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Geometric measure theory was developed in the second half of the

20th century to manipulate the structure and regularity questions

in the calculus of variations. The main goal of this thesis is to

introduce the theory of ” rectifiability of sets”. Rectifiable sets are

considered smooth in a certain measure theoretic sense. Rectifiable

sets are basic concepts in geometric measure theory. Their theory

began with the study and determination of length, area or volume

of sets in Euclidean space. Rectifiable sets have many of the de-

sirable properties that smooth sets have. In this thesis, we will



discuss one of their most important features which is the existence

of what we call approximate tangent planes. In fact, we will show

that a set that has an n-dimensional approximate tangent plane at

almost every point is n-rectifiable.
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Notations

L1 The 1-dimensional Lebesgue measure

Ln The n-dimensional Lebesgue measure

f �E f restricted to the set E

a.e. almost everywhere

Hs s-dimensional Hausdorff measure

(X,M, µ) Measure Space : X is the set, M is measurable set on X , µ is

the measure on X

C1
c Compactly supported

L1
loc Locally bounded variation

L1 Set of all µ-summable functions

{θ > a} {x ∈ Rn+k, θ(x) > a}

B (x, r) {y ∈ Rn, |x− y| ≤ r} = closed ball with center x, radius r}

α (s)
π
s
2

Γ
(
s
2

+ 1
) (0 ≤ s <∞)

α (n) volume of the unit ball in Rn

χA characteristic function of the set A

f̄ an extension of f

Lip (f) Lipschitz constant of f



Chapter 1

Introduction

In measure theory, the notion of n-rectifiable sets provides a measure theoretic

notion of smoothness for surfaces which are not smooth in the usual sense. In

fact, a set is rectifiable if it is basically a subset of a union of Lipschitz graphs.

By definition Lipschitz functions are functions that do not vary very much.

More formally,

Definition 1.0.1. |f (x)− f (y) | ≤ C|x− y| for all x and y in Rn where C is

a constant

Rademacher (see book [1]) proved that Lipschitz functions are differen-

tiable almost everywhere. For this reason it is known that Lipschitz functions

are a measure theoretic generalization of smooth functions, making rectifiable

sets a generalization of smooth surfaces. A standard example of 1-rectifiable

set in the plane is the graph of the function f(x) = |x|.
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To be able to give the formal definition of rectifiable sets, we need the

notion of the Hausdorff measure.

The Hausdorff measure is essentially the surface measure, in the sense that

it measures the n-dimensional volumes of an n- dimensional set that lives in a

higher dimensional space Rn+k. For example, if we have a 2-dimensional sur-

face living in R5 , we need a measure that gives us the area of this surface even

if it is living in a very high dimensional space R5. Thus, the 1-dimensional

Hausdorff measure of a simple curve in Rn+k is equal to the length of the

curve, the 2- dimensional measure of a plane living in Rn+k is its area, and

the 3- dimensional measure of a solid living in Rn+k is its volume and so on.

This new measure is known as the Hausdorff measure and it was introduced

in 1918 by the mathematician Felix Hausdorff. Since rectifiable sets will be an

n- dimensional sets that live in the higher space Rn+k, the Hausdorff measure

is the correct tool to measure the volume of these sets.

We are now ready to give the formal definition of Hausdorff measure and then

rectifiable sets

Definition 1.0.2. 1. Let A ⊂ Rn+k

Let us define

Hn
δ (A) = inf

{ ∞∑
j=1

α (n)

(
diam Cj

2

)n
;A ⊂

∞⋃
j=1

Cj ; diam Cj ≤ δ
}

and where α (n) =
π
n
2

Γ
(
n
2

+ 1
) .



2. For A ⊂ Rn+k, let us define

Hn (A) = lim
δ→0
Hn
δ (A) = sup

δ>0
Hn
δ (A) .

We call Hn an n-dimensional Hausdorff measure on Rn+k.

Definition 1.0.3. We say that M ⊂ Rn+k is countably n- rectifiable if

M ⊂Mo

⋃(
∞⋃
i=1

fi(Ai)

)

where Hn(Mo) = 0 and fi : Ai −→ Rn+k is Lipschitz and Ai ⊂ Rn for

i = 1, 2 · · · .

Rectifiability was first introduced by Bescovitch for 1-dimensional sets in

the plane. His work was extended by Federer to n- sets of Rn+k, with n an in-

teger. Finally, rectifiability was generalized by Mastrand to fractal sets (which

is defined by Mandelbrot as a shape made of parts similar to the whole in some

way) in the plane whose Hausdorff dimension is any positive real number (see

book [2]).

From the definition of rectifiable sets, we notice that they are a natural and

convenient generalization of smooth n-dimensional surfaces. In fact, smooth

surfaces are described (locally) by smooth functions, whereas rectifiable sets are

described by Lipschitz functions, which as we said earlier are a generalization

of smooth functions. Thus, rectifiable sets are sets of extreme importance and



one comes to a very important and interesting question concerning them which

is how we can characterize rectifiable sets?

There is a wide variety of known geometric characterizations of rectifia-

bility. We shall state three of them which are given in terms of densities,

projections and approximate tangent planes (see book [3]).

One way of characterizing rectifiable sets is through density: Preiss’ The-

orem is one of the great landmarks of geometric measure theory. In fact, his

theorem states that a set is rectifiable if and only if the variation in its density

( relative to the Hausdorff measure) is controlled. More precisely,

Theorem 1.0.4. (see book [4])

Let E ⊂ Rn+k is a borel set with Hn(E) <∞ such that

θn∗ (x,E) = lim inf
r→0

µ(B(x, r) ∩ E)

2n
> 0 for Hna.e x ∈ E. Then the following

are equivalent:

(i)E is n− rectifiable.

(ii)

∫ 1

0

∣∣∣∣∣Hn (B(x, r) ∩ E)

rn
− H

n (B(x, 2r) ∩ E)

(2r)n

∣∣∣∣∣
2
dr

r
<∞ for Hn − a.e x ∈ E.

(iii) lim
r→0

(
Hn (B(x, r) ∩ E)

rn
− H

n (B(x, 2r) ∩ E)

(2r)n

)
= 0 for Hn − a.e x ∈ E



Another characterization of rectifiable sets is through projection: In fact,

it is shown (see book [5]) a set A is n-rectifiable if and only if the image of

every subset B ⊂ A of positive Hn- measure under a projection has a positive

Hn-measure. i.e Hn(Pv(B)) > 0.

