64) can be rewritten as

(
{(z, t) , u0 < t < v0} ∩G (k0)

)
∪
(
{(z, t) , u0 < t < v0} ∩H (k0)

)
= φ.

(6.0.67)

To prove (6.0.67), we prove the first union to be empty. Let’s proceed by con-

tradiction. Assume (z, t) ∈ {(z, t) , u0 < t < v0}∩G (k0) . Then (z, t) ∈ G (k0) ,

u0 < t and by (6.0.63) t < v0 < v. But by (6.0.65) t ≤ u0. Thus leading to a

contradiction.

Similarly, we can show that the second union is also empty.

This concludes the proof of (6.0.67) and hence Subclaim # 4.

Subclaim # 5: Since,

z ∈ V \
∞⋃

k,m=1

P

[
G+ (k,m) ∪G− (k,m) ∪H+ (k,m) ∪H− (k,m)

]
(6.0.68)

then there exists

u0 < s1 < t1 < v0,

such that

(z, s1) ∈ I and (z, t1) ∈ O. (6.0.69)



Proof of Subclaim # 5 : We also prove (6.0.69) by contradiction. Assume

(z, t) ∈ I ∀ t ∈]u0, v0[ ( we can argue similarly if (z, t) ∈ O ∀ t ∈]u0, v0[ ). Let

m ∈ N such that v0 −
3

m
> u0. Thus we have

1. (z, v0) ∈ H (k0) ( by Subclaim # 2 )

2. (z, v0) − sen = (z, v0 − s) ,where v0 − s is one of those t’s, such that

(z, t) ∈ I ∀ t ∈]u0, v0[. Thus, (z, v0)−sen = (z, v0 − s) ∈ I for 0 < s <
3

m
.

Hence by (6.0.24) , (z, v0) ∈ H− (k0,m) and thus z ∈ P
(
H− (k0,m)

)
. This

contradicts (6.0.68) .

Repeating Subclaim # 3 till the end of Subclaim # 4 we get k1 > k0 and

numbers u1, v1 such that

u0 < u1 < v1 < v0, (z, u1) ∈ G (k1) , and (z, v1) ∈ H (k1) ,

and by (6.0.64) , (z, t) /∈ G (k1) ∪H (k1) for u1 < t < v1.

Continuing like this, ∃ sequences {kj}∞j=1, {uj}∞j=1 and {vj}∞j=1 such that



u0 < u1 < . . . , v0 > v1 > v2 . . .

uj < vj ∀ j = 1, 2, . . .

(z, uj) ∈ G (kj) , (z, vj) ∈ H (kj)

(z, t) /∈ G (kj) ∪H (kj) if uj < t < vj





Take

lim
j→∞

uj ≤ t ≤ lim
j→∞

vj,

Note that ∀ j ∈ N, uj < t < vj. Thus we have

y := (z, t) /∈
∞⋃
j=1

[
G (kj) ∪H (kj)

]
. (6.0.70)

Let us show that y ∈ ∂∗E. Notice that by (6.0.70) , y /∈ G (kj) , thus by (6.0.21)

Ln (B (y, r) ∩O)

rn
≥ αn−1

3n+1
, (6.0.71)

so by (6.0.53) , (6.0.55) and by applying lim sup on both sides of (6.0.71) , we

get

lim sup
r→0

Ln (B (y, r) ∩ Ec)

rn
>
αn−1
3n+1

. (6.0.72)

Similarly, we can get

lim sup
r→0

Ln (B (y, r) ∩ E)

rn
>
αn−1
3n+1

. (6.0.73)

Then, by Definition 4.0.8, y = (z, t) ∈ ∂∗E, hence, we get a contradiction and

the claim is proven.

After proving claim # 1 we got that ess V a
−af

z is taken over all the points

such that (z, ti) ∈ O ∪ I. Furthermore, by claim # 2 , if (z, u) ∈ I and

(z, v) ∈ O then, (z, t) ∈ ∂∗E. So the essential variation actually counts the



points in ∂∗E. Thus, we get

ess V a
−af

z = sup

{
m∑
j=1

|f z (tj+1)− f z (tj) |

}
≤ Card

{
t| − a < t < a, (z, t) ∈ ∂∗E

}
= N (P |U ∩ ∂∗E, z) ,

We got the last inequality since, by (6.0.1), N (P |U ∩ ∂∗E, z) =H0 (U ∩ ∂∗E ∩ P−1{z})

which is the counting measure by Theorem 2.0.23.

Thus by Lemma 6.0.1 and (6.0.17) , we have

∫
V

ess V a
−af

z dz ≤
∫
V

N (P |U ∩ ∂∗E, z) dz

≤ Hn−1 (U ∩ ∂∗E)

< ∞

Hence, I is of locally finite perimeter, as we wanted.
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