In this thesis, we will focus on the third known characterization of rectifiability

in terms of approximate tangent planes. The main importance of the class of

rectifiable sets is that it posesses many of the nice properties of the smooth sur-

faces which one is seeking to generalize. Although in general, tangent planes

may not exist for rectifiable sets, they do admit ( at Hn a.e of their points)

what we call an approximate tangent plane. Let us formally here define an

approximate tangent plane:

Definition 1.0.5. We say that n-dimensional subspace P (x) is the approxi-

mate tangent space of µ at x if there exists θ(x) ∈ (0,∞) such that

lim
λ→0

∫
f(y) dµx,λ(y) = θ(x)

∫
P (x)

f(y) dHn(y) ∀f ∈ C1
c (Rn+k,R) (1.0.1)

where µx,λ be the measure given by

µx,λ(A) =
µ(x+ λA)

λn

In this thesis, we will show that having an approximate tangent plane at



almost every point is a sufficient criterion for a set to be n- rectifiable. More

precisely, we will prove the following theorem:

Theorem 1.0.6. Let µ be a radon measure on Rn+k , x ∈ Rn+k, and λ > 0.

Let µx,λ be the measure given by µx,λ(A) =
µ(x+ λA)

λn
. Suppose for µ - a.e

x ∈ Rn+k, there exists θ(x) ∈ (0,∞) and there exists an n - dimensional space

P (x) ⊂ Rn+k such that (3.0.1) holds. Let

M = {x ∈ Rn+k such that (3.0.1) holds for some P and some θ}

Let θ = 0 on Rn+k \M. Then θ is Hn - measurable, and M is countably n-

rectifiable.

In order to establish the proof of this theorem, we need the following chap-

ters:

In chapter 1, we state some preliminary definitions and theorems: definition

of measures, Beppo-Levi, Dominated Convergence Theorem and Egoroff The-

orem.

In chapter 2, we define the notion of Hausdorff measure and state some of

its properties then we define Lipschitz functions and introduce their extension

theorem.

In chapter 3, we introduce the definition of countable n-rectifiable sets. Then,

we state two lemmas that will help us in proving our main theorem. We finish

the thesis by the proof of theorem 3.0.53.



Chapter 2

Preliminaries

Let us begin by defining measures, Borel measures, and Radon Measures.

Definition 2.0.1. Let X be any set and 2X be the set of all subsets of X. A

mapping µ : 2X −→ [0,∞] is called a measure on X. If:

1. µ(φ) = 0

2. µ(A) ≤
∞∑
k=1

µ(Ak) whenever A ⊂
∞⋃
k=1

Ak.

Definition 2.0.2. Let X be any set, µ is a measure on X and A ⊂ X. We say

A is µ - measurable if µ(E) =µ(E ∩ A) + µ(E ∩ Ac) ∀E ∈ 2X

Definition 2.0.3. The Borel σ - algebra of Rn is the smallest σ- algebra of

Rn containing the open sets of Rn. The sets that belong to the σ- algebra are

called Borel sets.

Definition 2.0.4. A measure µ on Rn is called Borel measure if every borel

set is µ - measurable.
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Definition 2.0.5. Let µ be a measure on X. We say µ is regular if for each set

A ⊂ X, there exists a µ- measurable set B, such that A ⊂ B and µ(A) = µ(B).

Definition 2.0.6. Let µ be a measure on Rn. We say µ is Borel regular if µ

is a Borel measure and for each A ⊂ Rn, there exists a Borel set B such that

A ⊂ B and µ(A) = µ(B).

Definition 2.0.7. Let µ be a measure on Rn. We say that µ is a radon measure

if µ is a borel regular measure and µ(K) <∞ for each compact K ⊂ Rn.

Definition 2.0.8. A function f : X −→ R is said to be upper semi-continous

at x , if for each ε > 0, there exists δ > 0 such that |x − y| < δ implies that

f(y) < f(x) + ε.

Next, we recall some theorems from measure theory that we will use in this

thesis.

Theorem 2.0.9. Let µ be a radon measure. Then, the function

f : x −→ µ(B(x, r)) is upper semi- continues.

Theorem 2.0.10. Beppo-Levi ( see book [6])

Let (X,M, µ) be a measure space. Let {fn} be a sequence of positive measur-

able functions then,

∫ ∞∑
n=1

fn dµ =
∞∑
n=1

fn dµ.

Theorem 2.0.11. Dominated Convergence Theorem ( see book [6])

Let (X,M, µ) be a measure space, f, {fn} be measurable functions and φ be

a positive function. If :



1. lim
n→∞

fn = f , pointwise.

2. |fn| ≤ φ for all n.

3.

∫
φ dµ <∞ , that is φ ∈ L1 (µ) . Then,

lim
n→∞

∫
|fn − f | dµ = 0

and

lim
n→∞

∫
fn dµ =

∫
f dµ.

Theorem 2.0.12. ( see Theorem 7 p: 13 in book [1])

Assume f : X −→ [0,∞] be µ - measurable.Then there exists µ -measurable

sets {Ak}∞k=1 in X such that f =
∞∑
k=1

(
1

k
)χAk .

Theorem 2.0.13. ( see Theorem 5 p: 5 in book [1])

Let µ be a regular measure on X. If A1 ⊂ A2 ⊂ A3 · · · ⊂ Ak · · · then

lim
k→∞

µ(Ak) = µ

(
∞⋃
k=1

Ak

)

Theorem 2.0.14. Let (X,M, µ) be a measure space. Let f, g be positive

functions. If: f ≤ g then
∫
f dµ ≤

∫
g dµ

Theorem 2.0.15. Egoroff Theorem ( see Theorem 3 p:16 in book [1])

Let µ be a measure on Rn and suppose fk : Rn −→ Rm(k = 1, 2 · · · )

are µ - measurable. Assume A ⊂ Rn is µ - measurable with µ(A) <∞ and



fk −→ g µ - a.e on A. Then for each ε > 0 there exists a µ - measurable set

B ⊂ A such that :

1. µ(A−B) < ε

2. fk −→ g uniformly on B as k −→∞

Next, we define the Hausdorff Measure and state some of its properties.

Definition 2.0.16. 1. Let A ⊂ Rn, 0 ≤ s <∞ , 0 ≤ δ <∞.

Let us define

Hs
δ (A) = inf

{ ∞∑
j=1

α (s)

(
diam Cj

2

)s
;A ⊂

∞⋃
j=1

Cj ; diam Cj ≤ δ
}

and where α (s) =
π
s
2

Γ
(
s
2

+ 1
) .

2. For A ⊂ Rn and 0 ≤ s <∞ , let us define

Hs (A) = lim
δ→0
Hs
δ (A) = sup

δ>0
Hs
δ (A) .

We call Hs an s-dimensional Hausdorff measure on Rn.

Theorem 2.0.17. ( see Theorem 1 p:61 in book [1])

Hs is a borel regular measure.(0 ≤ s <∞) .

Finally,we define Lipschitz functions and introduce their extension theorem.

Definition 2.0.18. A function f : Rn −→ Rm is called a Lipschitz function

if there exists a constant C such that |f (x)− f (y) | ≤ C|x− y| for all x and

y in Rn.



Definition 2.0.19. Let f be a Lipschitz function. Define

Lip (f) = sup
{ |f (x)− f (y)|

|x− y|
;x, y ∈ Rn , x 6= y

}

We call Lip (f) the Lipschitz constant of the function f.

Theorem 2.0.20. Extension of Lipschitz functions ( see Theorem 1 p:80 in

book [1])

Suppose f : A −→ Rm is a Lipschitz function where A ⊂ Rn , then there exists

a Lipschitz function f̄ : Rn −→ Rm such that :

1. f̄ = f on A.

2. Lip
(
f̄
)
≤
√
m Lip (f) .

Lemma 2.0.21. (See Theorem 6.9 p:95 in [7])

Let A ⊂ Rn+k. If

lim
r→0

µ (B(x, r))

αnrn
≥ t ∀x ∈ A,

then, c tHn(A) ≤ µ(A)

where c is a constant depending only on n.



Chapter 3

Rectifiable Sets

Recall that our main theorem gives a criterion for a set to be n-rectifiable. So

let us begin this section by introducing the definition of countably n-rectifiable

sets.

Definition 3.0.1. M ⊂ Rn+k is said to be countably n- rectifiable if M ⊂

Mo

⋃( ∞⋃
i=1

fi(Rn)

)
where Hn(Mo) = 0 and fi : Rn −→ Rn+k is Lipschitz for

i = 1, 2, · · · Notice that by the extension theorem of Lipschitz Functions, it is

enough to have M ⊂Mo

⋃( ∞⋃
i=1

fi(Ai)

)
where Hn(Mo) = 0 and

fi : Ai −→ Rn+k is Lipschitz, and Ai ⊂ Rn , for i = 1, 2, · · ·

Definition 3.0.2. Let µ be a Radon measure on Rn+k, and fix x ∈ Rn+k . We

say that n-dimensional subspace P (x) is the approximate tangent space of µ at

x if there exists θ(x) ∈ (0,∞) such that

lim
λ→0

∫
f(y) dµx,λ(y) = θ(x)

∫
P (x)

f(y) dHn(y) ∀f ∈ C1
c (Rn+k,R) (3.0.1)
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where µx,λ be the measure given by

µx,λ(A) =
µ(x+ λA)

λn

To prove our main theorem, we need the following two Lemmas.

Lemma 3.0.3. Let S ⊂ Rn+k, ε ∈ (0, 1), and δ ∈ (0, 1). Let 0 ∈ S. Assume

that there exists an n- plane L containing the origin, such that for every

ρ ∈ [0, δ] and for each x ∈ S ∩B(0, δ) , we have

S ∩B(x, ρ) ⊂ ερ− neighborhood of (L+ x) ∩B(x, ρ) (3.0.2)

Then S ∩ B(0, δ
2
) is contained in the graph of a Lipschitz function defined on

L , and is thus contained in a Lipschitz image of Rn.

Proof. Let PL denote the projection onto the plane L. Fix x, y ∈ S ∩B(0, δ
2
).

Let |y − x| = ρ < δ. So, y ∈ S ∩B(x, ρ), which by (3.0.2) ensures

|P(L+x)⊥(y)− x| ≤ ερ (3.0.3)

= ε|y − x| (3.0.4)

Now, if we translate by x and use the linearity of the projection map, (3.0.3)

becomes

|PL⊥(y − x)| ≤ ε|y − x|



which becomes

|PL⊥(y)− PL⊥(x)| ≤ ε|y − x| (3.0.5)

However, notice that

|y − x| = |PL(y) + PL⊥(y)− (PL(x) + PL⊥(x))| (3.0.6)

Thus, using the triangle inequality on (3.0.6) and recalling (3.0.5), we get

|y − x| ≤ |PL(y)− PL(x)|+ |PL⊥(y)− PL⊥(x)|

≤ |PL(y)− PL(x)|+ ε|y − x|

So,

|PL(y)− PL(x)| ≥ (1− ε)|y − x| (3.0.7)

Notice that (3.0.7) shows that PL is injective on S ∩B(0, δ
2
). So,

PL �S∩B(0, δ
2
): S ∩B(0,

δ

2
) −→ PL(S ∩B(0,

δ

2
))

is bijective.

Now, recall ∀x, y ∈ S ∩B(0, δ
2
), we have

x = (PL(x), PL⊥(x)) = PL(x) + PL⊥(x)



y = (PL(y), PL⊥(y)) = PL(y) + PL⊥(y)

Define function

f : PL

(
S ∩B(0,

δ

2
)

)
−→ L⊥ such that ∀x ∈ S ∩B

(
0,
δ

2

)

f(PL(x)) = P⊥L (x)

Now, by (3.0.7), we have

|PL(y)− PL(x)| ≥ (1− ε)| (PL(y), PL⊥(y))− (PL(x), PL⊥(x)) |

Squaring both sides, we get

|PL(y)− PL(x)|2 ≥ (1− ε)2| (PL(y), PL⊥(y))− (PL(x), PL⊥(x)) |2

= (1− ε)2
(
|PL(y)− PL(x)|2 + |PL⊥(y)− PL⊥(x)|2

)
= (1− ε)2

(
|PL(y)− PL(x)|2 + |f(PL(y))− f(PL(x))|2

)
= (1− ε)2|PL(y)− PL(x)|2 + (1− ε)2|f(PL(y))− f(PL(x))|2

So,

(
1− (1− ε)2

)
|PL(y)− PL(x)|2 ≥ (1− ε)2|f(PL(y))− f(PL(x))|2



which makes

|f(PL(y))− f(PL(x))| ≤

√
1− (1− ε)2

(1− ε)2
|PL(y)− PL(x)|

So, f is Lipschitz function and S ∩B(0, δ
2
) ⊂ graph( f).

By Extension theorem for Lipschitz functions , we can extend f to a Lipschitz

function on L such that S ∩B(0, δ
2
) ⊂ graph( f).

Next , consider the rotation r that takes Rn to L. Set

h := (Id× f) ◦ r

Thus,

h : Rn −→ Rn+k

and

S ∩B
(

0,
δ

2

)
⊂ h(Rn)

We finish the proof by showing h is a Lipschitz function. Since

|h(x)− h(y)| = | (r(x), f(r(x))− (r(y), f(r(y)) |

≤ |r(x)− r(y)|+ |f(r(x))− f(r(y))|

≤ |r(x)− r(y)|+ Lip(f)|r(x)− r(y)|

≤ (Lip(f) + 1)|r(x)− r(y)|



Thus,

|h(x)− h(y)| ≤ (Lip(f) + 1)|x− y|

Lemma 3.0.4. Let µ be a Radon measure. Then the function

f : x −→ µ (B(x, r)) is a borel function.

Proof. By Theorem 2.0.9, we know f : x −→ µ (B(x, r)) is upper semi-

continous . To prove f is a borel function , we show

U = {x : f(x) < t}

is a borel set. However, we will show that U is an open set, and hence borel.

Take xo ∈ U and ε = t − f(xo). Since f is upper semi- continous, there exists

δ such that if |y − xo| < δ, then

f(y) < f(xo) + ε

that is,

f(y) < f(xo) + t− f(xo)

so,

f(y) < t.



Hence, y ∈ U and hence B(xo, δ) ⊂ U.

This shows that U is open , and as mentioned borel. This finishes the proof.

We are now ready to prove our main theorem.

Theorem 3.0.5. Let µ be a Radon measure on Rn+k , x ∈ Rn+k, and λ > 0.

Let µx,λ be the measure given by µx,λ(A) =
µ(x+ λA)

λn
. Suppose for µ - a.e

x ∈ Rn+k, there exists θ(x) ∈ (0,∞) and there exists an n - dimensional space

P (x) ⊂ Rn+k such that (3.0.1) holds. Let

M = {x ∈ Rn+k such that (3.0.1) holds for some P and some θ}

Let θ = 0 on Rn+k \M. Then θ is Hn - measurable, and M is countably n-

rectifiable.

Proof. In this proof, B(0, 1) will denote the closed unit ball and U(0, 1) will

denote the open unit ball. We begin by assuming µ(Rn+k) < ∞ since other-

wise, we just replace it by µ �B(0,R) .

We start the proof by showing that θ(x) is Hn - measurable.

Claim # 1:

lim
ρ→0

µ(B(x, ρ))

αnρn
= θ(x), µ− a.e x ∈ Rn+k

Proof of Claim # 1 : First for f ∈ C1
c (Rn+k,R), let us show that

1

rn

∫
f

(
y − x
r

)
dµ =

∫
f(y)dµx,r (3.0.8)



(3.0.8) is clear for f = χA since in this case the right hand side of (3.0.8) gives

us

∫
χA dµx,r = µx,r(A) (3.0.9)

and left hand side gives us

1

rn

∫
χA

(
y − x
r

)
dµ =

1

rn

∫
χx+rA(y) dµ

=
1

rn

∫
x+rA

dµ

=
µ(x+ rA)

rn
(3.0.10)

and (3.0.9) and (3.0.10) are equal by the definition of µx,r.

Now, for any positive function f, by Theorem 2.0.12, f can be written as

f =
∞∑
i=1

1

i
χAi

and thus we have,

1

rn

∫
χAi

(
y − x
r

)
dµ =

∫
χAi(y) dµx,r

So,

1

i

1

rn

∫
χAi

(
y − x
r

)
dµ =

1

i

∫
χAi(y) dµx,r



that is,

∞∑
i=1

1

i

1

rn

∫
χAi

(
y − x
r

)
dµ =

∞∑
i=1

1

i

∫
χAi(y) dµx,r

Using Beppo-Levi (see Theorem 2.0.10) we get,

1

rn

∫ ∞∑
i=1

1

i
χAi

(
y − x
r

)
dµ =

∫ ∞∑
i=1

1

i
χAi(y) dµx,r

which is exactly what we want. So we have (3.0.8) for positive functions.

Finally, for f ∈ C1
c (Rn+k,R) write f = f+ − f− where f+, f− are positive

functions. Thus, we have,

1

rn

∫
f+

(
y − x
r

)
dµ =

∫
f+(y) dµx,r

and

1

rn

∫
f−
(
y − x
r

)
dµ =

∫
f−(y) dµx,r

Thus,

1

rn

∫
f

(
y − x
r

)
dµ =

∫
f(y) dµx,r,

which finishes the proof of (3.0.8).

Now, for every 0 < δ < 1, let gδ ∈ C∞c (Rn+k,R), where 0 ≤ gδ ≤ 1 and gδ = 1

on B(0, 1) and 0 outside B(0, 1 + δ) and lim
δ→0

gδ = χB(0,1) pointwise on Rn+k.



Then, for all 0 < δ < 1, we have

χB(0,1) ≤ gδ

Thus,by Theorem 2.0.14, we have

∫
χB(0,1)

(
y − x
ρ

)
dµ ≤

∫
gδ

(
y − x
ρ

)
dµ.

Multiplying by
1

ρn
and taking lim sup on both sides,we get

lim sup
ρ→0

1

ρn

∫
χB(0,1)

(
y − x
ρ

)
dµ ≤ lim sup

ρ→0

1

ρn

∫
gδ

(
y − x
ρ

)
dµ. (3.0.11)

For the left side of (3.0.11), notice that

1

ρn

∫
χB(0,1)

(
y − x
ρ

)
dµ =

1

ρn

∫
χB(x,ρ)(y) dµ (3.0.12)

For the right hand side of (3.0.11), notice that by (3.0.1) and (3.0.8), we have

1

ρn

∫
gδ

(
y − x
ρ

)
dµ = θ(x)

∫
P (x)

gδ(y) dHn(y) (3.0.13)

Replacing (3.0.12) and (3.0.13) in (3.0.11) , we get

lim sup
ρ→0

1

ρn

∫
χB(x,ρ)(y) dµ ≤ θ(x)

∫
P (x)

gδ(y) dHn(y) (3.0.14)



Notice that (3.0.14) is true ∀ 0 < δ < 1. Now,

lim
δ→0

gδχP (x) = χB(0,1)χP (x) pointwise,

and

gδχP (x) ≤ χB(0,2)∩P (x),

and

∫
B(0,2)∩P (x)

dHn(y) <∞.

Thus, by Dominated Convergence Theorem ( see Theorem 2.0.11) , we have

lim
δ→0

∫
P (x)

gδ(y)dHn(y) =

∫
P (x)

χB(0,1)(y) dHn(y) (3.0.15)

Thus, taking the limit as δ −→ 0 in (3.0.14) and using (3.0.15), we get

lim sup
ρ→0

1

ρn

∫
χB(x,ρ)(y) dµ ≤ θ(x)

∫
P (x)

χB(0,1)(y) dHn(y)

that is,

lim sup
ρ→0

µ (B(x, ρ))

ρn
≤ θ(x)

∫
P (x)

χB(0,1)(y) dHn(y)

= θ(x)

∫
P (x)∩B(0,1)

dHn(y)

= θ(x)αn (3.0.16)



Now, let g1−δ ∈ C∞c (Rn+k,R), where 0 ≤ g1−δ ≤ 1 and g1−δ = 1 on B(0, 1−δ)

and 0 outside U(0, 1) and lim
δ→0

g1−δ = χU(0,1) pointwise on Rn+k.

Then, for all 0 < δ < 1, we have

χU(0,1) ≥ g1−δ

Thus, by Theorem 2.0.14, we have

∫
χU(0,1)

(
y − x
ρ

)
dµ ≥

∫
g1−δ

(
y − x
ρ

)
dµ

Multiplying by
1

ρn
and taking lim inf on both sides, we get

lim inf
ρ→0

1

ρn

∫
χU(0,1)

(
y − x
ρ

)
dµ ≥ lim inf

ρ→0

1

ρn

∫
g1−δ

(
y − x
ρ

)
dµ (3.0.17)

For the left hand side of (3.0.17), notice that

1

ρn

∫
χU(0,1)

(
y − x
ρ

)
dµ =

1

ρn

∫
χU(x,ρ)(y)dµ (3.0.18)

For the right hand side of (3.0.17), notice that by (3.0.1) and (3.0.8), we have

1

ρn

∫
g1−δ

(
y − x
ρ

)
dµ = θ(x)

∫
P (x)

g1−δ(y) dHn(y) (3.0.19)

Replacing (3.0.18) and (3.0.19) in (3.0.17), we get

lim inf
ρ→0

1

ρn

∫
χU(x,ρ)(y)dµ ≥ θ(x)

∫
P (x)

g1−δ(y) dHn(y) (3.0.20)



Notice that (3.0.20) is true ∀ 0 < δ < 1. Now,

lim
δ→0

g1−δ χP (x) = χU(0,1) χP (x) pointwise,

and

g1−δ χP (x) ≤ χU(0,2)∩P (x),

and

∫
U(0,2)∩P (x)

dHn(y) <∞.

Thus, by Dominated Convergence Theorem ( see Theorem 2.0.11), we have

lim
δ→0

∫
P (x)

g1−δ(y) dHn(y) =

∫
P (x)

χU(0,1)dHn (y) (3.0.21)

Thus, taking the limit as δ −→ 0 in (3.0.20) and using (3.0.21), we get

lim inf
ρ→0

1

ρn

∫
χU(x,ρ)(y) dµ ≥ θ(x)

∫
P (x)

χU(0,1)(y) dHn (y)

that is ,

lim inf
ρ→0

µ(U(x, ρ))

ρn
≥ θ(x)

∫
P (x)

χU(0,1)(y) dHn(y)

= θ(x)

∫
P (x)∩U(0,1)

dHn(y)

= θ(x)αn (3.0.22)



Finally, note that

U(x, ρ) ⊂ B(x, ρ)

So,

µ (U(x, ρ)) ≤ µ (B(x, ρ))

which implies

µ (U(x, ρ))

ρn
≤ µ (B(x, ρ))

ρn

that is,

lim inf
ρ→0

µ (U(x, ρ))

ρn
≤ lim inf

ρ→0

µ (B(x, ρ))

ρn
(3.0.23)

So, by (3.0.16), (3.0.23) and (3.0.22), we get

θ(x)αn ≥ lim sup
ρ→0

µ (B(x, ρ))

ρn
≥ lim inf

ρ→0

µ (B(x, ρ))

ρn
≥ lim inf

ρ→0

µ (U(x, ρ))

ρn
≥ θ(x)αn.

Thus, lim
ρ→0

µ (B(x, ρ))

ρn
exists and

lim
ρ→0

µ (B(x, ρ))

αnρn
= θ(x)

which finishes the proof of claim 1 .



Now, recall by Lemma 3.0.4, that the function x −→ µ (B(x, ρ)) is borel.

Thus, by claim 1, we have

lim
ρ→0

µ (B(x, ρ))

αnρn
= lim

m→∞

µ
(
B(x, 1

m
)
)

αn
(

1
m

)n (3.0.24)

making θ the limit of a sequence of borel functions, that is θ(x) is borel. But

recall by Theorem 2.0.17 , Hn is a borel regular measure, which means that

every borel function is Hn-measurable. So, θ is Hn- measurable.

We are left to prove that M is countably n-rectifiable. To be able to do

this, we first recall G(n,n+k) the metric space we call the Grassmanian, whose

elements are k-dimensional spaces of Rn+k. The distance between any two

k-dimensional subspaces is

d(π, π
′
) = sup

|x|=1

|Pπ(x)− Pπ′ (x)|

where Pπ denotes the orthogonal projection of Rn+k onto π.

Now, recalling Theorem 2.0.13 and the fact that θ(x) > 0 µ -a.e, we get

µ
(
Rn+k

)
= µ

(
∞⋃
m=1

{θ > 1

m
}

)
= lim

m→∞
µ

(
{θ > 1

m
}
)
.

So, let ε =
1

2
µ(Rn+k). Then, there exists No such that ∀m > No, we have

∣∣∣µ(Rn+k)− µ
(
{θ > 1

m
}
) ∣∣∣ ≤ 1

2
µ(Rn+k)



that is,

µ(Rn+k)− µ
(
{θ > 1

m
}
)
≤ 1

2
µ(Rn+k) (3.0.25)

Now, take mo > No and denote by

θo =
1

mo

and

F = {x ∈ Rn+k; θ(x) > θo} (3.0.26)

Moreover, (3.0.25), becomes

µ(Rn+k)− µ(F ) ≤ 1

2
µ(Rn+k)

Since θ(x) is Hn measurable, then F is Hn measurable. Finally, notice that

by claim 1, we have

θ(x) = lim
ρ→0

µ (B(x, ρ))

αnρn
, µ− a.e x ∈ Rn+k

Hence, by definition of F ( see (3.0.26)), we get that the

lim
ρ→0

µ(B(x, ρ))

αnρn
> θo x ∈ F (3.0.27)



Now, to be able to construct the sets eligible to be our Lipschitz images,

we need to introduce cones. For x ∈ Rn+k, and π a k-dimensional space, let

Xα(π, x) denote the following cone

Xα(π, x) = {y ∈ Rn+k, |Pπ(y − x)| ≥ α|y − x|}.

Claim # 2: lim
ρ→0

µ
(
X 1

2
(πx, x) ∩ (B(x, ρ)

)
ρn

= 0 where

x ∈ F and πx = P⊥(x)

Proof of Claim # 2 : For 0 < δ < 1, consider the cone

C := X 1
2
(πx, 0) ∩B(0, 1)

Let Nδ be the δ - neighborhood of C .Let gδ ∈ C∞c (Rn+k,R) , where 0 ≤ gδ ≤ 1

and gδ = 1 on C and 0 on N c
δ , such that lim

δ→0
gδ = χC pointwise on Rn+k. Then,

for all 0 < δ < 1, we have

χC ≤ gδ

By theorem 2.0.14, we have

∫
χC

(
y − x
ρ

)
dµ ≤

∫
gδ

(
y − x
ρ

)
dµ

Multiplying by
1

ρn
and taking lim sup on both sides, we get



lim sup
ρ→0

1

ρn

∫
χC

(
y − x
ρ

)
dµ ≤ lim sup

ρ→0

1

ρn

∫
gδ

(
y − x
ρ

)
dµ

= lim
ρ→0

1

ρn

∫
gδ

(
y − x
ρ

)
dµ (3.0.28)

For the left hand side of (3.0.28), notice that

1

ρn

∫
χC

(
y − x
ρ

)
dµ =

1

ρn

∫
χX 1

2
(πx,x)∩B(x,ρ)(y) dµ (3.0.29)

For the right hand side of (3.0.28), notice that by (3.0.1) and (3.0.8), we have

lim
ρ→0

1

ρn

∫
gδ

(
y − x
ρ

)
dµ = θ(x)

∫
P (x)

gδ(y) dHn(y) (3.0.30)

Replacing (3.0.29) and (3.0.30) in (3.0.28), we get

lim sup
ρ→0

1

ρn

∫
χX 1

2
(πx,x)∩B(x,ρ)(y) dµ ≤ θ(x)

∫
P (x)

gδ(y) dHn(y) (3.0.31)

Notice that (3.0.31) is true ∀ 0 < δ < 1. Now

lim
δ→0

gδχP (x) = χC χP (x) pointwise,

gδ χP (x) ≤ χsptgδ∩P (x)



and

∫
sptgδ∩P (x)

dHn(y) <∞.

Thus , by Dominated Convergence theorem (see Theorem 2.0.11) , we get

lim
δ→0

∫
P (x)

gδ(y) dHn(y) =

∫
P (x)

χC(y) dHn(y) (3.0.32)

Thus, taking the limit as δ −→ 0 in (3.0.31) and using (3.0.32), we get

lim sup
ρ→0

µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
ρn

≤ θ(x)

∫
P (x)

χC(y) dHn(y) (3.0.33)

We finish the proof of claim 2 by showing that right hand side of (3.0.33) is

zero, that is

∫
P (x)

χC(y) dHn(y) =

∫
P (x)∩C

dHn = Hn(P (x) ∩ C) = 0.

To do that, it is enough to show that P (x) ∩ C = {0}. Since y ∈ P (x) then

PP (x)(y) = y and PP (x)⊥(y) = 0 where PP (x) denotes the orthogonal projection

of Rn+k onto P (x). But y ∈ C, so |PP⊥(x)(y)| ≥ |y|
2

. Hence, we get 0 ≥ |y|
2

which means y = 0. and thus P (x) ∩ C = {0}.

lim
ρ→0

sup
µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
ρn

= 0,

and claim 2 is proved.



Now, we are ready to construct the sets eligible for being Lipschitz images :

For k = 1, 2, · · · and x ∈ F ( as constructed in (3.0.26)), let

fk(x) = inf
(0<ρ< 1

k
)

µ (B(x, ρ))

αnρn
(3.0.34)

and

qk(x) = sup
(0<ρ< 1

k
)

µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
αnρn

(3.0.35)

For every x ∈ F , by claim 1 and (3.0.27), we have

θ(x) = lim
k→∞

fk(x) ≥ θo and lim
k→∞

qk(x) = 0 (3.0.36)

Now, by Egoroff’s Theorem (see Theorem 2.0.15), there exists A1 ⊂ F such

that

µ(F \ A1) <
1

4
µ(Rn+k) and lim

k→∞
fk(x) = θ(x) uniformly on A1

By applying Egoroff’s Theorem again, there exists a set A2 ⊂ A1 such that

µ(A1 \ A2) <
1

4
µ(Rn+k) and lim

k→∞
qk(x) = 0 uniformly onA2



Set E := A2. Then, E ⊂ F and

µ(F \ E) ≤ µ(F \ A1) + µ(A1 \ E)

= µ(F \ A1) + µ(A1 \ A2)

<
1

2
µ(Rn+k) (3.0.37)

Moreover,

lim
k→∞

fk(x) ≥ θo, and lim
k→∞

qk(x) = 0 uniformly on E (3.0.38)

Now, fix 0 < ε < 1 and using uniform convergence, then there exists ko such

that for all k ≥ ko , and for all x ∈ E, and using (3.0.36), we have

|fk(x)− θ(x)| ≤ θoε and |qk(x)| ≤ θoε

So, ∀ k ≥ ko , we have

fk(x) ≥ θo(1− ε) and qk(x) ≤ θoε (3.0.39)

Then,∀ k ≥ ko, substituting (3.0.39) in (3.0.34) and (3.0.35) respectively ,we

get

inf
(0<ρ< 1

k
)

µ (B(x, ρ))

αnρn
≥ θo(1− ε) and sup

(0<ρ< 1
k
)

µ
(
X 1

2
(πx, x) ∩ (B(x, ρ)

)
αnρn

≤ θoε



Thus, for ρ < 1
ko

, we get

µ (B(x, ρ))

αnρn
≥ θo(1− ε) and

µ
(
X 1

2
(πx, x) ∩B(x, ρ)

)
αnρn

≤ θoε. (3.0.40)

Let δ =
1

ko
. Then (3.0.40) holds for all ρ ≤ δ.

We know that the Grassmanian G(n+k , k) is compact in the d- metric space,

so for ε =
1

16
, we can choose k- dimensional subspaces π1, · · · πN of Rn+k such

that for any k- dimensional π of Rn+k , there exists a j ∈ {1, · · · , N} such

that d(π, πj) ≤
1

16
.

Let E1, · · · , En be subsets of E defined by :

Ej =
{
x ∈ E, d(πj, πx) <

1

16

}

Its is clear that E =
N⋃
j=1

Ej.

Now, to be able to prove that Ej is inside a countable union of Lipschitz

images, we need to prove the following claim.

Claim # 3: For ε =
1

2n16n + 1
, and δ =

1

ko
as above (see line below (3.0.40)),

we have

X 3
4
(πj, x) ∩ Ej ∩B

(
x,
δ

2

)
= {x} ∀ x ∈ Ej j = (1, · · · , N)

Proof of Claim # 3 : Fix ε and δ as in statement of the claim. We proceed

by contradiction. Let x ∈ Ej and suppose there exist y 6= x such that

y ∈ X 3
4
(πj, x) ∩ Ej ∩ B(x, δ

2
). So , there exists ρ < δ

2
such that y ∈ ∂B(x, ρ)



that is |y − x| = ρ < δ
2
.

Since x ∈ Ej ⊂ E and 2ρ < δ , then by (3.0.40), we have

µ
(
X 1

2
(πx, x) ∩B(x, 2ρ)

)
≤ θo ε αn(2ρ)n (3.0.41)

In order to reach a contradiction, we need to show that

B
(
y,

ρ

16

)
⊂ X 1

2
(πx, x) ∩B(x, 2ρ)

Take z ∈ B(y, ρ
16

). Then

|z − y| ≤ ρ

16
. (3.0.42)

But, by the Triangle Inequality, we have

|z − x| ≤ |z − y|+ |y − x|

≤ ρ

16
+ ρ

=
17ρ

16
< 2ρ. (3.0.43)

Thus, z ∈ B(x, 2ρ).

We still need to show that z ∈ X 1
2
(πx, x), that is we need to show that

|Pπx(z − x)| ≥ |z − x|
2



Notice that x, y ∈ Ej, so we have

d(πj, πx) ≤
1

16
and d(πj, πy) ≤

1

16
. (3.0.44)

Now,

|Pπx(z − x)| = |Pπx(z − x) + Pπj(z − x)− Pπj(z − x)|

≥ |Pπj(z − x)| − |Pπx(z − x)− Pπj(z − x)| (3.0.45)

To bound the second summand of the right hand side of (3.0.45), note that by

(3.0.44) and the the definition of distance, we have

∣∣∣Pπx ( z − x
|z − x|

)
− Pπj

(
z − x
|z − x|

) ∣∣∣ ≤ d(πx, πj) ≤
1

16

Thus, by linearity of the projection function, we get

∣∣∣ 1

|z − x|
(
Pπx(z − x)− Pπj(z − x)

) ∣∣∣ ≤ 1

16

that is,

∣∣∣Pπx(z − x)− Pπj(z − x)
∣∣∣ ≤ |z − x|

16
(3.0.46)

To bound the first summand of (3.0.45), notice that since y ∈ X 3
4
(πj, x) and

|y − x| = ρ, then

|Pπj(y − x)| ≥ 3

4
|y − x| = 3

4
ρ (3.0.47)



Moreover, by (3.0.42), we have

|Pπj(y − z)| ≤ |y − z| ≤ ρ

16
. (3.0.48)

Thus, combining (3.0.47), (3.0.48) and using linearity of the projection func-

tion, we get

|Pπj(z − x)| = |Pπj(z − y + y − x)|

= |Pπj(z − y) + Pπj(y − x)|

= | − Pπj(y − z) + Pπj(y − x)|

≥ |Pπj(y − x)| − |Pπj(y − z)|

≥ 3

4
ρ− ρ

16
. (3.0.49)

Substituting (3.0.49) and (3.0.46) in (3.0.45) and recalling (3.0.43), we get

|Pπx(z − x)| ≥ 3ρ

4
− ρ

16
− |z − x|

16

=
11ρ

16
− |z − x|

16
. (3.0.50)

However, by (3.0.43),

|z − x| ≤ 17ρ

16



that is,

ρ ≥ 16

17
|z − x|. (3.0.51)

Replacing (3.0.51) in (3.0.50), we get

|Pπx(z − x)| ≥ 11

16

(
16

17
|z − x|

)
− |z − x|

16

=

(
11

17
− 1

16

)
|z − x|

≥ 1

2
|z − x|.

Thus, we proved that

B(y,
ρ

16
) ⊂ X 1

2
(πx, x) ∩B(x, 2ρ).

So, by (3.0.40), we get

µ
(
X 1

2
(πx, x) ∩B(x, 2ρ)

)
≥ µ

(
B(y,

ρ

16
)
)

≥ θo(1− ε)
αnρ

n

16n

since ε =
1

2n16n + 1
, we get a contradiction with (3.0.41). This finishes the

proof of Claim 3.



Now , we are ready to prove that Ej’s are our required sets

Claim # 4: ∀j = 1, 2 · · · , N , ∀xo ∈ Ej we have,

Ej ∩B
(
xo,

δ

4

)
⊂ fxo,j(Rn)

where

fxo,j : Rn −→ Rn+k is Lipschitz

Proof of Claim # 4 :We want to use the result of Lemma 3.0.2.

Let x ∈ Ej ∩B
(
xo,

δ
2

)
and suppose there exists y 6= x ∈ Ej ∩B(x, ρ).

Then, by Claim 3 , we have y /∈ X 3
4
(πj, x)

So,

|Pπj(y − x)| < 3

4
|y − x| and |y − x| < ρ

Translating by x, we get

|Pπj+x(y)− x| < 3

4
ρ

Thus, by Lemma 3.0.2, used on ε = 3
4
, we get

Ej ∩B(xo,
δ

4
) ⊂ fxo,j(Rn)

where fxo,j : Rn −→ Rn+k is Lipschitz.This finihses the proof of Claim 4.



Now, we have to construct countable sets that are eligible to be our Lipschitz

images.

Let
{
B(xi,

δ

4
)
}∞
i=1

denote a countable cover for E with |xi − x
′
i| ≥ δ

4
.

∀i, i′ ∈ N, we have

Ej ⊂ E ⊂
∞⋃
i=1

B

(
xi,

δ

4

)

that is,

Ej ∩

(
∞⋃
i=1

B

(
xi,

δ

4

))
= Ej

so,

∞⋃
i=1

(
Ej ∩B

(
xi,

δ

2

))
= Ej

Taking the union over j on both sides and recalling that E =
N⋃
j=1

Ej, we get

N⋃
j=1

∞⋃
i=1

(
Ej ∩B(xi,

δ

4
)

)
=

N⋃
j=1

Ej = E

so, by Claim 4, we get

E =

∞,N⋃
i,j=1

(
Ej ∩B(xi,

δ

4
)

)
⊂
∞,N⋃
i,j=1

fxi,j(Rn)



Renaming, we get

E ⊂
∞⋃
l=1

fl(Rn) (3.0.52)

where fl : Rn −→ Rn+k is Lipschitz for all l = 1, 2 · · · . Thus, we got that E is

inside countably many Lipschitz images.

Recall from (3.0.37), we chose E such that µ(F \E) <
1

2
µ(Rn+k). Set E1 := E.

Thus, on E1 (3.0.38) holds and we have (3.0.52). Since we renamed E to E1,

let us rename (3.0.52) to say that

E1 ⊂
∞⋃
l=1

f 1
l (Rn) (3.0.53)

where fl : Rn −→ Rn+k is Lipschitz for all l = 1, 2 · · · . Now, by Egoroff

Theorem (see Theorem 2.0.15), construct a set E2 with E2 ⊂ F \ E1 (that is

E1 ∩ E2 = φ)

µ
(
(F \ E1) \ E2

)
<

1

22
µ(Rn+k),

and (3.0.38) holds on E2. Repeating the same work we did in Theorem from

(3.0.38) to (3.0.53), we get

E2 ⊂
∞⋃
l=1

f 2
l (Rn)

where fl : Rn −→ Rn+k is Lipschitz for all l = 1, 2 · · · .

In general, for p ∈ N,by by Egoroff Theorem (see Theorem 2.0.15), construct



a set Ep with Ep ⊂ F \
p−1⋃
i=1

Ei (that is Ep ∩
p−1⋃
i=1

Ei = φ),

µ

(
(F \

p−1⋃
i=1

Ei) \ Ep

)
<

1

2p
µ(Rn+k) (3.0.54)

and (3.0.38) holds on Ep. Repeating the same work we did in Theorem from

(3.0.38) to (3.0.52), we get

Ep ⊂
∞⋃
l=1

fpl (Rn) (3.0.55)

where fl : Rn −→ Rn+k is Lipschitz for all l = 1, 2 · · · . Thus, we have now

constructed countably many disjoint µ - measurable sets Ei ⊂ F such that,

(3.0.55) holds ∀i ∈ N. Moreover, using (3.0.54), we have

µ

(
F \

∞⋃
i=1

Ei

)
= 0 (3.0.56)

Thus, by (3.0.56) and (3.0.55), we get

F ⊂
∞⋃
i,l=1

f il (Rn)
⋃

F 1
o (3.0.57)

with µ(F 1
o ) = 0 and f il : Rn −→ Rn+k is Lipschitz for all l = 1, 2, · · · . Renam-

ing, we get

F ⊂
∞⋃
r=1

fr(Rn)
⋃

F 1
o (3.0.58)

Notice that by (3.0.58), we have written F inside a countable union of Lipschitz



images.

Now, go back to the construction of F in (3.0.26) and call it F1. Thus,(3.0.58)

becomes

F1 ⊂
∞⋃
r=1

f 1
r (Rn)

⋃
F 1
o . (3.0.59)

Recall that

Rn+k \ F1 =
{
θ ≤ θo

}
=

{
0 < θ ≤ θo

}⋃{
θ = 0

}
=

{
0 < θ ≤ 1

mo

}⋃{
θ = 0

}
=

⋃
m>mo

{ 1

m
< θ ≤ 1

mo

}⋃{
θ = 0

}

Then,

µ
(
Rn+k \ F1

)
= µ

( ⋃
m>mo

{ 1

m
≤ θ ≤ 1

mo

})

By (2.0.13), we get

µ
(
Rn+k \ F1

)
= lim

m→∞,m>mo
µ
({ 1

m
< θ ≤ 1

mo

})

Hence, there exists m1 > mo such that

µ
(
Rn+k \ F1

)
− µ

({ 1

m1

< θ ≤ 1

mo

})
≤ 1

22
µ(Rn+k) (3.0.60)



Now, let F2 = { 1

m1

< θ ≤ 1

mo

} and θ1 =
1

m1

. Thus, (3.0.60) becomes

µ
(
Rn+k \ (F1

⋃
F2)
)
≤ 1

22
µ(Rn+k)

As in the construction of F , Notice that F1 ∩ F2 = φ and

lim
ρ→0

µ
(
B(x, ρ)

)
αnρn

≥ θ1 ∀x ∈ F2

Repeating the same process we did on F (Claim 1 until (3.0.59)) but on F2

instead, we get

F2 ⊂
∞⋃
r=1

f 2
r (Rn)

⋃
F 2
o

with µ(F 2
o ) = 0 and f 2

r : Rn −→ Rn+k is Lipschitz for all r = 1, 2, · · ·

In general, construct Fs = { 1

ms−1
< θ ≤ 1

ms−2
} with θs−1 =

1

ms−1
such that

µ
(
Rn+k \

s⋃
i=1

Fi

)
≤ 1

2s
µ(Rn+k). (3.0.61)

Repeating the same process we did on F2 ( Claim 1 until (3.0.59)) but on Fs

instead, we get

Fs ⊂
∞⋃
l=1

f sl (Rn)
⋃

F s
o (3.0.62)

with µ(F s
o ) = 0 and f sl : Rn −→ Rn+k is Lipschitz for all l = 1, 2, · · ·



Notice that from (3.0.62), we get

µ

(
Rn+k \

∞⋃
i=1

Fi

)
= 0 (3.0.63)

We now prove that

µ

(
Rn+k \

∞⋃
i=1

Fi

)
= µ

(
M \

∞⋃
i=1

Fi

)
= 0. (3.0.64)

But using (3.0.63) and the fact that µ(Rn+k \M) = 0, we get

µ

(
Rn+k \

∞⋃
i=1

Fi

)
= µ

((
Rn+k \M)

⋃
M
)
\
∞⋃
i=1

Fi

)

= µ

((
(Rn+k \M) \

∞⋃
i1

Fi

)⋃(
M \

∞⋃
i=1

Fi

))

= µ

((
Rn+k \M

)
\
∞⋃
i=1

Fi

)
+ µ

(
M \

∞⋃
i=1

Fi

)

= µ

(
M \

∞⋃
i=1

Fi

)
(3.0.65)

Combinig (3.0.63) and (3.0.65), we get (3.0.64). Now, let

M \
∞⋃
i=1

Fi = M1
o with µ(M1

o ) = 0 (3.0.66)

then,

M =
∞⋃
i=1

Fi
⋃

M1
o



so, by (3.0.62) used on Fi, we get

M ⊂
∞⋃
i=1

(
∞⋃
l=1

f il (Rn)
⋃

F i
o

)⋃
M1

o =
∞⋃
i,l=1

f il (Rn)
⋃( ∞⋃

i=1

F i
o

)⋃
M1

o

let

Mo =
∞⋃
i=1

F i
o

⋃
M1

o such that µ(M1
o ) = 0

Notice that by the sentence below (3.0.62) and by (3.0.66), we have µ(Mo) = 0.

Thus,

M ⊂
∞⋃
i,l=1

f il (Rn)
⋃

Mo with µ(Mo) = 0

Renaming, we get

M ⊂
∞⋃
j=1

fj(Rn)
⋃

Mo

wherefj : Rn −→ Rn+k is Lipschitz and µ(Mo) = 0

To finish the proof of M being n-rectfiable, we still need to show that

Hn(Mo) = 0

We know that

Mo ⊂
{
θ > 0

}
=
∞⋃
i=1

{
θ >

1

i

}



Let

M i
o = Mo ∩

{
θ >

1

i

}

then

Mo =
∞⋃
i=1

M i
o

Now, fix i, so ∀x ∈M i
o, we have

lim
r→0

µ
(
B(x, r)

)
αnrn

>
1

i

By Lemma 2.0.21, we get

c

i
Hn(M i

o) < µ(M i
o)

where c is any constant depending only on n. Thus,

Hn(M i
o) <

i

c
µ(M i

o)

<
i

c
µ(Mo) = 0 (3.0.67)

Then,

Hn(M i
o) = 0



Thus,

Hn(Mo) = Hn(
∞⋃
i=1

M i
o)

≤
∞∑
i=1

Hn(M i
o) = 0 (3.0.68)

And hence the proof is done.
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